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Abstract.

In the conduct of empirical macroeconomic research, unit root, cointegration, common cycle, and related
tests statistics are often constructed using logged data, even though there is often no clear reason, at least
from an empirical perspective, why logs should be used rather than levels. Unfortunately, it is also the case
that standard data transformation tests, such as those based on the Box-Cox transformation, cannot be
shown to be consistent unless an assumption is made concerning whether the series being examined is 1(0)
or I(1), so that a sort of circular testing problem exists. In this paper, we address two quite different but
related issues that arise in the context of data transformation. First, we address the circular testing problem
that arises when choosing data transformation and the order of integratedness. In particular, we propose a
simple randomized procedure, coupled with sample conditioning, for choosing between levels and log-levels
specifications in the presence of deterministic and/or stochastic trends. Second, we note that even if pre-
testing is not undertaken to determine data transformation, it is important to be aware of the impact that
incorrect data transformation has on tests frequently used in empirical works. For this reason, we carry out
a series of Monte Carlo experiments illustrating the rather substantive effect that incorrect transformation
can have on the finite sample performance of common feature and cointegration tests. These Monte Carlo
findings underscore the importance of either using economic theory as a guide to data transformation and/or
using econometric tests such as the one discussed in this paper as aids when choosing data transformation.
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1 Introduction

Engle and Kozicki (1993) have introduced the concept of common feature among time series. In their
terminology, if the individual series exhibit a given feature, say serial correlation, heteroskedasticity,
seasonality, etc., but there exist linear combination(s) which do not display that feature, then there
exist a common feature among these series. They also suggest a testing procedure for the null
hypothesis of no common feature, in the context of stationary series. In the context of nonstationary
series, the most known example of a common feature is that of cointegration or common trends;
in fact the individual series display a unit root, but there exist linear combination(s) which do
not display unit root (see e.g. Engle and Granger (1987), Stock and Watson (1988) and King,
Plosser, Stock and Watson (1991)). Vahid and Engle (1993) merge the literature on cointegration
and that on common features: first they show that the existence of a serial correlation common
feature among the first differences of cointegrated series imply the existence of common cycles in
terms of Beveridge-Nelson-Stock-Watson decomposition, second they suggest a test for the number
of common cycles, given the number of common stochastic trends. Extension to the case non
perfectly synchronized cycles (co-dependent cycles) are considered by Vahid and Engle (1997) and
Cubadda and Hecq (2001); common cycles in the presence of seasonally cointegrated series are
considered by Cubadda (1999).!

As it is customary in most of the empirical macroeconomic literature, tests for cointegration,
for common cycle, and related tests are often constructed using logged data. This is consistent
with much of the real business cycle literature (see e.g. Long and Plosser (1983), King, Plosser
and Rebelo (1988(a)(b)) and King, Plosser, Stock, and Watson (1991)), where it is suggested,
for example, that GDP should be modeled in logs, given an assumption that output is generated
according to a Cobb-Douglas production function. More recently, Engle and Issler (1995), Issler
and Vahid (2001), and Vahid and Issler (2002) also show that the real business cycles models cited
above can generate both common trends and common cycles for the log variables. Therefore, from
an economic theory point of view, there is a clear justification for running unit root, cointegration
and common cycle tests using loglinear models. Nevertheless, it is not always obvious by simply
inspecting the data, for example, which transformation is ‘appropriate’, when modeling economic

data (see e.g. Figure 1). Put another way, from a purely empirical point of view (e.g. if one

'Proietti (1997) and Hecq, Palm and Urbain (2001) analyze the common cycles-common trends decomposition
via state-space models.



were constructing prediction models using data-mining techniques) it is not obvious which data
transformation should be used. This distinction is important because there is an implicit assumption
in much of the current literature that transformation done prior to application of tests (such as
cointegration and common cycle tests) will not affect the limiting distribution of the test under the
null hypothesis.

Consider as a case in point the common cycle test of Vahid and Engle (1993). The asymptotic
behavior of their test is based on the fact that the (smallest) canonical correlations are I(0) pro-
cesses. However, this is the case if and only if the first differences of the series are also 7(0).? Now,
it is well known (see e.g. Granger and Hallman (1991) and Corradi (1995)) that nonlinear transfor-
mations of I(1) processes are no longer I(1), and so the first difference of nonlinear transformations
of I(1) processes are no longer I(0). It is in this sense that data transformation can pose a problem.
In particular, under incorrect data transformation we do not know what the asymptotic behavior of
our tests is. Unfortunately, it is also the case that standard data transformation tests, such as those
based on the Box-Cox transformation, cannot be shown to be consistent unless an assumption is
made concerning whether the series being examined is I(0) or I(1), so that a sort of circular testing
problem exists (see below for further discussion). Furthermore, correct choice of data transforma-
tion is crucial when specifying forecasting models using integrated and/or cointegrated variables,
as documented in Arino and Franses (2000) and in Chao, Corradi and Swanson (2001). Of course,
this problem is not unique to unit root, cointegration, and common cycle tests: rather, we focus on
these tests as they are so widely used in the current practice on macroeconometrics.

In this paper, we address two different but related issues that arise in the context of data trans-
formation. First, we study the impact that incorrect data transformation has on frequently used
tests In empirical macroeconomics, such as common trends and/or common cycles tests. This is
mainly accomplished via a series of Monte Carlo experiments illustrating the rather substantive
effect that incorrect transformation can have on the behavior of common cycles and/or cointegra-
tion tests. These Monte Carlo findings underscore the importance of either using economic theory
as a guide to data transformation and/or using econometric tests such as the one discussed in this
paper as aids when choosing data transformation. The second issue that we address is the circular

testing problem that arises when choosing data transformation and the order of integratedness.

2The current convention is to define an integrated process of order d (say I(d), using the terminology of Engle and

Granger (1987)) as one which has the property that the partial sum of the di* difference, scaled by T/, satisfies
a functional central limit theorem (FCLT).



To overcome this problem, we propose a simple randomized procedure, coupled with sample con-
ditioning, for choosing between levels and log-levels specifications in the presence of deterministic
and/or stochastic trends.

In recent years, the choice of data transformation for nonstationary series (henceforth, by non-
stationary we mean I(1)) has received considerable attention in the literature. Important contri-
butions in the area include De Bruin and Franses (1999), Franses and Koop (1998), Franses and
McAleer (1998), Kobayashi (1994), Kobayashi and McAleer (1999a,b) and Kramer and Davies
(2002). One line of research (see e.g. Franses and Koop (1998) and Franses and McAleer (1998))
analyzes the joint problem of choosing the Box-Cox transformation (with levels and logs being
special cases) and choosing between stationarity and nonstationarity. These tests, for example,
should be useful for addressing data transformation when the order of integratedness is unknown,
and Monte Carlo results reported in the papers are rather encouraging. However, we believe that
work still remains to be done before a complete picture of the asymptotic behavior of such tests
based on Box-Cox transformations can be obtained. Broadly speaking, the main issue that arises
when studying the limiting behavior of these and related tests (e.g. tests constructed under both
nonstationarity and nonlinearity) can be summarized as follows. Often, test statistics can be writ-
ten in “ratio” form, where the denominator of the test is an estimator of a (long run) variance. In
such cases, a well defined limiting distribution can be derived under the null hypothesis. However,
under the alternative hypothesis, it is often the case that both the numerator and the denominator
approach infinity, and it may be unclear which diverges at a faster rate. As a consequence, it is
not clear whether many tests have nonzero asymptotic power against alternatives of interest (see
Section 3.1 for examples and discussion). This problem is solved in a rather ingenious way in a re-
cent paper by Kobayashi and McAleer (KM: 1999a), who propose a test for distinguishing between
levels and logs in models with a unit root. In particular, by assuming that the variance of the
innovation process approaches zero at a sufficiently fast rate as the sample increases, KM derive
the limiting distribution of their test under the null hypothesis, and show that the probability of
type II error approaches zero asymptotically.® Our procedure, which distinguishes between the
null hypothesis of a loglinear DGP and the alternative of a (level) linear DGP, does not rely on
small sigma asymptotics. Once we have chosen the correct data transformation, we can proceed by

running standard unit root or stationarity tests, as well as cointegration or common cycle tests, for

3The device that KM use is called small sigma asymptotics (see e.g. Bickel and Doksum (1981)).



example. T'wo points are worth making at this juncture. First, when defining the relevant models
from among which to choose, we allow for rather general, dependent error processes. In this way,
the test is robust to a rich variety of dynamics. Second, we overcome the test consistency problem
discussed above by basing our test on the combined use of a randomization procedure coupled with
sample conditioning. In particular, we add randomness to our basic statistic, proceed by condition-
ing on the sample, and show that for all samples except a set of measure zero, the statistic has a
chi-squared limiting distribution under the null hypothesis, while it diverges under the alternative
hypothesis. The asymptotic behavior of the statistic is driven by the probability measure governing
the added randomness. Nevertheless, conditional on the sample and for all samples except a set
of measure zero, we choose the null hypothesis with probability approaching (1 — «) whenever is
true, and we reject the null hypothesis with probability approaching one whenever is false. We see
randomization as a useful device when we cannot rely on standard asymptotic theory. A “common
sense” drawback of randomization is that the outcome of an experiment can depend on the added
randomness and so researchers sharing the same data set may arrive at different conclusions. Yet,
randomization is a well known device in the statistical literature, tracking back at least at Pearson
(1950), who uses randomization for dealing with inference for random variables with a discontinu-
ous distribution. Sample conditioning instead occurs when performing bootstrap tests. Given the
same sample, each researcher obtains the same numerical value for the actual statistic, but such a
statistic is then compared with bootstrap quantiles which differ across researchers, even if based
by resampling from the same sample. However, there is a substantial difference between bootstrap
tests and the randomized procedure suggested in this paper. In fact, in the case of bootstrap tests
as the sample size gets large, all researchers will eventually reach the same conclusion: all of them
always reject the null when is false, all of them reject the null in a% of the cases (samples), when
is true. In our context instead, as the sample size gets large, all researchers always reject the null
when false, while a% of researchers always reject the null when is true.

In a series of Monte Carlo experiments, we establish that the finite sample properties of the
suggested statistic are quite good for samples with more than 250 observations, when DGPs are
calibrated using the U.S. output, consumption, and money variables examined by King, Plosser,
Stock and Watson (KPSW: 1991). In addition, an empirical illustration is provided in which
three datasets examined in previous papers are subjected to our data transformation test. First,

we examine the KPSW dataset, and find mixed evidence, although their use of logged data is



generally supported, with the possible exception of their money variable. Second, the extended
Nelson and Plosser (1982) dataset of Schotman and van Dijk (1991) is examined, and it is found,
again, that the logged variables examined by those authors correspond to our test findings, with the
possible exception of employment and wages. Finally, the term structure dataset of Hall, Anderson
and Granger (1992) is examined, and strong support is found for their use of the actual unlogged
(level) data.

The rest of the paper is organized as follows. Section 2 discusses the issue of data transformation
in the context of the common cycle test of Vahid and Engle (1993), and the Johansen (1988, 1991)
cointegration test. Our findings suggest that the impact of incorrect data transformation is rather
important in finite samples, as the test statistics tend to behave quite poorly in our experimental
settings. This part of our paper, thus serves to highlight the importance of either relying on
economic theory for choice of data selection, or undertaking the test for data transformation.
In particular, if economic theory does not clearly dictate data transformation, then one should
examine the data carefully, making as much use of available data transformation tests as possible.
Section 3 introduces the randomized statistic for selecting data transformation when the order of
integratedness of the series is unknown. Monte Carlo findings pertaining to the different parts of
the paper are contained in Sections 2 and 3 respectively, while our empirical illustration is given in
Section 4. Concluding remarks are gathered in Section 5. All proofs are collected in an appendix.
Hereafter, 2, a.5. — w denotes convergence in distribution conditional on the sample, w, ¥V w (i.e.

for all samples except a set of measure zero).

2 Common Cycle Tests Under Incorrect Data Transformation

Assume that the objective is to carry out a test for the number of common cycles. If the investigator
knows that all variables are I(0), then the correct data transformation can be chosen via a Box-Cox
transformation approach, and once the appropriate transformation is chosen a common feature test
for serial correlation can be carried out along the lines suggested by Engle and Kozicki (1993). If
the investigator knows that the series are loglinear or (level) linear, then (s)he can find the number
of cointegrating vectors after deciding whether the series are all I(1), for example, using unit root
and Johansen (1988, 1991) cointegration tests. In addition, if all series are I(1), and in the presence

of common trends, the number of common cycles can be ascertained via the approach suggested



by Vahid and Engle (VE: 1993), or using the information-criteria approach recently proposed by
Issler and Vahid (2002). In this section, our objective is to examine the effect of (incorrect) data
transformation on the common cycle test proposed by VE.

For sake of simplicity, we posit a simple DGP characterized by one common trend and one
common cycle, as in Example 1 in VE. Let Y ;, ¢ = 1,2, denote the variable in levels and y; ; denote

the natural logarithm of ¥; ;. Consider the following data generating process (DGP):

t
Yl,t = YLO + Z € + Ot + uy (1)
7=1
and
t
Yor =Yoo+ B> €+ B6t+uy, (2)
j=1

where ¢; is iid(0,02) and w; = puy_1 +n; with |p| < 1 and 7, i1d(0,02). It is immediate to see that
Yo — BY1=Yo0 = BY10+ (1 — B,

so that Yy — 8Y7; is a stationary process, and so there is (exactly) one common trend. On the

other hand,
t
Yo=Y =Yy0-Yio+(B-1)> €+ (8-1)8t,
j=1

is a I(1) process with drift. Also note that, AYs; — AY1, = (8 — D& + (8 — 1)6. Thus, while
AYy; and AYa; are serially correlated, as u; is a AR(1) process, AYs; — AY;, is not serially
correlated and cannot be predicted using the lags of the series. This means that there is a serial
correlation common feature among the first difference of two cointegrated series, and so, according
to the definition of VE, there is (exactly) one common cycle. More precisely, ( 1 -6 ) defines the

cointegrating vector and ( 1 -1 ) defines the serial correlation common feature (common cycle)

vector.

Now, suppose we want to test the null of zero common cycles versus the alternative of one
common cycle, conditional on the fact that there is one cointegrating vector. Following VE (pp.
349-350), the test statistic for the null s = 2, i.e. no common cycles, is given by C(p,2) =
—(T —p~-1)%7 log(1 — A?), where A i = 1,2 are the two (smallest) canonical correlations
between AY, and (AYt*h...,AYt_p,Zt_l), where AY,; = ( AYy AYig, ), Z, = Yoy — BTYU7 BT

is an estimator of the cointegrating vector, and the number of lags, p, is chosen using a model



selection procedure, say. If AY; is a stationary process (and so the canonical correlations are
stationary processes), and if BT is T'—consistent for §, then C(p,2) is Xz21p 1o under the null.*> The
intuition behind the VE statistic is the following. If s = 2, then the cofeature space is of dimension
two and there are two independent cofeature vectors, i.e. no cycles. In this case the two canonical
correlations approach zero as T gets large and the statistic has a well defined chi-square limiting
distribution. Under the alternative, s < 2, at least one of the (squared) canonical correlation is
strictly positive and thus the statistic diverges to infinity, as the sample size gets large.

Now, suppose that the DGP is as in equations (1) and (2), but we run the test using logged data.
From (1) and (2) we see that y1; = log (Yl,o + Z§'=1 € + 6t + ut> and y2; = log <Yz,0 + 4 Z§:1 € + B6t + ut) .
First, note that the existence of a cointegrating vector in levels does not imply the existence of
a cointegrating vector in logs. Analogously, the existence of a common serial correlation feature
among the first difference of the levels does not imply a common serial correlation feature among
the first difference of the logged variables. Second, note that the vector Ay; is no longer stationary,
and the limiting distribution of the cointegrating vector is no longer well defined.® Thus, in general,
we cannot ascertain the limiting behavior of the statistic above, when we implement the test using
logs instead of levels. In fact, the canonical correlations are linear combination of scaled sums of

Ay; ¢, and so do not satisfy the central limit theorem unless Ay, is a short memory series.

Now assume that the DGP is:

t

Yit = Y10+ Z € + 8t + uy (3)
j=1
and
t
Yo, = Y20+ B> €5 + B8t + wy, (4)
j=1

so that we have exactly one common trend and one common cycle in this loglinear DGP. Suppose
that we perform common trends and common cycles tests using levels instead of logs. Note that
Yii =expyr: = exp (y1,0 + Z§:1 € + 0t + ut) and Y, = expyo,; = exp (yQ,o +4 Z;-:l €; + B6t + ut) ,

so that we have neither a common trend nor a common cycle in the levels (differenced level) series.

*Note that in the present example, n = 2 and so the cofeature space cannot have dimension larger than 2.

®The number of degree of freedom (see VE (1993), pp. 349) is s + snp+ sr — sn. In the present context, n = § = 2
and r = 1.

®Cranger and Hallman (1991) point out that cointegration between Y and X does not imply cointegration between
g(Y') and g(X), for any nonlinear function g.



It also immediate to see that AY; is not a stationary vector and also that the partial sums of AY,;
will tend to diverge at an exponential rate. Therefore, the common cycles statistic does not have
a well defined limiting distribution. Note that the VE statistic hinges on the correct detection of
the number of common trends and consistent estimation of the cointegrating vectors. So, incorrect
data transformation has both a direct and an indirect effect on common cycles test.

The above discussion is meant to serve as a reminder of the importance of data transformation.
Of course, this does not mean that if theory suggests a particular data transformation, then we
should not use it. Rather that we should consider constructing tests of data transformation that
are robust to the order of integration of the data (see Section 3) whenever we do not have strong
a priori about the appropriate data transformation.

To illustrate the empirical relevance of the issue discussed above, the results of a small series
of Monte Carlo experiments based on the DGP given as equations (1) - (4) above are reported in
Tables 1 and 2. In particular, the money, consumption and output variables examined by King,
Plosser, Stock and Watson (1991) and updated and examined by Corradi, Swanson and White
(2000), which are depicted in Figure 1, and which are later reported on in Section 4 were used to
calibrate some simple random walk type models for the period 1970:1-1994:1. The calibrated models
are given in Table 3b and are referred to in that table as DGPS1-DGPS6 and DGPP1-DGPPS,
so that there are 12 models in total. Of these, 6 models correspond to stationary processes, and
6 to I(1) processes. In this section, we use the 6 I(1) models (i.e. DGPS4-DGPS6 (log DGPs)
and DGPP4-DGPP6 (levels DGPs) to guide in the calibration of our Monte Carlo. In particular,
values for ¢ and o, in (1) and (2) are taken from the Table.” Thereafter, it remains to set o, the
variance of the error term that links (1) and (2), to set p, and to set 8. As the univariate DGPs in
Table 3b do not provide direct guidance for setting o, and p, various values are tried. Additionally,
we fix 3 = 0.5. More specifically, we specify levels DGPs according to (1) and (2) with o, = 150,
Y10 = 100, Yy o = 200, and o, = {0.10¢, 1o, 100.}, where § = 100 when o, = 0.10¢, § = 150 when
oy = 1o¢, and 6 = 200 when o, = 100,. Data are also generated according to (3) and (4) with

oe = 0.005, Y10 = 0.5, Y20 = 1, and o, = {0.10, 1o, 100}, where § = 0.010 when o, = 0.10,

"The Monte Carlo results reported in Section 3.3 also rely on the calibarted models given in Table 3b, although
experiments reported in that section are based on univariate analyses, so that no error linking multiple equations
(i.e. the u;) is specified. While the lack of a u; term in these later Monte Carlo results differentiates the DGPs used
in that section of the paper with those used in this section, the models are still related, at least in the sense that the

models fitted and reported on in Table 3b are the “benchmark” around which all Monte Carlo experiments in this
paper are designed.



6 = 0.015 when o, = 1o, and § = 0.020 when o, = 100. In all experiments, we set p = {0.3, 0.6,
0.9}, 8 = 0.5, used samples of T = {100, 250, 500} observations, and carried out 5000 Monte Carlo
simulations.

Consider application of the VE test to these data. The cointegrating rank was assumed to
be unity (even when data were “incorrectly” transformed), lags were estimated using each of the
Akaike and the Schwarz Information Criteria (AIC and SIC)®, and the cointegrating vector was
estimated using the maximum likelihood procedure of Johansen (1988, 1991). The null hypthesis
is Hy : s = 2 (i.e. no common cycles) versus Hy : s < 2 (i.e. one common cycle). All entries in the
table report the rejection rates, based on a test at 5% level. Under correct data transformation,
then, we expect the rejection frequency to be high, while under incorrect data transformation the
test is invalid and there is no common cycle, so that it is unclear what the findings of the test will
be. Under correct data transformation, then, we expect the rejection frequency to be high, while
under incorrect data transformation the test is invalid and there is no common cycle, so that it is
unclear what the findings of the test will be. Turning now to our findings which are reported in
Table 1, it is worth noting that in empirical rejection frequencies for the common cycles test are
very high under correct data transformation, even for samples of only 100 observations. However,
when p = 0.9, so that the persistence driving the cointegration is very high, then the VE test
does not perform as well for samples of 100 observations, with rejection rates as low as 22%. These
results are as might be expected. Interestingly, though, the VE test often finds evidence of common
cycles even when the data are incorrectly transformed, although this finding is far from robust as
there are some o, ¢, combinations for which little evidence of common cycles is found. Thus, as
expected, the VE test becomes suspect under incorrect data transformation.

Using exactly the same setup as that discussed above, cointegration tests were also run. The
null hypothesis tested in this experiment (using the Johansen trace test, which is here equivalent
to the maximum eigenvalue test) is that the rank of the cointegrating space is 0. Thus, as above,
we expect the rejection frequency getting closer 1 under correct data transformation, while under
incorrect data transformation the test is invalid and there is no cointegration, so that it is unclear
what the findings of the test will be. From Table 2, we see that the rejection rates are very high,
regardless of data transformation, suggesting a finding of cointegration even when the data are

incorrectly transformed. While the above findings should come as no surprise, it does serve to

8The maximum lag length considered was 12.



underscore the importance of data transformation and testing for data transformation when the
correct transformation is not suggested by economic theory.® Put simply, the common trend model
of KPSW and the common-trend/common-cycle model of VE are designed under the assumption
that the empirical investigator knows the correct data transformation, and for this reason, one needs
to be wary of common cycle, common trend, and related tests performed within the framework of
these models if there is uncertainty concerning the correct data transformation. Finally, it is worth
noting that our simple setup does not allow us to easily distinguish the trade-offs between using
the AIC versus the SIC for lag selection. For an in-depth discussion of lag selection and related
issues in the context of common cycle tests, the reader is referred to Vahid and Issler (2002).1°
Before turning our attention to a test for data transformation, it is worth noting that if the
objective of the researcher is the construction of the “best” prediction model, where by best we have
in mind the use of some loss function for comparing models such as the mean square forecast error
(MSFE), then the researcher may want to rely just as much on empirical evidence (e.g. statistical
tests) as on economic theory when choosing data transformation. The simple reason for this is
that there are many competing theories (in macroeconomic for example), and certain theories may
be supportive of different data transformations, while other theories may have nothing to say at
all about data transformation. This issue is explored via Monte Carlo experimentation in Chao,
Corradi and Swanson (2001), who find that incorrect data transformation can play havoc on the
estimation and formulation of prediction models, in the sense that incorrect transformation can

lead to models that are grossly misbehaved in the context of MSFE.

9Suppose we have a common cycle in logs (levels) and we run the test for the null of no common cycles, using levels
(logs). Whichever conclusion we draw, it is bound to be incorrect. For example, if we reject we may conclude that
there is no common cycle between the two series (although there really may be, between the “correctly” transformed
series), while if we do not reject we may conclude that there is common cycle between the logged series, when instead
there is no linear relation between the logged series at all (assuming that the correct data transformation is levels).

'The Monte Carlo experiments reported in this paper are based on stylized DGPs, often with little dynamics, and
are thus meant only to illustrate the potential pitfalls associated with application of common cycle tests to incorrectly
transformed data. However, it seems reasonable to assume that the sorts of findings reported in this and later sections
of the paper are applicable under more complicated dynamics, for example.
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3 Distinguishing Between 1(0) and I(1) Processes in Logs and Lev-
els

3.1 Set Up

Given a series of observations on an underlying strictly positive process, X;, ¢t = 1,2,..., our
objective is to decide whether: (1) X; is an I(0) process around a linear deterministic trend, (2)
log X; is an I(0) process possibly around a nonzero linear deterministic trend, (3) X; is an I(1)
process around a positive linear deterministic trend, and (4) log X; is an I(1) process, possibly
around a linear deterministic trend. More precisely we want to choose among the following DGPs:
Hy: Xt = ag+ bt + pXi—1+e1y, [pl <1and § > 0,
Hy: Xy =060+ X4—1+¢e14, 60 > 0.
Hj :log Xi = ay + 61t + plog X¢—1 + €24, |p| < 1 and 6; > 0 and
Hy :log Xy = 61 +log Xy—1 4+ £, 61 > 0.
Note that in order to ensure positivity we assume that the DGPs in levels have a positive trend
componernt.

While it is easy to define a test that has a well defined distribution under one of H; — Hy, it
is not clear how to ensure that the test has power against all of the remaining DGPs. To illustrate
the problem, consider the sequence, &, given as the residuals from a regression of X; on a constant

and a time trend. In particular, construct the statistic for the null of stationarity proposed by

Kwiatkowski, Phillips, Schmidt, and Shin (KPSS: 1992):

2
1 ) T t .
Sr=—T7> (> &] .
or t=1 \j=1

where 62. is a heteroskedasticity and autocorrelation (HAC) robust estimator of var (T‘l/ 2 2321 et).
It is known from KPSS that if X is 1(0) (possibly around a linear deterministic trend), then S7 has
a well defined limiting distribution under the null hypothesis, while Sy diverges at rate T/lr under
the alternative that X; is an I(1) process, where Ip is the lag truncation parameter used in the es-
timation of the variance term in Sp. However, if the underlying DGP is log X; = 61 + log X;_1 + €,
61> 0 (i.e. logX; is a unit root process) then both 62 and T2 L, (Z;’:l éj)2 will tend to diverge
at a geometric rate, given that X; = exp(log Xo + 6t + Z;-Zl €;). In this case it is not clear whether

the numerator or the denominator is exploding at a faster rate. This sort of problem is typical

of all tests which are based on functionals of partial sums and variance estimators, including, for
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example, the augmented Dickey-Fuller tests and Johansen cointegration tests, and arises because
certain nonlinear alternatives are not treatable using standard FCLTs.

Recently Park and Phillips (PP: 1999, 2001) have developed an asymptotic theory for partial
sums and for moments of nonlinear functions of integrated processes. The novel and important ap-
proach of Park and Phillips is based on the idea of replacing sample sums by spatial sums and then
analyzing the average time spent by the process in the vicinity of given points. A key ingredient
is the notion of local time of a Brownian motion. In our setup, we need to take into account the
presence of a positive deterministic trend, at least for levels DGPs, however, and we are currently
unable to generalize the PP results to the case of processes with deterministic drift components.
The intuition behind the difficulty in providing such a generalization stems from the fact that we
cannot embed an integrated process with deterministic drift into a continuous semimartingale!l,
and to the best of our knowledge a local time theory is available only for continuous semimartingale
processes. Broadly speaking, an integrated process with positive drift is dominated by the deter-
ministic component and so it is transient. Thus, compact sets in the state space will be visited only
a finite number of times, as the process will spend almost all time in the “proximity of infinity”.
Therefore, we shall follow a different approach, based on the combination of randomization and
sample conditioning. In the sequel, in order to distinguish between Hy, Hy, Hy and Hy above, we
rely on the following assumption:

Assumption Al: (i) X; > 0,vt > 0, (ii) &,4,7 = 1,2, is a zero-mean strictly stationary strong
mixing process with mixing coefficient o, satisfying >°00_, ozf:gﬂ < oo, for any v > 0, and (iii)
0 < E(e?;) = 07 < 0o and E(|e; 1|***)) < 00, i = 1,2, for the same v as in (ii).

Note that Assumption A1 suffices for the partial sums of {¢;;} to satisfy a strong (and so a weak)
invariance principle (see e.g. Corollary 4.1 and Theorem 3.1 in Berger (1990)).12 As mentioned
above, our main objective is to distinguish between levels and logs. This is because once we have
chosen the correct data transformation, we can choose between I(0) and I(1) via standard tests.
Now, group the above hypotheses as follows:

Ho:H3UHy, 60 >0
Hy:H UH,

1A semimartingale is a process given by the sum of a martingale plus an adaptive process of finite variation (see
e.g. Revuz and Yor (1990), pp.121).

2T he strict stationarity assumption can be relaxed at the price of strengthening the mixing condition. In fact, a
strong invariance principle for strong mixing, non-stationary processes could be used (see e.g. Theorem 2 in Eberlain

(1986)).
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Thus, the null hypothesis is logs and the alternative is levels. The case of §; = 0, (i.e. no

deterministic drift in the log DGPs) is somewhat more complex and will be treated subsequently.

The proposed test statistic is:

St p(w /ZTR(uw () du, (5)

where U is a compact set on the real line, w denotes the dependence of St r(:) on the data,

Ju m(u)du =1,

Zrr(u) = \/—Z( {VgT )<U}“%>, (6)

with R = o(T'), and where VZT(w) is defined as:

1 L raxn2)
i fraeed J— t . ) — “ e
va,T(w) - (T ;:1: (AX1> ) §'L7 ? 1, aRv (7)

with & an idN(0,1) random variable, and 1{-} denoting the indicator function. Note that we
divide all data by the initial value in order to make the statistic invariant to scalar multiplication of
the observations. It turns out that for any sample, w, which is a realization of a DGP under the null
hypothesis (i.e. a log DGP), Sy,r(w) converges in distribution to a x2 random variable, while for
any w which is a realization of a DGP under the alternative hypothesis (i.e. a level DGP), St r(w)
diverges. Note that, as we proceed conditionally on the sample, the asymptotic behavior of the
statistic is driven by the probability law governing the artificial randomness (i.e. the probability law
governing ;). Randomized procedures have previously been used in the literature, tracking back
to Pearson (1950). For example, Dufour and Kiviet (1996) use a randomized test to obtain finite
sample confidence intervals for structural changes in dynamic models; although in finite samples
the level of the actual and of the randomized test may differ, they are equivalent in large samples.
In a different context, Liitkepohl and Burda (1997) use a randomized approach for constructing
Wald tests under non regular conditions - namely when the matrix of partial derivatives has re-
duced rank. They essentially overcome a certain singularity problem by adding randomness, and
convergence to the limiting distribution is driven by both the probability law governing the sample
and the probability law governing the added randomness. What differentiates our approach from
the randomized procedures cited above is the joint use of randomization and sample conditioning.

Our asymptotic result only holds conditionally on the sample, and for all samples except a set of
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measure zero. It is also worth noting, however, that randomization coupled with sample condition-
ing is used elsewhere to obtain conditional p-values and conditional percentiles, for example, when
the limiting distribution of the actual statistic is data dependent (see e.g. Hansen (1996), Inoue
(2001) and Corradi and Swanson (2002)). In these cases, though, inference is based on comparison
of the actual statistic (which depends only on the sample) with conditional percentiles. In the

present context, inference is based on the randomized statistic, conditional on the sample.

3.2 Asymptotic Results

Hereafter let d* denote convergence in distribution according to P*, the probability law governing
&, 1= 1,..., R, conditional on the sample. Also, E* and Var* denote the mean and the variance
operators with respect to the probability law P*. Finally, the notation a.s. — w means conditional
on the sample, and for all samples except a set of measure zero.

Theorem 1: Let Al hold. f R=T7T%,0<a <1, thenas T — oo:

(1) Under Hy, St r(w) 4 X3, a.5. — w.

(i) Under H 4, there exists a v > 0 such that P* [—}QST,R(w) > y} — 1, a.s. — w.

Thus, the test statistic has a well defined limiting distribution for each sample which is a
realization of a DGP under Hy and diverges for each sample which is a realization of a DGP under
Hy.

It is worth noting that the interpretation of fest size in the current context differs from the
interpretation associated with inference which is not sample conditioned. To see this difference,
consider the following example. Suppose we draw 10000 samples from a DGP generated under Hp.
In addition, there are 10000 people performing the same test. According to the usual definition,
the size is 5% if all 10000 people decide in favor of Hy based on examination of 9500 samples,
while they all decide in favor of H4 based on the remaining 500 samples. On the other hand, for
the sample conditioned statistic, some group!'3 of 9500 people decide in favor of Hy for each of the
10000 samples, while the remaining 500 people decide in favor of the alternative for each sample.

Although a detailed proof of the theorem above is given in the appendix, it is perhaps worth-
while to give an intuitive explanation of the result. Note first that conditional on the sample,

. 2
Vir(w) ~ N <O,-%ZtT:1 (%3()%) ) Now, note that under the null hypothesis of a log DGP,

2 .
% ST, (%) diverges to infinity at a geometric rate as 1" gets large. It then follows that Vi r(w)

13The members of the group may change from sample to sample.
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diverges almost surely to +oo or to —o00, a.s. — w,Vi. In addition, because of symmetry we have
that VZT(w) diverges to either plus or minus infinity with probability approaching 1/2, a.s. — w.
Thus, E*(l{Vg,T(w) < u}) = P*(VZT(w) < u) = 3 + o(1), uniformly in u for U compact, and
Var* (ﬁ P (1{VZT(w) < u})) = &+ o(1), uniformly in u, a.s. — w. The desired result then
follows directly from the central limit theorem for independent triangular arrays.!4 Under the alter-
native hypothesis of a level DGP, by the strong law of large numbers, % Z?:l (Mw_)f converges

AX(w)
almost surely to a constant, say M. Let F'(u) be the CDF of a N(0, M) random variable, evaluated

at u. Now,

R
Z (1 {vere) <u} =)= 230 {Vrw) <} - F) + VEE@) -3 ®

The first term on the right hand side above is bounded in probability, because of the central limit
theorem for empirical processes for independent triangular arrays, while the second term diverges
at rate VR whenever F(u) # 1/2 (i.e. whenever u # 0).

In practice, the interval over which u is integrated must be determined. For increasing width
intervals which are centered at zero and for 7(u) uniform over U, finite sample power improves,
while finite sample size deteriorates. The dependence of finite sample power on U in this case can
be seen immediately from equation (8), as the second term on the right hand increases the further
is |u| from zero. On the other hand, finite sample size tends to gets worse the larger is |u|. Hence,
there is a trade-off between finite sample size and power associated with the choice of the interval
U. In practice, we also have to choose R. It is easy to see that the higher is the rate at which R
grows, provided it grows at a slower rate than T, the higher is the finite sample power. The choice
of U and R is analyzed in the Monte Carlo section below.

We now turn to the case where §; = 0 (i.e. the case of log DGPs without a deterministic
trend component). For example, under Hy, AX; = X;_4 exp(eas — 1), where X;_1 = exp(log Xy +

2
3 115 9). As Z 1 gg,; diverges either to plus or minus infinity, it follows that & Zt 1 (4—)>

AX1(w)
either diverges to infinity or converges to zero, at a geometric rate. Thus, VgT( w) either diverges
to oo or converges to zero, depending on w. Intuitively, if VgT(w) converges to zero, 1{V5i,T (w) <
u} — 1, for all w > 0, and l{VéT(w) < u} — 0, for all v < 0. On the other hand, when Vg’T(w)
diverges to $oo, l{VgT(w) <u} — 1 (resp. 0) with probability —%, a.s.—w, for all uw € U, U compact.

2
Needless to say, it is unknown whether % Zthl (ﬁ))g (z))) converges to zero or diverges, for any

MNote that conditionally on sample, 1/'5in, 1 =1, ..., R is an independent triangular array.
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given sample. A natural approach is thus to construct two statistics and then base inference on the

smaller one. Without loss of generality, let U™ be a compact set on the positive real line (including

0)!5. Define:

Sta@) = [ (% > (1{virte) <u} - §)>2w<u>du

i=1
and

2 & , :
Staw) = | (=2 (1{Virw) <u}-p)| m(wdu, p=1,
Ut \VR =

where [y m(u)du = 1. Note that S% p(w) is the same as Sy g(w) above, with the additional
requirement that it is computed over UT. The choice between logs and levels in this context is
facilitated by using min(S%, R(w),S:bn r(w)). The intuition for this test is as follows. Conditioning
on a sample for which %Zthl (%%)2 — oo implies that S7 p(w) is asymptotically X%, while
S’% r(w) diverges. On the other hand, conditioning on a sample for which %Zthl (ﬁ—i&)Q — 0,
implies that S7 p(w) diverges, while Sibr’ r(w) converges in probability to zero. This suggests using
the above test within the context of the following hypotheses,

Hy : Hy with 61 = 0 and

H', : Hy U Hy U Hy with 8, = 0.

Theorem 2: Let Assumption Al hold. If R=T° 0 <a <1, then as T, R — oo

(i) Under Hy, limr g0 P* [min(S%R(w), S{'}’R(w)) > Cg] < B, a.s. —w, where cg is the (1 - 3)th
percentile of a x% random variable.

(ii) If in addition, E (exp (2(2 + ) Z};%)pjeu_j)) < 00, for some ¢ > 0 and |p| < 1, then under
H/, there exists v > 0, such that P* [% min(S% p(w), S%R(w)) > 1/} — 1, a5 —w.

Thus, the asymptotic type I error is less than or equal to 3, while the asymptotic type II error
is zero, conditional on w, and for all w except a set of measure zero. Theorem 2 also holds for
61 > 0. In this case, the smaller statistic is S$ p(w), Vw. In the case where the test selects H’
one cannot distinguish between DGPs in levels and DGPs in logs with short memory. In this
case, it remains only to test the significance of the coefficient on a linear deterministic trend in a
levels regression. Even if the process is actually short memory in logs, the test is well defined, as
the exponential of a short memory process is short memory. Thus, a finding that the coefficient

on the trend component is significant implies the consequent choice of levels data, otherwise use

!5 Analogously, for U~ a compact set on the negative real line, set p in S%,R(w) equal to zero. Theorem 2 then
holds for the min statistic defined on U ™.
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logged data. In the previous section, it was noted that a larger compact set, U, leads to higher
finite sample power as well as higher finite sample size, for U centered around zero. In the current
context, finite test performance trade-offs are not as straightforward. Consider U+ = [0, Umax]-
For all samples in which % Zg;l (ﬁ—fgf;)g converges to zero, larger umax implies better finite sample
size and worse finite sample power. On the other hand, the opposite holds for all samples in which
% Zthl (ﬁ—i{%)Q diverges. For this reason, we recommend use of the statistic which is defined for

U (see Theorem 1). If the null hypothesis is rejected, but there is ancillary evidence that the true

DGP may be a unit root process in logs with no drift, continue by using the statistic described in

Theorem 2.
3.3 Finite Sample Evidence

In this section the results of a small set of Monte Carlo experiments are reported. Data are
generated according to H; — Hy in Section 3.1, which can be written as,

Hy: Xo = o1 + 61t + pXyq + 1y,

Hy: Xy =g + Xyq + €9y,

H;y :log Xy = ag + 6ot + plog Xy 1 + €3,

Hy:log Xy = aq +log Xy—1 +eqy,

where all errors are assumed to be #id N(0, 0;) random variables, i = 1, 2,3,4. Notice that a4 in Hy
corresponds to 6y in the version of Hy given in Section 3.1, for example. In general, then, we are
assuming that there is a deterministic trend in the time series under investigation, so that S% rlw)
and S%’ r(w) do not need to be calculated, and St g(w) is thus used throughout. In order to consider
parameterizations which are illustrative of actual data, we again parameterize our DGPs using the
models given in Table 3b. As mentioned above, the DGPs in Table 3b were calibrated using the
KPSW dataset (see Section 4 for further discussion of this data). In fitting these models, we set
p = 0.75 in all stationary cases. Samples of T= 100, 250, and 500 observations were simulated.
Also, we set R = (TO'SO,T0’75,TO'QO,TO'%). The range of w is —1.0 < u < 1.0, and 100 statistics for
100 increments within this range were calculated.'® All simulations are based on 500x500 Monte
Carlo trials, where the first 500 corresponds to the number of Monte Carlo iterations, and the

second 500 corresponds to the number of different & , ¢ = 1,..., R vectors that are drawn. (Put

$Various ranges and increments for u were examined, including ranges for u between -100 and 100. Results were
found to be robust to the choice of U/ and the number of increments.
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another way, for each new & vector, a new statistic is calculated and inference based on that statistic
1s carried out. For each draw of the DGP, this is repeated 500 times.) Rejection frequencies based
on the DGPs given in Table 3b and based on 5% nominal level tests are reported in Table 3a.
‘Turning to the results, notice that empirical rejection frequencies are close to the level of the
test when data are generated under the null (DGPS1-DGPS6), for samples of 500 observations. For
smaller samples of 250 observations, the evidence is mixed, with some parameterizations resulting
in good empirical level, and others tending to over-reject the loglinear null hypothesis. Notice that
these finding do not hinge on the value of R used, although power results suggest that any value
of R above 0.75 works well. Empirical power is moderately good for samples of 250 observations,
and improves somewhat with sample size, as expected. In addition, power improves as we move
from DGPP1 to DGPPS, for example, because the trend parameter (i.e. 61 for Hy or ay for
Hs) increases. Correspondingly, increasing either 8 or a4 results in improved empirical size, as
evidenced by moving from DGP-S1 to DGP-S4, for example. Finally, the trade-off between smaller
and bigger R is also as expected - increasing R results in worse empirical size and better empirical
power. In summary, while our experiments are rather limited in scope, we have some evidence that
the proposed test may be useful, even for samples of as few as 250 observations. However, empirical

size/power trade-offs are very pronounced for smaller samples.!”

4 Empirical Illustration
4.1 The King, Plosser, Stock and Watson (1991) Dataset

In keeping with the Monte Carlo experiments reported on in the previous sections, we now consider
the quarterly U.S. data set examined by KPSW (1991), and updated in Corradi, Swanson and
White (2000). In particular, the St r(w) test is carried out for four series: consumption, investment,
money, and output. Note that variables of the type examined here are all clearly upward trending,
as documented in Stock and Watson (1989), for example, thus supporting our use of this particular

version of the data transformation test. Also, note that the variables are constructed as in KPSW.18

'"Monte Carlo results based on the sequential application of our data transformation test, unit root tests, coin-
tegration tests, and common cycles tests suggest that the finite sample performance of the latter tests (after first
carrying out our data transformation test) is similar to cases where the correct data transformation is known, as is
to be expected. These results are thus not included here.

18Using citibase mnemonics, the series are constructed as follows: consumption=gcq/p; investment=gifq/p;
money={m2/p; output=(gdpg-ggeq)/p, with p=p16*1000000, pl6=U.S. population, gcg=real consumption expen-
ditures, fm2=nominal seasonally adjusted M2 stock, gdpg=real GDP, and ggeq—real government expenditures on
goods and services. Thus, all series are per capita.
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Results for a variety of values of R, as well as for two different sub-samples, are given in Table 4. A
number of conclusions can be made based on these results. First, consumption and output are best
modelled in logs, a result that agrees in large part with previous empirical practice (see e.g. Vahid
and Engle (1993), and Diebold and Senhadji (1996)). One important implication of this finding
is that the common cycle tests often applied to series like consumption and output have generally
been correctly performed using logged data. Second, the evidence on investment is mixed. For the
longer sub-sample, the statistics based on R = T%% supports logs, while the statistics based on
different choices of R support levels. However, we know that the power of these tests is rather low
for R = T%5. For this reason, and given that there is always a possibility of structural breaks (and
hence poor test performance) among economic variables, we also constructed test statistics for the
smaller sub-sample reported on in Panel B of the table. Notice that in this case, the null hypothesis
of a loglinear DGP for investment is never rejected, regardless of the value of R (the maximum
value of the statistic is 2.58 and the 5% critical value is 3.84). Thus, although the evidence is
somewhat mixed, it appears that investment is better modelled in logs, particularly if more recent
data are being modelled. Third, the evidence on money is mixed. In both sub-samples, findings
depend upon the choice of R. Again, one reason for this may be the presence of a structural break.
Indeed, in the early 1980’s (prior to 1984) the federal reserve bank experimented with policy aimed
at targeting the money stock. In addition, at about the same time, there was an apparent structural
break in the money stock due to the introduction of interest bearing checking accounts and due to
a surge in credit card usage, for example.!? For these reasons, we also looked at the sub-sample
period beginning in 1984. For this sub-sample, the statistics for money are (2.043, 3.666 6.191,
7.419, 8.425), for the various values of R reported on in the table. Note that although there is now
stronger evidence than before for modelling money in logs, the evidence is still mixed. However, it
seems to be the case that if a shorter subsample of the data is used, then the KPSW approach of
logging these variables is correct, and so the factor analysis carried out by KPSW is not subject to
the criticisms outlined in Section 2 of this paper. Indeed, even if a longer sample is used, the mixed
evidence concerning money and the evidence in favor of logs for the other variables still suggests
that their factor analysis is not subject to our data transformation related criticisms. Thus, no

definite choice among logs and levels is provided by the test when modelling money. Overall,

19See Clements and Hendry (1999a,b) for a detailed discussion of forecasting failure in the presence of structural
breaks in economic series.

19



though, this illustration supports the common practice in empirical macroeconomics of logarithmic

data transformation prior to unit root testing.2°

4.2 The Nelson and Plosser (1982) Dataset

These data have been extensively examined by numerous authors, including Nelson and Plosser
(NP: 1982), Schotman and van Dijk (1991) and Andrews and Chen (1994), for example. In Table 5
we report results based on application of the Sy g(w) test to the NP dataset updated by Schotman
and van Dijk (1991). A clear pattern emerges upon inspection of the results. Namely, for all series,
with the possible exception of employment and real wages, loglinear models are preferred. This
finding is largely in accord with the common practice of modelling these series in logs. However, it is
interesting to note that for both sub-samples reported on in the table, employment and real wages
exhibit evidence that the data might be better modeled in levels. Additionally, notice that the

evidence on unemployment and velocity is mixed, suggesting that there is little to choose between

logs and levels for these series.?!

4.3 The Hall, Anderson and Granger (1992) Dataset

These data have been examined by Hall, Anderson and Granger (1992) and Anderson (1997), for
example, and constitute U.S. treasury bill yields on bills with one to 11 months maturity (denoted
as R1 to R11 in Table 6). A detailed discussion of these data is given in both of the aforementioned
papers. Interestingly, and in contrast to our other empirical findings, all series strongly support
using unlogged data, a finding which is in accord with the authors’ use of unlogged data. Note

that our findings on interest rates should be taken with caution, as interest rates do not exhibit a

postive deterministic trend, thus violating assumption A1(i).
5 Concluding Remarks

Unit root and stationarity tests are severely biased, both in small and in large samples, when data

have been incorrectly transformed. Additionally, common feature and cointegration tests do not

20We leave the discussion of the implementation of our tests in nonlinear contexts, such as when fitting smooth
transition and related models (see e.g. Van Dijk and Franses (1999)) and when there are outliers (see e.g. Van Dijk,
Franses and Lucas (1999a) and Van Dijk, Franses and Lucas (1999b)) to future research.

*!The interest rate variable in the dataset is not examined as various interest rates are examined and discussed in
Section 4.3 below. Additionally, note that our findings on unemployment and velocity should be taken with caution,
as interest rates do not exhibit a postive deterministic trend, thus violating assumption Al(i).
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have well defined limiting distributions under incorrect data transformation. In this paper, we carry
out a series of Monte Carlo experiments that suggest these tests are indeed incorrectly sized and
may suffer power problems in such circumstances. Put another way, common trend models, such
as that of King, Plosser, Stock and Watson (1991) and the common-trend /common-factor models,
such as that of Vahid and Engle (1993) are designed under the assumption that the empirical
investigator knows the correct data transformation, and for this reason, one needs to be wary of
common cycle, common trend, and related tests performed within the framework of these models if
there is uncertainty concerning the correct data transformation. Given these problems, we suggest
that if theory does not unambiguously suggest a particular data transformation, then statistical
tests for data transformation when the order of integratedness is unknown may be useful. Along
these lines, we propose a simple test, based on the combined use of a randomization procedure and
sample conditioning, for choosing between linearity in logs and linearity in levels, in the presence of
deterministic and/or stochastic trends. For any sample which is a realization of a DGP under the
null hypothesis (i.e. a log DGP), the statistic has a x? limiting distribution, while for any sample
which is a realization of a DGP under the alternative (i.e. a level DGP) the statistic diverges.
Once we have chosen the correct the data transformation, we remain with the standard problem of
testing for a unit roots, cointegration, and common cycles, for example. A Monte Carlo exercise is
used to examine the finite sample behavior of the suggested testing procedure, and our findings are
rather encouraging for samples of at least 250 observations. In addition, an empirical illustration
based on the King, Plosser, Stock and Watson (1991) data set is given, and evidence of preference
for loglinear models is provided, lending credence to their findings based on their factor model.
Further empirical evidence is provided suggesting that the Nelson and Plosser (1982) data largely
support the specification of loglinear models, and that Hall, Anderson and Granger (1992) were

correct to use levels term structure data in their analysis.
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6 Appendix

Proof of Theorem 1: (i) First note that conditional on the sample, V3, Vﬁi,T ~N (0, ivyr, (%)3 .
Let QF = {w : limp_, <% >r, (%ﬁ%‘;—’%)?) v = oo}. We begin by showing that P(QF) = 1. Un-

der DGP H3, AX; = X;_; exp(6y Z;;%) o+ ;;%) pj(sg,t_j —€24—j-1)), where X;_1 = exp(log Xo+

o Zt:l P +6, t:1 pj(t—j)—{-zt.:l peas—j—1). Under DGP Hy, AX; = X;_1 exp(6; +e24), where

Xi—1 = exp(log Xo +61(t — 1) + Z] —0€2,5)- The functional law of the iterated logarithm for strong

1 t -
v/ 2tloglogt ijl €2,

Oq.5.(1). The deterministic trend component is then the dominant term in both DGPs. It follows

mixing processes (e.g. Berger Theorem 3.1, 1990) states that limsup,_, .

2.,
that 1 (ﬁ))g ) %2 o, at a geometric rate. Thus, P P(Q%) = 1. We now proceed conditionally
on the sample, and with the notation a.s. — w, we mean conditionally on w € t. Hereafter, let

U = [u,u]. We first need to show that for Yu € U,
P (Vir(w) S u) = 5+ 07, Q
where the O(T~Y/2) term holds uniformly in ¢ and u, a.s — w. Suppose u > 0, then
P*(Vig(w) < w) = PH(Vig(w) <0) + PH(0 < Vir(w) < u) as. — w.

As &; is a zero mean normal, P*(VZT (w)<0)= —;— Therefore, it suffices to show that P*(0 < VZT <

w) = O(T~Y/2), uniformly in u and 4, a.s. — w. Now,

: 1 u /2 L AX (W)
P00 < Vip(w) <u)= exp ( — Z ol > dx
&r < Zt X (ﬁi—)))2>1/2 71/2 /0 T = < )
= O(T™ %), (10)

2
uniformly in 4, a.s.—w, as sup,c; fo' exp< 2/T s (ﬁl@%) ) dr <, a.s.—w, and = Zt 1 <A§((i(ﬁ)
diverges at a faster rate than 7. A similar argument applies to the case of u < 0. Hereafter, E*

denotes the expectation with respect to the probability measure P*. Now, for any given u € U,

R
=3 (Wi sw - 1) - Z(l{vw ) < u) - B (1{Vir(w) < u})

+VR <E*(1{V£T(w) <u)) — %) . (11)
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Note that E*(1{V{ r(w) < u}) = P*(VZT(w) <wu) =5 +O0(T~Y?), where the O(T~%/2) term holds
uniformly in ¢ and u, a.s —w. As R grows at a rate slower than 7', the last term on the RHS of
(11) approaches zero, a.s. —w. Recall that Var* denotes the variance with respect the probability
measure P*. Now, as Vg;T(w) is independent of Vg;T(w), Vi # j, a.s. — w, and recalling (9),

R

R
Z WVirw) <u}) | = - D (E UV rw) < uf?) = (B*(H{Vir(w) <u}))?)
P R

i=1

| B | 1
= 2BV Sup) -7 -0
=1

= % +O(T™ V%) — i -0(T Y = i +O(T~V?),

uniformly in ¢ and u, a.s — w. By noting that 1{VgT(w) <ul,i=1,.,Rand R=T° 0<a <1,
is an independent triangular array, by the central limit for independent triangular arrays (see e.g.

Davidson (2000, p.52)), for all w € U,

1 & i v 1\ 4
= <1{V€7T(w) <u}— 5) 4 N(0,1/4).

We now need to show that the convergence above holds uniformly in «. That is, we need to show

that
R R
Z5 S UVir ) < uh = —= 3 (1 < Vi) S u'}) = op-(1),
i=1 i=1

with the op- (1) term independent of u and «'. Without loss of generality, let u < u’. Then,

R R
Z (1{V€T ) < u}— HVipw) < u’}) = ﬁ Z (1{u < Vipw) < u’}) .

Now,

d

=]

sup Z (1{u < Vip(w) < u’})

u,u’ €U

se| < Lp : i(l{ < Vir(w) <u'})
€] = 3 sup i u < Vep(w) <u

u,u’EU i=1

= ZE* (1{_@ < Vg,T(w) < ﬂ}) < ésup P'u<Vip<u) = O(T~1/3),

a.s. — w, because of (10). The desired result then follows.
(i) Let Q4 = {w: % L s~ T (A})g(z%) — M,0 < M < co}. We begin by showing that P(Q4) =
1. Now. AX; = 6 Zj:()p] + Zj:O P (e1,4—; —¢€1t—j-1), under DGP Hj, and AX; = §y €14, under
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Hj. Given Al, it follows by the strong law of large numbers that Et 1 (Axl) % M, and so
P(Q4) = 1. (Hereafter, with the notation a.s. — w, we mean for all w € Q4.) From the previous
statements, it follows that Vgi,T(w) is a zero mean normal random variable with variance equal to
—%Zle (%)2, so that Vg’T(w) N N(0,M), a.s. —w, as T — oo, and Vi. Let F(u) be the
cumulative distribution function (CDF) of a N(0, M), evaluated at u € U. Then,

ﬁ—f(uvi @su-3) == Zl{v @) Su} =~ Fw) +2VR (Fu) - 5).
N = AN 2) " VRZ el (12)

2
As F(u) = 4 when u = 0, the second term on the RHS of (12) diverges to + or — oo at rate VR,
a.s — w, for all w # 0. In addition, the first term on the RHS of (12) is bounded in probability, as

can be shown by noting that,
R
Z V() < u} = Flu Z UVir() < w} = Fr(w) - 2VR(Fr(w) - F(u)),

where Fr(u) = P*(VZT(w) < u). As VZT has finite variance and is independent ¢, the Berry-Essen
theorem (e.g. Davidson (1994) p.408) can be applied, yielding that,

sup(Fr(u) — F(u)) = O(T™Y?), a.s. — w.

uelU

In addition, as R/T — 0, sup,ey VR(Fr(u) — F(u)) — 0, a.s. — w. Now, E*(l{VZT(w) <u}) =
¥ dFr(s) = Fr(u), and Var*({V{p(w) < u}) = Fr(u)(1 — Fr(u)). Thus, as R,T — oo,
R/T — 0, 721? 21321(1{‘/&T(w) <u}—Fr(u,w)) 4 N(0,4F(u)(1—F(u)), a.s —w, as Fr(u) — F(u)
when T" — oo. Also, as ﬁ Zf;l(l{VgT < u}) is stochastic equicontinuous on U, it follows that
SUP,crr \/L}_z Zf;l(l{vgj < u}) weakly converges to the supremum of a Gaussian process. Thus, the
LHS of (12) diverges in probability at rate V'R, Yw € Q4, with Pr(Q4) = 1.

Proof of Theorem 2: (i) Under DGP Hy, 6, = 0 and AX; = X, exp(ea;), where X; | =
exp(log Xo +Z] le2;). Let

o (L Ax N

and

f [ 2 Ax(@)\2\ "
22 {w: (? 2 (AXl(w)> > — 0



We begin by establishing that P(Q; U ) = 1. This can be done by first showing that Pr(w :
lim 00 '23:1 627]" = 00) = 1. Given Al, the strong invariance principle for stationary a-mixing
processes (e.g. Eberlain (1986), Theorem 2) ensures that,

(T}
r— % 25273' =oW(r) + Oy (T %loglogT), for 0 < 6 < 1/2,
j=1

where r € (0,1], 0% = E(ait), and W is a standard Brownian motion process. Now define,

¥ = {(t,w) € [0,00) x Q: W(t,w) =0},

and Vw € (), define,

U(w) ={t €[0,00): W(t,w)=0}.

From Theorem 2.9.6 in Karatzas and Shreve (1991), it follows that ¥(w) has zero Lebesgue measure,
Vw € QF, where P({2*) = 1. Thus, it also follows that as t — oo, ‘Z;Zl EQJ" % o0, at rate T?,
0 <6 < 1/2. This implies that Vw for which 3%_, &2 ;(w) — 00, AX;(w)? — 00, and Vw for which
Y1 g0 (w) = —00, AXy(w)? — 0. Now, Pr(AX; = 0) = 0, and given the moment conditions in
A1, #AXl “3 0. Thus, Vw for which AX;(w)? — oo, we also have that (AX(w)/AX1(w))? — o0,
and Yw for which AX;(w)? — 0, (AXi(w)/AX1(w))? — 0, both at a geometric rate. It follows that
T2 (%;%%)2 — ocor #3°7, (%)2 — 0, Yw, also at a geometric rate. Thus, P(Q; U
Q2) = 1. Tt remains to establish that as T, R — oo and R/T — 0, (a) min(S% p(w), S5 p(w)) =
S p(w) and 5% p(w) S 33 a.s. — w, Yw € O, and (b) min(S§ 5(w), S5 W) = Shy(w) and
S%R(w) N 0, a.s. —w, Vw € q. (with the notation P we mean convergence in probability
according to P*, conditionally on the sample).

(a) That S p(w) < Xt a.s. —w Yw €  follows directly by the same arguments used in the

proof of Theorem 1(i). Now,
state) = [, (7 S (1 [ <0} - 1) - %)) ()

= 8% p(w) + VR ~

S

U+ LR XR: <1 {VZT(W) < u} - %) 7(u)du,

so that S} p(w) diverges at rate v/R.



2 .
(b) Recall that ~ 7, (Ef%%) — 0, Vw € (. As V¢ r(w) is a zero mean normal with variance

2 . e .
equal to %Zle (%) ; it follows that V¢ r(w) P00, a.s. — w, Vw € Qy, Vi. Furthermore,

%Zthl (%)2 — 0 at an exponential rate and Véi,T BT, 0, Vw € )y, at the same rate. Thus,
Yue U™, 1{VZT(w) < u} L 1, a.s.—w,Vw € Oy, at an exponential rate as T — oo. It follows that
Vue U*, as T,R — oo, R/T — 0,#2 (H{Vip<u}-1)% 720, and so S} p(w) 750, a.s. - w,
Yw € (y. Also, note that

1 R

Sta) = Shal) +VR+ [ =3 (1) <u} - 3 ) w(wda,

so that S%’ rlw) diverges at rate VR.
(ii) Note that, under DGP Hy, AX; = bo+(p—1)Xt—1+€1,t—€1,—1; under DGP Ha, AX; = So+e1,
and finally under DGP Hs, AX; = exp(as +Z§-:1 P leay jy1) —exp(as+ 25;11 ~legt jr1). The

desired result then comes by the same argument followed in the proof of Theorem 1(ii).
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Figure 1: Actual and Logged Data
Variables from the King-Plosser-Stock-Watson Dataset (1947-1994)
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Notes: See discussion in Section 4 for further details regarding construction of the variables depicted above.

31



Table 1: VE Common Cycle Test Performance Under Various Data Transformations®)

T=100

T=250

T=500

g2 AIC

SIC

AIC

SiC

AIC

SIC

Panel A: p=10.3

Data Generated in Logs, Test Done on Logged Data
g2 =0.102 0.993 0.999 0.992 1.000 0.995 1.000
ol = 1.003 0.993 0.999 0.992 1.000 0.995 1.000
02 =10.002 0993 0.999 0.992 1.000 0.995 1.000

Data Generated in Levels, Test Done on Levels Data
2=0102 0993 0.999 0992 1.000 0.995 1.000
02 = 1.002 0.993 0.999 0.992 1.000 0.995 1.000
2 =10.002 0993 0999 0.992 1.000 0995 1.000

Data Generated in Logs, Test Done on Levels Data

02 =0.102 0970 0993 0973 0995 0492 0.919
o2 =100 0218 0773 0.002 0.114 0002 0.080
o2 =10.0s2 0.126 0526 0.000 0.003 0.000 0.000
Data Generated in Levels, Test Done on Logged Data
02 =0102 0981 0999 0451 0861 0.003 0.024
o2 =1.002 0984 0999 0928 0997 0583 0.984
o2 =10 Oo 0.804 0.954 0.697 0.884 0.313 0.776

Panel B: p = 0.6

Data Generated in Logs, Test Done on Logged Data
02 =0. 102 0.991 0.997 0.993 1.000 0.991 1.000
ol =1.002 0.991 0.997 0.993 1.000 0.991 1.000
a? =10. Oa 0.991 0997 0.993 1.000 0.991 1.000

Data Generated in Levels, Test Done on Levels Data
2= 0.102 0.991 0.997 0.993 1.000 0.991 1.000
ol =1.002 0.991 0.997 0.993 1.000 0.991 1.000
2 =10.002 0991 0997 0.993 1.000 0991 1.000

Data Generated in Logs, Test Done on Levels Data
o = 0.10? 0.983 0.997 0.975 0.994 0.540 0.929
o2 = 1.002 0.828 0.982 0.588 0.899 0.009 0.428
o2 = 10. Oa 0.670 0.911 0.052 0.446 0.000 0.059

Data Generated in Levels, Test Done on Logged Data
2=0102 0965 0974 0706 0972 0.018 0.605
02 =1002 0985 0998 0920 0.998 0574 0978
2 =10.002 0.970 0995 0856 0991 0476 0.954

Panel C: p =0.9

Data Generated in Logs, Test Done on Logged Data
02 =0102 0235 0221 0844 0.842 0.993 1.000
o2 =1 00 0.234 0.220 0.844 0.843 0.993 1.000
o =10. Oo 0.235 0.221 0.844 0.843 0.993 1.000

Data Generated in Levels, Test Done on Levels Data

62 =0.102 0.236 0.220 0.843 0.842 0.993 1.000
02 = 1.002 0.236 0.220 0.843 0.841 0.993 1.000
a2 =10. Ocr 0.236 0.221 0.843 0.842 0.993 1.000
Data Generated in Logs, Test Done on Levels Data
02 =0.102 0.980 0.996 0.978 0.996 0.541 0.930
ol =1 Oo' 0.982 0.998 0.719 0.970 0.221 0.806
o2 =10. 00‘ 0.954 0.990 0.734 0.941 0.123 0.644

Data Generated in Levels, Test Done on Logged Data
2=0102 0397 0379 0878 0901 0.760 0.984
02 =1002 0484 0468 0.948 0993 0.694 0988
2 =10.002 0.587 0.579 0941 0997 0.695 0.987

(*) Notes: Entries are based on the application of Vahid-Engle common cycle tests and denote the frequency of rejection of
Hop : s = 2 (i.e. no common cycles), where the alternative is Hy : s < 2 (i.e. one common cycle), based on 5% nominal level
tests. Details of the models used to simulate data for these experiments are given above. In all experiments, 5000 Monte Carlo
simulations were run (see above for further details).
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Table 2: Johansen Cointegration Test Performance under Various Data Transformations *)

T=100 T=250 T=500
a2 AIC SIC AIC SIC AlIC SIC
Panel A: p=10.3
Data Generated in Logs, Test Done on Logged Data
02 =01¢2 1000 1000 1000 1000 1.000 1.000
2=10¢2 1.000 1.000 1.000 1.000 1.000 1.000
02 =10.0s2 1.000 1.000 1.000 1.000 1.000 1.000
Data Generated in Levels, Test Done on Levels Data
62 =0.102 1.000 1.000 1.000 1.000 1.000 1.000
o2 =100 1.000 1.000 1.000 1.000 1.000 1.000
02 =10002 1.000 1.000 1.000 1.000 1.000 1.000
Data Generated in Logs, Test Done on Levels Data
02 =0.102 1.000 1.000 1.000 1.000 1.000 1.000
062 =1.002 0999 1.000 1.000 1.000 1.000 1.000
02 =10002 1.000 1.000 0995 1.000 1.000 1.000
Data Generated in Levels, Test Done on Logged Data
o2 =0.102 0999 1.000 1.000 0.999 1.000 1.000
02 =100 1.000 1.000 1.000 1.000 1.000 1.000
o2 =10.002 1.000 1.000 1.000 1.000 1.000 1.000
Panel B: p = 0.6
Data Generated in Logs, Test Done on Logged Data
o2 =0.102 1.000 1.000 1.000 1.000 1.000 1.000
0Z=1002 1000 1.000 1.000 1.000 1.000 1.000
02 =10.002 1.000 1.000 1.000 1.000 1.000 1.000
Data Generated in Levels, Test Done on Levels Data

02 =016 1.000 1.000 1.000 1.000 1.000 1.000
o2 =1.007 1.000 1.000 1.000 1.000 1.000 1.000
02 =10.0¢2 1.000 1.000 1.000 1.000 1.000 1.000
Data Generated in Logs, Test Done on Levels Data
2 =0102 1000 1.000 1.000 1.000 1.000 1.000
o2 =100 0999 1.000 1.000 1.000 1.000 1.000
02 =10.002 1.000 1.000 1.000 1.000 1.000 1.000
Data Generated in Levels, Test Done on Logged Data
02 =0102 0997 0999 0.997 1.000 1.000 1.000
02 =100 1.000 1.000 1.000 1.000 1.000 1.000
02 =10.002 1.000 1.000 1.000 1.000 1.000 1.000

Panel C: p = 0.9

Data Generated in Logs, Test Done on Logged Data
02 =0102 0.685 0.682 0.993 0.994 1.000 1.000
02 =100 0683 0680 0.994 0995 1.000 1.000
o2 =10.002 0.683 0.680 0.994 0.995 1.000 1.000

Data Generated in Levels, Test Done on Levels Data
02 =0.102 0.686 0.683 0.994 0995 1.000 1.000
o2 =1.00? 0.687 0.684 0.994 0.995 1.000 1.000

(M

g Ng

62 =10.002 0.687 0.685 0.994 0995 1.000 1.000
Data Generated in Logs, Test Done on Levels Data

02 =01¢2 1.000 1.000 1.000 1.000 1.000 1.000

ol =1.002 1.000 1.000 1.000 1.000 1.000 1.000

a

N,

=10.0¢2 1.000 1.000 1.000 1.000 1.000 1.000
Data Generated in Levels, Test Done on Logged Data

62 =012 0724 0721 0978 0979 1.000 1.000
02 =1002 0.847 0845 1.000 1.000 1.000 1.000

02 =10.002 0.909 0910 1.000 1.000 1.000 1.000

(*) Notes: See notes to Table 1. Entries are Johansen trace test statistic rejection frequencies, for the null hypothesis that the
cointegrating rank is 0. As our models have two variables, and the alternative of interest is a finding of a cointegrating space of
rank 1 or 2, the trace test is the same as the maximum eigenvalue test in our experiments. All results are based on 5% nominal
level tests. In all experiments, 5000 Monte Carlo simulations were run.
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Table 3a: St g(w) Test Performance for Various Data Generating Processes *)

Empirical Level Results

1(0) Data Generating Processes

1(1) Data Generating Processes

T=100 T=250 T=500 T=100 T=250 T=500
DGPS1 R=T05 0.026 0.003 0030 DGPS4 R=1705 0.018 0.000 0.030
R=T7%75  0.281 0.078 0.020 R=T°%7 0.218 0.022 0.020
R=T99 0454 0.280 0.074 R=T09% 0427 0.114 0.070
R=T99 0513 0.363 0.059 R=T%9  0.510 0.192 0.059
R=T%% 0577 0.420 0.091 R=T9%9  0.596 0.251 0.087
DGPS2 R=TO95 0.017 0.000 0.030 DGPS5 R=T05 0.009 0.000 0.030
R=T0975  0.216 0.021 0.020 R=T°75  0.066 0.010 0.020
R=17099 (422 0.106 0.070 R=70%9 0221 0.022 0.070
R=T099 0495 0.187 0.059 R=T%9  0.320 0.059 0.060
R=T0%9% 0569 0.246 0.087 R=T°% 0416 0.059 0.090
DbGPS3 R=7T05 0.013 0.000 0.030 DGPS6 R=T°%5 0.003 0.000 0.030
R = T075 0.144 0.011 0.020 R=T075 0.027 0.010 0.020
R=T099 0356 0.034 0.070 R=T9%%  0.054 0.020 0.070
R=7Y9  (0.444 0.077 0.060 R=T9%9  0.077 0.042 0.060
R=1T°9 0530 0.094 0.090 R=799  0.150 0.055 0.090
Empirical Power Results
DGPP1 R=T0%° 0.133 0.251 0378 DGPP4 R=TY? 0.137 0.250 0.367
R=T0%7  0.459 0.588 0.698 R=70975  0.433 0.533 0.627
R=T%% 0600 0.746 0.825 R=1T9%9 (543 0.682 0.793
R=1T099 0647 0.789 0.843 R=T09 0577 0.738 0.839
R=T99  0.692 0.814 0.865 R=1T0%9  0.623 0.776 0.876
DGPP2 R=T0%5 0.131 0.245 0362 DGPP5 R=T0%5 0.132 0.251 0.362
R=T975  0.439 0.563 0.672 R=T9%75 0427 0.568 0.707
R =1T090 0.567 0.725 0.810 R ="T090 0.577 0.771 0.840
R=T%% 0811 0.771 0.853 R=T099%  0.638 0.812 0.843
R=7T99 0659 0.796 0.882 R=T9%9 0697 0.831 0.854
DGPP3 R=T0%5 0.132 0.245 0.352 DGPP6 R=T0%5 0.126 0.257 0.381
R=TY75  0.427 0.552 0.649 R=T97  0.465 0.633 0.755
R=17099% 0558 0.706 0.809 R=T9%9 0647 0.787 0.866
R=7T09%9 0599 0.753 0.832 R=T9%9  0.706 0.819 0.883
R=T%% 0647 0.789 0.850 R=T0%9  0.750 0.847 0.899

(*) Notes: See discussion in Section 3.3 and list of DGPs used in Table 3b. Entries are rejection frequencies of the St g{w)
test, where the null hypothesis is the data are generated according to a loglinear model that may be either I(0) or I{1). (As
discussed above, note that if the null fails to reject, then standard unit root tests to the logged data can be used to assess
whether the data are I(0) or I(1}). (The finite sample properties of sequentially applied unit root tests of this sort are similar
to the finite sample properties of Dickey-Fuller, Phillips-Perron, and other unit root tests examined by many authors in the
unit root literature (see e.g. Hamilton (1994)). All results are based on 5% nominal level tests. In all experiments, 5000 Monte

Carlo simulations were run.

(*) Notes: See discussion in Section 3.3. In the above models: e1; is 4id N(0,0.0052); €2,r is iid N(O,O.OOSQ); €3¢ is tid
N(0,150%); and 4, is 3id N(0,150%). All data generating processes where (roughly) calibrated by using parameters consistent
with the money, consumption and output variables from the KPSW dataset used to calibrate the experiments reported in Tables

1 and 2 above.

Table 3b: Data Generating Processes Used in Table 3a (*)

Mnemonic

DGP

DGPS1
DGPS2
DGPS3
DGPS54
DGPS5
DGPS6
DGPP1
DGPP2
DGPP3
DGPPA4
DGPP5
DGPP6

log Xt = 2.0 + 0.0020t + plog Xt—1 + €11
log X; = 2.0 +0.0025t + plog X;_1 +e1,¢
log Xt = 2.0+ 0.0030t + plog X¢—1 +¢€1,¢
log X: = 0.010 +log X¢—1 +e2¢
log X¢ = 0.0154+log X¢—1 + €2+
log Xt = 0.020 + log X¢—1 +22.¢
Xg = 2500 + 15¢ + ng_l + €3t
Xt =2500+4 20t + pXi_1 + e3¢
Xi = 2500 4 25t + pXy—1 + 3.4

Xt =100+ X¢_1 + €4t

Xt =150+ Xt_1 +ea

Xt =200+ X471 + €4t
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Table 4: Empirical Illustration I: The King-Plosser-Stock-Watson Data Set *

Sertes Data Transformation Statistics
R = T0.50 R= T0.75 R = TO.QO R = 70.95 R= 70.99

Panel A: Sample: 1947 quarter 1 - 1994 quarter 1

consumption 1.212 1.658 2.799 3.589 4.244
investment 2.147 5.828 11.98 15.86 19.52
money 2.590 7.730 16.22 21.42 26.40
output 1.072 0.905 0.950 1.071 1.039
interest rate 1.454 2.864 5.448 7.142 8.706
Panel B: Sample: 1970 quarter 1 - 1994 quarter 1
consumption 1.270 1.052 1.145 1.328 1.357
investment 1.327 1.415 1.901 2.351 2.580
money 1.809 3.657 6.353 7.967 9.418
output 1.413 1.870 2.820 3.529 4.000
Panel C: Sample: 1984 quarter 1 - 1994 quarter 1
consumption 2.616 5.312 9.256 11.20 12.77
investment 3.256 7.164 12.67 15.40 17.65
money 2.043 3.666 6.191 7.419 8.425
output 2.398 4.685 8.094 9.778 11.13

* Entries in the table are Sp p(w) statistics calculated as discussed above, and are distributed as x% random variables so that
1%, 5%, and 10% critical values are 6.635, 3.842, and 2.706, respectively. Data are quarterly and correspond to those series

constructed and examined by King, Plosser, Stock and Watson (1991), except that the data have been updated through 1994,
as discussed in Corradi, Swanson and White (2000). See above for further details.
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Table 5: Empirical Illustration II: The Nelson-Plosser Data Set *

Series Data Transformation Statistics
R = T0.50 R = T0.75 R = TO.QO R = T0.95 R = T0.99

Panel A: Sample: 1909 - 1988

cpi 1.033 0.823 1.039 0.979 1.057
employment 1.123 1.298 1.930 2.064 2.362
gnp deflator 1.015 0.777 0.960 0.881 0.937

industrial production 1.023 0.793 0.991 0.919 0.984
gnp per capita 1.014 0.759 0.917 0.822 0.867
money 1.014 0.734 0.861 0.753 0.782
nominal gnp 1.015 0.733 0.862 0.753 0.783
real gnp 1.036 0.835 1.059 1.003 1.087
real wages 1.418 2.630 4.738 5.457 6.473
s&p500 1.017 0.733 0.874 0.766 0.800
unemployment 1.124 1.307 1.949 2.087 2.390
velocity 1.050 0.917 1.203 1.176 1.296
wages 1.016 0.779 0.964 0.885 0.943
Panel B: Sample: 1959 - 1988

cpi 0.992 1.045 0.782 0.767 0.816
employment 1.017 1.030 0.762 0.756 0.800
gnp deflator 0.989 1.052 0.801 0.786 0.838

industrial production 0.999 1.037 0.770 0.758 0.805
gnp per capita 0.994 1.043 0.778 0.764 0.812
money 0.990 1.076 0.846 0.837 0.894
nominal gnp 0.989 1.046 0.788 0.774 0.823
real gnp 0.998 1.222 1.129 1.171 1.288

real wages 1.143 1.780 2.233 2477 2.770
s&p500 1.101 1.615 1.895 2.074 2.309
unemployment 1.525 3.103 4.763 5.537 6.354
velocity 1.239 2.147 2.949 3.349 3.785

wages 0.984 1.117 0.924 0.929 0.999

* Entries in the table are St p(w) statistics calculated as discussed above, and are distributed as X% random variables so that
1%, 5%, and 10% critical values are 6.635, 3.842, and 2.7086, respectively. Data are annual and correspond to those series
constructed and examined Schotman and van Dijk (1991) See above for further details.
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Table 6: Empirical Illustration III: The Hall-Anderson-Granger Data Set *

Series Data Transformation Statistics
R = TO.5O R = T0.75 R = TO‘QO R = TO.95 R = T0.99

Panel A: Sample: 1970 month 1 - 1988 month 12

R1 4.464 18.43 42.59 56.77 71.35
R2 3.264 12.58 28.83 38.41 48.21
R3 4.984 21.00 48.68 64.91 81.57
R4 4.787 20.03 46.38 61.83 77.71
R5 4.158 16.92 39.00 52.00 65.34
R6 4.589 19.05 44.06 58.74 73.82
R7 5.240 22.25 51.65 68.89 86.57
RS 5.401 23.05 53.52 71.40 89.71
R9 5.779 24.92 57.99 77.38 97.22
R10 5.405 23.06 53.56 71.45 89.79
R11 4.480 18.51 42.77 57.02 71.65
Panel B: Sample: 1984 month 1 - 1988 month 12
R1 2.551 7.429 13.88 17.18 19.87
R2 1.967 5.074 9.244 11.42 13.09
R3 2.522 7.312 13.65 16.88 19.53
R4 2.548 7.416 13.86 17.14 19.83
R5 2.330 6.532 12.10 14.96 17.27
R6 2.574 7.522 14.07 17.40 20.14
R7 2.894 8.777 16.54 20.48 23.77
R8 2.884 8.742 16.47 20.40 23.67
R9 3.069 9.442 17.81 22.07 25.64
R10 2.921 8.883 16.74 20.74 24.07
R11 2.530 7.341 13.71 16.95 19.61

* Entries in the table are Sy g(w) statistics calculated as discussed above, and are distributed as X% random variables so that
1%, 5%, and 10% critical values are 6.635, 3.842, and 2.706, respectively. Data are monthly and correspond to those series
constructed and examined Hall, Anderson and Granger (1992). In particular, the data are monthly treasury-bill nominal yield

to maturity figures - R1 is the series for bills with one month to maturity, R2 is the series for bills with 2 months to maturity,
etc. See above for further details.
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