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Abstract

In recent years it has become apparent that many of the classical testing procedures used to select amongst

alternative economic theories and economic models are not realistic. In particular, researchers have become more

aware of the fact that parameter estimation error and data dependence play a crucial role in test statistic limiting

distributions, a role which had hitherto been ignored to a large extent. Given the fact that one of the primary ways for

comparing different models and theories is via use of predictive accuracy tests, it is perhaps not surprising that a large

literature on the topic has developed over the last 10 years, including, for example, important papers by Diebold and

Mariano (1995), West (1996), and White (2000). In this literature, it is quite common to compare multiple models

(which are possibly all misspecified - i.e. they are all approximations of some unknown true model) in terms of their

out of sample predictive ability, for given loss function. Our objectives in this paper are twofold. First, we introduce

block bootstrap techniques that are (first order) valid in recursive estimation frameworks. Thereafter, we present

two applications where predictive accuracy tests are made operational using our new bootstrap procedures. One of

the applications outlines a consistent test for out-of-sample nonlinear Granger causality, and the other outlines a test

for selecting amongst multiple alternative forecasting models, all of which may be viewed as approximations of some

unknown underlying model. More specifically, our examples extend the White (2000) reality check to the case of non

vanishing parameter estimation error, and extend the integrated conditional moment (ICM) tests of Bierens (1982,

1990) and Bierens and Ploberger (1997) to the case of out-of-sample prediction. Of note is that in both of these

examples, it is shown that appropriate re-centering of the bootstrap score is required in order to ensure that the tests

are properly sized, and the need for such re-centering is shown to arise quite naturally when testing hypotheses of

predictive accuracy. The results of a Monte Carlo investigation of the ICM test suggest that the bootstrap procedure

proposed in this paper yield tests with reasonable finite sample properties for samples with as few as 300 observations.
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1 Introduction

In recent years it has become apparent that many of the classical testing procedures used to se-

lect amongst alternative economic theories and economic models are not realistic. In particular,

researchers have become more aware of the fact that parameter estimation error and data depen-

dence play a crucial role in test statistic limiting distributions, a role which had hitherto been

ignored to a large extent. Given the fact that one of the primary ways for comparing different

models and theories is via use of predictive accuracy tests, it is perhaps not surprising that a large

literature on the topic has developed over the last 10 years, including, for example, important

papers by Diebold and Mariano (DM: 1995), West (1996), and White (2000). In this literature, it

is quite common to compare multiple models (which are possibly all misspecified - i.e. they are all

approximations of some unknown true model) in terms of their out of sample predictive ability, for

given loss function. In such contexts, one often compares parametric models containing estimated

parameters. Hence, it is important to take into account the contribution of parameter estimation

error when carrying out inference. Furthermore, it is common practice to split samples of size T

into T = R+P observations, where only the last P observations are used for predictive evaluation.

We consider such a setup, and assume that parameters are estimated in a recursive fashion, such

that R observations are used to construct a first parameter estimator, say θ̂R, a first prediction (say

a 1-step ahead prediction), and a first prediction error. Then, R + 1 observations are used to con-

struct θ̂R+1, yielding a second ex ante prediction and prediction error. This procedure is continued

until a final estimator is constructed using T −1 observations, resulting in a sequence of P = T −R

estimators, predictions, and prediction errors. If R and P grow at the same rate as the sample size

increases, the limiting distributions of predictive accuracy tests using this setup generally reflects

the contribution of parameter uncertainty (i.e. the contribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
, where θ̂t is

a recursive m−estimator constructed using the first t observations, and θ† is its probability limit,

say).1

Our objectives in this paper are twofold. First, we introduce block bootstrap techniques that

are (first order) valid in recursive estimation frameworks. Thereafter, we present two applications

where predictive accuracy tests are made operational using our new bootstrap procedures. One of
1m−estimators include least squares, nonlinear least square, (quasi) maximum likelihood, and exactly identified

instrumental variables and generalized method of moments estimators.
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the applications outlines a consistent test for out-of-sample nonlinear Granger causality, and the

other outlines a test for selecting amongst multiple alternative forecasting models, all of which may

be thought of as approximations of some unknown underlying model.

In some circumstances, such as when constructing Diebold and Mariano (1995) tests for equal

(pointwise) predictive accuracy of two models, the limiting distribution is a normal random variable.

In this case, the contribution of parameter estimation error can be addressed using the framework

of West (1996), and essentially involves estimating an “extra” covariance term. However, in other

circumstances, such as when constructing tests which have power against generic alternatives, the

statistic has a limiting distribution that can be shown to be a functional of a Gaussian process

with a covariance kernel that reflects both (dynamic) misspecification as well as the contribution of

(recursive) parameter estimation error. Such a limiting distribution is not nuisance parameter free,

and critical values cannot be tabulated. However, valid asymptotic critical values can be obtained

via appropriate application of the (block) bootstrap. This requires the formulation of a bootstrap

procedure that allows for the formulation of statistics which properly mimic the contribution of
1√
P

∑T−1
t=R

(
θ̂t − θ†

)
(i.e. parameter estimation error). The first objective of this paper is thus to

suggest a block bootstrap procedure which is valid for recursive m-estimators, in the sense that its

use suffices to mimic the limiting distribution of 1√
P

∑T−1
t=R

(
θ̂t − θ†

)
.

When forming the block bootstrap for recursive m-estimators, it is important to note that earlier

observations are used more frequently than temporally subsequent observations when forming test

statistics. On the other hand, in the standard block bootstrap, all blocks from the original sample

have the same probability of being selected, regardless of the dates of the observations in the blocks.

Thus, the bootstrap estimator, say θ̂∗t , which is constructed as a direct analog of θ̂t, is characterized

by a location bias that can be either positive or negative, depending on the sample that we observe.

In order to circumvent this problem, we suggest a re-centering of the bootstrap score which ensures

that the new bootstrap estimator, which is no longer the direct analog of θ̂t, is asymptotically

unbiased. It should be noted that the idea of re-centering is not new in the bootstrap literature for

the case of full sample estimation. In fact, re-centering is necessary, even for first order validity,

in the case of overidentified generalized method of moments (GMM) estimators (see e.g. Hall and

Horowitz (1996), Andrews (2002, 2004), and Inoue and Shintani (2004)). This is due to the fact

that, in the overidentified case, the bootstrap moment conditions are not equal to zero, even if the

population moment conditions are. However, in the context of m−estimators using the full sample,
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re-centering is needed only for higher order asymptotics, but not for first order validity, in the sense

that the bias term is of smaller order than T−1/2 (see e.g. Andrews (2002)). However, in the case

of recursive m−estimators the bias term is instead of order T−1/2, and so it does contribute to

the limiting distribution. This points to a need for re-centering when using recursive estimation

schemes, and such re-centering is discussed in the next section.

The block bootstrap for recursive m-estimators that is discussed in this paper can be used

to provide valid critical values in a variety of interesting testing contexts, and two such leading

applications are developed. As mentioned above, the first is a generalization of the reality check test

of White (2000) that allows for non vanishing parameter estimation error. The second is an out-of-

sample version of the integrated conditional moment (ICM) test of Bierens (1982,1990) and Bierens

and Ploberger (1997) which provides out of sample tests consistent against generic (nonlinear)

alternatives. More specifically, our first application concerns the reality check of White (2000),

which extends the Diebold and Mariano (1995) and West (1996) test for the relative predictive

accuracy of two models by allowing for the joint comparison of multiple misspecified models against

a given benchmark. In practice, one model is chosen as a benchmark against which all others are

to be compared. Typically, this is either a simple model, a model frequently used in empirical

work, or a model in which one is particularly interested. The objective is to compare such a model

against a set, finite but arbitrarily large, of competing models, which can all be misspecified. Of

course, if the benchmark model were to be sequentially compared with each of the competitors,

then the well known issue of sequential test bias would arise, and valid inference would be difficult

to carry out. The idea of White (2000) is to compare all competing models simultaneously, thus

taking into account any correlation across the various models. In this context, the null hypothesis

is that no competing model can outperform the benchmark, for a given loss function. As this

test is usually carried out by comparing predictions form the alternative models, and given that

predictions are usually formed using recursively estimated models, the issue of parameter estimation

uncertainty arises. White (2000) obtains valid asymptotic critical values for his test via use of the

Politis and Romano (1994) stationary bootstrap for the case in which parameter estimation error

is asymptotically negligible. This is the case in which either the same loss function is used for both

estimation and model evaluation, or P grows at a slower rate than R. Using the block bootstrap for

recursive m-estimators, we generalize the reality check to the case in which parameter estimation

error does not vanish asymptotically.
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The objective of the second application is to test the predictive accuracy of a given (non)linear

model against generic (non)linear alternatives. In particular, one chooses a benchmark model, and

the objective is to test whether there is an alternative model which can provide more accurate, loss

function specific, out-of-sample predictions. As the test is based on a continuum of moment con-

ditions and is consistent against generic alternatives, we call it an Integrated Conditional Moment

test. The suggested ICM type test differs from those developed by Bierens (1982,1990) and Bierens

and Ploberger (1997) because parameters are estimated recursively, out-of-sample prediction mod-

els are analyzed, and the null hypothesis is that the reference model is the best “loss function

specific” predictor, for a given information set. Given that the test compares out-of-sample pre-

diction models, it can be viewed as a test for (non)linear out-of-sample Granger causality. This

application builds on previous work by Corradi and Swanson (2002), who use a conditional p-value

method for constructing critical values in this context, extending earlier work by Hansen (1996)

and Inoue (2001). However, the conditional p-value approach suffers from the fact that under the

alternative, the simulated statistics diverges (at rate as high as
√

l̃), conditional on the sample,

where l̃ plays a role analogous to the block length in the block bootstrap. This feature clearly leads

to reduced power in finite samples, as shown in Corradi and Swanson (2002). As an alternative to

the conditional p-value approach, we thus establish in our second application that the bootstrap

for recursive m−estimators yields
√

P -consistent ICM tests. The ICM test is examined via a series

of Monte Carlo experiments, and it is found that the bootstrap procedure proposed in this paper

yield tests with reasonable empirical level, and with power that is moderately good for samples

with as few as 300 observations.

The rest of the paper is organized as follows. Section 2 outlines the block bootstrap for recursive

m−estimators and contains asymptotic results. Sections 3 and 4 outline the two applications of the

recursive block bootstrap: White’s reality check and out-of-sample integrated conditional moment

test. Monte Carlo findings are discussed in Section 5. Finally, concluding remarks are given in

Section 6. All proofs are collected in an Appendix.

Hereafter, P ∗ denotes the probability law governing the resampled series, conditional on the

sample, E∗ and V ar∗ are the mean and variance operators associated with P ∗, o∗P (1) Pr−P denotes

a term converging to zero in P ∗−probability, conditional on the sample, and for all samples except

a subset with probability measure approaching zero, and O∗
P (1) Pr−P denotes a term which is

bounded in P ∗−probability, conditional on the sample, and for all samples except a subset with
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probability measure approaching zero. Analogously, Oa.s.∗(1) and oa.s.∗(1) denote terms that are

almost surely bounded and terms that approach zero almost surely, according the the probability

law P ∗, and conditional on the sample.

2 The Block Bootstrap for Recursive m−Estimators

In this section, we establish the first order validity of a block bootstrap estimator that captures the

effect of parameter estimation error in the context of recursive m-estimators, which are defined as

follows. Let Zt = (yt, ..., yt−s1+1, Xt, ..., Xt−s2+1), t = 1, ..., T, and let s = max{s1, s2}. Additionally,

assume that i = 1, ..., n models are estimated (thus allowing us to establish notation that will be

useful in the applications presented in subsequent sections). Now, define the recursive m-estimator

for the parameter vector associated with model i as:2

θ̂i,t = arg min
θi∈Θi

1
t

t∑

j=s

qi(yj , Z
j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n (1)

and

θ†i = arg min
θi∈Θi

E(qi(yj , Z
j−1, θi)), (2)

where qi denotes the objective function for model i. Following standard practice (such as in the

real-time forecasting literature), this estimator is first computed using R observations. In our

applications we focus on 1-step ahead prediction (although results can be extended quite easily to

multiple step ahead prediction), and so that recursive estimators are thus subsequently computed

using R + 1 observations, and then R + 2 observations, and so on, until the last estimator is

constructed using T − 1 observations. This results in a sequence of P = T − R estimators. These

estimators can then used to construct sequences of P 1-step ahead forecasts and associated forecast

errors, for example.

Now, consider the overlapping block resampling scheme of Künsch (1989), which can be applied

in our context as follows:3 At each replication, draw b blocks (with replacement) of length l from

the sample Wt = (yt, Z
t−1), where bl = T − s. Thus, the first block is equal to Wi+1, ..., Wi+l,

2Within the context of full sample estimation, the first order validity of the block bootstrap for m−estimators has

been shown by Goncalves and White (2004), for dependent and heterogeneous series.
3The main difference between the block bootstrap and the stationary bootstrap of Politis and Romano (PR:1994)

is that the former uses a deterministic block length, which may be either overlapping as in Künsch (1989) or non-

5



for some i = s − 1, ..., T − l + 1, with probability 1/(T − s − l + 1), the second block is equal

to Wi+1, ..., Wi+l, again for some i = s − 1, ..., T − l + 1, with probability 1/(T − s − l + 1),

and so on, for all blocks. More formally, let Ik, k = 1, ..., b be iid discrete uniform random

variables on [s − 1, s, ..., T − l + 1]. Then, the resampled series, W ∗
t = (y∗t , Z∗,t−1), is such that

W ∗
1 ,W ∗

2 , ..., W ∗
l ,W ∗

l+1, ..., W
∗
T = WI1+1,WI1+2, ..., WI1+l,WI2 , ...,WIb+l, and so a resampled series

consists of b blocks that are discrete iid uniform random variables, conditional on the sample.

Suppose we define the bootstrap estimator, θ̂∗i,t, to be the direct analog of θ̂i,t. Namely,

θ̂∗i,t = arg min
θi∈Θi

1
t

t∑

j=s

qi(y∗j , Z
∗,j−1, θi), R ≤ t ≤ T − 1, i = 1, ..., n. (3)

By first order conditions, 1
t

∑t
j=s∇θqi(y∗j , Z

∗,j−1, θ̂∗i,t) = 0, and via a mean value expansion of
1
t

∑t
j=s∇θqi(y∗j , Z

∗,j−1, θ̂∗i,t) around θ̂i,t, after a few simple manipulations, we have that

1√
P

T−1∑

t=R

(
θ̂∗i,t − θ̂i,t

)

=
1√
P

T−1∑

t=R





1

t

t∑

j=s

∇2
θqi(y∗j , Z

∗,j−1, θ
∗
i,t)



−1

1
t

t∑

j=s

∇θqi(y∗j , Z
∗,j−1, θ̂i,t)




= B†
i

1√
P

T−1∑

t=R


1

t

t∑

j=s

∇θqi(y∗j , Z
∗,j−1, θ̂i,t)


 + oP ∗(1) Pr−P

= B†
i

aR,0√
P

R∑
t=s

∇θqi(y∗j , Z
∗,j−1, θ̂i,t) + B†

i

1√
P

P−1∑

j=1

aR,j∇θqi(y∗R+j , Z
∗,R+j−1, θ̂i,t)

+oP ∗(1) Pr−P, (4)

where θ
∗
i,t ∈

(
θ̂∗i,t, θ̂i,t

)
, B†

i = E
(
∇2

θqi(yj , Z
j−1, θ†i )

)−1
, aR,j = 1

R+j + 1
R+j+1 + ... + 1

R+P−1 , j =

0, 1, ..., P − 1, and where the last equality on the right hand side of (4) follows immediately, using

overlapping as in Carlstein (1986), while the latter resamples using blocks of random length. One important feature

of the PR bootstrap is that the resampled series, conditional on the sample, is stationary, while a series resampled

from the (overlapping or non overlapping) block bootstrap is nonstationary, even if the original sample is strictly

stationary. However, Lahiri (1999) shows that all block boostrap methods, regardless of whether the block length is

deterministic or random, have a first order bias of the same magnitude, but the bootstrap with deterministic block

length has a smaller first order variance. In addition, the overlapping block boostrap is more efficient than the non

overlapping block bootstrap.
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the same arguments as those used in Lemma A5 of West (1996). Analogously,

1√
P

T−1∑

t=R

(
θ̂i,t − θ†i

)

= B†
i

aR,0√
P

R∑
t=s

∇θqi(yj , Z
j−1, θ†i ) + B†

i

1√
P

P−1∑

j=1

aR,j∇θqi(yR+j , Z
R+j−1, θ†i ) + oP (1). (5)

Now, given (2), E
(
∇θqi(yj , Z

j−1, θ†i )
)

= 0 for all j, and 1√
P

∑T−1
t=R

(
θ̂i,t − θ†i

)
has a zero mean

normal limiting distribution (see Theorem 4.1 in West (1996)). On the other hand, as any block of

observations has the same chance of being drawn,

E∗
(
∇θqi(y∗j , Z

∗,j−1, θ̂i,t)
)

=
1

T − s

T−1∑

k=s

∇θqi(yk, Z
k−1, θ̂i,t) + O

(
l

T

)
Pr−P, (6)

where the O
(

l
T

)
term arises because the first and last l observations have a lesser chance of being

drawn (see e.g. Fitzenberger (1997)).4 Now, 1
T−s

∑T−1
k=s ∇θqi(yk, Z

k−1, θ̂i,t) 6= 0, and is instead of

order OP

(
T−1/2

)
. Thus, 1√

P

∑T−1
t=R

1
T−s

∑T−1
k=s ∇θqi(yk, Z

k−1, θ̂i,t) = OP (1), and does not vanish in

probability. This clearly contrasts with the full sample case, in which 1
T−s

∑T−1
k=s ∇θqi(yk, Z

k−1, θ̂i,T ) =

0, because of the first order conditions. Thus, 1√
P

∑T−1
t=R

(
θ̂∗i,t − θ̂i,t

)
cannot have a zero mean nor-

mal limiting distribution, but is instead characterized by a location bias that can be either positive

or negative depending on the sample.

Given (6), our objective is thus to have the bootstrap score centered around 1
T−s

∑T−1
k=s ∇θqi(yk, Z

k−1, θ̂i,t).

Hence, define a new bootstrap estimator, θ̃∗i,t, as:

θ̃∗i,t = arg min
θi∈Θi

1
t

t∑

j=s

(
qi(y∗j , Z

∗,j−1, θi)− θ′i

(
1
T

T−1∑

k=s

∇θiqi(yk, Z
k−1, θ̂i,t)

))
, (7)

R ≤ t ≤ T − 1, i = 1, ..., n.5

Given first order conditions, 1
t

∑t
j=s

(
∇θqi(y∗j , Z

∗,j−1, θ̃∗i,t)−
(

1
T

∑T−1
k=s ∇θiqi(yk, Z

k−1, θ̂i,t)
))

=

0, and via a mean value expansion of 1
t

∑t
j=s∇θqi(y∗j , Z

∗,j−1, θ̃∗i,t) around θ̂i,t, after a few simple

4In fact, the first and last observation in the sample can appear only at the beginning and end of the block, for

example.
5More precisely, we should define

θ̃∗i,t = arg min
θi∈Θi

1

t− s

t∑
j=s

(
qi(y

∗
j , Z∗,j−1, θi)− θ′i

(
1

T − s

T−1∑

k=s

∇θiqi(yk, Zk−1, θ̂i,t)

))

However, for notational simplicity we approximate 1
t−s

and 1
T−s

with 1
t

and 1
T

.
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manipulations, we have that

1√
P

T−1∑

t=R

(
θ̃∗i,t − θ̂i,t

)

= B† 1√
P

T∑

t=R


1

t

t∑

j=s

(
∇θq(y∗j , Z

∗,j−1, θ̂i,t)−
(

1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ̂i,t)

))


+oP ∗(1) Pr−P.

Given (6), it is immediate to see that the bias associated with 1√
P

∑T−1
t=R

(
θ̃∗i,t − θ̂i,t

)
is of

order O
(
lT−1/2

)
, conditional on the sample, and so it is negligible for first order asymptotics, as

l = o(T 1/2).

Theorem 1, which summarizes these results, requires the following assumptions.

Assumption A1: (yt, Xt), with yt scalar and Xt an Rζ−valued (0 < ζ < ∞) vector, is a strictly

stationary and absolutely regular β−mixing process with size −4(4 + ψ)/ψ, ψ > 0.

Assumption A2: (i) θ†i is uniquely identified (i.e. E(qi(yt, Z
t−1, θi)) > E(qi(yt, Z

t−1, θ†i )) for

any θi 6= θ†i ); (ii) qi is twice continuously differentiable on the interior of Θi, for i = 1, ..., n, and

for Θi a compact subset of R%(i); (iii) the elements of ∇θi
qi and ∇2

θi
qi are p−dominated on Θi,

with p > 2(2 + ψ), where ψ is the same positive constant as defined in Assumption A1; and (iv)

E
(−∇2

θi
qi(θi)

)
is negative definite uniformly on Θi.

6

Assumption A3: T = R + P, and as T →∞, P/R → π, with 0 < π < ∞.

Assumptions A1 and A2 are standard memory, moment, smoothness and identifiability condi-

tions. A1 requires (yt, Xt) to be strictly stationary and absolutely regular. The memory condition

is stronger than α−mixing, but weaker than (uniform) φ−mixing. Assumption A3 requires that

R and P grow at the same rate. In fact, if P grows at a slower rate than R, i.e. P/R → 0, then
1√
P

∑T
t=R

(
θ̂i,t − θ†i

)
= oP (1) and so there were no need to capture the contribution of parameter

estimation error.

Theorem 1: Let A1-A3 hold. Also, assume that as T →∞, l →∞, and that l
T 1/4 → 0. Then, as

T, P and R →∞,

P

(
ω : sup

v∈<%(i)

∣∣∣∣∣P
∗
T

(
1√
P

T∑

t=R

(
θ̃∗i,t − θ†i

)
≤ v

)
− P

(
1√
P

T∑

t=R

(
θ̂i,t − θ†i

)
≤ v

)∣∣∣∣∣ > ε

)
→ 0,

6We say that ∇θiqi(yt, Z
t−1, θi) is 2r−dominated on Θi if its j − th element, j = 1, ..., %(i), is such that

∣∣∇θiqi(yt, Z
t−1, θi)

∣∣
j
≤ Dt, and E(|Dt|2r) < ∞. For more details on domination conditions, see Gallant and White

(1988, pp. 33).
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where P ∗
T denotes the probability law of the resampled series, conditional on the (entire) sample.

Broadly speaking, Theorem 1 states that 1√
P

∑T−1
t=R

(
θ̃∗i,t − θ†i

)
has the same limiting distribution

as 1√
P

∑T−1
t=R

(
θ̂i,t − θ†i

)
, conditional on sample, and for all samples except a set with probability

measure approaching zero. As outlined in the following sections, application of Theorem 1 allows

us to capture the contribution of (recursive) parameter estimation error to the covariance kernel of

the limiting distribution of various statistics.

3 The Reality Check

In this section, we extend the White (2000) reality check to the case in which the effect of parameter

estimation error does not vanish asymptotically. In particular, we show that the block bootstrap

for recursive m-estimators properly mimics the contribution of parameter estimation error to the

covariance kernel of the limiting distribution of the original reality check test. Although we focus our

attention in this paper on the block bootstrap, which is based on resampling blocks of deterministic

length, we conjecture that the same approach can be used to extend the stationary bootstrap

employed by White (2000) to the case of nonvanishing parameter estimation error.

Let the generic forecast error be ui,t+1 = yt+1 − κi(Zt, θ†i ), and let ûi,t+1 = yt+1 − κi(Zt, θ̂i,t),

where κi(Zt, θ̂i,t) is the estimated conditional mean function under model i. Also, assume that the

set of regressors may vary across different models, so that Zt is meant to denote the collection of

all potential regressors. Following White (2000), define the statistic

SP = max
k=2,...,n

SP (1, k),

where

SP (1, k) =
1√
P

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1)) , k = 2, ..., n,

and where g is a given loss function (see Christoffersen and Diebold (1996,1997) and Elliott and

Timmerman (2004a,b) for a detailed discussion of loss functions used in predictive evaluation).

Recall that in this test, parameter estimation error need not be accounted for in the covariance

kernel of the limiting distribution unless g 6= qi for some i. This follows upon examination of

the results of both West (1996) and White (2000). In particular, in West (1996), the parameter

estimation error components that enter into the covariance kernel of the limiting distribution of

his test statistic are zero whenever the same loss function is used for both predictive evaluation
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and in-sample estimation. The same argument holds for the reality check test. This means that

as long as g = qi ∀i, the White test can be applied regardless of the rate of growth of P and

R. When we write the covariance kernel of the limiting distribution of the statistic (see below),

however, we include terms capturing the contribution of parameter estimation error, thus implicitly

assuming that g 6= qi for some i. In practice, one reason why we allow for cases where g 6= qi is that

least squares is sometimes better behaved in finite samples and/or easier to implement than more

generic m−estimators, so that practitioners sometimes use least squares for estimation and more

complicated (possibly asymmetric) loss functions for predictive evaluation.7 Of course, there are

also applications for which parameter estimation error does not vanish, even if the same loss function

is used for parameter estimation and predictive evaluation. One such application is discussed in

the next section.

For a given loss function, the reality check tests the null hypothesis that a benchmark model

(defined as model 1) performs equal to or better than all competitor models (i.e. models 2,...,n).

The alternative is that at least one competitor performs better than the benchmark.8 Formally,

the hypotheses are:

H0 : max
k=2,...,n

E (g(u1,t+1)− g(uk,t+1)) ≤ 0

and

HA : max
k=2,...,n

E (g(u1,t+1)− g(uk,t+1)) > 0.

In order to derive the limiting distribution of SP we require the following additional assumption.

Assumption A4: (i) κi is twice continuously differentiable on the interior of Θi and the elements

of ∇θiκi(Zt, θi) and ∇2
θi

κi(Zt, θi) are p−dominated on Θi, for i = 2, ..., n, with p > 2(2+ψ), where

ψ is the same positive constant as that defined in Assumption A1; (ii) g is positive valued, twice

continuously differentiable on Θi, and g, g′ and g′′ are p−dominated on Θi with p defined as in (i);

and (iii) let ckk =
7Consider linex loss, where g(u) = eau − au − 1, so that for a > 0 (a < 0) positive (negative) errors are more

(less) costly than negative (positive) errors. Here, the errors are exponentiated, so that in this particular case, laws

of large numbers and central limit theorems may require a large number of observations before providing satisfactory

approximations. This feature of linex loss is illustrated in the Monte Carlo findings of Corradi and Swanson (2002).

(Linex loss is studied in Zellner (1986), Christoffersen and Diebold (1996, 1997) and Granger (1999), for example.)
8In the current context, we are interested in choosing the model which is more accurate for given loss function.

An alternative approach is to combine different forecasting model in some optimal way. For very recent contributions

along these lines, see Elliott and Timmermann (2004a,b).
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limT→∞ V ar
(

1√
T

∑T
t=s (g(u1,t+1)− g(uk,t+1))

)
, k = 2, ..., n, define analogous covariance terms,

cj,k, j, k = 2, ..., n, and assume that [cj,k] is positive semi-definite.

Assumptions A4(i)-(ii) are standard smoothness and domination conditions imposed on the

conditional mean functions of the models. Assumption A4(iii) is standard in the literature that

uses DM type tests (see e.g. West (1996) and White (2000)), and states that at least one of the

competing models has to be nonnested with (and not nesting) the benchmark.

Proposition 2: Let Assumptions A1-A4 hold. Then, as P, R →∞,

max
k=2,...,n

(
SP (1, k)−

√
PE (g(u1,t+1)− g(uk,t+1))

)
d→ max

k=2,...,n
S(1, k),

where S = (S(1, 2), ..., S(1, n)) is a zero mean Gaussian process with covariance kernel given by V,

with V a n× n matrix with i, i element

vi,i = Sgigi + 2Πµ′1B
†
1C11B

†
1µ1 + 2Πµ′iB

†
i CiiB

†
i µi − 4Πµ′1B

†
1C1iB

†
i µi + 2ΠSgiq1

B†
1µ1 − 2ΠSgiqi

B†
i µi,

where Sgigi =
∑∞

τ=−∞E ((g(u1,1)− g(ui,1)) (g(u1,1+τ )− g(ui,1+τ ))) ,

Cii =
∑∞

τ=−∞E

((
∇θiqi(y1+s, Z

s, θ†i )
)(
∇θiqi(y1+s+τ , Z

s+τ , θ†i )
)′)

,

Sgiqi
=

∑∞
τ=−∞E

(
(g(u1,1)− g(ui,1))

(
∇θiqi(y1+s+τ , Z

s+τ , θ†i )
)′)

,

B†
i =

(
E

(
−∇2

θiqi(yt, Z
t−1, θ†i )

))−1
, µi = E (∇θig(ui,t+1)) , and Π = 1− π−1 ln(1 + π).

Just as in White (2000), note that under the null, the least favorable case arises when

E (g(u1,t+1)− g(uk,t+1)) = 0, ∀ k. In this case, the distribution of SP coincides with that of

maxk=2,...,n

(
SP (1, k)−√PE (g(u1,t+1)− g(uk,t+1))

)
, so that SP has the above limiting distri-

bution, which is a functional of a Gaussian process with a covariance kernel that reflects uncertainty

due to parameter estimation error and dynamic misspecification. Additionally, when all competitor

models are worse than the benchmark, the statistic diverges to minus infinity at rate
√

P . Finally,

when only some competitor models are worse than the benchmark, the limiting distribution provides

a conservative test, as SP will always be smaller than

maxk=2,...,n

(
SP (1, k)−√PE (g(u1,t+1)− g(uk,t+1))

)
, asymptotically. Of course, when HA holds,

the statistic diverges to plus infinity at rate
√

P.9

9For more discussion of the properties of this variety of test, the reader is referred to Corradi and Swanson

(2004a,b), and the references cited therein. Amongst other approaches, one approach discussed in these papers is the

construction of critical values based on subsampling (e.g. Politis, Romano and Wolf (1999), Ch.3). Heuristically, we

construct T−2bT statistics using subsamples of length bT , where bT /T → 0; the empirical distribution of the statistics
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Recall that the maximum of a Gaussian process is not Gaussian in general, so that standard

critical values cannot be used to conduct inference on SP . As pointed out by White (2000), one

possibility in this case is to first estimate the covariance structure and then draw 1 realization

from an (n − 1)-dimensional normal with covariance equal to the estimated covariance structure.

From this realization, pick the maximum value over k = 2, . . . , n. Repeat this a large number of

times, form an empirical distribution using the maximum values over k = 2, . . . , n, and obtain

critical values in the usual way. A drawback to this approach is that we need to rely on an

estimator of the covariance structure based on the available sample of observations, which in many

cases may be small relative to the number of models being compared. Furthermore, whenever the

forecasting errors are not martingale difference sequences (as in our context, given that we wish

to allow all models to be possibly misspecified), heteroskedasticity and autocorrelation consistent

covariance matrices should be estimated, and thus a lag truncation parameter must be chosen.

As mentioned above, another approach which avoids these problems involves using the stationary

bootstrap of Politis and Romano (1994), which was done by White (2000) for the case in which

parameter estimation error vanishes asymptotically. In general, bootstrap procedures have been

shown to perform well in a variety of finite sample contexts (see e.g. Diebold and Chen (1996)).

Our approach is to apply the block bootstrap for recursive m-estimators outlined above.

Define the bootstrap parameter estimator as:

θ̃∗i,t = arg min
θi∈Θi

1
t

t∑

j=s

(
qi(y∗j , Z

∗,j−1, θi)− θ′i

(
1
T

T−1∑

h=s

∇θi
qi(yh, Zh−1, θ̂i,t)

))
, (8)

where R ≤ t ≤ T − 1, i = 1, ..., n; and define the bootstrap statistic as:

S∗P = max
k=2,...,n

S∗P (1, k),

computed over the various subsamples, properly mimics the distribution of the statistic. Thus, it provides valid critical

values even for the case of maxk=2,...,m E (g(u1,t+1)− g(uk,t+1)) = 0, but E (g(u1,t+1)− g(uk,t+1)) < 0 for some k.

Needless to say, the problem is that unless the sample is very large, the empirical distribution of the subsampled

statistics provides a poor approximation to the limiting distribution of the statistic. The subsampling approach has

been followed by Linton, Maasoumi and Whang (2003), in the context of testing for stochastic dominance.
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where

S∗P (1, k) =
1√
P

T−1∑

t=R

[(
g(y∗t+1 − κ1(Z∗,t, θ̃∗1,t))− g(y∗t+1 − κk(Z∗,t, θ̃∗k,t))

)

−




1
T

T−1∑

j=s

(
g(yj+1 − κ1(Zj , θ̂1,t))− g(yj+1 − κk(Zj , θ̂k,t))

)





 . (9)

Note that bootstrap statistic in (9) is different from the “usual” bootstrap statistic, which is defined

as the difference between the statistic computed over the sample observations and over the bootstrap

observations. That is, following the usual approach to bootstrap statistic construction, one might

have expected that the appropriate bootstrap statistic would be:

S
∗
P (1, k) =

1√
P

T−1∑

t=R

[(
g(y∗t+1 − κ1(Z∗,t, θ̃∗1,t))− g(y∗t+1 − κk(Z∗,t, θ̃∗k,t))

)

−
(
g(yt+1 − κ1(Zt, θ̂1,t))− g(yt+1 − κk(Zt, θ̂k,t))

)]
. (10)

Instead, as can be seen by inspection of S∗P (1, k), the bootstrap (resampled) component is con-

structed only over the last P observations, while the sample component is constructed over all

T observations. Although a formal proof is provided in the appendix, it is worthwhile to give a

heuristic explanation of the validity of the statistic in (9). For sake of simplicity, consider a single

model, say model 1. Now,

1√
P

T−1∑

t=R


g(y∗t+1 − κ1(Z∗,t, θ̃∗1,t))−

1
T

T−1∑

j=s

g(yj+1 − κ1(Zj , θ̂1,t))




=
1√
P

T−1∑

t=R


g(y∗t+1 − κ1(Z∗,t, θ̂1,t))− 1

T

T−1∑

j=s

g(yj+1 − κ1(Zj , θ̂1,t))




+
1√
P

T−1∑

t=R

∇θg(y∗t+1 − κ1(Z∗,t, θ
∗
1,t))

(
θ̃∗1,t − θ̂1,t

)
, (11)

where θ
∗
1,t ∈

(
θ̃∗1,t, θ̂1,t

)
. Notice that the first term on the RHS of (11) mimics the limiting behav-

ior of 1√
P

∑T−1
t=R (g(u1,t+1)−E(g(u1,t+1))) , while the second term mimics the limiting behavior of

the parameter estimation error associated with model 1. Needless to say, the same holds for any

arbitrary model. This leads to the following proposition.
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Proposition 3: Let Assumptions A1-A4 hold. Also, assume that as T → ∞, l → ∞, and that
l

T 1/4 → 0. Then, as T, P and R →∞,

P

(
ω : sup

v∈<

∣∣∣∣P ∗
T

(
max

k=2,...,n
S∗P (1, k) ≤ v

)
− P

(
max

k=2,...n
Sµ

P (1, k) ≤ v

)∣∣∣∣ > ε

)
→ 0,

and

Sµ
P (1, k) = SP (1, k)−

√
PE (g(u1,t+1)− g(uk,t+1)) ,

The above result suggests proceeding in the following manner. For any bootstrap replication,

compute the bootstrap statistic, S∗P . Perform B bootstrap replications (B large) and compute the

quantiles of the empirical distribution of the B bootstrap statistics. Reject H0, if SP is greater

than the (1 − α)th-percentile. Otherwise, do not reject. Now, for all samples except a set with

probability measure approaching zero, SP has the same limiting distribution as the corresponding

bootstrapped statistic when E (g(u1,t+1)− g(uk,t+1)) = 0 ∀ k, ensuring asymptotic size equal to α.

On the other hand, when one or more competitor models are strictly dominated by the benchmark,

the rule provides a test with asymptotic size between 0 and α (see above discussion). Under the

alternative, SP diverges to (plus) infinity, while the corresponding bootstrap statistic has a well

defined limiting distribution, ensuring unit asymptotic power.

In summary, this application shows that the block bootstrap for recursive m-estimators can be

readily adapted in order to provide asymptotically valid critical values that are robust to parameter

estimation error as well as model misspecification. In addition, the bootstrap statistics are very

easy to construct, as no complicated adjustment terms involving possibly higher order derivatives

need be included.

4 The Out-of-Sample Integrated Conditional Moment Test

Corradi and Swanson (CS: 2002) draw on both the consistent specification and predictive ability

testing literatures in order to propose a test for predictive accuracy which is consistent against

generic nonlinear alternatives, and which is designed for comparing nested models. The CS test is

based on an out-of-sample version of the ICM test of Bierens (1982,1990) and Bierens and Ploberger

(1997). This test is relevant for model selection, as it is well known that DM and reality check tests

do not have well defined limiting distributions when the benchmark is nested with all competing
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models (see e.g. Corradi and Swanson (2002, 2004c) and McCracken (2004)).10 Tests for comparing

the predictive ability of a fixed number of nested models have previously also been suggested. For

example, Clark and McCracken (2001,2003) propose tests for comparing two nested models for

one-step and multi-step ahead prediction, respectively. Chao, Corradi and Swanson (2001) propose

a test which allows for dynamic misspecification under the null hypothesis. Recently, Giacomini

and White (2003) introduce a test for conditional predictive ability that is valid for both nested

and nonnested models. The key ingredient of their test is the fact that parameters are estimated

using a fixed rolling window. Finally, Inoue and Rossi (2004) suggest a recursive test, where not

only the parameters, but the statistic itself, are computed in a recursive manner.

The main difference between these tests and the CS test is that the CS test is consistent against

generic (non)linear alternatives and not only against a fixed alternative.

As shown in the appendix, the limiting distribution of the ICM type test statistic proposed by

CS is a functional of a Gaussian process with a covariance kernel that reflects both the time series

structure of the data as well as the contribution of parameter estimation error. As a consequence,

critical values are data dependent and cannot be directly tabulated. CS establish the validity

of the conditional p-value method for constructing critical values in this context, thus extending

earlier work by Hansen (1996) and Inoue (2001). However, the conditional p-value approach suffers

from the fact that under the alternative, the simulated statistic diverges (at rate as high as
√

l̃),

conditional on the sample and for all samples except a set of measure zero, where l̃ plays a role

analogous to l in the block bootstrap. As this feature may lead to reduced power in finite samples,

we establish in this application that the block bootstrap for recursive m-estimators can be used to

provide easy to compute and asymptotically valid critical values for the CS test.

Summarizing the testing approach considered in this application, assume that the objective is

to test whether there exists any unknown alternative model that has better predictive accuracy

than a given benchmark model, for a given loss function. A typical example is the case in which the

benchmark model is a simple autoregressive model and we want to check whether a more accurate

forecasting model can be constructed by including possibly unknown (non)linear functions of the

past of the process or of the past of some other process (e.g. out-of-sample (non)linear Granger
10McCracken (2004) provides a very interesting result based on a particular version of the DM test (in which loss

is quadratic and martingale difference scores are assumed - i.e. it is assumed that the model is correctly specified

under the null hypothesis) has a nonstandard limiting distribution which is a functional of Brownian motions.
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causality tests can be constructed in this manner).11 Although this is the case that we focus

on, the benchmark model can in general be any (non)linear model. One important feature of

this application is that the same loss function is used for in-sample estimation and out-of-sample

prediction (see Granger (1993), Weiss (1996), and Schörfheide (2004) for further discussion of this

issue)12. In contrast to the previous application, however, this does not ensure that parameter

estimation error vanishes asymptotically.

Let the benchmark model be:

yt = θ†1,1 + θ†1,2yt−1 + u1,t, (12)

where θ†1 = (θ†1,1, θ
†
1,2)

′ = arg minθ1∈Θ1 E(q1(yt−θ1,1−θ1,2yt−1)), θ1 = (θ1,1, θ1,2)′, yt is a scalar, and

q1 = g, as the same loss function is used both for in-sample estimation and out-of-sample predictive

evaluation. The generic alternative model is:

yt = θ†2,1(γ) + θ†2,2(γ)yt−1 + θ†2,3(γ)w(Zt−1, γ) + u2,t(γ), (13)

where θ†2(γ) = (θ†2,1(γ), θ†2,2(γ), θ†2,3(γ))′ = arg minθ2∈Θ2 E(q1(yt − θ2,1 − θ2,2yt−1 − θ2,3w(Zt−1, γ))),

θ2(γ) = (θ2,1(γ), θ2,2(γ), θ2,3(γ))′, θ2 ∈ Θ2, Γ is a compact subset of <d, for some finite d. The

alternative model is called “generic” because of the presence of w(Zt−1, γ), which is a generi-

cally comprehensive function, such as Bierens’ exponential, a logistic, or a cumulative distribution

function (see e.g. Stinchcombe and White (1998) for a detailed explanation of generic comprehen-

siveness). One example has w(Zt−1, γ) = exp(
∑s2

i=1 γiΦ(Xt−i)), where Φ is a measurable one to

one mapping from < to a bounded subset of <, so that here Zt = (Xt, ..., Xt−s2+1), and we are

thus testing for nonlinear Granger causality. The hypotheses of interest are:

H0 : E(g(u1,t+1)− g(u2,t+1(γ))) = 0 versus HA : E(g(u1,t+1)− g(u2,t+1(γ))) > 0. (14)

Clearly, the reference model is nested within the alternative model, and given the definitions of θ†1
and θ†2(γ), the null model can never outperform the alternative. For this reason, H0 corresponds

11For example, Swanson and White (1997) compare the predictive accuracy of various linear models against neural

network models using both in-sample and out-of-sample model selection criteria.
12In the context of multi-step ahead vector autoregressive prediction, Schörfheide (2003) proposes a new prediction

criterion that can be used to jointly select the number of lags as well as to choose between (quasi)-maximum likelihood

estimators and loss function based estimators.
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to equal predictive accuracy, while HA corresponds to the case where the alternative model out-

performs the reference model, as long as the errors above are loss function specific forecast errors.

It follows that H0 and HA can be restated as:

H0 : θ†2,3(γ) = 0 versus HA : θ†2,3(γ) 6= 0,

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Now, given the definition of θ†2(γ),

note that

E


g′(yt+1 − θ†2,1(γ)− θ†2,2(γ)yt − θ†2,3(γ)w(Zt, γ))×




−1
−yt

−w(Zt, γ)





 = 0,

where g′ is the derivative of the loss function with respect to its argument. Thus, under H0 we

have that θ†2,3(γ) = 0, θ†2,1(γ) = θ†1,1, θ†2,2(γ) = θ†1,2, and E(g′(u1,t+1)w(Zt, γ)) = 0. Thus, we can

once again restate H0 and HA as:

H0 : E(g′(u1,t+1)w(Zt, γ)) = 0 versus HA : E(g′(u1,t+1)w(Zt, γ)) 6= 0, (15)

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Finally, define the forecast error as

û1,t+1 = yt+1 −
(

1 yt

)
θ̂1,t. Following CS, the test statistic is:

MP =
∫

Γ
mP (γ)2φ(γ)dγ, (16)

where

mP (γ) =
1

P 1/2

T−1∑

t=R

g′(û1,t+1)w(Zt, γ), (17)

and where
∫
Γ φ(γ)dγ = 1, φ(γ) ≥ 0, with φ(γ) absolutely continuous with respect to Lebesgue

measure. In the sequel, we require the following assumptions.

Assumption A5: (i) w is a bounded, twice continuously differentiable function on the interior of

Γ and ∇γw(Zt, γ) is bounded uniformly in Γ; and (ii) ∇γ∇θ1q
′
1,t(θ1)w(Zt−1, γ) is continuous on

Θ1 × Γ, where q′1,t(θ1) = q′1(yt − θ1,1 − θ1,2yt−1), Γ a compact subset of Rd, and is 2r−dominated

uniformly in Θ1 × Γ, with r ≥ 2(2 + ψ), where ψ is the same positive constant as that defined in

Assumption A1.

Assumption A5 requires the function w to be bounded and twice continuously differentiable;

such a requirement is satisfied by logistic or exponential functions, for example.
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Proposition 4: Let Assumptions A1-A3 and A5 hold. Then, the following results hold: (i) Under

H0,

MP =
∫

Γ
mP (γ)2φ(γ)dγ

d→
∫

Γ
Z(γ)2φ(γ)dγ,

where mP (γ) is defined in equation (17) and Z is a Gaussian process with covariance kernel given

by:

K(γ1, γ2) = Sgg(γ1, γ2) + 2Πµ′γ1
B†ShhB†µγ2 + Πµ′γ1

B†Sgh(γ2)

+Πµ′γ2
B†Sgh(γ1),

with µγ1 = E(∇θ1(g
′
t+1(u1,t+1)w(Zt, γ1))), B† = (−E(∇2

θ1
q1(u1,t)))−1,

Sgg(γ1, γ2) =
∑∞

j=−∞E(g′(u1,s+1)w(Zs, γ1)g′(u1,s+j+1)w(Zs+j , γ2)),

Shh =
∑∞

j=−∞E(∇θ1q1(u1,s)∇θ1q1(u1,s+j)′),

Sgh(γ1) =
∑∞

j=−∞E(g′(u1,s+1)w(Zs, γ1)∇θ1q1(u1,s+j)′), and γ, γ1, and γ2 are generic elements of

Γ.

(ii) Under HA, for ε > 0, limP→∞ Pr
(

1
P

∫
Γ mP (γ)2φ(γ)dγ > ε

)
= 1.

As in the previous application, the limiting distribution under H0 is a Gaussian process with a

covariance kernel that reflects both the dependence structure of the data and the effect of parameter

estimation error. Hence, critical values are data dependent and cannot be tabulated.

In order to implement this statistic using the block bootstrap for recursive m-estimators, define13

θ̃∗1,t = (θ̃∗1,1,t, θ̃
∗
1,2,t)

′ = arg min
θ1∈Θ1

1
t

t∑

j=2

[q1(y∗j − θ1,1 − θ1,2y
∗
j−1)

−θ′1
1
T

T−1∑

i=2

∇θq1(yi − θ̂1,1,t − θ̂1,2,tyi−1)] (18)

Also, define ũ∗1,t+1 = y∗t+1 −
(

1 y∗t
)
θ̃∗1,t. The bootstrap test statistic is:

M∗
P =

∫

Γ
m∗

P (γ)2φ(γ)dγ,

13Recall that y∗t , Z∗,t is obtained via the resampling procedure described in Section 2
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where, recalling that g = q1,

m∗
P (γ) =

1
P 1/2

T−1∑

t=R

(
g′

(
y∗t+1 −

(
1 y∗t

)
θ̃∗1,t

)
w(Z∗,t, γ)− 1

T

T−1∑

i=1

g′
(
yi+1 −

(
1 yi

)
θ̂1,t

)
w(Zi, γ)

− 1
T

T−1∑

i=1

g′
(
yi+1 −

(
1 yi

)
θ̂1,t

)
w(Zi, γ)

)
(19)

As in the reality check case, the bootstrap statistic in (19) is characterized by the fact that

the bootstrap (resampled) component is constructed only over the last P observations, while the

sample component is constructed over all T observations. The same heuristic arguments given to

justify this form of bootstrap statistic in the previous application also apply here.14

Proposition 5: Let Assumptions A1-A3 and A5 hold. Also, assume that as T →∞, l →∞, and

that l
T 1/4 → 0. Then, as T, P and R →∞,

P

(
ω : sup

v∈<

∣∣∣∣P ∗
T

(∫

Γ
m∗

P (γ)2φ(γ)dγ ≤ v

)
− P

(∫

Γ
mµ

P (γ)2φ(γ)dγ ≤ v

)∣∣∣∣ > ε

)
→ 0,

where mµ
P (γ) = mP (γ)−√PE

(
g′(u1,t+1)w(Zt, γ)

)
.

The above result suggests proceeding the same way as in the first application. For any bootstrap

replication, compute the bootstrap statistic, M∗
P . Perform B bootstrap replications (B large) and

compute the percentiles of the empirical distribution of the B bootstrap statistics. Reject H0 if

MP is greater than the (1− α)th-percentile. Otherwise, do not reject. Now, for all samples except

a set with probability measure approaching zero, MP has the same limiting distribution as the

corresponding bootstrap statistic under H0, thus ensuring asymptotic size equal to α. Under the

alternative, MP diverges to (plus) infinity, while the corresponding bootstrap statistic has a well

defined limiting distribution, ensuring unit asymptotic power.

5 Monte Carlo Results

In this section we carry out a series of Monte Carlo experiments using the out-of-sample ICM test

that are closely related to those carried out by Corradi and Swanson (2002), although parameter-

izations are in some instances different, and critical values used in that paper where constructed
14Note that Monte Carlo experiments reported on in Section 5 examine other functionals of mP (γ), including

M sup
P = supγ∈Γ |mP (γ)| and |MP | =

∫
Γ
|mp(γ)|φ(γ)dγ.
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using the conditional p-value approach. We begin by generating data according to the following

data generating processes:

xt = a1 + a2xt−1 + u1,t, u1,t ∼ iidN(0, 1)

Size1: yt = a1 + a2yt−1 + u2,t, u2,t ∼ iidN(0, 1)

Size2: yt = a1 + a2yt−1 + a3u2,t−1 + u2,t

Power1 : yt = a1 + a2yt−1 + exp(tan−1(yt−1/2)) + u2,t

Power2 : yt = a1 + a2yt−1 + 2 exp(tan−1(xt−1/2)) + u2,t

Power3 : yt = a1 + a2yt−1 + xt−1 + u2,t

Power4 : yt = a1 + a2yt−1 + 2xt−1 + u2,t

Power5 : yt = a1 + a2yt−1 + xt−11{xt−1 > a1/(1− a2)}+ u2,t

Power6 : yt = a1 + a2yt−1 + 2xt−11{xt−1 > a1/(1− a2)}+ u2,t

Power7 : yt = a1 + a2yt−1 + exp(tan−1(xt−1/2)) + a3u2,t−1 + u2,t

Power8 : yt = a1 + a2yt−1 + 2 exp(tan−1(xt−1/2)) + a3u2,t−1 + u2,t

Power9 : yt = a1 + a2yt−1 + xt−1 + a3u2,t−1 + u2,t

Power10: yt = a1 + a2yt−1 + 2xt−1 + a3u2,t−1 + u2,t

Power11: yt = a1 + a2yt−1 + xt−11{xt−1 > a1/(1− a2)}+ a3u2,t−1 + u2,t

Power12: yt = a1 + a2yt−1 + 2xt−11{xt−1 > a1/(1− a2)}+ a3u2,t−1 + u2,t.

The benchmark models (Size1 and Size2) are AR(1) and ARMA(1,1) processes. The null hy-

pothesis is that no competing model outperforms the benchmark model. The alternative models

all include (non)linear functions of yt−1. Thus, our focus is on (non)linear out-of-sample Granger

causality testing. The functional forms that are specified under the alternative include: (i) exponen-

tial (Power1,Power2); (ii) linear (Power3,Power4); and (iii) self exciting threshold (Power5,Power6).

In addition, Power7-Power12 are the same as Power1-Power6, except that an MA(1) term is added.

Notice that Power1 and Power2 include a nonlinear term that is similar in form to the test func-

tion, g(·). Also, Power3 and Power4 serve as linear causality benchmarks. In all experiments,

we set g(zt−1, γ) = exp(
∑2

i=1(γi tan−1((zi,t−1 − zi)/2σ̂zi))), with z1,t−1 = xt−1, z2,t−1 = yt−1, and

γ1, γ2 scalars. Additionally, define Γ = [0.0, 5.0]x[0.0, 5.0]. We consider a grid that is delineated by

increments of size 0.1, so that overall we have 10000 (100× 100) evaluation points (with the point

{0,0} being omitted). The statistics MP and |MP | have been computed as simple averages over

the 10000 evaluation points, while M sup
P has been computed as the maximum over the evaluations

points. We consider quadratic loss, so that when the DGPs are as in Size1 and Size2, the best
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1-step ahead predictor is the conditional mean (i.e. a1 + a2yt). All results are based on 500 Monte

Carlo replications, and samples of T=150, T=300, T=600, and T = 1200 observations are used.

For the sake of brevity, results for T=600 and T =1200 are not included and are available upon

request, although there is little additional to see in these results, as power increases substantially

as T increases, just as is the case when one moves from T = 150 to T = 300 observations, and all

tests have empirical rejection frequencies that are fairly close to nominal test levels.15 In addition,

the following parameterization are used: a1 = 1.0, a2 = {0.3, 0.6}, and a3 = 0.3. Finally, bootstrap

critical values are constructed using 100 simulated statistics, the block length, l, is set equal to

{2, 4, 5}, and P = (2/3)T.

Findings are summarized in Tables 1-2. The first column in the tables states the model type

(e.g. Size1), and numerical entries are rejection frequencies for the three different statistics (MP ,

M sup
P , and |MP |), as well as for various values of l and a2. Although results are only reported for

the case where P = (2/3)T , additional results for P = 0.4T , 0.5T, and 0.6T were also tabulated.

These results are qualitatively the same as those reported, and are available upon request from the

authors. Overall, results are quite clear-cut, as is evidenced by inspection of the tables. Under H0,

the empirical level of the test is often fairly close to the nominal 10% level, regardless of whether

MP , M sup
P , or |MP | is used, and the empirical level improves when the sample size is increased. Of

note is that our empirical level results suggest that the block bootstrap may be preferable to the

conditional p−value approach reported on by Corradi and Swanson (2002) for this test, as they

obtained values as high as 0.15, even though the smallest sample they considered was T = 600.16

The finite sample rejection frequency is high under the alternatives denoted Power1 to Power

12 (often above 0.50 and sometimes as high as 0.80), even for samples as small as 300 observations

(see the upper panel of Table 2). Not surprisingly, power is very poor for very small samples

(see Table 1, where T = 150). Indeed, results for T = 150 are included for precisely this reason;

namely to illustrate the substantial power increases when even moderately larger samples of 300

observations are used, and to illustrate the pitfalls associated with using small samples with these

sorts of ICM type tests. Also, when the degree of dependence is increased (i.e. from a2 = 0.3 to
15Of course, and as expected, block lengths must be increased as sample sizes are increased in order to retain good

finite sample empirical level when using these tests.
16The results reported by Corradi and Swanson (2002) worsen considerably when samples smaller than T = 600 are

used, particularly with regard to power. Complete results comparing the two approaches are avialable upon request

from the authors.
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a2 = 0.6), power is much poorer (compare Panels A and B in either Table 1 or Table 2), although

the rate at which power increases as the sample is increased appears to be somewhat immune to

the degree of dependence. Of course, and as mentioned above, it should be stressed that power

increases considerably when larger samples are used. For example, when T = 600, most power

entries for the case where a2 = 0.3 range from 0.75-0.99, while the case where a2 = 0.6 has most

entries ranging from 0.40-0.78, when P = (2/3)T (results are available upon request).

Of final note is that the empirical test level is reasonably close to nominal, even when T = 150,

regardless of whether there is an MA component in the error process (compare Size1 with Size2 in

Panel A), as long as the data exhibits little dependence (i.e. a2 = 0.3). When a2 = 0.6 and T = 150,

however, empirical level is very poor when there is an MA error component (see Size 2 in Panel

B). Interestingly, though, empirical level becomes robust to data dependence quite quickly as the

sample is increased, as can be noted by examining empirical level figures in Table 2, Panel B, and

comparing these with the figures reported in Table 1, Panel B. In summary, the block bootstrap for

recursive m-estimators is not only easy to apply, but also appears to generate reasonable inference,

at least when applied to the out-of-sample ICM test.

6 Conclusions

In many instances, test statistics based on recursive and/or rolling estimation schemes have limiting

distributions which are functionals of Gaussian processes, and which have covariance kernels that

reflect parameter uncertainty. In these cases, limiting distributions are thus not nuisance param-

eter free, and valid critical values are often obtained via bootstrap methods. In this paper, we

first developed a bootstrap procedure that properly captures the contribution of parameter esti-

mation error in recursive estimation schemes using dependent data. Intuitively, when parameters

are estimated recursively, as is done in our framework, earlier observations in the sample enter

into test statistics more frequently than later observations. This induces a location bias in the

bootstrap distribution, which can be either positive or negative across different samples, and hence

the bootstrap modification that we discuss is required in order to obtain first order validity of the

bootstrap. Within this framework, we then presented two applications, both based on forecast

model selection. In particular, we considered the comparison of multiple (possibly misspecified)

models in terms of out-of-sample predictive accuracy. Our applications extend the White (2000)
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reality check to the case of non vanishing parameter estimation error, and extend the integrated

conditional moment (ICM) tests of Bierens (1982, 1990) and Bierens and Ploberger (1997) to the

case of out-of-sample prediction. Of note is that in both of these examples, it is shown that we

must construct bootstrap statistics that are different from the “usual” bootstrap statistics, which

are defined as the difference between the statistic computed over the sample observations and over

the bootstrap observations. This feature of our applications suggests that one must be careful

when forming bootstrap statistics in all cases for which recursive estimation is used and predictive

model selection is the objective. Finally, the results of a Monte Carlo investigation of the ICM

test suggest that the bootstrap procedure proposed in this paper yield tests with reasonable finite

sample properties for samples with as few as 300 observations.
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7 Appendix

As the statements below hold for i = 1, ..., n, and given that the proofs are the same regardless

which model is considered, for notational simplicity we drop the subscript i.

Proof of Theorem 1: Given (7), by first order conditions,

1
t

t∑

j=s

(
∇θq(y∗j , Z

∗,j−1, θ̃∗t )−
(

1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ̂t)

))
= 0.

Thus, a Taylor expansion around θ̂t yields:

(
θ̃∗t − θ̂t

)
=


1

t

t∑

j=s

∇2
θq(y

∗
j , Z

∗,j−1, θ
∗
t )



−1

×

1

t

t∑

j=s

(
∇θq(y∗j , Z

∗,j−1, θ̂t)−
(

1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ̂t)

))
 ,

where θ
∗
t ∈

(
θ̃∗t , θ̂t

)
. Hereafter, let B† =

(
E

(∇θq(yj , Z
j−1, θ†)

))−1
. Recalling that we resample

from the entire sample, regardless the value of t, it follows that:

1
t

t∑

j=s

E∗ (∇2
θq(y

∗
j , Z

∗,j−1, θ)
)

=
1
T

T−1∑

k=s

∇2
θq(yk, Z

k−1, θ) + OP ∗

(
l

T

)
, Pr−P, (20)

where the OP ∗
(

l
T

)
term is due to the end effect (i.e. due to the contribution of the first and last l

observations, as shown in Lemma A1 in Fitzenberger (1997)). Thus,

sup
t≥R

sup
θ∈Θ

∣∣∣∣∣∣


1

t

t∑

j=s

∇2
θq(y

∗
j , Z

∗,j−1, θ)



−1

−B†

∣∣∣∣∣∣

≤ sup
t≥R

sup
θ∈Θ

∣∣∣∣∣∣


1

t

t∑

j=s

∇2
θq(y

∗
j , Z

∗,j−1, θ)



−1

−

1

t

t∑

j=s

E∗ (∇2
θq(y

∗
j , Z

∗,j−1, θ)
)


−1∣∣∣∣∣∣

+sup
t≥R

sup
θ∈Θ

∣∣∣∣∣∣


1

t

t∑

j=s

E∗ (∇2
θq(y

∗
j , Z

∗,j−1, θ)
)


−1

−B†

∣∣∣∣∣∣
. (21)

Given (20), and Assumptions A1-A2, the second term on the RHS of (21) is oP (1). Recalling

also that the resampled series consists of b independent and identically distributed blocks, and that

b/T 1/2 →∞, it follows that the first term on on the RHS of (21) is oP ∗(1) Pr−P, given the uniform
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law of large number for iid random variables. Thus,

1√
P

T−1∑

t=R

(
θ̃∗t − θ̂t

)

= B† 1√
P

T−1∑

t=R


1

t

t∑

j=s

(
∇θq(y∗j , Z

∗,j−1, θ̂t)−
(

1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ̂t)

))


+oP ∗(1) Pr−P, (22)

and a first order expansion of the RHS of (22) around θ† yields:

1√
P

T−1∑

t=R

(
θ̃∗t − θ̂t

)

= B† 1√
P

T−1∑

t=R


1

t

t∑

j=s

(
∇θq(y∗j , Z

∗,j−1, θ†)−
(

1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ†)

))


+B† 1√
P

T−1∑

t=R





1

t

t∑

j=s

(
∇2

θq(y
∗
j , Z

∗,j−1, θt)−
(

1
T

T−1∑

k=s

∇2
θq(yk, Z

k−1, θt)

))


×
(
θ̂t − θ†

))
+ oP ∗(1) Pr−P. (23)

We need to show that the second term on the RHS of (23) is oP ∗(1) Pr−P. Note that this term is

majorized by

B† sup
t≥R

sup
θ∈Θ

√
P

t1+ϑ

∣∣∣∣∣∣

t∑

j=s

(
∇2

θq(y
∗
j , Z

∗,j−1, θ)−
(

1
T

T−1∑

k=s

∇2
θq(yk, Z

k−1, θ)

))∣∣∣∣∣∣
sup
t≥R

tϑ
∣∣∣θ̂t − θ†

∣∣∣ ,

with 1/3 < ϑ < 1/2. Recalling also that bl = T and l = o(T 1/4), it follows that b/T 3/4 → ∞.

Thus, by the same argument used in Lemma 1(i) in Altissimo and Corradi (2002), and given (20),

it follows that:

sup
t≥R

sup
θ∈Θ

∣∣∣∣∣∣
1
t

t∑

j=s

(
∇2

θq(y
∗
j , Z

∗,j−1, θ)−
(

1
T

T−1∑

k=s

∇2
θq(yk, Z

k−1, θ)

))∣∣∣∣∣∣
= Oa.s.∗

(√
log log b

b

)
, a.s.−P.

Thus,

sup
t≥R

sup
θ∈Θ

√
P

t1+ϑ

∣∣∣∣∣∣

t∑

j=s


∇2

θq(y
∗
j , Z

∗,j−1, θ)−

 1

T

T∑

j=s

∇2
θq(yj , Z

j−1, θ)







∣∣∣∣∣∣
= oP ∗(1), Pr−P,
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for ϑ > 1/3. Finally, for all ϑ < 1/2, supt≥R tϑ
∣∣∣θ̂t − θ†

∣∣∣ = oP (1) by Lemma A3 in West (1996).

Recalling that

1
t

t∑

j=s

E∗
(
∇θq(y∗j , Z

∗,j−1, θ†)
)

=
1
T

T−1∑

k=s

∇θq(yk, Z
k−1, θ†) + OP

(
l

T

)
,

the right hand side of (23) can be written as:

1√
P

T−1∑

t=R

(
θ̃∗t − θ̂t

)

= B† 1√
P

T−1∑

t=R


1

t

t∑

j=s

(
∇θq(y∗j , Z

∗,j−1, θ†)− E∗
(
∇θq(y∗j , Z

∗,j−1, θ†)
))


 + oP ∗(1) Pr−P

= B†aR,0√
P

R∑

j=1

(
∇θq(y∗j , Z

∗,j−1, θ†)−E∗
(
∇θq(y∗j , Z

∗,j−1, θ†)
))

+B† 1√
P

P−1∑

j=1

aR,j

(
∇θq(y∗R+j , Z

∗,R+j−1, θ†)− E∗
(
∇θq(y∗R+j , Z

∗,R+j−1, θ†)
))

+oP ∗(1) Pr−P, (24)

where aR,j = aR,i = (R + i)−1 + ... + (R + P − 1)−1, for 0 ≤ i < P − 1. The second equality on the

RHS of (24) follows directly from Lemma A5 in West (1996).

Now, 1√
P

∑T−1
t=R

(
θ̃∗t − θ̂t

)
satisfies a central limit theorem for triangular independent arrays (see e.g.

White and Wooldridge (1988)), and thus, conditional on the sample, it converges in distribution to

a zero mean normal random variable.

Furthermore, by Theorem 4.1 in West (1996):

1√
P

T∑

t=R

(
θ̂t − θ†

)
d→ N

(
0, 2ΠB†C00B

†
)

,

where C00 =
∑∞

j=−∞E
((∇θq(y1+s, Z

s, θ†)
) (∇θq(y1+s+j , Z

s+j , θ†)
)′) and Π = 1 − π−1 ln(1 + π).

Therefore, the statement in the theorem will follow once we have shown that:

V ar∗
(

1√
P

T∑

t=R

(
θ̃∗t − θ̂t

))
= 2ΠB†C00B

†, Pr−P. (25)

For notational simplicity, let ∇θq(y∗j , Z
∗,j−1, θ†) = h∗j , and let ∇θq(yj , Z

j−1, θ†) = hj . Additionally,

let hT = 1
T

∑T
t=s ht. Then, given (24):

V ar∗
(

1√
P
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(
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=

R

P
V ar∗


aR,0
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

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+
1
P

V ar∗



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aR,jh
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R+j


 +

1
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
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aR,jh
∗
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
 .

As all blocks are independent, conditional on the sample, the covariance term in this expression

is equal to zero. Without loss of generality, set R = b1l and P = b2l, where b1 + b2 = b. It then

follows that, up to a term of order O(l/R1/2),

V ar∗
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Thus,
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, (26)

where γj = Cov(h1, h1+j). By West (1996, proof of Lemma A5), it follows that
Ra2

R,0

P

∑l
j=−l γj →

π−1 ln2(1 + π)C00, while the second term on the RHS above goes to zero, Pr−P (see e.g. Theorem

2 in Newey and West (1987)). Now, up to a term of order O(l/P 1/2) Pr−P :
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k=b1+1

l∑

i=1

aR,((k−1)l+i)hIk+i




=
1
P

E∗




b∑

k=b1+1

l∑

i=1

l∑

j=1

aR,((k−b1−1)l+i)aR,((k−b1−1)l+j)(hIk+i − hT )(hIk+j − hT )′




=
1
P

b∑

k=b1+1

l∑

i=1

l∑

j=1

aR,((k−b1−1)l+i)aR,((k−b1−1)l+j)E
∗ (

(hIk+i − hT )(hIk+j − hT )′
)
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=
1
P

b∑

k=b1+1

l∑

i=1

l∑

j=1

aR,((k−b1−1)l+i)aR,((k−b1−1)l+j)

(
1
T

T−l∑

t=l

(ht+i − hP )(h+t+j − hP )′
)

+ O(l/P 1/2) Pr−P

=
1
P

b∑

k=b1+1

l∑

i=1

l∑

j=1

aR,((k−b1−1)l+i)aR,((k−b1−1)l+j)γi−j

+
1
P

b∑

k=b1+1

l∑

i=1

l∑

j=1

aR,((k−b1−1)l+i)aR,((k−b1−1)l+j)

(
1
T

T−l∑

t=l

(
(ht+i − hT )(ht+j − hT )′ − γi−j

)
)

+O(l/P 1/2) Pr−P (27)

We need to show that the last term on the last equality in (27) is o(1) Pr−P. First note that this

term is majorized by
∣∣∣∣∣∣
b2

P

l∑

i=1

l∑

j=1

(
1
T

T−l∑

t=l

(
(ht+i − hT )(ht+j − hT )′ − γi−j

)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
1
T

T−l∑

t=l

l∑

j=−l

(
(ht − hT )(ht+j − hT )′ − γj

)
∣∣∣∣∣∣
+ O(l/P 1/2) Pr−P. (28)

The first term on the RHS of (28) goes to zero in probability, by the same argument as that used

in Lemma 2 in Corradi (1999).17 With regard to the first term on the RHS of the last equality in

(27), note that:

1
P

b2∑

k=1

l∑

i=1

l∑

j=1

aR,((k−1)l+i)aR,((k−1)l+j)γi−j =
1
P

P−l∑

t=l

l∑

j=−l

aR,taR,t+jγj + O(l/P 1/2) Pr−P

=
1
P

P−l∑

t=l

a2
R,t

l∑

j=−l

γj +
1
P

P−l∑

t=l

l∑

j=−l

(aR,taR,t+j − a2
R,t)γj + O(l/P 1/2) Pr−P.

By the same argument as that used in Lemma A5 of West (1996), the second term on the RHS

above approaches zero, while:

1
T

P−l∑

t=l

a2
R,t

l∑

j=−l

γj →
(
2[1− π−1 ln(1 + π)]− π−1 ln2(1 + π)

)
C00.

As the first term on the RHS of (26) converges to π−1 ln2(1 + π)C00 (see West (1996), p.1082), the

desired outcome then follows.2
17The domination conditions here are weaker than those in Lemma 2 in Corradi (1999), as we require only conver-

gence to zero in probability, and not almot sure convergence.
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Proof of Proposition 2: Let ui,t = yt − κ(Zt−1, θi,t), with θi,t ∈
(
θ̂i,t, θ

†
)

. Via a mean value

expansion, and given Assumptions A1-A2:

SP (1, k) =
1

P 1/2

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1))

=
1

P 1/2

T−1∑

t=R

(g(u1,t+1)− g(uk,t+1))

+
1
P

T−1∑

t=R

g′(u1,t+1)∇θ1κ1(Zt, θ1,t)P 1/2
(
θ̂1,t − θ†1

)

− 1
P

T−1∑

t=R

g′(uk,t+1)∇θk
κk(Zt, θk,t)P 1/2

(
θ̂k,t − θ†k

)

=
1

P 1/2

T−1∑

t=R

(g(u1,t+1)− g(uk,t+1))

+µ1
1

P 1/2

T−1∑

t=R

(
θ̂1,t − θ†1

)
− µk

1
P 1/2

T−1∑

t=R

(
θ̂k,t − θ†k

)
+ oP (1),

where µ1 = E
(
g′(u1,t+1)∇θ1κ1(Zt, θ†1)

)
, and µk is defined analogously. Now, when all competitors

have the same predictive accuracy as the benchmark model, by the same argument as that used in

Theorem 4.1 of West (1996), it follows that:

(
Sµ

P (1, 2), ..., Sµ
P (1, n)

) d→ N(0, V ),

where Sµ
P (1, k) = SP (1, k)−√PE (g(u1,t+1)− g(uk,t+1)) , and where V is an n×n matrix with i, j

element vi,j defined in the statement of the proposition. The distribution of SP then follows as a

straightforward application of the continuous mapping theorem.2

Proof of Proposition 3: Let û∗i,t+1 = y∗t+1 − κi(Z∗,t, θ̂i,t), u∗i,t+1 = y∗t+1 − κi(Z∗,t, θ
∗
i,t), with

θ
∗
i,t ∈

(
θ̃∗i,t, θ̂i,t

)
, Additionally, let û

(t)
i,j+1 = yj+1 − κi(Zj , θ̂i,t). It follows that:

S∗P (1, k) =
1√
P

T−1∑

t=R


(

g(ũ∗1,t+1)− g(ũ∗k,t+1)
)− 1

T

T∑

j=s

(
g(û(t)

1,j+1)− g(û(t)
k,j+1)

)



=
1√
P

T−1∑

t=R


(

g(û∗1,t+1)− g(û∗k,t+1)
)− 1

T

T∑

j=s

(
g(û(t)

1,j+1)− g(û(t)
k,j+1)

)



+
1

P 1/2

T−1∑

t=R

(
∇θ1g(u∗1,t+1)

(
θ̂∗1,t − θ̂1,t

)
−∇θ1g(u∗k,t+1)

(
θ̂∗k,t − θ̂k,t

))
. (29)
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Now,

E∗ (
g(û∗1,t+1)− g(û∗k,t+1)

)
=

1
T

T∑

j=s

(
g(û(t)

1,j+1)− g(û(t)
k,j+1)

)
+ O

(
l

T

)
.

Thus, by Theorem 3.5 in in Künsch (1989), the first term on the second equality on the RHS of

(29) converges in P ∗−distribution to a zero mean normal random variable with variance equal to

limP→∞ V ar∗
(

1√
P

∑T−1
t=R

(
g(û∗1,t+1)− g(û∗k,t+1)

))
, conditional on the sample and for all samples

except a subset with probability measure approaching zero. Now, by the same argument used in

the proof of Theorem 1:

V ar∗
(

1√
P

T−1∑

t=R

(
g(û∗1,t+1)− g(û∗k,t+1)

)
)

= V ar

(
1√
P

T−1∑

t=R

(g(û1,t+1)− g(ûk,t+1))

)
+ o(1) Pr−P.

This implies that the first term in the second equality on the RHS of (29) has the same lim-

iting distribution as 1√
P

∑T−1
t=R ((g(u1,t+1)− g(uk,t+1))− E (g(u1,t+1)− g(uk,t+1))) , conditional on

the sample, and for all samples except a subset with probability measure approaching zero. Fi-

nally, the last term in (29) has the same limiting distribution as µ1
1

P 1/2

∑T−1
t=R

(
θ̂∗1,t − θ̂1,t

)
−

µk
1

P 1/2

∑T−1
t=R

(
θ̂∗k,t − θ̂k,t

)
, conditional on the sample, and for all samples except a subset with

probability measure approaching zero. The statement in the proposition then follows as a straight-

forward application of the continuous mapping theorem.2

Proof of Proposition 4: The proof follows directly from Theorem 1 in Corradi and Swanson

(2002).2

Proof of Proposition 5: Recall that g = q1. Additionally, let ũ∗1,t+1 = y∗t+1 −
(

1 y∗t
)
θ̃∗1,t,

û∗1,t+1 = y∗t+1 −
(

1 y∗t
)
θ̂1,t, u∗1,t+1 = y∗t+1 −

(
1 y∗t

)
θ
∗
1,t, and û

(t)
1,j+1 = yj+1 −

(
1 yt

)
θ̂1,t,

where θ
∗
1,t ∈

(
θ̃∗1,t, θ̂1,t

)
. It then follows that:

1
P 1/2

T−1∑

t=R


g′(ũ∗1,t+1)w(Z∗,t, γ)− 1

T

T−1∑

j=2

g′(û(t)
1,j+1)w(Zj , γ)




=
1

P 1/2

T−1∑

t=R


g′(û∗1,t+1)w(Z∗,t, γ)− 1

T

T−1∑

j=2

g′(û(t)
1,j+1)w(Zj , γ)




+
1

P 1/2

T−1∑

t=R

(∇θg
′(u∗1,t+1)w(Z∗,t, γ)

) (
θ̃∗1,t − θ̂1,t

)
. (30)

First, note that the first term on the RHS of the last equality in (30) has the same limiting

distribution as
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1
P 1/2

∑T−1
t=R

(
g′(u1,t+1)w(Zt, γ)−E

(
g′(u1,t+1)w(Zt, γ)

))
, pointwise in γ. Further, note that stochas-

tic equicontinuity on Γ can be shown using the same approach as that used in the proof of Theo-

rem 2 in Corradi and Swanson (2002). Therefore, under H0, any continuous functional over Γ of
1

P 1/2

∑T−1
t=R

(
g′(u∗1,t+1)w(Z∗,t, γ)− 1

T

∑T−1
j=2 g′(û(t)

1,j+1)w(Zj , γ)
)

has the same limiting distribution of

the same functional of 1
P 1/2

∑T−1
t=R

(
g′(u1,t+1)w(Zt, γ)− E

(
g′(u1,t+1)w(Zt, γ)

))
. Finally, note that

1
P 1/2

∑T−1
t=R

(∇θg
′(u∗1,t+1)w(Z∗,t, γ)

) (
θ̃∗1,t − θ̂1,t

)
properly captures the contribution of recursive pa-

rameter estimation error to the covariance kernel.2
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Künsch H.R., (1989), The Jackknife and the Bootstrap for General Stationary Observations, Annals
of Statistics, 17, 1217-1241.

Lahiri, S.N., (1999), Theoretical Comparisons of Block Bootstrap Methods, Annals of Statistics,
27, 386-404.

Linton, O., E. Maasoumi and Y.J. Whang, (2003), Consistent Testing for Stochastic Dominance
Under General Sampling Schemes, Manuscript, LSE, Southern Methodist University and Ewha
University.

McCracken, M.W., (2004), Asymptotics for Out of Sample Tests of Causality, Working Paper,
University of Missouri-Columbia.

Newey, W.K. and K.D. West, (1987), A Simple Positive-Definite Heteroskedasticity and Autocor-
relation Consistent Covariance Matrix, Econometrica, 55, 703-708.

Politis, D.N. and J.P. Romano, (1994), The Stationary Bootstrap, Journal of the American Statis-
tical Association, 89, 1303-1313.

Politis, D.N., J.P. Romano and M. Wolf, (1999), Subsampling, Springer and Verlag, New York.

Schörfheide, F., (2003), VAR Forecasting under Misspecification, Journal of Econometrics, forth-
coming.

33



Stinchcombe, M.B. and H. White, (1998), Consistent Specification Testing with Nuisance Param-
eters Present Only Under the Alternative, Econometric Theory, 14, 3, 295-325.

Swanson, N.R. and H. White, (1997), A Model Selection Approach to Real-Time Macroeconomic
Forecasting using Linear Models and Artificial Neural Networks, Review of Economics and Statis-
tics, 79, 540-550.

Weiss, A., (1996) Estimating Time Series Models Using the Relevant Cost Function, Journal of
Applied Econometrics, 11, 539-560.

West, K., (1996), Asymptotic Inference About Predictive Ability, Econometrica, 64, 1067-1084.

White, H., (2000), A Reality Check for Data Snooping, Econometrica, 68, 1097-1126.

Wooldridge, J.M. and H. White, (1988), Some Invariance Principles and Central Limit Theorems
for Dependent and Heterogeneous Processes, Econometric Theory, 4, 210-230.

Zellner, A., (1986), Bayesian Estimation and Prediction Using Asymmetric Loss Function, Journal
of the American Statistical Association, 81, 446-451.

34



Table 1: Rejection Frequencies of Various MP Tests Using the Bootstrap for Recursive

m-Estimators: T=150, P=2/3 ∗

Model l=2 l=4 l=5
MP M sup

P |MP | MP M sup
P |MP | MP M sup

P |MP |
Panel A: a2 = 0.3

Size1 0.10 0.10 0.10 0.06 0.06 0.05 0.06 0.07 0.06
Size2 0.08 0.09 0.08 0.06 0.06 0.05 0.05 0.05 0.04

Power1 0.33 0.30 0.37 0.22 0.16 0.23 0.19 0.16 0.23
Power2 0.46 0.42 0.54 0.26 0.25 0.34 0.26 0.23 0.29
Power3 0.48 0.42 0.51 0.29 0.23 0.35 0.18 0.12 0.25
Power4 0.54 0.49 0.63 0.32 0.27 0.37 0.31 0.26 0.36
Power5 0.53 0.44 0.56 0.29 0.26 0.35 0.27 0.27 0.29
Power6 0.61 0.54 0.67 0.32 0.28 0.40 0.29 0.26 0.35
Power7 0.25 0.20 0.27 0.16 0.12 0.19 0.11 0.11 0.16
Power8 0.43 0.39 0.46 0.26 0.21 0.33 0.26 0.20 0.27
Power9 0.42 0.36 0.45 0.31 0.29 0.38 0.21 0.19 0.27
Power10 0.56 0.48 0.63 0.30 0.21 0.35 0.33 0.22 0.37
Power11 0.45 0.38 0.54 0.26 0.21 0.30 0.23 0.19 0.29
Power12 0.63 0.58 0.69 0.33 0.28 0.36 0.30 0.27 0.33

Panel B: a2 = 0.6
Size1 0.09 0.10 0.10 0.06 0.06 0.04 0.03 0.06 0.02
Size2 0.04 0.05 0.03 0.03 0.04 0.02 0.04 0.06 0.03

Power1 0.16 0.14 0.24 0.11 0.08 0.12 0.08 0.06 0.07
Power2 0.23 0.20 0.27 0.13 0.10 0.16 0.11 0.08 0.13
Power3 0.34 0.31 0.36 0.16 0.14 0.17 0.14 0.11 0.17
Power4 0.28 0.26 0.35 0.18 0.17 0.19 0.15 0.11 0.19
Power5 0.33 0.28 0.42 0.24 0.20 0.25 0.13 0.12 0.18
Power6 0.35 0.32 0.42 0.17 0.16 0.21 0.13 0.12 0.12
Power7 0.11 0.10 0.15 0.06 0.08 0.08 0.06 0.03 0.07
Power8 0.19 0.16 0.24 0.12 0.12 0.16 0.11 0.10 0.15
Power9 0.28 0.25 0.32 0.13 0.12 0.21 0.11 0.08 0.13
Power10 0.30 0.28 0.36 0.16 0.14 0.17 0.17 0.12 0.18
Power11 0.33 0.25 0.35 0.17 0.15 0.17 0.16 0.15 0.16
Power12 0.34 0.30 0.37 0.16 0.16 0.20 0.16 0.15 0.17

∗ Notes: All entries are rejection frequencies of the null hypothesis of equal predictive accuracy based on 10% nominal size
critical values constructed using the bootstrap approach discussed above, where l denotes the block length, and empirical
bootstrap distributions are constructed using 100 bootstrap statistics. For all models denoted Poweri, i = 1, ..., 12, data are
generated with (non) linear Granger causality. In all experiments, the ex ante forecast period is of length P , which is set equal
to (2/3)T, where T is the sample size. All models are estimated recursively, so that parameter estimates are updated before
each new prediction is constructed. All reported results are based on 2000 Monte Carlo simulations. See above for further
details.
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Table 2: Rejection Frequencies of Various MP Tests Using the Bootstrap for Recursive

m-Estimators: T=300, P=2/3 ∗

Model l=2 l=4 l=5
MP M sup

P |MP | MP M sup
P |MP | MP M sup

P |MP |
Panel A: a2 = 0.3

Size1 0.10 0.09 0.11 0.06 0.06 0.08 0.07 0.07 0.07
Size2 0.08 0.08 0.08 0.07 0.07 0.07 0.05 0.05 0.09

Power1 0.54 0.44 0.61 0.42 0.36 0.47 0.39 0.35 0.45
Power2 0.78 0.71 0.84 0.57 0.46 0.69 0.56 0.47 0.64
Power3 0.75 0.65 0.83 0.60 0.46 0.74 0.49 0.48 0.54
Power4 0.86 0.72 0.88 0.64 0.54 0.66 0.57 0.51 0.64
Power5 0.80 0.73 0.88 0.65 0.59 0.70 0.60 0.50 0.66
Power6 0.87 0.82 0.90 0.67 0.64 0.76 0.67 0.58 0.71
Power7 0.40 0.34 0.47 0.36 0.26 0.40 0.30 0.24 0.39
Power8 0.71 0.61 0.79 0.55 0.43 0.66 0.49 0.37 0.57
Power9 0.69 0.59 0.74 0.50 0.42 0.63 0.43 0.36 0.54
Power10 0.80 0.72 0.87 0.63 0.54 0.68 0.60 0.50 0.69
Power11 0.74 0.67 0.82 0.56 0.51 0.64 0.59 0.51 0.67
Power12 0.85 0.79 0.90 0.68 0.62 0.74 0.62 0.56 0.69

Panel B: a2 = 0.6
Size1 0.11 0.10 0.12 0.09 0.09 0.10 0.09 0.09 0.08
Size2 0.07 0.06 0.07 0.07 0.07 0.08 0.07 0.07 0.07

Power1 0.26 0.21 0.34 0.14 0.13 0.19 0.12 0.10 0.17
Power2 0.35 0.27 0.47 0.23 0.18 0.33 0.21 0.15 0.28
Power3 0.48 0.41 0.57 0.27 0.25 0.35 0.28 0.23 0.32
Power4 0.50 0.44 0.62 0.31 0.24 0.39 0.27 0.25 0.34
Power5 0.59 0.52 0.68 0.32 0.28 0.49 0.29 0.24 0.36
Power6 0.61 0.53 0.71 0.35 0.28 0.46 0.32 0.26 0.43
Power7 0.17 0.12 0.19 0.10 0.09 0.14 0.08 0.08 0.13
Power8 0.37 0.21 0.45 0.19 0.14 0.27 0.17 0.10 0.22
Power9 0.48 0.38 0.53 0.27 0.21 0.36 0.20 0.17 0.28
Power10 0.50 0.41 0.59 0.31 0.25 0.37 0.26 0.23 0.34
Power11 0.57 0.50 0.63 0.31 0.29 0.39 0.32 0.22 0.39
Power12 0.59 0.52 0.68 0.41 0.35 0.48 0.27 0.24 0.35

∗ Notes: See notes to Table 1.
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