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Model-Free Impulse Responses∗

Abstract

This paper introduces methods for computing impulse response functions that do not require specification
and estimation of the unknown dynamic multivariate system itself. The central idea behind these methods
is to estimate flexible local projections at each period of interest rather than extrapolating into increasingly
distant horizons from a given model, as it is usually done in vector autoregressions (VAR). The advantages
of local projections are numerous: (1) they can be estimated by simple regression techniques with standard
regression packages; (2) they are more robust to misspecification; (3) standard error calculation is direct;
and (4) they easily accommodate experimentation with highly non-linear and flexible specifications that
may be impractical in a multivariate context. Therefore, these methods are a natural alternative to
estimating impulse responses from VARs. An application to a simple, closed-economy monetary model
suggests that the output loss and inflation effects of an interest rate shock depend on the stage of the
business cycle.
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1 Introduction

In response to the rigid identifying assumptions used in theoretical macroeconomics during the sev-

enties, Sims (1980) provided what has become the standard in empirical macroeconomic research:

vector autoregressions (VARs). VARs afford a natural decomposition of the economy into system-

atic responses and random sources of variation. Since then, researchers in macroeconomics often

compute dynamic multipliers of interest (such as impulse responses and forecast error variance

decompositions) by specifying a VAR as well. However, often times the main object of interest

is not the VAR itself as much as the implied impulse responses, which are routinely employed

as a foil to the dynamic features of a particular theoretical macroeconomic model. This method

of computing impulse responses imposes a number of constraints that are seldom recognized, in

particular1 : (1) symmetry, responses to positive and negative shocks are mirror images of each

other; (2) shape invariance, responses to shocks of different magnitudes are scaled versions of one

another; (3) history independence, the shape of the responses is independent of the conditional

history beyond the experimental shock; and (4) multidimensionality, responses are nonlinear func-

tions of high-dimensional parameter estimates which complicate the calculation of standard errors

and have the potential of compounding misspecification errors. Thus, a typical monetary VAR

predicts interest rates will drop in response to a deflationary shock, even if current interest rates

are already at the zero bound, for example.

Avoiding these constraints is a natural empirical objective. This paper introduces methods

for computing impulse response functions for a vector time series that do not require specification

and estimation of the unknown multivariate dynamic system itself. The central idea behind these

methods is to use local projections for each period of interest rather than extrapolating from a

given model into increasingly distant horizons, as it is usually done in a VAR. The advantages of

local projections are numerous: they are disarmingly simple to compute; they are more robust to

1 The following list of properties is mostly in Koop et al., 1996.
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misspecification; standard error calculation is direct; and they easily accommodate experimenta-

tion with highly non-linear and flexible specifications. Since estimation of these local projections

can be done equation by equation, impulse response functions and their standard errors can be

easily calculated with available standard regression packages, thus becoming a natural alternative

to estimating impulse responses from VARs.

Although there is a large variety of more complex, multivariate econometric models that relax

some of the constraints implicit in VARs, systems of dynamic, non-linear equations are often

difficult to estimate and are impractical for computing impulse responses — non-linear forecasts

beyond one-period ahead often require simulation techniques for their calculation. Instead, this

paper argues in favor of divesting the object of interest from the primitive econometric specification

of a model into methods for calculating the implied time profiles directly from the data, and

therefore, in a manner robust to a wider array of model choices and specifications. The key

insight is that most dynamic multivariate models (such as VARs) represent global approximations

to the ideal data generation process (DGP) and are optimally designed for one-period ahead

forecasting. Meanwhile, impulse responses describe the time profiles of variables at increasingly

distant horizons, which suggests that a local approximation at each time horizon would be more

desirable. The methods proposed here are inspired by the ideas discussed in Cox (1961) and Tsay

(1993). For example, Lin and Tsay (1996) denominate these methods “adaptive forecasting,”

and use local linear projections in cointegrated VARs to evaluate the forecasting advantages of

imposing cointegrating restrictions. Other authors, such as Clements and Hendry (1998) and

references therein, refer to these methods as “dynamic estimation” and provide conditions under

which local projections improve forecasting performance.

An advantage of calculating impulse responses by local projections is that the forecasting accu-

racy increases relative to a wide class of model misspecification, as the forecast horizon increases.

Naturally, when the primitive model is correctly specified, these projections will be less efficient.

However, Monte Carlo evidence will show that this loss in efficiency is rather small. Another ad-

2



vantage of the local projection method is that standard errors for impulse responses are calculated

directly from conventional regression output rather than from delta method approximations or

with substantial computational effort (such as Monte Carlo, or bootstrap methods). Monte Carlo

evidence provides support for these claims. The new methods are applied to a simple system for

the output gap, inflation, and the federal funds rate. Such a system has become popular in the

literature that investigates the performance of monetary policy rules (see Galí, 1992, Fuhrer and

Moore, 1995a, 1995b, and Taylor, 1999). In evaluating such rules, it is crucial to determine the

relative trade-offs between inflation and output embodied by the Phillips curve. Tests of the null

of linearity against the alternative of a threshold effect based on Hansen (2000) reveal that the

responses of these trade-offs to monetary policy shocks depend on whether the economy is growing

above or below potential.

2 Model-Free Estimation of Impulse Responses

2.1 Motivation

Sims (1980) introduced the seminal ideas behind the definition of an impulse response function

in the context of a linear, multivariate, Markov model — a VAR. However, when more general,

nonlinear, alternative specifications are considered, this definition is by no means universal (e.g.

Potter, 2000 for a useful discussion). The definition that I adopt in this paper is that found in

Hamilton (1994) and Koop et al. (1996) and is given by

∆yt+s
∆εi,t

¯̄̄̄
εi,t=εei

= E(yt+s|εi,t = εei ;Xt−1)−E(yt+s|εi,t = 0;Xt−1) s = 1, 2, ..., h (1)

where yt is an n × 1 random vector; Xt−1 ≡ (yt−1,yt−2, ...,yt−p)
0; and εi,t = εei defines an

experimental disturbance associated with the ith variable a time t that consists on perturbing

yt−1 by an amount εei , which is of dimension n × 1. The operator E(.|.) denotes the best, mean

squared error predictor.

When the process yt is a mean zero, linear process of the form
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yt =
∞X
j=0

Ψjut−j {ut} ∼ IID(0,Ωu) (2)

with
P∞
j=0 ||Ψj || < ∞ (i.e. absolute summability) then the best mean square error predictor

E(yt+s|Xt−1) and the best linear predictor, say EL(yt+s|Xt−1), are identical (see e.g. Brockwell

and Davis, 1991). Expression (2) will be immediately recognized as an informal expression of

the multivariate Wold decomposition theorem. In this case, the ut are the forecast errors ut =

yt −EL(yt|Xt−1) and it follows immediately that,

∆yt+s
∆εi,t

¯̄̄̄
εi,t=εei

= Ψsε
e
i (3)

which can be easily calculated by inverting a VAR(p) into its infinite moving average represen-

tation2 (see Hamilton, 1994) — the most popular method of computing impulse responses in

practice.

εei describes the experimental design of interest. A meaningful economic experiment requires

that the contemporaneous “structural” correlations in yt be taken into account. As an example,

a common method of finding a sensible experiment εei is to hypothesize a Wold-causal order of

the elements in yt and then to apply a triangular factorization to the original residual variance-

covariance matrix3 , so that E(utu0t) = Ωu = PP 0 and εei = p−1i , with p
−1
i indicating the ith

column of P−1. In general, and because this method does not uniquely identify the contempora-

neous structure in yt, the choice of experiment εei will depend on each researcher’s identification

strategies4 . The remainder of the paper thus proceeds by taking εei as a pre-selected experiment

of interest.

Expression (1) is a natural definition for an impulse response. It asks the question: What is

2 I deliberately maintain the notation εt and ut separate because, although the terms coincide in this example,
they do not in general.

3 This particular choice of normalization not only ensures orthogonality among the innovations but also nor-
malizes the size of the experimental disturbance to be of unit variance.

4 To my knowledge, Swanson and Granger 1997, and Demiralp and Hoover (2003) provide the only statistical-
based methods to identify the true structure.
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the best guess about the time profile of yt into the future when the system is perturbed from

its current state, Xt−1, by an amount εei ? To find an answer to this question, it is common to

estimate a VAR from which to construct the forecast difference in expression (1), which coincides

with (3) if the data is well represented by it.

In this paper I propose a different strategy altogether. Estimating a specific model (be it

a VAR or a more complicated alternative) to compute the impulse responses is akin to using a

Taylor series expansion around one point to extrapolate the function at an increasingly distant

range of values: the risk that the approximation will be poor (and even misleading), increases

with the distance from the initial evaluation point. Similarly, a VAR is optimized to produce the

best, linear, one-step ahead forecasts. If the data do not conform to this DGP (even by simple

misspecification of the lag length) we may get reasonable one-step ahead forecasts but the quality

of the forecasts at increasingly distant horizons, will decline steadily.

2.2 Local Projections for Impulse Responses: Estimation

All statistical models are approximations, hence, it seems more sensible that to calculate impulse

responses, we construct approximations at each horizon s = 1, 2, ..., h so that parameter estimation

is directly linked to the object of data analysis (see Granger, 1993). In expression (1), this object

consists on the best, mean squared error projection for yt+s, given information up to time t. A

natural way to accomplish this objective is by finding the local-linear, orthogonal projection of

yt+s on to the space generated by Xt ≡ (yt, ..., yt−p+1)0 with the least squares regressions,

yt+s = B
(s)
0 +B

(s)
1 yt +B

(s)
2 yt−1 + ...+B

(s)
p yt−p+1 + u

(s)
t+s s = 1, 2, ..., h (4)

where the B(s)i denote the matrix of coefficients for lag (i − 1) and the regression for the sth

horizon, so that the impulse response is simply

∆yt+s
∆εi,t

¯̄̄̄
εi,t=εei

= bB(s)1 εei s = 1, 2, ..., h (5)
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The parameters bB(s)1 are consistently estimated from simple least squares since, although

the residuals u(s)t+s will not be white noise in general, they will be otherwise uncorrelated with

information dated t and beyond. The unknown form of the dependence is determined by the

specific DGP and can only be determined for specific cases. In the next section, I show the form

that this dependence takes when the DGP is a VAR(p). Expression (4) will be quickly recognized

as the “adaptive forecasts” in Lin and Tsay (1996) or the “dynamic forecasts” in Clements and

Hendry (1998).

Although expression (4) describes a system of n equations, they can be estimated equation

by equation as univariate regressions. For example, the response of yj,t+s to the experiment

εei = (ε
e
i,1, ε

e
i,2, ..., ε

e
i,j , ...ε

e
i,n)

0 can be estimated by least squares on

yj,t+s = β
(s)
0j + β

(s)
11 y1,t + β

(s)
12 y2,t + ...+ β

(s)
1j yj,t + ...+ β

(s)
1n yn,t + (6)

B
(s)
2 yt−1 + ...+B

(s)
p yt−p+1 + u

(s)
j,t+s s = 1, 2, ..., h

from which the estimated coefficients can be combined with εei to produce,

∆byj,t+s
∆εi,t

¯̄̄̄
εi,t=εei

= bβ(s)11 εei,1 + ...+ bβ(s)1j εei,j + ...+ bβ(s)1n εei,n s = 1, 2, ..., h.

Estimating impulse responses by linear projection methods means that we loose the initial s+ p

observations. In situations were degrees of freedom are at a premium, it may be convenient to

restrict the dynamics in expression (6) to contain only lags of the dependent variable, specifically,

yj,t+s = β
(s)
0j + β

(s)
11 y1,t + β

(s)
12 y2,t + ...+ β

(s)
1j yj,t + ...+ β

(s)
1n yn,t + (7)

β
(s)
2j yj,t−1 + ...+ β

(s)
pj yj,t−p+1 + v

(s)
j,t+s s = 1, 2, ..., h.

Correspondingly,
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∆eyj,t+s
∆εi,t

¯̄̄̄
εi,t=εei

= eβ(s)1 εei,1 + ...+
eβ(s)j εei,j + ...+

eβ(s)n εei,n s = 1, 2, ..., h.

However, since (7) omits the lags of the remaining variables in the system, the consistency of the

eβ(s)i is no longer guaranteed and its practical usefulness can only be elucidated by Monte Carlo

experimentation. Section 5 reports these experiments.

The local projections described in expressions (4)-(7) are also useful in calculating other dy-

namic multipliers of interest, such as variance decompositions of the forecast error variances.

Thus, the contribution of the ith orthogonalized innovation to the mean squared error (MSE) of

the s-period ahead forecast is (according to Hamilton, 1994):

MSE(E(yt+s|εi,t = εei ;Xt−1)) =

nX
i=1

⎡⎢⎢⎣ (εei )
−1 (εei )

−10 +B
(1)
1 (εei )

−1 (εei )
−10B

(1)0
1 + ...

+B
(s−1)
1 (εei )

−1
(εei )

−10
B
(s−1)0
1

⎤⎥⎥⎦
where the B(i)1 for i = 1, ..., s − 1 can be replaced with the estimates bB(i)1 for i = 1, ..., s − 1 in

expression (4), for example.

Expression (4) was used in Lin and Tsay (1996) to compute s-step ahead forecasts of cointe-

grated VARs and found to perform well in six out of seven data sets analyzed for one- to ten-steps

ahead forecasts. In fact, this method achieved a 60% reduction in root mean squared error in

short-term forecasts for U.S. interest rates, which are commonly used in monetary VARs. How-

ever, Phillips (1998) shows that it is advisable to impose the cointegrating restrictions (rather

than using the unrestricted VAR in the levels) to avoid inconsistencies in the long-horizon values

of the impulse responses. Cointegration is a restriction that can be easily accommodated when

calculating impulse responses by local projection methods. Let zt = A0yt denote the cointegrating

vectors, then expression (4) can be appropriately re-specified as
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∆yt+s = C
(s)
0 + C(s)c zt + C

(s)
1 ∆yt+ (8)

C
(s)
2 ∆yt−1 + ...+ C

(s)
p ∆yt−p+1 + u

(s)
t+s s = 1, 2, ..., h

Calculating impulse responses by local projection methods is rather straight-forward: in its

most basic implementation, it only requires simple least squares regression. This suggests that,

unlike when impulse responses are calculated from pre-specified models, we can easily increase the

quality of the local projections by using more flexible methods. Furthermore, since the value and

the properties of the impulse response at time s are contained in the terms associated with yt

only (that is, the bB(s)1 in expression (4)), a parsimonious way of improving the local projection is

to concentrate the flexibility on those terms only. The universe of options for making the approx-

imation more flexible is limited only by the imagination of each practitioner. Hence, to keep the

exposition intentionally uncomplicated, consider enriching the quality of the local approximation

in expression (4) with a cubic polynomial as follows,

yt+s = B
(s)
0 +B

(s)
1 yt +Q

(s)
1 yt

2 + C
(s)
1 yt

3 + (9)

B
(s)
2 yt−1 + ...+B

(s)
p yt−p+1 + u

(s)
t+s s = 1, 2, ..., h

To simplify the exposition, I do not allow for cross-product terms so that yt2 = (y21t,y
2
2t, ...,y

2
nt)

0,

for example. It is readily apparent that the impulse response at time s now becomes,

∂byt+s
∂εi,t

¯̄̄̄
εi,t=εei

=
n bB(s)1 (yt−1 + εei ) + bQ(s)1 (yt−1 + εei )

2 + bC(s)1 (yt−1 + εei )
3
o
− (10)n bB(s)1 (yt−1) + bQ(s)1 (yt−1)2 + bC(s)1 (yt−1)

3
o

=
n bB(s)1 (εei ) + bQ(s)1 (2yt−1εei + εe

2

i ) + bC(s)1 (3y2t−1ε
e
i + 3yt−1ε

e2

i + εe
3

i )
o

It is important to notice that, unlike impulse responses estimated with local-linear projections, the

responses in expression (10) depend on where the impulse response is evaluated through the term
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yt−1. This is a feature that is shared by any nonlinear, flexible projection method. Despite the

obvious gains in flexibility, it is not particularly difficult to estimate the responses in expression

(10), which can still be done with a simple OLS routine. Furthermore, when the evaluation point

is set to the sample mean, i.e. yt−1 = yt−1, then the impulse responses are evaluated at the same

point as the local-linear projection in (4) and those from a traditional VAR. Numerically, the

values of all three methods are identical for large samples when the true model is a VAR. Section

5 below illustrates with Monte Carlo experimentation some of the advantages of the local-cubic

projection (9) in the context of a nonlinear model and the relevance of the evaluation point.

Estimating impulse responses by local approximation suggests that any parametric, semi-

parametric and non-parametric approximation technique can be used. For example, rather than

using a polynomial approximation to the conditional mean, as is done in expression (9), we could

have used Hamilton’s (2001) parametric, flexible nonlinear model, a flexible discrete-Fourier form

(see Granger and Hatanaka, 1964), artificial neural networks (see White, 1992), wavelets (see

Percival and Walden, 2000) or more generically, non-parametric methods (see Pagan and Ullah,

1999). In addition, because the impulse responses can be calculated on the basis of univariate

model estimates, the universe of regime-switching and non-linear time series models becomes

readily available (see Granger and Teräsvirta, 1993 for a review but to mention a few, these

include Hamilton’s, 1989 switching-regimes model, Tong’s, 1983 threshold autoregressions, and so

on). The specific choices will be dictated by the needs of each application, so an extensive review

of the attributes of each alternative falls beyond the scope of this paper.

3 Relation to VAR-based Impulse Responses

This section establishes the correspondence between traditional VAR-based impulse response func-

tion analysis and impulse responses calculated from local projections. In a VAR, the n× 1 vector

yt depends linearly on its p-lags Xt−1 ≡ (yt−1,yt−2, ...,yt−p)0, through the expression

9



yt = µ+Π
0Xt−1 + εt (11)

where εt is an i.i.d. vector of disturbances and Π0 ≡ [ Π1 Π2 ... Πp]. Consider now the VAR(1)

companion form to this VAR(p) by defining

Wt ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt − µ

yt−1 − µ
...

yt−p+1 − µ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;F ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Π1 Π2 ... Πp−1 Πp

I 0 ... 0 0

0 I ... 0 0

...
...

...
...

...

0 0 ... I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;vt ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εt

0

...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

and then realizing that according to (11) and (12),

Wt = FWt−1 + vt (13)

Expression (13) simplifies the calculation of s-step ahead forecasts considerably since E(Wt+s|Wt) =

F sWt, and therefore,

E(yt+s|Xt) = µ+ F (s)11 (yt − µ) + F
(s)
12 (yt−1 − µ) + ...+ F

(s)
1p (yt−p+1 − µ) (14)

where F (s)11 denotes the upper left block of F s, which is the matrix F raised to the sth power. F (s)11

indicates rows 1 through n and columns 1 through n of the (np × np) matrix F s, F (s)12 indicates

rows 1 through n and columns (n+ 1) through 2n of F s, and so on. From the definition (1) and

expression (14), it is immediately apparent that

∆yt+s
∆εi,t

¯̄̄̄
εi,t=εei

= F
(s)
11 ε

e
i s = 1, 2, ..., h. (15)

In fact, under the maintained assumption that yt is a pth order VAR, then
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yt+s − µ = εt+s + F
(1)
11 εt+s−1+...+ F

(s−1)
11 εt+1+ (16)

F
(s)
11 (yt − µ) + ...+ F

(s)
1p (yt−p+1 − µ)

where the F (s)11 for s = 1, 2, ..., h clearly correspond to the infinite moving average representation

of the VAR(p), as long as the eigenvalues of F lie inside the unit circle so that F s → 0 as s→∞.

Expression (15) corresponds to expression (5) and expression (16) naturally suggests that the

terms F (s)11 could be estimated directly from the following regressions,

yt+s = µ+ F
(s)
11 (yt − µ) + ...+ F

(s)
1p (yt−p+1 − µ) + ut+s s = 1, 2, ..., h (17)

which correspond to the expression for the local-linear projection (4). The error terms in (17) will

be autocorrelated since,

ut+s = εt+s + F
(1)
11 εt+s−1 + ...+ F

(s−1)
11 εt+1. (18)

thus suggesting that in calculating standard errors for the coefficients bB(s)1 in (4), heteroskedasticity

and autocorrelation consistent (HAC) residual variance estimates are advised. This aspect is

explored in more detail in the next section.

The more direct and customary way of calculating the terms F (s)11 for s = 1, 2, ..., h is based on

the VAR(p) estimates of Π and the following recursion (see Hamilton, 1994):

F
(1)
11 = Π1 (19)

F
(2)
11 = Π1F

(1)
11 +Π2

...

F
(s)
11 = Π1F

(s−1)
11 +Π2F

(s−2)
11 + ...+ΠpF

(s−p)
11

11



The assumption that the primitive econometric model generating the impulse responses is the

VAR given by (11) has several important implications. Equation (15) makes clear that at every

horizon s, the impulse response is linear in εei . Consequently, for all s, impulse responses will be

symmetric to sign changes in εei , that is,

∆yt+s
∆εi,t

¯̄̄̄
εi,t=εei

= F
(s)
11 ε

e
i = −

∆yt+s
∆εi,t

¯̄̄̄
εi,t=−εei

= −
³
F
(s)
11 (−εei )

´
(20)

In addition, the magnitude of the shock does not change the general shape of the response since,

∆yt+s
∆εi,t

¯̄̄̄
εi,t=εei

= F
(s)
11 ε

e
i =

1

k

∆yt+s
∆εi,t

¯̄̄̄
εi,t=kεei

=
1

k
F
(s)
11 (kε

e
i ) (21)

Furthermore, expression (15) clearly demonstrates that the local history prior to the date of

experimentation is irrelevant since

∆yt+s
∆εi,t

¯̄̄̄
εi,t=εei ;Xt−1

=
∆yr+s
∆εi,r

¯̄̄̄
εi,r=εei ;Xr−1

= F
(s)
11 ε

e
i for all t and r. (22)

Finally, expression (19) shows that the estimated impulse response functions will be nonlinear,

high-dimensional functions of the VAR estimated coefficient matrices, Πj , j = 1, 2, ..., p so that

the (n× n) matrix F (s)11 will be a function of kn2coefficients for k = min(s, p). As an illustration,

any F (s)11 for s ≥ 12 calculated on a six variable, twelfth order VAR, will be a function of 432

coefficients!

As the time horizon of the impulse response increases, the assumption that the VAR is cor-

rectly specified and properly describes the data, is increasingly critical. The recursive formulas in

expression (19) show that misspecifications are compounded steadily with the impulse response

horizon. As a simple example, consider a VAR(2) which is incorrectly specified as a VAR(1), the

impulse responses calculated under both scenarios are:
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Impulse VAR(1) VAR(2)

F
(1)
11

eΠ1 Π1

F
(2)
11

eΠ21 Π21 +Π2

F
(3)
11

eΠ31 Π21 +Π2Π1 +Π2

F
(4)
11

eΠ41 Π31 + 2Π2Π
2
1 +Π2Π1 +Π2

...
...

...

(23)

where eΠ1 = Π1 +Π2Γ1Γ−10 and Γj is the jth autocovariance of yt. Depending on Π2, the bias in

the impulse responses can be quite substantial when we move beyond the first few horizons. If the

system is stationary, so that F (∞)11 → 0, then the bias will disappear at very long horizons since

all variables will return to their unconditional mean values. Thus, the persistence of the data will

be an important factor affecting the severity of possible misspecification, aside from more general

forms of misspecification due to nonlinearities, for example.

Impulse response functions estimated by local projections have several advantages. First, the

local projection for a particular class (linear, cubic, or more complex specifications) is the best

mean squared error predictor at each horizon s. By contrast, a multivariate dynamic specification

is optimized for one-period ahead forecasting only. If the specification of this system is correct,

then its impulse responses will be consistently and more efficiently estimated than those from local

projections. As the recursion in expression (19) makes clear in the case of a VAR, impulse responses

calculated from a given model impose numerous, cross-horizon restrictions. These restrictions

provide efficiency gains relative to the local projection counterparts. However, when the model is

misspecified, such cross-horizon restrictions are invalid and deliver inconsistent impulse responses,

specially when the data are persistent or non-stationary.

Flexible local projections, such as the local-cubic projection in (9), offer several interesting

possibilities. First, notice that there is no obvious multivariate specification of a primitive model

whose implied impulse responses would have the structure given by (10). Second, the impulse
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responses are no longer symmetric — the quadratic terms are always positive irrespective of the

sign of the shock. Third, the responses are no longer shape invariant since the quadratic and

cubic terms are not invariant to the size of the shock. Fourth, the responses depend on the local

history at which they are evaluated through the terms yt−1. Finally, these gains do not come at

the cost of estimating wildly more complicated models (as would be necessary if we wanted to

add flexibility to a VAR) — the impulse responses can still be estimated by least squares methods

and, as we will see shortly, its error bands are easily computed

4 Local Projections for Impulse Responses: Inference

Although impulse responses can be easily calculated from an estimated VAR, their standard-error

bands are not. Analytical computation of these bands requires an approximation based on the

delta method. However, as expression (19) shows, the mapping between the Πj and the F
(j)
11

becomes increasingly nonlinear as the horizon j increases and hence, the quality of the delta

method approximation deteriorates steadily. Sims and Zha (1999) discuss another undesirable

feature of traditional error band computation: when F s → 0 as s → ∞ (so that the VAR is

stationary), the error bands will shrink as a function of the smallest eigenvalue of F, call it λ,

at a rate λ−s. This suggests that uncertainty dissipates as we move further into the future, a

counterintuitive result. Alternative, non-analytic methods for error band computation include

numerically intensive Monte Carlo and bootstrap methods and the Bayesian methods developed

in Sims and Zha (1999).

The equivalence between the blocks in (25) and expression (4) suggests that standard er-

rors should be calculated with heteroskedasticity and autocorrelation consistent (HAC) methods.

When the DGP is a VAR, we have seen that the error terms u(s)t+s in the local projection regres-

sions have moving average components whose order is a function of s, the horizon of the impulse

response under consideration. In general, although we will not know whether or not the DGP

is a VAR, it is reasonable to suspect that the error terms u(s)t+s in expression (4) will have some
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form of dynamic dependence that is contingent on the intervening periods s. Thus, it is advisable

to use a HAC, variance-covariance estimator of the residual variance, available in most standard

regression packages. Whether we are using local linear projections based on expressions (4)-(8) or

more flexible approximations, such as the cubic projection of expression (9), notice that there is

a one-to-one correspondence between the error bands and the standard errors of the coefficients

in these expressions.

Specifically, let bΣL denote the estimated HAC, variance-covariance matrix of the coefficients
bB(s)1 in expression (4), for example. Then a 95% confidence interval for the impulse response

at time s can be constructed approximately as 1.96 ±
³
εe0i
bΣLεei´ . Similarly, the 95% confidence

interval for the cubic approximation in expression (9) can be calculated by defining the scaling

γei ≡ (εe, 2yt−1ε
e
i +εe

2

i , 3y2t−1ε
e
i +3yt−1ε

e2

i +εe
3

i )
0, which depends on the local history of when

the impulse response is evaluated through the terms in yt−1. Denoting bΣC the HAC, variance-
covariance matrix of the coefficients bB(s)11 , bQ(s)11 , and bC(s)11 in (9), a 95% confidence interval for

the impulse response at time s is approximately, 1.96 ±
³
γe0i
bΣCγei´ . Monte Carlo experiments

reported below show that the efficiency losses associated with estimating error bands with Newey-

West estimates on expression (4) relative to Monte Carlo error bands from the true VAR(p) are

rather minor. Calculation of error bands for impulse responses has long been a controversial issue

(see Kilian, 1998 and Sims and Zha, 1999) for several reasons but perhaps most notably because

VAR-based impulse responses are nonlinear functions of estimated coefficients. By contrast, local

projections are direct estimates of the impulse response coefficients, and therefore, less susceptible

to these considerations.

4.1 Relation to VAR-based Impulse Responses: Efficiency

As before, assume here that the DGP is the VAR(p) in expression (11). The derivations in section

3 show that,
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yt+s = µ+ F
(s)
11 (yt − µ) + ...+ F

(s)
1p (yt−p+1 − µ)+ (24)

εt+s + F
(1)
11 εt+s−1 + ...+ F

(s−1)
11 εt+1 s = 1, 2, ..., h

Thus, consider estimating impulse responses for s = 1, 2, ..., h periods and that instead of using the

usual recursions in (19), we estimate the following system of equations. Let Yt ≡ (yt+1, ...,yt+h),

²t ≡ (εt+1, ..., εt+h), and Xt ≡ (yt−1,yt−2, ...,yt−p), then

Yt = XtΨ+ ²tΦ (25)

where

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
(1)
11 F

(2)
11 ... F

(h)
11

F
(1)
12 F

(2)
12 ... F

(h)
12

...
... ...

...

F
(1)
1p F

(2)
1p ... F

(h)
1p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

In F
(1)
11 ... F

(h)
11

0 In ... F
(h−1)
11

...
... ...

...

0 0 ... In

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and given that E(εtε0t) = Ωε, then E(²t²

0
t) = Φ (Ih ⊗ Ωε)Φ0 ≡ Σ. Thus, maximum likelihood esti-

mation of the system in expression (25) can be accomplished by standard GLS formulas according

to,

vec(bΨ) = £(I ⊗X)0Σ−1 (I ⊗X)¤−1 (I ⊗X)0Σ−1vec(Y ) (26)

The usual impulse responses are given by rows 1 through n and columns 1 through (nh) of bΨ
and standard errors could be computed directly from the regression output. The special structure

of the variance-covariance matrix Σ allows this system to be estimated by GLS, block by block.

Expression (25) is equivalent to stacking the local linear projections (4) for periods s = 1, .., h and

by using knowledge that the DGP is a VAR to construct the specific structure of the variance

covariance matrix. In general, the true DGP is unknown, and although local projections can be
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estimated as a system by S.U.R. methods, the Monte Carlo experiments in the next section suggest

there are few advantages to doing so. In the interest of clarity, I will report my experiments from

univariate estimates of local projections aimed at highlighting simplicity and accuracy rather than

sophistication.

5 Monte Carlo Evidence

This section discusses three main simulations that evaluate the performance of local projections

for impulse response estimation and inference. The first experiment is based on a conventional

VAR that appears in Christiano, Eichenbaum and Evans (1996) and Evans and Marshall (1998),

among others. The experiment illustrates that local projections deliver impulse responses that

are robust to lag length misspecification, consistent, and only mildly inefficient relative to the

responses from the true DGP. The second experiment is based on Phillips (1998) and shows that

local projections can reduce the inconsistency of impulse responses at long horizons when there is

cointegration. The third experiment simulates a SVAR-GARCH (see Jordà and Salyer, in press)

to show that local projections do a reasonable job at approximating the inherent nonlinearities of

this model.

5.1 Evans and Marshall (1998)

This Monte Carlo simulation is based on monthly data from January 1960 to February 2001 (494

observations). First I estimate a VAR of order 12 on the following variables: EM, log of non-

agricultural payroll employment; P , log of personal consumption expenditures deflator (1996 =

100); PCOM, annual growth rate of the index of sensitive materials prices issued by the Conference

Board; FF, federal funds rate; NBRX, ratio of nonborrowed reserves plus extended credit to total

reserves; and ∆M2, annual growth rate of M2 stock. I then save the coefficient estimates from

this VAR and simulate 500 series of 494 observations using multivariate normal residuals and the

variance-covariance matrix from the estimation stage. To start the simulation, all 500 runs are

initialized with the first 12 observations from the data. Information criteria based on the data
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suggest the lag-length to be twelve if using Akaike’s AIC and Hurvich and Tsai’s5 AICc, or two

if using Schwartz’s SIC. These choices are very consistent across the 500 simulated runs.6

The first experiment compares the impulse responses that would result from fitting a VAR

of order two (as SIC would suggest) with local-linear and -cubic projections of order two as

well. Although a reduction from twelve to two lags may appear severe, this is a very mild form

misspecification in practice. The results are displayed in figure 1. Each panel in figure 1 displays

the impulse response of a variable in the VAR to a shock in the variable FF,7 calculated as

follows: the blue, thick-solid line is the true VAR(12) impulse response with two standard-error

bands displayed in red, thick-dashed lines (these are based on the Monte Carlo simulations of the

true model). The responses based on a VAR(2) are displayed by the black line with squares; the

responses from the local linear approximation are displayed by the green, dashed line; and the

responses from the cubic local approximation are displayed by the purple line with circles.

Several results deserve comment. The VAR(2) responses often fall within the two standard-

error bands for the true response and have the same general shape. However, both the local linear

and cubic projections are much more accurate at capturing detailed patterns of the true impulse

response over time, even at medium- and long-horizons. In one case, the departure from the true

impulse response was economically meaningful: the response of the variable P. The response based

on the VAR(2) is statistically different from the true response for the first 17 periods, and suggests

that prices increase in response to an increase in the federal funds rate8 over 23 out of the 24

periods displayed. In contrast, the linear local projection is virtually within the true two standard

error bands throughout the 24 periods depicted, and is strictly negative for the last 7 periods.

5 Hurvich and Tsai (1993) is a correction to AIC specifically designed for VARs.

6 Although the true DGP contains 12 lags, the coefficients used in the Monte-Carlo are based on the estimated
VAR and it is plausible that many of these coefficients are not significantly different from zero in practice.

7 Responses to shocks in all the variables are available upon request. For the sake of brevity, the other figures
are not enclosed in the paper. The omitted figures present results that are similar to the ones reported here.

8 Many researchers have previously encountered this type of counterintuitive result and dubbed it the “price
puzzle.” Sims (1992) suggested this behavior is probably related to unresolved endogeneity issues and proposes
including a materials price index, as it is done here with PCOM .
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The response of P therefore offers a good opportunity to experiment with the alternative local

linear specification proposed in expression (7). This response contains only one lag of all the

variables (instead of the two lags we have used so far) but allows for 12 lags of P, thus totaling

18 regressors (the 12th local linear projection requires 73 regressors instead). Figure 2 displays

this response and compares it to the true impulse responses and responses from a VAR(2) and a

VAR(6). Figure 2 shows that, while even a VAR(6) produces an impulse response that becomes

negative only after 20 periods, the response based on (7) is quite close to the true response

throughout. This suggests that reasonably accurate estimates of B(s)1 can be obtained with the

dynamics of the variable being shocked alone, rather than by including lags for all the variables.

The third experiment shows that model-free methods are consistent under true specification

by calculating impulse responses with local projections and 12 lags. The results are reported in

figure 3, also for a shock to FF only. Thus, the blue, thick line is the true impulse response,

along with two standard error bands displayed in red, thick-dashed lines. The responses based on

local linear projections are displayed with the black, dashed line and the responses based on local

cubic projections are displayed by the green line with circles. Generally speaking, the responses

by either approximation literally lie on top of the true response9 with occasional minor differences

that disappeared with slightly bigger samples, not reported here.

The final set of experiments evaluates error bands computed with model-free methods. In

practice, we do not know the true multivariate DGP underlying the data, so we will typically

choose to apply model-free methods, equation by equation. Therefore, consider the following

experiments. I generated 500 runs of the original series and then I fitted a VAR(12) and local-

linear and -cubic projections with 12 lags as well. Then I computed Monte Carlo standard errors

for each method (the Monte Carlo standard errors for the VAR(12) give a measure of the true

standard errors), and additionally calculated Newey-West10 corrected standard errors for the

9 This is also true for the responses to all the remaining shocks that are not reported here but are available
upon request.

10 The Newey-West lag correction is selected to be equal to s, the horizon of the impulse response being considered.
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local projections. Therefore, figure 4 displays the VAR(12) Monte Carlo standard error to a shock

in FF with a blue, thick line, with a red, thick-dashed line for the local linear projection, and

with a green, dashed line with circles for the local cubic projection. The Newey-West corrected

standard errors for the local linear projection are displayed with a black line with squares and by

a green line with stars for the local cubic projection.

In section 4, I argued that model-free estimates of impulse responses are less efficient than

VAR based estimates when the VAR is correctly specified and it is the true model. The graphs

in figure 4 confirm this statement but also show this loss of efficiency is not particularly big.

The Newey-West corrected standard errors based on single equation estimates of the local linear

projections are virtually identical to the Monte Carlo standard errors from the VAR (for example,

notice the panels for the responses in the variables EM and P ). The biggest discrepancy is for

the variable NBRX but this is because the VAR Monte Carlo standard errors actually decline as

the horizon increases, specially after the 14th period. This counterintuitive result, explained by

Sims and Zha (1999), was already mentioned in section 4 and differs markedly from the behavior

of Newey-West corrected and Monte Carlo standard errors for the local projections.

5.2 Phillips (1998)

Phillips (1998) showed that when there is cointegration, impulse responses based on an unrestricted

VAR estimated in the levels are no longer asymptotically normal and can be biased at very long

horizons when the sample size is small. To illustrate this phenomenon empirically, Phillips (1998)

designed the following cointegrated VAR,

yt = Ayt−1 + εt, εt ∼ N(0, I3) (27)

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0

2 0 0

1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎦

20



so that the system has one unit root and two cointegrating vectors. The original Monte Carlo is

done for 1,000 replications of series of length 112 so that the last 12 observations are saved for an

out-of-sample forecast evaluation. Here, I simulate 1000 series of 100, 200, and 400 observations

in length. For each series-length, I then estimate impulses responses from a VAR(1), local linear,

and cubic projections. The results are directly comparable with figure 4, panels (a), (c), and (d)

in Phillips (1998). Figure 5 reports the responses of the variables in the VAR to a shock in the

first variable, labeled y1. The blue, thick-solid line displays the true, theoretical impulse response.

The red, dashed line is the response based on the unrestricted VAR(1), the green line with circles

is the linear projection with one lag, and the black line with stars is the cubic projection instead.

The graphs corresponding to a sample size of 100 replicate the results in Phillips (1998), and

are similar even with those for a series of 200 observations in length. Thus, estimates from the local

linear projections quickly converge to the unrestricted VAR estimates, although there is a slight

advantage to using local cubic projections11 : with a sample size of 200, there is no appreciable bias

for approximately the first 10 periods, and for the response of y3 the bias remains close to zero for

25 periods when the sample size increases to 400. These results confirm Phillips’ recommendation

to estimate the vector error correction form rather than the unrestricted VAR, and suggest local

projections be specified as in expression (8).

5.3 Impulse Responses for a GARCH-SVAR

The final Monte-Carlo experiment gauges how well model-free estimates approximate the impulse

responses from a nonlinear DGP relative to estimates with a VAR. In Jordà and Salyer (in press)

we propose a multivariate version of the GARCH-M model that we use to determine the effects

of monetary policy uncertainty on the term structure of interest rates. We call this model the

GARCH-SVAR. Here, I experiment with the following specification,

11 Additional lags did not improve the quality of these projections.
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⎡⎢⎢⎢⎢⎢⎢⎣
y1t

y2t

y3t

⎤⎥⎥⎥⎥⎥⎥⎦ = A

⎡⎢⎢⎢⎢⎢⎢⎣
y1t−1

y2t−1

y3t−1

⎤⎥⎥⎥⎥⎥⎥⎦+Bh1t +
⎡⎢⎢⎢⎢⎢⎢⎣
√
h1tε1t

ε2t

ε3t

⎤⎥⎥⎥⎥⎥⎥⎦ , εt ∼ N(0, I3) (28)

h1t = 0.5 + 0.3u1,t−1 + 0.5h1,t−1; u1t =
p
h1tε1t

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5 −0.25 0.25

0.75 0.25 0.25

−0.25 −0.25 0.75

⎤⎥⎥⎥⎥⎥⎥⎦ ; B =

⎡⎢⎢⎢⎢⎢⎢⎣
−1.75

−1.5

1.75

⎤⎥⎥⎥⎥⎥⎥⎦
and a sample size of 300, replicated 500 times. Notice that the GARCH-SVAR in (28) behaves like

a linear VAR most of the time (in fact, if the shock is to either ε2t or ε3t, it always behaves like

a linear VAR). Only when the shock to ε1t is of considerable magnitude there will be a revision

in the conditional variance, and subsequently, in the conditional mean. Figure 6 displays the

impulse responses from a shock to y1t of unit size. The blue, thick-solid line describes the true

impulse response in the GARCH-SVAR. The red, solid line is the impulse response when the

variance effects are set to zero (i.e. B = 03). The black, dashed line with stars is the impulse

response from the linear projection and the green, dashed line with circles is the response from the

cubic projection. Standard-error bands are omitted for clarity but suffice it to say that these are

very narrow so that the impulse responses measured from the GARCH-SVAR with and without

variance effects remain statistically different from each other, except at crossing points or after

the 8th period approximately.

It is important to comment first on the nature of the nonlinearity. When the variance effect

is switched off, the impulse responses are more moderate and identical to those in a typical VAR.

For example, y1 responds by gradually returning to zero after the shock, barely crossing into the

negative region. In contrast, there is an initial undershooting response of y1 when the variance

effect is allowed to kick-in (with similar under- and overshooting responses in y2 and y3), driving

y1 into strongly negative territory after the period of impact before returning to equilibrium after
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seven periods, approximately.

The first significant result is that the response without variance effects and the response esti-

mated from linear projections, are virtually identical. During most of the sample, shocks remain

small so there are no revisions in the conditional variance and the model behaves as if it were

a typical VAR. Thus, to capture the nonlinearity, we can use the cubic projection estimates in-

stead. When the responses estimated with this approximation are evaluated around the sample

mean values of yt, the impulse responses are identical to the responses calculated with a linear

projection and therefore, are not displayed in the figure. Thus, to enhance the nonlinearity and

to match the true impulse response with variance effects, we evaluate the cubic projection at

yt−1 = yt−1+5× (bσ11, bσ22, bσ33)0. This choice allows us to match relatively well the more extreme
dynamics of the model. As figure 6 shows, the match is relatively good and highlights the possi-

bility, not explored here, of using significance tests on the quadratic and cubic terms of the local

cubic projections to test for nonlinearities in the data.

6 Application: Inflation-Output Trade-offs

Pioneering work by McCallum (1983) and Taylor (1993) has inspired a substantial amount of

research that investigates the efficacy, optimality, and robustness of interest rate rules for monetary

policy. Thus, the performance of candidate policy rules is often evaluated in the context of a

simple, closed-economy model that, at a minimum, can be summarized by three fundamental

expressions: an IS equation, a Phillips relation, and the candidate policy rule itself. The models

differ on their degree of micro-foundation and forward-looking behavior: Rotemberg and Woodford

(1999) and Rudebusch and Svensson (1999) are but two examples representing the spectrum of

choices. However, a unifying thread uniting this research is the need to produce models capable of

reproducing the fundamental dynamic properties of actual economies with some degree of accuracy.

Consequently, it is natural to investigate these dynamic properties empirically for variables

such as inflation, the output gap, and interest rates so as to provide a benchmark by which to
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compare the dynamic properties of competing theoretical models. Here, I specifically consider the

following variables: yt is the percentage gap between real GDP and potential GDP (as measured

by the Congressional Budget Office); πt is quarterly inflation in the GDP, chain-weighted price

index in percent at annual rate; and it is the quarterly average of the federal funds rate in percent

at an annual rate. These variable definitions are those used for the version of the IS and Phillips

relations in Rudebusch and Svensson (1999). The data for the analysis is quarterly for the sample

1955:I - 2003:I, and is displayed in figure 7.

These data appear to be stationary, an impression confirmed by standard augmented Dickey-

Fuller tests. The p-value of the null hypothesis of a unit root is rejected at a 0.56%, 0%, and

12.15% levels for yt,πt, and it, respectively. Because the computation of impulse responses imposes

no constraints on it and because standard economic arguments suggest interest rates should be

treated as stationary, it seems the rejection of the unit root for it at a level higher than 5% is not

a significant issue.

A good starting point for the analysis is to calculate impulse responses with a VAR, and local-

linear, and -cubic projections. The lag-length is determined by information criteria, allowing for a

maximum lag-length of eight. Studies with similar variables in Galí (1992) and Fuhrer and Moore

(1995a, b) use four lags for variables analyzed in the levels. Such a selection is confirmed by AICc

and AIC, both of which select a lag-length of three (SIC selected two lags). Using a standard

Cholesky decomposition12 based on the Wold-causal order yt,πt, and it, figure 8 displays these

impulse responses.

The VAR(3) responses are depicted in a pink-dotted line, the green-dashed line and the two

red-dashed lines depict the responses from local linear projections and the corresponding two

standard-error, Newey-West corrected bands calculated as in section 4. The light blue-solid line is

12 I choose the Cholesly decomposition to identify the structural shocks since I make weak emphasis in the literal
interpretation of the impulse responses and it can be easily replicated. However, this choice is consistent with
traditional orderings in the VAR literature.
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the response from a local cubic projection13 . Each row represents the responses of yt,πt, and it to

orthogonalized shocks, starting with yt,πt, and then it, all measured in percentages. Several results

stand out. Generally speaking there is broad correspondence among the responses calculated by

the different methods, with a few exceptions. Thus, the response of it to a shock in yt calculated

by local-cubic projection suggests a more strict (and statistically significant) tightening stance.

Similarly, the response of the output gap yt to its own shock is statistically different (albeit with

the same general shape) but corresponds closely to the output responses to an aggregate supply

shock found in Galí (1992), both with an initial increase of about 0.7% and peaking after four

quarters at 1.1%.

Perhaps the most meaningful difference is that, while the VAR response of yt to a shock in

it suggests that the output loss after 12 quarters is approximately 0.3%, both local projection

methods suggest the loss is twice as big, at a statistically (and economically) significant 0.65%.

This difference exists despite the similarity among the time profiles for it calculated by any of

the three methods considered. More generally, the VAR(3) responses have significantly smoother

time profiles than responses from local projections. Further investigation revealed that when the

maximum possible lag length is increased to 12, AIC will select that length as the new optimum

(although AICc and SIC remain at their previous levels). The responses from a VAR(12) lie

almost on top of their local-projection counterparts, with the few exceptions we have already

mentioned14 .

Based on this preliminary analysis, we are positioned to investigate further nonlinearities in

the impulse responses. From the vast selection of flexible specifications available, one should

select those that will more easily lend themselves to economic interpretation. In this case, it

seems of considerable importance to determine whether the inflation-output gap trade-offs that

the monetary authority faces vary with the business cycle, or during periods of high inflation,

13 The dark blue-dashed line is simply the zero line.

14 The figure displaying these responses is available upon request.
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or when interest rates are close to the zero bound, for example. Therefore, I tested all the first

period local-linear projections15 for evidence of threshold effects due to yt−1,πt−1, and it−1 using

Hansen’s (2000) test16 . For example, a typical regression is,

zt = Ψ0LXt−1 + εLt if wt−1 ≤ δ (29)

zt = Ψ0HXt−1 + εHt if wt−1 > δ

were zt is respectively yt,πt, and it and wt−1 can be any of yt−1,πt−1, and it−1. Xt−1 collects lags

1 through p of the variables yt,πt, and it and Ψi, i = L,H collects the coefficients and L stands

for “low” and H stands for “high.” The test is an F-type test that sequentially searches for the

optimal δ and adjusts the corresponding distribution via 1,000 bootstrap replications.

The tests for the nine possible combinations of dependent variables and threshold variables

are summarized in table 1. Only one combination reports a significant departure from the null

of linearity: the response of interest rates with a threshold due to yt−1. Figure 9 displays the

value of Hansen’s test for a range of possible values for the threshold δ. The minimum is achieved

for δ = −0.0766%, and is very close to the value δ = 0%, which also lies above the 95% critical

region. This finding suggests that the responses of interest rates depend on whether the economy

is currently above or below potential.

Table 1 - Hansen’s (2000) test of the null of linearity against the alternative of a

threshold (p-values)

15 I used the local linear projections for the test for parsimony although the final analysis is based on cubic
projections.

16 The GAUSS routines to perform the test are available directly from Bruce Hansen’s web site. I owe a debt of
gratitude for having this code publicly available.
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Dependent Variable

Threshold variable yt πt it

yt−1 0.852 0.850 0.028*

πt−1 0.954 0.964 0.738

it−1 0.335 0.349 0.264

* significant at a 95% confidence level.

Further investigation revealed that this two-state, interest rate response is significant17 for

the response to an interest rate shock only. Consequently, I allow all three responses18 to a

shock in it to vary according to whether the current output gap is positive or negative, but re-

strict the remaining responses to be constant for threshold effects. Thus, figure 10 displays the

responses calculated by local cubic projection along with two standard-error bands and allows

for state-dependent responses when the shock is to it. The light blue-solid line depicts responses

calculated by cubic local projection and correspond to those displayed in figure 8. The accom-

panying red-dashed lines are two standard-error bands, Newey-West corrected and based on the

cubic projection as described in section 4. The last row of figure 9 displays the responses to a

shock in it and shows with a pink-dotted line the response when the output gap is negative, and

with a green-dashed line when the output gap is positive.

When the economy is below potential, there is essentially no response to the interest rate shock

(of size 0.8% on impact) during the first two years and only a slight decline thereafter (up to 0.2%

in year three). By contrast, when the economy is above potential, the initial output decline peaks

four quarters after impact with a loss of approximately 0.5%, returning to zero at the end of the

third year. Part of this behavior is explained by the time profiles of interest rates themselves.

In particular, the interest rate response when output is above potential is high, relative to when

17 The figure showing this result is available upon request.

18 To be internally consistent, one should allow the responses of yt and πt to a shock in it to vary as well even
if the threshold effect is detected only for it since different time profiles for interest rate responses would generate
different time profiles for yt and πt, even in a constant parameter, linear model.
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output is below potential, for the first four quarters but then declines quickly and remains at a

zero level for quarters six and beyond. This more aggressive monetary policy stance results in an

immediate fall in inflation, dropping by 0.5% in quarter three. However, as interest rates quickly

come down to counteract the loss of output, inflation takes off, increasing by 0.5% in quarter seven.

Notice that, when the responses are allowed to vary according to whether output is above or below

potential, they often fall outside the two standard error bands estimated for the single regime,

local-cubic projection alternative. This differences offer a markedly different picture regarding the

costs of raising interest rates in terms of output loss and inflation. Surely, such differences must

be important when evaluating the appropriate response of the monetary authority and illustrate

the benefits of having simple but more flexible ways of calculating impulse responses.

7 Conclusion

This paper shows how to calculate impulse response functions for a vector of time series without

estimating a specific, dynamic, multivariate model. Instead, I propose estimating a sequence of

simple univariate equations by standard regression techniques to obtain robust estimates of the

impulse response and its standard-error bands. These methods provide a natural alternative to

estimating impulse response functions based on VARs.

Impulse responses calculated by local projections have desirable properties. Monte Carlo evi-

dence showed that they are more robust to misspecification, and that standard-error calculation is

simple and direct. Although these methods can be used instead of traditional VARs, their flexibil-

ity makes them appealing for a much wider variety of situations. Thus, the empirical application

in the paper shows that there is little effort involved in calculating flexible, non-linear impulse

response functions that allow for threshold effects. Although there exist multivariate models that

allow for similar features (Tsay, 1998 extends the threshold model to the multivariate context,

and Krolzig, 1997 introduces a vector version of the markov-switching model), these are restricted

in practice by the complexity that their estimation and study requires.

28



Estimation of impulse responses by local projection methods can be extended in a number

of interesting ways. The tone of the paper was deliberately against over-sophistication but it is

clear that the complexity of the local approximations can be adapted as circumstances require

with the nonlinear and nonparametric techniques mentioned above. Another context where local

projections are likely to prove useful is in estimating the dynamic effects of policy interventions

in a panel-data context. The relatively short time-dimension samples do not allow estimation of

even the simplest of multivariate models. However, estimation of impulse responses with local

projections can be easily done by sequential estimation with traditional panel-data techniques.

References
Brockwell, Peter J. and Richard A. Davis (1991) Time Series: Theory and Methods.
Springer Series in Statistics, 2nd edition. Heidelberg, New York and Berlin: Springer-Verlag.

Christiano, Lawrence J., Martin Eichenbaum and Charles L. Evans (1996) “Identification
and the Effects of Monetary Policy Shocks,” in Financial Factors in Economic Stabiliza-
tion and Growth. Mario I. Blejer, Zvi Eckstein, Zvi Hercowitz, and Leonardo Leiderman
(eds.). Cambridge: Cambridge University Press, 36-74.

Clements, Michael P. and David F. Hendry (1998) Forecasting Economic Time Series.
Cambridge, U.K.: Cambridge University Press.

Cox, David R. (1961) “Prediction by Exponentially Weighted Moving Averages and Related
Methods,” Journal of the Royal Statistical Society, Series B, 23, 414-422.

Demiralp, Selva and Kevin D. Hoover (2003) “Searching for the Causal Structure of a Vector
Autoregression,” U.C. Davis Working Paper 03-03.

Evans, Charles L. and David A. Marshall (1998) “Monetary Policy and the Term Structure
of Nominal Interest Rates: Evidence and Theory,” Carnegie-Rochester Conference Series on
Public Policy, 49(0), 53-111.

Fuhrer, Jeffrey C. and George R. Moore (1995a) “Inflation Persistence,” Quarterly Journal
of Economics, February, 127-159.

Fuhrer, Jeffrey C. and George R. Moore (1995b) “Monetary Policy Trade-offs and the Cor-
relation between Nominal Interest Rates and Real Output,” American Economic Review,
March, 219-239.

Galí, Jordi (1992) “How Well Does the IS-LM Model fit Postwar U.S. Data?” Quarterly
Journal of Economics, May, 709-738.

Granger, Clive W. J. (1993) “On the Limitations of Comparing Mean Squared Forecast
Errors: Comment,” Journal of Forecasting, 12, 651-652.

Granger, Clive W. J. and Michio Hatanaka (1964) Spectral Analysis for Economic Time
Series. Princeton, NJ: Princeton University Press.

29



Granger, Clive W. J. and Timo Teräsvirta (1993) Modelling Nonlinear Economic Re-
lationships. Oxford: Oxford University Press.

Hamilton, James D. (1989) “A New Approach to the Economic Analysis of Nonstationary
Time Series and the Business Cycle,” Econometrica, 57, 357-384.

Hamilton, James D. (1994) Time Series Analysis. Princeton, New Jersey: Princeton
University Press.

Hamilton, James D. (2001) “A Parametric Approach to Flexible Nonlinear Inference,”
Econometrica, 69, 537-573.

Hansen, Bruce E. (2000) “Sample Splitting and Threshold Estimation,” Econometrica, v.68,
n. 3, 575-604.

Hurvich, Clifford M. and Chih-Ling Tsai (1993) “A Corrected Akaike Information Criterion
for Vector Autoregressive Model Selection,” Journal of Time Series Analysis, v.14, n. 3,
271-279.

Jordà, Òscar and Kevin D. Salyer (in press) “The Response of Term Rates to Monetary
Policy Uncertainty,” Review of Economic Dynamics.

Kilian, Lutz (1998) “Small Sample Confidence Intervals for Impulse Response Functions,”
Review of Economics and Statistics, 218-230.

Koop Gary, M. Hashem Pesaran, and Simon M. Potter (1996) “Impulse Response Analysis
in Nonlinear Multivariate Models,” Journal of Econometrics, v. 74, 119-147.

Krolzig, Hans-Martin (1997)Markov-switching Vector Autoregressions: Modelling,
Statistical Inference, and Application to Business Cycle Analysis. Lecture Notes
in Economics and Mathematical Systems, v. 454. Heidelberg and New York: Springer.

Lin, Jin-Lung and Ruey S. Tsay (1996) “Co-Integration Constraint and Forecasting: An
Empirical Examination,” Journal of Applied Econometrics, v. 11, n. 5, 519-538.

McCallum, Bennett T. (1983) “Robustness Properties of a Rule for Monetary Policy,”
Carnegie-Rochester Conference Series on Economic Policy, 29, 173-203.

Pagan, Adrian and Aman Ullah (1999)Nonparametric Econometrics. Cambridge, U.K.:
Cambridge University Press.

Percival, Donald B. and Andrew T. Walden (2000)Wavelet Methods for Time Series
Analysis. Cambridge, U.K.: Cambridge University Press.

Phillips, Peter C. B. (1998) “Impulse Response and Forecast Error Variance Asymptotics in
Nonstationary VARs,” Journal of Econometrics, 83, 21-56.

Rotemberg, Julio J. and Michael Woodford (1999) “Interest Rate Rules in an Estimated
Sticky Price Model,” inMonetary Policy Rules. John B. Taylor (ed.). NBER Conference
Report. Chicago: University of Chicago Press, 57-119.

Rudebusch, Glenn D. and Lars E. O. Svensson (1999) “Policy Rule for Inflation Targeting,”
in Monetary Policy Rules. John B. Taylor (ed.). NBER Conference Report. Chicago:
University of Chicago Press, 203-246.

Sims, Christopher A. (1980) “Macroeconomics and Reality,” Econometrica, 48(6), 1-48.

30



Sims, Christopher A. (1992) “Interpreting the Macroeconomic Time Series Facts: The Effects
of Monetary Policy,” European Economic Review, 36(10), 975-1000.

Sims, Christopher A. and Tao Zha (1999) “Error Bands for Impulse Responses,” Economet-
rica, v. 67, n. 5, 1113-1156.

Swanson, Norman R. and Clive W. J. Granger (1997) “Impulse Response Functions Based
on a Causal Approach to Residual Orthogonalization in Vector Autoregressions,” Journal
of the American Statistical Association, 92(437), 357-367.

Taylor, John B. (1999) Monetary Policy Rules. NBER Conference Report. Chicago:
University of Chicago Press.

Tong, Howell (1983) Threshold Models in Nonlinear Time Series Analysis. Lecture
Notes in Statistics, 21. Berlin: Springer.

Tsay, Ruey S. (1993) “Comment: Adaptive Forecasting,” Journal of Business and Economic
Statistics, v. 11, n.2, 140-144.

Tsay, Ruey S. (1998) “Testing and Modelling Multivariate Threshold Models,” Journal of
the American Statistical Association, 93(443), 1188-1202.

White, Halbert (ed.) (1992) Artificial Neural Networks: Approximation and Learn-
ing Theory. Oxford: Basil Blackwell.

31



 32

Figure 1 – Impulse Responses to a Shock in FF. Lag Length: 2 
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Evans and Marshall (1998) VAR(12) Monte Carlo Experiment. The thick, blue line is the true impulse response based on a VAR(12). 
The thick-dashed, red lines are Monte Carlo 2-standard error bands. Three additional impulse responses are compared, based on 
estimates involving two lags only: (1) the response calculated by fitting a VAR(2) instead, depicted by the black line with squares; (2) 
the response calculated with a local-linear projection, depicted by the green, dashed line; and (3) the response calculated with a local-
cubic projection, depicted by a purple line with circles. 500 replications. 
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Figure 2 – Response of P to a shock in FF: An Alternative Linear Projection 
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Evans and Marshall (1998) VAR(12) Monte Carlo Experiment. The thick, blue line is the true impulse response based on a VAR(12). 
The thick-dashed, red lines are Monte Carlo, 2-standard error bands. Three additional impulse responses are compared: (1) the 
response calculated with a VAR(2), depicted by the black, dashed line; (2) the response calculated with a VAR(6), depicted by the 
green, dashed line, and (3) the response calculated with a local-linear projection with one lag except for P, where 12 lags are allowed. 
This is depicted by the purple line with circles. 500 replications. 
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Figure 3 – Impulse Responses to a Shock in FF. Lag Length: 12 
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Evans and Marshall (1998) VAR(12) Monte Carlo Experiment. The thick, blue line is the true impulse response based on a VAR(12). 
The thick-dashed, red lines are Monte Carlo, 2-standard error bands. Two additional impulse responses are compared: (1) the response 
calculated with a local-linear projection with 12 lags, depicted by the black, dashed line; and (3) the response calculated with a local-
cubic projection, depicted by green line with circles. 500 replications. 
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Figure 4 – Standard Errors for the Impulse Responses to a Shock in FF. Lag 
Length: 12 
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Evans and Marshall (1998) VAR(12) Monte Carlo Experiment. The thick, blue line is the Monte Carlo standard error (MCSE) for the 
VAR(12). The red, thick dashed line is the MCSE for the local-linear projection. The green, dashed line with circles is the MCSE for 
the local-cubic projection. The black line with squares is the Newey-West S.E. calculated from the local-linear projection. The green 
line with stars is the Newey-West S.E. calculated from the local-cubic projection. 500 replications. 
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Figure 5 – Phillips (1998) Monte Carlo Experiments 

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

Sample Size = 100

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

Sample Size = 200

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30

Sample Size = 400

0.0

0.4

0.8

1.2

1.6

2.0

2.4

5 10 15 20 25 30

Sample Size = 100

0.0

0.4

0.8

1.2

1.6

2.0

2.4

5 10 15 20 25 30

Sample Size = 200

0.0

0.4

0.8

1.2

1.6

2.0

2.4

5 10 15 20 25 30

Sample Size = 400

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

5 10 15 20 25 30

Sample Size = 100

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

5 10 15 20 25 30

Sample Size = 200

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

5 10 15 20 25 30

TRUE
VAR

Linear
Cubic

Sample Size = 400

Response of Y1 to Y1 Shock

Response of Y2 to Y1 Shock

Response of Y3 to Y1 Shock

 
The thick solid blue line displays the true impulse response. The red, dashed line is the impulse response 
based on a VAR(1), the green line with circles is the local-linear projection with one lag, and the black line 
with stars is the local-cubic projection. 
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Figure 6 – Impulse Responses to a Shock in Y1 from a SVAR-GARCH 
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The blue, thick-solid line describes the true impulse response in the VAR-GARCH model. The red, solid 
line is the impulse response when the variance effects are set to zero (i.e. B = 03). The black, dashed line 
with stars is the local-linear projection to the impulse response. The green, dashed line with squares is the 
local-cubic projection to the impulse response. Standard error bands are omitted for clarity but they are 
fairly narrow (in fact, for periods 2-4 approximately, they exclude the cubic approximation from the truth). 
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Figure 7 – Time Series Plots of the Output Gap, Inflation, and the Federal Funds 
Rate 
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Notes: All variables in annual percentage rates. Shaded areas indicate NBER-dated recessions. Output gap 
is defined as the percentage difference between real GDP and potential GDP (Congressional Budget 
Office); Inflation is defined as the percentage change in the GDP, chain-weighted price index at annual 
rate; and the federal funds rate is the quarterly average of daily rates, in annual percentage rate. 
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Figure 8 – Impulse Responses Calculated from: a VAR, a Local-Linear and a Local-Cubic Projections 

 
Notes: pink-dotted line is the VAR(3) response, green-dashed line is the IRF based on local linear projection, the red-dashed lines are the corresponding Newey-
West corrected 2 S.E. bands for the linear projection. The blue-solid line is the IRF based on cubic projection. The dark blue-dashed line is the zero line. All 
responses in percentages.
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Figure 9  - Sequential Test for a Threshold in yt-1 for the it Equation  
 
 
 
 

 
 
Notes: Test of the null hypothesis of linearity against the alternative of a threshold. The 
sequential test displayed is based on Hansen (2000) and is obtained from GAUSS code 
available from his website. The threshold is estimated at -0.0765%. The output gap has a 
mean of -0.189% and a standard error of 2.584%. The p-value of the test is 0.028.  
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Figure 10 – Impulse Responses from Local-Cubic Projections with Threshold Effects for it Shocks. 

 
Notes: the blue-solid line is the IRF from a local cubic projection and the red-dashed lines are the corresponding 2 S.E. bands. The pink dotted line is the IRF for 
a local cubic projection when the output gap is negative while the green-dashed line is the IRF for a local cubic projection when the output gap is positive. All 
responses in percentages. 




