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Abstract
We provide analytical formulae for the asymptotic bias (ABIAS) and mean squared error (AMSE) of the IV
estimator, and obtain approximations thereof based on an asymptotic scheme which essentially requires the
expectation of the first stage F-statistic to converge to a finite (possibly small) positive limit as the number of
instruments approaches infinity. The approximations so obtained are shown, via regression analysis, to yield
good approximations for ABIAS and AMSE functions, and the AMSE approximation is shown to perform
well relative to the approximation of Donald and Newey (2001). Additionally, the manner in which our
framework generalizes that of Richardson and Wu (1971) is discussed. One consequence of the asymptotic
framework adopted here is that consistent estimators for the ABIAS and AMSE can be obtained. As a
result, we are able to construct a number of bias corrected OLS and IV estimators, which we show to be
consistent under a sequential asymptotic scheme. These bias-corrected estimators are also robust, in the
sense that they remain consistent in a conventional asymptotic setup, where the model is fully identified. A
small Monte Carlo experiment documents the relative performance of our bias adjusted estimators versus
standard IV, OLS, LIML estimators, and it is shown that our estimators have lower bias than LIML for
various levels of endogeneity and instrument relevance.
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1 Introduction

Over the last decade there have been a great number of papers written on the subject of

instrumental variables (IV) regression with instruments that are only weakly correlated with

the endogenous explanatory variables. A very few of the important recent contributions

include Nelson and Startz (1990a), Dufour (1997), Shea (1997), Staiger and Stock (1997),

Wang and Zivot (1998), Hahn and Inoue (2000), Hahn and Kuersteiner (2002), Stock, Wright

and Yogo (2002), Stock and Yogo (2002), and the references contained therein.1 Important

related contributions include Bekker (1994), Hall, Rudebusch and Wilcox (1996), and Hall

and Peixe (2000). Much of this literature focuses on the impact that the use of weak

instruments has on interval estimation and on hypothesis testing, although there are also

notable results on the properties of point estimators. Both of these areas are of interest to

applied researchers who first documented the weak instrument problem in empirical work

(see e.g. Nelson and Startz (1990b), Bound, Jaeger, and Baker (1995), and Angrist and

Krueger (1995)).

This paper focuses on point estimation properties. In particular, we focus on the IV esti-

mator, and give new asymptotic bias (ABIAS) and asymptotic mean-squared error (AMSE)

approximations based on an examination of explicit analytical formulae for the ABIAS and

AMSE, under the local-to-zero framework.2 These approximations can be viewed as having

been derived from a sequential limit procedure whereby the sample size, T, is first allowed

to grow to infinity followed by the passage to infinity of the number of instruments, k21.

The AMSE approximation so derived provides an alternative to the MSE approximation

of the 2SLS estimator obtained in Donald and Newey (2001) under a different asymptotic

scheme. Numerical calculations provided in this paper suggest that our first order AMSE

approximation outperforms the approximation of Donald and Newey (2001), particularly in

cases with small values of the concentration parameter (i.e., cases with weak instruments)3.

1A related literature which examines the implications for statistical inference when the underlying simul-

taneous equations model is partially identified includes papers by Phillips (1989), Choi and Phillips (1992),

and Kitamura (1994).
2Another approach used to examine the behavior of the IV/2SLS estimator under weak identification,

which is based on conditional inference, is discussed in Forchini and Hillier (1999) and Moreira (2001, 2002).
3The performance of the MSE approximation of Donald and Newey (2001) has also been examined in the
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Additionally, when the approximation method is applied to the bias, the lead term of the

expansion (when appropriately standardized by the ABIAS of the OLS estimator) is exactly

the relative bias measure given in Staiger and Stock (1997) in the case where there is only

one endogenous regressor. Furthermore, the lead term of the MSE expansion is the square

of the lead term of the bias expansion, implying that the variance component of the MSE is

of a lower order vis-a-vis the bias component in a scenario where the number of instruments

used is large relative to the value of the population analogue of the first stage F-statistic.

In order to tie our findings in with the IV literature, we note also that our formulae for the

asymptotic bias and MSE, correspond to the exact bias and MSE functions of the 2SLS es-

timator, as derived by Richardson and Wu (1971), when a fixed instrument/Gaussian model

is assumed, and in this sense our findings generalize their results to the more general setting

with possibly non-normal errors and stochastic instruments.

A consequence of the sequential limit approach which we adopt here is that consistent

estimators for the ABIAS and AMSE can be obtained.4 This, in turn, enables us to construct

bias-corrected OLS and IV estimators, which consistently estimate the structural coefficient

of the IV regression even when the instruments are weak in the local-to-zero sense. In

addition, we show that in the conventional setup where the model is fully identified, all

but one of our proposed bias-corrected estimators remain consistent. We include a small

Monte Carlo experiment in order to document the relative performance of our bias adjusted

estimators as compared with unadjusted IV and OLS estimators and also with the LIML

estimator.

This rest of the paper is organized as follows. Section 2 contains preliminaries, and

Section 3 presents formulae for the ABIAS and AMSE, as well as approximations thereof. In

Section 4 we discuss consistent estimation of the ABIAS and AMSE, and suggest a number

Monte Carlo study reported in Hahn, Hausman, and Kuersteiner (2002). Although the latter paper does

not study our approximation, the results they obtained on the Donald-Newey approximation are in rough

agreement with the results reported in section 3 of this paper.
4In a recent paper, Stock and Yogo (2003) give conditions under which sequential limit results are equiv-

alent to results obtained by taking k21 and T jointly to infinity. Indeed, Stock and Yogo (2003) argue that

the sequential asymptotic approach often provides an easier and useful way of calculating the results which

would also be obtained under a joint asymptotic scheme.
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of bias corrected OLS and IV estimators. Monte Carlo results are discussed in Section 5,

and Section 6 concludes. All proofs are contained in two appendices. Before proceeding,

we briefly introduce some notation. In the sequel, the symbols “=⇒” and “≡ ” denote

convergence and equivalence in distribution, respectively. Also, PX = X(X ′X)−1X ′ is the

matrix which projects orthogonally onto the range space of X and MX = I − PX .

2 Setup

Consider the simultaneous equations model (SEM):

y1 = y2β + Xγ + u, (1)

y2 = ZΠ + XΦ + v, (2)

where y1 and y2 are T × 1 vectors of observations on the two endogenous variables, X

is an T × k1 matrix of observations on k1 exogenous variables included in the structural

equation (1), Z is a T × k2 matrix of observations on k2 exogenous variables excluded

from the structural equation, and u and v are T × 1 vectors of random disturbances5. Let

ut and vt denote the tth component of the random vectors u and v, respectively; and let

Z ′
t and X ′

t denote the tth row of the matrices Z and X, respectively. Additionally, let

wt = (ut, vt)
′ (or w = (u, v)) and let Zt = (X ′

t, Z
′
t)
′ (or Z = (X,Z)); assume that E(wt) = 0,

E(wtw
′
t) = Σ =

(
σuu σuv

σuv σvv

)
, and EZtw

′
t = 0 for all t and assume that E(wtw

′
s) = 0 for

all t 6= s, where t, s = 1, ..., T. Following Staiger and Stock (1997), we make the following

assumptions.

Assumption 1: Π = ΠT = C/
√

T , where C is a fixed k2 × 1 vector.

Assumption 2: The following limits hold jointly: (i) (u′u/T, u′v/T, v′v/T )
p→ (σuu, σuv, σvv),

(ii) Z
′
Z /T

p→ Q, and (iii) (T−1/2u′X, T−1/2u′Z, T−1/2v′X,T−1/2v′Z)′ =⇒ (ψ′Xu, ψ
′
Zu, ψ

′
Xv,ψ

′
Zv)

′,

where Q = E(ZtZ
′
t) and where ψ ≡ (ψ′Xu, ψ

′
Zu, ψ

′
Xv, ψ

′
Zv)

′ is distributed N(0, (Σ⊗Q)).

We consider IV estimation of β, where the IV estimator may not make use of all available

instruments. Define β̂IV = (y′2(PH − PX)y2)
−1(y′2(PH − PX)y1), where H = (Z1, X) is an

5Although for notational simplicity we only study the case with one endogenous explanatory variable in

this paper, we do not see any reason why many of the qualitative conclusions reached here will not continue

to hold in more general settings.
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T × (k21 +k1) matrix of instruments, and Z1 is an T ×k21 submatrix of Z formed by column

selection. It will prove convenient to partition Z as Z = (Z1, Z2), where Z2 is an T × k22

matrix of observations of the excluded exogenous variables not used as instruments in esti-

mation. Note that when Z1 = Z and H = [Z,X] (i.e. when all available instruments are

used), the IV estimator defined above is equivalent to the 2SLS estimator. Additionally, par-

tition ΠT , T− 1
2 Z ′u, T− 1

2 Z ′v, ψZu, and ψZv conformably with Z = (Z1, Z2) by writing ΠT =

(Π′
1,T , Π′

2,T )′ = (C ′
1/
√

T , C ′
2/
√

T )′, T− 1
2 Z ′u = (T− 1

2 u′Z1, T− 1
2 u′Z2)

′, T− 1
2 Z ′v = (T− 1

2 v′Z1,

T− 1
2 v′Z2)

′, ψZu = (ψ′Z1u, ψ
′
Z2u)

′, and ψZv = (ψ′Z1v, ψ
′
Z2v)

′, where from part (iii) of Assumption

2 we have that (T− 1
2 u′Z1, T− 1

2 u′Z2, T
− 1

2 v′Z1, T
− 1

2 v′Z2)
′ ⇒ (ψ′Z1u, ψ

′
Z2u, ψ

′
Z1v, ψ

′
Z2v)

′. Further-

more, partition Q conformably with Z = (X, Z1, Z2) as

Q =




QXX QXZ1 QXZ2

QZ1X QZ1Z1 QZ1Z2

QZ2X QZ2Z1 QZ2Z2


 . (3)

Finally, define

Ω =

(
Ω11 Ω12

Ω′
12 Ω22

)
=

(
QZ1Z1 −QZ1XQ−1

XXQXZ1 QZ1Z2 −QZ1XQ−1
XXQXZ2

QZ2Z1 −QZ2XQ−1
XXQXZ1 QZ2Z2 −QZ2XQ−1

XXQXZ2

)
(4)

and Ω1∗ = (Ω11, Ω12). To ensure that the ABIAS and AMSE of the IV estimator are well-

behaved assume that:

Assumption 3: There exists finite positive integer T0 such that supT≥T0
E(|UT |2+δ) < ∞,

for some δ > 0, where UT = β̂IV,T − β0, β̂IV,T denotes the IV estimator of β for a sample of

size T , and β0 is the true value of β.

Assumption 3 is sufficient for the uniform integrability of (β̂IV,T − β0)
2 (see Billingsley

(1968), pp. 32). Under Assumption 3, lim
T→∞

E(β̂IV,T −β0) = E(U) and lim
T→∞

E(β̂IV,T −β0)
2 =

E(U2), where U is the limiting random variable of the sequence {UT}, whose explicit form

is given in Lemma A1 in Appendix A. Hence, the ABIAS and AMSE correspond to the

bias and MSE implied by the limiting distribution of β̂IV,T . Note also that for the special

case where (ut, vt)
′ ∼ i.i.d. N(0, Σ), k21 ≥ 4 implies Assumption 3 (see e.g. Sawa (1969)).

Throughout this paper, we shall assume k21 ≥ 4 so as to ensure that our results also apply

in the Gaussian case. In addition, note that Assumption 3 rules out the limited information

maximum likelihood (LIML) estimator in the Gaussian case since no positive integer moment

exists for the finite sample distribution of LIML in this case (see e.g. Mariano and McDonald

(1979) and Phillips (1984, 1985)).
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3 Bias and MSE Formulae and Their Approximations

We begin with a proposition stating the ABIAS and AMSE in our context.

Proposition 3.16: Given the SEM described above, and under Assumptions 1, 2, and 3,

the following results hold for k21 ≥ 4 :

(Bias)

(a)

bbβIV
(µ′µ, k21) = σ1/2

uu σ−1/2
vv ρe−

µ′µ
2 1F1

(
k21

2
− 1;

k21

2
;
µ′µ
2

)
, (5)

where bbβIV
(µ′µ, k21) = lim

T→∞
E(β̂IV,T − β0) is the asymptotic bias function of the IV estimator

which we write as a function of µ′µ = σ−1
vv C ′Ω′

1∗Ω
−1
11 Ω1∗C and k21, and where ρ = σuvσ

− 1
2

uu σ
− 1

2
vv

, Γ(·) denotes the gamma function, and 1F1(·; ·; ·) denotes the confluent hypergeometric func-

tion;

(b) For k21 fixed, as µ′µ →∞, bbβIV
(µ′µ, k21) → 0;

(c) For µ′µ fixed, as k21 →∞, bbβIV
(µ′µ, k21) → σuv/σvv = σ

1/2
uu σ

−1/2
vv ρ;

(d) The absolute value of the asymptotic bias function (i.e. |bbβIV
(µ′µ, k21)|) is a monotoni-

cally decreasing function of µ′µ for k21 fixed and σuv 6= 0;

(e) The absolute value of the bias function (i.e. |bbβIV
(µ′µ, k21)|) is a monotonically increasing

function of k21 for µ′µ fixed and σuv 6= 0;

(MSE)

(f)

mbβIV
(µ′µ, k21) = σuuσ

−1
vv ρ2e−

µ′µ
2

[
1

ρ2

(
1

k21 − 2

)
1F1

(
k21

2
− 1;

k21

2
;
µ′µ
2

)

+

(
k21 − 3

k21 − 2

)
1F1

(
k21

2
− 2;

k21

2
;
µ′µ
2

)]
, (6)

where mbβIV
(µ′µ, k21) = lim

T→∞
E

(
β̂IV,T − β0

)2

is the asymptotic mean squared error function

of the IV estimator;

6The proof of this proposition follows directly from the exact results of Richardson and Wu (1971) given

the equivalence of the local-to-zero asymptotic distribution of the IV estimator and its exact distribution

under Gaussian errors, as stated in Staiger and Stock (1997). An alternative proof of this proposition is also

given in Chao and Swanson (2000).
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(g) For k21 fixed, as µ′µ →∞, mbβIV
(µ′µ, k21) → 0;

(h) For µ′µ fixed, as k21 →∞, mbβIV
(µ′µ, k21) → σ2

uv/σ
2
vv = σuuσ

−1
vv ρ2;

(i) The asymptotic mean squared error function mbβIV
(µ′µ, k21) is a monotonically decreasing

function of µ′µ for k21 fixed and σuv 6= 0.

It is well known that confluent hypergeometric functions have infinite series representa-

tions, so that we can also write:

bbβIV
(µ′µ, k21) = σ1/2

uu σ−1/2
vv ρe−

µ′µ
2




∞∑
j=0

(k21

2
− 1)j

(k21

2
)j

(
µ′µ
2

)j

j!


 , (7)

mbβIV
(µ′µ, k21) = σuuσ

−1
vv ρ2e−

µ′µ
2


 1

ρ2

(
1

k21 − 2

) ∞∑
j=0

(k21

2
− 1)j

(k21

2
)j

(
µ′µ
2

)j

j!

+

(
k21 − 3

k21 − 2

) ∞∑
j=0

(k21

2
− 2)j

(k21

2
)j

(
µ′µ
2

)j

j!


 . (8)

One merit of such infinite series representations is that they provide explicit formulae for

the ABIAS and AMSE of β̂IV under weak identification, which can be used in numerical

calculations, as is done below.

Note that |bbβIV
(µ′µ, k21)| < |σ

1
2
uuσ

− 1
2

vv ρ|. Hence, even when the instruments are weak in

the sense of Staiger and Stock (1997), the ABIAS of the IV estimator is less in absolute

magnitude than that of the OLS estimator for µ′µ 6= 0, and the former only tends to the

OLS bias as k21 →∞. Furthermore, the asymptotic biases of the two estimators are exactly

equal only when µ′µ = 0, for finite values of k21. Also note from inspection of equation (7)

that the bias of the IV estimator has the same sign as the OLS bias. Thus, our results are in

agreement with results in Bound, Jaeger, and Baker (1995) and Angrist and Krueger (1995),

who suggest that with weak instruments, the IV estimator is biased in the direction of the

OLS estimator, and the magnitude of the bias approaches that of the OLS estimator as the

R2 between the instruments and the endogenous explanatory variable approaches zero (i.e.

as µ′µ → 0). Our results also generalize characterizations of the IV bias given in Nelson

and Startz (1990a&b) for a simple Gaussian model with a single fixed instrument and a

single endogenous regressor to the more general case of an SEM with an arbitrary number

6



of possibly stochastic instruments and with possible non-normal errors.

The above expressions for ABIAS and AMSE can also be compared with those of

Richardson and Wu (1971), who obtained the exact bias and MSE of the 2SLS estima-

tor for a fixed instrument/Gaussian model7. To facilitate this comparison, write the above

SEM in its reduced form as: y1 = ZΓ1 + XΓ2 + ε1 and y2 = ZΠ + XΦ + ε2, where Γ1 = Πβ,

Γ2 = Φβ + γ, ε2 = v, and ε1 = u + vβ = u + ε2β. Richardson and Wu (1971) assume

that (ε1t, ε2t)
′ ≡ i.i.d.N(0, G), where ε1t and ε2t denote the tth component of the T × 1

random vectors ε1 and ε2, respectively and where G = (gij), i, j = 1, 2, is the 2 × 2 co-

variance matrix of (ε1t, ε2t)
′. Now, consider the case where all available instruments are

used (i.e. the IV estimator is simply the 2SLS estimator). In this case, it follows that

µ′µ = σ−1
vv C ′ΩC = σ−1

vv C ′(QZZ − QZXQ−1
XXQXZ)C. Moreover, note that in terms of the

elements of the reduced form error covariance matrix G the elements of the structural er-

ror covariance matrix Σ given in Section 2 can be written as: σuu = g11 − 2g12β + g22β
2,

σuv = g12 − g22β, and σvv = g22. Substituting these expressions into equations (5) and (6)

yields:

bbβIV
(µ′µ, k21) = −g22β − g12

g22

e−
µ′µ
2 1F1

(
k21

2
− 1;

k21

2
;
µ′µ
2

)
, and (9)

mbβIV
(µ′µ, k21) =

g11g22 − g2
12

g22

(
1

k21 − 2

)
(1 + β

2
)e−

µ′µ
2 1F1

(
k21

2
− 1;

k21

2
;
µ′µ
2

)

+

(
k21 − 3

k21 − 2

)
β

2
e−

µ′µ
2 1F1

(
k21

2
− 2;

k21

2
;
µ′µ
2

)
, (10)

where β = (g22β−g12)(g11g22−g2
12)

− 1
2 . Comparing equations (9) and (10) with equations (3.1)

and (4.1) of Richardson and Wu (1971), we see that in this case the formulae for the ABIAS

and AMSE are virtually identical to the exact bias and MSE derived under their assumption

of a fixed instrument/Gaussian model - the only minor difference being that the (population)

concentration parameter µ′µ enters into the asymptotic formulae given in expressions (9) and

(10) above, whereas the expression σ−1
vv Π′Z ′MXZΠ appears in the exact formulae reported in

Richardson and Wu (1971). In this sense, the result in Proposition 1 generalizes Richardson

and Wu (1971) to the case of non Gaussian errors. Additionally, our results are also consistent

7Other papers which have studied the bias and/or MSE of the IV estimator, but for a fully identified

model, include Richardson (1968), Hillier, Kinal, and Srivastava (1984), and Buse (1992).
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with the result from Staiger and Stock (1997) that the limiting distribution of the 2SLS

estimator under the local-to-zero assumption is the same as the exact distribution of the

estimator under the more restrictive assumptions of fixed instruments and Gaussian errors.

Next, we construct approximations for the bias and MSE. The approximate formulae we

provide below have the virtue that they greatly simplify the more complicated expressions

given in (7) and (8). To proceed, assume that

Assumption 4: µ′µ
k21

= τ 2 + O
(
k−2

21

)
for some constant τ 2 ∈ (0,∞), as µ′µ, k21 →∞.

The next result gives a formal statement of our approximations based on Assumption 4.

Theorem 3.2 (Approximations): Suppose that Assumption 4 holds. Write µ′µ = τ 2k21+

O
(
k−1

21

)
= µ′µ(τ 2, k21), say, and reparameterize the bias and MSE functions given in equa-

tions (5) and (6) in terms of τ 2 and k21 so that:

bbβIV
(τ 2, k21) = σ1/2

uu σ−1/2
vv ρe−

µ′µ(τ2,k21)
2 1F1

(
k21

2
− 1;

k21

2
;
µ′µ(τ 2, k21)

2

)
, (11)

mbβIV
(τ 2, k21) = σuuσ

−1
vv ρ2e−

µ′µ(τ2,k21)
2

[
1

ρ2

(
1

k21 − 2

)
1F1

(
k21

2
− 1;

k21

2
;
µ′µ(τ 2, k21)

2

)

+

(
k21 − 3

k21 − 2

)
1F1

(
k21

2
− 2;

k21

2
;
µ′µ(τ 2, k21)

2

)
(12)

Then, as k21 →∞, the following results hold :

(i)

bbβIV
(τ 2, k21) = σ1/2

uu σ−1/2
vv ρ

{(
1

1 + τ 2

)
− 2

k21

(
1

1 + τ 2

)(
τ 2

1 + τ 2

)2
}

+ O(k−2
21 ) (13)

(ii)

mbβIV
(τ 2, k21) = σuuσ

−1
vv ρ2

{(
1

1 + τ 2

)2

+

(
1− ρ2

ρ2

)(
1

k21

)(
1

1 + τ 2

)
+

(
1

k21

)(
1

1 + τ 2

)

[
1− 7

(
1

1 + τ 2

)
+ 12

(
1

1 + τ 2

)2

− 6

(
1

1 + τ 2

)3
]}

+ O(k−2
21 ) (14)

A few quick remarks about Theorem 3.2 are in order. First, set b̂bβIV
(τ 2, k21) = σ

1/2
uu σ

−1/2
vv ρ

8



[(
1

1+τ2

)− 2
k21

(
1

1+τ2

) (
τ2

1+τ2

)2
]

. Since the ABIAS of β̂OLS takes the form bbβOLS
= σ

1/2
uu σ

−1/2
vv ρ,

it follows that the relative bias of IV to that of OLS is given by the ratio

b̂bβIV
(τ 2, k21)

bbβOLS

=

(
1

1 + τ 2

)
− 2

k21

(
1

1 + τ 2

)(
τ 2

1 + τ 2

)2

. (15)

Observe that the lead term of equation (15) is (1+ τ 2)−1 = (1 + µ′µ/k21)
−1. Note also

that when all available instruments are used so that IV = 2SLS, (1 + µ′µ/k21)
−1 is the

relative bias measure given in Staiger and Stock (1997), in the case where there is only a

single endogenous explanatory variable. Staiger and Stock point out that this measure of

relative bias is given by an approximation which holds for large k21 and/or large µ′µ/k21. Our

analysis shows that their relative bias measure can also be obtained, from an approximation

that requires µ′µ/k21 to approach a finite limit as µ′µ, k21 →∞. 8

Note also that the lead term of the m̂bβIV
(τ 2, k21) approximation is given by σuuσ

−1
vv ρ2(1+

τ 2)−2, which is simply the square of the lead term of b̂bβIV
(τ 2, k21). It follows that the variance

component of the AMSE is of a lower order in k21, relative to the bias component, so that

the variance can be thought of as being negligible relative to the bias component when the

number of instruments is large relative to the value of τ 2. Note further that a desirable

feature of the approximation formula m̂bβIV
(τ 2, k21) is that it is non-negative for k21 ≥ 4, as

one expects a mean-square error formula to be (see Chao and Swanson (2000) for further

details).

As outlined in the proofs of Lemma A2 and Theorem 3.2, the approximate ABIAS and

AMSE given above are derived using a Laplace approximation of the confluent hypergeomet-

ric function which holds as µ′µ, k21 →∞ such that µ′µ
k21

= τ 2 +O
(
k−2

21

)
. Our technical result

extends approximations of the confluent hypergeometric function given in Slater (1960) in

an important way and, thus, may be of independent interest. Note, in particular, that the

8Note also that even though we take µ′µ to infinity in making our approximations, our framework is still

one which is appropriate for the case of weak instruments since we require µ′µ
k21

to converge to a finite limit

as T → ∞ and k21 → ∞, in sequence. This is in contrast to the usual case of full identification and good

instruments where the first stage F-statistic diverges in probability as T → ∞. Note, in particular, that

even within a weak instrument setup, µ′µ increases as k21 →∞ if the added instruments are not completely

uncorrelated with the endogenous regressor.
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approximation given in equation (4.3.8) of Slater (1960) is derived using the binomial ex-

pansion; and hence, strictly speaking, the result in Slater (1960) does not apply to the case

τ 2 > 1, whereas our results, being based on the Laplace approximation, do apply in this case

(as is needed if the results are to provide useful approximations for the ABIAS and AMSE).

In order to assess the potential usefulness of our approximations, we carried out some

numerical calculations using a canonical SEM, where the reduced form error covariance

matrix is taken to be the identity matrix (i.e., G = I ). In particular, we performed a simple

regression analysis (see Table 1), where we calculated values of the dependent variable using

the analytical formulae for the bias and MSE given by expressions (7) and (8), but specialized

to the case of a canonical model. The independent variables in the regressions were the first

order approximations given in Theorem 3.2 (called CS Approximations), again specialized to

the canonical case. In addition, regressions were run using as independent variable the MSE

approximation first derived in Donald and Newey (2001) and further examined in Hahn,

Hausman and Kuersteiner (2002). This approximation, called the DN Approximation in the

table, takes the form (1 + β2) /µ′µ + k2
21β

2/(µ′µ)2 when the underlying model is a canonical

SEM9. Values for both the dependent and the independent variables were calculated for

β = {−0.5,−1.0,−1.5, ...,−10}, µ′µ = {2, 4, 6, 8, ..., 100}, and k21 = {3, 5, 7, 9, 11, ..., 101},
so that in total 50000 observations were generated by taking all possible combinations.10

A total of 50 regression were run for each approximation, with each regression including

1000 observations for a given value of µ′µ. Of note is that these regressions thus all include

observations for low values of k21. Interestingly, both our bias and MSE approximation

fare very well, with R2 values very near to unity for all cases considered. This contrasts

with the DN Approximation, which has low R2 values when the instruments are weak, and

plateaus with an R2 value of 0.961 for the boundary case of µ′µ = 100. Our approximations

thus appear quite robust, and our MSE approximation fairs very well compared with the

9The approximate bias formula presented here has also been discussed in Hahn and Hausman (2002),

although, in that paper, this bias approximation is not given a rigorous justification based on Laplace’s

method, as is done here.
10Note that, for our regressions analysis, we have chosen only negative values of β. This is because the

bias function is perfectly symmetrical with respect to positive and negative values of β.
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approximation examined by Hahn, Hausman and Kuersteiner (2002). Furthermore, while

numerical calculations given in the finite sample literature on single-equation estimators

have tended to parameterize the bias and MSE functions in terms of k21 and µ′µ (see, for

example, Richardson and Wu (1971)), our results suggest that, in agreement with the findings

of Staiger and Stock (1997), both the bias and the MSE might be better viewed instead as

functions of k21 and the ratio τ 2 = µ′µ/k21.

4 Estimation of Bias and MSE and Bias Correction

In this section, we obtain consistent estimators for the lead terms of the bias and MSE

expansions given in Theorem 3.2. Let M1 = M(Z,X) and M2 = MX and define the fol-

lowing statistics: σ̂vv,i =
y′2Miy2

T
, for i = 1, 2; suv,i = (y1−y2

bβIV )′Miy2

T
, for i = 1, 2; suu =

(y1−y2
bβIV )′M2(y1−y2

bβIV )
T

; ĝij =
y′iM1yj

T
, for i = 1, 2 and j = 1, 2; Wk21,T =

[
y′2(PH−PX)y2bσvv,1

]
k−1

21 =

W ∗
k21,T

k21
; σ̂uv,i = suv,i

(
Wk21,T

Wk21,T−1

)
= suv,i

(
1

1− 1
Wk21,T

)
, for i = 1, 2; and σ̂uu,i = suu+2

bσ2
uv,ibσvv,i

(
1

Wk21,T

)
−

bσ2
uv,ibσvv,i

(
1

Wk21,T

)2

, for i = 1, 2. The following Lemma shows that we can consistently estimate

the quantities σvv, σuv, σuu, and (1 + τ 2) under the sequential limit approach.

Lemma 4.1: Suppose that Assumptions 1 and 2 hold. Let T →∞, and then let k21, µ
′µ →

∞ such that Assumption 4 holds. Then: (i) σ̂vv,i
p→ σvv, for i = 1, 2; (ii) Wk21,T

p→ 1 + τ 2;

(iii) σ̂uv,i
p→ σuv, for i = 1, 2; and (iv) σ̂uu,i

p→ σuu, for i = 1, 2.

Based on this result, several estimators for the ABIAS and the AMSE can be con-

structed, including:

B̂IASi =
σ̂uv,i

σ̂vv,i

(
1

Wk21,T

)
, for i = 1, 2; (16)

B̃IASi =
σ̂uv,i

σ̂vv,i

[(
1

Wk21,T

)
− 2

k21

(
1

Wk21,T

)(
Wk21,T − 1

Wk21,T

)2
]

, for i = 1, 2; (17)

M̂SEi =
σ̂2

uv,i

σ̂2
vv,i

(
1

Wk21,T

)2

, for i = 1, 2; (18)
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M̃SEi =
σ̂2

uv,i

σ̂2
vv,i

[(
1

Wk21,T

)2

+
1

k21

(
σ̂uu,iσ̂vv,i − σ̂2

uv,i

σ̂2
uv,i

) (
1

Wk21,T

)

+
1

k21

(
1

Wk21,T

) (
1− 7

Wk21,T

+
12

W 2
k21,T

− 6

W 3
k21,T

)]
, for i = 1, 2; (19)

and

MSEi =
σ̂2

uv,i

σ̂2
vv,i

[(
1

Wk21,T

)2

+
1

k21

(
ĝ11ĝ22 − ĝ2

12

σ̂2
uv,i

)(
1

Wk21,T

)

+
1

k21

(
1

Wk21,T

) (
1− 7

Wk21,T

+
12

W 2
k21,T

− 6

W 3
k21,T

)]
, for i = 1, 2. (20)

Note that the above estimators differ in that some are constructed based only on the lead

term of the expansions given in Theorem 3.2 while others make use of both the lead and the

second order terms. Also, two different estimators of σuuσvv−σ2
uv are used, yielding different

sets of estimators.

Theorem 4.2: Suppose that Assumptions 1 and 2 hold. Let T →∞, and then let k21, µ
′µ →

∞ such that Assumption 4 holds. Then, for i = 1, 2 : (i) B̂IASi
p→ σ

1/2
uu σ

−1/2
vv ρ

(
1

1+τ2

)
; (ii)

B̃IASi
p→ σ

1/2
uu σ

−1/2
vv ρ

(
1

1+τ2

)
; (iii) M̂SEi

p→ σuuσ
−1
vv ρ2

(
1

1+τ2

)
; (iv) M̃SEi

p→ σuuσ
−1
vv ρ2

(
1

1+τ2

)2
;

and (v) MSEi
p→ σuuσ

−1
vv ρ2

(
1

1+τ2

)
.

These weak consistency results suggest that there is information which can be exploited

when a large number of weakly correlated instruments are available, as consistent estimation

may be achieved when the number of instruments is allowed to approach infinity.

The consistency results presented in Theorem 4.2 can be applied to construct bias-

corrected estimators11. In particular, we propose the following bias-adjusted OLS and IV

estimators:

β̃OLS,i = β̂OLS − σ̂uv,i

σ̂vv,i

, for i = 1, 2;

β̃IV = β̂IV − B̂IAS1;

˜̃
βIV,i = β̂IV − B̃IASi, fori = 1, 2.

The following consistency results can be obtained for these estimators.

11Other recent work in the area of bias correction is discussed in Hausman, Hahn, and Kuersteiner (2001).
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Theorem 4.3: Suppose that Assumptions 1 and 2 hold. Let T →∞, and then let k21, µ
′µ →

∞, such that Assumption 4 holds. Then: (i) β̃OLS,i
p→ β0, for i = 1, 2; (ii) β̃IV

p→ β0 ; and

(iii)
˜̃
βIV,i

p→ β0, for i = 1, 2.

Note that, under the local-to-zero framework with many instruments, the bias-corrected

estimators are consistent. This is in contrast to the uncorrected OLS and IV estimators which

are still not consistent in this case. It should also be noted that if we fix k21 and only allow

T →∞, then none of the bias-adjusted estimators are consistent either. In fact, in this latter

case, both the uncorrected and the bias-corrected IV estimators converge weakly to random

variables. Moreover, if τ 2 = 0, then the bias-adjusted estimators would not consistently

estimate β. Our results, thus, suggest that if one is faced with a situation where a great

many weak instruments are available; then, the appropriate estimation strategy may be to

make use of all of these poor quality instruments in constructing bias-corrected estimators

so long as the instruments are not completely uncorrelated with the endogenous explanatory

variable (i.e. τ 2 6= 0). Finally, note that while Theorem 4.3 establishes the consistency of

the bias-corrected estimators on the basis of a sequential asymptotic scheme; under some

stronger but more primitive conditions than those stipulated in this paper, the bias-corrected

estimators proposed here have also been found to be consistent under a pathwise asymptotic

scheme whereby the number of instruments is taken to approach infinity as a function of the

sample size (see Chao and Swanson (2001)). This is consistent with the findings of a recent

paper by Stock and Yogo (2003) who recently give general conditions under which sequential

limit results coincide with results obtained by letting k21 and T to approach infinity jointly.

It is also of interest to examine the above estimators under the conventional framework,

where the instruments are not assumed to be weak in the local-to-zero sense but rather the

usual identification condition is assumed to hold, even asymptotically. More explicitly, the

conventional full identification assumption can be stated in our context as

Assumption 1*: Let Π be a fixed k2 × 1 vector such that Π 6= 0.

Under assumption 1*, we have the following asymptotic results for our bias-adjusted estima-

tors

Theorem 4.4 Suppose that Assumptions 1* and 2 hold. Then, as T → ∞, the following

limit results hold: (i) β̃OLS,1
p→ β0 −σuv

σvv

(
Π′ΩΠ

Π′ΩΠ+σvv

)
; (ii) β̃OLS,2

p→ β0; (iii) β̃IV
p→ β0 ; and
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(iv)
˜̃
βIV,i

p→ β0 for i = 1, 2.

Thus, Theorem 4.4 shows that, in the conventional setup where the instruments are fully

relevant, all bias-corrected estimators, with the lone exception of β̃OLS,1 are still consistent12.

5 Monte Carlo Results

In this section, we report the results of a small Monte Carlo study of the sampling behavior

of the bias adjusted estimators introduced above. The DGP’s used in the study are based

on equations (1) and (2), with γ = 0 and Φ = 0, i.e., they are based on the two-equation

system

y1t = y2tβ + ut,

y2t = Z ′
tΠ + vt,

where t = 1, ..., T . In this context, the reduced form of the first equation above can be

written as

y1t = Z ′
tΓ1 + ε1t,

t = 1, ..., T. Data were generated with: ε2t = vt, εt = (ε1t, ε2t)
′ ≡ i.i.d.N(0, I2), k21 = 20, T =

2000, Π = (π1, π2, ..., π20)
′ = (π, π, ..., π), with π = {0.0225, 0.0513, 0.0745, 0.1120, 0.1290}

and β = {−0.1111,−0.5,−0.65,−0.81,−1.0}. In addition, the exogenous instruments, Zt,

were generated by assuming that Zt ≡ i.i.d.N(0, Ik21), and that all k21 instruments are used

in estimator construction. Finally, define wt = (ut, vt)
′ with E(wtw

′
t) = Σ =

(
σuu σvu

σvu σvv

)
,

and note that our canonical model specification implies that σuu = 1 + β2, σuv = −β, and

σvv = 1. It follows that the degree of endogeneity is determined by the value of the parameter

β (see footnote to Table 2 for further discussion).

Table 2 reports the sample bias and MSE averaged across 5000 Monte Carlo simulations

for the OLS, IV, LIML, and our 5 bias corrected estimators (for LIML, median bias is given,

although mean bias results are similar). Of note is that
˜̃
βIV,1 yields lower bias than OLS, IV

12Note also that since the correction terms in the bias-corrected IV estimators β̃IV ,
˜̃
βIV,1, and ˜̃

βIV,1 are

all of order Op(T−1) under Assumption 1* and 2, these estimators are also asymptotically normal in the

usual sense under these assumptions.
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and LIML for 19 of 25 different levels of endogeneity and instrument relevance examined.

In addition, all of our other bias corrected estimators, with the exception of β̃OLS,1 yield

less biased estimates in numerous cases. However, there is a trade-off. The bias corrected

estimators only MSE dominate OLS, IV, and LIML for low levels of endogeneity (i.e. R2
endog

= 0.1 - see the table for further details), although in most cases the MSE is very close to the

“best” MSE (i.e. that of the IV estimator).13

6 Concluding Remarks

In this paper, we constructed approximations for the ABIAS and AMSE of the IV estimator

when the available instruments are weak in the local-to-zero sense. These approximations

were shown, via a series of numerical computations, to be quite accurate. Additionally,

we are able to obtain consistent estimators of the bias and MSE, and construct a variety

of consistent bias-corrected OLS and IV estimators. Finally, we show that in the more

conventional case where the simultaneous equations model is fully identified, all but one of

our proposed bias corrected estimators are still consistent.

13Further exploration of these and other bias corrected estimators is the subject of ongoing research.
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Appendix A

This appendix outlines a number of lemmas which are used to establish the main results

of the paper (see Appendix B). Before presenting the lemmas, however, we first introduce

some useful notation. Define Zu,1 = Ω
− 1

2
′

11 (ψZ1u−QZ1XQ−1
XXψXu)σ

− 1
2

uu and Zv,1 = Ω
− 1

2
′

11 (ψZ1v−
QZ1XQ−1

XXψXv)σ
− 1

2
vv . Note that

(
Zu,1

Zv,1

)
∼ N

(
0,

((
1 ρ
ρ 1

)
⊗ Ik21

))
. (21)

In addition, define v1(µ
′µ, k21) = (µ+Zv,1)

′(µ+Zv,1) =
∑k21

i=1

(
µi + Zi

v,1

)2
and v2(µ

′µ, k21) =

(µ + Zv,1)
′Zu,1 =

∑k21

i=1

(
µi + Zi

v,1

)
Zi

u,1, where µi, Zi
u,1, and Zi

v,1 are the i − th components

of µ, Zu,1, and Zv,1, respectively. Note that we have written v1(·, ·) as a function of µ′µ and

not µ because v1 is a noncentral χ2 random variable which depends on µ only through the

noncentrality parameter µ′µ. In addition, since µ′Zu,1 ≡ N(0, µ′µ), v2(µ
′µ, k21) = µ′Zu,1 +

Z ′
v,1Zu,1 also depends on µ only through µ′µ. To simplify notation, we will often write v1

and v2 instead of v1(µ
′µ, k21) and v2(µ

′µ, k21) in places where no confusion is caused by not

making explicit the dependence of v1 and v2 on µ′µ and k21.

Lemma A1: Let β̂IV,T be the IV estimator defined in Section 2 and suppose that (1), (2)

and Assumptions 1 and 2 hold. Then, as T →∞

β̂IV,T − β0 =⇒ σ
1
2
uuσ

− 1
2

vv v−1
1 v2. (22)

Proof: The proof follows from slight modification of the proof of Theorem 1, part (a) of

Staiger and Stock (1997) and is, thus, omitted.

Lemma A2: Suppose that Assumption 4 holds. Write µ′µ = τ 2k21 +R∗(k21) = µ′µ(τ 2, k21)

(say), where R∗(k21) = O
(
k−1

21

)
. Then, for a given value of τ 2, as k21 → ∞, the following

results hold:

16



(a)

1F1 (k21/2− 1; k21/2; µ′µ/2) exp {− (µ′µ/2)}
= 1F1

(
k21/2− 1; k21/2; µ′µ(τ 2, k21)/2

)
exp

{− (
µ′µ(τ 2, k21)/2

)}

=
(
1 + τ 2

)−1 − k−1
21

(
1 + τ 2

)−1
[
2− 4

(
1 + τ 2

)−1
+ 2

(
1 + τ 2

)−2
]

−k−2
21

(
1 + τ 2

)−2
[
8− 28

(
1 + τ 2

)−1
+ 32

(
1 + τ 2

)−2 − 12
(
1 + τ 2

)−3
]

−R∗(k21)k
−1
21

(
1 + τ 2

)−2
+ O

(
k−3

21

)
, (23)

(b)

1F1 (k21/2− 2; k21/2− 1; µ′µ/2) exp {− (µ′µ/2)}
= 1F1

(
k21/2− 2; k21/2− 1; µ′µ(τ 2, k21)/2

)
exp

{− (
µ′µ(τ 2, k21)/2

)}

=
(
1 + τ 2

)−1 − k−1
21

(
1 + τ 2

)−1
[
4− 6

(
1 + τ 2

)−1
+ 2

(
1 + τ 2

)−2
]

−k−2
21

(
1 + τ 2

)−2
[
24− 56

(
1 + τ 2

)−1
+ 44

(
1 + τ 2

)−2 − 12
(
1 + τ 2

)−3
]

−R∗(k21)k
−1
21

(
1 + τ 2

)−2
+ O

(
k−3

21

)
. (24)

Proof: We shall only prove part (a) since the proof for part (b) follows in an analogous

manner. To show (a), we make use of a well-known integral representation of the confluent

hypergeometric function (see Lebedev (1972) pp. 266) to write

1F1

(
k21/2− 1; k21/2; µ′µ(τ 2, k21)/2

)
exp

{− (
µ′µ(τ 2, k21)/2

)}

= [0.5 (k21 − 2)]

∫ 1

0

exp {k21h1(t)} exp {0.5R∗(k21)(t− 1)} dt, (25)

where h1(t) = 0.5 [τ 2(t− 1) + log t] − (2/k21) log t. Given the integral representation (25),

we can obtain the expansion given by the right-hand side of expression (23) by applying

a Laplace approximation to this integral representation. We note that the maximum of

the integrand of (25) in the interval [0, 1] occurs at the boundary point t = 1, and as

k21 →∞ the mass of the integral becomes increasingly concentrated in some neighborhood

of t = 1. Hence, we can obtain an accurate approximation for this integral by approximating
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the integrand with its Taylor expansion in some shrinking neighborhood of t = 1 and by

showing that integration over the domain outside of this shrinking neighborhood becomes

negligible as k21 becomes large. To proceed, notice that the RHS of equation (25) can be

written as:

[0.5 (k21 − 2)]

∫ 1

1−1/
√

k21

exp {k21h1(t)} exp {0.5R∗(k21)(t− 1)} dt

+ [0.5 (k21 − 2)]

∫ 1−1/
√

k21

0

exp {k21h1(t)} exp {0.5R∗(k21)(t− 1)} dt = I1 + I2 (say),(26)

Now, note that

I2 ≤ [0.5 (k21 − 2)] exp
{
−

(
0.5τ 2

√
k21

)}(
1− k

− 1
2

21

)(k21−2)/2

exp
{
−0.5k

− 1
2

21 R∗(k21)
}

= O

(
k21 exp

{
−

(
0.5τ 2

√
k21

)}(
1− k

− 1
2

21

)(k21−2)/2
)

, (27)

where the inequality holds for k21 ≥ 4. Now, turning our attention to I1, we first make the

change of variable r = t−1 and rewrite I1 = [0.5 (k21 − 2)]
∫ 0

−1/
√

k21
exp {k21h2(r)} exp {0.5R∗(k21)r} dr

where h2(r) = 0.5 [τ 2r + log(1 + r)] − (2/k21) log(1 + r). With this change of variable, we

note that the maximum of the integrand of I1in the interval [−1/
√

k21, 0] now occurs at

the boundary point r = 0. To apply the Laplace approximation to I1, note first that the

derivatives of h2(r) evaluated at r = 0 have the explicit forms: h′2(0) = 0.5 (1 + τ 2) − 2k−1
21

and h
(i)
2 (0) = (−1)i−1(i − 1)!

[
0.5− 2k−1

21

]
for integer i ≥ 2. By Taylor’s formula, we can

expand h2(r) about the point r = 0 as follows

h2(r) = h2(0) + h′2(0)r +
(
h

(2)
2 (0)/2!

)
r2 +

(
h

(3)
2 (0)/3!

)
r3 +

(
h

(4)
2 (r∗)/4!

)
r4, (28)

where r∗ lies on the line segment between r and 0 and h2(0) = 0. Moreover, for −1/
√

k21 ≤
r ≤ 0, |h(4)

2 (r∗)| = |3− 12k−1
21 |(1 + r)−4 ≤ |3− 12k−1

21 |k2
21

(√
k21 − 1

)−4
= M(k21) (say), and

note that M(k21) → 3 as k21 →∞. Hence, for −1/
√

k21 ≤ r ≤ 0,

∣∣∣∣∣h2(r)−
∑3

i=1

h
(i)
2 (0)

i!
ri

∣∣∣∣∣ =

∣∣∣∣∣
h

(4)
2 (r∗)
4!

r4

∣∣∣∣∣ ≤
[
M(k21)r

4
]
/4!. (29)
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It follows that
∑3

i=1
h
(i)
2 (0)

i!
ri − M(k21)r4

4!
≤ h2(r) ≤

∑3
i=1

h
(i)
2 (0)

i!
ri + M(k21)r4

4!
, so that

(
k21 − 2

2

) ∫ 0

− 1√
k21

exp

{
k21

(
3∑

i=1

h
(i)
2 (0)

i!
ri − M(k21)r

4

4!

)}
exp

{r

2
R∗(k21)

}
dr

≤
(

k21 − 2

2

) ∫ 0

−1/
√

k21

exp {k21h2(r)} exp {0.5rR∗(k21)} dr

≤
(

k21 − 2

2

) ∫ 0

− 1√
k21

exp

{
k21

(
3∑

i=1

h
(i)
2 (0)

i!
ri +

M(k21)r
4

4!

) }
exp

{r

2
R∗(k21)

}
dr.(30)

Let I3 denote the upper bound integral in expression (30). To evaluate I3, we rewrite it as

I3 =

(
k21 − 2

2

) ∫ 0

− 1√
k21

exp {k21h
′
2(0)r} exp

{
k21

(
3∑

i=2

h
(i)
2 (0)

i!
ri +

M(k21)r
4

4!

) }
exp

{r

2
R∗(k21)

}
dr.

(31)

Expanding the latter two exponentials in the integrand above in power series and integrating

term-by-term while noting the absolute and uniform convergence of the series involved in

the interval r ∈ [−1/
√

k21, 0] for k21 ≥ 4; we obtain, after some tedious but straightforward

calculations,

I3 = (0.5 (k21 − 2))

[∫ 0

−1/
√

k21

exp {k21h
′
2(0)r}

(
1 +

[
k21h

(2)
2 (0)/2!

]
r2

+
[
k21h

(3)
2 (0)/3!

]
r3 +

[
k21

(
h

(2)
2 (0)

)2

(2!)−3

]
r4 + 0.5R∗(k21)r

)
dr + O

(
k−4

21

)]
(32)

=
(
1 + τ 2

)−1 − k−1
21

(
1 + τ 2

)−1
[
2− 4

(
1 + τ 2

)−1
+ 2

(
1 + τ 2

)−2
]
− k−2

21

(
1 + τ 2

)−2
[8−

28
(
1 + τ 2

)−1
+ 32

(
1 + τ 2

)−2 − 12
(
1 + τ 2

)−3
]
−R∗(k21)k

−1
21

(
1 + τ 2

)−3
+ O

(
k−3

21

)
.(33)

By a similar argument, it can be shown that the lower bound integral in expression (30)

can also be approximated by the right-hand side of expression (33). It, thus, follows that

(0.5 (k21 − 2))

∫ 0

−1/
√

k21

exp {k21h2(r)} exp {0.5R∗(k21)r} dr

=
(
1 + τ 2

)−1 − k−1
21

(
1 + τ 2

)−1
[
2− 4

(
1 + τ 2

)−1
+ 2

(
1 + τ 2

)−2
]
− k−2

21

(
1 + τ 2

)−2
[8−

28
(
1 + τ 2

)−1
+ 32

(
1 + τ 2

)−2 − 12
(
1 + τ 2

)−3
]
−R∗(k21)k

−1
21

(
1 + τ 2

)−3
+ O

(
k−3

21

)
(34)

Finally, the result given in part (a) follows immediately from expressions (27) and (34).
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Lemma A3: Suppose that (1), (2) and Assumptions 1 and 2 hold. Then, the following

convergence results hold jointly as T →∞ :

(a) (u′MXu/T, y′2MXu/T, y′2MXy2/T )
p→ (σuu, σuv, σvv).

(b) Z ′
1MXZ1/T

p→ Ω11, where Ω11 = QZ1Z1 −QZ1XQ−1
XXQXZ1 .

(c)
{

(Z ′
1MXZ1)

− 1
2 Z ′

1MXu, (Z ′
1MXZ1)

− 1
2 Z ′

1MXv
}

=⇒
{

Zu,1σ
1
2
uu, Zv,1σ

1
2
vv

}
,

where (Z ′
u,1, Z ′

v,1)
′ has joint normal distribution given by (21).

(d) (Z ′
1MXZ1/T )−

1
2

(
Z ′

1MXy2/
√

T
)

=⇒ (µ + Zv,1) σ
1
2
vv.

(e) (y′2MXZ1(Z
′
1MXZ1)

−1Z ′
1MXu, y′2MXZ1(Z

′
1MXZ1)

−1Z ′
1MXy2,

u′MXZ1(Z
′
1MXZ1)

−1Z ′
1MXu) =⇒

(
σ

1
2
vvv2σ

1
2
uu, σvvv1, σuuZ

′
u,1Zu,1

)
.

(f) (u′M(Z, X)u/T, y′2M(Z, X)u/T, y′2M(Z, X)y2/T )
p→ (σuu, σuv, σvv).

(g) (y′1M(Z, X)y1/T, y′1M(Z, X)y2/T )
p→ (g11, g12), where g11 and g12 are elements of the

reduced form error covariance matrix G.

Proof: These results follow from Staiger and Stock (1997), and the reader is referred to

Chao and Swanson (2000) for further details.

Lemma A4: Let Assumption 4 hold, so that µ′µ/k21 = τ 2 + O(k−2
21 ) for a fixed con-

stant τ 2 ∈ (0,∞); and write µ′µ = τ 2k21 + O(k−1
21 ) = µ′µ(τ 2, k21). Then, as k21 → ∞, (a)

v1(µ′µ(τ2, k21),k21)
k21

p→ (1 + τ 2) and (b) v2(µ′µ(τ2, k21),k21)
k21

p→ ρ.

Proof: To prove (a), write v1(µ′µ(τ2, k21),k21)
k21

=
Z′v,1Zv,1

k21
+2µ′Zv,1

k21
+ µ′µ

k21
. Next, note that µ′Zv,1

k21
≡

N
(
0, µ′µ

k2
21

)
so that E

(
2µ′Zv,1

k21

)2

= 4µ′µ
k2
21

= 4τ2

k21
+ O(k−3

21 ), and, thus, 2µ′Zv,1

k21

p→ 0 as k21 → ∞
and µ′µ → ∞ under Assumption 4. Moreover, note that, as k21 → ∞ and µ′µ → ∞ under

Assumption 4, E
(

Z′v,1Zv,1

k21
− 1

)2

= 2
k21
→ 0, so that

Z′v,1Zv,1

k21

p→ 1, and note also that µ′µ
k21

→ τ 2.

It follows by the Slutsky’s Theorem that
Z′v,1Zv,1

k21
+ 2µ′Zv,1

k21
+ µ′µ

k21

p→ 1 + τ 2, as k21 → ∞ and

µ′µ →∞ under Assumption 4. To show (b), write v2(µ′µ(τ2, k21),k21)
k21

= µ′Zu,1

k21
+

Z′v,1Zu,1

k21
. First,

from expression (21), we see that Zu,1 ≡ N(0, Ik21), Zv,1 ≡ N(0, Ik21), and E(Zu,1Z
′
v,1) =

ρIk21 . It follows from Khinchine’s weak law of large numbers that, as k21 →∞ and µ′µ →∞
under Assumption 4,

Z′v,1Zu,1

k21
= (1/k21)

k21∑
i=1

Zi
v,1Z

i
u,1

p→ ρ, where Zi
v,1 and Zi

u,1 denote the i−th

component of Zv,1 and Zu,1, respectively. In addition, note that µ′Zu,1

k21
≡ N

(
0, µ′µ

k2
21

)
so that

E
(

µ′Zu,1

k21

)2

= µ′µ
k2
21

= τ2

k21
+ O(k−3

21 ), and, thus, µ′Zu,1

k21

p→ 0 as k21 → ∞ and µ′µ → ∞ under

Assumption 4. The desired result, thus, follows by the Slutsky’s Theorem.
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Lemma A5: Suppose that (1), (2) and Assumptions 1* and 2 hold. Then, the following

convergence results hold as T →∞.

(a) (u′MXu/T, y′2MXu/T, y′2MXy2/T )
p→ (σuu, σuv, Π′ΩΠ + σvv).

(b) (u′M(Z, X)u/T, y′2M(Z, X)u/T, y′2M(Z, X)y2/T )
p→ (σuu, σuv, σvv).

(c) (Z ′
1MXZ1/T, Z ′

1MXy2/T )
p→ (Ω11, Ω1∗Π).

Proof: Each part of this lemma follows directly from Assumptions 1* and 2 and the Slutsky’s

Theorem. The arguments are standard and well-known, so we omit the details.

Appendix B

Proof of Theorem 3.2: To show part (a), note that direct application of part (a) of Lemma

A2 to equation (5) yields

bbβIV
(τ 2, k21) = σ1/2

uu σ−1/2
vv ρ

{(
1 + τ 2

)−1 − 2k−1
21

(
1 + τ 2

)−1 (
τ 2/

(
1 + τ 2

))2
}

+ O
(
k−2

21

)
.

(35)

To show part (b), first rewrite equation (6) as follows:

mbβIV
(τ 2, k21) = σuuσ

−1
vv ρ2

[
ρ−2 (k21 − 2)−1

1F1

(
k21/2− 1; k21/2; µ′µ(τ 2, k21)/2

)
e−µ′µ(τ2,k21)/2

+

(
k21 − 3

k21 − 2

) (
k21 − 2

2

)
1F1

(
k21

2
− 2;

k21

2
− 1;

µ′µ(τ 2, k21)

2

)
e−

µ′µ(τ2,k21)
2

−
(

k21 − 3

k21 − 2

)(
k21 − 4

2

)
1F1

(
k21

2
− 1;

k21

2
;
µ′µ(τ 2, k21)

2

)
e−

µ′µ(τ2,k21)
2

]
, (36)

where we have made use of the identity (γ−α−1) 1F1 (α; γ; z) = (γ−1) 1F1 (α; γ − 1; z)−α

1F1 (α + 1; γ; z). (See Lebedev (1972), pp. 262, for more details on this and identities

involving confluent hypergeometric functions.) Applying the results of Lemma A2 to the

confluent hypergeometric functions in an expansion of equation (6) discussed in Chao and

Swanson (2000) yields, after some tedious algebra, the following expression

mbβIV
(τ 2, k21) = σuuσ

−1
vv ρ2

{(
1 + τ 2

)−2
+ ρ−2k−1

21

(
1 + τ 2

)−1 − k−1
21

(
1 + τ 2

)−2
[7

−12
(
1 + τ 2

)−1
+ 6

(
1 + τ 2

)−2
]

+ O(k−2
21 )

}

= σuuσ
−1
vv ρ2

{(
1 + τ 2

)−2
+

((
1− ρ2

)
/ρ2

)
k−1

21

(
1 + τ 2

)−1
+ k−1

21

(
1 + τ 2

)−1×
[
1− 7

(
1 + τ 2

)−1
+ 12

(
1 + τ 2

)−2 − 6
(
1 + τ 2

)−3
]}

+ O(k−2
21 ). (37)

21



Proof of Lemma 4.1: To show part (i), note that since σ̂vv,1 =
y′2M(Z,X)y2

T
and σ̂vv,2 =

y′2MXy2

T
, it follows directly from part (a) and (f) of Lemma A3 that, as T →∞, σ̂vv,1

p→ σvv

and σ̂vv,2
p→ σvv. Note, of course that these limits do not depend on either k21 or µ′µ , and

the results of part (i) follow as an immediate consequence. To show part (ii), note that it

follows from part (d) of Lemma A3, part (i) of this Lemma, and the continuous mapping

theorem that as T → ∞, Wk21,T =

�
y′2MXZ1√

T

��
Z′1MXZ1

T

�−1�
Z′1MXy2√

T

�
/k21bσvv,1

=⇒ (µ+Zv,1)′(µ+Zv,1)

k21
=

v1(µ′µ,k21)
k21

. It then follows directly from part (a) of Lemma A4 that, as k21 → ∞ and

µ′µ → ∞ under Assumption 4, v1(µ′µ,k21)
k21

p→ 1 + τ 2 as desired. To prove part (iii), write

σ̂uv,1 =
(y1−y2

bβIV )
′
M(Z,X)y2

T

(
Wk21,T

Wk21,T−1

)
=

[
u′M(Z,X)y2

T
−

(
β̂IV − β0

)

y′2M(Z,X)y2

T

] (
Wk21,T

Wk21,T−1

)
and σ̂uv,2 =

[
u′MXy2

T
−

(
β̂IV − β0

)
y′2MXy2

T

] (
Wk21,T

Wk21,T−1

)
. Applying Lemma

A1, parts (a) and (f) of Lemma A3, and the continuous mapping theorem; we see immedi-

ately that σ̂uv,1 =⇒
[
σuv − σ

1
2
uuσ

1
2
vv

(
v1(µ′µ,k21)

k21

)−1 (
v2(µ′µ,k21)

k21

)] (
v1(µ′µ,k21)

k21
− 1

)−1 (
v1(µ′µ,k21)

k21

)

= Ak21,µ′µ (say) and also that σ̂uv,2 =⇒ Ak21,µ′µ as T → ∞, so that both estimators

approach the same random limit as the same size approaches infinity. Moreover, ap-

plying Lemma A4, we deduce that, as k21 → ∞ and µ′µ → ∞ under Assumption 4,

Ak21,µ′µ
p→

[
σuv − σ

1
2
uuσ

1
2
vvρ (1 + τ 2)

−1
]

(
1+τ2

τ2

)
= σuv

[
1− 1

1+τ2

] (
1+τ2

τ2

)
= σuv, thus, establishing the desired results. Finally,

to show part (iv), write σ̂uu,1 = suu + 2
bσ2

uv,1bσvv,1

(
1

Wk21,T

)
− bσ2

uv,1bσvv,1

(
1

Wk21,T

)2

and σ̂uu,2 = suu +

2
bσ2

uv,2bσvv,2

(
1

Wk21,T

)
− bσ2

uv,2bσvv,2

(
1

Wk21,T

)2

. Note first that

suu = (y1−y2
bβIV )′MX(y1−y2

bβIV )
T

= u′MXu
T

− 2
(
β̂IV − β0

)
y′2MXu

T
+

(
β̂IV − β0

)2
y′2MXy2

T
. Hence,

it follows from Lemma A1; part (a) of Lemma A3; the proofs of parts (i), (ii), and (iii)

of this Lemma; and the continuous mapping theorem that as T → ∞, σ̂uu,1 =⇒ σuu −
2σ

1
2
uuσ

− 1
2

vv σuv

(
v1(µ′µ,k21)

k21

)−1 (
v2(µ′µ,k21)

k21

)
+σuu

(
v1(µ′µ,k21)

k21

)−2 (
v2(µ′µ,k21)

k21

)2

+2
A2

k21,µ′µ
σvv

(
v1(µ′µ,k21)

k21

)−1

−
A2

k21,µ′µ
σvv

(
v1(µ′µ,k21)

k21

)−2

= Bk21,µ′µ (say). Similarly, σ̂uu,2 =⇒ Bk21,µ′µ as T → ∞. More-

over, applying Lemma A4 and part (iii) of this Lemma, we easily deduce that Bk21,µ′µ
p→

σuu − 2σ
1
2
uuσ

− 1
2

vv σuv

(
ρ

1+τ2

)
+σuu

(
ρ

1+τ2

)2
+ 2σ2

uv

σvv

(
1

1+τ2

) − σ2
uv

σvv

(
1

1+τ2

)2
= σuu as k21 → ∞ and

µ′µ →∞ under Assumption 4, thus, establishing the desired result.

Proof of Theorem 4.2: We will only prove the convergence result for the estimator with

subscript i = 1, since the proofs for i = 2 follow directly. First, to show (i) write B̂IAS1 =
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bσuv,1bσvv,1

(
1

Wk21,T

)
, and note that given Lemma 4.1 and the continuous mapping theorem, it is ap-

parent that as T →∞, B̂IAS1 =⇒ Ak21,µ′µ
σvv

(
v1(µ′µ,k21)

k21

)−1

= Ck21,µ′µ (say). Applying Lemma

A4 and part (iii) of Lemma 4.1, note that as k21 → ∞ and µ′µ → ∞ under Assumption

4, Ck21,µ′µ
p→ 1

σvv

(
σuv − σ

1
2
uuσ

1
2
vv

(
ρ

1+τ2

)) (
1+τ2

τ2

) (
1

1+τ2

)
= σ

1
2
uuσ

− 1
2

vv ρ
(

1
1+τ2

)
, as required. To

show part (ii), write B̃IAS1 = B̂IAS1 −
(

2
k21

) [(bσuv,1bσvv,1

)(
1

Wk21,T

) (
Wk21,T−1

Wk21,T

)2
]
. As above,

it follows that as T → ∞, B̃IAS1 =⇒ Ck21,µ′µ − 2
k21

[
Ak21,µ′µ

σvv

(
v1(µ′µ,k21)

k21

)−1 (
v1(µ′µ,k21)

k21

)−2

(
v1(µ′µ,k21)

k21
− 1

)2
]

= Ek21,µ′µ (say). Moreover, note that Ek21,µ′µ = Ck21,µ′µ + Op
(

1
k21

)
, so

that applying Lemma A4, part (iii) of Lemma 4.1, and part (i) of this theorem; it follows

that as k21 →∞ and µ′µ →∞ under Assumption 4, Ek21,µ′µ
p→ σ

1
2
uuσ

− 1
2

vv ρ
(

1
1+τ2

)
, as required.

To show part (iii), write M̂SE1 =
(
B̂IAS1

)2

. It follows immediately from the proof of

part (i) above and the continuous mapping theorem that as T → ∞, M̂SE1 =⇒ C2
k21,µ′µ.

Moreover, given part (i) of this theorem, as k21 → ∞ and µ′µ → ∞ under Assumption

4, we deduce easily that C2
k21,µ′µ

p→ σuuσvvρ
2
(

1
1+τ2

)2
. To show part (iv), write M̃SE1 =

M̂SE1 + 1
k21

(bσ2
uv,1bσ2
vv,1

) (
1

Wk21,T

)
[(bσuu,1bσvv,1−bσ2

uv,1bσ2
uv,1

)
+

(
1− 7

Wk21,T
+ 12

W 2
k21,T

− 6
W 3

k21,T

)]
. Hence, from the proof of Lemma 4.1,

the proof of part (iii) of this theorem, and the continuous mapping theorem; it is apparent

that as T →∞, M̃SE1 =⇒ C2
k21,µ′µ + 1

k21

(
A2

k21,µ′µ
σ2

vv

) (
v1(µ′µ,k21)

k21

)−1

[(
σvvBk21,µ′µ−A2

k21,µ′µ
A2

k21,µ′µ

)
+

(
1− 7

(
v1(µ′µ,k21)

k21

)−1

+ 12
(

v1(µ′µ,k21)
k21

)−2

− 6
(

v1(µ′µ,k21)
k21

)−3
)]

= Fk21,µ′µ

(say). Furthermore, note that Fk21,µ′µ = C2
k21,µ′µ + Op

(
1

k21

)
, so that applying Lemma A4,

parts (iii) and (iv) of Lemma 4.1, and part (iii) of this theorem; we readily deduce that,

as k21 → ∞ and µ′µ → ∞ under Assumption 4, Fk21,µ′µ
p→ σuuσvvρ

2
(

1
1+τ2

)2
, as required.

Finally, to show part (v), note that by comparing the expressions for M̃SE1 and MSE1 ,

it is clear that the only difference between the two is that M̃SE1 estimates the quantity

σuuσvv − σuv using the consistent estimator σ̂uu,1σ̂vv,1 − σ̂2
uv,1 whereas MSE1 estimates the

quantity g11g22−g2
12 using the estimator ĝ11ĝ22−ĝ2

12. Since it is easy to verify that g11g22−g2
12 =

σuuσvv−σuv, all that is left to show is the consistency of the estimator ĝ11ĝ22− ĝ2
12. However,

given that ĝ11 =
y′1M(Z,X)y1

T
, ĝ12 =

y′1M(Z,X)y2

T
, and ĝ22 =

y′2M(Z,X)y2

T
; we see immediately from

parts (f) and (g) of Lemma A8 that, as T →∞, ĝ11
p→ g11, ĝ12

p→ g12, and ĝ11
p→ σvv = g22;
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and, thus, by the Slutsky’s theorem, ĝ11ĝ22 − ĝ2
12

p→ g11g22 − g2
12 = σuuσvv − σuv. Since these

limits do not depend on k21 and µ′µ, the desired result follows as a direct consequence.

Proof of Theorem 4.3: We will only prove consistency results for β̃OLS,1, β̃IV , and
˜̃
βIV,1 since the results for β̃OLS,2 and

˜̃
βIV,2 can be shown in a manner similar to those

for β̃OLS,1 and
˜̃
βIV,1, respectively. To prove part (i), write β̃OLS,1 = β̂OLS − bσuv,1bσvv,1

= β0 +

(y′2MXy2)
−1(y′2MXu) − bσuv,1bσvv,1

. Making use of part (a) of Lemma A3, the proof of parts (i)

and (iii) of Lemma 4.1, and the continuous mapping theorem; we see that as T → ∞,

β̃OLS,1 =⇒ β0 + σuv

σvv
− Ak21,µ′µ

σvv
= Lk21,µ′µ (say). It follows immediately that as k21 → ∞ and

µ′µ →∞ under Assumption 4, Lk21,µ′µ
p→ β0 since Ak21,µ′µ

p→ σuv, as shown in the proof of

part (iii) of Lemma 4.1. To show part (ii), write β̃IV = β̂IV − B̂IAS1. Making use of Lemma

A1, the proof of part (i) of Theorem 4.2, and the continuous mapping theorem; we see that,

as T →∞, β̃IV =⇒ β0 + σ
1
2
uuσ

− 1
2

vv

[
v2(µ′µ,k21)
v1(µ′µ,k21)

]
− Ck21,µ′µ = Mk21,µ′µ (say). Moreover, applying

Lemma A4 and the fact that Ck21,µ′µ
p→ σ

1
2
uuσ

− 1
2

vv ρ
(

1
1+τ2

)
, as shown in the proof of Theorem 4.2

part (i); we deduce that Mk21,µ′µ
p→ β0 +σ

1
2
uuσ

− 1
2

vv ρ
(

1
1+τ2

)−σ
1
2
uuσ

− 1
2

vv ρ
(

1
1+τ2

)
= β0 as k21 →∞

and µ′µ → ∞ under Assumption 4. To show part (iii), write
˜̃
βIV,1 = β̂IV − B̃IAS1. Now,

given Lemma A1, the proof of part (ii) of Theorem 4.2, and the continuous mapping theorem;

it is apparent that, as T →∞,
˜̃
βIV,1 =⇒ β0 + σ

1
2
uuσ

− 1
2

vv

[
v2(µ′µ,k21)
v1(µ′µ,k21)

]
− Ek21,µ′µ = Nk21,µ′µ (say).

Moreover, applying Lemma A4 and the fact that Ek21,µ′µ
p→ σ

1
2
uuσ

− 1
2

vv ρ
(

1
1+τ2

)
, as shown in the

proof of Theorem 4.2 part (ii), we readily deduce that Nk21,µ′µ
p→ β0 + σ

1
2
uuσ

− 1
2

vv ρ
(

1
1+τ2

) −
σ

1
2
uuσ

− 1
2

vv ρ
(

1
1+τ2

)
= β0 as k21 →∞ and µ′µ →∞ under Assumption 4.

Proof of Theorem 4.4: Note, that under Assumption 1*, the SEM described in Section

2 is fully identified in the usual sense. The results follows from standard arguments, which

are omitted here. See Chao and Swanson (2000) for details.
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Table 1: Approximation Accuracy for Various Values of µ′µ ∗
µ′µ Bias MSE

CS Approximation CS Approximation DN Approximation

β̂(tβ̂) R2 β̂(tβ̂) R2 β̂(tβ̂) R2

2 1.0004(1563.2) 0.9996 0.9993(701.76) 0.9980 0.0004(29.555) 0.4665
4 1.0030(836.01) 0.9986 0.9980(871.11) 0.9987 0.0017(34.233) 0.5398
6 1.0053(693.30) 0.9979 0.9982(1130.2) 0.9992 0.0037(38.209) 0.5937
8 1.0069(657.54) 0.9977 0.9985(1373.2) 0.9995 0.0064(41.777) 0.6360
10 1.0079(656.18) 0.9977 0.9986(1563.0) 0.9996 0.0097(45.084) 0.6705
12 1.0085(668.18) 0.9978 0.9986(1697.9) 0.9997 0.0135(48.213) 0.6994
14 1.0088(685.61) 0.9979 0.9985(1789.8) 0.9997 0.0179(51.212) 0.7242
16 1.0089(705.04) 0.9980 0.9983(1851.5) 0.9997 0.0226(54.110) 0.7456
18 1.0090(724.95) 0.9981 0.9981(1892.8) 0.9997 0.0276(56.929) 0.7644
20 1.0090(744.56) 0.9982 0.9978(1920.2) 0.9997 0.0330(59.684) 0.7810
22 1.0089(763.59) 0.9983 0.9976(1938.0) 0.9997 0.0386(62.385) 0.7957
24 1.0087(781.85) 0.9984 0.9973(1949.0) 0.9997 0.0444(65.043) 0.8090
26 1.0086(799.33) 0.9984 0.9970(1955.0) 0.9997 0.0504(67.663) 0.8209
28 1.0084(816.00) 0.9985 0.9967(1957.1) 0.9997 0.0566(70.250) 0.8317
30 1.0082(831.92) 0.9986 0.9964(1956.4) 0.9997 0.0629(72.810) 0.8414
32 1.0080(847.12) 0.9986 0.9961(1953.3) 0.9997 0.0692(75.346) 0.8504
34 1.0078(861.63) 0.9987 0.9958(1948.3) 0.9997 0.0757(77.861) 0.8585
36 1.0076(875.48) 0.9987 0.9954(1941.8) 0.9997 0.0822(80.357) 0.8660
38 1.0074(888.69) 0.9987 0.9951(1934.2) 0.9997 0.0888(82.838) 0.8729
40 1.0072(901.37) 0.9988 0.9948(1925.4) 0.9997 0.0954(85.304) 0.8793
42 1.0070(913.51) 0.9988 0.9945(1915.8) 0.9997 0.1020(87.758) 0.8852
44 1.0068(925.16) 0.9988 0.9942(1905.5) 0.9997 0.1086(90.200) 0.8906
46 1.0066(936.35) 0.9989 0.9940(1894.6) 0.9997 0.1152(92.633) 0.8957
48 1.0063(947.08) 0.9989 0.9937(1883.2) 0.9997 0.1218(95.057) 0.9004
50 1.0061(957.40) 0.9989 0.9934(1871.3) 0.9997 0.1283(97.473) 0.9049
52 1.0059(967.32) 0.9989 0.9931(1859.0) 0.9997 0.1349(99.882) 0.9090
54 1.0057(976.95) 0.9990 0.9928(1846.4) 0.9997 0.1414(102.28) 0.9128
56 1.0055(986.17) 0.9990 0.9926(1833.5) 0.9997 0.1479(104.68) 0.9165
58 1.0053(995.08) 0.9990 0.9923(1820.3) 0.9997 0.1543(107.07) 0.9198
60 1.0051(1003.7) 0.9990 0.9921(1806.9) 0.9997 0.1606(109.46) 0.9230
62 1.0049(1012.0) 0.9990 0.9918(1793.4) 0.9997 0.1670(111.84) 0.9260
64 1.0047(1020.0) 0.9990 0.9916(1779.7) 0.9997 0.1732(114.22) 0.9289
66 1.0045(1027.9) 0.9991 0.9913(1765.8) 0.9997 0.1795(116.60) 0.9316
68 1.0043(1035.4) 0.9991 0.9911(1751.8) 0.9997 0.1856(118.98) 0.9341
70 1.0041(1042.8) 0.9991 0.9909(1737.8) 0.9997 0.1917(121.35) 0.9365
72 1.0039(1049.9) 0.9991 0.9906(1723.7) 0.9997 0.1977(123.72) 0.9387
74 1.0037(1056.8) 0.9991 0.9904(1709.6) 0.9997 0.2037(126.09) 0.9409
76 1.0036(1063.5) 0.9991 0.9902(1695.4) 0.9997 0.2096(128.46) 0.9429
78 1.0034(1069.9) 0.9991 0.9900(1681.1) 0.9996 0.2154(130.83) 0.9449
80 1.0032(1076.3) 0.9991 0.9898(1666.9) 0.9996 0.2212(133.19) 0.9467
82 1.0030(1082.5) 0.9991 0.9896(1652.7) 0.9996 0.2269(135.56) 0.9484
84 1.0029(1088.5) 0.9992 0.9894(1638.5) 0.9996 0.2326(137.92) 0.9501
86 1.0027(1094.3) 0.9992 0.9892(1624.3) 0.9996 0.2381(140.29) 0.9517
88 1.0025(1100.0) 0.9992 0.9891(1610.1) 0.9996 0.2436(142.65) 0.9532
90 1.0024(1105.7) 0.9992 0.9889(1596.0) 0.9996 0.2491(145.01) 0.9547
92 1.0022(1111.0) 0.9992 0.9887(1581.9) 0.9996 0.2544(147.38) 0.9560
94 1.0020(1116.3) 0.9992 0.9886(1568.0) 0.9996 0.2597(149.74) 0.9574
96 1.0019(1121.5) 0.9992 0.9884(1554.1) 0.9996 0.2650(152.11) 0.9586
98 1.0017(1126.6) 0.9992 0.9882(1540.2) 0.9996 0.2702(154.47) 0.9598
100 1.0016(1131.4) 0.9992 0.9881(1526.4) 0.9996 0.2753(156.84) 0.9610

(∗) Notes: 50000 actual bias and MSE values were generated using the analytical formulae given in Section
2 for various values of µ′µ, k21 and β (i.e. σ

1/2
uu σ

−1/2
vv ρ), as discussed above. For each value of µ′µ, a pseudo

regression (with 1000 observations) was then run with the actual bias (MSE) regressed on an intercept and an
approximate bias (MSE). Slope coefficients (with t-statistics in brackets) are reported, as well as regression
R2 values.
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Table 2: Bias and MSE of OLS, IV, LIML and Bias Adjusted Estimators∗

ρuv R2
relev

bβOLS
bβIV

eβLIML
eβOLS,1

eβOLS,2
eβIV

eeβIV,1
eeβIV,2

Bias
0.10 0.01 0.110056 0.055485 0.018593 0.000708 0.002863 0.001791 0.002979 0.004026
0.10 0.05 0.105647 0.017693 0.003799 -0.006580 -0.000031 -0.001088 0.000194 0.001178
0.10 0.10 0.100122 0.009350 0.002005 -0.011004 0.001004 0.000013 0.000794 0.001702
0.10 0.20 0.088960 0.004525 0.002084 -0.021911 0.001147 0.000269 0.000662 0.001459
0.10 0.25 0.083505 0.003512 0.001892 -0.027351 0.001107 0.000283 0.000587 0.001334
0.20 0.01 0.495437 0.243785 0.039562 -0.207689 -0.195773 -0.202685 -0.197053 -0.190255
0.20 0.05 0.475447 0.075283 0.006690 -0.034721 -0.004923 -0.009726 -0.003904 0.000566
0.20 0.10 0.450478 0.038763 0.002751 -0.053507 0.000951 -0.003544 -0.000006 0.004112
0.20 0.20 0.400122 0.018076 0.002988 -0.101504 0.002789 -0.001184 0.000596 0.004202
0.20 0.25 0.375531 0.013814 0.002428 -0.125700 0.002936 -0.000790 0.000586 0.003961
0.30 0.01 0.644019 0.316396 0.036167 -0.059195 -0.045779 -0.052677 -0.045312 -0.038563
0.30 0.05 0.618020 0.097534 0.006689 -0.045459 -0.006694 -0.012941 -0.005371 0.000442
0.30 0.10 0.585556 0.050132 0.003070 -0.069860 0.000967 -0.004878 -0.000278 0.005077
0.30 0.20 0.520090 0.023319 0.003080 -0.132171 0.003443 -0.001724 0.000590 0.005279
0.30 0.25 0.488123 0.017803 0.002292 -0.163600 0.003659 -0.001186 0.000603 0.004991
0.40 0.01 0.802475 0.393875 0.032691 -0.260180 -0.241607 -0.252047 -0.242810 -0.232556
0.40 0.05 0.770068 0.121286 0.003910 -0.056859 -0.008533 -0.016319 -0.006884 0.000360
0.40 0.10 0.729610 0.062272 0.002785 -0.087282 0.001001 -0.006285 -0.000551 0.006123
0.40 0.20 0.648034 0.028921 0.002399 -0.164863 0.004149 -0.002290 0.000594 0.006438
0.40 0.25 0.608201 0.022065 0.002058 -0.204007 0.004437 -0.001600 0.000629 0.006098
0.50 0.01 0.990607 0.485889 0.026662 -0.813962 -0.786146 -0.803914 -0.792443 -0.774906
0.50 0.05 0.950593 0.149506 0.002772 -0.070357 -0.010682 -0.020295 -0.008646 0.000299
0.50 0.10 0.900647 0.076699 0.002844 -0.107948 0.001057 -0.007939 -0.000861 0.007381
0.50 0.20 0.799944 0.035582 0.002363 -0.203664 0.004997 -0.002952 0.000608 0.007823
0.50 0.25 0.750773 0.027134 0.001982 -0.251967 0.005370 -0.002084 0.000669 0.007420

Mean Square Error
0.10 0.01 0.012631 0.029674 2.232538 3.344585 3.276442 3.342322 3.339166 3.273371
0.10 0.05 0.011658 0.008821 0.012163 0.013834 0.012351 0.012591 0.012293 0.012075
0.10 0.10 0.010495 0.004457 0.005174 0.006443 0.005153 0.005246 0.005171 0.005087
0.10 0.20 0.008331 0.002038 0.002173 0.003647 0.002153 0.002187 0.002172 0.002142
0.10 0.25 0.007364 0.001546 0.001622 0.003325 0.001607 0.001630 0.001621 0.001600
0.20 0.01 0.245980 0.087718 25.38972 6.183739 6.056343 6.180073 6.175192 6.051633
0.20 0.05 0.226561 0.015405 0.015113 0.018464 0.015991 0.016374 0.015845 0.015539
0.20 0.10 0.203425 0.006695 0.006366 0.010397 0.006500 0.006635 0.006500 0.006405
0.20 0.20 0.160551 0.002778 0.002678 0.013922 0.002693 0.002734 0.002707 0.002681
0.20 0.25 0.141454 0.002063 0.002000 0.018714 0.002007 0.002033 0.002017 0.002003
0.30 0.01 0.415271 0.129580 4.192306 20.86674 20.45195 20.86363 20.85753 20.44608
0.30 0.05 0.382455 0.020142 0.017161 0.021728 0.018523 0.019011 0.018315 0.017946
0.30 0.10 0.343372 0.008297 0.007230 0.013280 0.007468 0.007635 0.007456 0.007350
0.30 0.20 0.270960 0.003308 0.003046 0.021409 0.003082 0.003129 0.003092 0.003070
0.30 0.25 0.238712 0.002433 0.002275 0.029917 0.002296 0.002324 0.002303 0.002292
0.40 0.01 0.644463 0.186309 1.508342 4.737517 4.635030 4.732172 4.724438 4.627611
0.40 0.05 0.593505 0.026557 0.019876 0.026131 0.021933 0.022562 0.021639 0.021186
0.40 0.10 0.532830 0.010464 0.008403 0.017190 0.008779 0.008989 0.008750 0.008630
0.40 0.20 0.420430 0.004023 0.003545 0.031556 0.003608 0.003663 0.003614 0.003595
0.40 0.25 0.370378 0.002933 0.002648 0.045095 0.002686 0.002717 0.002689 0.002683
0.50 0.01 0.981786 0.269921 3.761505 332.5419 325.9601 332.5278 332.5176 325.9504
0.50 0.05 0.904124 0.036005 0.023845 0.032628 0.026965 0.027801 0.026545 0.025966
0.50 0.10 0.811670 0.013650 0.010137 0.022952 0.010709 0.010984 0.010656 0.010514
0.50 0.20 0.640417 0.005075 0.004281 0.046498 0.004382 0.004450 0.004382 0.004367
0.50 0.25 0.564161 0.003668 0.003199 0.067443 0.003260 0.003296 0.003258 0.003258
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(∗) Notes: The 1st and 2nd columns report values of the correlation (ρuv) between the errors in the canonical
model (the degree of endogeneity) and the correlation (R2

relev) between the instruments and the endogenous
explanatory variable (instrument relevance). Average Bias (except for the LIML estimator, for which median
bias is reported) and MSE are reported for the OLS, IV, LIML, and 5 bias corrected estimators in the 3rd
through 11th columns, respectively. In the 1st column, the correlations correspond to β = -0.1111, -0.5,
-0.65, -0.81, and -1.0, respectively, in the canonical model. In the 2nd column, the correlations correspond
to π= 0.0225, 0.0513, 0.0745, 0.1120, and 0.1290, respectively, in the canonical model. All entries are based
on 5000 Monte Carlo trials (see above for further details).
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