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Abstract

Forecasters and applied econometricians are often interested in comparing the predictive accuracy of
nested competing models. A leading example of nestedness is when predictive ability is equated with
“out-of-sample Granger causality”. In particular, it is often of interest to assess whether historical
data from one variable are useful when constructing a forecasting model for another variable, and
hence our use of terminology such as “out-of-sample Granger causality” (see e.g. Ashley, Granger
and Schmalensee (1980)). In this paper we examine and discuss three key issues one is faced with
when constructing predictive accuracy tests, namely: the contribution of parameter estimation
error, the choice of linear versus nonlinear models, and the issue of (dynamic) misspecification,
with primary focus on the latter of these issues. One of our main conclusions is that there are a
number of easy to apply statistics constructed using out of sample conditional moment conditions
which are robust to the presence of dynamic misspecification under both hypothesis. We provide
some new Monte Carlo findings and empirical evidence based on the use of such tests. In particular,
we analyze the finite sample properties of the consistent out of sample test of Corradi and Swanson
(2002) using data generating processes calibrated with U.S. money and output, and empirically
investigate the (non)linear marginal predictive content of money for output. Our Monte Carlo
evidence suggests that the tests perform adequately in finite samples, and our empirical evidence
suggests that there is non useful (non)linear information in money growth that is not already
contained in lags of output growth, when the objective is output growth prediction.
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1 Introduction

The discussion of forecast model comparison by Ashley, Granger and Schmalensee (1980) and

Granger and Newbold (1986) are two of the main driving forces behind much of the current lit-

erature on predictive ability, although it has really only been over the past ten years or so that

the issue of (out of sample) predictive accuracy evaluation has received increasing attention from

both theoretical and applied perspectives. One of the most important recent contributions is the

seminal paper of Diebold and Mariano (1995, DM), in which a general test of equal predictive

accuracy between two competing models is proposed. Since then, efforts have been made to further

generalize DM type tests in order to: account for parameter estimation error (see e.g. West (1996)

and West and McCracken (1998)); allow for non differentiable loss functions together with param-

eter estimation error (McCracken (2000)); extend the DM framework to the case of integrated and

cointegrated variables (see e.g. Clements and Hendry (1999a,b) and Corradi, Swanson and Olivetti

(2001)); and address the issue of joint comparison of more than two competing models (see e.g.

Sullivan, Timmermann and White (1999, 2001) and White (2000)).

In applied finance and in financial risk management, uncovering the best loss function specific

model for the conditional mean often does not suffice. Therefore, attention has also recently

focused on the issue of (conditional) forecast interval evaluation (see e.g. Christoffersen (1998),

Christoffersen and Diebold (2000)) and, as a natural extension, the issue of predictive density

evaluation (see e.g. Diebold, Gunther and Tay (1998), Bai (1998), Diebold, Hahn and Tay (1999),

Clements and Smith (2000,2001), Corradi and Swanson (2001), Hong (2001), and the references

cited therein). One of the common features of many of the papers cited above is that nonnested

forecasting models are compared. However, forecasters and applied econometricians are often

interested in comparing the predictive accuracy of nested competing models. The most obvious

context in which nested models should be compared is when predictive ability is equated with “out-

of-sample Granger causality”, for example. In particular, it is often of interest to assess whether

historical data from one variable are useful for constructing a forecasting model for another variable,

hence our use of terminology such as “out-of-sample Granger causality”.1

1Granger (1980) summarizes his personal viewpoint on testing for causality, and outlines what he considers to be

a useful operational version of his original definition of causality (Granger (1969)). This operational version is based

on a comparison of the one-step ahead predictive ability of competing models. However, the common practice is to

test for Granger causality using in-sample F-tests.
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A common problem that arises when comparing nested models is that the statistic vanishes in

probability under the null of equal predictive ability. This is the case with the Diebold-Mariano

statistic, for example. Therefore, efforts have been made to construct tests which have a nondegen-

erate limiting distribution under the null. A partial list of the recent contributions that address this

by constructing a variety of new tests such as those based on the encompassing principle includes

Harvey, Leybourne and Newbold (1997), McCracken (1999) and Clark and McCracken (2001). Re-

lated papers based on out of sample moment conditions include Chao, Corradi and Swanson (2001,

CCS), Corradi and Swanson (2002, CS).

In this paper we confine our attention to the issue of evaluating nested models. In particular,

we discuss and evaluate a variety of recent testing contributions that address what we feel are

three of the key outstanding issues in predictive accuracy testing, namely: parameter estimation

error, the use of nonlinear versus linear models, and dynamic misspecification. With regard to

linear versus nonlinear models, it is worth noting that in applied time series analysis there has

been a long standing debate concerning whether simple linear models (e.g. ARMA models) provide

out of sample forecasts which are (at least) as accurate as more sophisticated nonlinear models.

If this were shown to be the case, then there would be no point in using nonlinear models for

out-of-sample prediction, even if the linear models could be shown to be incorrectly specified.

This debate is addressed, for example, by Teräsvirta and Anderson (1992), Granger and Teräsvirta

(1993), Swanson and White (1995, 1997), and the references cited therein. The notion of parameter

estimation error (PEE) is crucial because confidence bands around point predictive accuracy tests

can often be dominated by the effect of PEE, and failure to account for PEE can thus lead to

very imprecise if not incorrect inferences (see e.g. West (1996), White (2000), Chao, Corradi and

Swanson (2001), and the references contained therein). Finally, the area which these authors feel is

most often overlooked in discussions of predictive accuracy is that of model misspecification, either

dynamic or otherwise. This topic is crucial if one takes the objective view that all prediction models

are approximations of some underlying (and perhaps highly complex) reality. As all models are

typically parsimonious approximations, it is likely that even if the null model is correctly specified

for a given information set, it is still likely to be dynamically misspecified, as it does not take

into account all of the relevant history. Failing to take into account the possibility of dynamic

misspecification under both hypotheses leads to incorrect inference, as critical values are generally

incorrect in such cases. White (2000) tackles this problem by allowing for the comparison of many
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models at once, rather than the comparison of only two models, as in Diebold and Mariano (1995).

By allowing for many models and conducting data mining exercises, White implicitly assumes that

there are many approximations of the truth that are probably worth evaluating, and he accounts

for this feature of one’s empirical investigation by designing a data snooping technique based on

the bootstrap that accounts for sequential test bias associated with comparing many models. CS

take the data snooping approach of White (2000) one step further by allowing for (dynamic)

misspecification among competing prediction models (under both hypotheses), while at the same

time ensuring test consistency against generic nonlinear alternatives. This departs from the usual

practice of comparing the predictive accuracy of a finite and fixed set of linear and (less often)

nonlinear models, and allows for the construction of ex ante Granger causality type predictive

accuracy tests when the precise form of the nonlinearity is unknown. In this sense, these tests

combine the consistent specification testing and predictive accuracy testing literatures.

In the sequel, we review the recent literature and debate on predictive comparison of nested

models, with particular emphasis on the results of CCS and CS, and provide new Monte Carlo and

empirical evidence. The Monte Carlo experiments carried out below are based on data generating

processes calibrated with U.S. money (M2) and output (industrial production), and are designed to

evaluate the performance of CS type tests. Our empirical investigation focuses on the (non)linear

marginal predictive content of M2 for industrial production, and our results suggest that there is

no useful (non)linear information in money growth that is not already contained in lags of output

growth, when the objective is output growth prediction.

The rest of the paper is organized as follows. Section 2 discusses linear and nonlinear predictive

accuracy tests, and Section 3 generalizes the results of Section 2 to generic nonlinear alternatives.

Section 4 discusses results from a series of Monte Carlo experiments and from the empirical exami-

nation of a macroeconomic dataset using a generic nonlinear test of predictive accuracy. Concluding

remarks are gathered in Section 5.
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2 Linear and Nonlinear Predictive Accuracy Tests

We begin by discussing out of sample tests of linear restrictions.2 In empirical forecasting applica-

tions, one often starts from a restricted autoregressive (AR(p)) model,

xt =
p∑

j=1

β∗j xt−j + u0,t (1)

and compare it with a “larger” unrestricted autoregressive model,3

xt =
p∑

j=1

β∗j xt−j +
k∑

j=1

α∗jyt−j + u1,t (2)

In-sample “Granger causality” tests of H0 : α∗j = 0,∀j versus HA : α∗j 6= 0, for some j, can then

easily be constructed using Wald type statistics which have a limiting χ2 distribution under H0.

For example, in the case of martingale difference errors under the null, and given a maintained

assumption of conditional homoskedasticity, one commonly constructs F = (RRSS−URSS)/k
URSS/(T−k) where

RRSS and URSS are the sum of least squares residuals from the restricted and the unrestricted

models, k is the number of restrictions, and kF
d→ χ2

k under H0. An out-of-sample analog to

this test is proposed by Clark and McCracken (2001,CM). In their test, as in all recursive type

predictive accuracy tests, one estimates (1) and (2) using observations t = 1, 2, . . . R, and computes

û0,R+1 = xR+1 −
∑p−1

j=0 β̂R,jxt−j and û1,R+1 = xR+1 −
∑p−1

j=0 β̂R,jxt−j −
∑k−1

j=0 α̂R,jyt−j , and then

re-estimates the model using R + 1 observations and constructs β̂R+1,j , α̂R,j , û0,R+2 and û1,R+2.

This procedure is repeated until sequences of P ex ante forecast errors have been constructed, with

P + R = T , where T is the sample size. CM also suggest a new encompassing test statistic,

ENC NEW = P
c

P−1
∑T−1

t=R û2
1,t+1

,

where ct+1 = û0,t+1(û0,t+1 − û1,t+1), and c = P−1 ∑T−1
t=R ct+1. They show that the statistic above

vanishes if P/R → 0, while it has a nonstandard limiting distribution if P/R → π 6= 0.4 The

ENC NEW test is very easy to compute and critical values have been tabulated by the authors,
2Hereafter β∗ denotes the best linear predictor of yt given its past history. Analogously, in the sequel, δ∗ = (β∗, α∗)′

denotes the best linear predictor of yt given its past and the past of xt−1.
3All results discussed below generalize straightforwardly to the case where both the restricted and unrestricted

models contain the past of other explanatory variables and/or an intercept.
4Clark and McCracken (2001) also provide the asymptotic distributions of related encompassing tests (such as

that of Harvey, Leybourne and Newbold (1997)) for the case of recursively estimated parameters.
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for various values of π. However, the statistic is written in a non HAC (heteroskedasticity and

autocorrelation) robust form, so that the critical values are valid only if the errors, under the null,

form a martingale difference and conditionally homoskedastic sequence. The martingale difference

error assumption is essentially equivalent to an assumption of correct dynamic misspecification

under the null. However, as pointed out above, it is preferable to evaluate the relative performance

of (dynamically) misspecified models. Indeed, if the null model is dynamically correctly specified,

then there may be no compelling reason for performing an out of sample version of the particular

test being used (such as the F test) in the first place. For example, and broadly speaking, in the

case of correct specification under the null, t and F tests are known to be optimal. In a recent

paper, Inoue and Killian (2002) provide Monte Carlo findings showing that out of sample tests are

not more reliable than in sample tests in such cases. However, as their Monte Carlo DGPs impose

dynamic correct specification under the null, it is perhaps not too surprising that the power of in

sample tests is often higher, as one uses the entire sample. Under a similar set-up as that used

by Inoue and Killian (2002), Rossi (2001) shows that out of sample tests are often suboptimal.

These last two papers serve to underscore the importance of remembering that out of sample tests

are not useful in all contexts, and in particular out of sample tests are likely to be most useful

in contexts where (dynamic) misspecification is allowed under both hypotheses. However, in the

case of misspecification one must be careful when obtaining distributional results for even the most

standard out of sample tests.

Intuitively, in order to allow for dynamic misspecification under both hypothesis, we want to

construct a HAC robust test, thus allowing for comparisons in the case of non martingale differ-

ence sequence scores. This property is crucial when comparing multiple (or even two) prediction

models, as there is absolutely no reason to believe that one of the models is correctly specified,

either dynamically or otherwise. The Diebold Mariano test can be written in a robust form, by

simply scaling the numerator by a heteroskedasticity and autocorrelation consistent (HAC) robust

(co)variance estimator (e.g. see Newey and West (1997)). However, it is easy to see that when

comparing nested models the DM statistic vanishes in probability under the null. Consider

DMP =
1√
P

T−1∑

t=R

(f(û0,t+1)− f(û1,t+1)) /σ̂P , (3)

where σ̂2
P is a HAC variance estimator of dt = f(û0,t+1) − f(û1,t+1), with f denoting a given loss
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function. The null hypothesis here is that of equal predictive ability, and is written as

H ′
0 : E(f(u0,t+1))− E(f(u1,t+1)) = 0.

Notice that when the numerator of (3) is expanded (via a mean value expansion) around the “true”

parameter values we obtain

1√
P

T−1∑

t=R

(f(u0,t+1)− f(u1,t+1))− 1√
P

T−1∑

t=R

∇βf |β(β̂t − β∗) +
1√
P

T−1∑

t=R

∇δf |δ(δ̂t − δ∗), (4)

where β ∈ (β̂t, β
∗), δ ∈ (δ̂t, δ

∗), and β∗ = (β∗1 , . . . , β∗p)′, δ∗ = (β∗, α∗)′ and “hat” denotes the

quasi-maximum likelihood estimator, for example. The first term in (4) is identically equal to zero,

under H0, while the second and third terms vanish in probability if P/R → 0 and/or if the same

loss function is used for estimation and prediction. In fact, if we use the same loss function for

estimation and prediction (i.e. the models are estimated by OLS and f is a quadratic loss function),

then 1
P

∑T−1
t=R ∇βf |β and 1√

P

∑T−1
t=R ∇δf |δ converge in probability to their respective means, which

are identically to zero, because of the first order conditions. Therefore the statistic vanishes in

probability. McCracken (1999) shows that if π > 0, then
√

PDM has a nondegenerate, non standard

limiting distribution, whose critical values can be tabulated, as they are nuisance parameters free.

Again, it should be stressed that such critical values are valid under the additional assumption that

the errors form a conditionally homoskedastic martingale difference sequence. This, then, returns

us to the problem of using a test that is not robust to misspecification.

In order to address this problem, a simple out of sample test for forecast evaluation of nested

linear models has been proposed by Chao, Corradi and Swanson (2001). The suggested test statistic

is based on

mP =
1√
P

T−1∑

t=R

û0,t+1Yt, (5)

where û0,t+1 = xt+1 −
∑p−1

j=0 β̂t,jxt−j , Yt = (yt, yt−1, . . . , yt−k−1)′. It is important to note that tests

formed using mP do not require the restricted or unrestricted models to be dynamically correctly

specified. In fact, if we form a test statistic by rescaling mP by a HAC robust variance estimator,

we immediately obtain a statistic that is robust to dynamic misspecification. In this case the

hypotheses of interest are

H̃0 : E(u0,t+1yt−j) = 0, j = 0, 1, . . . k−1 versus H̃A : E(u0,t+1yt−j) 6= 0 for some j, j = 0, 1, . . . k−1
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Given mild moment and memory restrictions, it turns out that, under the null,

m′
p(Ŝ11 + 2(1− π−1 ln(1 + π))F̂ ′M̂Ŝ22M̂F̂ − 2(1− π−1 ln(1 + π))(̂F

′
M̂Ŝ12 + Ŝ′12M̂F̂ ))−1mp

d→ χ2
k,

where F̂ = 1
P

∑T
t=R XtY

′
t , M̂ =

(
1
P

∑T−1
t=R XtX

′
t

)−1
, and

Ŝ11 =
1
P

T−1∑

t=R

(û0,t+1Yt − µ̂1)(û0,t+1Yt − µ̂1)′ +
1
P

lT∑

t=τ

wτ

T−1∑

t=R+τ

(û0,t+1Yt − µ̂1)(û0,t+1−τYt−τ − µ̂1)′

+
1
P

lT∑

t=τ

wτ

T−1∑

t=R+τ

(û0,t+1−τYt−τ − µ̂1)(û0,t+1Yt − µ̂1)′,

with µ̂1 = 1
P

∑T−1
t=R û0,t+1Yt,

Ŝ′12 =
1
P

lT∑

τ=0

wτ

T−1∑

t=R+τ

(û0,t+1−τYt−τ−µ̂1) (Xt−1û0,t)
′+

1
P

lT∑

τ=1

wτ

T−1∑

t=R+τ

(û0,t+1Yt−µ̂1) (Xt−1−τ û0,t−τ )
′ , and

Ŝ22 =
1
P

T−1∑

t=R

(Xt−1û0,t) (Xt−1û0,t)
′ +

1
P

lT∑

τ=1

wτ

T−1∑

t=R+τ

(Xt−1û0,t) (Xt−1−τ û0,t−τ )
′

+
1
P

lT∑

τ=1

wτ

T−1∑

t=R+τ

(Xt−1−τ û0,t−τ ) (Xt−1û0,t)
′ ,

for wτ = 1 − τ
lT +1 and where lT /T 1/4 → 0 as T, lT → ∞. This test is consistent against the

alternative that the nesting model outperforms the nested one. The statistic can also easily be

generalized in order to compare the null model against given nonlinear alternatives. This can

be accomplished by using more general nonlinear test functions, such as the exponential (as in

Bierens (1990)), a neural network with sigmoidal activation function, or some other generically

comprehensive function (see e.g. Stinchcombe and White (1998)). In this case, we can construct

nonlinear predictive accuracy tests based on mP = 1√
P

∑T−1
t=R û0,t+1g(γ′Yt) , where γ ∈ Γ is a

nuisance parameter unidentified under the null hypothesis (for a detailed survey of nonlinearity

tests used in economics, see Granger and Teräsvirta (1993)). If we confine attention to a finite

grid of values for the nuisance parameter, γ, following the approach suggested by Lee, White and

Granger (1993, LWG) in the context of (in-sample) testing for neglected nonlinearities, we can set

g(γ′Yt) = γ′Yt + (1 + exp(−γ′Yt))−1, where γ is a k × 1 vector.5 The above distributional results

then hold, with Yt replaced by g(γ′Yt). Note that both the finite sample size and power in this case

5Different sets of weights, say γ1 and γ2, can be chosen for the linear and nonlinear components of the model.
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depend on the specific γ which is used. Following LWG however, we can randomly draw l different

sets of γ and compute l different statistics, say. Let PV1, . . . PVl be the p-values associated with

the l different statistics, so that PV1 ≤ PV2 . . . ≤ PVl. LWG suggest rejecting the null at 5% if

there is a j = 1, . . . l such that PVj ≤ 0.05/(l− j − 1). An alternative to the above approach which

is discussed in the next section is to construct a test that is consistent against generic nonlinear

alternatives.

3 A Predictive Accuracy Test That Is Consistent Against Generic

Nonlinear Alternatives

As above, our discussion begins by specifying a simple AR(1) as our reference model, although

the results discussed here generalize in a straightforward manner to the case where the reference

model is a possibly nonlinear AR(p) model (see e.g. Granger and Teräsvirta (1993)). In addition,

and for ease of exposition, we again confine our attention to one-step ahead forecasts, although

extension to multi-step ahead forecasts follows directly. As we do not in general assume that the

reference or alternative models are dynamically correctly specified, we do not explicitly write down

data generating processes. Nevertheless, we can define the “true” one-step ahead forecast errors

for the reference model (say model 0) and for the generic alternative model (say model 1). More

precisely, let the reference model be

xt = β∗1 + β∗2xt−1 + u0,t, (6)

where β∗ = (β∗1 , β∗2)′ = arg minβ∈B E(f(xt − β1 − β2xt−1)), β = (β1, β2)′, xt is a scalar, and in this

case the same loss function, f, is used both for in-sample estimation and out-of-sample prediction

evaluation. Additionally, B is a generic compact set defined on the real line. The generic alternative

model is:

xt = δ∗1(γ) + δ∗2(γ)xt−1 + δ∗3(γ)g(zt−1, γ) + u1,t(γ), (7)

where δ∗(γ) = (δ∗1(γ), δ∗2(γ), δ∗3(γ))′ = arg minδ∈∆ E(f(xt − δ1 − δ2 − δ3g(zt−1, γ))),

δ(γ) = (δ1(γ), δ2(γ), δ3(γ))′, γ ∈ Γ, with Γ a compact subset of <d, zt−1 = (z1,t−1, z1,t−2, . . . )

is a finite vector of lagged variables, possibly including lags of xt, and g is defined as above (for

example, g(zt−1, γ) = exp(
∑q

i=1 γiΦ(zt−i)), or g(zt−1, γ) = 1/(1 + exp(c − ∑q
i=1 γiΦ(zt−i))), with
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c 6= 0 and Φ a measurable one to one mapping from < to a bounded subset of <). In general,

zt−1 could contain: lags of the dependent variable (when testing for neglected nonlinearity); lags

of other variables (when testing for nonlinear out-of-sample Granger causality - see also Rothman,

van Dijk and Franses (2001)); or both. Analogous to the DM test, and along the lines discussed in

CS (2002), the hypothesis of interest is:

H0 : E(f(u0,t+1)− f(u1,t+1(γ))) = 0 versus HA : E(f(u0,t+1)− f(u1,t+1(γ))) > 0. (8)

Clearly, the reference model is nested within the alternative model, and given the definitions of

β∗ and δ∗(γ), the null model can never outperform the alternative. For this reason, H0 corre-

sponds to equal predictive accuracy, while HA corresponds to the case where the alternative model

outperforms the reference model. It follows that H0 and HA can be restated as:

H0 : δ∗3(γ) = 0 versus HA : δ∗3(γ) 6= 0,

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure. Now, given the definition of δ∗(γ),

note that

E((f ′(xt+1 − δ∗1(γ)− δ∗2(γ)xt − δ∗3(γ)g(zt, γ)))×




−1
−xt

−g(zt, γ)


) = 0,

where f ′ denotes the first derivative of f with respect to its argument. Thus, under H0 we have

that δ∗3(γ) = 0, δ∗1(γ) = β∗1 , δ∗2(γ) = β∗2 , and E(f ′(u0,t+1)g(zt, γ)) = 0. Now, we can once again

restate H0 and HA as:

H0 : E(f ′(u0,t+1)g(zt, γ)) = 0 versus HA : E(f ′(u0,t+1)g(zt, γ)) 6= 0, (9)

for ∀γ ∈ Γ, except for a subset with zero Lebesgue measure, which is the “generic” version of

the hypotheses tested using the mP statistic. It is thus clear that we can implement an integrated

conditional moment type test (see e.g. Bierens (1982,1990) and Bierens and Ploberger (1997)). The

null hypothesis in (9) corresponds to that of equal predictive ability of models (6) and (7). When

zt = (yt, ..., yt−q) or zt = (xt, ..., xt−q), say, and when the loss function is quadratic, H0 corresponds

to correct specification of the conditional mean, given zt. In fact, in the quadratic loss case the

conditional mean is the best mean square predictor. When the loss function is a linex (i.e. f(u) =

eau−au−1), it has been shown (see e.g. Christoffersen and Diebold (1997)) that, under conditional

normality, the best predictor, given the information in zt, is E(xt+1|zt) + 0.5aV ar(xt+1|zt). Here,
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the joint correct specification of the conditional mean and conditional variance are implicit to the

null hypothesis. When zt = (yt, ..., yt−q), the null hypothesis can be interpreted as no Granger

causality from yt to xt, in the sense that the past yt does not help to predict xt, either linearly or

nonlinearly. Before writing down the test statistic, it is worth noting that we use an m−estimator

in order to obtain a consistent estimator of β∗. In particular, define:

β̂t = (β̂1,t, β̂2,t)′ = arg min
β∈B

1
t

t∑

j=2

f(xj − β1 − β2xj−1).

Also, define û0,t+1 = xt+1 − x̃′tβ̂t, where x̃t = (1, xt)′. The test statistic is:

MP =
∫

Γ
mP (γ)2φ(γ)dγ, (10)

and

mP (γ) =
1

P 1/2

T−1∑

t=R

f ′(û0,t+1)g(zt, γ), (11)

where
∫
Γ φ(γ)dγ = 1, φ(γ) ≥ 0, and φ(γ) is absolutely continuous with respect to Lebesgue measure.

Note that φ(γ) is a weighting function defined over the nuisance parameter space Γ. For example,

the (simple) average statistic corresponds to the case in which φ(γ) is uniformly distributed over

Γ. Needless to say, other functionals of mP (γ), including M sup
P = supγ∈Γ |mP (γ)| and |MP | =

∫
Γ |mp(γ)|φ(γ)dγ can be constructed. These alternative test statistics are examined (along with

MP ) in the next section.

Given mild memory, moment, smoothness and identifiability conditions, it is shown in CS that

MP
d→ ∫

Γ Z(γ)2φ(γ)dγ, where Z is a Gaussian process with a covariance kernel that reflects both

the dependence structure of the data and, for π > 0, the effect of parameter estimation error.

Hence, critical values are data dependent and cannot be tabulated. One possibility in this case is

to use the upper bounds suggested by Bierens and Ploberger (1997). However, it is well known that

inference based on these upper bounds is conservative. In addition, note that these bounds are not

valid if we take different functionals over mP (γ), such as the supremum statistic, supγ∈Γ |mP (γ)|.
Another approach for obtaining data dependent but asymptotically correct critical values is to use

the bootstrap, see for example White (2000) and Corradi and Swanson (2001). An alternative

approach which avoids resampling, and which CS use, is a modification of the conditional p-value

approach of Hansen (1996) and Inoue (2001), where εt, ηt are iid N(0, 1/l) random variables, with
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E(εtηs) = 0, ∀t, s, where l plays the role of the blocksize in a block bootstrap, and where the

“simulated” statistic is:

m∗
P (γ) = m

∗(1)
P (γ) + m

∗(2)
P (γ),

with

m
∗(1)
P (γ) =

1
P 1/2

T−l∑

t=R

εt

t+l−1∑

i=t

(
f ′(û0,i+1)g(zi, γ) + Π̂F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T )

)
, (12)

û0,i+1 = xi+1 − x̃iβ̂i

and

m
∗(2)
P (γ) = (2Π̂− Π̂2)1/2 1

P 1/2

T−l∑

t=R

ηt

t+l−1∑

i=t

F̂ (β̂T , γ)′B̂(β̂T )−1∇βfi(β̂T ),

Hereafter, let ft(β) = f(xt − β1 − β2xt−1), with f ′t(β) defined analogously. Further, ft+1(β̂t) =

f(û0,t+1) = f(xt+1 − x̃′tβ̂t), with f ′t+1(β̂t) again defined analogously, and the operators ∇β(·),
and ∇2

β(·) denote first and second derivatives with respect to β, respectively. Finally, Π̂ =

(1 − π̂−1 ln(1 + π̂)), with π̂ = P/R, F̂ (β̂T , γ) = 1
T

∑T
t=q+1∇βf ′t(β̂T )g(zt−1, γ), and B̂(β̂T )−1 =

(
− 1

T

∑T
t=2∇2

βft(β̂T )
)−1

. Then, under H0,

M∗
P =

∫

Γ
m∗

P (γ)2φ(γ)dγ
d∗→

∫

Γ
Z(γ)2φ(γ)dγ, a.s.− ω,

where d∗ denotes convergence in distribution with respect to P ∗, and P ∗ is the probability law

governing εt and ηt, conditional on the sample. Corradi and Swanson (2002) show that MP and

M∗
P have the same limiting distribution, conditional on the sample and for all samples except

a set of measure zero, under H0. Additionally, under HA, MP diverges to infinity at rate P

while M∗
P diverges at most at rate l, conditionally on the sample and for all samples except a

set of measure zero. Thus, for any independent draw of εt, ηt, t = R, . . . , T − 1, it suffices to

compute M∗
P . By carrying out a large number of draws of εt, ηt, and forming numerous simulated

statistics, the percentiles of this simulated statistic can be obtained. The decision rule in this case

is to reject (do not reject) H0 if the value of MP which is obtained is above (equal to or below)

the (1 − α)th−percentile of the simulated empirical distribution. This rule provides a test with

asymptotic size equal to α, and unit asymptotic power.
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4 An Empirical Example and Monte Carlo Results

The MP test outlined in the previous section, which has power against generic nonlinear alterna-

tives, has been examined via a series of Monte Carlo experiments in CS. However, in that paper

the authors do not provide an empirical example illustrating how to implement the test in practice,

and do not calibrate their Monte Carlo experiments to actual economic data. In this section we

carry out a series of Monte Carlo experiments and an empirical investigation based on monthly

U.S. money (M2 from January 1959 until May 2002) and output (industrial production - IP - from

January 1959 until May 2002).6,7 The dataset used is similar to that used by Amato and Swanson

(2001, AS), although AS do not carry out nonlinear out of sample Granger causality tests, instead

focusing on mean square forecast error based measures of alternative linear models of industrial pro-

duction both with and without money as an explanatory variable. Additionally, AS use real-time

data, while we do not.

To summarize, we began our analysis by fitting V EC(p) models of the form

∆ log Yt = a + b(L)∆ log Yt−1 + cZt−1 + εt,

where Yt = (IPt,M2t)′, b(L) is a conformably defined lag polynomial in the parameters associated

with the lags of Yt and εt is an error term. In addition, Zt−1 = d log Yt−1 is an r × 1 vector of

I(0) variables, and r is the rank of the cointegrating space. As models with r = 0 were found to

perform (i.e. predict) as well as models with r 6= 0, r is hereafter set to zero. In addition, it is
6These data were downloaded from the website of the Federal Reserve Bank of St. Louis. It should be noted that

the data are not real-time, in the sense that a new vector of observations is not gathered at each point in time for

each variable; with each vector corresponding to the entire history of observations that were available in real-time at

a particular calendar date. In this way, all revisions to each variable not examined. Instead, a snapshot of revised,

partially revised, and first available data taken in July of 2002 is examined. Because of this, truly ex-ante forecasts

that only use information (before revision) available at a given point of time cannot be constructed. For this reason,

our empirical example is meant only as an illustration of how to use the CS test. For a detailed discussion of real-time

data, see Diebold and Rudebusch (1991), Swanson, Ghysels and Callan (1999), Croushore and Stark (2001), Ghysels,

Swanson and Callan (2002), and the references contained therein.
7For simplicity, and because our empirical example is meant only as an illustration, we consider only money and

output (and exclude other variables such as prices and interest rates). Additionally, keep in mind that allowing for

(dynamic) misspecification under both hypotheses at the very least allows us to ensure that our critical values are

asymptotically valid, even if the “right” number of lags does not enter into the null model.
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assumed that each equation in the above model has the same number of lags (chosen using the

Schwarz information criterion (SIC)), so that, without loss of efficiency (in the context of standard

maximum likelihood estimation), we hereafter focus on generalized versions of the first equation in

the system, namely,

∆ log IPt = a + b(L)∆ log Yt−1 + εt.

and the second equation in the system, namely,

∆ log M2t = a + b(L)∆ log Yt−1 + εt.

In particular, the null model was set equal to an AR(1) model either in IP or M2, with lags selected

by the SIC (in all cases, a lag order of 1 was chosen). Then we set P = 0.5T and constructed

sequences of 1-step ahead prediction of either IP or M2. MP type tests were then constructed

using generic nonlinear functions of lags of both M2 and IP (in all cases, one lag was used) in

order to check for the presence of generic nonlinear predictive ability (i.e. nonlinear out of sample

Granger causality) from either M2 to IP or IP to M2. In the simple case in which the causality is

linear, this approach reduces to considering alternative models of the type given above for ∆ log IPt

and ∆ log M2t. However, by constructing MP type tests, we also allow for the possibility that other

(non)linear functions of the variables are useful for improving predictive performance. In particular,

we set g(zt−1, γ) = exp(
∑2

i=1(γi tan−1((zi,t−1 − zi)/2σ̂zi))), with z1,t−1 = IPt−1, M22,t−1 = xt−1,

and γ1, γ2 scalars. Additionally, we define Γ = [0.0, 5]x[0.0, 5], and consider a grid equal to 0.1, so

that overall we have 10000 (100× 100) evaluation points (with the point {0,0} being omitted). The

statistics MP and |MP | are computed as simple averages over the 10000 evaluation points, while

M sup
P is computed as the maximum over the evaluations points. The loss function used throughout

is quadratic. Finally, conditional p-values were constructed using 100 simulated statistics, and l

was set equal to {30, 40, 50}.
Results based on this setup for a number of different sample periods are contained in Table 1. In

the table, statistic values are reported in the first column of numerical entries, and 90th percentiles

of the empirical distribution of the simulated M∗
P statistics for various values of l are given in the

remaining columns of numerical entries. The results that emerge upon inspection of the table are

quite clear-cut. In particular, money does not appear useful for predicting output regardless of

sample period.8 This finding is in disagreement with the in-sample findings reported in Swanson
8Note, though, that this is a specialized finding, as the information set given as zt includes only one lag of money
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(1998) and elsewhere that models with money are preferred to the smaller models without money,

and is in agreement with Chao, Corradi and Swanson (2001, CCS) who find that use of the mP

test suggests that there is actually nothing to choose between the larger model with money, and

the smaller model without. We thus have evidence that the results of the linear mP test performed

by CCS carry through to the case of generic nonlinear alternatives.

In order to shed light on the robustness of this finding, we carried out a series of Monte Carlo

experiments with data generating processes parameterized according to the actual data that were

used in our empirical investigation. In particular, and following loosely along the lines of the

experiments carried out in CS data were generated as follows:

yt = b1 + b2yt−1 + u1,t, u1,t ∼ iidN(0, θ1)

Size1: xt = a1 + a2xt−1 + u2,t, u2,t ∼ iidN(0, θ2)

Size2: xt = a1 + a2xt−1 + a3u2,t−1 + u2,t

Power1 : xt = c1 + c2xt−1 + exp(tan−1(yt−1/2)) + u2,t

Power2 : xt = c1 + c2xt−1 + 2 exp(tan−1(yt−1/2)) + u2,t

Power3 : xt = c1 + c2xt−1 + yt−1 + u2,t

Power4 : xt = c1 + c2xt−1 + 2yt−1 + u2,t

Power5 : xt = c1 + c2xt−1 + yt−11{yt−1 > a1/(1− a2)}+ u2,t

Power6 : xt = c1 + c2xt−1 + 2yt−11{yt−1 > a1/(1− a2)}+ u2,t

Power7 : xt = c1 + c2xt−1 + exp(tan−1(yt−1/2)) + a3u2,t−1 + u2,t

Power8 : xt = c1 + c2xt−1 + 2 exp(tan−1(yt−1/2)) + a3u2,t−1 + u2,t

Power9 : xt = c1 + c2xt−1 + yt−1 + a3u2,t−1 + u2,t

Power10: xt = c1 + c2xt−1 + 2yt−1 + a3u2,t−1 + u2,t

Power11: xt = c1 + c2xt−1 + yt−11{yt−1 > a1/(1− a2)}+ a3u2,t−1 + u2,t

Power12: xt = c1 + c2xt−1 + 2yt−11{yt−1 > a1/(1− a2)}+ a3u2,t−1 + u2,t,

In order to calibrate the DGPs, we estimated models using yt = ∆ log M2t and xt = ∆ log IPt

for the entire sample period of our historical data. The reference models (Size1 and Size2) are

AR(1) and ARMA(1,1) processes. Following our above discussion, the null hypothesis is that no

competing model outperforms the reference model. The alternative models all include (non)linear

and output. However, we experimented with more lags of money and output and our findings remained the same.

Note also that lags of other variables were not included, so that other variables may be useful, even if money is not.

Further investigation of this possibility is left to future research.)
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functions of yt−1. Thus, our focus is on DGPs parameterized to be similar to models constructed

when testing for (non)linear out-of-sample Granger causality from money to output. The functional

forms that are specified under the alternative include: (i) exponential (Power1, Power2); (ii) linear

(Power3, Power4); and (iii) self exciting threshold (Power5, Power6). In addition, Power7-Power12

are the same as Power1-Power6, except that an MA(1) term is added. Notice that Power1 and

Power2 include a nonlinear term that is similar in form to the test function, g(·). Also, Power3

and Power4 serve as linear causality benchmarks. As in our empirical example, in all experiments

we set g(zt−1, γ) = exp(
∑2

i=1(γi tan−1((zi,t−1 − zi)/2σ̂zi))), with z1,t−1 = yt−1, z2,t−1 = xt−1, and

γ1, γ2 scalars. Additionally, we again define Γ = [0.0, 5]x[0.0, 5], and consider a grid equal to 0.1, so

that overall we have 10000 (100× 100) evaluation points (with the point {0,0} being omitted). The

MP , |MP |, and M sup
P statistics are also computed as discussed above, and the loss function is again

quadratic. Based on estimating Size1 using our historical data we set b0 = 2, b1 = 0.7, a1 = 2,

a2 = {0.2, 0.4}, c1 = 0.0 and c2 = {0.2, 0.4}. Further, based on examination of the residuals from

our regressions, we set a3 = −0.1, and as above, conditional p-values were constructed using 100

simulated statistics, and l was set equal to {30, 40, 50}. Experiments were carried out for sample

sizes of T = 300, 600, and 1000 observations, with P = 0.5T.All results are based on 5000 Monte

Carlo replications.

Our findings are summarized in Tables 1-3. The first column in the tables state the model type

(e.g. Size1). In addition, sample sizes, l values, and versions of the statistic that are reported on

are given in the tables. All numerical entries represent rejection frequencies, where rejection (or

not) is based on the use of the 90th percentile of the empirical distribution of the simulated M∗
P

statistics (see above discussion). As above, results are clear-cut. Under H0, the empirical level

of the test is rather close to the nominal 10% level, regardless of whether MP , M sup
P , or |MP | is

used (with values usually between 0.10 and 0.15), and there is substantive improvement as the

sample grows from 300 to 600 observations, with little left to gain when moving from 600 to 1000

observations. Power also increases markedly as the sample size increases, and there appears much

to gain not only when moving from 300 to 600 observations, but also when moving from 600 to

1000 observations. In addition, our findings are rather robust to the choice of the lag truncation

parameter l. Overall, the results from our Monte Carlo experiments suggest that the tests perform

quite well with the types of DGPs and sample sizes encountered in our empirical illustration.
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5 Concluding Remarks

We discuss a number of recent advances in the literature on predictive accuracy testing, with focus

on easy to apply (and general) tests such as that due to Diebold and Mariano (1995), as well as more

complex tests such as that of White (2000). Our primary focus concerns the issue of (dynamic)

misspecification, and we argue that it is reasonable in most forecasting contexts to assume that

misspecification may be present under both hypotheses (i.e. all models being compared may be

misspecified). In this case, many of the tests that have recently appeared in the literature may

not be valid using standard critical values, although certain tests such as the conditional moment

tests discussed in Chao, Corradi and Swanson (2001) and Corradi and Swanson (2002) are. In

addition to overviewing out of sample conditional moment tests we also provide new Monte Carlo

and empirical evidence on their usefulness, and find, for example, that a generic nonlinear test of

predictive accuracy suggests that lags of money growth are not useful for predicting output growth.
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Table 1: Generic Nonlinear Predictive Accuracy Test Illustration – Money and Income ∗

Statistic Statistic Value 90thPercentiles
l=30 l=40 l=50

Sample=1959:2-2002:5 – Money -> IP
MP 8.445 22.030 16.339 13.093

M sup
P 17.538 28.676 24.750 22.154

|MP | 1.251 1.947 1.698 1.493
Sample=1959:2-2002:5 – IP -> Money

MP 1.173 2.961 2.274 1.726
M sup

P 6.262 10.318 8.971 7.977
|MP | 0.516 0.739 0.654 0.576

Sample=1970:1-2002:5 – Money -> IP
MP 0.006 0.008 0.008 0.007

M sup
P 0.195 0.235 0.215 0.208

|MP | 0.063 0.061 0.066 0.065
Sample=1970:1-2002:5 – IP -> Money

MP 0.016 0.007 0.008 0.006
M sup

P 0.696 0.482 0.504 0.424
|MP | 0.068 0.051 0.049 0.045

Sample=1984:1-2002:5 – Money -> IP
MP 0.026 0.111 0.105 0.062

M sup
P 0.695 1.470 1.408 1.122

|MP | 0.097 0.197 0.209 0.141
Sample=1984:1-2002:5 – IP -> Money

MP 0.055 0.056 0.049 0.032
M sup

P 1.452 1.320 1.151 0.925
|MP | 0.111 0.147 0.132 0.099

Sample=1959:2-1979:12 – Money -> IP
MP 0.150 0.412 0.421 0.347

M sup
P 1.977 3.364 3.497 3.048

|MP | 0.220 0.343 0.310 0.326
Sample=1959:2-2002:5 – IP -> Money

MP 0.007 0.061 0.055 0.051
M sup

P 0.224 1.135 1.138 1.164
|MP | 0.069 0.147 0.144 0.132

∗ Notes: Entries are statistic values and 90-percentile values taken from the empirical distribution of simulated statistics
constructed as discussed above. The null hypothesis of the tests is equal predictive accuracy between a simple linear AR(1)
model and a generic (non)linear laternative. Panels with “Money -> IP” have money as the additional variable for which
marginal additional generic nonlinear predictive accuracy (relative to a simpler model with only IP). In all cases, the number of
lags is selected using the Schwarz Information Criterion. Panels with “IP -> Money” are analogous to those discussed above,
except that the marginal predictive content of IP for Money is being tested. All models are estimated using rolling windows of
data. See above for further details.
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Table 2: Monte Carlo Rejection Frequencies Based on Quadratic Loss, T=300 ∗

Model l=30 l=40 l=50
MP M sup

P |MP | MP M sup
P |MP | MP M sup

P |MP |
Panel A: a2 = 0.2

Size1 0.120 0.122 0.116 0.144 0.142 0.154 0.192 0.202 0.186
Size2 0.120 0.114 0.122 0.150 0.152 0.156 0.188 0.188 0.200

Power1 0.140 0.118 0.148 0.186 0.176 0.190 0.246 0.236 0.260
Power2 0.232 0.206 0.258 0.284 0.244 0.318 0.340 0.304 0.376
Power3 0.376 0.328 0.406 0.434 0.386 0.468 0.496 0.470 0.520
Power4 0.444 0.376 0.480 0.522 0.476 0.554 0.566 0.540 0.576
Power5 0.324 0.302 0.346 0.388 0.362 0.418 0.474 0.446 0.486
Power6 0.348 0.312 0.396 0.432 0.394 0.468 0.518 0.506 0.536
Power7 0.130 0.124 0.138 0.176 0.170 0.184 0.238 0.224 0.248
Power8 0.224 0.200 0.246 0.288 0.244 0.308 0.350 0.314 0.366
Power9 0.386 0.344 0.428 0.448 0.402 0.470 0.506 0.474 0.520
Power10 0.450 0.388 0.490 0.518 0.484 0.564 0.564 0.538 0.580
Power11 0.332 0.298 0.360 0.392 0.360 0.414 0.474 0.446 0.496
Power12 0.356 0.322 0.398 0.440 0.408 0.468 0.522 0.502 0.540

Panel B: a2 = 0.4
Size1 0.118 0.112 0.126 0.144 0.148 0.148 0.192 0.190 0.194
Size2 0.124 0.116 0.122 0.148 0.132 0.148 0.196 0.192 0.200

Power1 0.134 0.126 0.146 0.188 0.184 0.190 0.236 0.222 0.240
Power2 0.246 0.192 0.252 0.300 0.252 0.314 0.364 0.318 0.386
Power3 0.406 0.356 0.438 0.462 0.424 0.494 0.516 0.498 0.530
Power4 0.454 0.398 0.512 0.536 0.488 0.578 0.572 0.552 0.582
Power5 0.344 0.322 0.380 0.398 0.372 0.418 0.482 0.464 0.486
Power6 0.386 0.352 0.414 0.468 0.430 0.492 0.538 0.518 0.558
Power7 0.122 0.124 0.142 0.190 0.184 0.194 0.234 0.236 0.246
Power8 0.244 0.202 0.258 0.292 0.256 0.316 0.352 0.314 0.388
Power9 0.404 0.360 0.440 0.460 0.418 0.490 0.508 0.494 0.534
Power10 0.460 0.408 0.514 0.528 0.490 0.576 0.568 0.552 0.582
Power11 0.344 0.318 0.380 0.402 0.372 0.426 0.484 0.462 0.482
Power12 0.384 0.362 0.426 0.462 0.426 0.494 0.538 0.510 0.552

∗ Notes: All entries are rejection frequencies of the null hypothesis of equal predictive accuracy based on 10% nominal size
critical values constructed using the conditional p-value approach discussed in Section 2. For all models denoted Poweri,
i = 1, ..., 12, data are generated with (non) linear Granger causality. In all experiments, the ex ante forecast period is of length
P , which is set equal to 0.5T, where T is the sample size. All models are estimated using rolling windows of data. See above
for further details.
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Table 3: Monte Carlo Rejection Frequencies Based on Quadratic Loss, T=600 ∗

Model l=30 l=40 l=50
MP M sup

P |MP | MP M sup
P |MP | MP M sup

P |MP |
Panel A: a2 = 0.2

Size1 0.082 0.080 0.088 0.090 0.090 0.096 0.098 0.102 0.104
Size2 0.076 0.076 0.092 0.086 0.096 0.100 0.102 0.100 0.110

Power1 0.172 0.152 0.192 0.192 0.182 0.206 0.192 0.164 0.204
Power2 0.352 0.266 0.402 0.344 0.284 0.400 0.332 0.270 0.402
Power3 0.602 0.514 0.682 0.568 0.506 0.646 0.540 0.482 0.606
Power4 0.688 0.618 0.760 0.656 0.606 0.716 0.628 0.562 0.688
Power5 0.534 0.478 0.582 0.512 0.458 0.548 0.492 0.454 0.526
Power6 0.586 0.534 0.646 0.584 0.536 0.626 0.532 0.480 0.592
Power7 0.164 0.144 0.178 0.178 0.154 0.188 0.174 0.154 0.184
Power8 0.338 0.270 0.406 0.352 0.272 0.402 0.348 0.252 0.402
Power9 0.614 0.536 0.690 0.576 0.510 0.642 0.552 0.494 0.608
Power10 0.692 0.620 0.774 0.662 0.608 0.720 0.628 0.562 0.690
Power11 0.538 0.488 0.588 0.520 0.474 0.558 0.492 0.440 0.534
Power12 0.584 0.536 0.654 0.590 0.532 0.638 0.518 0.468 0.592

Panel B: a2 = 0.4
Size1 0.096 0.078 0.100 0.106 0.104 0.118 0.114 0.104 0.120
Size2 0.094 0.092 0.110 0.112 0.114 0.124 0.114 0.106 0.128

Power1 0.146 0.132 0.168 0.174 0.146 0.184 0.164 0.140 0.184
Power2 0.326 0.244 0.394 0.336 0.252 0.418 0.332 0.246 0.402
Power3 0.626 0.558 0.700 0.594 0.524 0.656 0.558 0.518 0.616
Power4 0.698 0.630 0.768 0.664 0.608 0.734 0.624 0.576 0.692
Power5 0.548 0.484 0.600 0.510 0.468 0.578 0.492 0.458 0.546
Power6 0.596 0.550 0.656 0.592 0.556 0.640 0.540 0.498 0.594
Power7 0.134 0.124 0.156 0.158 0.130 0.176 0.160 0.140 0.180
Power8 0.334 0.236 0.396 0.336 0.244 0.410 0.320 0.236 0.398
Power9 0.630 0.566 0.706 0.596 0.518 0.660 0.572 0.516 0.628
Power10 0.700 0.632 0.778 0.664 0.614 0.738 0.628 0.572 0.700
Power11 0.556 0.496 0.606 0.520 0.464 0.574 0.506 0.460 0.544
Power12 0.602 0.540 0.662 0.592 0.554 0.638 0.536 0.498 0.600

∗ See notes to Table 2.
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Table 4: Monte Carlo Rejection Frequencies Based on Quadratic Loss, T=1000 ∗

Model l=30 l=40 l=50
MP M sup

P |MP | MP M sup
P |MP | MP M sup

P |MP |
Panel A: a2 = 0.2

Size1 0.096 0.090 0.102 0.104 0.104 0.108 0.098 0.104 0.110
Size2 0.096 0.092 0.102 0.110 0.112 0.110 0.108 0.112 0.110

Power1 0.302 0.224 0.348 0.296 0.244 0.354 0.290 0.252 0.358
Power2 0.562 0.432 0.676 0.570 0.428 0.652 0.544 0.422 0.630
Power3 0.806 0.738 0.868 0.770 0.706 0.848 0.746 0.706 0.824
Power4 0.836 0.780 0.892 0.810 0.754 0.880 0.802 0.746 0.860
Power5 0.750 0.680 0.812 0.720 0.662 0.782 0.706 0.648 0.766
Power6 0.762 0.730 0.816 0.728 0.704 0.792 0.730 0.676 0.774
Power7 0.260 0.206 0.330 0.274 0.218 0.322 0.272 0.226 0.344
Power8 0.552 0.432 0.680 0.562 0.438 0.660 0.538 0.428 0.640
Power9 0.810 0.748 0.874 0.778 0.724 0.864 0.762 0.696 0.840
Power10 0.840 0.788 0.892 0.822 0.754 0.882 0.808 0.746 0.856
Power11 0.754 0.670 0.812 0.728 0.668 0.790 0.708 0.648 0.772
Power12 0.764 0.730 0.822 0.728 0.698 0.802 0.726 0.680 0.776

Panel B: a2 = 0.4
Size1 0.102 0.102 0.102 0.118 0.122 0.110 0.114 0.110 0.116
Size2 0.102 0.098 0.102 0.120 0.122 0.116 0.110 0.120 0.116

Power1 0.238 0.194 0.314 0.250 0.192 0.306 0.262 0.200 0.298
Power2 0.532 0.388 0.660 0.528 0.390 0.654 0.516 0.368 0.648
Power3 0.808 0.746 0.874 0.786 0.734 0.866 0.764 0.692 0.818
Power4 0.840 0.790 0.906 0.818 0.766 0.886 0.804 0.736 0.860
Power5 0.738 0.682 0.802 0.720 0.648 0.774 0.694 0.634 0.752
Power6 0.764 0.722 0.812 0.728 0.696 0.802 0.712 0.668 0.786
Power7 0.238 0.182 0.292 0.222 0.174 0.292 0.246 0.182 0.290
Power8 0.538 0.402 0.652 0.550 0.406 0.652 0.522 0.400 0.642
Power9 0.814 0.754 0.876 0.788 0.738 0.876 0.764 0.706 0.836
Power10 0.844 0.790 0.906 0.824 0.772 0.886 0.804 0.746 0.862
Power11 0.746 0.690 0.810 0.734 0.654 0.792 0.694 0.636 0.760
Power12 0.768 0.730 0.822 0.726 0.694 0.808 0.712 0.666 0.792

∗ See notes to Table 2.
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