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Abstract

Using patent citation data for the U.S., we test whether knowledge spillovers in
biotechnology are sensitive to distance.  Controlling for self-citation by inventor, assignee
and examiner, cohort-based regression analysis shows that spillovers are local but that
distance is becoming less important with time.  Network analysis paints a picture of a
stable network between states, but a changing environment between individual actors,
with a growing importance of connectedness.  The popular maxim that everyone is
connected by six degrees of separation is tested with surprising results.
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It’s a Small(er) World:
The Role of Geography and Networks in Biotechnology Innovation1

I.  Introduction

It has long been noted that firms within an industry often cluster geographically,

for a variety of reasons.  Localization economies, or Marshall-Arrow-Romer externalities

which reduce the cost of inputs to firms in the local industry, have been studied in a

variety of contexts (see for example Henderson (1986) or Smith and Florida (1994)).  For

some industries, it is the nature of the knowledge itself, its speed of progress and the

degree to which it is tacit, that encourages firms to locate near other firms in the sector.

Both of these aspects of knowledge, diffusion speed and tacitness, have been identified in

the literature (see Caballero and Jaffe (1993) for diffusion speed and Von Hippel (1994)

for tacitness) but to our knowledge no analysis has measured their strength in

biotechnology, nor controlled for all factors which we include.

This paper examines knowledge flows within biotechnology, showing that inter-

firm knowledge transfers decrease with distance, but that the impact of physical distance

has been diminishing over time.  Thus, historically there has been a reason for

biotechnology firms to cluster geographically, although that reason is less powerful now

than ever before.  In addition, we show that the networks between individual inventors,

                                                
1 Daniel K.N. Johnson is a Visiting Fellow at the Science, Technology and Innovation
Policy Program, Center for International Development, Harvard University and Assistant
Professor of Economics at Wellesley College, Pendleton East, Room 415, Wellesley
College, 106 Central Street, Wellesley, MA 02481-8260, tel: (781) 283-2236, fax: (781)
283-2177, email:djohnson@wellesley.edu.  Milena Mareva is a Research Analyst,
Analysis Group/Economics, One Brattle Square, Fifth Floor, Cambridge, MA 02138, tel:
(617) 234-8862, fax: (617) 864-3742, e-mail: mmareva@analysisgroup.com.
We thank David Popp for suggestions about data and programming.  Financial support
was provided by a Wellesley College Faculty Grant.
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between firms, and between cities hosting those firms and inventors, have become more

tightly knit than ever before.  The conclusion is that while physical distance is becoming

less important, connections with leaders in the field are becoming more important.

Using all biotechnology patents granted in the U.S. between 1975 and 1994, we

show that there is a marked tendency to cite patents from nearby areas.  Thus, this paper

follows the "paper trail" literature (Feldman, 1999) on inter-firm knowledge transfers or

"spillovers" in documenting the creation of knowledge via patent citations.   We test

whether this pattern could naturally arise from a tendency to cite other patents listing the

same inventor, the same firm assignee, the same patent examiner, the same technology

class or states with many biotechnology patents to cite.  We conclude that the geographic

clustering of citations holds over and above the effects of these other factors, suggesting

that there is a local nature to knowledge spillovers.  Since we control for the locations of

other active firms in our analysis, this result provides solid evidence that localized

knowledge spillovers are a strong factor in the productivity of firms, and therefore in their

location decisions.  Subsequent network analysis confirms that inter-personal and inter-

city connections are becoming more important with time.

In section II of the paper, we briefly review the relevant literature on

biotechnology clustering and the geographic nature of knowledge spillovers.  Section III

describes our data set, designed to permit analyses parallel to both U.S. and European

literature on geography-based spillovers, controlling for variables omitted from their

analyses while testing the same hypotheses.  Section IV presents regression analysis that

controls for non-geographic effects in presenting the importance of state-level clustering.

Section V uses network analysis to identify the important actors and interactions in the



3

data, demonstrating that while geographic impacts on knowledge flows may be

diminishing, the role of connectedness with the center has been rising in importance.

Section VI concludes with implications for policy and further research.

II.  Literature review

The literature suggests that knowledge spillovers cluster geographically, with

higher spillovers (shown by more patent citations) within a short distance.  The

underlying supposition is that inventors are more aware of (or find more use for)

inventions located close to them, and therefore build more heavily on local inventions, the

result being a geographic clustering of citations.

Empirical evidence stresses the important role of geography in the spillover of

knowledge from one member of an innovation network to another (see for example a

review by Gelsing, 1992).  It also emphasizes the importance of frequent personal contact

and research collaboration.

The importance of geography differs predictably by technology type (Lundvall,

1992).  While geography has little impact on stationary technologies (facing constant

needs and opportunities), that importance grows quickly for technologies undergoing

incremental innovation and radical innovation.  During technological revolutions, there is

a dramatic effect on the geographic pattern of subsequent innovations.  Since

biotechnology has enjoyed aggressive growth, we expect a large geographic impact on

knowledge flows.

Geographic proximity has already been used to explain the location of R&D-

intensive activities (for Boston's high-technology district, see Dorfman (1988); for France

see Carrincazeaux et al., (2001)), due to evidence of localized spillovers within an
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industry.  However, the location of firms is not always a good predictor of the location of

innovation, even within the same industry. Feldman (1994) tests whether U.S. state patent

levels can be predicted simply by the presence of particular industries in that state.  Test

statistics are decisive, and in fact there is only a 0.42 correlation between innovation

measures and value-added in each state by industry.  This result is confirmed for the

1975-1994 period in the U.S. (Johnson, 1999) in an exploration of why the northeastern

states lost a dramatic share of the national patenting total.  It occurred not only due to the

location of industries, but also due to industries that did not maintain the patenting rates

of the same sector in other regions.

Localization of patent citations has been firmly established by the leading paper

on the topic (Jaffe et al., 1993), with a random sample of patents clearly more likely to

cite local patents than others at every geographically aggregated level.  The effects are

small but statistically significant, and are more intense where knowledge becomes

obsolescent rapidly, like electronics, optics and nuclear technology (Jaffe and Trajtenberg,

1996).  The result has been confirmed for semiconductors (Almeida and Kogut, 1997).

Since biotechnology knowledge becomes obsolescent very rapidly (see Johnson

and Santaniello, 2000), one might expect that it will follow the same pattern. However,

two factors augur against this quick conclusion.  First of all, most biotechnological

information is not tacit, so will be relatively easy to communicate across long distances.

Second, biotechnology patenting has occurred largely during a period when international

and inter-regional communication has been increasingly effective and affordable, so once

again we might expect less localization of knowledge spillovers (Feldman, 1999).
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Other researchers have demonstrated a geographic pattern to European patent

citations.  In a limited sample of Swedish patent applications, international trade flows

rather than physical distance, was the only variable that robustly explained international

references (Sjoholm, 1996).  In a larger study of over 100,000 patent citations between

European regions, there is strong evidence of geographic clustering (Maurseth and

Verspagen, 1999).  Regressions show that distance between regions is an important

driving factor, along with technological similarity between regions.

Our data, as described in the following section, test both the U.S. (Jaffe and

Trajtenberg, 1996) and European (Maurseth and Verspagen, 1999) versions of the

geographic-clustering hypothesis, while controlling for factors those studies omitted.

III.  Data

III.A.  Measurement issues

This paper relies exclusively on patent citations from biotechnology patents as a

geographic measure of knowledge spillovers in the sector.  When a patent application is

submitted for approval, it is accompanied by a list of citations to other patents and

literature which have been instrumental in the creation of this technology, or which

delineate the legal limits of this application.  The intention is twofold:  to build a

convincing case that this application is novel and unobvious to someone trained in the

field, and to provide a legal record of materials consulted during the invention process in

order to protect patent rights in the future.  To this list of citations, a patent examiner may

add his or her own list of citations.  The result is a paper trail of knowledge creation.

Of course, patents records do not perfectly reflect the creation of technology, as

some innovations are never patented and patents vary greatly in size and importance.
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However, within the U.S. on a state-by-state level, patents have a high correlation with

other measures of innovative activity.  For example, there is a 0.88 correlation between

patents and R&D expenditures, 0.99 between patents and research employment records,

and 0.93 between patents and a census of innovation citations in scientific and trade

journals conducted by the Small Business Administration (Feldman, 1994).

Citations themselves do not perfectly reflect the transfer of knowledge, as they

may be inserted for a variety of other reasons including legal protection or examiner

privilege.  Jaffe et al. (2000) relates survey evidence showing that only ¼ of all patent

citations correspond to a clear spillover of knowledge, another ¼ have some possibility of

a spillover, and the remaining ½ do not reflect knowledge transfers. However, statistical

tests indicate that overall citations can be interpreted as a signal of spillovers, albeit a

noisy signal.

As a final definitional challenge, "biotechnology" definitions differ between

nations and over time (see Johnson and Santaniello, 2000).  Therefore, we follow the

most recent published biotechnology definitions of the U.S. Patent Office (USPTO,

1998), which include portions of eleven separate classes from the U.S. patent

classification system.2

III.B.  Clustering of knowledge citations

One reason for geographic clustering of citations in biotechnology would simply

be the geographic clustering of biotechnology firms themselves. A number of control

                                                
2 Specifically, the definition includes U.S. Patent Classes 47/1.1-47/1.4, 47/57.6-47758, 424/9.1-424/9.2,
424/9.34-424/9.81, 424/85.1-424/94.67, 424/130.1-424/283.1, 424/520-424/583, 424/800-424/832,
435/1.1-435/7.95, 435/40.5-435/261, 435/317.1-435/975, 436/500-436/829, 514/2-514/22, 514/44,
514/783, 530/300-530/427, 530/800-530/868, 536/1.11-536/23.74, 536/25.1-536/25.2, 800, 930, 935.  We
exclude class PLT due to data limitations on these documents.
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variables are possible (e.g. number of firms, market value of firms) but in the

biotechnology field in particular, those variables are questionable indicators. It takes more

than the presence of other firms to create a citation, since citations are to particular

patents, not firms.  Therefore, in our analysis we control for the number of patents in each

state, both biotechnological and other.

However, patent citations may also cluster for non-geographic reasons,

coincidentally causing a pattern which appears geographic merely through correlation

with other phenomena.  For example, inventors may be more familiar with their own

patents, citing them more frequently than others, which would give a biased impression of

the importance of geography.  The same may be true of assignees, if employees of a firm

are familiar with other patents held by the firm.  While inventor and assignee self-citation

may drive a pattern of geographic clustering, they confuse the issue of "local knowledge

spillovers," which is the primary focus of our analysis, so we describe and separate it.  On

the other hand, we do not wish to simply ignore self-citations as being obviously local.  If

an assignee firm is located in several different locations, high familiarity with other

inventions by the same assignee may actually work against a geographic clustering of

citations.  The same may be true of an inventor who moves during his or her career.

Therefore we include self-citations in the analysis but control for them separately.

All patent citations are reviewed, revised and potentially appended by examiners

at the U.S. Patent Office.  Due to the nature of patent records, it is impossible to verify

whether a given citation was originally submitted by the applicant or added by an

examiner, so we must treat examiners as another potential source of geographic

clustering.  While examiners may have less geographic concentration in their knowledge,
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they may feel more familiarity with patents that they have examined than with patents that

others have examined.  This potentially introduces a bias through differences in the

geographic zones of examiner caseloads.  Since applicants do not know which examiner

will be assigned to their case, it is unlikely that applicants will include a large number of

citations to any particular examiner.  Thus, we can infer an "examiner self-citation effect"

to distinguish it from any geographic pattern we may observe.

Using U.S. patent data from a combination of sources (NBER website as

described in Hall et al., 2001 in addition to raw data collected by the independent firm

MicroPatent), we collected citations from all biotechnology patents granted between 1975

and 1994.  We then traced all self-citations by inventors, allowing for some flexibility in

name spellings (since the USPTO does not standardize name format).  These include not

only first inventors, but all inventors listed for each patent.  We found that self-citation

accounted for almost precisely one percent of all citations from biotechnology patents,

suggesting that while some self-citation is present, there are strong inter-inventor

knowledge spillovers.  Unlike academic citations, there is very little reason here to self-

cite as a means of advertising, so we can be fairly sure that self-citations are indicators of

useful capital or legal protection.

To add to this measure, we investigated citations between assignees.  Using the

same biotechnology patents, we found that nine percent of all citations were to the same

assignee firm or person, again checking rigorously for variations of firm names.   This

share varied from nearly 14 percent in 1975-79 to a low of less than 8 percent in 1985-89,

with no obvious trend. This intra-firm pattern is obviously an important component of the

flow of knowledge, but they still imply that 9 of 10 citations are to other firms.
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Conceivably, those citations to other firms and inventors were simply added by

patent examiners, with no relationship to knowledge flows between inventors.  We found

that five percent of all biotechnology citations were made to other patents sharing the

same examiner with considerable variation between examiners.  In fact, for one examiner

over seventy percent of the citations made to patents he examined hail from other patents

he reviewed.   Clearly then, examiners are inserting or confirming references to material

with which they are familiar.  While some of their citations are based on the technology

itself (and since they are biotechnology experts, many of the citations should be to

biotechnology examiners), there is a definite emphasis on personal contact with other

patents cited.

It is also possible that geographic patterns of citations are not due to spatial

variables but are instead due to technologies produced in different regions, which

subsequently create citation patterns that appear spatially oriented.  To investigate the

correlation of geography and technology, we counted patents in each state by 7-digit

International Patent Class (IPC), a measure of technological groups.  We then calculated

pair-wise correlations between states, based on the number of patents in each of the top

635 IPCs, to provide an overall measure of the similarity between patented  technologies

by region.  Similarly, we perform the calculation for biotechnology patents alone, using

the 249 patent classes showing data for biotechnology.  A summary of these variables is

presented in Table 1. The table distinguishes between all patents and biotechnology

patents, but also distinguishes between neighbor states (those sharing a boundary), and

distant states (those not sharing a boundary, and excluding the state itself which has a

correlation of 1 by definition).
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Notice that while the average pair-wise correlation is fairly high (0.6 to 0.75), it is

higher on average for biotechnology patents, with more variation between states.  From

the spatial point of view, averages are always higher for neighbor states, and while

standard deviations are fairly similar for neighboring and distant states, the lowest

correlations are always with distant states.  Thus, we will include information on

technology correlations as a control variable in our analysis of geographic spillovers

below.

IV.  Regressions

We approach regression analysis of citation flows in two ways.  First, we use an

aggregate analysis to determine whether geography plays a role in citations.  Next, we use

a more sophisticated approach, controlling for the age of knowledge, as well as for self-

citation by inventors, assignees and examiners.  Both approaches illuminate important

aspects of the data, so we present them in turn.  However, for ease of comparison they are

presented together in Table 2.

IV.A. Aggregate Analysis

Following the work of Maurseth and Verspagen (1999), we first present a simple

test of whether geographic variables have an effect on citation patterns, using the citations

between each state-to-state pairing as observations.  Knowledge flows (KFij) between

states i and j are expressed as actual citations as a share of all possible citations between

patents of states i and j. That is, every patent from state i could potentially cite every

patent from state j, creating P Pi j  possible citations.  Since this value depends critically

upon the patenting activity of the states involved, knowledge flows have been normalized

as a share of this total P Pi j .
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To test whether scale effects are important, we include variables P P Pi i j/ ( )+

and P P Pj i j/ ( )+ to measure the relative size of the citing and cited states.  Since the

dependent variable KFij is already expressed as a share of possible citations, unequal

coefficients on these two variables indicate disproportionate clustering of citations among

actively (or inactively) patenting states.

To test the importance of geography, three variables have been included.  A

measure of distance dij between the citing and cited states (kilometers between state

capitals) will determine whether physical distance between states is an issue.  While

distances between capital cities is not the most accurate distance measure (e.g. distances

between economic centers, or biotechnology innovation centers would be preferable) it is

the approximate size that matters, to distinguish neighboring states in the southwest from

neighboring states in the northeast. Finally, there are dummy variables for intra-state and

state-to-neighbor citations.

The literature on absorptive capacity suggests that lower-income regions may not

be able to adopt from (or contribute to) higher-income regions effectively.  Regions

require some level of competence in the technology before knowledge flows can be

realized.  While the variation in income levels between US states is not large, it is worth

considering here, so the gap in GDP per capita income between the citing and cited states

is included, along with the square of that variable.

Finally, to test whether the specific technological profile of each state is important

to the creation of citation flows, two variables are included to measure the technological

correlation between citing and cited states.  These variables measure the correlation
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between all patented technologies, and between patented biotechnologies, of states i and j

(as described above).  Each of these measures ranges between 0 and 1.

The resulting estimation equation is therefore:
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where Cij  is the number of citations from patents of state i to patents of state j
Bi  is the number of biotechnology patents granted to applicants from state i

(citing state)
B j  is the number of biotechnology patents granted to applicants from state j

(cited state)
Pj  is the number of all patents granted to applicants from state j

(cited state)
dij  is the distance between capitals of states i and j
SELF is a dummy for intra-state citations
NEIGH is a dummy variable for citations to neighboring states
GAP is the log of the ratio between the citing and cited state GDP per capita
TECH is the correlation between patented technologies in states i and j
BIO is the correlation between patented biotechnology in states i and j

Results (corrected for heteroskedasticity) are presented in the first column of

Table 2.  While most coefficients are statistically significant, the overall validity of the

model is unsatisfactory due to at least two inherent limitations of aggregate analysis.

First, the analysis does not allow us to see whether the citation pattern has changed over

time.  In fact, if state A patented very infrequently before 1990 but has become a

powerhouse in biotechnology in the 1990's, it will show up as cited infrequently simply

because its patents have not had enough time to be cited by others.  Thus, the preceding
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analysis penalizes late-bloomers and may bias the results insofar as there have been

geographic shifts in patenting over time.

Second, there is no consideration in this analysis for the bias toward clustering due

to self-citation (by inventors, assignee firms or patent examiners).  The geographic

clustering evidenced here may not be geographic, but rather of a more personal or firm-

level nature.

To overcome these limitations, we present a second, more comprehensive

regression analysis.  As a result, we forego examination of the coefficients here,

preferring to compare them to the next section’s coefficients.

IV.B. Citation-Cohort Analysis

Our complementary regression analysis follows the seminal work of Jaffe and his

co-authors (Caballero and Jaffe, 1993; Jaffe and Trajtenberg, 1996).   The model

estimates the likelihood that a patent k granted in year t will be cited by a subsequent

patent, K, granted in year T.  Using exponential rates of decay and diffusion to model the

flow of knowledge over time, the probability can be written as:

p k K k K k K T t T t( , ) ( , ) ( , ) exp[ ( )][ exp( ( )]= − − − − −α δ β β1 21 (2)

where β1 represents the decay rate (in our estimation based on knowledge stocks

measured in units of millions of patents available for use), β2 represents the rate of

diffusion (in our estimation based on the lag between citing and cited patents measured in

years), and both exponential terms depend (directly or indirectly) upon the time elapsed

between granting of the cited and citing patents. The term α(k,K) represents other non-

geographic attributes of patents k and K that affect the probability of citation, while the

term δ( , )k K refers to the geographic attributes, the key variables in which we are
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interested.  For example, patents with the same examiner may cite each other more

frequently than other attributes would predict, so we include that variable to eliminate

potential bias in our analysis of geographic clustering.  In particular, we include five

control variables (α  parameters) and three geographic (δ  ) variables :

Control variables
• whether or not patents k and K have the same inventor (α SI  ),
• whether or not patents k and K have the same assignee (α SA  ),
• whether or not patents k and K have the same examiner (α SE  ),
• degree of similarity in patented technology from states represented

by patents k and K (αTECH  ),
• degree of similarity in patented biotechnology from states represented

by patents k and K (α BIO  ),

Geographic variables
• whether or not patents k and K have the same state origin (δS  ),
• whether or not patents k and K have neighboring state origins (δN  ),
• distance between state origins of patents k and K (δD  ),

As in the analysis above, we also include control variables to measure the

technological similarity between the states involved.  While the correlation between

technology patterns of two states may take any value between 0 and 1, they have been

grouped into three categories: high (above 0.67), medium (between 0.33 and 0.67) and

low (below 0.33) correlation to permit estimation of the model. We normalize the

parameter for low correlation to zero, give cohorts with medium correlation a rank value

of unity, and cohorts with high correlation a rank value of two.  Thus, we estimate the

values of the medium and high parameter levels, but enforce a linear relationship between

them based on one estimated coefficient.

We include two types of geographic variables: dummy variables for same-state

and neighboring-state citation, and physical distance.  To permit estimation, (k,K) patent
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pairs are grouped into ten cohorts ranging from high distance (over 2,250 kilometers

between state capitals of k and K) to low distance (less than 250 kilometers), in

increments of 250 kilometers.  This last variable's parameter has been normalized so that

low distance has a parameter value of zero and the ten cohorts are given a distance value

in tens of thousands of kilometers. Again, this permits estimation of parameters, but

enforces a linear relationship between them.  Unfortunately, we cannot include an income

gap variable between citing and cited states, simply due to estimation limitations.

Using these parameters, the probability of a patent k granted in year t being cited

by a patent, K, granted in year T can be estimated as:

p T t T tk K SI SA SE ST TECH BIO S N D k K, ,exp[ ( )][ exp( ( ))]= − − − − − +α α α α α α δ δ δ β β ε1 21     (3)

A true geographic effect of clustering would be evidenced by values of theδ  parameters

greater than unity, since other relevant attributes of patents k and K have been controlled.

Since most patents are never cited, if we were to estimate equation (9) for

individual pairings of citing/cited patents, the dependent variable would be zero for the

vast majority of all observations.  Thus, following the earlier work of Jaffe and his

coauthors, we group the patents into cohorts of potential citations.  For example, one

cohort may be all patents granted in 1976 and cited in 1978 by a patent that shares the

same inventor, the same assignee, a different examiner, a different technology group, and

hails from a neighboring state within 250 kilometers which happens to have a low

similarity of technology but a high similarity of biotechnology. This list of variables

means that there are 5,760 cohorts for every combination of cited-citing years, for a total

of over one million cohort citation observations if we group cohorts around individual
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years.  For estimation, we group the data into five-year cohorts by year of the citing patent

(1975-79, 1980-84, 1985-89, 1990-94).

The expected number of citations to a cohort with attributes

(SI,SA,SE,ST,TECH,BIO,S,N,D; t,T), hereafter abbreviated (X; t,T), is the likelihood of a

single citation times the number of potentially citing (or cited) patents:

E C N A pX t T X t X T k K[ ] ( )( )( ); , ; ; ,= (4)

where C is the number of citations to the cohort of patents described by the list of

attached parameters, N is the number of (all) patents in that cohort available to be cited,

and A is the number of potentially citing (biotechnology) patents granted in year T. This

equation can now be rewritten to use what we know about patents in the cohort to which

the pairing (k,K) belongs:

p p
C

N Ak K X
X t T

X t X T
,

; ,

; ;( )( )
= =











(5)

and combining (3) and (5) gives us an equation:
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X t T
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; ,

; ;( )( )








 = α α α α α α δ δ δ

exp[ ( )][ exp( ( ))]− − − − − +β β ε1 21T t T t X (6)

which can be estimated by non-linear least squares as long as the error term,εX , is well

behaved.  Because the data are grouped, we weight each observation by ( )( ); ;N AX t X T to

avoid heteroskedasticity issues (Greene, 1993).
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To calculate the dependent variable fractions, we evaluated close to ten billion

possible patent-to-patent citations, summarized into 19,330 observations of cohort

pairings.  The second column of Table 2 presents those results.

The cohort analysis results are broadly consistent with those of Johnson and Popp

(2000).  For example, our regression yields constants which diminish over time, implying

that although patents per year increase, there is a decreasing probability of citation to any

particular one of them.

As expected, according to the aggregate regression results (in the first column,

omitted in second column due to functional form of estimation), the number of citing and

citable biotechnology patents both add to the number of citations between states.

Interestingly, it is not the size of the citable patent pool that matters, but also its relevance

(note that while the relationship with cited patents overall is positive and significant,

there is also a significant, positive relationship with citable biotechnology patents).  It is

also interesting that the aggregate regression shows significance to income gaps between

states (a large gap is bad for citation flows), which were omitted from the cohort analysis.

Turning to the cohort analysis (second column) there is a positive but statistically

insignificant effect of same-inventor citations and a high, positive and significant effect of

same-assignee citations.  This implies that inventors have a stronger propensity to cite

other laboratory co-workers and not necessarily themselves, which is probably a better

signal of useful knowledge acquisition than the self-promotion effect we would suspect in

the case of same-inventor citations.

Furthermore, the same-examiner effect, which we introduce for the first time in

analysis of this type, is strong, positive and significant, meaning that there is a
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demonstrable correlation between subject material and the particular examiner.  Since

applicants presumably would not be able to predict the examiner in advance, and would

have little reason to cite patents by the examiner even if they knew, we can conclude that

examiners apparently add those citations, adding disproportionately more citations to

patents that they have read themselves.

A puzzling result is the strong, negative coefficient for states with similar

technologies (and weak but still negative for states with similar biotechnology), a result

which stands in sharp contrast with the strong, positive coefficient for the same variables

in the aggregate regression.  One possible explanation of these counterintuitive results is

that the aggregate regression lacks three self-citation variables (same inventor, same

assignee, and same examiner) all likely to capture the effect of citations to similar states.

Since inventors, assignees and examiners all have subjects of expertise, it is likely that

they will offer citations to patents in the same subject, thereby citing states with similar

(bio)technological fields.  In the aggregate analysis, this effect is only seen through the

variables capturing technological similarity between states.  The cohort analysis shows

that once we control for self-citation by experts within a technology, and have controlled

for citations within the state and to neighboring states, long-distance citations are more

likely to cite different technologies.  That is, once local knowledge has been fully

explored, citations jump to another state precisely because it is technologically different.

Of course, other explanations for this puzzling pair of coefficients are welcome.

There is home state bias in citations, as shown in the cohort regression.  It is

troubling that this effect was not demonstrated by the aggregate regression, and is

presumably due to other confounding factors in the aggregate (e.g. self-citation by
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assignee across state lines, as when a researcher for IBM cites another patent by IBM

although the patents were developed in different states).   

Most importantly, and as expected, the effects of distance are negative, significant

and extensive.  This confirms our hypothesis that geography plays a role in the creation of

patents, that local knowledge spillovers play an important role in knowledge transfer,

even after controlling for other factors.

It does not appear important whether distance is measured to a neighboring state

or another more distant border, as evidenced by the weak negative and insignificant

coefficient on neighbor distance.  This variable is also critical in dismissing the potential

argument that distance matters only in the Northeastern states where neighbors are close,

or only in the Southwestern states where neighbors are far apart.  It appears to matter

everywhere.

Finally, both decay and diffusion are significant and strikingly faster than

evidenced elsewhere in the literature (Johnson and Popp, 2000), indicating that the

biotechnology field moves at a fast pace in its creation and decay of knowledge.

Thus, we conclude that biotechnological knowledge decays and diffuses quickly across

time, but diffuses in a more limited manner across distance.

IV.C. Citation-Cohort Analysis: Tests for Change In Coefficients Over Time

The last column of Table 2 presents a cohort-based analysis permitting the

coefficients to change over time.  The F-statistic on the restrictions is 5.0645 with

df=(24,19293), so we can reject the hypothesis of "no change in coefficients over time"

with 99% confidence.  Results are similar to the previous section, with several

exceptions.
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Only in the last period does the effect of same-inventor citations become

significant (and positive), suggesting that prior to the 1990's, there was no predilection for

inventors to cite themselves.  On the other hand, the positive coefficients on same-

assignee and same-examiner effects have been decreasing constantly, precipitously in the

case of examiners, suggesting that those agents are becoming much less likely to cite

themselves (and therefore more likely to cite the work of others).  This may be due to

better electronic access to patent records, or due to greater knowledge of assignee firms

about what other firms are doing in the field.

States with dissimilar technologies (either all patents, or biotechnology alone) seem to

have cited each other often in the 1970's, abandoned that pattern in the 1980's, and

returned to it in the 1990's.

Most importantly, a combination of results points to the decreasing importance of

distance as a factor determining citation probability.  First of all, the coefficient on same-

state citation dropped from an enormous level to insignificance between the first and last

periods.  Second, neighbor coefficients remain insignificant in each period by themselves.

Lastly, the distance coefficient is only half of its 1970's value by the 1990's (although it is

still very significant and negative, even more so than in the late 1980's).

While this change may not seem enormous, an illustration may help.  In the late

1970’s, the coefficients indicate that the half-life distance of a biotechnology patent (i.e.

the distance at which it would be half as likely to be cited as at the origin) was 3100

kilometers.  By the late 1980’s, that distance had stretched to nearly 8200 kilometers.

This time-varying result points unquestionably to the fact that distance is

becoming less important with time.  Perhaps the trend is due to the nature of the
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knowledge being created, but we suspect that it is more due to the nature of

communication, which allows easier transmission of information across great distances in

the era of computerization, internet, teleconferencing and cellular communication.  In

short, the principles underlying the inter-firm transfer of knowledge are changing in a

striking fashion, making spillovers easier than ever before.

V.  Network Analysis

One possible explanation for this evidence on distance is that connections of any

type, geographic or otherwise, have become less important over time.  After all, the

probability of any given patent receiving a citation is lower than in previous periods, self-

citation by assignees and examiners has fallen, and distance has decreased in importance.

Is it possible that citations are simply becoming random noise between patent applicants?

This section presents a picture that contradicts that possibility, showing the

increased importance of networks over time.  Four frames use network analysis to identify

the key actors (or regions), evaluate inequality between them, describe the knowledge

flows between them, and examine the degrees of separation between them.

V.A. Key Regions

By any measure, California tops the list.  It has almost three times the aggregate

citation activity of any other state, nearly surpassing the next three states combined, and

accounts for almost one-quarter of all citations.  The other top states are equally

unsurprising (New Jersey, New York, Massachusetts, Illinois, Pennsylvania).

A commonly accepted measure of the centrality of a network member i (Knoke

and Kuklinski, 1982) is
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where Cij and Cji each take the value of 1 if there is a citation from state i to state j.  In

short, centrality measures the percent of all active citation routes which involve region i.

A star in the network, to and from which all citations flow, would warrant a score of 100,

while a score of 20 would be an enormous hub of the network.  The calculated values for

biotechnology are presented in the first column of Table 3, and show that while there are

certainly centers and periphery zones, the network reaches a wide number of regions with

good coverage.  A variation on the centrality measure, called flow centrality, uses actual

citation numbers instead of ones and zeroes for Cij, and unsurprisingly shows stronger

hubs but the same overall pattern.

The prestige of each region in the network can be measured as the degree to which

other regions cite it as opposed to the reverse.  That is, it is a mark of prestige when others

refer (or defer) to a region's accomplishments, instead of the reverse.  For a simple

prestige formula

simple prestige I centrality Ni i= −/ ( )( )1 (8)

will suffice, where Ii is the number of regions interacting either directly or indirectly with

region i.  A direct interaction involves a state which cites or is cited by state i, while an

indirect interaction involves one or more degrees of separation from state i.  For example,

state k is one degree of separation from state i if it does not interact directly with state i,
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but does with state j, and state j interacts with i)3.  For a more complete (weighted)

prestige formula, we consider the prestige of each region interacting with region i, so that

prestige prestige Ci j
j

N

ij=
=

−

∑
1

1

(9)

is the weighted average of prestige of interacting regions.  This is of course a system of N

simultaneous equations, which is solved for solutions to the set of prestige values for all

regions.  After rescaling those solutions so that the highest prestige value is unity, these

values are presented in the last columns of Table 3.

The most important conclusion (other than the fact that the three measures of

centrality and prestige rank states in very similar fashion) is that the measures have

changed remarkably little over time.  Despite the lower importance of distance and self-

citation by state, states have retained their relative rankings, suggesting that an underlying

pattern of citations remains constant, supporting the structure.

V.B. Flows Between Regions

Next, we consider the flows of the network as a whole.  The centralization of the

entire citation network is calculated as the scaled difference between the centrality score

of the most central actor (*) and those of the other actors:

centralization
centrality centrality

N N

i
i

N

=
−

− −
=
∑ ( * )

( )( )
1

2 1
(10)

which has a value of between 0.10 and 0.11 for three of the four periods (and only

swerves upward slightly to 0.14 in the early 1980's).

                                                
3 These simple prestige scores use five degrees of separation, at which point all states in our data are
connected indirectly to every other state.  However, scores using only two degrees of separation (direct plus
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The density of the inter-state citation network is measured as

density
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where Cij takes the value of unity if there are citations between regions i and j (0

otherwise), and N is the number of regions.  Its value has stayed in a narrow band ranging

between 9.1 and 12.3 except for the early 1980’s.  Network cohesion, a measure of

density incorporating information about symmetry, is calculated as

cohesion
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where (Cij + Cji) takes the value of unity if there are citations in both directions between

regions i and j (0 otherwise).  The cohesion measure stays between 0.63 and 0.66 over the

period, indicating again that there has been no network-based systemic change in the way

that states cite each other.

V.C. Inequality Between Agents

Now that we have ascertained that the network between states (including state

prestige and network cohesion) has remained stable over time, we ask what other changes

may have occurred in parallel with the demise of distance.  In fact, there has been a trend

toward growing equality between inventors (and between assignees, and between

examiners) over time.  Figure 1 shows the Lorenz curves for patenting, and the associated

Gini coefficients, which measure inequality.  The top curve illustrates perfect equality,

where each percentile of the population is responsible for one percent of all patents.  The

                                                                                                                                                 
one indirect connection degree) show almost precisely the same values, with only four of 51 scores
changing by more than 0.005.
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Gini coefficient for this first curve (measured as the area between the diagonal and the

curve) is therefore zero.

The second curve shows cumulative patents by each percentile of the spectrum of

inventors, ranked from least active to most active, with a Gini coefficient of 0.21.  This

shows less inequality than the previous period, when the Gini coefficient was 0.29.

Inequality is greater overall among assignees, since several large assignee firms garner a

large share of all patents, but these too have become slightly more equal (from a Gini of

0.64 to 0.56).  Finally, some examiners bear the burden of most biotechnology patents,

making the distribution of patents among examiners highly inequitable.  However, this

distribution has also become slightly more equal over time, at least among very active

examiners.

The figure therefore shows that there have been (potentially important)

distributional changes in terms of who patents in biotechnology, which firms retain the

rights to those patents, and who examines those patents.  This increase in equality has

occurred simultaneously with the fall in the importance of distance.

V.D. Degrees of separation

Although the cohesion and density of the state-to-state network has not changed

since 1975, and there has been a movement towards equality among active agents in the

patenting process, we have not yet shown evidence that the person-to-person or city-to-

city network has remained stable.  It would be impractical to calculate cohesion measures

between such a large number of agents, but thankfully, another alternative is open.

Based on sociology work studying the “Small World Problem” (Milgram, 1967),

and popularized by the play “Six Degrees of Separation” (Guare, 1990), we investigate
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the question of how far removed each biotechnology inventor is from the next.  That is,

how tight is the network between associated inventors (as measured by citations to each

other) and has that measure changed with time?

To study this trend, we define the “core” inventors as the most active one percent

biotechnology inventors (with most patents granted) in a time period.  We then define the

“first degree of separation” as the core plus all inventors who were co-inventors with a

member of the core, or who cited (or were cited by) a patent invented by someone in the

core.  The second through sixth degrees of separation are defined analogously, each

including the previous degrees.  Separately, we tabulate all biotechnology patents

involving a member of each degree.

Table 4 shows the number of inventors within a certain “distance” of the core.

For example, 9 percent (584) of all inventors in 1975-79 are either in the core or within

one degree of a core member.  In contrast, 16 percent (3,750) are in the same position by

1990-94.  Over time, there has been a uniform increase in the number and percent of

inventors at each degree, a trend that has been especially marked from the second degree

and upwards.  In other words, inventors are becoming more tightly networked, with fewer

degrees of separation required to link an ever growing number.

A similar presentation can be made for assignees in Table 5.  There is tighter

clustering overall, with most assignees included by the sixth degree, and very little

increase between the third and sixth degrees.  Although the increase in assignee

connectedness is substantially more gradual over time, the trend is still apparent.  Notice

too that virtually all patents are connected by the fourth degree of separation.
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Table 6 considers examiners as the base for analysis, and shows that there has

been little change here since the late 1970’s.  Virtually all patents are included by the third

degree due to the limited number of examiners (compared to inventors or assignees).

This table is presented merely to document the fact that any growing connectedness

between biotechnology patents has not been reflected in a growing connectedness of

examiners.

Finally, we consider cities as the base for analysis.  The results in Table 7 suggest

dramatic increases in geographic connectedness between knowledge creation centers. The

degrees of geographic separation results are consistent with our cohort analysis

conclusions concerning the changing significance of distance, and once again point out

that distance is becoming less important as knowledge creation centers become more

tightly interwoven over time.

According to a popular maxim, every person on earth is connected to every other

by no more than six degrees (Guare, 1990).  While that is not the case here, the trend is

approaching that conclusion.  In fact, it is virtually true of all patents by the fourth degree

of separation, if we consider cities as the base of analysis.  Thus, while the patenting and

citation patterns between states has remained relatively stable, distance has become less

important and networks between actors or cities have become more important.

VI.  Conclusion and Policy Implications

We are left with a striking picture of the inter-firm transfer of biotechnological

knowledge.  Controlling for other factors, knowledge flows diminish with physical

distance, but that the importance of distance has been receding with time.  That is,

knowledge is more likely to transfer over long distances now than it was twenty years
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ago.  However, this has occurred in tandem with the increasing importance of inter-firm,

inter-personal and inter-city network connections.  It has truly become a smaller world for

biotechnology, as distance is less relevant and active researchers and firms are more

connected to each other than ever before.

In a sense, the policy recommendations of this paper have therefore been heard

before.  In an age of more intense and distance-free communication, the conduits of

knowledge transmission take on a new importance.  Researchers and firms have

obviously benefited tremendously from the movement to electronic patent searches and

filings.  In fact, that trend may have partially driven our results.

The policy implications of this paper presents are important not only for regions of

the U.S. but for less developed nations as well.  First, strong geographic clustering

suggests that innovation will be more difficult and more costly if pursued at a great

distance from a "biotechnology center”.  For less developed regions (or nations), that are

by their nature far from a center, it may be wiser to license existing technology, or to rent

research space and hire researchers close to the core, than to perform independent

research at remote locations.  However, the importance of physical distance is

diminishing dramatically over time, facilitating innovation in less traditional areas,

including less developed nations.  In addition, licensing existing technology brings with it

the attendant difficulties of applicability to local environments and conditions (see

Johnson and Evenson, 2000).

Second, while the importance of physical distance has been decreasing, the

importance of communication links to the center have been increasing.  To foster

innovation, policy must emphasize the importance of networks with leading inventors and
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their firms.  Fewer and fewer successful inventors exist in isolation from research centers,

as connections drive more and more of the research activity.  For less developed regions

or nations, this points to the importance of educational/training exchange programs, joint

venture initiatives and international conferences.

The outlook for less developed regions is open to interpretation.  They are far

from the center of research, so will tend to receive knowledge in more limited fashion.

However, that situation is changing and access to the networks of biotechnological

information is less and less location-dependent.  Income gaps may be an impediment to

knowledge creation, as seen in the aggregate regression results.  On the other hand, there

is a propensity for knowledge to flow to areas with different technological patterns, if it

overcomes the challenge of distance, and this will undoubtedly favor less developed

regions.  It is a small world for biotechnology, and with time it is growing ever smaller,

ever more interconnected.  It is therefore imperative to become an active part of the

system quickly, before its networks are even more tightly woven.
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Table 1: Technological Correlations between States

Mean Minimum
(Maximum)

Standard
Deviation

All patents, neighbor states 0.712 0.336  (0.916) 0.149
All patents, distant states 0.624 0.096  (0.916) 0.172
Biotech patents, neighbor states 0.732 0.135  (0.969) 0.196
Biotech patents, distant states 0.699 0.011  (0.982) 0.198
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Table 2:  Regression Results for Aggregate and Cohort Analysis

Variable

Aggregate
Analysis

Coefficient
(t-statistic)

Cohort Analysis

Coefficient
(t-statistic)

Time-Varying
Cohort Analysis

 Coefficient
(t-statistic)

Constant   4.76   (5.93)*** -----    ----- -----    -----
     1980-1984 -----    ----- -1.86  (1.91)*  -9.45 (2.92)***

     1985-1989 -----    ----- -4.75  (3.93)*** -11.07 (2.86)***

     1990-1994 -----    ----- -6.90  (4.42)*** -12.63 (2.64)***

Citing patents -0.34   (7.18)***  -----    -----  -----    -----
Cited biotechnology   0.94 (10.14)***  -----    -----  -----    -----
Cited total patents   0.09   (0.37)  -----    -----  -----    -----
Same inventor  -----    -----  0.62   (1.39)  -----    -----
     1975-1979  -----    -----  -----    -----  -1.60 (0.90)
     1980-1984  -----    -----  -----    -----   1.02 (0.92)
     1985-1989  -----    -----  -----    -----  -0.25 (0.30)
     1990-1994  -----    -----  -----    -----   1.13 (1.75)*

Same assignee  -----    -----  2.67  (6.13)***  -----    -----
     1975-1979  -----    -----  -----    -----   6.92 (3.80)***

     1980-1984  -----    -----  -----    -----   5.48 (4.97)***

     1985-1989  -----    -----  -----    -----   1.81 (2.28)**

     1990-1994  -----    -----  -----    -----   1.69 (2.73)***

Same examiner  -----    -----  1.81  (4.11)***    -----    -----
     1975-1979  -----    -----  -----    -----   7.68 (4.82)***

     1980-1984  -----    -----  -----    -----   3.54 (3.39)***

     1985-1989  -----    -----  -----    -----   1.99 (2.49)**

     1990-1994  -----    -----  -----    -----   0.12 (0.18)
All patent correlation   2.45   (7.12)*** -1.12  (3.45)***    -----    -----
     1975-1979  -----    -----  -----    -----  -4.14 (3.26)***

     1980-1984  -----    -----  -----    -----  -0.24 (0.30)
     1985-1989  -----    -----  -----    -----  -0.51 (0.87)
     1990-1994  -----    -----  -----    -----  -1.31 (2.78)***

Biotechnology
  correlation

  5.68 (19.56)*** -0.45   (1.51)    -----    -----

     1975-1979  -----    -----  -----    -----  -2.15 (1.85)*

     1980-1984  -----    -----  -----    -----   0.99 (1.37)
     1985-1989  -----    -----  -----    -----  -0.23 (0.43)
     1990-1994  -----    -----  -----    -----  -0.78 (1.78)*

(see next page)
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Table 2 (cont.):  Regression Results for Aggregate and Cohort Analysis

Variable

Aggregate
Analysis

Coefficient
(t-statistic)

Time-Varying
Cohort Analysis

 Coefficient
(t-statistic)

Cohort Analysis

Coefficient
(t-statistic)

Same U.S. state -2.96   (4.20)***  7.46
(5.54)***

   -----    -----

     1975-1979  -----    -----  -----    -----  34.85 (8.01)***

     1980-1984  -----    -----  -----    -----   5.96 (1.96)**

     1985-1989  -----    -----  -----    -----   6.09 (2.48)**

     1990-1994  -----    -----  -----    -----   1.83 (0.87)
Neighboring state -0.93   (3.78)*** -----    -----    -----    -----
Distance (0000 km) -0.61   (7.02)*** -8.26

(4.14)***
   -----    -----

     1975-1979  -----    -----  -----    ----- -16.06 (2.21)**

     1980-1984  -----    -----  -----    -----   -9.45 (2.01)**

     1985-1989  -----    -----  -----    -----   -6.11 (1.68)*

     1990-1994  -----    -----  -----    -----   -8.27 (2.76)***

Neighbor distance
  (0000 km)

 -----    ----- -3.88   (0.67)    -----    -----

     1975-1979  -----    -----  -----    -----    9.37 (0.47)
     1980-1984  -----    -----  -----    ----- -19.08 (1.43)
     1985-1989  -----    -----  -----    -----   -1.46 (0.14)
     1990-1994  -----    -----  -----    -----   -1.97 (0.22)
Income gap -1.07   (3.89)***  -----    -----    -----    -----
Squared income gap -3.59   (3.84)***  -----    -----    -----    -----
Decay rate  -----    -----  3.29

(5.91)***
   5.40 (3.81)***

Diffusion rate  -----    -----  0.13
(4.76)***

   0.13 (4.78)***

R-squared
Observations

 0.31
2,601

 0.70
19,330

   0.71
19,330

Coefficients are multiplied by 1,000,000 in aggregate analysis and by 1,000 in
cohort analysis for more readable table.  Significance is indicated as * for ten
percent level, ** for five percent level, *** for one percent level.
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Table 3: State Centrality and Prestige Scores
in Biotechnology Patent Citations

Centrality Scores Simple Prestige Scores Weighed Prestige Scores

1975-79 1980-84 1985-89 1990-94 1975-79 1980-84 1985-89 1990-94 1975-79 1980-84 1985-89 1990-94
AK 0.09 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AL 2.69 2.17 2.69 2.69 0.75 0.62 0.75 0.76 0.02 0.01 0.01 0.01
AR 1.30 1.15 1.48 1.30 0.68 0.55 0.63 0.65 0.00 0.00 0.00 0.00
AZ 4.08 2.68 2.78 3.55 0.88 0.67 0.72 0.86 0.01 0.01 0.01 0.00
CA 7.03 9.17 7.60 7.19 1.00 0.94 0.99 1.01 1.00 1.00 1.00 1.00
CO 3.99 4.84 3.89 4.42 0.86 0.76 0.84 0.91 0.03 0.01 0.02 0.01
CT 4.51 4.71 5.00 5.03 0.90 0.75 0.90 0.94 0.04 0.04 0.04 0.04
DC 2.60 2.17 2.41 2.17 0.77 0.68 0.74 0.72 0.00 0.00 0.02 0.01
DE 3.73 3.06 3.61 4.07 0.85 0.75 0.83 0.91 0.02 0.03 0.02 0.03
FL 4.34 5.48 4.08 4.42 0.91 0.84 0.89 0.95 0.02 0.03 0.03 0.03
GA 4.25 3.06 3.52 3.55 0.95 0.73 0.90 0.95 0.01 0.00 0.01 0.01
HI 1.30 0.25 0.65 1.39 0.77 0.51 0.56 0.69 0.00 0.00 0.00 0.00
IA 3.39 2.80 2.78 3.29 0.85 0.77 0.74 0.84 0.00 0.01 0.01 0.00
ID 0.69 0.64 1.11 1.39 0.64 0.61 0.70 0.68 0.00 0.00 0.01 0.00
IL 4.77 5.48 5.19 4.33 1.00 0.88 0.97 0.96 0.09 0.25 0.14 0.11
IN 3.91 4.97 4.63 4.16 0.93 0.84 0.96 0.95 0.07 0.16 0.10 0.08
KS 2.00 2.29 2.22 1.56 0.75 0.71 0.74 0.69 0.00 0.02 0.03 0.00
KY 1.91 1.27 1.48 1.73 0.71 0.67 0.70 0.69 0.01 0.00 0.00 0.01
LA 2.43 1.78 2.41 2.17 0.79 0.67 0.85 0.80 0.00 0.04 0.02 0.01
MA 4.25 5.48 4.54 4.25 0.99 0.93 0.98 1.00 0.24 0.11 0.21 0.19
MD 3.82 3.95 3.71 3.90 1.00 0.84 0.95 0.99 0.10 0.06 0.10 0.11
ME 1.48 1.40 1.76 1.13 0.78 0.68 0.77 0.70 0.01 0.02 0.01 0.01
MI 2.60 3.18 3.06 3.21 0.96 0.81 0.88 0.92 0.04 0.07 0.04 0.03
MN 2.60 3.06 2.69 2.69 0.92 0.84 0.90 0.95 0.03 0.02 0.04 0.06
MO 2.60 2.42 2.59 2.34 0.90 0.77 0.88 0.87 0.03 0.04 0.04 0.03
MS 0.52 0.51 0.56 0.52 0.57 0.57 0.51 0.51 0.00 0.00 0.00 0.00
MT 0.52 0.64 0.46 0.95 0.71 0.63 0.66 0.66 0.00 0.00 0.00 0.00
NC 2.26 1.66 2.22 2.08 0.95 0.72 0.94 0.92 0.03 0.01 0.01 0.02
ND 0.17 0.13 0.09 0.35 0.55 0.45 0.00 0.59 0.00 0.00 0.00 0.00
NE 0.61 1.15 1.30 0.78 0.74 0.69 0.81 0.62 0.00 0.00 0.01 0.01
NH 0.95 0.64 1.02 1.04 0.81 0.62 0.70 0.73 0.00 0.00 0.00 0.01
NJ 2.60 2.93 2.59 2.51 0.96 0.92 0.97 0.99 0.14 0.40 0.27 0.20
NM 1.22 0.38 0.74 1.30 0.78 0.57 0.64 0.85 0.00 0.00 0.00 0.01
NV 0.17 0.13 0.09 0.35 0.55 0.54 0.00 0.52 0.00 0.01 0.00 0.00
NY 2.08 2.80 2.41 2.34 0.98 0.93 0.98 1.00 0.16 0.30 0.22 0.23
OH 1.91 1.78 1.67 1.91 0.93 0.83 0.91 0.96 0.05 0.06 0.07 0.04
OK 0.52 0.64 1.20 1.04 0.75 0.76 0.82 0.85 0.02 0.01 0.01 0.01
OR 0.95 0.51 1.02 0.95 0.90 0.67 0.84 0.81 0.00 0.00 0.01 0.00

(see next page)
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Table 3 (cont.): State Centrality and Prestige Scores
 in Biotechnology Patent Citations

Centrality Scores Simple Prestige Scores Weighted Prestige Scores

1975-79 1980-84 1985-89 1990-94 1975-79 1980-84 1985-89 1990-94 1975-79 1980-84 1985-89 1990-94
PA 1.48 1.27 1.39 1.30 0.95 0.83 0.94 0.95 0.10 0.29 0.18 0.12
RI 0.35 0.25 0.09 0.35 0.68 0.52 0.69 0.78 0.00 0.00 0.01 0.00
SC 0.17 0.38 0.74 0.26 0.62 0.57 0.69 0.61 0.01 0.02 0.01 0.01
SD 0.09 0.00 0.00 0.00 0.56 0.00 0.56 0.00 0.00 0.00 0.00 0.00
TN 0.95 0.25 0.65 0.69 0.90 0.68 0.83 0.79 0.01 0.01 0.02 0.01
TX 0.78 1.15 0.83 0.78 0.98 0.88 0.95 1.00 0.07 0.05 0.05 0.04
UT 0.43 0.38 0.28 0.35 0.88 0.75 0.80 0.85 0.01 0.02 0.01 0.01
VA 0.52 0.13 0.37 0.35 0.91 0.73 0.85 0.86 0.01 0.03 0.03 0.01
VT 0.17 0.00 0.00 0.00 0.70 0.47 0.76 0.78 0.00 0.00 0.00 0.04
WA 0.26 0.13 0.19 0.17 0.95 0.73 0.90 0.95 0.06 0.01 0.06 0.07
WI 0.00 0.00 0.00 0.00 0.91 0.76 0.87 0.94 0.02 0.04 0.02 0.02
WV 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Figure 1: Lorenz Curves and Gini Coefficients for
Key Actors in Biotechnology Patents
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Table 4: Degrees of Separation for Inventors:
Percent of Inventors (and Percent of Patents)

Period 1975-79 1980-84 1985-89 1990-94

Core 1.0 (9.1) 1.0 (8.7) 1.0 (7.0) 1.0 (6.6)
First degree 9.0 (18.6) 11.4 (20.6) 13.4 (19.8) 16.0 (21.3)
Second degree 12.1 (23.7) 20.1 (30.5) 24.9 (32.7) 32.5 (38.9)
Third degree 17.0 (29.4) 32.3 (43.6) 39.9 (48.0) 51.9 (58.9)
Fourth degree 20.3 (33.3) 41.7 (53.8) 51.1 (59.7) 63.8 (71.5)
Fifth degree 22.9 (36.1) 48.0 (59.9) 58.8 (67.5) 70.8 (78.2)
Sixth degree 25.2 (38.7) 52.6 (64.3) 63.1 (71.7) 74.0 (81.1)
Total inventors 6,490 8,284 12,933 23,388

Table 5: Degrees of Separation for Assignees:
Percent of Assignees (and Percent of Patents)

Period 1975-79 1980-84 1985-89 1990-94

Core 1.0 (10.4) 1.0 (7.1) 1.0 (12.2) 1.0 (14.2)
First degree 23.9 (19.4) 20.6 (16.0) 36.2 (30.7) 44.0 (36.8)
Second degree 59.0 (77.0) 66.1 (78.9) 75.3 (87.4) 79.4 (91.1)
Third degree 66.0 (89.5) 75.8 (93.1) 79.3 (94.2) 82.5 (95.8)
Fourth degree 66.5 (90.4) 76.5 (93.7) 79.4 (94.5) 82.8 (95.8)
Fifth degree 66.6 (90.6) 76.5 (93.7) 79.4 (94.5) 82.9 (95.8)
Sixth degree 66.6 (90.6) 76.5 (93.7) 79.4 (94.5) 82.9 (95.8)
Total assignees 943 1,170 1,817 2,666
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Table 6: Degrees of Separation for Examiners:
Percent of Examiners (and Percent of Patents)

Period 1975-79 1980-84 1985-89 1990-94

Core 1.2 (24.0) 1.0 (27.3) 1.1 (26.1) 1.1 (18.1)
First degree 21.2 (27.6) 37.0 (38.9) 50.8 (49.9) 24.9 (22.6)
Second degree 47.5 (83.1) 72.8 (95.5) 84.6 (97.1) 74.9 (90.8)
Third degree 54.1 (94.3) 80.0 (98.7) 87.2 (99.4) 84.9 (98.8)
Fourth degree 55.2 (95.4) 80.3 (98.9) 87.2 (99.4) 87.1 (99.3)
Fifth degree 55.2 (95.6) 80.3 (98.9) 87.2 (99.4) 87.4 (99.3)
Sixth degree 55.2 (95.6) 80.3 (98.9) 87.2 (99.4) 87.4 (99.3)
Total examiners 259 (4,707) 305 (6,069) 358 (8,226) 350 (7,605)

Table 7: Degrees of Separation for Cities:
Percent of Cities (and Percent of Patents)

Period 1975-79 1980-84 1985-89 1990-94

Core 1.0 (10.4) 1.0 (13.5) 1.0 (17.2) 1.0 (21.2)
First degree 17.2 (18.6) 25.1 (26.6) 42.3 (41.6) 55.8 (54.2)
Second degree 27.9 (44.7) 58.4 (69.4) 73.5 (86.2) 83.2 (94.2)
Third degree 48.0 (65.4) 79.6 (91.9) 89.5 (96.8) 94.2 (98.8)
Fourth degree 58.0 (78.7) 84.2 (94.6) 92.2 (98.0) 95.0 (99.0)
Fifth degree 65.5 (84.7) 85.3 (95.2) 92.6 (98.1) 95.0 (99.1)
Sixth degree 67.4 (86.5) 85.4 (95.3) 92.7 (98.1) 95.0 (99.1)
Total cities 1,139 1,419 1,879 2,707
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