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Abstract

This paper develops Wald type tests for general possibly nonlinear restrictions, in the context of heteroskedastic IV
regression with many weak instruments. In particular, it is first shown that consistency and asymptotically normality
can be obtained when estimating structural parameters using JIVE, even when errors exhibit heteroskedasticity of
unkown form. This is not the case, however, with other well known IV estimators, such as LIML, Fuller’s modified
LIML, 2SLS, and B2SLS, which are shown to be inconsistent. Second, new covariance matrix estimators (and
corresponding Wald test statistics) are proposed for JIVE, which are consistent even when instrument weakness is

such that the rate of growth of the concentration parameter, 7y,, is slower than the rate of growth of the the number

VEn

Tn
primary advantage of our tests, relative to those proposed previously in the literature, is that one can test general

of instruments, /,,, and possibly much slower than the sample size, 1, provided that — 0 asn — 00. The
nonlinear hypotheses, as opposed to simple null hypotheses of the form Hy : 8 = (%, where 3* is the value of
(3 under the null. We feel that this feature, taken together with the fact that the tests are robust to unconditional
heteroskedasticity, is important from the perspective of empirical application, given that general linear and nonlinear
hypotheses are often of interest to empirical researchers, and given that heteroskedasticity is prevalent, particularly

in microeconomic datasets.
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1 Introduction

In this paper, we discuss Wald type tests for general possibly nonlinear restrictions, in the context of
heteroskedastic IV regression with many weak instruments. The test statistics for which we obtain
limiting results are constructed using the jackknife instrumental variables estimator (JIVE), which
can be shown to be consistent and asymptotically normal, even when errors exhibit heteroskedas-
ticity of unkown form. These results add to the literature on JIVE estimators that stemmed from
a number of important papers including Phillips and Hale (1977), Angrist, Imbens, and Krueger
(1999), and Blomquist and Dahlberg (1999). Other well known IV estimators, such as LIML,
Fuller’s modified LIML, 2SLS, and B2SLS, are shown not to be consistent in our framework, and
thus cannot be used when carrying out asymptotically valid tests. An important theoretical result
of this paper is the development of new covariance matrix estimators for the two JIVE estimators
which are analyzed. Of note is that these covariance matrices are shown to be consistent even
when instrument weakness is such that the rate of growth of the concentration parameter, r,, is

slower than the rate of growth of the number of instruments, K, and possibly much slower than
VEn

the sample size, n, provided that ot — 0asn — oo. The fact that our tests are designed for
general possibly nonlinear restrictions, taken together with the fact that the tests are robust to
unconditional heteroskedasticity, is important from the perspective of empirical application, given
that general linear and nonlinear hypotheses are often of great interest to empirical researchers,
and given that heteroskedasticity is prevalent, particularly in microeconomic datasets.

Related recent papers on testing include the those by Kleibergen (2002), Moriera (2003), and
Guggenberger and Smith (2003). However, to the best of our knowledge, these papers only address
the case of testing simple null hypotheses of the form Hy : § = 3*, where 8* is the value of § under
the null, while our approach allows for straightforward analysis of general coefficient restrictions. In
addition, we allow for (unconditional) heteroskedasticity of unkown functional form. Guggenberger
and Smith (2003) also address the issue of heteroskedasticity, but only consider conditional forms.
However, their setup allows for nonlinear models, while our model is linear. One of the main
features accounting for the differences between the approach of the above authors and ours is that
they assume that K, is fixed (in the local to zero framework of Staiger and Stock (1997)), and

hence consistent estimation of structural parameters cannot be obtained. This precludes testing

hypotheses other than those for which all weakly identified structural parameters are known under



the null. The advantage of their approach is that their tests still have y? limiting distributions,
even when structural parameters are unidentified with respect to the class of null hypotheses that
they consider. Our tests, on the other hand, are designed to handle general hypotheses of the form
Hy : h(By) =0, where h(-) : R? — R9, the caveat being that we require at least weak identification,
and so does not work if the instrumentrs are completely irrelevant. In particular, in the Staiger
and Stock (1997) local to zero framework, Wald test statistics do not have limiting x? distributions
(the distributions are nonstandard and nuisance parameter dependent). By allowing the number
of instruments to increase with the sample size, we are able to obtain consistent estimates of
all parameters in our structural equation, hence leading to nuisance parameter free x? limiting
distributions. Our results can thus be viewed as complimentary to those of Stiager and Stock
(1997), in the sense that we consider the case of many weak instruments, while they consider the
important case of few weak instruments. In addition, our results can be viewed as adding to the
recent literature on many weak instruments (see e.g. Chao and Swanson (2002), Chao and Swanson
(2003), Kleibergen (2003), Han and Phillips (2003), and Stock and Yogo (2003).

An ancillary contribution of this paper concerns the development of deeper understanding of
how heteroskedasticity affects estimation under many weak instruments. In particular, it is first
worth noting that there have been many recent papers which included Monte Carlo experiments
exploring the finite sample properties of IV estimators in a weak instrument context. A few of
the important papers in this area include Staiger and Stock (1997), Angrist, Imbens, and Krueger
(1999), Blomquist and Dahlberg (1999), Gao and Lahiri (2000), Donald and Newey (2001), Hahn,
Hausman and Kuersteiner (2002), Hahn and Inoue (2002), and Gugenberger and Smith (2003).
Many of these papers involve homoskedastic experimental designs, and many assume that K,
is fixed. Exceptions to the former feature include Hahn, Hausman and Kuersteiner (2002) and
Guggenberger and Smith (2003), who also include heteroskedastic experiments in their Monte Carlo
designs. In particular, their designs take the natural approach of including the heteroskedasticity in
the error of the structural equation. Interestingly, a straightforward implication of the findings in
this paper and the related findings in Chao and Swanson (2002) is that what causes inconsistency
of LIML, Fuller’s modified LIML, and B2SLS is heteroskedasticity in the covariance across error

terms in the structural and the first stage equations.! Having heteroskedasticy only in the errors of

'Note that the 2SLS estimator is inconsistent even under homoskedastic assumptions, in the many weak instru-

Kn 0 as n — oo (see Chao and Swanson (2002)).

n

ments framework, unless




the structural equation will not preclude the consistency of LIML, Fuller’s LIML, and B2SLS. Thus,
when experiments are designed in which the objective is to examine the many weak instruments case
(i.e. where K, grows), it is also of interest to have experimental designs which assume covariance
heteroskedasticity across equation errors.

In the many weak instruments literature, important precedents to our paper include those of
Morimune (1983), Bekker (1994), Donald and Newey (2001), Hahn and Hausman (2001), Hahn
(2002), Han and Phillips (2003), and Stock and Yogo (2003). Of these, the closest to ours are
Stock and Yogo (2003) and Han and Phillips (2003). Stock and Yogo (2003) consider many weak
instruments in the case of homoskedastic errors, and consider scenarios where r, grows at the same
rate as K. Their results provide important insights into estimation and testing, and establish
that standard Wald test statistics have non-pivotal limiting distributions. Han and Phillips (2003)
develop a GMM framework, and derive asymptotic distributions of point estimators. Our paper, in
summary, adds to previous discussions of many weak instruments by developing tests with nuisance
parameter free limiting distributions based on a new covariance matrix estimator that is robust to
unconditional heteroskedasticity. In addition, we add to the discussion of IV estimator consistency,
by outlining conditions under which various estimators are and are not consistent. For example,
our estimation results offer a trade-off relative to those of Han and Phillips (2003). In particular,
we are able to obtain consistency and asymptotic normality with weaker instruments, as measured
by the rate of growth of the concentration parameter, than in Han and Phillips. The trade-off is
that their results apply to a more general possibly nonlinear GMM model, while ours are shown to
be valid in an explicitly linear model.

The rest of the paper proceeds as follows. Section 2 sets up the model and discusses our
assumptions. Section 3 briefly describes JIV E estimators and presents the main estimation results
of the paper. Section 4 discusses testing, and Section 5 contains the results of a small Monte
Carlo experiment examning the finite samples properites of our tests. Section 6 concludes. All
proofs are gathered in separte appendices on estimation and testing. The following notation is

[43

used in the remainder of the paper: Tr(-) denotes the trace of a matrix, “ > 0” denotes positive

definiteness when applied to matrices, lim a,, denotes the limit inferior of the sequence {a,}, and
n—oo

lim a,, denotes the limit superior of the sequence {a,}. In addition, Py = X(X’X)~!X’ denotes

n—oo

the matrix which projects orthogonally onto the range space of X and Mx = I — Px.



2 Model and Assumptions

Consider the following two-equation simultaneous equations model (SEM)

Yin = YonB+ Up, (1)
Y2n = ZnH+Vn> (2)

where y1, and Ys, are, respectively, an n x 1 vector and an n X d matrix of observations on
the d + 1 endogenous variables of the system, Z, is an n x K, matrix of observations on the
K, instrumental variables, or exogenous variables excluded from the structural equation (1), and
Uy, Vi, are, respectively, an n x 1 vector and an n X d matrix of random disturbances. Further,
let & = (u;,v})" where u; and v} are, respectively, the ith component of the random vector u, and
the ith row of the random matrix V,,. The following assumptions are used to establish asymptotic
normality.?

Assumption 1: II =11, = %: for some sequence of positive real numbers {b,} , nondecreasing in
n, and for some sequence of nonrandom, K, X d parameter matrices {C),} .

Assumption 2: Let {Z,;:i=1,...,n; n > 1} be a triangular array of R¥"-valued random vari-
ables, where Z;m' denotes the ith row of the matrices Z,. Also: (a) let m, / 0o as n — oo,

and suppose that there exist constants D, and D), with 0 < D, < Dy < oo, such that D, <

! —_ ! —_
lim Apin (Z;;LZ") a.s. and lim Apax (Z%Z”) < Dy a.s.; (b) assume that K,, — 0o as n — oo such
n n—o0 n

n—oo

2 JE— —
that If;g" — 0; and (c) assume that there exist constants D~ and D¢, with 0 < Do < Do < o0,
such that D~ < lim Apin (CI;‘{C”) and lim Apax <C;/L<C”> < D¢.
n n—oo n

n—oo

Assumption 3: (a) Define ¥;(Z,) = E (§¢&[|Z,) and suppose that &|Z,, = i.n.i.d.(0, X; (Z,))
almost surely for all n, where &;|Z,, denotes the conditional distribution of §; given Z,,. Further,

assume that ¥; (Z,) > 0 for all i and n almost surely, and partition 3; (Z,) conformably with

i (Zn) 04y (Zn)
- ui,v’. s Ei Zn _ Owuu,i ( n Vu,i \ &1
5 ( z) ( ) < OVuyi (Zn) ZVV,i (Zn)

De, with 0 < D¢ < oo, such that max {supE (u}|Zy) ,supE (v}|Zy), ...,supE (vfd|Zn)} < D¢

> ; (b) assume that there exists some constant

almost surely; and (c) assume that there exists some constant Dg, with 0 < D, < oo, such that
min {infauu,i (Zy) ,infAmin (Zvv (Zn))} > D, almost surely.
(] K3

Assumption 4: Assume that there exists a constant Dz, with 0 < Dz < oo, such that

2Stronger versions of Assumptions 2-4 are later made in order to obtain asymptotics for Wald tests.



SUD) <j<n,<k<Knn>1E (Z;lk, n) < Dy, where Z;. ,, denotes the (i, k)" element of Z,,.
Assumption 5: Define the ratio r, = mZQK". Suppose that, as n — oo, 2= — & for some constant

Kk such that 0 < k < o00.
Assumptions 1 and 2 are similar to corresponding assumptions that were made in Chao and

Swanson (2002, 2003). As explained in those papers, these assumptions imply that there exists

a positive integer N such that, for all n > N, 0 < D,\Ds < 20 ZnIln < D)D¢ < oo with
probability one, so that the concentration parameter I, Z/ Z,I1, grows at the rate r, = m’bhf{”

under these conditions. It is sensible to have conditions which characterize the rate of growth of the
concentration parameter since the concentration parameter is a natural measure of instrumental
strength, as has been pointed out by numerous authors, including Phillips (1983), Rothenberg
(1983), and Stock and Yogo (2003). Because we are interested in the case of weak instruments,
Assumption 5 stipulates that r,, must grow no faster than n. In fact, we will be interested primarily
in the case where r, grows much more slowly than n. Note also that m, in Assumption 2(a)
represents the rate of growth of the matrix Z, Z,, or the rate at which information in the instruments
accumulates. On the other hand, Assumption 2(b) places a restriction on the growth rate of the
number of instruments as n — oo. In the typical case where m,, = n, Assumption 2(b) reduces to

Ki S0asn— 00, which is the same as a condition assumed in Stock and Yogo (2003).

n
Finally, note that Assumption 3(a) allows for heteroskedasticity of unknown form in the errors of
the model. In this sense, our setup generalizes the homoskedastic, many-instruments framework
used by many previous authors, including Morimune (1983), Bekker (1994), Angrist and Krueger
(1995), Donald and Newey (2001), Chao and Swanson (2002, 2003), and Stock and Yogo (2003).
Our assumption on the stochastic properties of the instruments are also weaker than what has pre-
viously been assumed in the many-instruments literature, as previous authors have either assumed

fixed (non-random) instruments or stochastic i.i.d. instruments, whereas our assumptions allow for

stochastic instruments which are not necessarily i.i.d.

3 Asymptotic Normality

Consider two alternative versions of JIV E due to Phillips and Hale (1977) and Angrist, Imbens,

and Krueger (1999). Namely, consider



Givvein = (Yoo [In — Mz, Hip) Yor) " Ya, [In — Mz, Hip) y1n

! +
= (Y3, [Pz, Hin — Hon) Yan) " Ys, [Pz, Hin — Hop] Yin, (3)
Z Z Z
- 1 1 1 - Piin P32 n Prn,n
where Hy,, = diag | ——, ——, ....... ——— | and Hy,, = dia . T, ;
tn = g (mﬁ,n’ Tph, 1pfm,n) o = W\ Th 0 T b

Z

1,n

grist, Imbens, and Krueger (1999) and also in Blomquist and Dahlberg (1999), JIVE1 is an IV

and where pZ = denotes the i*" diagonal element of the projection matrix Pz, . As explained in An-

estimator constructed from the following two-step procedure. First, construct jackknife fitted val-

f/ﬂvm

ues Ys,

(ie. set Y5IVPL = T, (i) Zng, for i = 1,...,n, where T,(i) = (Zn (i)' Zn(i) ™ (Zn(3) Yan(i)) is the

, ¢ =1,...,n, by running first stage OLS regressions using all but the ith observation

OLS estimator of the coefficient matrices of equation (2), obtained by deleting the ith observa-
tions, and where Z,,(i) denotes a submatrix of Z,, obtained by deleting the i*" row from the latter).

Next, estimate the structural equation (1) by an I'V procedure, using the matrix of instruments

—~ ~ —~ P /
Y IVEL = (YQ{L{YEl,)@{L{XEl, ...... ,YQ{ZIXm) . Also, consider

~ +

Birveen = (Yo, [Pz, — Hsn| Yon) ' s, [Pz, — Hapl y1n, (4)
where Hs, = diag (plzlm, p2Z27n, ....... ) pfnn) This version of JIV E was first proposed by Angrist,

Imbens, and Krueger (1999), who obtained this estimator by modifying step (i) above so that the
alternative fitted values ?2{11,1‘/}32 = 10,,(i) Zn s, where I, (i) = (Zy' Zn) " (Z (i) Yan(i)), are used in
lieu of ?Q{fZVEl fori=1,...,n.

For these estimators to be well-defined, we need to make the following additional assumption.
Assumption 6: There exists a constant h, with 0 < h < 1, such that 0 < pZZm < h a.s. for
1 <i < n and for all n sufficiently large such that Pz, is well-defined almost surely.

As explained in Angrist, Imbens, and Krueger (1999), the motivation behind JIV E1 and
JIV E2 is to remove, or at least to reduce, the finite sample dependence between the first-stage

fitted values and the disturbance of the structural equation by constructing these fitted values

3Note that Assumption 6 does rule out exogenous regressors of the form e; = (0,...,0,1,0,...,0), where e; denotes
the it" elementary vector, or, alternatively, the i*" column of an identity matrix. It is easy to show that h;, = 1 if
e; is a column of Z,. Other types of dummy variables are not ruled out, however. Note also that Assumption 2(b)
implies that, for n sufficiently large, the matrix Z}, Z,, is positive definite almost surely, so that Pz, is well-defined

almost surely for large enough n.



via “delete one” estimation procedures. This results in a built-in bias correction, which, in turn,
enables these estimators to have good asymptotic properties in the sense that, under fairly gen-
eral conditions, they are consistent and asymptotically normal even in the presence of many weak
instruments and heteroskedasticity, as are shown in the following theorems:

Theorem 3.1 (JIVE1): Under Assumptions 1-6, let BJ]VELH be as defined in equation (3) above.

Then: (a) suppose that % — 0 as n — oo; then,

e _\—i (5 d
(Lo e (ﬂJIVELn - ﬁo) — N (0,15) asmn — oo,

n
where U,, = b,2C! Z! Z,C,, and =, = b;ZC{IZnJZ;L,anaW,j (Z,); (b) suppose that IT(—: — 4,
7=1

for 0 < § < 0o, as n — oo; then,
—1 1 1/ d
(v, '2,0,") 2 <5JIVE1,n - ﬁo) — N (0,15) asn — oo,
where Z,, = Z1,, + Zop, 215 is as defined above,

Zon = Z [g?j,nZVV,i (Zn) Ouu,j (Zn) + 9ij,n9ji,n0Vu,i (Zn) U{/u,j (Zn)
1I<i<j<n

19ij,n95i,n0Vu,j (Zn) U{/u,i (Z’n> + ggzi,nEVV,j (Zn) Ouu,i (Zn)] s

and g;;, denotes the (i,7)" element of the matrix G, = Pz, Hy, — Hay,; and (c) suppose that

I%—M)and —VTI:"HO, as n — oo; then,
1= I\—% (5 d
(U, 20,0, 1) 2 (ﬂJIVELn - ﬁo) — N (0,15) asmn — oo,

where W, = b 2C" 7! 7Z,,C,, and Za, is as defined above.
Theorem 3.2 (JIV E2): Under Assumptions 1-6, let 3 J1vE2,n be as defined in equation (4) above.

Then: (a) suppose that I:—: — 0, as n — o0; then,
1= _I\—% (5 d
(=g, ety (ﬂJIVEzn - ﬁo) — N (0,13) asn— oo,

n 2
where U = b-2C" Z [T, — Hn] ZnCr and =5, = 3 b2 (1 — 7 n) Cl Zn 32l ;CuGunj (Zn); (b)
j=1 ’ ’
suppose that % — 9, for 0 < § < o0, as n — o0; then,

~

1
k— 1=k qpk—1) 3 d
(O 2w ) 7% (Brrvezn — ) S N(0,1) asn — o,



where = = E7, + 55, 2], is as defined above,
- 2
:‘Zn = Z [(g;‘kj,n) Yvvi (Zn) Ouu,j (Zn) + g;;kj,ng;z‘,nUVU,i (Zn) J{/u,j (Zn)
1<i<j<n
2
G T5in Vg (Zn) T (Za) + (Gn)” Svvg (Zn) ouni (Za)]

and g;; , denotes the (i,7)" element of the matrix G¥, = Py, — Hsy,; and (c) suppose that = —0

and —VTK" — 0, as n — o0; then,
n

*— 11— —1\—3 (3 d
(Trt=s, w2 (ﬂJIVEz,n - 50) — N (0,13) asn— oo,

where U = b2C! Z! [I,, — Hsp] Z,C,, and where Z3 is as defined above.

Suppose we make the additional assumptions:
Assumption 7: Asn — oo, ¥, = 210, 3 U, 115, — =, and K, 125, — =5 for positive
definite matrices ¥, =, and =s.

=* —1= =% i
— Z), and K, 1235 — =, for positive

: ’, O — -1
Assumption 7’: Asn — o0, ¥V, =1,V n Sin o

definite matrices ¥, 2, and =,.

Under these assumptions, the following corollaries to Theorems 3.1 and 3.2 follow immediately, and
are useful because they explicitly state the rates of convergence of the estimators under our various
assumptions concerning instrument weakness.

Corollary 3.3 (JIV E1): Under Assumptions 1-7, let BJIVELTL be as defined in equation (3) above.

Then: (a) suppose that I:—: — 0 as n — oo; then,

VT (BJIVEl,n - 50) 4N (07@

1§1W_1> , asn — o00;
(b) suppose that IT(—: — 0, for 0 < § < oo, as n — oo; then,
5 d —1 = =11
vV Ky (ﬁJIVEl,n - 50) — N (0, U [E1+ 5 U ) . asn — oo;

and (c) suppose that 7= — 0 but —st" — 0 as n — oo; then,

Tn

VE,

Corollary 3.4 (JIVE2): Under Assumptions 1-6 and 7’, let B J1vE2,n be as defined in equation

1= =—1

oW ), as n — o0.

o~ d [ ——
(ﬂJIVELn - ﬁo) — N (07 v

(4) above. Then: (a) suppose that % — 0 as n — oo; then,

) d —x—l=k=—x—1
VTn (ﬁJIVEz,n - 50) — N (0, vEW > , asmn — oo;



(b) suppose that If—: — 6, for 0 < 0 < 00, as n — o0; then,
3 d omx—1 [=+  =*| =*—1
VK (ﬁnvm,n - ﬁo) - N (0, 0w [;1 + :2} U ) as n — o0o;

and (c) suppose that 7= — 0 but —V:i” — 0 as n — oo; then,

Tn

VE,

From Corollaries 3.3 and 3.4 it is clear that the rates of convergence of both JIV E estimators

—x—l=k=x—1

(BJIVEQ,n - 50) 4N (0, UoE, ) as n — oo.

depend in general on the strength of the available instruments as reflected in the relative orders
of magnitude of r,, vis-a-vis K,. Note also that, whenever r, grows at a slower rate than n, the
rate of convergence is slower than the conventional \/n rate of convergence, since in this case the
available instruments are weaker than that assumed in the conventional strongly identified case,
where the concentration parameter is taken to grow at the rate n.

Additionally, it is worth stressing that the rate of convergence in part (b) of the corrolaries
corresponds to the rate found by Stock and Yogo (2003) under homoskedasticity, assuming that r,
grows at the same rate as K,,, and for LIML, Fuller’s modified LIML, and B2SLS.

Note further that in the case where r,, grows at the same rate as K,,, the asymptotic covariance

matrices of the JIV E estimators involve two terms (i.e., E_lilﬁ_l and @‘13@‘1 for JIVE1

and @*_1§{§*_1 and W*_lézi*_l for JIV E2), whereas for the other two cases the asymptotic
covariance matrix only involves one or the other of these terms. This is because, as shown in the
appendix, the JIV E estimators, when appropriately standardized, can be represented in terms of

a linear plus a bilinear form. v E T (alternatively, F“IE’{E"‘I) is then the asymptotic co-

variance matrix associated with the linear form of JIV E1 (alternatively, JIV E2) while U5
(alternatively, @*_1§;@*4> is the asymptotic covariance matrix associated with the bilinear form
of JIVE1 (alternatively, JIV E2). Now, in the case where 7, grows faster K, the bilinear form is
of a smaller order relative to the linear form (as is conventional asymptotics), so that only the first
term appears in the formula for the asymptotic covariance matrix. On the other hand, when r,

grows at the same rate as K, then the linear and the bilinear form are of the same order, so that

both appears asymptotic distribution. Finally, when instrument weakness is such that IT(—’; — 0 but
VK

o+ — 0asn — oo, the linear form becomes of smaller order relative to the bilinear form, so that

only the second term appears in the asymptotic distribution.

Although the focus of this paper is JIV E estimators, it is important to note that at least



some of the most well classical IV estimators are inconsistent under heteroskedasticity. In partic-
ular, consider the following estimators: (1) the Limited Infomation Maximum Likelihood (LIML)

FEstimator:
N N —1 N
BLiMLn = <Y2/nY2n - )\LIML,nYQ/nMZnYQn) <Y2/ny1n - )\LIML,nYQ/nMZnyln> , (5)

where XL 1ML, is the smallest root of the determinantal equation:

det {( yllnyln yin}/Qn ) — < yllnMZnyln yllnMZn}@n >}: 0 (6)
Yo yin Y3, Yon "\ Y3, Mz, y1n  Y3,Mz,Yan ’

(2) the Bias-Corrected Two-Stage Least Squares (B2SLS) Estimator:

-1
- n
BpasLsn = (Yg'nan - (n—n+2> YQInMZnYQn>
/ n '
x <Y2"y1n - <n_n_|_2> YZHMZnyln) . (7)

and (3) the Two-Stage Least Squares (2SLS) Estimator:
BQSLS,’VL = (YQ/nPZnYQn)il (YQInPZnyln) (8)

In particular, it is easy to see that none of these estimators are consistent in general under
heteroskedasticity unless r,, grows faster than K,,. To illustrate this, consider the special case where
r, grows at the same rate as K, where there is only one endogenous regressor in the structural
equation, where the instruments are assumed to be fixed or non-random, and where {§;} = i.n.i.d

N(0,%;), with & = (u;,v;), and X; partitioned conformably as

Y. — ( Ouu,i Ouv,i )
‘ Owv,i  Owvvyi
Now, under this simplified scenario, it follows immediately via tedious but straightforward calcu-

lations that:*

~ _ -1
BLIML,TL - BO = (an + Eﬁv,n - EU’UJLQ*) (Egv,n - Evv,n9*> +0p (1) ’ (9)
~ __ -1
/BB2SLS,?’L - /60 = (q}n + Egv,n - EUU,”) (EZU,TL - EUU,”) + Op (1) ’ (10)
—~ __ -1
ﬁZSLS,n - /80 = <\I/n + EZU,TL) EZv,n +0op (1> ’ <11)

4Detailed calculations are ommitted for the sake of brevity, and are available upon request from the authors.
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— T =h = —h = —h = o
Uuu,n\Iln + Ovv,nTuu,n + Ouu,nOvv,n — Qqumauv,n - wn
p— )

e 2
2 (Uuu,no"uv,n - UUU7”)

2
o [=n = —h = _ 5 _ —h = —h = —h = —h =
Yy = Ovo,nOuu,n — OyynOuvu,n + O'uu,n\pn] +4 (Uu'u,n\pn + OvvnOuv,n — 0’uy7no—’l)’l),n> <O—uu7n0uv,n — Oyu,nOuu,

n n n n

—h _ 1 Z = _ 1 . =h _ 1 Z L= _ 1 . N —

Own = &K, Z PiinOuv,isy Tuvyn = 5 Zl Ouwvyis Tyon = K, Z PiinOuvyis Cuvn = 3 Zlo'uv,u and ¥, =
i= i=

i=1 i=1

%. Hence, BLIML,m BBQSLS’H and BQSLSm are not consistent in this case. Note also that the
inconsistency of LIM L and B2SLS in this case is in contrast to the homoskedasticity case where
both of these estimators are consistent and asymptotically normal provided that @ —0asn—
00, as has been shown in Chao and Swanson (2002, 2003) and Stock and Yogo (2003).5 Moreover,
closer inspection of the formulae given in expressions (??)-(11) shows that it is heteroskedasticity
in the covariance of u; and v; which causes the inconsistency of LIML and B2SLS. Thus, if one
only imposes heteroskedasticity on the error of the structural equation, as has been done in recent
Monte Carlo studies of various IV estimators under weak identification, then LIM L and B2SLS
will still be consistent, and thus the bias problems discussed above may not manifest themselves.

Finally, it should be noted that JIV E1 and JIV E2 are not likely to be the only estimators which
will be consistent and asymptotically normal under heteroskedasticity in a many-weak-instrument
framework. Estimators within the class of generalized empirical likelihood (GEL) estimators stud-
ied recently by Smith (1997) and Newey and Smith (2003) are also likely to be consistent and
asymptotically normal and are likely to be more efficient than the JIV E estimators examined
here. It is, thus, of interest to study the GEL estimators within our framework as well, which we
intend to do for future research. However, we note that one advantage that the JIV E estima-
tors have over the GEL estimators is their computational simplicity. As have been pointed out
by Angrist, Imbens, and Krueger (1999), both JIV E estimators can be implemented easily using

standard packages, whereas some of the empirical likelihood estimators are known to be difficult

to compute even for simple models.allow for stochastic instruments which are not necessarily 4.i.d.

®Note that Fuller’s LIML estimator can also be shown to be inconsistent, using the same approach as above for

examining the behavior of the LIML estimator.
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4 Wald Tests for General Restrictions

In this section we discuss the construction of Wald tests for general and possibly nonlinear coefficient

restrictions. An important feature of our tests is that we introduce a new covariance matrix

VEn

Tn

estimator for JIVE that is consistent, even when instruments are weak, provided that — 0,
as n — o0o. Related work includes the tests proposed by Kleibergen (2002), Moriera (2003), and
Guggenberger and Smith (2003). However, to the best of our knowledge, these tests only consider
the case of testing simple null hypotheses of the form Hy : § = 3*, where 8* is the value of § under
the null, while our approach allows for straightforward analysis of general coefficient restrictions. In
addition, we allow for (unconditional) heteroskedasticity of unkown functional form. Guggenberger
and Smith (2003) also address the issue of heteroskedasticity, but only consider conditional forms.
However, their setup allows for nonlinear models, while our model is linear.

One of the main differences between the approach of the above authors and ours is that they
assume that K, is fixed, and hence consistent estimation of structural parameters cannot be ob-
tained. The advantage of their approach is that their tests still have x? limiting distributions,
even when structural parameters are unidentified with respect to the class of null hypotheses that
they consider. Our tests, on the other hand, are designed to handle general hypotheses of the form
Ho : h(Bo) =0, where h (-) : R — R4, the caveat being that we require at least weak identification,
and so does not work if the instrumentrs are completely irrelevant. In particular, in the Staiger
and Stock (1997) local to zero framework, Wald test statistics do not have limiting x? distributions
(the distributions are nonstandard and nuisance parameter dependent). By allowing the number
of instruments to increase with the sample size, we are able to obtain consistent estimates of all
parameters in our structural equation, hence leading to nuisance parameter free y? limiting distri-
butions. Our results can thus be viewed as complimentary to those of Stiager and Stock (1997), in
the sense that we consider the case of many weak instruments, while they consider the important
case of few weak instruments. Indeed, all of above papers focus primarily on the case of few weak
instruments. This is why, for example, Guggenberger, has noted that his test generalizes to testing
sub-vectors of coefficients, although only in very specialized cases. (discussion to be completed ...)

In order to obtain asymptotic results for Wald tests, Assumptions 2-4 must be strengthened as
follows.

Assumption 2*: Let {Z,;:i=1,...,n; n > 1} be a triangular array of R»-valued random vari-
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ables, where Z;w‘ denotes the ith row of the matrices Z,. Also: (a) let n — oo, and suppose that

there exist constants D, and Dy, with 0 < D, < Dy, < 00, such that D, < lim Apin (Z;LnZ"> a.s.

n—o0

— ’ — 11/4
and lim Apax (Z"nz"> < D) a.s.; (b) assume that K,, — oo as n — oo such that % — K,
n—oo

where 0 < k < 0o; and (c) assume that there exist constants D and D¢, with 0 < D < D¢ < o0,
such that D < lim Amin (C;’;C") and T Apax (C%C") < De.
n n—oo

Ky
n—o0

Assumption 3*: (a) Define ¥; (Z,,) = E (§€)|Zy,) and suppose that &;|Z,, = i.n.i.d.(0, £; (Z,))

almost surely for all n, where §;|Z, denotes the conditional distribution of &; given Z,. Further,

assume that ¥; (Z,) > 0 for all i and n almost surely, and partition ¥; (Z,) conformably with

(Z) Gl (Z0)
i = (ug,v)) as 3; (Z,) = Tun,i (Zn Vi \4n
S ) <UVU,i (Zn) Zvv,i(Zn)

Dy, with 0 < D¢ < o0, such that max {squ (uf\Zn) ,SupE (v§1|Zn) ) (v§d|Zn)} < D¢

> ; (b) assume that there exists some constant

almost surely; and (c) assume that there exists some constant D¢, with 0 < D, < oo, such that
min {irilfauuﬂ- (Zn) ,irilf)\mm Evv, (Zn))} > D, almost surely.

Assumption 4*: Assume that there exists a constant Dy, with 0 < Dz < o0, such that
SUD) <j<n, <k<Knn>1 <Zi1,f’n> < Dy, where Zj.,, denotes the (i, k)" element of Z,,.

"g". Suppose that, as n — oo, *= — k for some constant
n

Assumption 5*: Define the ratio r, =
x such that 0 < kK < co.

Notice that the above assumptions are more restrictive that Assumptions 2-4, except for As-
sumption 2*(c) and Assumption 3*(a),(c), which remain unchanged. In particular, our testing
results require the number of instruments to grow more slowly, relative to the sample size, and
require the existence of higher order moments than needed for normality.

Now, recall that Mz, = 1I,—Z, (Z{lZn)*1 Z!.. Consider general (possibly nonlinear) restrictions

of the form Hy : h (o) = 0, where h (-) : R¢ — R9, and define the following Wald statistics:
~ ! ~ ~ o~y —~ -1 ~ N L ~
WirveEln =h (ﬂJIVEl,n) {H (5]]VE1,n) (‘I’n:JWELn‘I’n> H (ﬁJIVEl,n> } h (ﬁJIVELn) ,
where U,, = Yy, [In — Mz, Hi,] Ya, and

Eivein = Yay[In— Mg, Hiy) Q. [In — My, Hip] Yon

+ ‘Z{Dl,nHln (PZ,L © PZ,L> HlnDl,n‘/}n-

Also,

(1

—~ / —~ ~ —~ —1 —~ ! -1 —~
Wirvean =h (ﬁJIVEQ,n) {H (ﬂjfvm,n) (‘I’Z }}VEg,n‘I’Z> H (ﬁJIVEQ,n> } h (@HVEz,n) ,
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where \/I\’;“L =Y, [Pz, — Hs,) Yo, and

~

SivEan = Yan [Pz, — Han) Qo [Pz, — Hay) Yo,
+V!Dy (Pz, © Pz,) Doy V.

Z
ij,n

In the above statistics, H (BJ[VET,TL) = 8%’? )

of Pz, ujrvEer; is the ith element of the residual vector U v Er = Yin — YonBurv Erm, U, is the ith

denotes the (i, 7)"" element

7T:172’p

B=BJIvELn

row of the residual matrix XA/n = Mgz, Yon, 7= 1,2 and ® denotes the Hadamard product (see e.g.

Magnus and Neudecker (1988)). Additionally,

~2
WiV Er1 0 T 0
~ 0 u>
O = JIVET?2
0
~2
0 T 0 ujrvprn
and
UV Er1 0 0
0 u :
D., = JIVET?2 =12
0
0 e 0 UJjIVEmn

Note that the covariance matrix estimator, =) JIVE1n has two terms. In the proof to Theorem 4.1
below, we shall see that the first term yields a consistent estimator of =y ,, +Z21 5, while the second
terms yields a consistent estimator of S ,, where Z;,, is the covariance matrix associated with
the linear part of the JIVE estimator, and where =3 ,, is the covariance matrix associated with the

bilinear part of the JIVE estimator (see Theorem 3.1), with Zp ,, = Z91 5, + Z22., and

o1 = Z 9505V Vi (Zn) Ounj (Zn) + 95 Ev v (Zn) Ounsi (Zn)]
1<i<j<n
and
Eoon = D GijnGiim [0Vui (Zn) 0uj (Zn) + 0vu (Zn) 0y (Zn)] -
1<i<j<n

Theorem 4.1: Under Assumptions 1, 2*-5% 6, let éJ[VETm (1 =1,2) be as defined above. Then:

r \/K . 1 a 1 fn) p
(a) suppose that 7 — K, where 0 < £ < 00, and ¥ — 0, asn — oo; then, 7—Ej1vErn— 7 Zn —

0, as n — oo; and (b) suppose that % — 0, as n — oo; then, %inVET,n - %En 2.0, as n — .

Theorem 4.2: Under Assumptions 1, 2*-5*,6, let Wirv g, (T = 1,2) be as defined in equations
\ K"L
T'n

() and () above. Suppose that — 0 as n — 0o0. Then, under Ho, Wirve:n LA Xg , as n — oo.
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5 Monte Carlo Results

to be completed

6 Concluding Remarks

to be completed
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7 Appendix A - Estimation Results

to be completed

We first collect some preliminary lemmas, which we will use to prove our main results.

Lemma Al: Let piZj,n be the (i, )" element of the projection matriz Py, = Zn (Z! Zn) "' Z!.. Then,

(piZj n>4 = Oa,s.(Kn);
2 2 5
) Y (vh) (Pha) = OwslEa)i © (v2.)

1I<i<j<k<n 1<z<j<k<n

@ Y (tha) () = OuslKaand @) ¥ (pmf—oas

1Ii<j<k<n 1<z<]<n
Proof of Lemma A1: To show (a), observe first that the inverse (Z! Z,,) ! exists with probability

M=

n
under Assumption 2, the following statements are true as n — oo. (a) >
i=1j

o .
Il

one for n sufficiently large in light of Assumption 2(a). Hence, with probability one for n sufficiently

large, the projection matrix Pz, is well defined, and we have

2 2
7 \2
= 2| 2 0ha ) X Z Phinblin | + 2L | DL Phinblin
1<i<n \1<j<n 1<i<j<n \I<k<n 1<j<i<n \I<k<n
2 Ty 4
> ). (win)" | 2222 (05a)"
1<i<n \I<j<n i=1 j=1
n n
so that > > (pw n) = O4.5.(Ky,), as required. To show parts (b)-(d), note first that, for n
i=1j=1

sufficiently large with probability one,

2

Tr(Py) > >, > @)

1<i<n \1<j<n

> 2 Y > ha) 0|

1I<i:<n [1<j<k<n

It follows that
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Oa.s.(Kn) = Z ' (piZj,n)2 (pika)z

= 2 Z (piZj7n)2 (piZk,n)2 + Z (piZi,n)2 (piZj7n)2 + Z (ijj,n)2 (piZj,n)2
<i 1<i<j<n

1<i<j<n

+ (0Z0)" (n)” + > (%) ()’ (12)
1<i<j<k<n 1<i<j<k<n

The results stated in parts (b)-(d) then follow directly from the expression on the right-hand side
of the last equality in (12) above since each term of the sum which comprises that expression is
non-negative.
The proof of part (e) follows directly from the fact that, for n sufficiently large such that
is well-defined with probability one, we have that K, = Tr (P%n) = f:lil (piijn)2 >
i=1j=
> (pzzjn)2 O

1<i<j<n

Py

n

Lemma A2:

Let
G, = Py, — H3p,

where Hs,, = diag (pIZLn, pQZQm, ....... ,pﬁmn), and let gjjn denote the (i,7)™" off-diagonal element of

the matriz G,. Then, under Assumption 2, the following statements hold as n — oo

(a) Tr [(G2)"] = Ous. (),

7z .7 7 .7 z .7 7 .7 z .z 7 .7 | _
(b) oy .Zk - [pik,npjk,npil,npjl,n + P3Pk nLilnPiin +pz’j,npz‘k,npjl,npkl,n] = Oq.5.(Kp),
<i<j<k<l<n
(C) Z pﬁ;}np‘]zk7np5,npﬁjn — Oa.s.(Kn),

I<i<j<k<l<n

Proof of Lemma A2:
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To show part (a), note that, by direct calculation,
Tr [(G;)ﬂ — K, — AT [Py, Hsy) + ATr [Py, H2,| + 2Tr [Py, Hy, Py, H,)

+4Tr [Py, H3,| + Tr [H3,]

IN

K, +4Tr [PZnH?m] +4Tr [H3nPZnH3n] +
+2T7 [Py, H3, Pz, Hsp) + 4T7 [Pz, H3,| + Tr [Hj,] (13)
Note that the inverse (Z! Z,)~! exists with probability one for n sufficiently large in light of As-

sumption 2(a) and, hence, Pz, and Hs, are all well-defined with probability one for n sufficiently

large . Observe first that, with probability one for n sufficiently large,

Tr[Pz,HsnPz,Hs,| = Tr[Pz,Hs\Pz,HsnPz,]
< Tr[Pz,H3,Pyz,]
< Tr[Pg,)
= K, (14)

where the first equality follows from the fact that Pz, is idempotent, where the first inequality
above follows from using the spectral decomposition of Pz , noting the fact that since Pz, is
real, symmetric, and idempotent matrix, its eigenvalues are either 0 or 1; and where the second
inequality follows from from the fact that 0 < piZim < 1 by property of the projection matrix. By

similar arguments, we note that, with probability one for n sufficiently large,

n n
Tr [PZann} = Z (plZlm)Q S Zpin - Kna
Zzl 3 ’Lzl
Tr[HsnPz,Hsn] = (pﬁ,n) < Zpizi,n = Ky,
i=1 i—=1
zn ) zn
TT’ [PZnH??n] = (piZi,n) S Zpg,n = KTL’
i=1 i=1
n 4 n 2
Tr [Héln] = Z (piZi,n) S Zpii,n = Kn (15)
i=1 i=1

In light of expression (13), the required result follows immediately from (14) and (15).
To show (b), observe first that by construction G}, is a matrix such that giin=0fori=1..n
(i.e., all diagonal elements are zero) and g;jn, = pZZ]n for i # j. Hence, for n sufficiently large such

that the inverse (ZnZn)_1 exists with probability one, we have
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el =2 Y 0h)T+2 Y S vhawh,

1<i<j<n I<k<li<n \1<i<n

2 Y |0h) 0ha) ) (0en) + W) ()]
J
+8 [pizk,npjzk,npizl,npﬁ,n + piZj,nijk,npiZl,npfl,n + piZj,npiZk,nijl,npfl,n] )
so that

z 7 Z Z z Z .z Z z z 7z Z
Z [pimpjk,npil,npjz,n + P3Pk nPil nPkin T pz‘j,npik,npjl,npkl,n]
I<i<j<k<l<n

1 . 1 2
§T7” |:(Gn)4:| + 1 Z (pzZ]n)
1I<i<j<n

1
1 2 [0R) W)+ 0h) )+ ) ()]
1<i<j<k<n

— Oa.s.(Kn)a

IN

where the last equality follows from parts (b)-(d) of Lemma A1l above and from (a) of this lemma.

To show part (c), first define the random quantities

7z .z 7z 7 z 7z
Ay = E [pij,npik,ngjek + PijnPjkn€i€k + pik,npjk,ngigj] 5
I<i<j<k<n
7z .z zZ 7
Agp = E [pij,npik,nejek + pz‘j,npjk,neiffk] )
I<i<j<k<n
z Z
As, = E PiknPjkn€i€s

I<i<j<k<n
where we take {e;} to be a sequence of i.i.d. random variables with mean 0 and variance 1 and

where ¢; and Z,, are independent for all i and n. Note that Az, = Ay, — Ag, and

2 Z \2(.7Z 2 z Z Z Z
E (A3n|ZTL) = Z (pik,n) (pjk,n) +2 Z pik,npjk,npil,npjl,n‘
1<i<j<k<n 1<i<j<k<l<n
2 2
Since > <pZZk n) <pJZk n) = Ou5.(K;) by (d) of Lemma Al, it follows that showing

I<i<j<k<n
part (c) of this lemma is equivalent to showing that E (A§n|Zn) = Oq.5.(Ky). To proceed, write

E(A3,|Z,) = E(A3,|Z,) + E (A3,|Z,) — 2E (A1,09,|Z,,)
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and, by direct calculation, we obtain
E(ALZ) = > [0 0ha) + 0n) )+ () ()]
Ii<j<k<n

§ : Z Z z 7 zZ 7 zZ 7 zZ 7 zZ . Z
+4 [pik:,npjk,npil,npjl,n + pij,npjk,npil,npk:l,n + pij,npik,npjl,npk:l,n]
I<i<j<k<l<n

BEMIZ) = Y [02.)7 047+ 02 (04.)]]

1<i<j<k<n

7z 7z 7 .z z 7z 7 7 z 7z 7 7
+2 Z (D3 nP Tk nDil nPin T DiinPkenDitnPrtn + PijnitenD5nPiln)
1I<i<j<k<l<n

By parts (b)-(d) of Lemma A1 and part (b) of this lemma, we deduce that E (A}, |Z,) = Oq.5.(Ky)
and E (A3,|Z,) == Oq.(K,). It follows, by the inequality |E (A1,A0,|Z,)| < $E (A},1Z,) +
$E (A2,|Z,), that
E(A3,1Z,) < 2E(A3%,Z,) +2E(A3,|Z,)
= Ous.(Kn).

O

Lemma A3: Let Pgn be the upper triangular matrixz defined by

0 p1Z27n pIZn,n
0 0 :
Py, :
0 pgfln,n
0 Ce ..o 0 0

where plz]n denotes the (z’,j)th element of the projection matriz Py, . Then, under Assumption 2,
H (PY) /Pg H = Oq.5.(VKy) as n — oo, where ||-|| here denotes the Frobenius matriz norm so

that ||Allp = [Tr (A’A)]2 .

[SIE

Proof of Lemma A3:

By direct calculation, we obtain
!/ /
T ((PY,) PY, (P4.)" PY,)

1<i<j<n I<i<j<k<l

2 Y (08 6ha Ei ? W)’

1I<i<j<k<n
- Oa.s.(Kn)-

2
|P2) PL
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where the last equality follows from parts (a), (b), and (d) of Lemma A1l and part (c) of Lemma
A2. It follows immediately that H (Pgn)/ Pgn HF = 0,5 (VK,). O

Lemma A4: Let
n
En = D b CrZniZiCnouni (Zn)
j=1
+ Y [8aZvvi (Za) ouny (Zn) + GijnGjinovui (Zn) 04y (Zn)
1<i<j<n

+9ijnjinVuy (Zn) OV i (Zn) + 95 n2v v (Zn) Ouni (Zn)] (16)

where g, denote the (i, j)" off-diagonal element of the matriz

Gn = PZnHln - H2n, (17)
. N pZ n pZ n p”ZLn n
where Hy, = diag <1p1121,n’ 17;222’n, ....... , 1plrzmn> and Hs, = diag <11pllz,1m’ 1*;222,2,71’ ,,,,,,, Syl
Suppose that Assumptions 1-6 hold and suppose that IT(—’; — K for 0 < kK < o0 but VTIZ" — 0 as

n — oo. Then,
(a) E, < K,, i.e., 2y, = Oqs. (Ky) and Z,, is not of an order lower than K,.

(b) E,, is positive definite with probability one for n sufficiently large.

Proof of Lemma A4:
Note first that it suffices that we show 7/Z,y < K, for all vectors v € R? such that |v| = 1.

To proceed, let 7, = v'Z,v and note that, with probability one,
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IN

IN

<

n
Z b;L2'YIC;LZnJZ;L,iCn'7‘7uu,j (Zn)
j=1

+ Z [g?j,n’YIEVV,i (Zn) VOuu,j (Zn) + gij,ngji,nVIUVu,i (Zn) U{/UJ‘ (Zn) vy
1I<i<j<n

+9ijnGjinY oVug (Zn) O-(/u,i (Zn)y + ggzz‘,n'leVV,j (Zn) Youn,i (Zn)]

n

1
DZ Y 0,°y'CrZniZyCny
j=1

+dD¢ Z 9750+ 29i5.0Gjim + i)

1<i<j<n
—15C' 7! Z,Crry —
Dg %ﬂn 4+ ZdDg Z [gi?j,n + 9]2'1}71]
n 1<i<j<n
D€2 % +4d Dy ﬁ Z (pij,n) ’
n 1I<i<ji<n

where the last inequality follows from Assumption 6. It follows immediately from the assumption

that = —  for 0 < x < oo and from part (e) of Lemma Al that 7, = Oq.s. (Kn).

Next, we show that 7, is not of an order lower than K,,. To proceed, note that

Tn

n
Z by O Zni 23 i Criv O, (Zn)
j=1

+ Z [g?j,nV/EVV,i (Zn) YOuu,j (Zn) + gij,ngji,nfylo'\/u,i (Zn) U{/UJ‘ (Zn) v
1<i<j<n

+9ijmG5inY Vg (Zn) 0Vui (Zn) Y + Goin Svvig (Zn) Youui (Zn)]

n
Z bﬁz /C;zZn,j Z;,iCnVUu“»j (Zn)
j:l

Y B | 0h) (1= pf) B (Za) 10w (Z)
1I<i<j<n

—2
+(1=pE,) " VSvvy (Zn) Youui (Zn)

+2 ((1 - piZi,n) (1 - ijj,n))il ’/Uvu,j (Zn) U{/u,i (Zn) ’YH

22



Now, note that with probability one,

(1_ijj,n)7VEVVZ(ZH)VUUU,J( w)+ (1=pZ,)
+2((1=pE0) (1=250)) " Y ovus (Zn) O (Zn) Y

> (1—2932]-,”)_ YV Evv,i (Zn) Youuj (Zn) + (1 pz'Zi,n)_2
~2((1=pZ0) (1= 2%)) " \ouns (Za)y 7 Svvis (Z0)

= [ —p%in) \/’szw W) Y Ounj (Zn) — (1= pi5,) \/Uuuz

> 0,

\/’szvg ]2

where the first inequality follows from the Cauchy-Schwarz inequality and where the inequality is

strict because under Assumption , 7'Vj,, is not a linear function of u; almost surely. Thus, there

exists a constant w > 0 such that, with probability one,

(1- ijj,n)72 VIV (Zn) Y0uuj (Zn) + (1 = Pz‘Zz‘,n)i2 VEvv (Zn) Youu,i (Zn)
+2((1=pZ,) (1= 050)) " Y ovas (Zn) O (Zn) 7y
> w
> 0. (18)
It follows that
Tn 2 i b;Q’YICZZn,jZ;L,iCn'YUou (Zn) + @ Z (piZj,n)2
; 1I<i<j<n
n
o DS B O G DY o (1 1)
=1 i=1
> pTOAICT L Z (1 n) Y,
n =1
_ Déwébfncn % (1-7) K,. (19)
n

The desired result follows immediately.

The proof of part (b) follows immediately in light of (18) and (19) and Assumptions 2(a), 2(c),

3(c), and 6. O

Lemma A5: Let Gy, and g;jn be as defined in Lemma A4. Then, under Assumptions 2 and 6, the

following statements are true
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W Ay, L sha=ous)
S1<J3sn

=

) & T gk =ons(l)

1<i<j<n
(© 7z X G5uin = %as(1)
1I<i<ji<n
(d) %% Z gizk,ng]?k,n = Oa~8-(1)

1<i<j<k<n

—
&
5\:‘ =
]

gl%i,ng]?k,n = Oa.s. (1)
n

—
IN
-
A
<.
A
e
IN

gl%i,ngl%j,n = Oa.s. (1)

,\
fy
SN—
:ﬁ‘ =
]

—
IN
S
A
<.
A
E
IN
3

(g) Ki% . gl%i,ng]zk,n = Oa~8~(1)
n

,_.
IN
A
<.
A
-
IN

Proof of Lemma A5:
To show part (a), observe first that the inverse (Z/ Z,)~! exists with probability one for n
sufficiently large in light of Assumption 2(a). Hence, with probability one for n sufficiently large,

the projection matrix Py, is well defined, and we have

1<i<j<n

1 4
L N (O
NS T )

IN

IN

where the first inequality follows from Assumption 6 and the last equality follows from applying
part (a) of Lemma Al. All other parts of this lemma can be proved in a similar way using Lemma

A1l. For the sake of brevity, we omit these proofs. [J

Lemma A6: Let Gy, be defined as in (17) Also, let

NI

fo = 02, (05,0, 1) Py (20)

1
—1 (1= ——1\"32
o= VU, (qfn :n\pn> 2 4, (21)
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and let f;jn and n;, be the Gt element of f, and n,, respectively, where ¥, = %, where

=, = K12, with 2, as defined in (16), and v € R? such that ||y|| = 1. Futhermore, let

Ouu,j (Zn) = E (u22|Zn) ) (22)
Onu,j (Zn) = E (ni,nuﬂzn) ) (23)
O (Zn) = E (niz,n‘Zn) . (24)

Under Assumptions 1-6, suppose that r,, — 00 as n — oo such that % — K, where Kk 1s a constant

such that 0 < k < co. Then, the following statements are true as n — oo:

(0) 77 2 Bz, (£la) = olD).

n -
=

(b) % Z ]2,n912],n = Oa-S-(1)7

"1<i<j<n

(c) % > j2,ng]2'i,n = 0a.5.(1),

(d) %% Z f],ng?%n = OG.S. (1) 9

1I<i<j<n

(e) % Z fj,nfk,ngij,ngik,nann,i (Zn) Ouu,j (Zn) Ouu,k (Zn) = Oq.s. (1) s
"1<i<j<k<n

(f) K12 Z fj,nfk,ngji,ngki,nguu,i (Zn) Onu,j (Zn> Onu,k (Zn) = Og.s. (1) s
"i<i<j<k<n

(g) % z fj,nfk,ngij,ngki,nanu,i (Zn) Ouu,j (Zn) Onu,k (Zn) = Oq.s. (1) s
"1<i<j<k<n

(h) % ' fj,nfk,ngji,ngik,no'nu,i (Zn) Onu,j (Zn) Owu,k (Zn) = Oq.s. (1) .

Proof of Lemma A6:
To show part (a), note first that, by the Cauchy-Schwarz inequality, we have that with proba-

bility one

|fj,n| =



Note that Lemma A4 and Assumption 2 imply that, for n sufficiently large, there exists a constant

D7 such that, with probability one
— 1 (el 1\ "3
v, (v,'2,7,") "y <Dr, (25)

Moreover, with probability one,

) 7 \2 =1 v Ky 1 C;LCTL / )
b,? (1 —pjj,n) ZJ’-an\I/n ChZjn < <b%> <)\nlm(\1’n)> Amax (Kn jnZjn- (26)

It follows from (25) and (26) and Assumption 4 that

2
1 ¢ 4 1)’ 1 OO\ 12
w2 ) < (37) (Ammm)) e (%]

n
xD?> " Ez, (Z),7i2)°
j=1

- () () Do (G2 2

n K, K,

X Z Z Z EZn (ZJQk,nZJQZ,n)

j=1k=1i=1

2
K2n 1 c'c,\1?
< n _ Amax | —=2 D2D
N b;lz (Amin (\Iln)> |: (Kn >:| i

- 0 (K3”> , (27)

2
my

where the order of magnitude follows from the fact that %3+ = O(1) in this case.

To show part (b), note that
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‘H
S

1< ¢

N

j<n

It follows that

2 2
FinGijn

1
K2

IN

IN

IN

n n

=SS

=1 j=1
r 1 n n
() 2 sk

n \"n j=1 i=1
T 1 &
AU Y 2z
5 |() St

1 ! !

n z (-l =1\ "2 1 [ ChZ, 2,0,

(K%) (1 *pjj,n)’Y <‘1’n EnV, > v, <n bgrn

1 1 7
Tn / <@—1E E_1>_5 ﬁ_l %
<K2> v n —n=n n b2ry,

> B (fash) =0 (75 ) = ot

ni<i<j<n

Part (c) can be show in a manner similar to part (b). Hence, for the sake of brevity, we omit

the proof.

To show part (d), note that part (a) of Lemma A5 and part (b) of this lemma imply that

1
7| 2

nli<i<j<n

3
fjﬂgij,n

IN

IN

1
ﬁ Z ‘fj,ng?jm

ni<i<j<n

1 1
el > 5 (fiin + 9ijin) 9iiin
n

1I<i<j<n
1 1 9 9 1 1 4
(2 K j,ngij,n+<2> K2 Z 9ijm
1I<i<j<n 1I<i<j<n
Oa.s.(l)
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To show (e), note first that

Z fj,nfk,ngij,ngik,no'nn,i (Zn) Ouu,j (Zn) Ouu,k (Zn)
1<i<j<k<n

1 /
= ifylLQuu,n (Zn) Hln (Pg") an,n (Zn) PgnHanuu,n (Zn) fn -

1
50 Shaghaomi (Za) 0k (Za).

1<i<j<n
where
Ouun (Zn) 0 0
0 ouwz (Zn) 0 :
Quu,n (Zn) = 0 0
Ouu,n—1 (Zn) 0
0 0 0 Ouu,n (Z )
o1 (Zn) 0 0
0 o2 (Zn) O
Qo (Zn) = 0 0
Onn,n—1 (Zn) 0
0 0 0 T (Zn)
It follows that
1
ﬁ Z fj,nfk,ngij,ngik,no'nn,i (Zn) Ouu,j (Zn) O,k (Zn)

"lH<i<j<k<n

1
2K 2 fr,/LQuu,n (Zn) Hln (Pgn), an,n (Zn) PgnHanuu,n (Zn) fn +
n

1
2K?2 Z fj%ngzgj,ngnn,i (Zn) Uiu,j (Zn)

ni<i<j<n

IN

28

(28)



Next, note that, with probability one for n sufficiently large, we have

ngfqllQuu,n (Zn) Hln (PZUH)/ an,n (Zn) PgnHanuu,n (Zn) fn

< Ko ax ((PE)' PY,) Defiun (Zn) HE Quin (Za) Fo
< K.2|[(PG) PG| Defouun (Zn) HiyQusn (Zn) o
<

_ 1\~
K2 |(PE,) P, F<1_h> D¢ fr, [Quuin (Zn)]* fa

_ : U\ 75 ( fidn
_1
= Oa.s. (Kn 2> ) (29)

where the first and the fifth inequalities follow from Assumption 3, the second inequality follow

from applying the spectral decomposition of the positive semidefinite matrix (Pgn )/ Pgn, the third
inequality follows from the fact that Apax ((Pgﬂ)/Pgﬂ ) < H (Pgn)/Pgn HF, as shown in Theorem
5.6.9 on page 297 of Horn and Johnson (1985), the fourth inequality follows from the fact that,

2
with probability one, the diagonal elements of HZ, are bounded uniformly from above by (é)

1-h
in light of Assumption, and the last equality follows from Lemma A3. Moreover, with probability

: 1 2 2 , 2 31 2 2
one for n sufficiently large, Vel Z f3n9i5 0O (Zn) O j (Zp) < D&[Tg Z i
1I<i:<j<n 1I<i<ji<n

given Assumption, so that
o X P Za) oty () = 0us () (30)
n1<i<j<n
in light of part (b) of this lemma. The desired result follows immediately from (28), (29), and (30).
Parts (f)-(h) can be proved in a manner similar to the proof of part (d) above. Hence, for the
sake of brevity, we omit these proofs. [

Lemma AT:

Let G, and g;jn be as defined in Lemma A4. Then, under Assumptions 2 and 6, the folowing
statements are true as n — oo

(@ S Ez(dh.) Bz () = O,

1Ii<j<k<n

) X Ez(g%) Bz (d) = O(K),

1<i<j<k<n



@ % Bz(gha) Bz (dh) = OUK),

I<i<j<k<n

Proof of Lemma AT:
To prove part (a), note that for n sufficiently large so that the inverse (Z/,Z,) " is well-defined

with probability one given Assumption 2, we have

K, = Ez[Tr(P;)]

Vv
S|
N
|
]
=
SN
3
S~—
[N}

> 3 (e [0g]
> Y (Ee2)]) Y B[ E[0h.)7]. 6
1I<i<j<n 1I<i<j<k<n

where the second inequalitg above follows from application of the Jensen’s inequality. Since

> (EZ [(pzzjn) 2] ) and > Ey [(plzjn) 2] Ey [(pzzkn) 2] are both non-negative,

1I<i<j<n 1Ii<j<k<n

2 2
it follows that > Ey [(pZZJ n) ] E; {(plzk, n) } = O (K,,). Now, note that
1<i<j<k<n ' ’

(pZ )2 (ka )2

2 2 ,n ik,n

Z Ez (gij,n) Ez (gzkn) = Z Ez | ———=|Ez|-———"=

I<i<j<k<n 1<i<j<k<n (1—ijj’n) (1_p£]m>
1

(7)) S ee[0m)] e[k

1<i<j<k<n

IN

= O(K).

Parts (b)-(d) can be proved in a similar manner. For sake of brevity, we omit these proofs. [J

Lemma A8: Define Gy, fn, and n, be as defined in (17), (20), and (21), respectively. Consider

the linear-bilinear form

Wy = frun + 05 Gty (32)

30



Let G%Vn denote the variance of Wy,. Suppose that Assumptions hold and suppose that }"{—’; — K for

0§/€<oobut—ﬁl—>0asn—>oo. Then,a?,vn:Kn

Proof of Lemma AS8:

n

To proceed, note that we can write W,, = >~ Wy, where
j=1

Win = fintii + > (Gijmlintty + GinTjmtti) - (33)
1<i<j
Moreover, since the sequence {¢;} (where ¢; = (u;,7;)) is conditionally independent given Z,, by

n
Assumption 3, it is easy to see that U%Vn => FE (an). It follows by straightforward calculation
j=1
that

n
oy, = O Bz [finouwi (Z)]+ Y. Ez[65u0mi(Zn) 0w (Za)]
j= 1<i<j<n

+2gij,ngji,n0nu,i (Zn) Onu,j (Zn) + gjzz‘yno'm],j (Zn) Ouu,i (Zn)]

Next, note that

[1]]
|

1, _
= e S CL s 2 Catuns (Z)

1
+? Z [.gz‘zjmzvv,i (Zn) Ouu,j (Zn) + 9ij,n95in0Vui (Zn) O-(/u,j (Zn)
"i<i<j<n

+9ijn im0V (Zn) 0Vui (Zn) + G5 n vy (Zn) Ouni (Zn)] -

[N

1
— 1= ——1\ "3 =1 — 1 (1= 1\~
Onn,i (Zn) = ’7/ (llln ‘:‘TL\I}'rL ) ’ ‘ljn EVVJ' (Zn) \I]n (\Ijn :‘n\Pn ) v

1
——1= —-1\72 =
omi (Z) = 7 (025, ") T, v (Z0)
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It follows that by direct calculation that

J‘%[/n _ ]‘ E ! @_IE @—1 _%E—l
o= B (WEE) T,

CrZn,j Zy, ;Cnouuj (Zn)
b2

N

1 ——1= =1\ "2 =-1
o 2. Bz {V’ (‘I’n EnV, ) U, (9550 2vvi (Zn) Ounj (Zn)

+0ijn9jinOVui (Zn) Oy (Zn) + GijinGjinovug (Zn) 0y (Zn)

1
—1 (1= ——1\ "2
95 nSvvj (Zn) Ouni (Zn)] 0, (‘I’n EnY, ) 27}

1 1
1= =1\ 2 ——l= ——1 (1= ——1\ "2
= By ['y/ (\Iin =0, ) 2y 5, T, <\11n =0, ) 27}

= 1. 0O

Lemma A9: Let G, be as defined in (17) above and let g;;, denote the (i,7)" off-diagonal element

of the matriz G,,. Then, under Assumption, as n — oo,

1
K2

n

T =045 (1),
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where T' =T + Ty + T3, with

71 = Z 9il,n9ljn95kn9kinOnu,i (Zn) Onu,j (Zn) Onu,k (Zn)
1I<i<j<k<lI<n

_l’_
&
3?‘
3
S
3
2
3
=
X
Z
3

Q
3
IS
el
—
:N
N—

Q
3
S
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P

Z Giln9lkn9kingjinOnuyi (Zn) Onu,k (Zn) Onu,j
1<i<j<k<li<n

+91i n9ikn9jkngjinOuu,i

_|_
<
“k: .
3
&
=
3
)
=
s
<
=
3

Q
3
E
N

Q
3
£
ol

+ 91k n9linGijn9jknOuu,k (Zn Onuyi (Zn Onu,j

+gjk7ngji,ngil7nglk,nauu,k (Zn

34



and

§ Gik n9klndljngjinOnui (Zn> Onu,l (Zn) Onu,j
1<i<j<k<l<n

+9kinGkl,nGjl,ngjinOuu,i Zn

+
S
3
S
3
2
Q?S‘
3
Q
>
3
Q
3
B
N
Q
3
2
N
N N NN

N

N

+
)
“ET‘
3
i)
.
3
S
3
L
K
3
Q
g
£
Bl
~N
3
S
3
S
<
SEREOEE

S
£
~
S
S~— N~— S~— ~— ~— ~— ~— ~—
3
S 3
. . . . - . . »
— —~ —~ —~ —~ —~ —~ —~ —~ — — — —~ —~ —
3 3
N— ~— N— S~— N~— ~— S~— ~— ~— ~ . ~— ~— S~— N~— ~ 7

N

n

L1 (Zn) = diag <05u.n,1 (Zn) s vovves Oduan (Za) ) with 02, (Zy) = (auu (Zn) = 0%, (Za) [ (Zn))

35

1 1
,n), Loy (Z,) = diag (o’un,l (Zn) [0pp1(Zn) s s Ounn (Zn) [oinn (Zn)> , and Log (Zy,) =
1 1
ool (Zn) ooy Ot (Zn)) . Now, by straightforward but tedious calculation, we can show

[NIES



1 1 1
Tr(4y) =5 T+ B+ D)+ T+t (T +T),
where 77, T2, and 73 are defined in expressions (34)-(36) and where

2 2 2 2 4 2
Ty = Z [QQij,ngjz‘,n%u,i (Zn) Onu,j (Zn) + 95inOuui (Zn) ain,j (Zn)
1<i<j<n

+g’?j,n0-12m,j (Zn) U%n,i (Zn) + 29i2j,ng]2'i,nagu,i (Zn) Ouu,j (Zn) Onn,j (Zn)
+29i2j,n9g2‘z‘,naumi (Zn) Omn,i (Zn) U?;u,j (Zn)
+ 491093 nOnui (Zn) Ouni (Zn) Oouj (Zn) Onyj (Zn)

+ 49%7ngji,no-nu,i (Zn) Onn,i (Zn) Ouu,j (Zn) Oun,j (Zn)] s

T, = Z [gik,ngkj,ngjk,ngki,nanu,i (Z’n) Onu,j (Zn) U?lu’k (Zn)
1<i<j<k<n

+gl%z‘,n91%j,n0umi (Zn) oun,j (Zn) Ugn,k (Zn)

+29ik n9kjn ik mIkinOnui (Zn) Oquj (Zn) Cuuk (Zn) Oy (Zn)
+291%i,n9kj,ngjk,nauu,i (Zn) oy, (Zn) Onuk (Zn) oy (Zn)
+2gl%j,ngki,ngik,nauu,j (Zn) Onu,i (Zn) Onu,k (Zn) O,k (Zn)
+GkjnGjknIkinJikn Ok (Zn) Onui (Zn) Ouj (Zn)
+932‘k,ng@'2k,n03u,k (Zn) onn,i (Zn) o5 (Zn)

+gj2'k,ngl%i,no-72]u,k (Zn) Ouw,i (Zn) onn.j (Zn)

+20% nOkingiknOuuk (Zn) Onui (Zn) Opui (Zn) Ounj (Zn)
+9z'2k,n91%j,n‘7727u,k (Zn) Oun,j (Zn) Onn,i (Zn)

+2gi2k,ngkj,ngjk,nauu,k (Zn) Onu,k (Zn) Onu,j (Zn) Onn,i (Zn)]
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s = 5 Z [QQik,ani,ngij,ngji,nagu,i (Zn) onui (Zn) Onuk (Zn)
1<i<j<k<n

+2913i,n9g2‘i,n05u,i (Zn) o (Zn) oy (Zn)
+2.gl%i,ngi2j,na727u,i (Zn) Ouuj (Zn) Ok (Zn)
+49%; 1950 jinOuni (Zn) O (Zn) Onu g (Zn) ony i (Zn)
+gjk,ngkj,ngji,ngij,nagu,j (Zn) onu,i (Zn) onu i (Zn)
+91%j,n9i2j,n‘73u,j (Zn) onni (Zn) onnk (Zn)

207 nTinO i (Zn) Ouni (Zn) Ok (Zn)
4035 1 9jinijnOunj (Zn) O (Zn) Onui (Zn) Oy i (Zn)
+9jinGijniknIkinOui (Zn) Opuk (Zn) O (Zn)
"‘gizj,ngij,nagu,j (Zn) oy ke (Zn) onn.i (Zn)
+2gz'2j,ng]2'k,ng72]u,j (Zn) owug (Zn) onni (Zn)

497, 1 9iknIkjnOung (Zn) Onug (Zn) Onui (Zn) On,i (Zn)
205 n9ik i (Zn) Owuk (Zn) Oom g (Zn)

405 nGiknIkinOuui (Zn) Opui (Zn) Onuge (Zn) Oum.j (Zn)
20150 9jinTijnTiknOnuk (Zn) Onui (Zn) 0y j (Zn)
205, 0G5 nOuuk (Zn) Ouwni (Zn) 01y 5 (Zn)
+49kjn9jinGijndiknOnuk (Zn) Onui (Zn) Ouu,j (Zn) Onn,j (Zn)
495 njinGijnTuuk (Zn) Onui (Zn) Onu,g (Zn) ouj (Zn)
403 19k nIkjnOuni (Zn) Ouk (Zn) Onuj (Zn) onn.j (Zn)
+28ji nGiknGkin9ijnOnuj (Zn) Onuk (Zn) Ugu,i (Zn)
+207; 195 nOuuj (Zn) Ouu i (Zn) 0y (Zn)
+4GjinGiknGkinJijnOnuj (Zn) Oqu (Zn) Ouwwi (Zn) On,i (Zn)
462, 1 GiknGhinOunj (Zn) Ok (Zn) Opui (Zn) o i (Zn)

+4gi2k,ngij,n9ji7n0uu,k (Zn) onuj (Zn) Onui (Zn) Onni (Zn)] (40)
n

Moreover, let A1, ..., Ao, be the eigevalues of the matrix A,,, and note that T'r (Ai) = 231 )\;1. Next,
1=
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observe that Lemma A5 implies that

1 1 2 4
2T S gEDe D Bkt 39fun +1005,05in] = 00s. (1), (41)
n nooi<i<j<n
—2
1 Dé 39 o 59 o 2 2 949 o
ﬁTS < = Z [QQik,ngjk,n + 59ijn9jkn + 395 nYikn + o5 Jkinicjn
n ni<i<j<k<n
59 9 59 9 59 o 2 2 59 o
+§9ji,n9kj,n + 5 95inYik,n + 5 9kinYijn + 395knYjin + 5 9jknYjin
2 2 2 2
+gki,ngjk,n + gik,ngkj,n]
= Oa.s.(l)a (42)
1 D;
3 2 2 2 2 2 2 2 2
ﬁ% S 12 Z 69k n9ikn + 09509k T 9ijnJikn T kinJkin
n "i<i<j<k<n

2 9 2 9 2 2 2 2 2 2
+995i n9ijn T 295inGikn T (9kinTjin T 09ijn9kjn + 49i5n9kin
2 2 2 9
+4gki,ngjk,n + 4gik,ngk’j,n]

= 045.(1). (43)

It follows from equation (37) that showing that K27 = o0, (1) is equivalent to showing that

n
7 oM = s (1) (14)
To show (44), we first note that
n n
ot = 300 e (371 4
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and that with probability one

1 n
— ) N =

IN

IA

IN

<

1
n

1
st 2 (50w () 0w (Z0) + G (Zn) o (Z0)
1I<i<ji<n

+291j,ngjz,nanu,z (Zn) Onu,j (Zn)]

1 _
=De > (Gt dhin)
n

1<i<j<n

Tr (A%L)

KLQTT (6Gn)

1 —
FDgTr (Hin Pz, Hip — Hoy Py, Hin, — Hin Pz, Hop + Hj,,)
1 —
o ( > [me+3§j Pin)
n
4 _
() Lk

1 2
4D
5(1—11) ’

(46)

where the second inequality follows from Assumption. In light of (45) and (46), to show (44), we

need to show that

(47)

To show (47), we proceed as follows: for a given sample size n, let  be any 2n x 1 vector such that

ol / .
||| = 1, and partition z = (2}, 2%)", so that 1 and z9 are each an n x 1 vector. Now, consider the

quadratic form

1
P Aly = Z[wllLu (Zn

2y L1y (Z,) Gl L3,

(Zn) (Zn)

+ah Loy (Zn) GpLat (Zy) Loz (Zn) GuLi1 (Zn) @1 + @y Laa (Zy) GnL21 (Zn) Gl Lag (Zn

taly Lot (Zn) Gl Laa (Zy) Lot (Zn) Gy Las (Zn) @2 + 2y Loa (Zy) GnL21 (Zn) Gl Las (Zn
(Zn) )

tah Lot (Z,) Gl L3g (Z) GnLoy (Zn) 2 + 2 Lao (Zn) GpLay (Zn) Lo (Z) G Loy (

)GnLa (Z
Zn) GnL11 (Zn) o1 + 25091 (Z) Gl Lo (Z1) GrLai (Z) 21

39

) Lot (Z,) G Loy (Zy) o + 24 L1y (Zn) GnL3y (Z0) G Loy (Zy,

) T2

) T2
) T2

Zn) xQ]



Note that, with probability one,

|2 L11 (Zn) G, Loz (Zn) L1 (Zy) G, Lag (Zy) 32|

S \/x’lLH (Z ) G/ L%Q ( )G Ln 331\/ L22 G L21 ( n) G;.LLQQ (Zn) xI9
< \/1I£123<Xn0'1777 i n \/$/1L11 (Zn) GnGnLll (Zn) z1
2
max o, (Zn)
X 1<Z<n—\/x/2L22 (Zn) GHG%LQQ (Zn) T2
min oy, (Zn)
1<i<n
2 (D )%
1
< 4 < ) 61 \/xllL%l (Zn) 21 \/xlzL%Z (Zn) 2
1-n) p}
— .5
1 \?(D¢)*
< 4 <1 h> ( i)
D¢
< 00,

where the third inequality above follows from the fact that, with probability one,

Amax (G%Gn) = ax (GnG;L)

A
Amax (H1n Pz, Hip — Hap Py, Hip — H1y, Py, Hay + H3,,)

<o)
By similar arguments, we can show that, with probability one,

4(1-1)*(De)? D ? < o,

|24 L11 (Zn) GnL3y (Zy) GuLay (Zn) 1] <4 (1 — E)”* hLoo (Zn) G}y (Zy) GpLaa (Zn) m2| <

4(1—h) D¢ < o0, [#hLar (Zn) GuLaa (Zy) Loy (Zy) Gy L22( W)l <4(1-R) (ﬁﬁ)% (Do)~ <

wh Loy (Zn) GnL3) (Zn) GnLas (Zn) x| < 4 (1 — ) (*)

|2 Lot (Zn) GnL3y (Zn) GnLa1 (Zn) wa| < 4 ( 1—h) (D)

1L11 (Zn) GnLy (Z0) GpLoy (Zy) x| <

-1
0, ) < 00, and

ol I

(De
(D)™ < oo. It follows that, with
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probability one,

P A < {4(1_@2( )iD

Since

we deduce that with probability one

max )\? = Amax (A,QZ) <D < oo, (48)

1<i<n

where

N
[N

D=2(1-1)* [2(D9" D+ De +2 (D9 (22) ()

Note that the upper bound D does not depend on n and is a uniform bound on max /\?. It follows
<i<n

that
1

(K> pax X = 00 (1),
n Y

as required.[]

Lemma A10: (Génsler and Stute, 1977)

Let {Xin,Fin, 1 <i<ly,n>1} be a square integrable martingale difference array. Also, let

ln, /00 as n — oo, and suppose that for all e > 0

ln
STE[X2I(Xinl > ) | Ficin] 20 (C1)
=1
and
In
S E[XZ, | Fiia] S 1. (C2)
=1
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ln
Then, Y Xin 4N (0,1).
i=1

7

Proof of Lemma A10: See Génsler and Stute (1977).

Remark: Note that, as discussed in Kelejian and Prucha (1999), a sufficient condition for condition

(C1) is the following:

Condition C1’ : i

> E{E|IXinl" | Fiora] } =0

J=1

for some 6§ > 0.

Since condition C1’ is easier to verify in our case, in the proofs which follow, we will be verifying

condition C1’ instead of condition C1 for the case § = 2.

Lemma A11: Let W,, be as defined in (32) above. Define

B, = . (50)

Tn

Suppose that "k for 0 <k < oo but —szn — 0 asn — oo. Then, under Assumptions 1-6,

BnﬁN(O,l) as n — o0o.

Proof of Lemma A11:

The proof of this lemma involves verifying conditions C1’ and C2 which jointly imply the central
limit theorem given in Lemma A10. As discussed in the Remark above, we shall verify conditions
C1’ in lieu of condition C1. The proof is, thus, divided into two parts: in part I, we check condition

C1’ and, in part II, we check condition C2.
I. Checking Condition C1’:

As in the proof of Lemma A8, we can write W, = >~} Wy, where Wy, is as defined in (32)
above. To verify condition C1’ for § = 2, we need to show that Y ,_, E{(aafiWkn)‘l} — 0 as
n — oco. In light of Lemma A8, this is equivalent to showing that K, 2 Y E (W,?n) — 0 as
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n — oo. To proceed, note that direct calculation yields the following expression for the fourth

moment of W,

6
Ez (Wi,) = Z Eikns
i=1
where

Eten = Ez (finE (vl Zn))

82]9,” = 4EZ Z [fl?,ngzzk,nE (u%|Zn) 0-77777i (Zn) + fl?,ngl%z,nE (nz,nu%‘z’n) Ouu,i (Zn)
1I<i<k

+2fl§,ngik,ngki,nE (nk,nu%|zn) Onu,i (Zn)])

1<i<k

+4gik,ng]%i,nE (u?nz,n|Zn) E (uknl?c),n|zn)])

Eakn = 4Bz Z [g?k,ngjzk,naﬂmi (Zn) O, (Zn) E (uy] Zn)
1I<i<ji<k

‘f'gi%i,ngjz‘k,nauu,i (Zn) Onm,j (Zn) E (Uznl%,nwn)
+29ik,ngki,ng]2'k,nE (Uink,n\zn) Onu,i (Zn) omm,j (Zn)
205 nIkjnGikn B (WKl Zn) Ouj (Zn) onyi (Zn)

+49iknGkinGkjndjkan (u%m%,MZn) Onui (Zn) Onu (Zn)])

Eskn = 4Ez Z [gl%i,nglzj,nauu,i (Zn) Ouu,j (Zn) B (nlé,n|Zn)
1<i<j<k

+91'2k,n91%j7nE (U%nlinlzn) Onn,i (Zn) Ouu,j (Zn)
+29£i,ngkj,n9jk,nE (Uknl%,n’Zn) Ouu,i (Zn) Onu,j (Zn)

+29ik,ngki,ngl§j,nE (Uknl%,n‘zn) Ouu,j (Zn) Onuyi (Zn)])
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Eekn = 2Lz Z i nGienE (Ui Zn) Ouni (Zn) + [RnGinE (uinit ol Zn) Ounsi (Zn)
1<i<k

+fl§,ngik,ngki,nE (nk,nuz‘zn) Onu,i (Zn)])

g?k:,n = 4Egz Z [fk,nggk,nE (n?,n’Zn) E (uﬂzn)
1<i1<k

+femGin B (wrni | Zn) E (v} Z0)])

n)

gSk,n = 12EZ Z [fk,ngik,ngl%i,nE (u%nl%,n|Zn)E( 12 iy
1<i<k

+fk,ngi2k,ngki,nE (u%nk,n|Zn) E (uznzn|Zn)])

Now, making use of Lemmas A5 and A6 and Assumption 3, we see that

= o(1), (51)

IN

1 < 4 1
‘ , —Ez Z |:fl? ngz2k n (ui‘Zn) Omn,i (Zn) + §fl?,ngl%z,nE (ng,n’Zn) Ouu,i (ZTL)
k<n

Sw‘

e
Il
—
= 3
i
/\

i<
+2fkn rinE (WR|Zn) Ouwui (Zn) + %flzngz?knE (M7 | Zn) \/Uuu,z‘ (Zn)\/ffnn,z‘ (Zn)
+5 fk ngzk n (U |Zn) \/Uuu i (Zn)\/gmm' (Zn)
5 i (31 Z0) \ s (Z)\ o (Z2)
3 attn (Wl120) 0 () o0 20)] )
DS By (fhaghn + i)

K2
1I<i<k<n
= o), (52)

IN
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1

2
n

>

k=

1

|E3k.ml

IN

1
n 1<i<k<n

1

1 1

1 1

1 1
5 9k ki B (W5 Zn) B (W0 0| Z0) + 50Tk (Min|Zn) B (u|Z0)

1 1

1 1

1 1
+§ggi,nE (né,n‘Zn) E (u127712,n|Zn) + §gi2k,ngl%i,nE (“iﬁl%,ﬂzn) E (U?|Zn)

1 1

1
+ 5900 9kin (0| Zn) B (U?niann)D

1 —
EDE Z [3EZ (gglk’,n) + 3EZ (g%i,n) + 10EZ (g?k,ngl%i,n)]
n 1<i<k<n

o(1), (53)
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4
2 Z |Eakn| < ﬁEZ Z [gzzk,ng]zk,nan%i (Zn) onnj (Zn) E (ui’Zn)
ng=1 n I<i<j<k<n

+91%i ng]zk nOuu,i (Zn) oun.j (Zn) B (Uim%,nwn)

+1gzk ngjk B (up] Zy ) \/Uuu i (Zn)\/ffmm' (Zn)oun.; (Zn)
+19kz ngjk’ nE (k] Zn) \/Uuu i (Zn)\/ann,i (Zn)ony,j (Zn)
B0 ol Zn) O (Zu)\ O (Z) o 5 ()

E(
E (uj
E(
+§gm T B (B 01 20) [ s (Zu)\[ i (Zo) s (Z)
(
(
(
E (u

+ gzk ngjk n

1
+2gzk ngjkn u%’Z ) \/Uuu] (Z )\/Unn,j (Zn)anmi (Zn)

1
+= gzk ngk]n u%’Z ) \/Uuuj (Z’Vl>\/a7l777j (Zn)Unmi (Zn)

Uink nl n) \/Uuu,j (Zn)\/ann,j (Zn)onn,i (Zn)

UM n|Zn) \/Uuu,j (Zn)\/amm' (Zn)oyn,i (Zn)

+20% 03 B (3 0| Z0) 0w (Zo)\J i (Za)\f 9w (Za) [ 7 (Z0)
#2001 20) s 303 (2o (2o (20) )

—2 1
4D§ﬁ Z [5EZ (gzzk,ngjzk,n) + 2EZ (glzi,ngjzk,n) + 2EZ (glzi,ng/%j,n)
"i<i<j<k<n

+EZ (ggk,ngl%j,n)]
= o(1), (54)

1
+2gzk ngjkn

1
+2gzk ngkj n

IN
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4
K2 Z |85k nl < = Z [gii,ngﬁj,n%u,i (Zn) Ouu,j (Zn) E (Uﬁ,nIZn)

n k=1

AN
&3
N

n 1<i<j<k<n

+gz'2k,ngl%j,nE (Uiniann) Onn,i (Zn) Ouu,j (Zn)
1

5909 (R0 | Z0) G () \ G (Z)\J g (Z0)
1

5 Rin s B (1R 11 Z0) T (Z0) \ T (Za)\J 3 (Z0)

) Ouu,i (Zn) \/Juu,j (Zn)\/amhj (Zn)

Nl Z.

)

Mk ,n ) Ouui (Zn) \/Uuu,j (Zn)\/amm' (Zn)

E (uj
1
+29k1 ng]k n (
E (ny
1
+2gzk ngkj n (u%nk n‘Z ) Ouu,j (Zn) \/O-u%i (Zn)\/ann,i (Zn)
E(
E (ny

1
+5 gk‘l ngkj n

Uink n‘Z ) Ouu,j (Zn) \/Uuu,i (Zn)\/gnmi (Zn)
1
5 Sen i (1l Z0) T (Z) \J s (Za) o uni (Z0)

1
+§gl%i,n913j,nE (nlé,n|Zn) Ouu,j (Zn) \/Uuu,i (Zn)\/gnmi (Zn)]>

1
+ 2gkz ngk:j n

-2 2 2 2 2 2 2
< 4D; Z B3E29%i n9iin + 2E 295 n9kjn + E298i n9ik.0]
I<i<j<k<n
= o(1),
. 2
4

5 D _|Eknl < ﬁEZ Z [ n9iten B (4] Zn) onni (Zn)
n k=1 n 1<i<k<n

+f§,n9§i,nE (uiniﬂZn) Ouu,i (Zn)

_|_1f2 2 (nh uQIZ)\/a (Z )\/U i (Zn)
4 k,ngzk,n nk,n kl1<n UL n nn,i n
1

+1f1?,n913i7nE (ni,nu%’Zn) \/Ouu,i (Zn) \/Urm,i (Zn)
1

+1fl?,ngi2k,nE (ui‘Zn) \/Uuu,i (Zn)\/gnn,i (Zn)
1

+1f5,n9§¢,nE (Ui‘Zn) \/Uuu,i (Zn)\/amm' (Znﬂ )

-3 2 2 2 2

3D¢ Z [Ez (finiin) + Bz (fi ndiin)]

1I<i<k<n
= o(1),

IN
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T2 Z\g7kn|

nop=1

|E8k.n

IN

IN

IN

4 1
n 1<

<k<n
1
+- fk ngzk ngnn 7 (Z ) (U%’Zn) + Zg:llk,nE (nin’Zn) E (Ui|Zn)

1 1
+Zgik,naﬁn,i (Zn) E (Uk|Z ) + gfl?,ngl%z‘,nE (Uinin\Zn) E (U?|Zn)

1 1

1 1
+§flg,ngl%i,nE (Ulin|Zn) Ouui (Zn) + ggléi,nE (Uiﬂi,nIZn) E (uﬂZn)

1 1
+§gl%i,nE (u%nijAZn) Ouni (Zn) + gg%i,nE (771%7n|Zn) E (uﬂZn)

1
+§gl§z nE (ng,n|Zn) Ouu,i (Zn):|>

1 —
K Dz Z [EZ (fl?,ngizk,n) + EZ (fl?,ngl%i,n) + EZ (g?k:,n) + EZ (géz,n)]

S <k<n
+ﬁD2 Z [EZ (fl?,ngz?k,n) + EZ (flg,nglzi,n) + EZ (gzlk’,n) + EZ (glgz,n)]
1I<i<k<n
o(1), (57)

4 3
1<k

3
+— fk ngzk n (uk:nk n|Z ) Onm,i (Zn) + Zgl%z,nE (uinl%,n‘zn) E (U;’L‘Zn)

3 3
+ngz,nE (uknl%,n‘z'ﬂ) Omnyi (ZTL) + éfl?,ngl%z,nE (uinl%,n‘z’ﬂ) Ouu,i (ZTL)

3 3
+§flg,ngl§i,nE (Uiﬁi,nwn) E (7714,n|Zn) + gfl?,nglzi,nE (uﬂZn) Juu,i (Zn)

3 3
+§flinglgi,nE (ui|Zn) E (n;l,n|Zn) + gg?k,nE (uinlg,n‘Zn) Ouuyi (Zn)

3 3
+§gz4k,nE (uRnR | Zn) E (00l Zn) + ggfk,nE (uk| Zn) O (Zn)

3
+7gz4kn (uk‘Z nz n‘ :|

8
3
K2 D§ Z [EZ (fk,ngik,n) + EZ (ka,ngl%z,n) + EZ (g?k,n) + EZ (g%z,n)]
1I<i<k<n
+ﬁD2 Z [EZ (fl?,ngzgk,n) + EZ (flinglzi,n) + EZ (g;lk,n) + EZ (gléz,n)]
1I<i<k<n
o(1), (58)

where the inequalities in expressions (51)-(58) are obtained by repeated applications of the Cauchy-
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Schwarz and the triangle inequalities and of the inequality 2|XY| < X2 + Y2. From expressions
(51)-(58), it follows immediately that

1 & S (1
K’%;E(an) < 2| e 2l

i=1 noj=1
= o(l) asn— o0 (59)
II. Checking Condition C2:
First define
W,
Bjn = jnv
oW,

where Wy, is as defined in expression (32). Note that by Lemma A8, oW, = v/K,. Now, consider
the o-fields F;, = o(e1,.....€j,Zy), i = 1,...,n, where ¢ = (u;,7;) and take Fy, to be the
trivial o-field. It follows that by construction that F;_,, € Fj,. Moreover, note that Wj,
is Fjn—measurable, and straightforward calculation shows that E (Wj, | Fj—1,,) = 0, so that
{Win, Fjn,1 <j<n,n>1} forms a martingale difference array.

Hence, to verify condition 2, we need to show
n
STE[BY, | Fioin] D1, asn— oo, (60)
j=1

or, alternatively,

(B [Wh | Fina] - B W)

p 20, asn — . (61)
j=1 Wn
or, equivalently,
2
1 n
el S AEW}, | Fian] —E W71} | —0, asn— o, (62)

in light of Lemma A8. To show (62), we proceed by noting that
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S (EWR | Ficrn] — E[WE,])
k
= 2 Z [FrnGikninE (U] Frcin) + FenGkinWE (nur] Feo1n)]

+ Z [glzk,nnzz,nE (uz‘ fkfl,n) — Ez (g?k,namm (Zn) Ouu,k (Zn))]

1<i<k<n
+ [gl%z,nuzzE (nl%,n| fkfl,n) - EZ (g]%i’no'uu,i (Z’Vl> Onn.k (Z’Vl))]
1<i<k<n
+2 [gik,ngki,nni,nuiE (nk,nuk| f‘k*l,n) — by (gik,ngki,nanu,i (Zn) Onu,k (Zn))]
1I<i<k<n
+ 2 Z [gik,ngjk,nni,nnj,nE (ui| fk—l,n) + gki,ngjk,nuinj,nE (nk,nuk| fk—l,n)

1I<i<j<k<n

+GiknTijnMin i E (el Frm1.n) + GinGrjn ity E (07 | Fre1,n)]

Further calculations yield

2

1 n ) ) 1 7
B (D ABW | Fian] — B =15 D Ain,
n j=1 =1
where
Ain = 4Bz Z [flg,nggk,nanmi (Zn) Uiu,k (Zn) + fl?,nglzi,nauu,i (Zn) U?]u,k (Zn)
1I<i<k<n
+2flingik,ngki,no-nu,i (Zn) Ouu,k (Zn) Onu,k (Zn)]
+2 Z [fj,nfk,ngij,ngik,ngnn,i (Zn> Ouu,j (Zn) Ouu,k (Zn)

1<i<j<k<n
+fj,nfk,ngji,ngki,nauu,i (Zn) Onu,j (Zn) Onu,k (Zn)

+fj,nfk,ngij,ngki,nanu,i (Zn) Ouu,j (Zn) Onu,k (Zn)

+ fj,nfk,ngji,ngik,nanu,i (Zn) Onu,j (Zn) Ouu,k (Zn)])
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) Z ({EZ [g?k,nagu,k (Zn) E (nin|Zn)] - (EZ [gzzk,no'uu,k (Zn) Omm,i (Zn)] )2}
1<i<k

{ [ kin 7777 k (uﬂZn)] - (EZ [glzi,na?m,k (Zn) Ouu,i (Zn)] )2}
{ [ ngkz n nu k (Z ) E (nz nW; |Z )} - (EZ [gik,ngki,no-nu,k (Zn) Onu,i (Zn)])Q}
+2 {EZ [gik,ngki,nauwk (Zn) o e (Zn) E (771 nti ’Z )]

—E7 (95 n0uuk (Zn) Ogni (Zn)] Ez (97 nOuui (Zn) Ok (Z0)] }
+4 {EZ [gzsk,ngki,nauu,k (Zn) Onu,k (Zn) E (n?nul’Zn)]

—E7 (95 n0mi (Zn) 0wk (Zn)] Ez [GikmTrinOnui (Zn) Ogui (Zn)]}
+4{Ez [gik,ngi’i,nom,k (Zn) Onup (Zn) E (mnuﬂZn)]

—Ez [gl?;@no'uu,i (Zn) Onn,k (Zn)] Ez [gik,ngki,no'nu,i (Zn) Onu,k (Zn)]})

As, = > ({E7 [63 092 nE (0201 Z0) Gunj (Z0) Tu (Z)]
IKi<j<k<n

—E7 (975 n0uuj (Zn) onni (Zn)] Bz [GinOuwuk (Zn) ommi (Zn)] }
+{Ez [gjzi,nglgzn (u HZn ) Omm.j (Zn)ff?m,k (Zn))

~E7 (95 005 (Zn) Ouwni (Zn)] Ez [ nOnnk (Zn) Ouni (Zn)] }
+4{E7 [9ijnGjiniknkinOnu; (Zn) Opuk (Zn) E (0} nuil Zn)]

—E719ijn9jinonui (Zn) onuj (Zn)) Ez ik kinOnu,i (Zn) Onquk (Zn)]})
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A5n

)

-A4,n = Z ({EZ [gzgj,ngl%i,no-uu:j (Zn) Onn.k (Zn) E (77z2,nU12|Zn)}
I<i<j<k<n

—Ey [ggj,nauua' (Zn) o (Zn)] Eyz [glzi,naumi (Zn) T,k (Zn)] }

+ {EZ [ggk,ngjzi,no-u%k? (Zn) oy (Zn) E (771271“12|Zn)}

—Ez [gz?k,na’uu,k (Zn) Onn,i (Zn)] Ez [g?i,nguu,i (Zn) Tnn,j (Zn)]}
+2{Ez [g}; nGiknGkinOuu (Zn) Onuk (Zn) E (0} 0l Zn)]

—Ez [gz'Zj,nUW,i (Zn) Ouu,j (Zn)] Ez [gik,ngki,nanuai (Zn) Onu,k (Zn)]}
+2{ Bz [0 n9ijn 95100 uk (Zn) Ouj (Zn) B (107 ui Z0)]

—Ez [g?k,ngnn,i (Zn) Cu k (Zn>] E7 [9ijn9jin0nu,i (Zn) Onu,;j (Zn>]}
+2{E7 [0 091095100 mk (Zn) O (Zn) B (030 | Zn)]

—Lz [gjzi,nguu,i (Zn) o, (Zn)] E7 [9iknGkinOnu,i (Zn) Onuk (Zn)]
+2{Ez [6%: n9iknTkinomm.j (Zn) Opui (Zn) E (150} | Zn)]

—Ez [gl%i,na—uu,i (Zn) O,k (Zn)] Eyz [gij,ngji,ngnu,i (Zn) Onu,j (Zn)] })

= 4By Z g?k,ng]zk,no-nn7i (Zn) Omm.j (Zn) Uimk (Zn)

1<i<j<k<nm

+glzi,n932‘k,n0umi (Zn) Onn,j (Zn) Ugu,k (Zn) + g?k,nggzk,nanmi (Zn) Ouu,j (Zn) G?]u,k (Zn)
+gl§i,n9}%j,n‘7uu,i (Zn) Ouu,j (Zn) U%n,k (Zn)

+2Git ki, 90O (Zn) Ounj (Zn) Ounge (Zn) Ou i (Zn)

+295% n9iknIkinmni (Zn) Oung (Zn) Ouuk (Zn) Ouk (Zn)
+29ik,nGkinGiknIkinOnui (Zn) Onug (Zn) Cuuk (Zn) Tnp i (Zn)

+2Gik nGkinGjknIkinOnui (Zn) Opug (Zn) O 1o (Zn)

+203; n9iknGkjnOuni (Zn) Onuj (Zn) Ok (Zn) Ok (Zn)

+2gik,ngki,nglzj,n0'nu,i (Zn) Oyu,j (Zn) Onu,k (Zn) Onn,k (Zn)] (63)
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AG,n =

1
Kig |-Al,n|

2Ey Z Gikn9jknGil ngdjl,nOnn,i (Zn) Onn,j (Zn) Ouu,k (Zn) Ouu,l (Zn)

I<i<j<k<l<n

+9kinGjkn9lingjl,nOuu,i

+
Q
$
“?r‘
3
3
™
JQ~
3
2
3
<
S~
3
Q
3
=
3
S~— ~
Q
g
g
<

+
Q
=

Ex
3
Ne
=

<.
3
)

3
]

<
3

q

3
£
.
N

Q
e

g

<

12 3
< F‘DE Z [EZ (flg,ngzzk,n) + Ez (fl?,ngl%i,n)]

+8 ﬁ Z [EZ (fj,nfk,ngij,ngik,nann,i (Zn> Ouu,j (Zn) Ouu,k (Zn))

"i1<i<j<k<n
+EZ (fj:nfk,ngji,ngki,no'uu,i (Zn) Onu,j (Zn) Onu,k (Zn))

+Ez (fj,nfk,ngij,ngki,nanu,i (Zn) Ouu,j (Zn) Onu,k (Zn))

+Ez (fj,nfk,ngji,ngik,nanu,i (Zn) Onu,j (Zn) Ouu,k (Zn))”

= o(1),
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IN

1 —
ﬁDg Z [4EZ (g;lk; n + gléi,n) + 14EZ (g?k,ngzi,n)]
<k<
1

) [GEZ (g%.0) +4B7 (g:)]

N

3 =2 Z 2 2 2 2
= K2 Dg EZ (gij,ngik,n + gji,ngki,n)
n 1<i<j<k<n

3
D§ Z [EZ (gz?j,n) EZ (gizk,n) + EZ (gyzi,n) EZ (g/%un)]

1<i<j<k<n

3
< ﬁDé > Ez (93 n95in + GenGin)
n 1<i<j<k<n
—l—TEg Z Ez (.gizj,ngzzk,n + gl?i,ngjzi,n)
" 1<i<j<k<n
3 _

n 1<i<j<k<n

Dg Z [EZ (912],71) EZ (ngk,n) + EZ (sz,n) EZ (gfl,n)]
n 1<i<j<k<n

1
K2 ’A&n\ < Kg Dg Z [GEZ (gfkng?kn) +4Ez (in,ngzg‘,n)
n n 1<i<j<k<n

+3E7 (GRinG5kn) + 2E2 (9 nIkjn)]
= o(1) (69)
where the inequalities in expressions (65)-(69) have been obtained by repeated applications of the

Cauchy-Schwarz and the triangle inequalities and of the inequality 2 | XY| < X2 + Y2,
Finally, to show that K,,?|Ag,| = 0(1), let

Ay = Z [gik,ngjk,nni,nnj,no'umk (Zn) + ki n9jk nWiNjnOun,k (Zn)
1I<i<j<k<n

+gik,ngkj,nni,nujanu,k (Zn) + IkingkjnUWiljOnn k (Zn)]
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and note that Ez (A},) = As, + Asy, where As,, and Agy, are as defined in expressions (63)
and (64) above. Since we have already shown that K,,2|Aj5.,| = o(1) in expression (69) above, it
follows that showing K, ?|As,| = o(1) is equivalent to showing that K,2?Ey (A%,) = o(1). To

show the latter, we define

Ay, = Z (Gik,nGjk,n i 00 Ouwu ke (Zn) + GkinGjknWilljnOunk (Zn)
1<i<j<k<n

+GiknGkjniniOnuk (Zn) + GinGkjnWithionn k (Zn)
+GijnGkjn ik Ounj (Zn) + GjinGhjnWilknOnu,j (Zn)
+8ijngiknMinWkOnu; (Zn) + Gjingjkntikny,j (Zn)
+95i.n9ki nMjnMenTuui (Zn) + GijnGkin @M nOnu,i (Zn)
+9jinGiknMjnWkOnu,i (Zn) + GijnGikntiukon,i (Zn)]

and

Agn = > (94j.n9kj, 0 i e Ounsj (Zn) + GinGhjnWillenOnu,j (Zn)
1<i<j<k<n

+9ijngikninUkOnug (Zn) + GjinGikn ik Oy (Zn)

+95i.n9ki n M MenOuui (Zn) + GijnGkin WMk nOnu,i (Zn)

+95inGiknMjnWkOnu,i (Zn) + GijnGikmtjukon,i (Zn)]
and note that Ay, = As, — Agyp, so that

E(A},) = E(A%,) + E(AF,) — 2E (Asnley) - (70)

By direct calculation, we obtain

E(A%,) = (Ez(Ts) + Ez (%)) +4Ez (T + T2 + Ts), (71)

E(Af,) = Ez(Te)+2Ez (Ti+T+T) (72)
where 71, T3, T3, 75, and 74 are as defined in equations (34)-(36) and (39)-(40). Moreover, note
that Lemma A5 and equations (41)-(43) imply that K, 2E (A2,) — 0 and K,2E (AZ,) — 0 as

n — 00, which, in turn, imply that K, 2 |E (As5,A6,)| — 0 by applying the Jensen and the Cauchy

Schwarz inequalities. The desired result then follows immediately. [

Lemma A12: Under Assumptions 1-6, suppose that r, — 00 as n — oo such that ij" — 0.

Then, the following statements are true:
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(a) let
0, ZL7,C,

U
" b2ry,

Y

then W, = O (1); moreover, there exists a positive integer such that is positive definite

almost surely.

(b) C,:LZ;{ [PZn HlanZn]Vn

P
: — 0 as n — oo;
nTn

(c) CnZuVn P (3 as n — oo
bnTn )

V! [Pz, Hin—HaulV,
(d) ulPzn - 2V P, ) as n — oo.

Proof of Lemma A12:

Part (a) can be proved using arguments similar to that given for the proof of part (a) of Lemma
A1 in Chao and Swanson (2002). Parts (b)-(d) can be shown by tedious but straightforward mean
square calculation; see the proofs of parts (c), (f), and (g) of Lemma Al in Chao and Swanson

(2002) for similar arguments. For the sake of brevity, we omit the proofs here. [J

Appendix B
This part of the appendix contains proofs of the main theorems of this paper.

Proof of Theorem 3.1:

We shall only prove part (b) since part (a) can be shown by standard arguments whereas proof
of part (c) is similar to that of part (b) but involving only the bilinear component and not the linear
component. To prove part (b), note that for n sufficiently large, so that (2! Z,)" " is well-defined

with probability one, we can write

Y2/n [PZnHln - HQn] YQn _ C;LZ;’LZTLCTL VT/L [PZthL - H2n] chn
T b2r, by
L CZiVa | Vi [Pz Hin — Hon] Vs
bnrn Tn
= U, + Op(l)v
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in light of Lemma A12. Thus, for n sufficiently large, we can write
e N N ) — 1 —1\ 31
(v;'2,w,1) 72 (ﬂmm _ 50) - (\pn =, 0, ) 20, (Ya, [Pz, Hin — Hanl un) (14 0p(1))
1
_ (ﬁglzﬁgl) U (b Cu 2l
+ V! [Pz, Hy, — Hop) un) (14 0,(1)). (73)

Now, consider any vector v € R? such that ||y|]| = 1. Note that to establish the asymptotic
RPN
normality of (\Il; 1=, 0, 1) 2 (ﬁ JIVEL — ﬁo), it suffices to show the asymptotic normality of

;
5 (\1,51511\1,;1)*% (BJIVEI — ﬂo) = (@;1571@;1)7 [ (b, CrZhun
+ V, [Pz, Hin — Hop) un)
R L= ) e R Cle
+ Vi [Pz, Hin — Hap) un)
_ foun | 1Gtin

VEVE,
- (74)

[SIE
[NIE

where f, = by Z,C, 0, (@f ‘2,7, 1>_ Y, N =
Hs,, . It follows from Lemma A1l that

=1 [=—l= =1\~
e (qzn =0, ) v, and Gy, = Py Hin —

TR RN p
Y (\I’nlin‘l’nl) ? (ﬁJIVEl — ﬁo) — N (0,1) as n — oo.

The desired result follows immediately from applying the Cramer-Wold device (see Proposition 5.1

on page 114 of White, 2001). O

Proof of Theorem 3.2:

Theorem 3.2 can be proved in a manner similar to Theorem 3.1. However, to do so, Lemmas A4-
A12 must be reformulated in terms of the corresponding quantities for JIV E2, i.e., G}, = Py, —Hs,,
1 o
£ = b I — Han] Z2Co T (Vﬁl?*@%l) P, T, = CillfnlZaCo g

n n = n n rnb2

—_

= = 721) 2(1-p%,) c,gzn,iz,g,icnaw (Zn)

1 % 2 * *
+K7 Z [(gwn) Yvv, (Zn) Ouu,j (Zn) + 9iin95in0Vu,i (Zn) U{/u,j (Zn)
Mi<i<j<nm

* * * 2
+ 4955 G50V (Zn) 0Vui (Zn) + (GGin)” Bvviy (Zn) ouusi (Zn)] :
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Establishing Lemmas A4-A12 for JIV E2 is actually notationally easier since G}, = Pz, — Hg,, is
a symmetric matrix, whereas G,, = Pz Hy, — Hay is not. To avoid redundancy, however, we will

not provide proofs for the case of JIVE2. [

Proof of Corollary 3.4:

The desired result follows immediately given Theorem 3.1, Assumption 7, and the continous

mapping theorem. [J

Proof of Corollary 3.5:

The desired result follows immediately given Theorem 3.2, Assumption 7’, and the continous

mapping theorem. [J
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