
Hoover, Kevin D.; Demiralp, Selva

Working Paper

Searching for the Causal Structure of a Vector
Autoregression

Working Paper, No. 03-3

Provided in Cooperation with:
University of California Davis, Department of Economics

Suggested Citation: Hoover, Kevin D.; Demiralp, Selva (2003) : Searching for the Causal Structure of a
Vector Autoregression, Working Paper, No. 03-3, University of California, Department of Economics,
Davis, CA

This Version is available at:
https://hdl.handle.net/10419/23203

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/23203
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

 

 

 

Searching for the Causal Structure 

 

of a 

 

Vector Autoregression 
 

 

 

Selva Demiralp 
Division of Monetary Affairs 
Monetary and Reserve Analysis 
Board of Governors of the Federal  
  Reserve System 
Washington, D.C.  20551 
 
Tel. (202) 452-6483 
E-mail selva.demiralp@frb.gov 
 

 

 Kevin D. Hoover 
 Department of Economics 
 University of California 
 1 Shields Avenue 
 Davis, California 95616-8578 
 Tel. (530) 752-2129 
 Fax (530) 752-9382 
 E-mail  kdhoover@ucdavis.edu 

 

 

First Draft, 16 October 2002 
Revision, 6 March 2003 

 
We thank Marcus Cuda for his help with programming and computational design and 
Derek Stimel for able research assistance, Oscar Jorda and the participants in the 
European Community Econometrics Conference (EC)2, University of Bologna, Italy, 13-
14 December 2002, for comments. 
 

The views expressed do not necessarily reflect the views of the Federal Reserve System. 

mailto:selva.demiralp@frb.gov
mailto:kdhoover@ucdavis.edu


 

 

Abstract of  

 

Searching for the Causal Structure of a Vector Autoregression 

 

Vector autoregressions (VARs) are economically interpretable only when identified by 

being transformed into a structural form (the SVAR) in which the contemporaneous 

variables stand in a well-defined causal order.  These identifying transformations are not 

unique.  It is widely believed that practitioners must choose among them using a priori 

theory or other criteria not rooted in the data under analysis.  We show how to apply 

graph-theoretic methods of searching for causal structure based on relations of conditional 

independence to select among the possible causal orders – or at least to reduce the 

admissible causal orders to a narrow equivalence class.  The graph-theoretic approaches 

were developed by computer scientists and philosophers (Pearl, Glymour, Spirtes among 

others) and applied to cross-sectional data.  We provide an accessible introduction to this 

work.  Then building on the work of Swanson and Granger (1997), we show how to apply 

it to searching for the causal order of an SVAR.  We present simulation results to show 

how the efficacy of the search method algorithm varies with signal strength for realistic 

sample lengths.  Our findings suggest that graph-theoretic methods may prove to be a 

useful tool in the analysis of SVARs. 

 

Keywords:  search, causality, structural vector autoregression, graph theory, common 

cause, causal Markov condition, Wold causal order, identification; PC algorithm 
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Searching for the Causal Structure of a Vector Autoregression 

 

1. The Problem of Causal Order 

Drawing on recent work on the graph-theoretic analysis of causality, we propose and 

evaluate a statistical procedure for identifying the contemporaneous causal order of a 

structural vector autoregression. 

 Since the publication of Christopher Sims’s “Macroeconomics and Reality” 

(1980), the vector autoregression (VAR) has become the dominant tool of empirical 

macroeconomics in the United States – if somewhat less so in Europe.  Dissatisfied with 

the “incredible identifying restrictions” imposed on structural macroeconometric models, 

Sims proposed the use of the VAR – an unrestricted reduced form.   

 A VAR can be written as 

(1)     BYt = Ut, 

 

where t indexes time; Yt is an n × 1 column vector of the contemporaneous values of the 

variables Yit, i = 1, 2, . . n; B is a conformable square matrix whose terms are polynomials 

in the lag operator – e.g., Bij(L); and Ut is a column vector of structural residuals with 

elements uit.   

 Although the VAR is easily estimated, difficulties begin when we turn to policy 

analysis.  A typical problem would be to work out the effects of a shock to one of the 

variables on all the other variables of the system.  Let ui = [ui1, ui2, . . . uiT] be the time series 

for uit and U without a time subscript be the n× T matrix whose elements are the ui.  The 

contemporaneous covariance matrix is Σ = E(UU′), where E is the expectations operator.  

In general, Σ is not diagonal.  The non-zero off-diagonal elements imply that one variable, 

say Y1t, cannot be shocked through its corresponding random error term, u1t, without 

having simultaneously to deliver correlated shocks to other variables.  Without 

independence it makes little sense to think of shocks, say, to the money supply or to 

employment. 
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 Sims (1980) advocated orthogonalizing the shocks using a Choleski 

decomposition.  There is a unique lower triangular matrix C, such that CC′ = Σ.  

Premultiplying both sides of (1) by C-1 yields 

(2)      C-1BYt = C-1Ut. 

The covariance matrix of (2) is E(C-1U(C-1U)′) = I (Hamilton 1994, p. 320).  Unit shocks 

can be delivered to any of the variables of the system, and their effects traced out.  The 

Choleski decomposition imposes a Wold causal order on the variables so that the shock to 

Y1 feeds contemporaneously into Y2, Y3, . . ., Yn, while the shock to Y2 feeds 

contemporaneously into Y3, Y4, . . ., Yn, but into Y1 only with a lag, and so on.  While the 

Choleski decomposition is unique, it differs under differing orderings of the Yi in the Y 

vector, and these orderings are arbitrary.1  What is more, orthogonalizing transformations 

are not restricted to Choleski decompositions, but may involve non-triangular matrices P, 

such that E(P-1U) = I, providing that at least n(n – 1)/2 restrictions are imposed for 

identification.2  A VAR identified through restrictions on contemporaneous variables is 

known as a structural vector autoregression (SVAR). 

 It is widely believed that there is no empirical or statistical basis for the choice of 

the contemporaneous causal orderings (that is, orthogonalizing transformations), so that 

the economist must appeal to a priori knowledge.  Since there are transformations that 

impose every possible order, there is a family of SVARs for which the original VAR 

(equation (1)) is the common reduced form.  Each member of the family has the same 

reduced form and, therefore, the same likelihood function.  Practitioners typically regard 

the members of the family as observationally equivalent.  Only outside knowledge would 

allow the researcher to choose among them.   

 But where is such knowledge to come from?  Only rarely does economic theory 

imply particular contemporaneous causal orderings.  Generally, practitioners of SVAR 

                                                 
1 Sims (1980) initially underplayed the interpretive ambiguity implied by the different orderings.  Under 
criticism from Cooley and LeRoy (1985), Leamer (1985) and others, Sims (1986) conceded that useful 
interpretation of VARs required choosing among the possible orthogonalizing transformations.   

2 Identification may be achieved in other ways, although in this paper we shall be concerned only with zero 
restrictions on the contemporaneous coefficient matrix. 
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methods appeal to plausible stories about which variables could or could not affect which 

other variables in the course of a month or quarter, depending on the periodicity of the 

data.  The problem with this approach is that sometimes equally plausible stories can be 

told for competing causal orderings.  Not only does such story-telling not inspire much 

confidence, it is ironic that a method that originated as a way of getting away from 

incredible identifying restrictions relies so heavily on hardly more credible stories to 

identify contemporaneous causal ordering. 

 Contrary to the widespread belief, all the SVARs derivable from a VAR are not 

observationally equivalent.  The underlying premise of SVAR analysis is that some SVAR 

corresponds to the data-generating process.  Let the data-generating process be 

(3)     AYt = Et,  

where Et = [εijt] is a column vector of error terms at time t, and the covariance matrix Ω = 

E(EE′) is diagonal.  (Omitting time subscripts indicates the matrix whose columns are the 

Et, and analogously in other cases.)  The error terms of this SVAR are not merely 

uncorrelated; they are, in fact, independent.  The diagonal covariance matrix, which 

indicates the independence of the error terms from each other, marks the VAR structural. 

 Each equation in such an SVAR can be shocked independently of the others.  Let 

A0 be the matrix of the zeroth-order terms of the matrix A – i.e., the typical element of A0 

is Aij(0).  The reduced form of (3), then is 

(4)    AY1
0

−A t = E1
0

−A t.  

Equating terms with (1), we see that A0 connects the reduced-form errors from the 

ordinary VAR (uit) with the structural errors (εit), so that 

(5)     Ut = A E1
0

−
t.  

 The independence of the εij and the structure of the SVAR embodied in A0 implies 

the relationships of interdependence, independence, and conditional independence among 
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the uij, the elements of U.  These are robust relationships in the sense that they are 

invariant to different values of the αij0, the elements of A0.3   

 The transformation that converts VAR (1) into SVAR (3) is a privileged one in 

that it is the only one that recovers the independent errors, the εij.  The well known fact 

that statistical independence implies an absence of correlation, but that an absence of 

correlation does not imply statistical independence comes into play here.  The reduced 

form (4) may be transformed into (pseudo) structural VARs – each appearing to possess a 

contemporaneous causal order different from the data-generating process.  But 

appearances are deceiving.  The error terms of the pseudo SVARs are mutually 

uncorrelated but not independent.  Each pseudo structure carries with it the constraints 

implied by A0.  And unlike the causal order of the true structure (3), which is robust to 

alternative values for the non-zero elements of A0, the causal orders of the transformed 

structures are well-defined only for a particular set of values implied by A0.  If the αij0 

change, the error terms of the pseudo SVAR will no longer appear to be orthogonal. 

 Since one transformation is privileged, the central question then becomes whether 

starting from the VAR (1), empirical evidence can help us select the transformation that 

corresponds to the true SVAR (3)?  In principle, the answer is yes.   

 Over the past twenty years, a group of philosophers and computer scientists have 

developed a graph-theoretic analysis of causal structure and demonstrated the relationship 

between particular causal orders and relationships of conditional independence embedded 

in the likelihood function.  Pearl (2000) and Spirtes, Glymour, and Scheines (2000) 

provide detailed accounts of this approach, as well as search algorithms for implementing 

it.  These methods have been used in a variety of social sciences other than economics, but 

are virtually unknown to economists.4   

                                                 
3 Hoover (2001,chs. 2-4) provides a detailed discussion of the role of independence and invariance under 
parameter change as hallmarks of the true causal structure. 

4 Some earlier applications to economics include Swanson and Granger (1997), Sheffrin and Triest (1998), 
Akleman, Bessler, and Burton (1999), Demiralp (2000, ch. 4), and Bessler and Lee (2002).  Hoover (2001, 
ch. 7) gives a critical description of these methods, and LeRoy (2002) has recently discussed them in a 
review of Pearl (2000).   
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 Most of this research on graph-theoretic methods assumes that the causally ordered 

data are cross-sectional, and many of the main theoretical results do not apply directly to 

time series.  We follow Swanson and Granger’s (1997) suggestion of how to adapt graph-

theoretic methods to the problem of finding the causal order of the SVAR.  (The method is 

described more fully in Section 3 below.)  Unlike Swanson and Granger, who restrict the 

admissible structures to the class of Choleski orderings, we allow every possible ordering. 

We use the PC algorithm embedded in Spirtes et al.’s Tetrad 3 (1996) software.  

Implementation is straightforward, but the nagging question that macroeconometricians 

are entitled to ask is:  just how well does this method work in practice?  In this paper we 

contribute two things.  First, we provide an accessible account of the underlying rationale 

for the graph-theoretic approach to causal order in general.  Second, using a simulation 

study, we address the efficacy of the most common algorithm for implementing this 

approach to selecting the causal order of SVARs.   

 

2. The Graph-theoretic Analysis of Causal Structure 

Start with a structure defined by equation (3) with the added stipulation that the matrix A 

= A0 – that is, there are only contemporaneous variables.  Each row of A represents the 

equation for the corresponding element of Y, and the non-zero off-diagonal elements 

determine which are the explanatory variables of the equation represented by each row.  A 

causal structure can be represented by a graph in which arrows run from causes to the 

caused variable, and the graph corresponds to the pattern of non-zero elements of A.  For  

example, if and , where the α
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A ij designate non-zero elements, 

then the causal structure can be represented by Figure 1, where the arrows represent one-

way causal influence. 

 It is helpful to define some terms used in graph theory.  Causal connections 

between variables are indicated by lines (known as edges or links) that may or may not 

have arrowheads indicating the direction of causation.  The map of a set of variables 

showing the causal connections and their directions is a graph such as that depicted in 

Figure 1.  The map showing just the variables and their connections but ignoring the 
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directions is the skeleton of the graph.  A path is a chain of causal connections between 

two variables.  For example, in Figure 1, ABC is a path from A to B.  A directed path 

follows the direction of causation (the direction of the arrowheads).  For example, in the 

graph A → B → C, ABC is a directed path from A to C, but in Figure 1, there is no 

directed path from A to B.  If a variable A is connected to another variable B by an arrow 

originating at A and running into B, then A is the parent of B, and B is the child of A.  If 

there is a directed path between A and B, then A is an ancestor of B, and B is a descendant 

of A.  If there are no directed paths from a descendant to its own ancestor, then the graph 

is acyclic.  If each cause of every variable in a graph is also a variable in that graph, then 

the graph is causally sufficient.   

 Errors terms in each equation could be treated as causes of deterministic variables.  

When error terms are independent and, therefore, affect one variable each, it is 

conventional to omit them from a graph and to treat the variables as stochastic.  When 

they are not independent, it is conventional to show them explicitly as latent, unobservable 

variables or to indicate bidirectional causal linkages between the variables.  Graphs with 

latent variables are not causally sufficient.  Because the graph-theoretic account is best 

developed for acylical graphs, we restrict our simulations to causally sufficient, acylical 

models. 

 Returning to the initial model, since the εi are independent random shocks, the 

matrix A and its corresponding graph (Figure 1), represent a causal structure that defines 

the patterns of dependence or independence among the variables.  In this case, it is easy to 

see that A and B are not independent because both depend on C.  C is said to be their 

common cause.  It is also intuitive that A is independent of B conditional on C.   

 Causal search algorithms are based on patterns of conditional independence, 

invoking Reichenbach’s (1956, p. 156) principle of the common cause:  if any two 

variables, A and B, are truly correlated, then either A causes B (A → B) or B causes A or  

(A ← B) or they have a common cause (as in Figure 1).  The common cause, C, may be a 

complex of parent variables.   

 The principle of the common cause can be generalized as the Causal Markov 

Condition:   
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Definition.  Let G be a causal graph relating a set of variables V with a probability 

distribution P.  Let W be a subset of V.  G and P satisfy the causal Markov condition 

if, and only if, for every W in V, W is independent of every set of variables that does 

not contain its descendants, conditional on its parents.  (Spirtes et al. 2000, p. 29; see 

also Pearl 2000, p. 30).5 

 Essentially, the causal Markov condition holds when a graph corresponds to the 

conditional independence relationships in the associated probability distribution.  A graph 

is said to be faithful if, and only if, there is a one-to-one mapping between the 

relationships of conditional independence relation implied by the causal Markov condition 

applied to G and those found in P (Spirtes et al. 2000, p. 31). 

 A few further examples illustrate how to apply these ideas.  Consider the two 

causal graphs in Figure 2.  In each case, A and B are dependent, but are independent 

conditional on C.  C is said to screen-off  A from B. 

 Causal structure can induce conditional dependence as well as eliminate 

unconditional dependence.  Consider the graph in Figure 3.  A and B are unconditionally 

uncorrelated.  They are however correlated conditional on C.  The classic example is A = 

the car’s battery being charged; B = the car’s starter switch being on; and C = the car’s 

starting.  A and B may be completely independent.  Yet, if we know that the car does not 

start, then knowing that switch is on raises the probability that the battery is dead.  The 

configuration in Figure 3 is called an unshielded collider on the path ACB (or BCA).  It is 

a “collider” because the arrowheads come together at C, and is “unshielded” because there 

is no direct causal connection between A and B.  The graph in Figure 4 is a shielded 

collider.  Because they are directly causally connected in Figure 4, A and B are correlated 

even without conditioning on the common effect.   

 Causal search algorithms start with the empirical probability distribution of a set of 

variables represented by the covariance matrix or its normalized form, the unconditional 

correlation matrix.  Tests of conditional independence are implemented using conditional 

correlations.  The unconditional correlation coefficient between A and B is denoted rAB .  

                                                 
5 The graph-theoretic account uses a dauntingly complex and unfamiliar terminology.  Here, as elsewhere, 
we follow closely the version of Sprites et al. (2000), but translate it into a more accessible language. 
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The correlation of A and B conditional on C is then defined as 
22|

11 BCAC

BCACAB
CAB

rr

rrr
r

−−

−
= .  

The statistical significance of the conditional correlation can be computed using Fisher’s 

z-statistic.6   

 Each causal graph implies a set of independence relationships in the associated 

probability distribution.  Unfortunately, different graphs may imply the same set, so that a 

probability distribution defines a class of observationally equivalent causal structures.  

This class may have only one element or it may have many.  An important theorem says 

that any probability distribution that can be faithfully represented in a causally sufficient, 

acyclical graph can equally well be represented by any other acyclical graph that has the 

same skeleton and the same unshielded colliders (Pearl 2000, p. 19, and Sprites et al. 

2000, ch. 4).  As a result, there may be observationally equivalent causal structures in 

which some causal links are reversed but all unshielded colliders preserved.  In those 

cases, the algorithm yields only partial causal orderings. 

 It should be recognized that the equivalence class in this case has a different 

membership condition than that of the class of SVARs the observational equivalence of 

which we rejected in Section 1. 

 There are several search algorithms available.  In this paper we use the PC 

algorithm of Spirtes et al. (2000).  An illustration shows how search algorithms work.  

Consider the true causal graph given in Figure 5, panel (i).  (Notice that there are two 

unshielded colliders:  C on the path ACE and D on the path BDF.  B is a shielded collider 

on ABC.) Starting from the correlation matrix, how would the PC algorithm proceed?  It 

begins with a graph (panel (ii)) in which every variable is connected to every other, but 

the links are not oriented.  It then eliminates connections between any variables that are 

not unconditionally correlated (panel (iii)).  Next it tests for the correlation of each pair of 

variables conditional on a third variable.  It eliminates the link between any pair that is 

conditionally uncorrelated (panel (iv)).  Continuing in the same vein, it tests for absence 

                                                 
6 As we observed in Section 1, independence implies an absence of correlation, but not the converse.  There 
may be highly specific parameter values for which correlations vanish, even though the variables are not 
independent.  These correspond to the non-robust transformations of the true SVAR mentioned in Section 1.  
Hoover (2001, ch. 2, section 4, and ch. 7, section 1) discusses cases in which these vanishing correlations 
arise from economically meaningful optimal control. 
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of correlation conditional on pairs of variables and eliminates links whenever there is no 

conditional correlation (panel (v)).  In principle, it would test for a lack of correlation 

conditional on triples, sets of four, five, and more variables.  In this case, however, it has 

exhausted the possibilities at pairs.  It then considers every pair of variables that is 

conditionally uncorrelated and causally connected along an undirected path through a 

third variable.  If conditioning on the third variable renders them conditionally correlated, 

then there is an unshielded collider and the arrows are oriented accordingly (panel (vi)).  

Finally, some unoriented links may be oriented based on screening relationships.  We 

know from panel (v) that C screens the correlation between B and E.  Usually, this would 

mean either that B → C → E or that E → C → B.  Since we already know that E → C, 

only E → C → B is consistent as shown in panel (vii).  Notice that the link between A and 

B remains unoriented.  This is because the graph in panel (viii) has the same skeleton and 

unshielded colliders as the true structure in panel (i), even though it reverses the link 

between A and B.  The two graphs are observationally equivalent, and the search 

algorithm cannot choose between them.  A precise description of the PC algorithm is 

given in Appendix. 

 

3. The Effectiveness of the Causal Search Algorithm 

 3.1 THE SIMULATION METHODOLOGY 

The PC algorithm can be implemented with Tetrad 3 (Spirtes et al. 1996, program).  

Spirtes et al. (1996, user’s manual, ch. 13), Spirtes et al. (2000, pp. 113-122), and Cooper 

(1997, section 10) present some simulation evidence of its effectiveness.  However, no 

previous studies have investigated its effectiveness in the context of ordering the 

contemporaneous variables in an SVAR.  We proceed in the following steps:  

 

1.  Each SVAR takes the form of equation (3).  We can write A = A0 + A , where the 

elements of A  are K
ijKijijijijij LaLaLaLaLaA +++++= K4

4
3

3
2

21 .  Each equation in 

the SVAR has an identical lag structure – i.e., for each j = 1, 2, . . . , N and each k = 1, 
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2, . . . , K, and for all i = 1, 2, . . . , N and h = 1, 2, . . . , N:  αijk = αhjk.7  For 

concreteness K = 4.  Models to be evaluated differ in the number of variables and the 

causal structure of the contemporaneous terms defined by the placement of nonzero 

terms in A0.  Given the causal structure and a particular choice of values for the 

nonzero aij0, the data are generated recursively drawing the error terms from a random-

number generator.  The εijt ~ N(0, 1).  To eliminate problems with initial values, 1500 

realizations are generated and only the last 500 retained for analysis. 

2. In order to evaluate a range of signal-to-noise ratios, we generate 50,000 realizations for 

each model with the nonzero aij0 chosen at each realization using a random number 

generator with the range calibrated to generate Fisher’s z-statistics for these parameters 

in the maximum likelihood estimates of the SVAR covering a range of roughly 0 to 9.  

The distribution is weighted to oversample the 0 to 2 range. 

3. A VAR of the form of equation (1) with a lag length of four (K = 4) is estimated for 

each realization.  The estimated residuals  are retained as the filtered YtÛ t.  The 

sample covariance of the filtered Y is 
K−T
′

=Σ
Uˆ U  and serves as input to Tetrad 3 from 

which it calculates all the needed conditional correlations. 

4. Tetrad 3 is run for each realization using the PC algorithm and assuming causal 

sufficiency.  To evaluate the success of the algorithm, the graph of the model selected 

by Tetrad (the selected graph) is compared to a reference graph (the PC-true graph).  

The PC-true graph is not the graph of the model that generated the data (i.e., it is not  

 the true graph).  It is, instead, the graph that the PC algorithm would select under the 

best circumstances (i.e., with an infinite amount of data).  This is the graph that has the 

same skeleton as the true graph, but leaves undirected links wherever a link can be 

reversed without altering the identities of the unshielded colliders.   

 

 Every possible link is evaluated.  The possible outcomes are: 

                                                 
7 The vector of values for all own lags (i = j) is [aijk] = [0.0403, 0.162409, 0.065450827, 0.026376683281] 
and the vector of values for all cross lags (i ≠ j) is [aijk] = [0.054, 0.002916, 0.000157464, 0.000008503056]. 
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  (i) Correct:  the link is present and oriented the same way in both graphs or it is 

absent in both graphs; 

 (ii) Committed:  the link is absent in the reference graph but present in the selected 

graph. 

(iii) Omitted:  the link is present in the reference graph but absent in the selected graph. 

(iv) Reversed: the link is present in both graphs, but points in opposite directions. 

 (v) Unresolved: the link is oriented in the reference graph and, although present, 

cannot be oriented in the selected graph. 

(vi) Overdetermined:  the link cannot be oriented in the reference graph, but is oriented 

in the selected graph. 

 Errors fall into two groups.  Errors of commission:  outcome (ii) can occur only if 

a link is missing in the true (and, therefore, reference) graph.  Link errors:  outcomes (iii) 

through (vi) can occur only if a link is present in the reference graph. 

 

 3.2 FOUR MODELS 

The strategy of causal identification used in the PC algorithm makes use of the whole 

structure.  It is likely to work best when there are a relatively large number of unshielded 

colliders and a relatively low density of causally connected variables.  We begin with two 

very simple models.  Although these should be difficult for Tetrad to identify, they are 

easily grasped by the analyst and can be used to identify some salient issues.  We then 

consider two more complex models. 

 

 Model 1 

The graph of Model 1 is depicted in Figure 6.  Corresponding to the graph is  
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where αij0 ≠ 0.  Model 1 is symmetrical around B (that is, switching the positions of A, C, 

and D produces isomorphic graphs).  The variable B is an unshielded collider on three 

separate paths:  ABC, ABD, and CBD.  In principle, the PC algorithm can identify Model 1 

(i.e., there is only one graph in the equivalence class), so the true graph and the PC-true 

graph are identical.  There cannot, therefore, be any errors of overdetermination. 

 We address two questions:  First, how does the effectiveness of the PC algorithm 

depend on the nominal size of the z-statistics that Tetrad 3 uses to assess conditional 

correlations?  Second, how does the effectiveness of the PC algorithm vary with the 

signal-to-noise ratios of the causal links? 

 To answer these questions, we classify signal-to-noise ratios into categories 

according to the expected value of the z-statistic ( )for the coefficient in A)(
00

*
ijij

zEz αα = 0 

that corresponds to the link (e.g., α210 for link 1).8 :  0 < z* < 2 is classified as L (low);  

2 < z* < 5 as M (medium); and 5 < z* < 9 as H (high).  There are in principle 33 = 27 

different combinations of signal strengths for Model 1 using these classifications.  Since 

Model 1 is fully symmetrical, combinations with the same number of links in a particular 

category should yield nearly the same results.  For instance, if we label a particular draw 

by the order of its links as numbered in Figure 6, then HMH should have very similar 

results to HHM and MHH.  We, therefore, record only the ten nonredundant patterns. 

 Figure 7 compares three nominal sizes for the test statistics in Tetrad 3:  5, 10, and 

20 percent.  For each size it shows the omitted and committed outcomes.  Each is 

expressed as a proportion of the number of times it might have occurred.  A link can be 

omitted only if it is actually included in Model 1.  A link can be committed only if it is 

actually excluded in Model 1.  While the statistics reported here are not classic test 

statistics, the proportion of outcomes committed is analogous to the size of a classical test 

statistic (i.e., type I error), while the proportion omitted is analogous to the complement of 

the power (i.e., type II error).  But there are degrees of errors of omission.  The worst 

would be to omit a link altogether, but even if a link is included it may not be correctly 

directed.  A third summary statistic – the total correct links irrespective of direction – is 

                                                 
8 Expected values are determined using predicted values from the regression . )( *

0ij
zα ijijij

z εγαα += 0
*

0
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also reported.  This statistic counts a success any time a true link is identified even if its 

direction is reversed or unresolved.  It shows the success of the algorithm at identifying 

the skeleton of the model. 

 The different combinations of signal strength are indicated along the horizontal 

axis of Figure 7.  The number associated with each combination in the labels on the x-axis 

is the mean population value of z*-statistic for that combination.  The data are ordered in 

descending order of the proportion of omissions at the 10-percent test size.  The figure 

clearly shows the usual tradeoff between size and power.  As we move from nominal sizes 

of 5 percent to 10 and 20 percent, the proportion of commissions rises and the proportion 

of omissions falls.   

 The PC algorithm is able to recover the skeleton of the graph at a high rate, even 

when the signal strengths are low.  Its ability to do so hardly varies with the different 

nominal test sizes.  It turns out that the pattern of differences among different test sizes is 

robust across all the models we examine.  We therefore shall report only the results for 10 

percent size in the rest of the paper as it represents an intermediate case with a good 

balance between errors of omission and commission. 

 The usual criticism of specification searches involving repeated testing is that the 

true size rises substantially above the nominal size of the test statistic.  Although the PC 

algorithm tests repeatedly, only tests involved in orienting links (as opposed to tests 

establishing the existence of a link) involve conditional decisions, which are the usual 

targets of opponents of data mining.  The cost of search appears low in this case:  the 

proportion of commissions for LLL 1.00 is very close to the nominal size of the z-statistics 

and for HHH 7.00 is about half the nominal size.9  The multiple testing used in the PC 

algorithm appears to be well-behaved on that front.  In this simple, symmetrical model, 

the ability of the algorithm depends on the relative number of weak links.  It is least 

effective when there are three low-strength lengths and most effective when there are 

three high strength links with the remaining combinations ordered lexicographically 

between these extremes. 

                                                 
9 These results are consistent with finds of well-behaved size in non-causal search algorithms (see Hoover 
and Perez (1999), Hendry and Krolzig (1999), Krolzig and Hendry (2001).  For a general defense of well-
regulated search as a respectable econometric practice, see Hoover (1995) and Hoover and Perez (2000). 
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 Figure 8 reports the various ways in which the PC algorithm fails to correctly 

identify a true link in Model 1.  The data are ordered by the proportion of total link errors, 

which again turns out to be lexicographically from LLL to HHH.  Omissions are high if 

two or more links have low strength.  When it does omit a link, the other errors (reversed 

or unresolved links) cannot occur.  Typically, as the proportion omitted falls rapidly as 

signal strength rises, the proportion unresolved rises rapidly to fill the gap.  Failures to 

resolve peak when all links have a medium signal strength (MMM 3.50) and falls as the 

number of high signal strengths increases.  Irrespective of the average signal strength, 

even a single low-strength link noticeably increases the omission rate (compare, for 

example, omissions for MMM 3.50 and HHL 5.00). 

 There is a clear hierarchy of error:  omissions yield to failures to resolve yield to 

reversals.  Reversals occur only when signal strengths are high.  They peak at about 15 

percent.  The total error rate for true links bottoms out at 29 percent.  This understates the 

success of the algorithm, first because once signal strengths are even moderately high it 

almost always never omits a link and because its error rate on true omitted links is very 

small.  It almost always identifies the skeleton of the graph.  

 

 Model 2 

The graph of Model 2 is depicted in Figure 9.  Corresponding to the graph is  
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where αij0 ≠ 0.  Model 2 has the same skeleton as Model 1.  The BD link is reversed.  

Model 2 has only one unshielded collider:  B on the path ABC.   

 Model 2 is symmetrical only with respect to links 1 and 2.  There are, therefore, 

more distinct combinations of signal strengths than was the case with Model 1 (18 in all).  

The rate of errors of commission is similar to that for Model 1:  with a 10 percent nominal 

size, a maximum of 9.5 percent at LLM 1.83 and a minimum of 5.5 percent at HHM 5.83. 
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 Because of the asymmetry of Model 2 we investigate link errors for links 1 and 2 

as a pair in Figure 10 and link 3 separately in Figure 11.  Figure 10 is arranged in 

descending order of total link errors.  There are three clearly defined sets.  First, if link 3 

or both links 1 and 2 have a low signal strength, then total link errors (for links 1 and 2) 

are nearly 100 percent with reversals and omissions accounting for about half each.  

Second, if link 3 has a medium or high signal strength and at most one of links 1 and 2 has 

a low signal strength, then the total error rate falls to around 80 percent.  Omissions 

account for about 10 percentage points of the total, and unresolved links for most of the 

rest.  Third, if link 3 and at least one of links 1 and 2 have a high signal strength, then the 

total error rate falls to 50 percent.  Omissions fall to almost zero, and unresolved links 

account for almost all of the total.  Reversals remain very low for all combinations. 

 Link errors for link 3 are decomposed in Figure 11, which is arranged in 

descending order of the total link error rate.  The total error rate is high if any of the three 

links has a low signal.  Omission are about 80 percent if either link 1 or 2 has low signal 

strength.  If both links have medium or high strength, then omissions stand at 11 to 13 

percent, whatever value link 3 takes.  If both are high, then omissions fall to zero.  Failure 

to resolve are inversely related to omission rates and fall only when the total error rate 

itself falls when all signal strengths are medium or high.  The maximum reversal rate is 

just over 10 percent. 

 Figure 12 provides an overall summary of the success of the algorithm at 

recovering the structure of Model 2.  Data are ordered by increasing success at recovering 

the skeleton of the graph (that is, they are ordered so that the upper line, “correct 

irrespective of direction,” is monotonically increasing).  At any reasonable signal strength, 

the algorithm performs well at recovering the skeleton.  The lower line indicates its 

unqualified success both at recovering the skeleton and properly orienting the causal 

arrows.  The difference between the two lines is a measure of the total number of link 

errors reported in Figures 10 and 11.  The algorithm performs well at recovering the 

skeleton, so long as no more than one link has a low signal.  The PC algorithm is less 

good at recovering either the skeleton or the true graph of Model 2 than it was of Model 1.  

This is not surprising, since Model 1 has only one unshielded collider, whereas Model 2 
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has three; it is the presence of unshielded colliders that makes orientation of links 

possible. 

 

 Model 3 

Models 3 and 4 can be seen as elaborations of Models 1 and 2.  The graph of Model 3 is 

depicted in Figure 13.  The core graph is the same as Model 1.  The link added between A 

and C acts as a shield, so that B on path ABC is no longer an unshielded collider.  The 

additional link 5 adds another unshielded collider, while the additional link 6 does not.  

Model 3 has three unshielded colliders:  B on paths ABD and CBD; and C on ACE. 

 Since link 6 can be reversed to run D → F without changing the skeleton or the 

number of unshielded colliders, Model 3 is one member of a two-member equivalence 

class.  The PC-algorithm cannot recover the true graph in principle.  The best that it can 

do, the PC-true graph is shown in Figure 14.  The simulated data is generated using the 

true graph, while the scoring uses the PC-true graph. 

 Recall that success at recovering particular links depends not only on those links 

directly, but on all of the links in the graph.  Even the simple Model 2 presented some 

complexity.  If we restrict ourselves to three levels of signal strength as before, there are 

729 (= 36) combinations to be considered for each of the six links, yielding 4,374 

evaluations.  This is too complex to grasp easily, so some simplifications are necessary.  

In Figure 15 we simplify by reporting results for the average signal strengths across all six 

lengths.  (It is important to recall in reading the graph that proportions are expressed as the 

number of times links are classified in a particular category as a fraction of the number of 

times that they could have been truly in that category.  There are nine possibilities per 

realization to make an error of commission, six to make an error of omission, five to make 

reversals or to fail to resolve direction, and only one to overdetermine the direction.  The 

last error was not possible for Models 1 and 2, which unlike the PC-true graph of Model 3 

did not possess undirected links.) 

 Figure 15 shows that the PC-algorithm performs quite similarly with the more 

complex model as it did with Models 1 and 2.  Errors of commission are approximately 10 

percent when average signal strengths are below z* = 1, and fall monotonically as average 

signal strength rises.  Errors of omission start very high and fall rapidly as signal strength 
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rises.  As omissions fall, unresolved links rise peaking at the moderate average signal 

strength of 3 < z* < 4, and falling thereafter.  Reversals and overdeterminations appear 

only at higher signal strengths when failures to resolve direction at all become fewer.  

(Reversals and overdetermination occur more frequently at low average signal strengths 

because the omission of some links also interferes with the correct identification of 

unshielded colliders, which are essential to the correct orientation of the remaining links.)  

Overall success as measured by the recovery of the skeleton rises rapidly with signal 

strength and tops out at about 96 percent, while unqualified success at recovering the 

correct graph rises in parallel, toping out at just over 82 percent. 

 

 Model 4 

Model 4 bears the same relationship to Model 2 as Model 3 does to Model 1.  The true 

graph of Model 4 is depicted in Figure 16.  It has two unshielded colliders:  C on the path 

ACE and D on the path BDF.  Since link 2 can be reversed without altering the skeleton or 

the unshielded colliders, the PC algorithm cannot direct it.  The PC-true graph for Model 4 

is depicted in Figure 17:10 

 The success of the PC algorithm in recovering Model 4 is shown in Figure 18.  It 

is clearly similar both qualitatively and quantitatively to Figure 15, which refers to Model 

3.  Comparison of the uppermost increasing lines in each figure shows that the algorithm 

is equally good at recovering the skeleton of Model 4 as of Model 3.  The difference is 

that it is slightly better at identifying the true links – direction as well as connection – for 

Model 3.  Total link errors and unresolved links are higher for Model 4 at every average 

signal strength.  This is consistent with the fact that Model 4 has fewer unshielded 

colliders than Model 3.  Unshielded colliders are needed to discover the direction of 

causation but not the fact that variables are causally connected irrespective of direction.  

The zig-zag pattern of omissions and failures to resolve direction seen in Model 2 (Figure 

11) are not recapitulated in the related Model 4, partly because grouping by average signal 

                                                 
10 Except for layout on the page it is the same graph as Figure 5 (vii). 
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strength mixes a variety of patterns of signal strengths in the same cell and partly because 

the additional unshielded collider increases the ability of the algorithm to orient links. 

 

4.  Preliminary Conclusions 

Although the current paper reports work in progress, we believe that we are in a position 

to draw some preliminary conclusions from our simulation studies. 

1. Causal search using graph-theoretic methods sometimes allows us to choose 

contemporaneous causal orders for SVARs based on relations of conditional 

independence in the data without appealing to a priori theory or other 

nonstatistical criteria.  Even when these methods cannot select a unique causal 

order, they can narrow the equivalence class. 

2. Contrary to the fears often expressed in relation to search methodologies, the PC 

algorithm appears to have well behaved statistical properties.  In particular, the 

rate of falsely identifying a causal link when none exists in the true model occurs 

in the worst cases at a rate approximately equal to the size of the test statistic used 

to assess conditional independence and, in the best cases, at about half that rate.  

There is a clear tradeoff between increasing the rate of commission (type II error) 

and decreasing the rate of omission (type I error). 

3. Error in causal ordering is more subtle than a type I/type II classification would 

suggest.  A causal link can be omitted, but it can also be included but reversed, 

overdetermined or unresolved.  In general errors of omission fall rapidly with 

signal strength.  Other types of error can occur only if errors of omission do not.  

Reversals and overdetermination are generally relatively low, but increase with 

average signal strength, while failures to resolve the direction of links peaks in the 

mid-range of signal strengths and then falls. 

4. All types of link errors are sensitive to the fine details of the causal structure.  

These can be well understood in very simple systems, but are hard to characterize 

as complexity grows even moderately. 

5. In the systems examined, the PC algorithm was completely successful in 

identifying the correct causal structures with reasonable reliability only when 
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signal strengths were relatively high.  It was, however, substantially better at 

identifying the skeletons of causal structures, even when it failed to resolve the 

directions of causal influence.  Extra-statistical information may suggest the 

direction of particular causal links and when combined with knowledge of the 

skeleton may provide a firmer basis for a complete causal ordering than either the 

PC algorithm or the extra-statistical information could provide separately.   
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Appendix.  The PC Algorithm 

Descriptions of the PC algorithm are found in Spirtes et al. (2000), pp. 84 and 85 and 

Pearl (2000), pp. 49-51.  This description is based on Cooper (1999, p. 45, Figure 22). 

1. Start with a graph C in which each variable is connected by an edge to every other 

variable. 

2. Set n = 0.  Test for nth-order  conditional correlation between every pair of 

variables conditioning on every subset of variables size n.  (For n = 0, the 

conditioning set is the null set, so that conditional correlation is equivalent to 

unconditional correlation). If a pair of variables is conditionally uncorrelated, 

eliminate the edge between them. 

3. Set n = n + 1 and repeat step 2 until all possible conditionings have been 

exhausted.  Call the resulting graph F. 

4. Consider each pair of variables (X and Y) in F that are unconnected by a direct 

edge but are connected through an undirected path through a third variable (Z).  

Orient X  Z  Y as X → Z ← Y if, and only if, X and Y are dependent when 

conditioned on every subset of variables, excluding X and Y, that includes Z.  Call 

the resulting graph F′. 

5. Repeat until no more edges in F′ can be oriented: 

a. If X → Z and Z  Y and X and Y are not directly connected, then orient Z  Y 

as Z → Y.   

b. If there is a directed path between X and Y (i.e., a path in which all edges have a 

consistent orientation with the arrowhead of the initial edge at X and all 

intermediate edges pointing to the tail of the next edge along the path until 

reaching Y) and if there is an undirected edge between X and Y, orient X  Y as 

X → Y 
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Figure 5.  How the PC Algorithm Works 
(i) The true structure determines the correlations that will be found in the data, and 

which can be eliminated or oriented in the various steps of algorithm (shown in 
subsequent panels). 
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 (ii) Start with a graph in which every variable is connected by an undirected edge to 

every other.   
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Figure 5 (continued) 
(iii) Edges between variables that are not unconditionally correlated are eliminated:  

AE is broken by the collider at C; AF, BF, CF, and EF are broken by the collider 
at D.  (Dashed lines or arrows indicate the links affected by the current step.) 
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 (iv) Edges between variables that are uncorrelated conditional on a single variable 

are eliminated:  B screens A and C from D and D from E.   
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Figure 5 (continued) 
 
(v) Edges between variables that are uncorrelated conditional on a two variables are 

eliminated:  C and A screen B from E.  
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(vi) Conditioning on more than two variable at a time will not remove any further 

edges.  Check every pair of variables that are not directly connected (and are 
therefore uncorrelated conditional on some subset of the variables) but are 
connected through a third variable.  If conditioning on the third variable renders 
them correlated, then orient the edges as arrows pointing into the third variable:  
C is identified as a collider on ACE and D as a collider on BDF.   
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Figure 5 (continued) 
 
 
 
(vii) Since C screens B from E and an arrow runs from E into C, the edge from C to 

B must be oriented toward B.  No further edges can be oriented, so (vii) is the final 
graph.  It is identical to (i) in all but the AB edge, which in (vii) is missing the 
arrowhead into B that is present in (i).  The algorithm cannot orient that edge. 
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(viii) The unoriented edge on AB in (vii) shows that the true graph in (i) is not the 

only member of the equivalence class.  The following graph has the same skeleton 
and unshielded colliders as (i), differing only in the orientation of the arrow 
between A and B. 
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Figure 7.  Performance of the PC Algorithm for Model 1 at Different Nominal Test Sizes
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Figure 8.  Model 1 Link Errors
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Figure 9 
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Figure 10.  Model 2 Link Errors for Links 1 and 2
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Figure 11. Model 2 Link Errors for Link 3
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Figure 12.  Overall Success of Model 2
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Figure 13. The True Graph of Model 3 
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Figure 14. The PC-true Graph of Model 3 
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Figure 15.  Outcomes by Average Signal Strength for Model 3
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Figure 16. The True Graph of Model 4 
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Figure 17.  The PC True Graph of Model 4 
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Figure 18. Outcomes by Average Signal Strength for Model 4 
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