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Abstract

This paper introduces a conditional Kolmogorov test, in the spirit of Andrews (1997), that
allows for comparison of multiple misspecifed conditional distribution models, for the case of
dependent observations. A conditional confidence interval version of the test is also discussed.
Model accuracy is measured using a distributional analog of mean square error, in which the
squared (approximation) error associated with a given model, say model i, is measured in terms

of the average over U of E

((
Fi(u|Zt, θ†i )− F0(u|Zt, θ0)

)2
)

, where U is a possibly unbounded

set on the real line, Zt is the conditioning information set, Fi is the distribution function of a
particular candidate model, and F0 is the true (unkown) distribution function. When comparing
more than two models, a “benchmark” model is specified, and the test is constructed along the
lines of the “reality check” of White (2000). Valid asymptotic critical values are obtained via a
version of the block bootstrap which properly captures the effect of parameter estimation error.
The results of a small Monte Carlo experiment indicate that the conditional confidence interval
version of the test has reasonable finite sample properties even for samples with as few as 60
observations.
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1 Introduction

There are several instances in which a “good” model for the conditional mean and/or variance

is not adequate for the task at hand. For example, financial risk management involves tracking

the entire distribution of a portfolio; or measuring certain distributional aspects, such as value

at risk (see e.g. Duffie and Pan (1997)). In these cases, the choice of the best loss function

specific model for the conditional mean may not be of too much help. Important contributions

that go beyond the examination of models of conditional mean include assessing the correctness

of conditional interval prediction (Christoffersen (1998)) and assessing volatility predictability by

comparing unconditional and conditional interval forecasts (Christoffersen and Diebold (2000)).1

Needless to say, correct specification of the conditional distribution implies correct specification

of all conditional aspects of the model. Perhaps in part for this reason, there has been growing

interest in recent years in providing tests for the correct specification of conditional distributions.

One contribution in this direction is the conditional Kolmogorov (CK) test of Andrews (1997),

which is based on the comparison of the empirical joint distribution of yt and Xt with the product

of a given distribution of yt|Xt and the empirical CDF of Xt. Other contributions in this direction

include, for example, Zheng (2000), who suggests a nonparametric test based on a first-order,

linear, expansion of the Kullback Leibler Information Criterion (KLIC), and Li and Tkacz (2002),

who propose a test based on the comparison of a nonparametric kernel estimate of the conditional

density with the density implied under the null hypothesis.2 Following a different route based

on use of the probability integral transform, Diebold, Gunther and Tay (1998) suggest a simple

and effective means by which predictive densities can be evaluated (see also Bai (2001), Diebold,

Hahn and Tay (1999), and Hong (2001)). All of the papers cited above consider a null hypothesis of

correct dynamic specification of the conditional distribution.3 However, we would like to argue that

as all models are arguably approximations of the truth, it is likely that they are all misspecified.

For this reason, it is our objective in this paper to provide a conditional Kolmogorov test, in the
1Prediction confidence intervals are also discussed in Granger, White and Kamstra (1989), Chatfield (1993),

Diebold, Tay and Wallis (1998), Clements and Taylor (2001), and the references cited therein.
2Whang (2000,2001) proposes a CK type test for the correct specification of the conditional mean.
3One exception is the approach taken by Corradi and Swanson (2003), who consider testing the null of correct

specification of the conditional distribution for a given information set, thus allowing for dynamic misspecification

under both hypotheses.
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spirit of Andrews (1997), that allows for the joint comparison of multiple misspecified conditional

distribution models, for the case of dependent observations. In particular, assume that the object of

interest is the conditional distribution of a scalar, Yt, given a (possibly vector valued) conditioning

set, Zt, where Zt contains lags of Yt and/or other variables. Now, given a group of (possibly)

misspecified conditional distributions, F1(u|Zt, θ†1), ..., Fm(u|Zt, θ†m), assume that the objective is to

compare these models in terms of their closeness to the true conditional distribution, F0(u|Zt, θ0) =

Pr(Yt ≤ u|Zt). If m > 2, we follow White (2000). Namely, we choose a particular conditional

distribution model as the “benchmark” and test the null hypothesis that no competing model

can provide a more accurate approximation of the “true” conditional distribution, against the

alternative that at least one competitor outperforms the benchmark model. Needless to say, pairwise

comparison of alternative models, in which no benchmark need be specified, follows as a special

case. In our context, accuracy is measured using a distributional analog of mean square error. More

precisely, the squared (approximation) error associated with model i, i = 1, ...,m, is measured in

terms of the average over U of E

((
Fi(u|Zt, θ†i )− F0(u|Zt, θ0)

)2
)

, where u ∈ U , and U is a

possibly unbounded set on the real line. It should be pointed out that one well known measure

of distributional accuracy is the Kullback-Leibler Information Criterion (KLIC), in the sense that

the “most accurate” model can shown to be that which minimizes the KLIC (see Section 2 for

a more precise discussion). For the iid case, Vuong (1989) suggests a likelihood ratio test for

choosing the conditional density model closer to the “true” conditional density in terms of the

KLIC. Additionally, Giacomini (2002) suggests a weighted version of the Vuong likelihood ratio test

for the case of dependent observations, while Kitamura (2002) employs a KLIC based approach to

select among misspecified conditional models that satisfy given moment conditions.4 Furthermore,

the KLIC approach has been recently employed for the evaluation of dynamic stochastic general

equilibrium models (see e.g. Schorfheide (2000), Fernandez-Villaverde and Rubio-Ramirez (2001),

and Chan, Gomes and Schorfheide (2002)). For example, Fernandez-Villaverde and Rubio-Ramirez

(2001) show that the KLIC-best model is also the model with the highest posterior probability.

In general, there is no reason why our measure of accuracy is more “natural” than the KLIC,

or vice-versa. However, in the next section we outline how certain problems (such as comparing

conditional confidence intervals) that are difficult to address using the KLIC can be handled quite
4Of note is that White (1982) shows that quasi maximum likelihood estimators (QMLEs) minimize the KLIC,

under mild conditions.

2



easily using our measure of distributional accuracy.

The rest of the paper is organized as follows. Section 2 states the hypothesis of interest and

describes the test statistic which will be examined in the sequel. In Section 3.1, it is shown that the

limiting distribution of the statistic (properly recentered) is a functional of a zero mean Gaussian

process with a covariance kernel that reflects both the contribution of parameter estimation error

and the effect of misspecification. As a result, the limiting distribution is not nuisance parameter

free and therefore critical values cannot be tabulated. Valid asymptotic critical values are instead

constructed using an appropriate version of the block bootstrap. In particular, in Section 3.2 we

show the first order validity of an empirical process version of the block bootstrap which properly

captures the contribution of parameter estimation error to the covariance kernel associated with the

limiting distribution of the test statistic. Finally, the results from a small Monte Carlo experiment

are collected in Section 4, and concluding remarks are given in Section 5. Proofs of results stated

in the text are outlined in the Appendix.

2 Set-Up and Test Statistics

Our objective is to form parametric conditional distributions for a scalar random variable, Yt,

given Zt, where Zt = (Yt−1, ..., Yt−s1 , Xt, ..., Xt−s2+1) with s1, s2 finite, and to select among these.

Define the group of conditional distribution models from which we want to make our selection as

F1(u|Zt, θ†1), ..., Fm(u|Zt, θ†m), and define the true conditional distribution as

F0(u|Zt, θ0) = Pr(Yt ≤ u|Zt).

Hereafter, assume that θ†i ∈ Θi, where Θi is a compact set in a finite dimensional Euclidean

space, and let θ†i be the probability limit of a quasi maximum likelihood estimator (QMLE) of the

parameters of the conditional distribution under model i. If model i is correctly specified, then

θ†i = θ0. As mentioned in the introduction, accuracy is measured in terms of a distributional analog

of mean square error. In particular, we say that model 1 is more accurate than model 2, if
∫

U
E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
−

(
F2(u|Zt, θ†2)− F0(u|Zt, θ0)

)2
)

φ(u)du < 0,

where
∫
U φ(u)du = 1 and φ(u) ≥ 0, for all u ∈ U ⊂ <. For any given evaluation point, this measure

defines a norm and it implies a standard goodness of fit measure.
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As mentioned above, another measure of distributional accuracy available in the literature is the

KLIC (see e.g. White (1982), Vuong (1989), Giacomini (2002), and Kitamura (2002)), according

to which we should choose Model 1 over Model 2 if

E(log f1(Yt|Zt, θ†1)− log f2(Yt|Zt, θ†2)) > 0.

The KLIC is a sensible measure of accuracy, as it chooses the model which on average gives

higher probability to events which have actually occurred. Also, it leads to simple likelihood ratio

type tests. Interestingly, Fernandez-Villaverde and Rubio-Ramirez (2001) have shown that the

best model under the KLIC is also the model with the highest posterior probability. Although

our approach and the KLIC approach should perhaps be viewed as alternatives, and as such one

might want to implement both tests in some contexts, it should be noted that if we are interested

in measuring accuracy over a specific region, or in measuring accuracy for a given conditional

confidence interval, say, this cannot be done in as straightforward manner using the KLIC, while it

can easily be done very easily using our measure. For example, if we want to evaluate the accuracy

of different models for approximating the probability that the rate of inflation tomorrow, given the

rate of inflation today, will be between 0.5% and 1.5%, say, we can do so quite easily using the

square error criterion, but not using the KLIC.

In the sequel, F1(·|·, θ†1) is taken as the benchmark model, and the objective is to test whether

some competitor model can provide a more accurate approximation of F0(·|·, θ0) than the bench-

mark. The null and the alternative hypotheses are:

H0 : max
k=2,...,m

∫

U
E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
−

(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du ≤ 0

(1)

versus

HA : max
k=2,...,m

∫

U
E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
−

(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du > 0,

(2)

where φ(u) ≥ 0 and
∫
U φ(u) = 1, u ∈ U ⊂ <, U possibly unbounded. Note that for a given

u, we compare conditional distributions in terms of their (mean square) distance from the true

distribution. We then average over U. If interest focuses on conditional confidence intervals, so that

the objective is to “approximate” Pr(u ≤ Yt ≤ u|Zt), then the null and alternative hypotheses can
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be stated as:

H ′
0 : max

k=2,...,m
E

(((
F1(u|Zt, θ†1)− F1(u|Zt, θ†1)

)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

−
((

Fk(u|Zt, θ†k)− Fk(u|Zt, θ†k)
)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

)
≤ 0.

versus

H ′
A : max

k=2,...,m
E

(((
F1(u|Zt, θ†1)− F1(u|Zt, θ†1)

)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

−
((

Fk(u|Zt, θ†k)− Fk(u|Zt, θ†k)
)
− (

F0(u|Zt, θ0)− F0(u|Zt, θ0)
))2

)
> 0.

Alternatively, if interest focuses on testing the null of equal accuracy of two conditional distribution

models, say F1 and Fk, we can simply state the hypotheses as:

H ′′
0 :

∫

U
E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
−

(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du = 0

versus

H ′′
A :

∫

U
E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
−

(
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

φ(u)du 6= 0.

In order to test H0 versus HA, we propose the following statistic5:

ZT = max
k=2,...,m

∫

U
ZT,u(1, k)φ(u)du, (3)

where

ZT,u(1, k) =
1√
T

T∑
t=s

((
1{Yt ≤ u} − F1(u|Zt, θ̂1,T )

)2
−

(
1{Yt ≤ u} − Fk(u|Zt, θ̂k,T )

)2
)

, (4)

with s = max{s1, s2},

θ̂i,T = arg max
θi∈Θi

1
T

T∑
t=s

ln fi(Yt|Zt, θi), i = 1, ..., m, (5)

and

θ†i = arg max
θi∈Θi

E(ln fi(Yt|Zt, θi)), i = 1, ..., m,

5In the Monte Carlo experiment reported on below, ZT is constructed as folllows:

ZT = max
k=2,...,m

1

Nu

NuX
i=1

 
1√
T

TX
t=s

��
1{Yt ≤ ui} − F1(ui|Zt, bθ1,T )

�2

−
�
1{Yt ≤ ui} − Fk(ui|Zt, bθk,T )

�2
�!

,

where Nu is taken sufficiently large.
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where fi(Yt|Zt, θi) is the conditional density under model i. As fi(·|·) does not in general coincide

with the true conditional density, θ̂i,T are QMLE, and θ†i 6= θ0. It is worth noting that the statistic

in equation (3) is very easy to compute, as integration is only over U, regardless the dimensionality

of Zt.

The intuition behind equation (4) is very simple. First, note that for any given u, E(1{Yt ≤
u}|Zt) = Pr(Yt ≤ u|Zt) = F0(u|Zt, θ0). Thus, 1{Yt ≤ u} − Fi(u|Zt, θ†i ) can be interpreted as an

“error” term associated with computation of the conditional expectation under Fi. Now, write the

statistic in equation (4) as:

1√
T

T∑
t=s

(((
1{Yt ≤ u} − F1(u|Zt, θ̂1,T )

)2
− µ2

1(u)
)
−

((
1{Yt ≤ u} − Fk(u|Zt, θ̂k,T )

)2
− µ2

k(u)
))

+
T − s√

T
(µ2

1(u)− µ2
k(u)), (6)

where µ2
j (u) = E

((
1{Yt ≤ u} − Fj(u|Zt, θ†j)

)2
)

, j = 1, ..., m. In the appendix, it is shown that

the first term in equation (6) weakly converges as a process on U. Also, for j = 1, ...,m :

µ2
j (u) = E

((
1{Yt ≤ u} − Fj(u|Zt, θ†j)

)2
)

= E

(((
1{Yt ≤ u} − F0(u|Zt, θ0)

)−
(
Fj(u|Zt, θ†j)− F0(u|Zt, θ0)

))2
)

= E
(
(1{Yt ≤ u} − F0(u|Zt, θ0))2

)
+ E

((
Fj(u|Zt, θ†j)− F0(u|Zt, θ0)

)2
)

,

given that the expectation of the cross product is zero (which follows because 1{Yt ≤ u} −
F0(u|Zt, θ0) is uncorrelated with any measurable function of Zt). Therefore,

µ2
1(u)− µ2

k(u) = E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
)
− E

((
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
)

. (7)

Before outlining the asymptotic properties of the statistic in (3) a few comments are worth

making. First, following the reality check approach of White (2000), the problem of testing multiple

hypotheses has been reduced to a single comparison test by applying the (single valued) max

function to the multiple hypotheses. This approach has the advantage that it avoids sequential

testing bias and also captures the correlation across the various models. On the other hand, if we

reject the null, we can conclude that there is at least one model that outperforms the benchmark,

but we do not have available to us a complete picture concerning which model(s) contribute to the

rejection of the null. Of course, some information can be obtained by looking at the distributional
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analog of mean square error associated with the various models, and forming a crude ranking of

the models, although the usual cautions associated with using a MSE type measure to rank models

should be taken. Alternatively, our approach can be complemented by a multiple comparison

approach, such as the false discovery rate (FDR) approach of Benjamini and Hochberg (1995),

which allows one to select among alternative groups of models, in the sense that one can assess which

group(s) contribute to the rejection of the null. The FDR approach has the objective of controlling

the expected number of false rejections and in practice one computes p-values associated with the m

hypotheses and orders these p-values in increasing fashion, say P1 ≤ ... ≤ Pi ≤ .... ≤ Pm. Then, all

hypotheses characterized by Pi ≤ (1−(i−1)/m)α are rejected, where α is a given significance level.

Such an approach, though less conservative than Hochberg’s (1988) approach, is still conservative

as it provides bounds on p-values. Overall, we think that a sound practical strategy could be to

first implement our reality check type tests. These tests can then be complemented by using a

multiple comparison approach, yielding a better overall understanding concerning which model(s)

contribute to the rejection of the null, if it is indeed rejected. If the null is not rejected, then

we simply choose the benchmark model. Nevertheless, even in this case, it may not hurt to see

whether some of the individual hypotheses in our joint null hypothesis are rejected via a multiple

test comparison approach.

3 Asymptotic Results

The results stated below require the following assumption.

Assumption A: (i) (Yt, Xt), is a strictly stationary and absolutely regular β−mixing process with

size −4, for i = 1, ..., m; (ii) Fi(u|Zt, θi) is continuously differentiable on the interior of Θi, where Θi

is a compact set in <pi , and ∇θiFi(u|Zt, θ†i ) is 2r-dominated on Θi, uniformly in u, r > 2;6 (iii) θ†i
is uniquely identified (i.e. E(ln fi(Yt|Zt, θ†i )) > E(ln fi(Yt|Zt, θi)), for any θi 6= θ†i ); (iv) the density,

fi, associated with Fi, is twice continuously differentiable on the interior of Θi, ∇θi ln fi(Yt|Zt, θi)

and ∇2
θi

ln fi(Yt|Zt, θi) are 2r−dominated on Θi, with r > 2; (v) E
(−∇2

θi
ln fi(Yt|Zt, θi)

)
is negative

definite, uniformly on Θi, limT→∞ V ar
(∇θi ln fi(Yt|Zt, θi)

)
is positive definite; and (vi) let vkk =

6We say that ∇θiF (u|Zt, θi) is 2r−dominated on Θi uniformly in u, if its kth−element, k = 1, ...pi, is such that��∇θiFi(u|Zt, θi)
��
k
≤ Dt(u), and supu∈R E(|Dt(u)|2r) < ∞. For more details on domination conditions, see Gallant

and White (1988, pp. 33).
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limT→∞ V ar

(
1√
T

∑T
t=s

(((
1{Yt ≤ u} − F1(u|Zt, θ†1)

)2
− µ2

1(u)
)
−

((
1{Yt ≤ u} − Fk(u|Zt, θ†k)

)2
− µ2

k(u)
)))

,

k = 2, ..., m, define analogous covariance terms, vjk, j, k = 2, ..., m, and assume that COV = [vjk]

is positive semi-definite.

Recalling that Zt = (Yt−1, ..., Yt−s1 , Xt, ..., Xt−s2+1), A1(i) ensures that Zt is strictly stationary

mixing with size −4. Note that A(vi) requires that at least one of the competing models to be

neither nested in nor nesting the benchmark model. However assumption A(vi) can be relaxed,

in which case the limiting distribution of the test statistic takes exactly the same form as given

in Theorem 1 below, except that covariance kernel contains only terms which reflect parameter

estimation error.7 This is the case considered in the Monte Carlo section.

3.1 Limiting Distributions

Theorem 1: Let Assumption A hold. Then:

max
k=2,...,m

∫

U

(
ZT,u(1, k)−

√
T

(
µ2

1(u)− µ2
k(u)

))
φ(u)du

d→ max
k=2,...,m

∫

U
Z1,k(u)φ(u)du,

where Z1,k(u, v) is a zero mean Gaussian process with covariance Ck(u, u′) equal to8:

E

∞∑

j=−∞

((
1{Y s≤ u} − F 1(u|Zs, θ†1)

)2
− µ2

1(u)
) ((

1{Y s+j≤ u′} − F 1(u
′|Zs+j ,θ†1)

)2
− µ2

1(u
′)
)

7In particular, using the notation of Theorem 1 below, Ck(u, u′) =

4m
θ
†
1
(u)′A(θ†1)E

 ∞X
j=−∞

∇θ1 ln f1(Y s|Zs, θ†1)∇θ1
ln f1(Y s+j |Zs+j , θ†1)

′
!

A(θ†1)mθ
†
1
(u′)

+4m
θ
†
k
(u)′A(θ

†
k
)E

 ∞X
j=−∞

∇θk ln fk(Y s|Zs, θ†k)∇θk
ln fk(Y s+j |Zs+j , θ†k)′

!
A(θ†k)m

θ
†
k
(u′)

−8m
θ
†
1
(u, )′A(θ

†
1
)E

 ∞X
j=−∞

∇θ1 ln f1(Y s|Zs, θ†1)∇θk
ln fk(Y s+j |Zs+j , θ†k)′

!
A(θ†k)m

θ
†
k
(u′).

8Note that the recentered statistics is actually

max
k=2,...,m

Z
U

�
ZT,u(1, k)− T − s√

T

�
µ2

1(u)− µ2
k(u)

��
φU (u)du,

however, because of notational simplicity, and given that the two are asymptotically equivalent, we ”approximate”

T−s√
T

with
√

T , both in he text and in the appendix.
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+E
∞∑

j=−∞

((
1{Y s≤ u} − F k(u|Zs,θ†k)

)2
− µ2

k(u)
)((

1{Y s+j≤ u′} − F k(u
′|Zs+j ,θ†k)

)2
− µ2

k(u
′)
)

−2E
∞∑

j=−∞

((
1{Y s≤ u} − F 1(u|Zs,θ†1)

)2
− µ2

1(u)
)((

1{Y s+j≤ u′} − F k(u
′|Zs+j ,θ†k)

)2
− µ2

k(u
′)
)

+4m
θ†1

(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(Y s|Zs, θ†1)∇θ1

ln f1(Y s+j |Zs+j , θ†1)
′

A(θ†1)mθ†1

(u′)

+4m
θ†k

(u)′A(θ†
k
)E




∞∑

j=−∞
∇θk

ln fk(Y s|Zs, θ†k)∇θk
ln fk(Y s+j |Zs+j , θ†k)

′

A(θ†k)mθ†k

(u′)

−8m
θ†1

(u, )′A(θ†
1
)E




∞∑

j=−∞
∇θ1 ln f1(Y s|Zs, θ†1)∇θk

ln fk(Y s+j |Zs+j , θ†k)
′

A(θ†k)mθ†k

(u′)

−4m
θ†1

(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(Y s|Zs, θ†1)

((
1{Y s+j≤ u} − F 1(u|Zs+j ,θ†1)

)2
− µ2

1(u)
)



+4m
θ†1

(u)′A(θ†1)E




∞∑

j=−∞
∇θ1 ln f1(Y s|Zs, θ†1)

((
1{Y s+j≤ u} − F k(u|Zs+j ,θ†k)

)2
− µ2

k(u)
)



−4m
θ†k

(u)′A(θ†k)E




∞∑

j=−∞
∇θk

ln fk(Y s|Zs, θ†k)
′
((

1{Y s+j≤ u} − F k(u|Zs+j ,θ†k)
)2
− µ2

k(u)
)



+4m
θ†k

(u)′A(θ†k)E




∞∑

j=−∞
∇θk

ln fk(Y s|Zs, θ†k)
′
((

1{Y s+j≤ u} − F 1(u|Zs+j ,θ†1)
)2
− µ2

1(u)
)

(8)

with m
θ†i

(u)′ = E
(
∇θiFi(u|Zt, θ†i )

′
(
1{Yt ≤ u} − Fi(u|Zt, θ†i )

))
and A(θ†i ) =

(
E

(
− ln∇2

θi
fi(yt|Zt, θ†i )

))−1
.

From Theorem 1, we see that when all competing models provide an approximation to the

true conditional distribution that is as (mean square) accurate as that provided by the bench-

mark (i.e. when
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, ∀k), then the limiting distribution is a func-

tional of a zero mean Gaussian process with a covariance kernel that reflects both the contri-

bution of parameter estimation error and the fact that
((

1{yt ≤ u′} − Fi(u′|Zt, θ†i )
)2
− µ2

i

)
is

not a martingale difference sequence in the presence of misspecification. Therefore, the limiting

9



distribution is not nuisance parameter free and critical values cannot be tabulated. Addition-

ally, when all competitor models are worse than the benchmark, the statistic diverges to mi-

nus infinity at rate
√

T . Finally, when only some competitor models are worse than the bench-

mark, the limiting distribution provides a conservative test, as ZT will always be smaller than

maxk=2,...,m

∫
U

(
ZT,u(1, k)−√T

(
µ2

1(u)− µ2
k(u)

))
φ(u)du, asymptotically, and therefore the criti-

cal values of maxk=2,...,m

∫
U Z1,k(u)φU (u)du provide upper bounds for the critical values of maxk=2,...,m

∫
U Z1,k(u)φU (u)du.

Of course, when HA holds, the statistic diverges to plus infinity at rate
√

T .

3.2 Bootstrap Critical Values

In this subsection we outline how to obtain valid critical values for the asymptotic distribution of

maxk=2,...,m

∫
U

(
ZT,u(1, k)−√T

(
µ2

1(u)− µ2
k(u)

))
φU (u)du, via use of an empirical process version

of the block bootstrap that properly captures the contribution of parameter estimation error to the

covariance kernel.

In order to show the first order validity of the bootstrap, we shall obtain the limiting distribution

of the bootstrapped statistic and show that it coincides with the limiting distribution in Theorem

1. As all candidate models are potentially misspecified under both hypotheses, the parametric

bootstrap is not generally applicable in our context. In fact, if observations are resampled from

one of the candidate models, then we cannot ensure that the resampled statistic has the limiting

distribution described in Theorem 1. Our approach is thus to establish the first order validity of

the block bootstrap in the presence of parameter estimation error, using the results of Goncalves

and White (2002a and 2002b) for block bootstrap QMLE estimators.9 Let Wt = (Yt, Z
t). Draw

b overlapping blocks of length l from Ws, ...,WT , where s = max{s1, s2}, so that bl = T − s.

Thus, W ∗
s , ..., W ∗

s+l, ..., W
∗
T−l+1, ..., W

∗
T is equal to WI1+1, ...,WI1+l, ...,WIb+1, ...,WIb+l, where Ii,

i = 1, ..., b are identically and independently distributed discrete uniform random variates on s −
1, s, ..., T − l. It follows that, conditional on the sample, the pseudo time series W ∗

t , t = s, ..., T,

consists of b independent and identically distributed blocks of length l. We begin by considering

the bootstrap analog of ZT . Define the block bootstrap QMLE as,

θ̂∗i,T = arg max
θi∈Θi

1
T

T∑
t=s

ln fi(Y ∗
t |Z∗t, θi), i = 1, ...m,

9Goncalves and White (2002a,b) indeed consider the more general case of heterogeneous and near epoch dependent

observations.
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and define the bootstrap statistic as:

Z∗T = max
k=2,...,m

∫

U
Z∗T,u(1, k)φ(u)du,

where

Z∗T,u(1, k) =
1√
T

T∑
t=s

(((
1{Y ∗

t ≤ u} − F1(u|Z∗t, θ̂∗1,T )
)2
−

(
1{Yt ≤ u} − F1(u|Zt, θ̂1,T )

)2
)

−
((

1{Y ∗
t ≤ u} − Fk(u|Z∗t, θ̂∗k,T )

)2
−

(
1{Yt ≤ u} − Fk(u|Zt, θ̂k,T )

)2
))

.

Theorem 2: Let Assumption A hold. If l →∞ and l/T 1/2 → 0, as T →∞, then,

P

(
ω : sup

v∈<

∣∣∣∣P ∗
(

max
k=2,...,m

∫

U
Z∗T,u(1, k)φ(u)du ≤ v

)

−P

(
max

k=2,...,m

∫

U

(
ZT,u(1, k)−

√
T

(
µ2

1(u)− µ2
k(u)

))
φ(u)du ≤ v

)∣∣∣∣ > ε

)
→ 0,

where P ∗ denotes the probability law of the resampled series, conditional on the sample, and

µ2
1(u)− µ2

k(u) is defined as in equation (7).

The above result suggests proceeding in the following manner. For any bootstrap replication,

compute the bootstrap statistic, Z∗T . Perform B bootstrap replications (B large) and compute the

quantiles of the empirical distribution of the B bootstrap statistics. Reject H0 if ZT is greater

than the (1 − α)th-quantile. Otherwise, do not reject. Now, for all samples except a set with

probability measure approaching zero, ZT has the same limiting distribution as the corresponding

bootstrapped statistic, when
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, ∀k, which is the least favorable case

under the null hypothesis. Thus, the above approach ensures that the test has asymptotic size

equal to α. On the other hand, when one or more, but not all, competing models are strictly

dominated by the benchmark, the approach above ensures that the test has an asymptotic size

between 0 and α. When all models are dominated by the benchmark, the statistic vanishes to

minus infinity, so that the rule above implies zero asymptotic size. Finally, under the alternative,

ZT diverges to (plus) infinity, while the corresponding bootstrap statistic has a well defined limiting

distribution. This ensures unit asymptotic power. From the above discussion, we see that the

bootstrap distribution provides correct asymptotic critical values only for the least favorable case

under the null hypothesis; that is, when all competitor models are as good as the benchmark

model. When maxk=2,...,m

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, but

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du < 0 for

11



some k, then the bootstrap critical values lead to conservative inference. An alternative to our

bootstrap critical values in this case is the construction of critical values based on subsampling

(see e.g. Politis, Romano and Wolf (1999), Ch.3). Heuristically, construct T − 2bT statistics using

subsamples of length bT , where bT /T → 0. The empirical distribution of these statistics computed

over the various subsamples properly mimics the distribution of the statistic. Thus, subsampling

provides valid critical values even for the case where maxk=2,...,m

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0,

but
∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du < 0 for some k. This is the approach used by Linton, Maasoumi and

Whang (2003), for example, in the context of testing for stochastic dominance. Needless to say, one

problem with subsampling is that unless the sample is very large, the empirical distribution of the

subsampled statistics may yield a poor approximation of the limiting distribution of the statistic.

An alternative approach for addressing the conservative nature of our bootstrap critical values is

suggested in Hansen (2001). Hansen’s idea is to recenter the bootstrap statistics using the sample

mean, whenever the latter is larger than (minus) a bound of order
√

2T log log T . Otherwise, do

not recenter the bootstrap statistics. In the current context, his approach leads to correctly sized

inference when maxk=2,...,m

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du = 0, but

∫
U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du < 0 for

some k. Additionally, his approach has the feature that if all models are characterized by a sample

mean below the bound, the null is “accepted” and no bootstrap statistic is constructed.

4 Monte Carlo Findings

In this section we carry out a small series of Monte Carlo experiments using data generated as

follows:




y1
y2
...
yT
X
W
Q



∼ tv







0
0
0
0
0T
0T
0T




,




σ2 σ2ρ ... σ2ρT−1

σ2ρ σ2 ... σ2ρT−2

... ... σ2 ... IT · 0 IT · 0 IT · 0
σ2ρT−1 σ2ρT−2 ... σ2

IT · 0 IT · σ2
X IT · 0 IT · 0

IT · 0 IT · 0 IT · σ2
W IT · 0

IT · 0 IT · 0 IT · 0 IT · σ2
Q







,

where tv denotes a Student’s t-distribution with v degrees of freedom, T is the sample size, yt,

t = 1, ..., T is the scalar random variable of interest (called Yt above), X = (x1, ..., xT )′, W =

(w1, ..., wT )′, and Q = (q1, ..., qT )′ are Tx1 vector random variables to be used in the conditioning
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sets of the competing models of yt, 0T is a Tx1 vector of zeros, IT is a TxT identity matrix, and

σ2, σ2
X , σ2

W ,σ2
Q, and ρ are scalars. It follows that:

yt|yt−1 ∼ tv

(
αyt−1,

v

v − 1
(
σ2 − σ2α2

) (
1 +

y2
t−1

σ2

))
,

where α = cov(yt, yt−1)/var(yt, yt−1) = ρ, for any t > 1. In our experiments, we impose misspec-

ification upon all models by assuming normality (i.e. assume that Fi, i = 1, ..., m, is the normal

CDF). Our objective is to ascertain whether a given benchmark model is “better”, in the sense of

having lower squared approximation error, than two given alternative models. Thus, m = 3. Level

and power experiments are defined by adjusting the conditioning information sets used to estimate

(via QMLE) the parameters of each conditional model, and subsequently to form Fi(u|Zt, θ̂i,T ),

Fi(u|Z∗t, θ̂∗i,T ), ZT , and Z∗T . In all experiments, values of α = {0.4, 0.6, 0.8, 0.9} are used, samples

of T = 60 and 120 are tried, v = 3, σ2 = 1, and σ2
X = σ2

W = σ2
Q = {0.1, 1.0, 10.0}. Throughout, the

conditional confidence interval version of the test is constructed, and the upper and lower bounds

of the interval are fixed at µY + γσY and µY − γσY , respectively, where µY and σY are the mean

and variance of yt, and where γ = { 1
16 , 1

8 , 1
2}. Additionally, 5% and 10% nominal level bootstrap

critical values are constructed using 100 bootstrap replications, block lengths of l = {2, 3, 5, 6} are

tried, and all reported rejection frequencies are based on 5000 Monte Carlo simulations.10 Given

Zt = (yt−1, xt, wt, qt), the experiments reported on are organized as follows:

Empirical Level Experiments: In these experiments, we define the conditioning variable sets as

follows: For the benchmark model (F1), use Z̃t = (yt−1, xt), where Z̃t is a proper subset of Zt. For

the two alternative models (F2 and F3) we set Z̃t = (yt−1, wt) and Z̃t = (yt−1, qt), respectively.

In this case, the estimated coefficients associated with xt, wt, and qt have probability limits equal

to zero, as none of these variables enters into the true conditional mean function. In addition, all

models are misspecified, as conditional normality is assumed throughout. Therefore, the benchmark

and the two competitors are equally misspecified. Finally, the limiting distribution of the test

statistic in this case is driven by parameter estimation error, as assumption A(vi) does not hold.

Empirical Power Experiments: In these experiments, we set the conditioning variable sets as

follows: For the benchmark model (F1), Z̃t = (wt). For the two alternative models (F2 and F3) we

set Z̃t = (yt−1) and Z̃t = (qt), respectively. In this manner, it is ensured that the first of the two
10Additional results for cases where x = { 1

4
, 1}, l = {10, 12}, and critical values are constructed using 250 bootstrap

replications are available upon request, and yield qualitatively similar results to those reported in Tables 1-6..
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alternative models has smaller squared approximation error than the benchmark model.

Our findings are summarized in Tables 1-3 (empirical level experiments) and Tables 4-6 (em-

pirical power experiments). In these tables, the first column reports the value of ρ = α used in a

particular experiment, while all remaining entries are rejection frequencies of the null hypothesis

that the benchmark model is not outperformed by any of the alternative models. A number of

conclusions emerge upon inspection of the tables. Turning first to the empirical level results given

in Tables 1-3, note, for example, that empirical level varies from values grossly above nominal levels

(when the block length is 2), to values slightly below nominal levels (when the block length is 6).

Additionally, when l = 2, it is often the case that moving from 60 to 120 observations results in

a slight increase in size, although the larger sample results in smaller rejection frequencies when l

is larger, in many cases. In particular, notice that when α = 0.4 (low persistence) a block length

of two usually suffices to capture the dependence structure of the series, while for α = 0.9 (high

persistence) a larger block length is necessary. Finally, in many cases, the empirical rejection fre-

quencies are not too distant from nominal levels, a result which is somewhat surprising given the

small sample sizes used in our experiments. Empirical power results reported on in Tables 4-6 yield

similar conclusions. In particular, rejection frequencies are sometimes rather low (when the level

of dependence in the data, as given by α, is smallest), but rejection frequencies are above 0.5 in

many cases, and, braodly speaking, they increase with sample size and with α. In summary, even

when very small samples are used, the conditional confidence interval version of the test appears

to perform adequately well, and our evidence points to reasonably steep tradeoff between sample

size and test performance.

5 Concluding Remarks

We have provided a conditional Kolmogorov test, in the spirit of Andrews (1997), that allows

for the joint comparison of multiple misspecified conditional distribution models, for the case of

dependent observations, and for the case where accuracy is measured using a distributional analog

of mean square error. We also outlined the construction of valid asymptotic critical values based

on an empirical process version of the block bootstrap. Findings from a small Monte Carlo study of

a conditional confidence interval version of the test indicate that the statistic has reasonable finite

sample properties even for samples with as few as 60 observations.
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6 Appendix

Proof of Theorem 1:

Recall that µ2
i (u) = E

((
1{Yt ≤ u} − Fi(u|Zt, θ†i )

)2
)

= E
((

1{Yt ≤ u} − F0(u|Zt, θ0)
)2

)
+ E

((
F0(u|Zt, θ0)− Fi(u|Zt, θ†i )

)2
)

. Thus,

ZT,u(1, k) =
1√
T

T∑
t=s

((
1{Yt ≤ u} − F1(u|Zt, θ̂1,T )

)2
−

(
1{Yt ≤ u} − Fk(u|Zt, θ̂k,T )

)2
)

=
1√
T

T∑
t=s

((
1{Yt ≤ u} − F1(u|Zt, θ̂1,T )

)2
− µ2

1(u)
)

− 1√
T

T∑
t=s

((
1{Yt ≤ u} − Fk(u|Zt, θ̂k,T )

)2
− µ2

k(u)
)

+
√

T − s(µ2
1(u)− µ2

k(u))

=
1√
T

T∑
t=s

((
1{Yt ≤ u} − F1(u|Zt, θ†1)

)2
− µ2

1(u)
)
− 1√

T

T∑
t=s

((
1{Yt ≤ u} − Fk(u|Zt, θ†k)

)2
− µ2

k(u)
)

− 2
T

T∑
t=s

∇θ1F1(u|Zt, θ1,T )′
(
1{Yt ≤ u} − F1(u|Zt, θ†1)

)√
T

(
θ̂1,T − θ†1

)

+
2
T

T∑
t=s

∇θk
Fk(u|Zt, θk,T )′

(
1{Yt ≤ u} − Fk(u|Zt, θ†k)

)√
T

(
θ̂k,T − θ†k

)

+
√

T (µ2
1(u)− µ2

k(u)) + oP (1)

= IT (u) +
√

T (µ2
1(u)− µ2

k(u)) + oP (1), (9)

where θi,T ∈ (θ̂i,T , θ†i ), and where the oP (1) term holds uniformly in u ∈ U. In fact, given Assumption

A, for i = 1, ..., m,

V ec

(
1√
T

T∑
t=s

∇θi
Fi(u|Zt, θi,T )′

(
θ̂i,T − θ†i

)(
θ̂i,T − θ†i

)′
∇θi

Fi(u|Zt, θi,T )

)

=

[
1
T

T∑
t=s

∇θi
Fi(u|Zt, θi,T )′ ⊗∇θi

Fi(u|Zt, θi,T )

]√
Tvec

((
θ̂i,T − θ†i

)(
θ̂i,T − θ†i

)′)

= oP (1), (10)

uniformly in u ∈ U, as the term in square brackets satisfies the uniform strong law of large numbers,

and so is OP (1) (see e.g. Theorem A.2.2 in White(1994)) for any given u, and A(ii) ensures that

the term is also OP (1), uniformly in u, and as
(
θ̂i,T − θ†i

)
= Op(T−1/2) (since it satisfies the central

limit theorem (see e.g. Theorem 6.2 in White (1994)). Note that, given Assumption A(iii)-(v), for
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i = 1, ..., m,
√

T
(
θ̂i,T − θ†i

)
= A(θ†i )

1√
T

T∑
t=s

∇θi ln fi(Yt|Zt, θ†i ) + oP (1),

where A(θ†i ) =
(
E

(
−∇2

θi
fi(yt|Zt, θ†i )

))−1
. Thus, IT (u) converges in distribution pointwise in u,

and, by the Cramer Wold device, it follows that for given u and u′, (IT (u), IT (u′))′ converges in

distribution to a bivariate normal with covariance
(

Ck(u, u) Ck(u, u′)
Ck(u′, u) Ck(u′, u′)

)
, as defined in (8).

Now, in order to show that IT (u) weakly converges as a process on U, we need to show that it

is stochastic equicontinuous on U. First note that,

IT (u) =
1√
T

T∑
t=s

(
F 2

1 (u|Zt, θ†1)− E
(
F 2

1 (u|Zt, θ†1)
))

− 2√
T

T∑
t=s

(
F1(u|Zt, θ†1)1{Yt ≤ u} − E

(
F1(u|Zt, θ†1)1{Yt ≤ u}

))

− 1√
T

T∑
t=s

(
F 2

k (u|Zt, θ†k)− E
(
F 2

k (u|Zt, θ†k)
))

+
2√
T

T∑
t=s

(
Fk(u|Zt, θ†k)1{Yt ≤ u} − E

(
Fk(u|Zt, θ†k)1{Yt ≤ u}

))

−2m
θ†1

(u)′
√

T
(
θ̂1,T − θ†1

)
+ 2m

θ†k
(u)′

√
T

(
θ̂k,T − θ†k

)
+ oP (1), (11)

where m
θ†i

(u)′ = E
(
∇θiFi(u|Zt, θ†i )

′
(
1{Yt ≤ u} − Fi(u|Xt, θ

†
i )

))
, and the oP (1) term holds uni-

formly in u ∈ U. Let Ii,T (u) be the term in the i− th line of (11). Then,

IT (u) =
1√
T

T∑
t=s

I1,t(u)− 2√
T

T∑
t=s

I2,t(u)− 1√
T

T∑
t=s

I3,t(u) +
2√
T

T∑
t=s

I4,t(u)

−2m
θ†1

(u)′
√

T
(
θ̂1,T − θ†1

)
+ 2m

θ†k
(u)′

√
T

(
θ̂k,T − θ†k

)
+ oP (1), (12)

and noting that m
θ†i

(u)′ is equicontinuous on U, it suffices to show that the first four terms on the

right hand side of (12) are stochastic equicontinuous on U . Thus, it suffices to show that,

lim sup
T→∞

4∑

k=1

P


 sup

u,uj∈U
ρk(u,uj)<δ

∣∣∣∣∣
1√
T

T∑
t=s

Ik,t(u)− 1√
T

T∑
t=s

Ik,t(uj)

∣∣∣∣∣ > ε


 = 0, as δ → 0,

where ρk(u, uj) =
(
E((Ik,t(u)− Ik,t(uj))4)

)1/4
. Now, define the bracketing number, Nk,4(ε, U), to

be the smallest number, n ∈ N, for which there exists (u1, ..., un) ∈ U, such that for any u ∈ U there

exists uj , j = 1, ..., n ensuring that
(
E((Ik,t(u)− Ik,t(uj))4)

)1/4 ≤ ε. Once we have shown that for
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k = 1, ..., 4,
∫ 1
0

√
log Nk,4(ε, U)dε < ∞, then stochastic equicontinuity of IT (u) on U follows from

Theorem 1 (Application 1) in Doukhan, Massart and Rio (DMR: 1995). In fact, given the size

of the mixing coefficients in A(i),
∑∞

j=1 j−1βj is a convergent series, and thus condition (2.10) in

DMR can be replaced with the condition that
∫ 1
0

√
log Nk,4(ε, U)dε < ∞, for k = 1, ..., 4. Now,

(
E((I1,t(uj)− I1,t(u))4)

)1/4 ≤
(

E

((
F 2

1 (u|Zt, θ†1)− F 2
1 (uj |Zt, θ†1)

)4
))1/4

+
∣∣∣∣
∫

V

(
F 2

1 (u|z, θ†1)− F 2
1 (uj |z, θ†1)

)
f0(z)dz

∣∣∣∣ , (13)

where f0(·) denotes the “true” marginal density of the conditioning variable(s), and V is the support

of Zt. With regard to the first term on the RHS of (13), note that there exists a z̃ ∈ V such that,

(
E

((
F 2

1 (u|Zt, θ†1)− F 2
1 (uj |Zt, θ†1)

)4
))1/4

= C1

(∫

V

(
F 2

1 (u|z, θ†1)− F 2
1 (uj |z̃, θ†1)

)4
f0(z)dz

)1/4

,

with C1 =

�R
V

�
F 2

1 (u|z,θ†1)−F 2
1 (uj |z,θ†1)

�4
f0(z)dz

�1/4

�R
V

�
F 2

1 (u|z,θ†1)−F 2
1 (uj |ez,θ†1)

�4
f0(z)dz

�1/4 < ∞. We can choose (u1, ..., un) ∈ U, such that

F 2
1 (uj |z̃, θ†1) = jδ, j = 1, ..., 1/δ, so that the LHS of the last inequality above is majorized by C1δ.

With regard to the second term on the RHS of (13),
∣∣∣∣
∫

V

(
F 2

1 (u|z, θ†1)− F 2
1 (uj |z, θ†1)

)
f0(z)dz

∣∣∣∣ ≤ C2

∫

V

∣∣∣F 2
1 (u|z, θ†1)− F 2

1 (uj |z̃, θ†1)
∣∣∣ f0(z)dz, (14)

where C2 =
R

V

���F 2
1 (u|z,θ†1)−F 2

1 (uj |z,θ†1)
���f0(z)dzR

V

���F 2
1 (u|z,θ†1)−F 2

1 (uj |ez,θ†1)
���f0(z)dz

< ∞. For the same (u1, ..., un) as above, set F 2
1 (uj |z̃, θ†1) =

jδ, j = 1, ..., 1/δ, so that for any u we can find an uj ensuring that the last term in (14) is majorized

by C2δ. Now, set δ(ε) = ε/(C1 + C2), so that N1,4(ε, U) = 1/δ(ε) = (C1 + C2)ε−1, for 0 < ε < 1/2,

and
∫ 1
0

√
log((C1 + C2)/ε)dε ≤ ∫ 1

0 log((C1 + C2)/ε)dε = log(C1 + C2) + 1 < ∞. Finally, note that

I2,T (u), I3,T (u), and I4,T (u) can be treated in an analogous manner. It has been already shown in

Section 2 that
∫

U

(
µ2

1(u)− µ2
k(u)

)
φ(u)du

=
∫

U

(
E

((
F1(u|Zt, θ†1)− F0(u|Zt, θ0)

)2
)
−E

((
Fk(u|Zt, θ†k)− F0(u|Zt, θ0)

)2
))

φ(u)du.

Thus, by the continuous mapping theorem it follows that,

max
k=2,...,m

∫

U

(
ZT,u(1, k)−

√
T

(
µ2

1(u)− µ2
k(u)

))
φU (u)du

d→ max
k=2,...,m

∫

U
Z1,k(u)φ(u)du,

17



where Z1,k(u) is a zero mean Gaussian process with covariance Ck(u, u′) defined as in (8), for

k = 2, ...,m.

Proof of Theorem 2: In the sequel, P ∗, E∗, and V ar∗ denote the probability law of the resampled

series, conditional on the sample, the expectation, and the variance operators associated with P ∗,

respectively. With the notation oP ∗(1) Pr−P, and OP ∗(1) Pr−P, we mean a term approaching

zero in P ∗−probability and a term bounded in P ∗−probability, conditional on the sample and for

all samples except a set of measure zero, respectively. Write Z∗T,u(1, k) as

Z∗T,u(1, k) =
1√
T

T∑
t=s

((((
1{Y ∗

t ≤ u} − F1(u|Z∗t, θ†1)
)
−∇θ1F1(u|Z∗t, θ∗1,T )

(
θ̂∗1,T − θ†1

))2

−
((

1{Yt ≤ u} − F1(u|Zt, θ†1)
)
−∇θ1F1(u|Zt, θ1,T )

(
θ̂1,T − θ†1

))2
)

−
(((

1{Y ∗
t ≤ u} − Fk(u|Z∗t, θ†k)

)
−∇θk

Fk(u|Z∗t, θ∗k,T )
(
θ̂∗k,T − θ†k

))2

−
((

1{Yt ≤ u} − Fk(u|Zt, θ†k)
)
−∇θk

Fk(u|Zt, θk,T )
(
θ̂k,T − θ†k

))2
))

, (15)

where θ
∗
i,T ∈

(
θ̂∗i,T , θ†i

)
, θi,T ∈

(
θ̂i,T , θ†i

)
. Now,

V ec

(
1√
T

T∑
t=s

∇θiFi(u|Z∗t, θ
∗
i,T )′

(
θ̂∗i,T − θ†i

)(
θ̂∗i,T − θ†i

)′
∇θiFi(u|Z∗t, θ∗i,T )

)

=

[
1
T

T∑
t=s

∇θiFi(u|Z∗t, θ∗i,T )′ ⊗∇θiFi(u|Z∗t, θ∗i,T )

]√
Tvec

(
θ̂∗i,T − θ†i

) (
θ̂∗i,T − θ†i

)′

= oP ∗(1), Pr−P, (16)

because
√

T
(
θ̂∗i,T − θ†i

)
=
√

T
(
θ̂∗i,T − θ̂i,T

)
+
√

T
(
θ̂i,T − θ†i

)
= OP ∗(1) + O(1) = OP ∗(1) Pr−P,

by Theorem 2.2 in Goncalves (GW, (2002)), and
√

T
(
θ̂∗i,T − θ̂i,T

)
= OP ∗(1) Pr−P, as it converges

in P ∗−distribution, and because the term in square brackets is OP ∗(1) Pr−P. Thus, Z∗T,u(1, k) can

be written as,

1√
T

T∑
t=s

(
F 2

1 (u|Z∗t, θ†1)− F 2
1 (u|Zt, θ†1)

)
− 2√

T

T∑
t=s

(
F1(u|Z∗t, θ†1)1{Y ∗

t ≤ u} − F1(u|Zt, θ†1)1{Yt ≤ u}
)

− 2
T

T∑
t=s

((
1{Y ∗

t ≤ u} − F1(u|Z∗t, θ†1)
)
∇θ1F1(u|Z∗t, θ∗1,T )′

)√
T

(
θ̂∗1,T − θ†1

)
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+
2
T

T∑
t=s

((
1{Yt ≤ u} − F1(u|Zt, θ†1)

)
∇θ1F1(u|Zt, θ1,T )′

)√
T

(
θ̂1,T − θ†1

)

− 1√
T

T∑
t=s

(
F 2

k (u|Z∗t, θ†k)− F 2
k (u|Zt, θ†k)

)
+

2√
T

T∑
t=s

(
Fk(u|Z∗t, θ†k)1{Y ∗

t ≤ u} − Fk(u|Zt, θ†k)1{Yt ≤ u}
)

+
2
T

T∑
t=s

((
1{Y ∗

t ≤ u} − Fk(u|Z∗t, θ†k)
)
∇θk

Fk(u|Z∗t, θ∗k,T )′
)√

T
(
θ̂∗k,T − θ†k

)

− 2
T

T∑
t=s

((
1{Yt ≤ u} − Fk(u|Zt, θ†k)

)
∇θk

Fk(u|Zt, θk,T )′
)√

T
(
θ̂k,T − θ†k

)
+ oP ∗(1), Pr−P,(17)

where the oP ∗(1) term holds uniformly in u ∈ U. We begin by showing that for i = 1, ..., m,

conditional on the sample and for all samples except a set of measure approaching zero,

(a) 1√
T

∑T
t=s

(
F 2

i (u|Z∗t, θ†i )− F 2
i (u|Zt, θ†i )

)
has the same limiting distribution as

1√
T

∑T
t=s

(
F 2

i (u|Zt, θ†i )− E
(
F 2

i (u|Zt, θ†i )
))

, as a process over U.

(b) 1√
T

∑T
t=s

(
Fi(u|Z∗t, θ†i )1{Y ∗

t ≤ u} − Fi(u|Zt, θ†i )1{Yt ≤ u}
)

has the same limiting distribution

as 1√
T

∑T
t=s

(
Fi(u|Zt, θ†i )1{Yt ≤ u} − E

(
Fi(u|Zt, θ†i )1{Yt ≤ u}

))
, as a process over U.

We first show that (a) and (b) above hold pointwise in u.

Thereafter, we show that 1√
T

∑T
t=s

(
F 2

i (u|Z∗t, θ†i )− F 2
i (u|Zt, θ†i )

)
and

1√
T

∑T
t=s

(
Fi(u|Z∗t, θ†i )1{Y ∗

t ≤ u} − Fi(u|Zt, θ†i )1{Yt ≤ u}
)

are P ∗−stochastic equicontinuous onU,

conditional on the sample and for all sample except a set of measure approaching zero. Without loss

of generality, we begin by showing (a), letting i = 1. Given the block resampling scheme described

in Section 3.2, it is easy to see that,

E∗
(

1√
T

T∑
t=s

F 2
1 (u|Z∗t, θ†1)

)
=

1√
T

T∑
t=s

F 2
1 (u|Zt, θ†1) + O

(
l√
T

)
, Pr−P.

Now, recalling that each block, conditional on the sample, is identically and independently dis-

tributed,

V ar∗
(

1√
T

T∑
t=s

F 2
1 (u|Z∗t, θ†1)

)
= E∗




(
1√
T

T∑
t=s

(
F 2

1 (u|Z∗t, θ†1)− E∗
(
F 2

1 (u|Z∗t, θ†1)
)))2




= E∗




(
1√
T

T∑
t=s

(
F 2

1 (u|Z∗t, θ†1)−
(

1
T

T∑
t=s

F 2
1 (u|Zt, θ†1)

)))2

 + O

(
l√
T

)

=
1
bl

E∗




(
b∑

k=1

l∑

i=1

(
F 2

1 (u|ZIk+i, θ†1)−
(

1
T

T∑
t=s

F 2
1 (u|Zt, θ†1)

)))2

 + O

(
l√
T

)
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=
1
l
E∗




(
l∑

i=1

(
F 2

1 (u|ZI1+i, θ†1)−
(

1
T

T∑
t=s

F 2
1 (u|Zt, θ†1)

)))2

 + O

(
l√
T

)

=
1
T

T−l∑

t=l

l∑

i=−l

(
F 2

1 (u|Zt, θ†1)−
(

1
T

T∑
t=s

F 2
1 (u|Zt, θ†1)

))(
F 2

1 (u|Zt+i, θ†1)−
(

1
T

T∑
t=s

F 2
1 (u|Zt, θ†1)

))

+O

(
l√
T

)

= lim
T→∞

V ar

(
1√
T

T∑
t=s

F 2
1 (u|Zt, θ†1)

)
, Pr−P, (18)

where the last equality follows from Theorem 1 in Andrews (1991), given Assumption A, and given

the growth rate conditions on l. Therefore, given Assumption A, by Theorem 3.5 in Künsch (1989),

(a) holds pointwise in u.

Now, let 1√
T

∑T
t=s

(
F 2

1 (u|Z∗t, θ†1)− F 2
1 (u|Zt, θ†1)

)
= 1√

T

∑T
t=s I∗1,t(u). We show that, conditional

on the sample and for samples except a set of measure zero,

lim sup
T→∞

P ∗


 sup

u,uj∈U
ρ(u,uj)<δ

∣∣∣∣∣
1√
T

T∑
t=s

I∗1,t(u)− 1√
T

T∑
t=s

I∗1,t(uj)

∣∣∣∣∣ > ε


 = 0, as δ → 0,

where ρ(u, uj) is a semi-norm, which will be defined below. Now,

1√
T

T∑
t=s

(
I∗1,t(u)− I∗1,t(uj)

)
=

1√
lb

b∑

k=1

l∑

i=1

((
F 2

1 (u|ZIk+i, θ†1)− F 2
1 (u|Z(k−1)l+i, θ†1)

)

−
(
F 2

1 (uj |ZIk+i, θ†1)− F 2
1 (uj |Z(k−1)l+i, θ†1)

))

=
1√
lb

b∑

k=1

(
ŨNk(u)− ŨNk(uj)

)
+ O

(
l√
T

)
, Pr−P,

where ŨNk(u) = UNk(u) − E∗ (UNk(u)) , and UNk(u) is an iid uniform random variable taking

values F 2
1 (u|Zi+1, θ†1) + ... + F 2

1 (u|Zi+l, θ†1), i = s, s + 1, ...T − l, with probability 1/(T − s− l + 1).

Given that all blocks are independent of one another,

V ar∗
(

1√
lb

b∑

k=1

(
ŨNk(u)− ŨNk(uj)

))
= V ar∗

(
1√
l

(
ŨN1(u)− ŨN1(uj)

))

=
1
l

(
E∗

(
ŨN1(u)− ŨN1(uj)

)2
)

=
1
l
V ar∗

(
ŨN1(u)

)
+

1
l
V ar∗

(
ŨN1(uj)

)
− 2

l
Cov∗

(
ŨN1(u), ŨN1(uj)

)
(19)
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As UN1(u) is an independent sequence, P ∗−stochastic equicontinuity in u ∈ U follows from

DMR (1995, Theorem 1), once we have shown that
∫ 1
0

√
log(N2(U, ε)dε < ∞, where N2(U, ε)

denotes the smallest number n ∈ N, for which there exists (u1, ..., un) such that ρu(u, uj) =(
1
l E

∗
(
ŨN1(u)− ŨN1(uj)

)2
)1/2

< ε, conditional on the sample and for all samples except a

set with probability measure approaching zero. In fact, in the independent case, the L2,β norm in

Theorem 1 of DMR is equivalent to the L2−norm (DMR, pp. 393). By a similar argument as that

used to derive equation (18), the RHS of equation (19) can be written as

l∑

i=−l

γi(u, u) +
l∑

i=−l

γi(uj , uj)− 2
l∑

i=−l

γi(u, uj) + oP ∗(1), Pr−P

≤
∞∑

i=0

|γi(u, u)− γi(uj , uj)|+ 2
∞∑

i=0

|γi(u, uj)− γi(uj , uj)|+ oP ∗(1), Pr−P, (20)

where for i = −l, ..., l,

γi(u, uj) = E
((

F 2
1 (u|Zt, θ†1)− E

(
F 2

1 (u|Zt, θ†1)
))(

F 2
1 (uj |Zt+i, θ†1)− E

(
F 2

1 (uj |Zt+i, θ†1)
)))

.

Given that β−mixing processes are also α−mixing (as βi ≤ αi for all i), by Corollary 14.3 in

Davidson (1994) we see that letting (in Davidson’s notation) p = 2 and r = 4 yields

|γi(u, uj)| ≤ 2(
√

2 + 1)β1/4
i

∥∥∥F 2
1 (u|Zt, θ†1)−E

(
F 2

1 (u|Zt, θ†1)
)∥∥∥

2

∥∥∥F 2
1 (uj |Zt+i, θ†1)− E

(
F 2

1 (uj |Zt+i, θ†1)
)∥∥∥

4

≤ 2(
√

2 + 1)β1/4
i .

Now, we can choose (u1, ..., un) ∈ U in such a way that γi(uj , uj) = 2(
√

2 + 1)β1/4
i jδ, j =

−1/δ, ..., 1/δ. Thus, for any u we can find a uj such that,

∞∑

i=0

|γi(u, u)− γi(uj , uj)|+ 2
∞∑

i=0

|γi(u, uj)− γi(uj , uj)| ≤ 12(
√

2 + 1)
∞∑

i=0

β
1/4
i δ = ε,

if we set δ = δ(ε) = ε

12(
√

2+1)
P∞

i=0 β
1/4
i

. Thus, N2(U, ε) = 24(
√

2 + 1)
∑∞

i=0 β
1/4
i ε−1, and given the

mixing size condition in A(i),
∫ 1
0

√
log(24(

√
2 + 1)

∑∞
i=0 β

1/4
i ε−1)dε < ∞. This completes the proof

of (a). Part (b) can be shown along the same lines.

We now need to establish that the sum of the third and fourth terms in (17) has the same

limiting distribution as −2m
θ†1

(u)′
√

T
(
θ̂1,T − θ†1

)
, conditional on the sample and for all samples

except a subset with measure approaching zero. We can write the sum of the third and fourth
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terms in (17) as,

− 2
T

T∑
t=s

∇θ1F1(u|Z∗t, θ∗1,T )′
(
1{Y ∗

t ≤ u} − F1(u|X∗
t , θ†1)

)√
T

(
θ̂∗1,T − θ̂1,T

)
+ oP ∗(1), Pr−P.

This follows given the mixing and domination conditions in Assumption A. Then, given Lemma 4

and 5 in Goncalves and White (GW: 2002b),
∣∣∣∣∣
1
T

T∑
t=s

((
1{Y ∗

t ≤ u} − F1(u|Z∗t, θ†1)
)
∇θ1F1(u|Z∗t, θ∗1,T )′

)

− 1
T

T∑
t=s

((
1{Yt ≤ u} − F1(u|Zt, θ†1)

)
∇θ1F1(u|Zt, θ1,T )′

)∣∣∣∣∣ = o∗P (1), Pr−P.

Also, by Theorem 2.2 in GW (2002b), there exists an ε > 0 such that,

Pr
(

sup
x∈<p1

∣∣∣P ∗
(√

T
(
θ̂∗1,T − θ̂1,T

)
≤ x

)
− P

(√
T

(
θ̂1,T − θ†1

)
≤ x

)∣∣∣ > ε

)
→ 0.

Thus,
√

T
(
θ̂∗1,T − θ̂1,T

)
has the same asymptotic normal distribution as

√
T

(
θ̂1,T − θ†1

)
, condi-

tional on the sample and for all samples except a set with measure approaching zero. Finally, again

by the same argument used in Lemma A4 and A5 in GW (2002b),

1
T

T∑
t=s

((
1{Y ∗

t ≤ u} − F1(u|Z∗t, θ†1)
)
∇θ1F1(u|Z∗t, θ∗1,T )′

)
= m

θ†1
(u)′ + oP ∗(1), Pr−P,

where m
θ†1

(u)′ = E
(
∇θ1F1(u|Zt, θ†1)

′
(
1{Yt ≤ u} − Fi(u|Xt, θ

†
1)

))
. Needless to say, the sum of the

last two terms in (17) can be treated in the same manner. Thus, the sum of the third, fourth,

seventh and eighth terms on the RHS of (17) has the same limiting distribution as the sum of the

fifth and sixth terms on the RHS of (11). The desired result then follows via application of the

continuous mapping theorem.
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