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Abstract

This paper analyzes conditions under which various single-equation estimators are asymp-
totically normal in a simultaneous equations framework with many weak instruments. In partic-
ular, our paper adds to the many instruments asymptotic normality literature, including papers
by Morimune (1983), Bekker (1994), Angrist and Krueger (1995), Donald and Newey (2001),
Hahn, Hausman, and Kuersteiner (2001), and Stock and Yogo (2003). We consider the case
where instrument weakness is such that rn, the rate of growth of the concentration parameter,
is slower than Kn, the growth rate of the number of instruments, but such that

√
Kn

rn
→ 0 as

n →∞. In this case, the rate of convergence is shown to be rn√
Kn

. We also show that formulae
for the asymptotic variances of various single-equation estimators are different from those ob-
tained under assumptions of stronger instruments, i.e., cases where rn is assumed to grow at the
same rate or at a faster rate than Kn. An interesting finding of this paper is that, for the case
we study here, both the LIML and the Fuller estimators can be shown to be asymptotically
more efficient than the B2SLS estimator not just for the case where the error distributions are
assumed to be Gaussian but for all error distributions that lie within the elliptical family.
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1 Introduction

Amongst Peter C. B. Phillips’s many contributions to econometrics are two papers which explore
the theoretical properties of conventional econometric procedures in models which suffer from a
lack of identification. These papers, Phillips (1989) and Choi and Phillips (1992), were the first to
derive both finite sample and asymptotic distributions of the instrumental variables (IV) estimator
in a simultaneous equations system with identification failure. One of the key findings of Phillips
(1989) and Choi and Phillips (1992) is that, when the model is underidentified, the IV estimator
is inconsistent and converges to a random variable, reflecting the fact that even in the limit the
estimation uncertainty does not go away due to the lack of identification.

Since the work of Phillips and Choi and Phillips, research on econometric models with iden-
tification problems has picked up steam and the area is currently one of the most active ones in
econometrics. In particular, econometricians have become interested in the case where the model is
weakly identified (or nearly unidentified), which, in the context of an IV regression, translates to the
case where the instruments are only weakly correlated with the endogenous explanatory variables.
Indeed, in recent years, it has become popular to model weak instruments using the local-to-zero
asymptotic framework of Staiger and Stock (1994), which takes the coefficients of the instruments
in the first-stage regression to be in a n−

1
2 shrinking neighborhood of the origin, where n denotes

the sample size1. An essential feature of the Staiger-Stock local-to-zero device is that it keeps the
so-called concentration parameter from diverging as the sample size approaches infinity, so that,
under their framework, conventional k-class estimators, such as the two-stage least squares (2SLS)
and the limited information maximum likelihood (LIML) estimator, exhibit asymptotic behaviour
similar to that which occurs in the underidentified case, at least when the number of instruments
is held fixed as the sample size is allowed to approach infinity. More specifically, under the Staiger-
Stock local-to-zero framework, conventional k-estimators can be shown to be inconsistent and, in
fact, converges weakly to nonstandard distributions.

More recently, Chao and Swanson (2002b) argue that there may be benefits to using a large
number of instruments when the available instruments are of poor quality. In particular, they show
that by allowing the number of instruments to increase to infinity with the sample size, the growth
of the concentration parameter may be accelerated sufficiently, so that consistent estimation may
become achievable even when all available instruments are weak in the local-to-zero sense. In this
case, the choice of estimator becomes important, as not all estimators are equally susceptible to
instrument weakness. Along these lines, Chao and Swanson show that single-equation estimators
satisfying certain condtions, such as the LIML estimator and the Jackknife Instrumental Variables
Estimators (JIV E), are consistent even when instrument weakness is such that the rate at which
the concentration parameter grows, say rn, is slower than the rate of expansion of the number of
instruments, say Kn, so long as

√
Kn

rn
→ 0 as n → ∞2. On the other hand, the 2SLS estimator

1Other interesting papers which make use of the local-to-zero setup include Wang and Zivot (1998) and Kleibergen

(2002).
2One version of the JIV E estimator was introduced by Phillips (1977). Other versions of JIV E have since been
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is only consistent if rn approaches infinity faster than Kn. In addition, asymptotic distributions
for various k-class estimators in the case where rn approaches infinity at the same rate as Kn (i.e.,
Kn
rn

→ α for 0 < α < ∞) have now been derived by Stock and Yogo (2003). Overall, the work
of Chao and Swanson (2002b) and Stock and Yogo (2003) can be viewed as adding to the many
instrument asymptotic results of Morimune (1983), Bekker (1994), Angrist and Krueger (1995),
Donald and Newey (2001), and Hahn, Hausman, and Kuersteiner (2001) to a weakly identified IV
regression model with a local-to-zero structure.

The purpose of the present paper is to further extend the results presented in Chao and Swanson
(2002b) and in Stock and Yogo (2003). More precisely, we extend the asymptotic normality results
obtained by Stock and Yogo (2003) for LIML, Fuller’s modified LIML (FLIML, henceforth),
and the Bias-adjusted Two Stage Least Squares (B2SLS) estimators to the case where instrument
weakness is such that the rate of growth of the concentration parameter rn is slower than the
rate of growth of the number of instruments Kn but such that

√
Kn

rn
→ 0 as n → ∞. Thus, we

obtain asymptotic normality results in situations with weaker instruments than has been assumed
by other papers using the many instruments setup. The rate of convergence in our case is shown
to be rn√

Kn
, which is slower than the rate of convergence to normality obtained by other authors,

and which reflects our assumption of weaker instruments. Formulae for the asymptotic variances
of the estimators are also shown to be different from those obtained under assumptions of stronger
instruments, i.e., cases where rn is assumed to grow at the same rate or at a faster rate than Kn.
An additional finding of this paper is that, for the case studied in this paper, both the LIML

and the FLIML estimators can be shown to be asymptotically more efficient than the B2SLS

estimator not just for the case where the error distributions are assumed to be Gaussian but for all
error distributions that lie within the elliptical family.

The rest of the paper proceeds as follows. Section 2 sets up the model and discusses our asump-
tions. Section 3 presents the main results of the paper and briefly comments on the implications.of
these results. Concluding remarks are given in Section 4, and all proofs are gathered in two ap-
pendices. The following notation is used in the remainder of the paper: Tr(·) denotes the trace
of a matrix, “ > 0” denotes positive definiteness when applied to matrices, lim

n→∞
an denotes the

limit inferior of the sequence {an}, and lim
n→∞an denotes the limit superior of the sequence {an}. In

addition, PX = X(X ′X)−1X ′ denotes the matrix which projects orthogonally onto the range space
of X and MX = I − PX .

2 Model and Assumptions

Consider the following two-equation simultaneous equations model (SEM)

y1n = y2nβ + Xnγ + un, (1)

y2n = Znπ + Xnϕ + vn, (2)

introduced and studied independently by Angrist, Imbens, and Krueger (1999) and Blomquist and Dahlberg (1999).
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where y1n and y2n are n×1 vectors of observations on the 2 endogenous variables of the system, Xn

is an n×J matrix of observations on the J exogenous variables included in the structural equation
(1), Zn is an n×Kn matrix of observations on the Kn instrumental variables, or exogenous variables
excluded from the structural equation (1), and un and vn are n×1 vectors of random disturbances3.
Further, let ηi = (ui, vi)′ where ui and vi are, respectively, the ith component of the random vectors
un and vn, respectively. The following assumptions are used in the sequel.

Assumption 1: π = πn = cn
bn

for some sequence of positive real numbers {bn} , nondecreasing in
n, and for some sequence of nonrandom, Kn × 1 parameter matrices {cn} .

Assumption 2: Let
{
Zi,n : i = 1, ..., n; n ≥ 1

}
be a triangular array of RKn+J -valued random

variables, where Zi,n = (Z ′i,n, X ′
i,n)′ with Z ′i,n and X ′

i,n denoting the ith row of the matrices Zn

and Xn, respectively. Moreover, suppose that:

(a) Kn →∞ as n →∞ such that Kn
n → α for some constant α satisfying 0 ≤ α < 1.

(b) Let m1n ↗∞ as n →∞, and suppose that there exist constants Dλ and Dλ, with 0 < Dλ ≤
Dλ < ∞, such that

Dλ ≤ lim
n→∞

λmin

(
Z
′
nZn

m1n

)
a.s. (3)

and

lim
n→∞λmax

(
Z
′
nZn

m1n

)
≤ Dλ a.s., (4)

where Zn = (Zn Xn).

(c) There exist a sequence of positive real numbers {m2n} , nondecreasing in n, and constants
Dc and Dc, with 0 < Dc ≤ Dc < ∞, such that

Dc ≤ lim
n→∞

(
c′ncn

m2n

)
(5)

and

lim
n→∞

(
c′ncn

m2n

)
≤ Dc. (6)

Assumption 3: Zn and ηi are independent for all i and n.

3Although we only study the case with one endogenous explanatory variable, generalization to the case with an

arbitrary number of endogenous explanatory variables is straightforward. We do not pursue this generlization here

because it complicates notations but does not change the qualitative features of our results.
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Assumption 4:

(a) ηi ≡ i.i.d.(0, Σ), where Σ > 0, and partition Σ conformably with (ui, vi)′ as Σ =
(

σuu σvu

σvu σvv

)
.

(b) There exists some constant Dη, with 0 < Dη < ∞, such that max
{
E

(
u8

i

)
, E

(
v8
i

)} ≤ Dη.

(c) E
(
u3

i

)
= E

(
v3
i

)
= E

(
u2

i vi

)
= E

(
uiv

2
i

)
= 0.

Assumption 5: Define the ratio rn = m1nm2n
b2n

. Suppose that, as n →∞, rn →∞ such that rn
Kn

→ 0

but
√

Kn

rn
→ 0.

Remark 2.1: (i) Assumptions 1 and 2 are the same as corresponding assumptions that were made
in Chao and Swanson (2002a). As explained in that paper, these assumptions imply that there
exists a positive integer N such that, for all n ≥ N , 0 < DλDc ≤ π′nZ′nMXnZnπn

rn
≤ DλDc < ∞ with

probability one, so that the concentration parameter π′nZ ′nMXnZnπn grows at the rate rn = m1nm2n
b2n

.
(ii) Assumption 4(c) impose a certain symmetry on the distribution of the disturbances of the
simultaneous equations model given by equations (1) and (2). Similar conditions have also been
assumed in the paper by Koenker and Machado (1999), which examines the asymptotic properties
of a GMM estimator as the number of moment conditions goes to infinity with the sample size.
Note also that our Assumption 4 is satisfied by all distributions within the elliptical family which
have finite eighth moments.
(iii) Assumption 6 focuses attention on the case where the concentration parameter grows at a
slower rate than the number of instruments Kn but at a faster rate than

√
Kn. To the best

of our knowledge, this is a case for which the asymptotic normality of various IV estimators,
such as LIML, FLIML, and B2SLS, has not been established previously. In particular, earlier
papers by Morimune (1983) and Bekker (1994) studied the case where rn ∼ n, i.e., the case where
concentration parameter diverges at the same rate as the sample size, so that those papers consider
situations where the concentration parameter either grows at the same rate as Kn (if Kn

n → α

for some constant α such that 0 < α < 1) or at a faster rate than Kn (if Kn
n → 0). In addition,

as part of a larger paper on choosing the number of instruments using (asymptotic) mean-square
error formulae of various IV estimators, Donald and Newey (2001) also present a proof of the
asymptotic normality of LIML in a many-instruments setup when rn ∼ n. Finally, a recent
paper by Stock and Yogo (2003), which derives the limiting distributions of LIML, FLIML, and
B2SLS within a many weak instruments framework, also considers a case different from ours, as
these authors assume that rn and Kn grow at the same rate. Since the concentration parameter is
a natural measure of instrument weakness, as pointed out by Phillips (1983), Rothenberg (1983),
Stock and Yogo (2001), and others, our analysis here can be viewed as considering cases where
the instruments are weaker than that investigated by other authors using a many-instruments
asymptotic framework. As we will show in the next section of the paper, the case we study here
is also interesting because the weaker instruments lead to rate of convergence and asymptotic
variances that are different vis-à-vis that obtained by assuming faster growth of the concentration
parameter relative to Kn.
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(iv) Note that our assumptions involve a tradeoff of conditions relative to Donald and Newey (2001)
and Stock and Yogo (2003). In particular, we do not make i.i.d. assumptions on the triangular array
of exogenous variables Zi,n. Thus, our assumptions on the exogenous variables are weaker than
those made in Donald and Newey (2001) and Stock and Yogo (2003). On the other hand, we make
more stringent assumptions on the moments of the error distributions. In addition to the symmetry
condition discussed in Remark 2.1(ii) above, our Assumption 4(b) require the error distributions to
possess finite eighth moments, whereas Donald and Newey (2001) and Stock and Yogo (2003) only
assume finite fourth moments. Finally, our Assumption 2(a) impose a less stringent condition on
the rate of increase of the number of instruments relative to Donald and Newey (2001) and Stock
and Yogo (2003). While Donald and Newey (2001) require that Kn

n → 0 as n →∞ in deriving their

asymptotic normality result for LIML and while Stock and Yogo (2003) require that K2
n

n → 0, we
require only that Kn

n → α, with 0 ≤ α < 1, so that the results of this paper will hold with Kn

growing either at the same rate as n or at a slower rate relative to n.

3 Asymptotic Normality of Single-Equation Estimators

We focus our analysis on the following three estimators:

1. Limited Infomation Maximum Likelihood (LIML) Estimator

β̂LIML,n =
(
y′2nMXny2n − λ̂LIML,ny′2nMZn

y2n

)−1 (
y′2nMXny1n − λ̂LIML,ny′2nMZn

y1n

)
,
(7)

where λ̂LIML,n is the smallest root of the determinantal equation:

det
{(

y′1nMXny1n y′1nMXny2n

y′2nMXny1n y′2nMXny2n

)
− λn

(
y′1nMZn

y1n y′1nMZn
y2n

y′2nMZn
y1n y′2nMZn

y2n

)}
= 0 (8)

2. Fuller’s Modified LIML (FLIML) Estimator:

β̂FLIML,n =
(
y′2nMXny2n − k̂FLIML,ny′2nMZn

y2n

)−1 (
y′2nMXny1n − k̂FLIML,ny′2nMZn

y1n

)
,

(9)

where k̂FLIML,n = λ̂LIML,n − a
n−Kn−J for some positive constant a.

3. Bias-Corrected Two-Stage Least Squares (B2SLS) Estimator:

β̂FLIML,n =
(

y′2nMXny2n −
(

n

n−Kn + 2

)
y′2nMZn

y2n

)−1

×
(

y′2nMXny1n −
(

n

n−Kn + 2

)
y′2nMZn

y1n

)
. (10)

5



All three of these estimators are, of course, special cases of the k-class estimator defined by

β̂k,n =
(
y′2nMXny2n − ky′2nMZn

y2n

)−1 (
y′2nMXny1n − ky′2nMZn

y1n

)
. (11)

These three estimators are three of the most well-known k-class estimators, and the asymptotic
properties of one or more of these estimators have been studied previously in the many instruments
context by Morimune (1983), Bekker (1994), Donald and Newey (2001) and Stock and Yogo (2003).
However, as discussed above, the purpose of this paper is to derive the asymptotic distributions of
these estimators in the case where the instruments are weaker than that assumed in these earlier
papers.

The following theorems present the main asymptotic results of this paper

Theorem 3.1: (LIML)

Let β̂LIML,n be as defined in equation (7) above. Then, under assumptions 1-5,
(

Ψn

σL,n

)(
β̂LIML,n − β0

)
d→ N (0, 1) as n →∞,

where Ψn = b−2
n c′nZ ′nMXnZncn, where

σ2
L,n =

[
E

(
u2

jv
2
j

)− σ2
uv

] n∑

j=1

E
(
g2
jj,n

)
+

σ2
uv

σ2
uu

[
E

(
u4

j

)− σ2
uu

] n∑

j=1

E
(
g2
jj,n

)

−2
σuv

σuu

[
E

(
u3

jvj

)− σuuσuv

] n∑

j=1

E
(
g2
jj,n

)

+2
(
σuuσvv − σ2

uv

) ∑

1≤ i < j ≤ n

E
(
g2
ij,n

)
, (12)

and where gjj,n and gij,n denote, respectively, the jth diagonal element and the (i, j)th element of

the matrix Gn = PZn
− PXn −

(
Kn

n−Kn−J

)
MZn

.

Theorem 3.2: (FLIML)

Let β̂FLIML,n be as defined in equation (9) above. Then, under assumptions 1-5,
(

Ψn

σL,n

)(
β̂FLIML,n − β0

)
d→ N (0, 1) as n →∞,

where Ψn and σL,n are as defined in Theorem 3.1 above.

Theorem 3.3: (B2SLS)

Let β̂B2SLS,n be as defined in equation (10) above. Then, under assumptions 1-5,
(

Ψn

σB,n

)(
β̂B2SLS,n − β0

)
d→ N (0, 1) as n →∞,

6



where Ψn is as defined in Theorem 3.1 and where

σ2
B,n =

[
E

(
u2

jv
2
j

)− σ2
uv

] n∑

j=1

E
(
g2
jj,n

)
+ 2

(
σuuσvv + σ2

uv

) ∑

1≤ i < j ≤ n

E
(
g2
ij,n

)
, (13)

with gjj,n and gij,n is as defined in Theorem 3.1.

Remark 3.2: (i) Note that Lemma shows that σ2
L,n and σ2

B,n grow at the same rate as Kn as
n → ∞. If we make the additional assumptions that, as n → ∞, Ψn = r−1

n Ψn
a.s.→ Ψ, σ2

L,n → σ2
L,

and σ2
B,n → σ2

B for positive constant Ψ, σ2
L, and σ2

B; then the asymptotic normality results given
in Theorems 3.1-3.3 can be restated as

rn√
Kn

(
β̂LIML,n − β0

)
d→ N

(
0, σ2

LΨ−2
)

,

rn√
Kn

(
β̂FLIML,n − β0

)
d→ N

(
0, σ2

LΨ−2
)

,

rn√
Kn

(
β̂B2SLS,n − β0

)
d→ N

(
0, σ2

BΨ−2
)

.

Interestingly, under Assumption 6, β̂LIML,n, β̂FLIML,n, and β̂B2SLS,n are all consistent, but the rate
of convergence is rn√

Kn
, which depends both on the rate of growth of the concentration parameter rn

and on the rate of increase of the number of instruments. Note further that under Assumptions 2(a)
and 6, rn√

Kn
= o (

√
n), so this rae of convergence is slower than the usual

√
n rate of convergence.

This slower rate of convergence, in turn, reflects the fact that here we are studying the case where
the instruments are weaker than that under the conventional strong identification case, where the
concentration parameter grows at the rate n.
(ii) It is of interest to briefly compare the results we obtained here under Assumption 5 with results
which occur in cases where rn is assumed to grow at the same rate or at a faster rate than Kn. Such
a comparison illuminates the differences between our results and those obtained by other authors
employing a many-instruments setup.

To begin, note that, in general, it can be shown that the three estimators studied here have the
generic (asymptotic) representation

Ψn

σ·,n

(
β̂ − β0

)
=

f ′nun + d1v
′
nGnun + d2u

′
nGnun

σ·,n
+ op (1) , (14)

where

d2 =

{
−σuv

σuu
for β̂LIML,n, β̂FLIML,n

0 for β̂B2SLS,n

,

where

σ2
·,n =

{
σ2

L,n + σuuE (f ′nfn) for β̂LIML,n, β̂FLIML,n

σ2
B,n + σuuE (f ′nfn) for β̂B2SLS,n

,

with σ2
L,n and σ2

B,n as defined in expressions (12) and (13) above, and where Ψn = c′nZ′nMXnZncn

b2nrn
,

fn = b−1
n MXnZncn, and d1 = 1 for all three estimators. Under Assumption 5, f ′nun

σ·,n = op(1), so that

7



the asymptotic distributions of the estimators depend only on the bilinear part of (14), i.e.,

Ψn

σ·,n

(
β̂ − β0

)
=

d1v
′
nGnun + d2u

′
nGnun

σ·,n
+ op (1) .

It is of interest to first compare our case with the case studied recently by Stock and Yogo
(2003), which assumes that rn grows at the same rate as Kn. In the Stock-Yogo case, the asymptotic
distributions of LIML, FLIML, and B2SLS depend on both the linear part, f ′nun

σ·,n , and the bilinear

part d1v′nGnun+d2u′nGnun

σ·,n . Thus, the general form of the asymptotic variance for these estimators in
the Stock-Yogo case is different from that which we obtained in Theorems 3.1-3.3 and in Remark
3.2(i) above, as the asymptotic variance in their case also depends on contribution from the linear
component. In addition, Stock and Yogo (2003) find the rate of convergence in their case to be√

Kn. This is the same as our rate of convergence of rn√
Kn

in the case where rn ∼ Kn. However, for
rn = o (Kn), our rate of convergence is slower than theirs, reflecting the fact that we treat a case
with weaker instruments.

It should be noted that earlier papers by Morimune (1983) and Bekker (1994) have also examined
the case where the concentration parameter grows at the same rate as the number of instruments,
but those papers differ from Stock and Yogo (2003) and also from this paper in that they assume
rn and Kn to grow at the same rate as the sample size n. Hence, the situation studied in those
papers might be better characterized as one with strong, as opposed to weak, instruments.

Finally, in the case where rn grows faster than Kn,

d1v
′
nGnun + d2u

′
nGnun

σ·,n
= op(1),

and the asymptotic distributions depend only on the linear part, f ′nun

σ·,n and not on the bilinear
component at all. Thus, the general form of the asymptotic variance of LIML, FLIML, and
B2SLS in this case is also qualitative different from what we derived under Assumption 5. The
case where rn grows faster than Kn is one which has been well studied in the literature. In particular,
and as mentioned above, Donald and Newey (2001) derive asymptotic normality results for LIML

under the assumptions that rn ∼ n and Kn
n → 0, as n → ∞. Note also that the case where rn

grows faster than Kn includes the conventional case with full identification and
√

n convergence
of estimators to asymptotic normal distributions, since the conventional setup can be obtained by
assuming rn ∼ n and taking Kn to be fixed for all n.
(iii) Note further that Theorem 3.1-3.3 show that LIML and FLIML are asymptotically equiv-
alent. However, the B2SLS estimator is not asymptotically equivalent to LIML or FLIML.
Indeed, the following result shows that if the distribution of the disturbances of the simultaneous
equations system (1)-(2) are taken to belong to the family of elliptically distributions with finite
eighth moments, then LIML and FLIML can be shown to be asymptotically more efficient than
B2SLS.

Theorem 3.4: Suppose that Assumptions 1-5 hold. Suppose, in addition, that ηi ∼ E2 (0, Ξ),
where Ξ = τΣ for some positive constant τ and where E2 (0, Ξ) is as defined in Definition A1 of
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Appendix A with m = 2. Then, there exists a positive integer N such that for all n ≥ N ,

σ2
B,n > σ2

L,n. (15)

Note that when the error distribution is Gaussian, LIML and FLIML have interpretations as
maximum likelihood (ML) estimators, so one would expect LIML and FLIML to be more effi-
cient than B2SLS within a many-weak-instruments asymptotic framework. However, our result
shows that even when the errors are non-Gaussian but lie within the elliptical family, in which
case LIML and FLIML do not have strict interpretations as ML estimators, these estimators are
still asymptotically more efficient than B2SLS within the local-to-zero, many instruments frame-
work studied in this paper. This result is consistent with the asymptotic mean square error results
obtained by Donald and Newey (2001) for these estimators under the assumption of i.i.d. instru-
ments. With regard to the relative efficiency of LIML vis-à-vis the B2SLS estimator, our results
might be viewed as extending the work of Donald and Newey (2001) both to the case with weaker
instruments and to the case where the instruments are possibly not i.i.d.

(iv) Another well-known k-class estimator is the (unadjusted) Two-Stage Least Squares (2SLS)
estimator. However, we did not derive the asymptotic distribution of this estimator here because,
as shown in Chao and Swanson (2002b), the 2SLS estimator is inconsistent under Assumption 5.
More specifically, part (a) of Theorem 3.4 of Chao and Swanson (2002b) shows that, when rn

Kn
→ 0

as n →∞,
β̂2SLS,n

p→ β0 +
σvu

σvv
.

Note further that, as shown in Chao and Swanson (2002a), β0 + σvu
σvv

is also the probability limit of
the Ordinary Least Squares (OLS) estimator in a local-to-zero framework, so that the 2SLS and
the OLS estimators have the same asymptotic bias in the case where the concentration parameter
grows at a slower rate than the number of instruments. Hence, under Assumption 5, both 2SLS

and OLS are asymptotically deficient relative to the three estimators studied in this paper.

4 Concluding Remarks

This paper derives the limiting distributions of the LIML, FLIML, and B2SLS estimators in a
many weak instruments setup where the concentration parameter is assumed to grow at a slower
rate than the number of instruments Kn but at a faster rate than

√
Kn. Thus, we have obtained

asymptotic normality results for these estimators in situations with weaker instruments than in
previous papers that use the many instruments asymptotic framework. In our context, both the
rate of convergence and the form of the variance of the limiting distributions are different than for
cases where the instruments are stronger, i.e., cases where the instruments grow at the same rate
or at a faster rate than Kn. In addition, in constrast to the conventional full-identification case
where all three estimators are asymptotically equivalent, we find that the B2SLS estimator is not
asymptotically equivalent to LIML and FLIML under the weak instruments scenario studied in

9



this paper. In particular, we show that LIML and FLIML are asymptotically more efficient than
B2SLS if the distribution of the distrubances of the underlying instrumental variables regression
model is assumed to belong to the elliptical family.

5 Appendix

Appendix A

In this appendix, we collect some definitions and preliminary lemmas, which we will use to
prove our main results.

Definition A1: The m × 1 random vector X is said to have an elliptical distribution with
parameters µ (m× 1) and Ξ (m×m) if its density function is of the form

km (det Ξ)−
1
2 h

(
(x− µ)′ Ξ−1 (x− µ)

)
(16)

for some normalizing constant km and some function h (·), where Ξ is positive definite. (Note: A
similar definition appears in Muirhead, 1982, page 34.)

Lemma A2:

Let

Gn = PZn
− PXn −

(
Kn

n−Kn − J

)
MZn

(17)

and let gjj,n and gij,n denote, respective, the jth diagonal element and the (i, j)th off-diagonal
element of the matrix Gn. Then, under Assumptions 2(a) and 2(b), the following statements hold
as n →∞

(a) Tr(G4
n) = Oa.s.(Kn)

(b)
n∑

i=1

n∑
j=1

g4
ij,n = Oa.s.(Kn),

(c)
∑

1≤ i ≤ n

[
∑

1≤ j < k ≤ n

g2
ij,ng2

ik,n

]
= Oa.s.(Kn),

(d)
∑

1≤ i < j ≤ n
g2
ii,ng2

ij,n = Oa.s.(Kn),

(e)
∑

1≤ i < j ≤ n
g2
jj,ng2

ij,n = Oa.s.(Kn),

(f)
∑

1≤ i < j < k ≤ n

g2
ij,ng2

ik,n = Oa.s.(Kn),

10



(g)
∑

1≤ i < j < k ≤ n

g2
ij,ng2

jk,n = Oa.s.(Kn),

(h)
∑

1≤ i < j < k ≤ n

g2
ik,ng2

jk,n = Oa.s.(Kn),

(i) Tr(G2
n) = Oa.s.(Kn),

(j)
n∑

j=1
g2
jj,n = Oa.s.(Kn),

(k)
∑

1≤ i < j ≤ n
g2
ij,n = Oa.s.(Kn).

Proof of Lemma A2:

To show part (a), note that, by direct calculation,

G4
n = PZn

− PXn +
(

Kn

n−Kn − J

)4

MZn
,

where PZn
and PXn , and thus G4

n, are well-defined with probability one for n sufficiently large given
Assumption 2(b). It follows that, with probability one for n sufficiently large,

1
Kn

Tr
(
G4

n

)
=

1
Kn

[
Tr

(
PZn

− PXn

)
+

(
Kn

n−Kn − J

)4

Tr
(
MZn

)
]

= 1 +
K3

n

(n−Kn − J)3
,

so that Tr
(
G4

n

)
= Oa.s.(Kn) as required.

To show (b), note that, for n sufficiently large with probability one, we have

Tr(G4
n) =

∑

1≤ i ≤ n


 ∑

1≤ j ≤ n

g2
ij,n




2

+
∑

1≤ i < j ≤ n


 ∑

1≤ k ≤ n

gki,ngkj,n




2

+
∑

1≤ j < i ≤ n


 ∑

1≤ k ≤ n

gki,ngkj,n




2

≥
∑

1≤ i ≤ n


 ∑

1≤ j ≤ n

g2
ij,n




2

.

≥
n∑

i=1

n∑

j=1

g4
ij,n,

where gij,n denotes the (i, j)th element of Gn. It follows from the result given in part (a) that

Oa.s. (Kn) = Tr(G4
n) ≥

n∑

i=1

n∑

j=1

g4
ij,n.

11



Similarly, for part (c), we have, for n sufficiently large with probability one, that

Tr(G4
n) ≥

∑

1≤ i ≤ n


 ∑

1≤ j ≤ n

g2
ij,n




2

≥ 2
∑

1≤ i ≤ n


 ∑

1≤ j < k ≤ n

g2
ij,ng2

ik,n


 ,

so again the result given in part (a) implies that

Oa.s. (Kn) =
1
2
Tr(G4

n) ≥
∑

1≤ i ≤ n


 ∑

1≤ j < k ≤ n

g2
ij,ng2

ik,n


 .

To show parts (d)-(h), we note that part (c) of this lemma implies that

Oa.s.(Kn) =
∑

1≤ i ≤ n


 ∑

1≤ j < k ≤ n

g2
ij,ng2

ik,n




= 2





∑

1≤ i < j < k ≤ n

g2
ij,ng2

ik,n +
∑

1≤ i < j ≤ n

g2
ii,ng2

ij,n +
∑

1≤ i < j < k ≤ n

g2
ij,ng2

jk,n

+
∑

1≤ i < j ≤ n

g2
jj,ng2

ij,n +
∑

1≤ i < j < k ≤ n

g2
ik,ng2

jk,n



 (18)

The results stated in parts (d)-(h) then follow directly from the expression on the right-hand side
of the last equality in (18) above since each term of the sum which comprises that expression is
non-negative.

The proofs for parts (i)-(k) are very similar to the proofs for parts (a)-(h) by noting that

G2
n = PZn

− PXn +
(

Kn

n−Kn − J

)2

MZn
.

Hence, to avoid redundancy, we omit these proofs. ¤

Lemma A3:

Let Gn and gjj,n and gij,n be as defined in Lemma A2. Then, under Assumptions 2(a) and 2(b)

as n →∞,
∑

1≤ i < j ≤ n

(
E

(
g2
ij,n

))2
= O(Kn) and

∑
1≤ i < j < k ≤ n

E
(
g2
ij,n

)
E

(
g2
ik,n

)
= O(Kn).
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Proof of Lemma A3: To proceed, note that part (a) of Lemma A2 implies that

O (Kn) = E
[
Tr

(
G4

n

)]

≥ E


 ∑

1≤ i ≤ n


 ∑

1≤ j ≤ n

g2
ij,n




2


≥
n∑

i=1




n∑

j=1

E
(
g2
ij,n

)



2

≥
∑

1≤ i < j ≤ n

(
E

(
g2
ij,n

))2 +
∑

1≤ i < j < k ≤ n

E
(
g2
ij,n

)
E

(
g2
ik,n

)
, (19)

where the second inequality above follows from application of the Jensen’s inequality. The desired

result follows immediately from (19) by noting that both
∑

1≤ i < j ≤ n

(
E

(
g2
ij,n

))2
and

∑
1≤ i < j < k ≤ n

E
(
g2
ij,n

)
E

(
g2
ik,n

)
are non-negative, so they cannot be of an order greater than Kn.

Lemma A4: Define the bilinear form

Wn = d1v
′
nGnun + d2u

′
nGnun, (20)

where d1and d2 are constants and Gn is as defined in (17) above. Let σ2
Wn

denote the variance of
Wn. Suppose Assumptions 2-4 hold, then

(a) σ2
Wn

=
n∑

j=1
d2

1E
(
g2
jj,n

) [
E

(
u2

jv
2
j

)
− σ2

uv

]
+

n∑
j=1

d2
2E

(
g2
jj,n

) [
E

(
u4

j

)
− σ2

uu

]

+ 2

{
n∑

j=1
d1d2E

(
g2
jj,n

) [
E

(
u3

jvj

)
− σuuσuv

]}
+ 2

{
∑

1≤ i < j ≤ n
d2

1E
(
g2
ij,n

) (
σuuσvv + σ2

uv

)

+ 2
∑

1≤ i < j ≤ n
d2

2E
(
g2
ij,n

)
σ2

uu + 4
∑

1≤ i < j ≤ n
d1d2E

(
g2
ij,n

)
σuuσuv

}

(b) σ2
Wn

³ Kn,

where gjj,n and gij,n denote, respective, the jth diagonal element and the (i, j)th off-diagonal element
of the matrix Gn and where, for two sequences xn and yn, the notation “xn ³ yn” means that xn

is of the same order as yn, i.e., xn ³ yn if and only if xn = O (yn) and yn = O (xn).

Proof of Lemma A4:
To show part (a), note that we can write Wn =

n∑
j=1

Wjn, where

Wjn = d1gjj,n (ujvj − σuv) +
∑

1≤ i < j

d1gij,n (viuj + vjui)

+d2gjj,n

(
u2

j − σuu

)
+ 2

∑

1≤ i < j

d2gij,nuiuj (21)
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and where expression (21) has made use of the fact that Gn is a symmetric matrix. Moreover,
given that ηi = (ui, vi) is an independent sequence by Assumption 4(a), it is easy to see that

σ2
Wn

=
n∑

j=1
E

(
W 2

jn

)
. It follows by straightforward calculation that

σ2
Wn

=
n∑

j=1

d2
1E

(
g2
jj,n

) [
E

(
u2

jv
2
j

)− σ2
uv

]
+

n∑

j=1

d2
2E

(
g2
jj,n

) [
E

(
u4

j

)− σ2
uu

]

+2





n∑

j=1

d1d2E
(
g2
jj,n

) [
E

(
u3

jvj

)− σuuσuv

]




+2





∑

1≤ i < j ≤ n

d2
1E

(
g2
ij,n

) (
σuuσvv + σ2

uv

)
+ 2

∑

1≤ i < j ≤ n

d2
2E

(
g2
ij,n

)
σ2

uu

+ 4
∑

1≤ i < j ≤ n

d1d2E
(
g2
ij,n

)
σuuσuv



 (22)

as required.
To show part (b), we first show that σ2

Wn
is at most of order Kn. To show this, note that

σ2
Wn

=





n∑

j=1

d2
1E

(
g2
jj,n

) [
E

(
u2

jv
2
j

)− σ2
uv

]
+

n∑

j=1

d2
2E

(
g2
jj,n

) [
E

(
u4

j

)− σ2
uu

]




2
n∑

j=1

d1d2E
(
g2
jj,n

) [
E

(
u3

jvj

)− σuuσuv

]

+2





∑

1≤ i < j ≤ n

d2
1E

(
g2
ij,n

) (
σuuσvv + σ2

uv

)
+ 2

∑

1≤ i < j ≤ n

d2
2E

(
g2
ij,n

)
σ2

uu

+ 4
∑

1≤ i < j ≤ n

d1d2E
(
g2
ij,n

)
σuuσuv





≤ 2
(
d2

1 + d2
2 + 2d1d2

)
D

1
2
η

n∑

j=1

E
(
g2
jj,n

)

+4
(
d2

1 + 2d2
2 + 4d1d2

)
D

1
2
η

∑

1≤ i < j ≤ n

E
(
g2
ij,n

)

= O (Kn) , (23)

where the last equality is implied by parts (j) and (k) of Lemma A2.
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Next, we show that σ2
Wn

is not of an order lower than Kn. To proceed, note that

σ2
Wn

= $2
1




n∑

j=1

E
[
g2
jj,n

]

 + 2$2

2


 ∑

1≤ i < j ≤ n

E
[
g2
ij,n

]



≥ $2
∗




n∑

i=1

n∑

j=1

E
[
g2
ij,n

]



= $2
∗E

[
Tr

(
G2

n

)]

= $2
∗

(
Kn +

K2
n

n−Kn − J

)
, (24)

where $2
1 = E

(
d2 [ujvj − σuv] + d3

[
u2

j − σuu

])2
, $2

2 = E (d2 [ujvi + uivj ] + d3uiuj)
2, and $2∗ =

min
{
$2

1, $
2
2

}
and where the last equality follows from direct calculation. The desired result follows

immediately from expressions (23) and (24) given Assumption 2(a). ¤

Lemma A5: Let Gn be as defined in (17) above and let gjj,n and gij,n denote, respective, the jth

diagonal element and the (i, j)th off-diagonal element of the matrix Gn. Then, under Assumption
2-4 as n →∞,

1
K2

n

∑

1≤ i < j < k < l ≤ n

E (gik,ngjk,ngil,ngjl,n) = o (1) (25)

Proof of Lemma A5:
We will prove this lemma in two steps. First, we will show that

1
K2

n

∑

1≤ i < j < k < l ≤ n

[gik,ngjk,ngil,ngjl,n + gij,ngjk,ngil,ngkl,n + gij,ngik,ngjl,ngkl,n]

= oa.s (1) . (26)

We will then use (26) to show the desired result (25). To proceed, first define

Gn = Gn − dg (Gn) ,

where dg (Gn) = diag (g11,n, ...., gnn,n), i.e., dg (Gn) is an n × n diagonal matrix whose diagonal
elements are the same as that of Gn. Now, note that, by direct calculation, we obtain

Tr(G4
n) =

∑

1≤ i ≤ n


∑

j 6=i

g2
ij,n




2

+ 2
∑

1≤ i < j ≤ n


 ∑

k 6=i,k 6=j

gki,ngkj,n




2

= 2
∑

1≤ i < j ≤ n

g4
ij,n

+4
∑

1≤ i < j < k ≤ n

[
g2
ik,ng2

jk,n + g2
ij,ng2

ik,n + g2
ij,ng2

jk,n

]

+ 8
∑

1≤ i < j < k < l ≤ n

[gik,ngjk,ngil,ngjl,n + gij,ngjk,ngil,ngkl,n

+ gij,ngik,ngjl,ngkl,n.] , (27)
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where PZn
and PXn and, thus, Gn and G

4
n are each well-defined with probability one for n sufficiently

large in light of Assumption 2(b). Now, let λ1,n ≤ λ2,n ≤ · · · ≤ λn,n be the eigevalues of the matrix
Gn, and note that

Tr(G4
n) =

n∑

i=1

λ4
i,n. (28)

Next, observe that part (b) and parts (f)-(h) of Lemma A2 imply that

1
K2

n

∑

1≤ j < k ≤ n

g4
jk,n = Oa.s.

(
K−1

n

)
, (29)

1
K2

n

∑

1≤ i < j < k ≤ n

[
g2
ik,ng2

jk,n + g2
ij,ng2

jk,n + g2
ij,ng2

ik,n

]
= Oa.s.

(
K−1

n

)
(30)

It follows from equations (27)-(30) that showing that

1
K2

n

∑

1≤ i < j < k < l ≤ n

[gik,ngjk,ngil,ngjl,n + gij,ngjk,ngil,ngkl,n + gij,ngik,ngjl,ngkl,n]

= oa.s. (1) , as n →∞,

is equivalent to showing that

1
K2

n

n∑

i=1

λ4
i,n = oa.s. (1) as n →∞. (31)

To show (31), we first note that, for each n,

λ4
n,n ≤

n∑

i=1

λ4
i,n ≤ λ2

n,n

(
n∑

i=1

λ2
i,n

)
(32)
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and

1
Kn

n∑

i=1

λ2
i,n =

1
Kn

Tr
(
G

2
n

)

≤ 1
Kn

n∑

i=1

n∑

j=1

g2
ij,n

=
1

Kn
Tr

(
G2

n − dg (Gn) Gn −Gndg (Gn) + [dg (Gn)]2
)

=
1

Kn
Tr

(
G2

n − [dg (Gn)]2
)

=
1

Kn

{
Tr

[
PZn

− PXn +
(

Kn

n−Kn − J

)2

MZn

]

+
n∑

j=1

[(
n− J

n−Kn − J

)
pZ

jj,n − pX
jj,n −

(
Kn

n−Kn − J

)]2




≤ 1
Kn

{
Tr

[
PZn

− PXn +
(

Kn

n−Kn − J

)2

MZn

]

+
(

n− J

n−Kn − J

)2 n∑

j=1

(
pZ

jj.n

)2





≤ 1
Kn

{
Kn +

K2
n

n−Kn − J
+

(
n− J

n−Kn − J

)2

Kn

}

= 1 +
(

n− J

n−Kn − J

)2

+
Kn

n−Kn − J
(33)

where pZ
jj,n and pX

jj,n are the jth diagonal elements of the projection matrices PZn
and PXn . It

follows from Assumption 2(a) that 1
Kn

n∑
i=1

λ2
i,n = Oa.s. (1). Hence, to show (31), we need to show

that

1
Kn

λ2
n,n = oa.s. (1) as n →∞. (34)

To show (34), we proceed as follows: let xn be any n × 1 vector such that ‖xn‖ = 1 and let xj,n

denote the jth element of xn. Now, consider the quadratic form

x′nG
2
nxn = x′nG2

nxn − x′n [dg (Gn) Gn]xn

−x′n [Gndg (Gn)]xn + x′n [dg (Gn)]2 xn

≤ x′nG2
nxn +

∣∣x′n [dg (Gn) Gn] xn

∣∣
+

∣∣x′n [Gndg (Gn)]xn

∣∣ + x′n [dg (Gn)]2 xn (35)

Note that, for n sufficiently large so that PZn
and PXn are well-defined with probability one, we
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have that

x′n [dg (Gn)]2 xn =
n∑

j=1

[(
n− J

n−Kn − J

)
pZ

jj,n − pX
jj,n −

(
Kn

n−Kn − J

)]2

x2
j,n

≤
(

n− J

n−Kn − J

)2 n∑

i=1

x2
j,n

=
(

n− J

n−Kn − J

)2

x′nxn

=
(

n− J

n−Kn − J

)2

, (36)

where inequality above follows from the fact that 0 ≤ pZ
jj,n ≤ 1, 0 ≤ pX

jj,n ≤ 1, and
(

Kn
n−Kn−J

)
> 0,

and note that

x′nG2
nxn ≤ x′nPZn

xn + x′nPXnxn +
(

Kn

n−Kn − J

)2

x′nMZn
xn

≤ 2 +
(

Kn

n−Kn − J

)2

, (37)

where the inequality follows from the Rayleigh quotient by making use of the fact that λmax

(
PZn

)
=

λmax (PXn) = λmax

(
MZn

)
= 1 since PZn

, PXn , and MZn
are idempotent matrices. (See pages 203-

204 of Magnus and Neudecker, 1988, for a statement of the Rayleigh quotient.) It then follows from
the Cauchy-Schwarz inequality that

∣∣x′n [dg (Gn) Gn] xn

∣∣ ≤
√

x′n [dg (Gn)]2 xn

√
x′nG2

nxn

=
(

n− J

n−Kn − J

)√
2 +

(
Kn

n−Kn − J

)2

. (38)

Define

∆n =
(

n− J

n−Kn − J

)2

+ 2 +
(

Kn

n−Kn − J

)2

+2
(

n− J

n−Kn − J

)√
2 +

(
Kn

n−Kn − J

)2

and note that, for n sufficiently large so that Gn is well-defined with probability one, expressions
(36), (37), and (38) imply that x′nG

2
nxn ≤ ∆n for any n×1 vector xn such that ‖xn‖ = 1. Moreover,

since Assumption 2(a) implies that

∆n → 2 +
(

1
1− α

)2

+
(

α

1− α

)2

+ 2
(

1
1− α

)√
2 +

(
α

1− α

)2

< ∞,
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so that there exist a positive constant ∆α and a positive integer N such that for all n ≥ N

∆n ≤ ∆α < ∞.

It then follows that, for all n ≥ N ,

λ2
n,n = max

xn:‖xn‖=1
x′nG

2
nxn ≤ ∆n ≤ ∆α < ∞

with probability one, from which (34) and thus (26) follow immediately as Kn →∞.
Next, we show that (26) implies the desired result (25). To proceed, first define

ζ1n =
∑

1≤ i < j < k ≤ n

gik,ngjk,n (vivjσuu + uivjσuv + viujσuv + uiujσvv) ,

and note that

E
(
ζ2
1n

)
=

(
2σ2

uuσ2
vv + 12σuuσvvσ

2
uv + 2σ4

uv

)

 ∑

1≤ i < j < k ≤ n

E
(
g2
ik,ng2

jk,n

)

+2
∑

1≤ i < j < k < l ≤ n

E (gik,ngjk,ngil,ngjl,n)




Since part (h) of Lemma A2 implies that 1
K2

n

∑
1≤ i < j < k ≤ n

E
(
g2
ik,ng2

jk,n

)
= o (1), it follows, given

Assumption 4, that

1
K2

n

∑

1≤ i < j < k < l ≤ n

E (gik,ngjk,ngil,ngjl,n) = o (1) (39)

if and only if

1
K2

n

E
(
ζ2
1n

)
= o (1) . (40)

To show equation (40), further define

ζ2n =
∑

1≤ i < j < k ≤ n

[gik,ngjk,n (vivjσuu + uivjσuv + viujσuv + uiujσvv)

+gij,ngjk,n (vivkσuu + uivkσuv + viukσuv + uiukσvv)

+gij,ngik,n (vjvkσuu + ujvkσuv + vjukσuv + ujukσvv)] ,

ζ3n =
∑

1≤ i < j < k ≤ n

[gij,ngjk,n (vivkσuu + uivkσuv + viukσuv + uiukσvv)

+gij,ngik,n (vjvkσuu + ujvkσuv + vjukσuv + ujukσvv)] ,

and note that ζ1n = ζ2n − ζ3n, so that

E
(
ζ2
1n

)
= E

(
ζ2
2n

)
+ E

(
ζ2
3n

)− 2E (ζ2nζ3n) . (41)
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By direct calculation, we obtain
E

(
ζ2
2n

)
= T1 + 4T2,

where

T1 =
(
2σ2

uuσ2
vv + 12σuuσvvσ

2
uv + 2σ4

uv

)

×
∑

1≤ i < j < k ≤ n

E
[
g2
ik,ng2

jk,n + g2
ij,ng2

jk,n + g2
ij,ng2

ik,n

]
,

T2 =
(
2σ2

uuσ2
vv + 12σuuσvvσ

2
uv + 2σ4

uv

)

 ∑

1≤ i < j < k < l ≤ n

E (gik,ngil,ngjk,ngjl,n)

+
∑

1≤ i < j < k < l ≤ n

E (gij,ngil,ngjk,ngkl,n) +
∑

1≤ i < j < k < l ≤ n

E (gij,ngik,ngjl,ngkl,n)


 .

and
E

(
ζ2
3n

)
= T3 + 2T2,

where

T3 =
(
2σ2

uuσ2
vv + 12σuuσvvσ

2
uv + 2σ4

uv

) ∑

1≤ i < j < k ≤ n

E
[
g2
ij,ng2

jk,n + g2
ij,ng2

ik,n

]
,

Next, observe that Assumption 4 and Lemma A2 parts (f)-(h) imply that K−2
n T1 = o(1) and

K−2
n T3 = o(1). In addition, (26) implies that

1
K2

n

∑

1≤ i < j < k < l ≤ n

[E (gik,ngjk,ngil,ngjl,n) + E (gij,ngjk,ngil,ngkl,n) + E (gij,ngik,ngjl,ngkl,n)]

= o (1) ,

so that K−2
n T2 = o(1) given Assumption 4. It follows that

K−2
n E

(
ζ2
2n

) → 0, (42)

K−2
n E

(
ζ2
3n

) → 0. (43)

The Jensen and Cauchy-Schwarx inequalities then imply that, as n →∞,

K−2
n |E (ζ2nζ3n)| ≤ K−2

n E |ζ2nζ3n| ≤
√

K−2
n E

(
ζ2
2n

)√
K−2

n E
(
ζ2
3n

) → 0.. (44)

K−2
n E

(
ζ2
1n

) → 0 then follows as a direct consequence of (42), (43), and (44) in view of equation
(41). ¤

Lemma A6: Under Assumptions 1-5, b−1
n K

− 1
2

n c′nZ ′nMXnun
p→ 0 as n →∞.
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Proof of Lemma A6:
We will show the mean square convergence of b−1

n K
− 1

2
n c′nZ ′nMXnun to zero. To proceed, note

that Assumptions and the law of iterated expectations imply that

E

[
c′nZ ′nMXnun

bn

√
Kn

]
= EZn

[
c′nZ ′nMXnE

(
un|Zn

)

bn

√
Kn

]

= EZn

[
c′nZ ′nMXnE (un)

bn

√
Kn

]
= 0 (45)

E

[(
c′nZ ′nMXnun

bn

√
Kn

)2
]

= EZn

[
c′nZ ′nMXnE

(
unu′n|Zn

)
MXnZncn

b2
nKn

]

= EZn

[
c′nZ ′nMXnE (unu′n) MXnZncn

b2
nKn

]

= σuu

(
rn

Kn

)
EZn

[
c′nZ ′nMXnZncn

b2
nrn

]

= O

(
rn

Kn

)

= o(1), (46)

given that rn
Kn

→ 0 as n → ∞, where the expectation EZn

[
c′nZ′nMXnZncn

b2nrn

]
exists for n sufficiently

large in light of Assumptions 2. The desired result follows immediately from (45) and (46). ¤

Lemma A7: (Gänsler and Stute, 1977)

Let {Xi,n,Fi,n, 1 ≤ i ≤ ln, n ≥ 1} be a square integrable martingale difference array. Also, let
ln ↗∞ as n →∞, and suppose that for all ε > 0

ln∑

i=1

E
[
X2

i,nI (|Xi,n| > ε) | Fi−1,n

] P→ 0 (C1)

and

ln∑

i=1

E
[
X2

i,n | Fi−1,n

] P→ 1. (C2)

Then,
ln∑

i=1
Xi,n

d→ N (0, 1) .

Proof of Lemma A7: See Gänsler and Stute (1977).

Remark: Note that, as discussed in Kelejian and Prucha (1999), a sufficient condition for condition
(C1) is the following:
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Condition C1’ :
kn∑

j=1

E
{

E
[
|Xj,n|2+δ | Fj−1,n

]}
→ 0

for some δ > 0.

Since condition C1’ is easier to verify in our case, in the proofs which follow, we will be verifying
condition C1’ instead of condition C1 for the case δ = 2.

Lemma A8: Let Wn be as defined in (20) above and let σ2
Wn

be the variance of Wn with explicit
formula given in expression (22). Define

Bn = σ−1
Wn

Wn. (47)

Then, under Assumptions 2-4,
Bn

d→ N (0, 1) as n →∞.

Proof of Lemma A8:

The proof of this lemma involves verifying conditions C1’ and C2 which jointly imply the central
limit theorem given in Lemma A7. As discussed in the Remark above, we shall verify conditions
C1’ in lieu of condition C1. The proof is, thus, divided into two parts: in part I, we check condition
C1’ and, in part II, we check condition C2.

I. Checking Condition C1’:

As in the proof of Lemma A3, we can write Wn =
∑n

j=1 Wjn, where Wjn is as defined in (21)

above. To verify condition C1’ for δ = 2, we need to show that
∑n

j=1 E
{(

σ−1
Wn

Wjn

)4
}
→ 0 as

n →∞. In light of Lemma A4 part (b), this is equivalent to showing that K−2
n

∑n
j=1 E

(
W 4

jn

)
→ 0

as n → ∞. To proceed, note that direct calculation yields the following expression for the fourth
moment of Wjn

E
(
W 4

jn

)
=

8∑

i=1

Eij,n,

where

E1j,n = d4
1E

(
g4
jj,n

)
E (ujvj − σuv)

4 + 6d2
1d

2
2E

(
g4
jj,n

)
E

[(
u2

j − σuu

)2 (ujvj − σuv)
2
]

+d4
2E

(
g4
jj,n

)
E

(
u2

j − σuu

)4 + 4d3
1d2E

(
g4
jj,n

)
E

[
(ujvj − σuv)

3 (
u2

j − σuu

)]

+4d1d
3
2E

(
g4
jj,n

)
E

[
(ujvj − σuv)

(
u2

j − σuu

)3
]
,
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E2j,n = 4





∑

1≤ i < j

d4
1E

(
g2
jj,ng2

ij,n

)
E

[
(ujvj − σuv)

2 (viuj + vjui)
2
]

+ 4
∑

1≤ i < j

d4
2E

(
g2
jj,ng2

ij,n

)
E

[
u2

i u
2
j

(
u2

j − σuu

)2
]

+4
∑

1≤ i < j

d2
1d

2
2E

(
g2
jj,ng2

ij,n

)
E

[
u2

i u
2
j (ujvj − σuv)

2
]

+
∑

1≤ i < j

d2
1d

2
2E

(
g2
jj,ng2

ij,n

)
E

[(
u2

j − σuu

)2 (viuj + vjui)
2
]




E3j,n = 4



4

∑

1≤ i < j

d2
1d

2
2E

(
g2
jj,ng2

ij,n

)
E

[
uiuj

(
u2

j − σuu

)
(ujvj − σuv) (viuj + vjui)

]

+2
∑

1≤ i < j

d3
1d2E

(
g2
jj,ng2

ij,n

)
E

[
uiuj (ujvj − σuv)

2 (viuj + vjui)
]

+
∑

1≤ i < j

d3
1d2E

(
g2
jj,ng2

ij,n

)
E

[(
u2

j − σuu

)
(ujvj − σuv) (viuj + vjui)

2
]

+4
∑

1≤ i < j

d1d
3
2E

(
g2
jj,ng2

ij,n

)
E

[
u2

i u
2
j

(
u2

j − σuu

)
(ujvj − σuv)

]

+2
∑

1≤ i < j

d1d
3
2E

(
g2
jj,ng2

ij,n

)
E

[
uiuj

(
u2

j − σuu

)2 (viuj + vjui)
]

+ 2
∑

1≤ i < j

d2
1d

2
2E

(
g2
jj,ng2

ij,n

)
E

[
uiuj (ujvj − σuv)

(
u2

j − σuu

)
(viuj + vjui)

]




E4j,n =
∑

1≤ i < j

d4
1E

(
g4
ij,n

)
E

[
(viuj + vjui)

4
]

+ 96
∑

1≤ h < i < j

d4
2E

(
g2
hj,ng2

ij,n

)
σ2

uuE
(
u4

j

)

+6
∑

1≤ h < i < j

d4
1E

(
g2
hj,ng2

ij,n

)
E

[
(vhuj + vjuh)2 (viuj + vjui)

2
]

+16
∑

1≤ i < j

d4
2E

(
g4
ij,n

)
E

(
u4

i

)
E

(
u4

j

)
+ 16

∑

1≤ i < j

d2
1d

2
2E

(
g4
ij,n

)
E

[
u2

i u
2
j (viuj + vjui)

2
]

+32
∑

1≤ h < i < j

d2
1d

2
2E

(
g2
hj,ng2

ij,n

)
E

[
uhuiu

2
j (vhuj + vjuh) (viuj + vjui)

]

+16
∑

1≤ h < i < j

d2
1d

2
2E

(
g2
hj,ng2

ij,n

)
E

[
u2

i u
2
j (vhuj + vjuh)2

]

+16
∑

1≤ h < i < j

d2
1d

2
2E

(
g2
hj,ng2

ij,n

)
E

[
u2

hu2
j (viuj + vjui)

2
]
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E5j,n = 8
∑

1≤ i < j

d2
1d

2
2E

(
g4
ij,n

)
E

[
u2

i u
2
j (viuj + vjui)

2
]

+8
∑

1≤ h < i < j

d2
1d

2
2E

(
g2
hj,ng2

ij,n

)
E

[
u2

hu2
j (viuj + vjui)

2
]

+8
∑

1≤ h < i < j

d2
1d

2
2E

(
g2
hj,ng2

ij,n

)
E

[
u2

i u
2
j (vhuj + vjuh)2

]

+8
∑

1≤ i < j

d3
1d2E

(
g4
ij,n

)
E

[
uiuj (viuj + vjui)

3
]

+32
∑

1≤ i < j

d1d
3
2E

(
g4
ij,n

)
E

[
u3

i u
3
j (viuj + vjui)

]

+8
∑

1≤ h < i < j

d3
1d2E

(
g2
hj,ng2

ij,n

)
E

[
uiuj (viuj + vjui) (vhuj + vjuh)2

]

+8
∑

1≤ h < i < j

d3
1d2E

(
g2
hj,ng2

ij,n

)
E

[
uhuj (viuj + vjui)

2 (vhuj + vjuh)
]

+96
∑

1≤ h < i < j

d1d
3
2E

(
g2
hj,ng2

ij,n

)
E

[
uhu2

i u
3
j (vhuj + vjuh)

]

+96
∑

1≤ h < i < j

d1d
3
2E

(
g2
hj,ng2

ij,n

)
E

[
u2

huiu
3
j (viuj + vjui)

]

+32
∑

1≤ h < i < j

d2
1d

2
2E

(
g2
hj,ng2

ij,n

)
E

[
u2

jui (viuj + vjui) uh (vhuj + vjuh)
]

+16
∑

1≤ h < i < j

d3
1d2E

(
g2
hj,ng2

ij,n

)
E

[
uiuj (viuj + vjui) (vhuj + vjuh)2

]

+16
∑

1≤ h < i < j

d3
1d2E

(
g2
hj,ng2

ij,n

)
E

[
uhuj (viuj + vjui)

2 (vhuj + vjuh)
]

+32
∑

1≤ h < i < j

d2
1d

2
2E

(
g2
hj,ng2

ij,n

)
E

[
uhuiu

2
j (viuj + vjui) (vhuj + vjuh)

]

E6j,n = 2





∑

1≤ i < j

d4
1E

(
g2
jj,ng2

ij,n

)
E

[
(ujvj − σuv)

2 (viuj + vjui)
2
]

+
∑

1≤ i < j

d2
1d

2
2E

(
g2
jj,ng2

ij,n

)
E

[(
u2

j − σuu

)2 (viuj + vjui)
2
]

+2
∑

1≤ i < j

d3
1d2E

(
g2
jj,ng2

ij,n

)
E

[
(ujvj − σuv)

(
u2

j − σuu

)
(viuj + vjui)

2
]



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E7j,n = 8





∑

1≤ i < j

d4
2E

(
g2
jj,ng2

ij,n

)
σuuE

[
u2

j

(
u2

j − σuu

)2
]

+
∑

1≤ i < j

d2
1d

2
2E

(
g2
jj,ng2

ij,n

)
σuuE

[
u2

j (ujvj − σuv)
2
]

+ 2
∑

1≤ i < j

d1d
3
2E

(
g2
jj,ng2

ij,n

)
σuuE

[
u2

j (ujvj − σuv)
(
u2

j − σuu

)]




E8j,n = 8





∑

1≤ i < j

d3
1d2E

(
g2
jj,ng2

ij,n

)
E

[
uiuj (ujvj − σuv)

2 (viuj + vjui)
]

+
∑

1≤ i < j

d1d
3
2E

(
g2
jj,ng2

ij,n

)
E

[
uiuj

(
u2

j − σuu

)2 (viuj + vjui)
]

+ 2
∑

1≤ i < j

d2
1d

2
2E

(
g2
jj,ng2

ij,n

)
E

[
uiuj (ujvj − σuv)

(
u2

j − σuu

)
(viuj + vjui)

]




Now, making use of Lemmas and Assumption, we see that

1
K2

n

n∑

j=1

|E1j,n| ≤ 14Dη
1

K2
n

n∑

j=1

E
(
g4
jj,n

)

= o(1), (48)

1
K2

n

n∑

j=1

|E2j,n| ≤ 16
√

14Dη

(
d4

1 + d4
2 + 2d2

1d
2
2

) 1
K2

n

∑

1≤ i < j ≤ n

E
(
g2
jj,ng2

ij,n

)

= o(1), (49)

1
K2

n

n∑

j=1

|E3j,n| ≤ 16
√

14Dη

(
3d2

1d
2
2 + 2d3

1d2 + d1d
3
2

) 1
K2

n

∑

1≤ i < j ≤ n

E
(
g2
jj,ng2

ij,n

)

+16
√

2 (14)
1
4 D

7
8
η d1d

3
2

1
K2

n

∑

1≤ i < j ≤ n

E
(
g2
jj,ng2

ij,n

)

= o(1), (50)

1
K2

n

n∑

j=1

|E4j,n| ≤ 16Dη

(
d4

1 + d4
2 + 4d2

1d
2
2

) 1
K2

n

∑

1≤ i < j ≤ n

E
(
g4
ij,n

)

+32Dη

(
3d4

1 + 3d4
2 + 8d2

1d
2
2

) 1
K2

n

∑

1≤ h < i < j ≤ n

E
(
g2
hj,ng2

ij,n

)

= o(1), (51)
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1
K2

n

n∑

j=1

|E5j,n| ≤ 32Dη

(
d2

1d
2
2 + 2d3

1d2 + 2d1d
3
2

) 1
K2

n

∑

1≤ i < j ≤ n

E
(
g4
ij,n

)

+64Dη

(
5d2

1d
2
2 + 6d3

1d2 + 3d1d
3
2

) 1
K2

n

∑

1≤ h < i < j ≤ n

E
(
g2
hj,ng2

ij,n

)

= o(1), (52)

1
K2

n

n∑

j=1

|E6j,n| ≤ 8
√

14Dη

(
d4

1 + d2
1d

2
2 + 2d3

1d2

) 1
K2

n

∑

1≤ i < j ≤ n

E
(
g2
jj,ng2

ij,n

)

= o(1), (53)

1
K2

n

n∑

j=1

|E7j,n| ≤ 8Dη

(√
14d4

2 +
√

14d2
1d

2
2 + 4d1d

3
2

) 1
K2

n

∑

1≤ i < j ≤ n

E
(
g2
jj,ng2

ij,n

)

= o(1), (54)

1
K2

n

n∑

j=1

|E8j,n| ≤ 16
√

14Dη

(
d3

1d2 + d1d
3
2 + 2d2

1d
2
2

) 1
K2

n

∑

1≤ i < j ≤ n

E
(
g2
jj,ng2

ij,n

)

= o(1), (55)

where the inequalities in expressions (48)-(55) are obtained by repeated applications of the Cauchy-
Schwarz and the triangle inequalities. From expressions (48)-(55), it follows immediately that

1
K2

n

n∑

j=1

E
(
W 4

jn

) ≤
8∑

i=1


 1

K2
n

n∑

j=1

|Eij,n|



= o(1) as n →∞. (56)

II. Checking Condition C2:

First define
Bjn = σ−1

Wn
Wjn,

where Wjn and σ2
Wn

are as defined in expression (21) and (22), respectively. Now, consider the
σ-fields Fj,n = σ

(
η1, ...., ηj , Zn

)
, i = 1, ..., n, and take F0,n to be the trivial σ-field. It follows that

by construction that Fj−1,n ⊆ Fj,n. Moreover, note that Wjn is Fj,n−measurable, and straight-
forward calculation shows that E (Wjn | Fj−1,n) = 0, so that {Wjn,Fj,n, 1 ≤ j ≤ n, n ≥ 1} forms a
martingale difference array.

Hence, to verify condition 2, we need to show

n∑

j=1

E
[
B2

j,n | Fj−1,n

] P→ 1, as n →∞, (57)
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or, alternatively,

n∑

j=1


E

[
W 2

j,n | Fj−1,n

]
−E

[
W 2

j,n

]

σ2
Wn


 p→ 0, as n →∞. (58)

(58), in turn, is implied by

1
K2

n

E




n∑

j=1

{
E

[
W 2

j,n | Fj−1,n

]− E
[
W 2

j,n

]}



2

→ 0, as n →∞, (59)

in light of the result we obtained in part (b) of Lemma A4. To show (59), we proceed by noting
that

n∑

j=1

(
E

[
W 2

j,n | Fj−1,n

]− E
[
W 2

j,n

])

=
∑

1≤ i < j ≤ n

d2
1

[
σuu

(
g2
ij,nv2

i − E
(
g2
ij,n

)
σvv

)
+ 2σuv

(
g2
ij,nuivi − E

(
g2
ij,n

)
σuv

)

+ σvv

(
g2
ij,nu2

i − E
(
g2
ij,n

)
σuu

)]
+ 4

∑

1≤ i < j ≤ n

d2
2σuu

(
g2
ij,nu2

i − E
(
g2
ij,n

)
σuu

)

+ 2
∑

1≤ h < i < j ≤ n

d2
1ghj,ngij,n [σuuvhvi + σuvuhvi + σuvuivh + σvvuhui]

+8
∑

1≤ h < i < j ≤ n

d2
2ghj,ngij,nσuuuhui

+4
∑

1≤ i < j ≤ n

d1d2

[
σuu

(
g2
ij,nuivi − E

(
g2
ij,n

)
σuv

)
+ σuv

(
g2
ij,nu2

i − E
(
g2
ij,n

)
σuu

)]

+4
∑

1≤ h < i < j ≤ n

d1d2ghj,ngij,n [σuuvhui + σuvuhui]

+ 4
∑

1≤ h < i < j ≤ n

d1d2ghj,ngij,n [σuuuhvi + σuvuhui]

Further calculations yield

1
K2

n

E




n∑

j=1

{
E

[
W 2

j,n | Fj−1,n

]−E
[
W 2

j,n

]}



2

=
1

K2
n

4∑

i=1

Ai,n,

where
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A1,n =
∑

1≤ i < j ≤ n

d4
1E

(
g4
ij,n

) [
σ2

uuE
(
v4
i

)
+ 4σ2

uvE
(
u2

i v
2
i

)
+ σ2

vvE
(
u4

i

)

+4σuuσuvE
(
uiv

3
i

)
+ 2σuuσvvE

(
u2

i v
2
i

)
+ 4σvvσuvE

(
u3

i vi

)]

−4
∑

1≤ i < j ≤ n

d4
1

(
E

(
g2
ij,n

))2 [
σ2

uuσ2
vv + σ4

uv + 2σuuσvvσ
2
uv

]

+16
∑

1≤ i < j ≤ n

d4
2

[
E

(
g4
ij,n

)
σ2

uuE
(
u4

i

)− (
E

(
g2
ij,n

))2
σ4

uu

]

+8
∑

1≤ h < i < j ≤ n

d4
1E

(
g2
hj,ng2

ij,n

) [
σ2

uuσ2
vv + 6σ2

uvσuuσvv + σ4
uv

]

+64
∑

1≤ h < i < j ≤ n

d4
2E

(
g2
hj,ng2

ij,n

)
σ4

uu + 16
∑

1≤ i < j ≤ n

d2
1d

2
2E

(
g4
ij,n

) [
σ2

uuE
(
u2

i v
2
i

)

+ σ2
uvE

(
u4

i

)
+ 2σuuσuvE

(
u3

i vi

)]− 64
∑

1≤ i < j ≤ n

d2
1d

2
2

(
E

(
g2
ij,n

))2
σ2

uuσ2
uv

+32
∑

1≤ h < i < j ≤ n

d2
1d

2
2E

(
g2
hj,ng2

ij,n

) [
σ3

uuσvv + 3σ2
uuσ2

uv

]

A2,n = 2





∑

1≤ i < j < k ≤ n

d4
1E

(
g2
ij,ng2

ik,n

) [
σ2

uuE
(
v4
i

)
+ 4σ2

uvE
(
u2

i v
2
i

)
+ σ2

vvE
(
u4

i

)

+ 4σuuσuvE
(
uiv

3
i

)
+ 2σuuσvvE

(
u2

i v
2
i

)
+ 4σvvσuvE

(
u3

i vi

)]}

−4
∑

1≤ i < j < k ≤ n

d4
1E

(
g2
ij,n

)
E

(
g2
ik,n

) [
σ2

uuσ2
vv + σ4

uv + 2σuuσvvσ
2
uv

]

+16
∑

1≤ i < j < k ≤ n

d4
2

[
E

(
g2
ij,ng2

ik,n

)
σ2

uuE
(
u4

i

)−E
(
g2
ij,n

)
E

(
g2
ik,n

)
σ4

uu

]

+8
∑

1≤ h < i < j < k ≤ n

d4
1E (ghj,ngij,nghk,ngik,n)

[
σ2

uuσ2
vv + 6σ2

uvσuuσvv + σ4
uv

]

+64
∑

1≤ h < i < j < k ≤ n

d4
2E (ghj,ngij,nghk,ngik,n) σ4

uu

+16
∑

1≤ i < j < k ≤ n

d2
1d

2
2E

(
g2
ij,ng2

ik,n

) [
σ2

uuE
(
u2

i v
2
i

)
+ σ2

uvE
(
u4

i

)
+ 2σuuσuvE

(
u3

i vi

)]

−64
∑

1≤ i < j < k ≤ n

d2
1d

2
2E

(
g2
ij,n

)
E

(
g2
ik,n

)
σ2

uuσ2
uv

+ 32
∑

1≤ h < i < j < k ≤ n

d2
1d

2
2E (ghj,ngij,nghk,ngik,n)

[
σ3

uuσvv + 3σ2
uuσ2

uv

]



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A3,n = 2





∑

1≤ i < j ≤ n

d2
1d

2
2E

(
g4
ij,n

) [
σ2

uuE
(
u2

i v
2
i

)
+ 2σuuσuvE

(
u3

i vi

)
+ σuuσvvE

(
u4

i

)]

−2
∑

1≤ i < j ≤ n

d2
1d

2
2

(
E

(
g2
ij,n

))2 [
σ3

uuσvv + σ2
uuσ2

uv

]

+4
∑

1≤ i < j ≤ n

d3
1d2E

(
g4
ij,n

) [
σ2

uuE
(
uiv

3
i

)
+ 3σuuσuvE

(
u2

i v
2
i

)

+2σ2
uvE

(
u3

i vi

)
+ σuuσvvE

(
u3

i vi

)
+ σvvσuvE

(
u4

i

)]

−16
∑

1≤ i < j ≤ n

d3
1d2

(
E

(
g2
ij,n

))2 [
σ2

uuσvvσuv + σuuσ3
uv

]

+16
∑

1≤ i < j ≤ n

d1d
3
2E

(
g4
ij,n

) [
σ2

uuE
(
u3

i vi

)
+ σuuσuvE

(
u4

i

)]

−32
∑

1≤ i < j ≤ n

d1d
3
2

(
E

(
g2
ij,n

))2
σ3

uuσuv

+16
∑

1≤ h < i < j ≤ n

d2
1d

2
2E

(
g2
hj,ng2

ij,n

) [
3σ2

uuσ2
uv + σ3

uuσvv

]

+64
∑

1≤ h < i < j ≤ n

d3
1d2E

(
g2
hj,ng2

ij,n

) [
σ2

uuσvvσuv + σuuσ3
uv

]

+128
∑

1≤ h < i < j ≤ n

d1d
3
2E

(
g2
hj,ng2

ij,n

)
σ3

uuσuv + 64
∑

1≤ h < i < j ≤ n

d1d
3
2E

(
g2
hj,ng2

ij,n

)
σ2

uuσ2
uv




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A4,n = 4





∑

1≤ i < j < k ≤ n

d2
1d

2
2E

(
g2
ij,ng2

ik,n

) [
σ2

uuE
(
u2

i v
2
i

)
+ 2σuuσuvE

(
u3

i vi

)
+ σuuσvvE

(
u4

i

)]

−2
∑

1≤ i < j < k ≤ n

d2
1d

2
2E

(
g2
ij,n

)
E

(
g2
ik,n

) [
σ3

uuσvv + σ2
uuσ2

uv

]

+4
∑

1≤ i < j < k ≤ n

d3
1d2E

(
g2
ij,ng2

ik,n

) [
σ2

uuE
(
uiv

3
i

)
+ 3σuuσuvE

(
u2

i v
2
i

)

+ 2σ2
uvE

(
u3

i vi

)
+ σuuσvvE

(
u3

i vi

)
+ σvvσuvE

(
u4

i

)]

−16
∑

1≤ i < j < k ≤ n

d3
1d2E

(
g2
ij,n

)
E

(
g2
ik,n

) [
σ2

uuσvvσuv + σuuσ3
uv

]

+16
∑

1≤ i < j < k ≤ n

d1d
3
2E

(
g2
ij,ng2

ik,n

) [
σ2

uuE
(
u3

i vi

)
+ σuuσuvE

(
u4

i

)]

−32
∑

1≤ i < j < k ≤ n

d1d
3
2E

(
g2
ij,n

)
E

(
g2
ik,n

)
σ2

uuσuuσuv

+16
∑

1≤ h < i < j < k ≤ n

d2
1d

2
2E (ghj,ngij,nghk,ngik,n)

[
3σ2

uuσ2
uv + σ3

uuσvv

]

+64
∑

1≤ h < i < j < k ≤ n

d3
1d2E (ghj,ngij,nghk,ngik,n)

[
σ2

uuσvvσuv + σuuσ3
uv

]

+128
∑

1≤ h < i < j < k ≤ n

d1d
3
2E (ghj,ngij,nghk,ngik,n) σ3

uuσuv

+ 64
∑

1≤ h < i < j < k ≤ n

d1d
3
2E (ghj,ngij,nghk,ngik,n) σ2

uuσ2
uv



 .

Again, making use of Lemma A2 and Assumption 3 and 4, we see that
1

K2
n

|A1,n| ≤ 16
(
d4

1 + d4
2 + 4d2

1d
2
2

)
Dη

1
K2

n

∑

1≤ i < j ≤ n

E
(
g4
ij,n

)

+16
(
d4

1 + d4
2 + 4d2

1d
2
2

)
Dη

1
K2

n

∑

1≤ i < j ≤ n

(
E

(
g2
ij,n

))2

+64
(
d4

1 + d4
2 + 2d2

1d
2
2

)
Dη

1
K2

n

∑

1≤ h < i < j ≤ n

E
(
g2
hj,ng2

ij,n

)

= O
(
K−1

n

)
= o(1), (60)

1
K2

n

|A2,n| ≤ 32
(
d4

1 + d4
2 + 4d2

1d
2
2

)
Dη

1
K2

n

∑

1≤ i < j < k ≤ n

E
(
g2
ij,ng2

ik,n

)

+32
(
d4

1 + d4
2 + 4d2

1d
2
2

)
Dη

1
K2

n

∑

1≤ i < j < k ≤ n

E
(
g2
ij,n

)
E

(
g2
ik,n

)

+128
(
d4

1 + d4
2 + 2d2

1d
2
2

)
Dη

1
K2

n

∑

1≤ h < i < j < k ≤ n

E (ghj,ngij,nghk,ngik,n)

= o(1), (61)
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1
K2

n

|A3,n| ≤ 8
(
d2

1d
2
2 + 8d3

1d2 + 8d1d
3
2

)
Dη

1
K2

n

∑

1≤ i < j ≤ n

E
(
g4
ij,n

)

+8
(
d2

1d
2
2 + 8d3

1d2 + 8d1d
3
2

)
Dη

1
K2

n

∑

1≤ i < j ≤ n

(
E

(
g2
ij,n

))2

+128
(
d2

1d
2
2 + 2d3

1d2 + 3d1d
3
2

)
Dη

1
K2

n

∑

1≤ h < i < j ≤ n

E
(
g2
hj,ng2

ij,n

)

= O
(
K−1

n

)
= o(1), (62)

1
K2

n

|A4,n| ≤ 16
(
d2

1d
2
2 + 8d3

1d2 + 8d1d
3
2

)
Dη

1
K2

n

∑

1≤ i < j < k ≤ n

E
(
g2
ij,ng2

ik,n

)

+16
(
d2

1d
2
2 + 8d3

1d2 + 8d1d
3
2

)
Dη

1
K2

n

∑

1≤ i < j < k ≤ n

E
(
g2
ij,n

)
E

(
g2
ik,n

)

+256
(
d2

1d
2
2 + 2d3

1d2 + 3d1d
3
2

)
Dη

1
K2

n

∑

1≤ h < i < j < k ≤ n

E (ghj,ngij,nghk,ngik,n)

= o(1), (63)

where the inequalities in expressions (60)-(63) have been obtained by repeated applications of the
Cauchy-Schwarz and the triangle inequalities. The (59) follows directly from expressions ((60)-(63).
¤

Lemma A9: Under assumptions, let λ̂LIML,n be the smallest root of the determinantal equation
given by (8). Then, under Assumptions 1-5,

λ̂LIML,n =
n− J

n−Kn − J
+

( √
Kn

n−Kn − J

)
sG
uu

σuu
+ op

( √
Kn

n−Kn − J

)
,

where

sG
uu =

u′nGnun√
Kn

and where Gn is defined in (17) above.

Proof of Lemma A9: To proceed, note first that, by definition, λ̂LIML,n is the smallest root of
the determinantal equation

det
{(

y′1nMXny1n y′1nMXny2n

y′2nMXny1n y′2nMXny2n

)
− λn

(
y′1nMZn

y1n y′1nMZn
y2n

y′2nMZn
y1n y′2nMZn

y2n

)}
= 0 (64)

or, in more succinct notation,

det
{
Y ′

nMXnYn − λnY ′
nMZn

Yn

}
= 0, (65)

where Yn = [y1n, y2n] and where the elements of the determinantal equation given above are all
well-defined with probability one for n sufficiently large, as a consequence of Assumption 2. Now,
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define Υ =
(

1 0
−β0 1

)
and note that the smallest root of equation (64) is the same as the smallest

root of the equation

det
{
Υ′Y ′

nMXnYnΥ− λnΥ′Y ′
nMZn

YnΥ
}

= 0, (66)

where

Υ′Y ′
nMXnYnΥ =

(
1 −β0

0 1

)(
y′1nMXny1n y′1nMXny2n

y′2nMXny1n y′2nMXny2n

)(
1 0
−β0 1

)

=
(

u′nMXnun u′nMXny2n

y′2nMXnun y′2nMXny2n

)
. (67)

and

Υ′Y ′
nMZn

YnΥ =
(

u′nMZn
un u′nMZn

vn

v′nMZn
un v′nMZn

vn

)
. (68)

Now, let λn = n−J
n−Kn−J + τnrn

n−Kn−J and rewrite (66) as

det
{(

u′nMXnun u′nMXny2n

y′2nMXnun y′2nMXny2n

)
−

(
n− J

n−Kn − J

)(
u′nMZn

un u′nMZn
vn

v′nMZn
un v′nMZn

vn

)

− τn

(
rnu′nMZn

un

n−Kn−J

rnu′nMZn
vn

n−Kn−J
rnv′nMZn

un

n−Kn−J

rnv′nMZn
vn

n−Kn−J

)}
= 0, (69)

which, in turn, can be shown, by straightforward manipulation, to be equivalent to the determi-
nantal equation

det

{(
u′nGnun

u′nMXnZncn

bn
+ u′nGnvn

c′nZ′nMXnun

bn
+ v′nGnun

c′nZ′nMXnZncn

b2n
+ c′nZ′nMXnvn

bn
+ v′nMXnZncn

bn
+ v′nGnvn

)

− τn

(
rnu′nMZn

un

n−Kn−J

rnu′nMZn
vn

n−Kn−J
rnv′nMZn

un

n−Kn−J

rnv′nMZn
vn

n−Kn−J

)}
= 0. (70)

Moreover, it is apparent that λ̂LIML,n, the smallest root of equation (64), is related to τ̂LIML,n, the
smallest root of (70), by the equation

λ̂LIML,n =
n− J

n−Kn − J
+

τ̂LIML,nrn

n−Kn − J
. (71)

Furthermore, note that τ̂LIML,n is also the smallest root of the determinantal equation

det

{(
u′nGnun

rn

u′nMXnZncn

bnrn
+ u′nGnvn

rn
c′nZ′nMXnun

bnrn
+ v′nGnun

rn

c′nZ′nMXnZncn

b2nrn
+ c′nZ′nMXnvn

bnrn
+ v′nMXnZncn

bnrn
+ v′nGnvn

rn

)

− τn

(
u′nMZn

un

n−Kn−J

u′nMZn
vn

n−Kn−J
v′nQZn

un

n−Kn−J

v′nMZn
vn

n−Kn−J

)}
= 0. (72)
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Now, rewrite (72) as follows

det

{( √
Kn

rn
sG
uu

1√
rn

xcu +
√

Kn

rn
sG
uv

1√
rn

xcu +
√

Kn

rn
sG
uv Ψn + 2√

rn
xcv +

√
Kn

rn
sG
vv

)

− τn

(
σuu + 1√

n∗
sM
uu σuv + 1√

n∗
sM
uv

σuv + 1√
n∗

sM
uv σvv + 1√

n∗
sM
vv

)}
= 0, (73)

where n∗ = n − Kn − J , sG
uu = u′nGnun√

Kn
, sG

uv = u′nGnvn√
Kn

, sG
vv = v′nGnvn√

Kn
, xcu = c′nZ′nMXnun

bn
√

rn
, xcv =

c′nZ′nMXnvn

bn
√

rn
, sM

uu =
√

n∗
[

u′nMZn
un

n∗ − σuu

]
, sM

uv =
√

n∗
[

u′nMZn
vn

n∗ − σuv

]
, and sM

vv =
√

n∗
[

v′nMZn
vn

n∗ − σvv

]
.

Next, using arguments similar to those used to derive results in Lemmas A1 and A2 of Chao and
Swanson (2002b) and also using Theorem 4.5 of White (1984), we can, after ignoring lower order
terms, write

det








√
Kn

rn
sG
uu

√
Kn

rn
sG
uv + op

(√
Kn

rn

)
√

Kn

rn
sG
uv + op

(√
Kn

rn

)
Ψn +

√
Kn

rn
sG
vv + op

(√
Kn

rn

)



− τn


 σuu + Op

(
1√
n∗

)
σuv + Op

(
1√
n∗

)

σuv + Op

(
1√
n∗

)
σvv + Op

(
1√
n∗

)





 = 0. (74)

Explicit calculation of the determinant yields
(√

Kn

rn
sG
uu − τn

[
σuu + Op

(
1√
n∗

)])(
Ψn +

√
Kn

rn
sG
vv + op

(√
Kn

rn

)
− τn

[
σvv + Op

(
1√
n∗

)])

−
(√

Kn

rn
sG
uv + op

(√
Kn

rn

)
− τn

[
σuv + Op

(
1√
n∗

)])2

= 0,

so that by rearranging terms, we obtain, up to terms of order Op

(
K

1
2
n r−1

n

)
, the quadratic rela-

tionship
(

σuuσvv − σ2
uv + Op

(
1√
n∗

))
τ2
n

−
(

σuuΨn +
√

Kn

rn
sG
vvσuu +

√
Kn

rn
sG
uuσvv − 2

√
Kn

rn
sG
uvσuv + op

(√
Kn

rn

))
τn

+
√

Kn

rn
sG
uuΨn + Op

(
Kn

r2
n

)

= 0.
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It follows from the quadratic formula that

τ̂LIML,n =
[
2

(
σuuσvv − σ2

uv + Op

(
1√
n∗

))]−1

×
{(

σuuΨn +
√

Kn

rn
sG
vvσuu +

√
Kn

rn
sG
uuσvv − 2

√
Kn

rn
sG
uvσuv + op

(√
Kn

rn

))

−
[(

σuuΨn +
√

Kn

rn
sG
vvσuu +

√
Kn

rn
sG
uuσvv − 2

√
Kn

rn
sG
uvσuv + op

(√
Kn

rn

))2

− 4
(

σuuσvv − σ2
uv + Op

(
1√
n∗

))(√
Kn

rn
sG
uuΨn + Op

(
Kn

r2
n

))] 1
2

}

=
[
2

(
σuuσvv − σ2

uv + Op

(
1√
n∗

))]−1

×
{(

σuuΨn +
√

Kn

rn

[
sG
vvσuu + sG

uuσvv − 2sG
uvσuv

]
+ op

(√
Kn

rn

))

−
[
σuuΨn

(
σuuΨn + 2

√
Kn

rn

[
sG
vvσuu − sG

uuσvv − 2sG
uvσuv + 2sG

uu

σ2
uv

σuu

])

+ op

(√
Kn

rn

)] 1
2

}
. (75)

Now, focusing on the square root function

R1n =
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,

we note that we can expand R1n as a power series as follows:
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(
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(76)

Inserting (76) into (75), we obtain, after minor manipulations,
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(1 + op (1)) . (77)

The desired result follows immediately by substituting (77) into (71). ¤
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Appendix B

This part of the appendix contains proofs of the main theorems of this paper.

Proof of Theorem 3.1:

By the usual regression algebra, we can write

β̂LIML,n − β0 =
(
y′2n

[
PZn

− PXn − λ̃LIML,nMZn

]
y2n

)−1

×
(
y′2n

[
PZn

− PXn − λ̃LIML,nMZn

]
un

)
,

so that
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(
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)
=

(
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[
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]
un

σL,n


 , (78)

where the inverse in (78) exists in probability as n → ∞ in the sense of White (1984) given our
assumptions, as will be shown in expression (81) below. (See page 24 of White, 1984, for a definition
of “existence in probability”) To derive the limiting distribution of (78), first write
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[
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where the first equality above follows from the definition of λ̃LIML,n. It then follows from Lemmas
A6 and A9 that
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where Gn = PZn
−PXn−

(
Kn

n−Kn−J

)
MZn

, where the second equality above from part (d) of Lemma

A2 of Chao and Swanson (2002b), which show that
v′nMZn

un

n−Kn−J

p→ σuv, and where the last equality
above follows from arguments similar to that given in part (e) of Lemma A1 of Chao and Swanson
(2002b), which can be used to show that c′nZ′nMXnun

bn
√

rn
= Op(1) and from part (d) of Lemma A2 of

Chao and Swanson (2002b). Note also that by setting d1 = 1 and d2 = −σuv
σuu

in the general formula
(22), we deduce that
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is the variance of the bilinear form v′nGnun − σuv
σuu

u′nGnun. It follows from Lemma A8 above that,
as n →∞,
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Note further that
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= Ψn + op(1), (81)

where Ψn = r−1
n Ψn is nonsingular with probability one for n sufficiently large given Assumption

2, where the second equality above follows from Theorem 3.3 of Chao and Swanson (2002b), and

36



where the third equality follows from parts (c) and (f) of Lemma A1. (80) and (81) imply that
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so that (
Ψn

σL,n

) (
β̂LIML,n − β0

)
d→ N(0, 1) as n →∞,

as required. ¤

Proof of Theorem 3.2:

By the usual regression algebra, we can write
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where again the inverse in (82) exists in probability as n →∞ in the sense of White (1984) given
our assumptions, as will be shown in expression (84) below. Note that the second equality above
follows from the fact that k̂FLIML,n = λ̂LIML,n− a

n−Kn−J by definition. It follows from calculations
similar to that used to derive expressions (79) and (81) above that
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and
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where Ψn is nonsingular with probability one for n sufficiently large given Assumption 2. It follows
immediately from (83) and (84) that

(
Ψn

σL,n

) (
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)
d→ N(0, 1) as n →∞,

as required. ¤

Proof of Theorem 3.3:

To proceed, note first that, using the usual regression algebra, we can write
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where the inverse in (85) exists in probability as n → ∞ in the sense of White (1984) given our
assumptions, as will be shown in expression (89) below. Next, note that
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To derive the limiting distribution of (85), we write

y′2n

[
PZn

− PXn −
(

Kn−2
n−Kn+2

)
MZn

]
un

σB,n
=

(√
Kn

σB,n

) y′2n

[
PZn

− PXn −
(

Kn−2
n−Kn+2

)
MZn

]
un

√
Kn

=
(√

Kn

σB,n

)(√
rn

Kn

)
c′nZ ′nMXnun

bn
√

rn

+
v′n

[
PZn

− PXn −
(

Kn−2
n−Kn+2

)
MZn

]
un

σB,n

=
(√

Kn

σB,n

)(√
rn

Kn

)
c′nZ ′nMXnun

bn
√

rn

+
v′n

[
PZn

− PXn −
(

Kn
n−Kn−J

)
MZn

]
un

σB,n

−2
(

1
n−Kn − J

)
v′nMZn

un

σB,n
+ Op

(√
Kn

n

)

=
v′n

[
PZn

− PXn −
(

Kn
n−Kn−J

)
MZn

]
un

σB,n

+Op

(√
rn

Kn

)
. (87)

where the fourth equality above follows from arguments similar to that given in part (e) of Lemma
A1 of Chao and Swanson (2002), which can be used to show that c′nZ′nMXnun
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rn
= Op(1) and from

part (d) of Lemma A2 of Chao and Swanson (2002), which show that
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given Lemma A4 part (b). Note also that by setting d1 = 1 and d2 = 0 in the general formula (22),
we deduce that
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is the variance of the bilinear form v′nGnun. It follows from Lemma A8 above that, as n →∞,
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where Gn = PZn
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where Ψn = r−1
n Ψn is nonsingular with probability one for n sufficiently large given Assumption 2

and where the third equality follows from parts (a), (c), and (f) of Lemma A1 of Chao and Swanosn
(2002b) and from the fact that
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using arguments similar to that given to prove part (e) of Lemma A2 of Chao and Swanson (2002b).
(88) and (89) imply that
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so that (
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as required. ¤
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Proof of Theorem 3.4:

Making use of expressions (12) and (13), we see that
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Since by assumption ηi is E2 (0.Ξ) , we have, as a result of special properties of elliptical distribu-
tions, that
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where κ here denotes the kurtosis parameter of an elliptical distribution as defined in Muirhead
(1982) page 41. It follows that we can rewrite (90) as
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Moreover, Bentler and Berkane (1986) show that the kurtosis parameter κ for a m−variate con-
tinuous elliptical distribution with real positive definite covariance matrix Σ = τΞ must be greater
than −2/ (m + 2). Setting m = 2, we have that
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as required. ¤
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