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Asymptotic Normality of Single-Equation Estimators for the Case
with a Large Number of Weak Instruments*

John C. Chao Norman R. Swanson
University of Maryland Rutgers University
June 2003
Abstract

This paper analyzes conditions under which various single-equation estimators are asymp-
totically normal in a simultaneous equations framework with many weak instruments. In partic-
ular, our paper adds to the many instruments asymptotic normality literature, including papers
by Morimune (1983), Bekker (1994), Angrist and Krueger (1995), Donald and Newey (2001),
Hahn, Hausman, and Kuersteiner (2001), and Stock and Yogo (2003). We consider the case
where instrument weakness is such that r,, the rate of growth of the concentration parameter,
is slower than K, , the growth rate of the number of instruments, but such that ‘/Tm — 0 as

Tn

n — oo. In this case, the rate of convergence is shown to be T We also show that formulae

for the asymptotic variances of various single-equation estimators are different from those ob-
tained under assumptions of stronger instruments, i.e., cases where 7, is assumed to grow at the
same rate or at a faster rate than K,,. An interesting finding of this paper is that, for the case
we study here, both the LIML and the Fuller estimators can be shown to be asymptotically
more efficient than the B2SLS estimator not just for the case where the error distributions are
assumed to be Gaussian but for all error distributions that lie within the elliptical family.
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1 Introduction

Amongst Peter C. B. Phillips’s many contributions to econometrics are two papers which explore
the theoretical properties of conventional econometric procedures in models which suffer from a
lack of identification. These papers, Phillips (1989) and Choi and Phillips (1992), were the first to
derive both finite sample and asymptotic distributions of the instrumental variables (IV) estimator
in a simultaneous equations system with identification failure. One of the key findings of Phillips
(1989) and Choi and Phillips (1992) is that, when the model is underidentified, the IV estimator
is inconsistent and converges to a random variable, reflecting the fact that even in the limit the
estimation uncertainty does not go away due to the lack of identification.

Since the work of Phillips and Choi and Phillips, research on econometric models with iden-
tification problems has picked up steam and the area is currently one of the most active ones in
econometrics. In particular, econometricians have become interested in the case where the model is
weakly identified (or nearly unidentified), which, in the context of an IV regression, translates to the
case where the instruments are only weakly correlated with the endogenous explanatory variables.
Indeed, in recent years, it has become popular to model weak instruments using the local-to-zero
asymptotic framework of Staiger and Stock (1994), which takes the coefficients of the instruments
in the first-stage regression to be in a n=s shrinking neighborhood of the origin, where n denotes
the sample size!. An essential feature of the Staiger-Stock local-to-zero device is that it keeps the
so-called concentration parameter from diverging as the sample size approaches infinity, so that,
under their framework, conventional k-class estimators, such as the two-stage least squares (2SL.S)
and the limited information maximum likelihood (LIM L) estimator, exhibit asymptotic behaviour
similar to that which occurs in the underidentified case, at least when the number of instruments
is held fixed as the sample size is allowed to approach infinity. More specifically, under the Staiger-
Stock local-to-zero framework, conventional k-estimators can be shown to be inconsistent and, in
fact, converges weakly to nonstandard distributions.

More recently, Chao and Swanson (2002b) argue that there may be benefits to using a large
number of instruments when the available instruments are of poor quality. In particular, they show
that by allowing the number of instruments to increase to infinity with the sample size, the growth
of the concentration parameter may be accelerated sufficiently, so that consistent estimation may
become achievable even when all available instruments are weak in the local-to-zero sense. In this
case, the choice of estimator becomes important, as not all estimators are equally susceptible to
instrument weakness. Along these lines, Chao and Swanson show that single-equation estimators
satisfying certain condtions, such as the LIM L estimator and the Jackknife Instrumental Variables
Estimators (JIV E), are consistent even when instrument weakness is such that the rate at which
the concentration parameter grows, say 7,, is slower than the rate of expansion of the number of
instruments, say K,, so long as % — 0 as n — 002, On the other hand, the 2SLS estimator

1Other interesting papers which make use of the local-to-zero setup include Wang and Zivot (1998) and Kleibergen

(2002).
2One version of the JIV E estimator was introduced by Phillips (1977). Other versions of JIV E have since been



is only consistent if r, approaches infinity faster than K,. In addition, asymptotic distributions
for various k-class estimators in the case where 7, approaches infinity at the same rate as K, (i.e.,
If—: — a for 0 < a < o0) have now been derived by Stock and Yogo (2003). Overall, the work
of Chao and Swanson (2002b) and Stock and Yogo (2003) can be viewed as adding to the many
instrument asymptotic results of Morimune (1983), Bekker (1994), Angrist and Krueger (1995),
Donald and Newey (2001), and Hahn, Hausman, and Kuersteiner (2001) to a weakly identified IV
regression model with a local-to-zero structure.

The purpose of the present paper is to further extend the results presented in Chao and Swanson
(2002b) and in Stock and Yogo (2003). More precisely, we extend the asymptotic normality results
obtained by Stock and Yogo (2003) for LIM L, Fuller’s modified LIML (FLIM L, henceforth),
and the Bias-adjusted Two Stage Least Squares (B2SLS) estimators to the case where instrument

weakness is such that the rate of growth of the concentration parameter r, is slower than the
VEn

Tn
obtain asymptotic normality results in situations with weaker instruments than has been assumed

rate of growth of the number of instruments K, but such that — 0 as n — oo. Thus, we

by other papers using the many instruments setup. The rate of convergence in our case is shown

to be \/TI%L’ which is slower than the rate of convergence to normality obtained by other authors,
and which reflects our assumption of weaker instruments. Formulae for the asymptotic variances
of the estimators are also shown to be different from those obtained under assumptions of stronger
instruments, i.e., cases where r, is assumed to grow at the same rate or at a faster rate than K,.
An additional finding of this paper is that, for the case studied in this paper, both the LIML
and the FFLIM L estimators can be shown to be asymptotically more efficient than the B2SLS
estimator not just for the case where the error distributions are assumed to be Gaussian but for all
error distributions that lie within the elliptical family.

The rest of the paper proceeds as follows. Section 2 sets up the model and discusses our asump-
tions. Section 3 presents the main results of the paper and briefly comments on the implications.of
these results. Concluding remarks are given in Section 4, and all proofs are gathered in two ap-
pendices. The following notation is used in the remainder of the paper: Tr(-) denotes the trace

of a matrix, “ > 0”7 denotes positive definiteness when applied to matrices, lim a,, denotes the
n—oo

limit inferior of the sequence {a,}, and lim a,, denotes the limit superior of the sequence {a,}. In
n—oo

addition, Py = X(X’X)~'X’ denotes the matrix which projects orthogonally onto the range space
of X and MX :I—Px.

2 Model and Assumptions

Consider the following two-equation simultaneous equations model (SEM)

Yin = YoulB+ Xpy + Up, (1)
Yon = Zpm+ Xpp + vy, (2)

introduced and studied independently by Angrist, Imbens, and Krueger (1999) and Blomquist and Dahlberg (1999).



where y1, and yo, are n x 1 vectors of observations on the 2 endogenous variables of the system, X,
is an n x J matrix of observations on the J exogenous variables included in the structural equation
(1), Z,, is an n x K, matrix of observations on the K, instrumental variables, or exogenous variables
excluded from the structural equation (1), and u,, and v, are n x 1 vectors of random disturbances®.
Further, let n; = (u;,v;)" where u; and v; are, respectively, the ith component of the random vectors

uy, and v, respectively. The following assumptions are used in the sequel.

Assumption 1: 7 =m, = g—z for some sequence of positive real numbers {b,}, nondecreasing in
n, and for some sequence of nonrandom, K, x 1 parameter matrices {c,} .

Assumption 2: Let {7i7n e=1,...,n; n> 1} be a triangular array of R¥»*7/_valued random
variables, where Z;, = (Z;m7 Xl(’n)’ with Zé’n and Xz{,n denoting the ith row of the matrices Z,
and X,,, respectively. Moreover, suppose that:

(a) K, — oo as n — oo such that % — « for some constant a satisfying 0 < a < 1.

(b) Let my, / oo as n — 0o, and suppose that there exist constants D, and Dy, with 0 < D, <
Dy, < o0, such that

77
D, < lim Amin Lt a.s. (3)
n—00 Min
and
77
lim Apax ) <D, as., (4)
n—oo mln

where Z,, = (Z,, X,,).

(c) There exist a sequence of positive real numbers {ma,}, nondecreasing in n, and constants
D, and D., with 0 < D.< D, < 00, such that

/
D, < lm () (5)

and

Assumption 3: Z,, and 7; are independent for all i and n.

3Although we only study the case with one endogenous explanatory variable, generalization to the case with an
arbitrary number of endogenous explanatory variables is straightforward. We do not pursue this generlization here

because it complicates notations but does not change the qualitative features of our results.



Assumption 4:

(a) n; =i.i.d.(0,%), where ¥ > 0, and partition ¥ conformably with (u;, v;)" as 3 = ( Tuu Tvu ) )

Ovu  Ovv
(b) There exists some constant Dy, with 0 < D, < oo, such that max{E (u}),E (v})} < D,,.

(c) E(u}) = E (v}) = E (ulv;) = E (u;v?) = 0.

(2 K3

Assumption 5: Define the ratio 1, = ™22, Suppose that, as n — oo, 7, — oo such that = — 0

but @ — 0.

Remark 2.1: (i) Assumptions 1 and 2 are the same as corresponding assumptions that were made
in Chao and Swanson (2002a). As explained in that paper, these assumptions imply that there
exists a positive integer N such that, for alln > N, 0 < D,D,_ < W;‘Z;L]\{ﬂfnzmn < D,D,. < oo with
probability one, so that the concentration parameter 7, Z) M, Z,m, grows at the rate r,, = "z'2n
(ii) Assumption 4(c) impose a certain symmetry on the distribution of the disturbances of the
simultaneous equations model given by equations (1) and (2). Similar conditions have also been
assumed in the paper by Koenker and Machado (1999), which examines the asymptotic properties
of a GMM estimator as the number of moment conditions goes to infinity with the sample size.
Note also that our Assumption 4 is satisfied by all distributions within the elliptical family which
have finite eighth moments.

(iii) Assumption 6 focuses attention on the case where the concentration parameter grows at a
slower rate than the number of instruments K, but at a faster rate than /K,. To the best
of our knowledge, this is a case for which the asymptotic normality of various IV estimators,
such as LIML, FLIML, and B2SLS, has not been established previously. In particular, earlier
papers by Morimune (1983) and Bekker (1994) studied the case where r,, ~ n, i.e., the case where
concentration parameter diverges at the same rate as the sample size, so that those papers consider
situations where the concentration parameter either grows at the same rate as K, (if % —
for some constant « such that 0 < a < 1) or at a faster rate than K, (if % — 0). In addition,
as part of a larger paper on choosing the number of instruments using (asymptotic) mean-square
error formulae of various IV estimators, Donald and Newey (2001) also present a proof of the
asymptotic normality of LIML in a many-instruments setup when r, ~ n. Finally, a recent
paper by Stock and Yogo (2003), which derives the limiting distributions of LIM L, FLIML, and
B2SLS within a many weak instruments framework, also considers a case different from ours, as
these authors assume that r, and K, grow at the same rate. Since the concentration parameter is
a natural measure of instrument weakness, as pointed out by Phillips (1983), Rothenberg (1983),
Stock and Yogo (2001), and others, our analysis here can be viewed as considering cases where
the instruments are weaker than that investigated by other authors using a many-instruments
asymptotic framework. As we will show in the next section of the paper, the case we study here
is also interesting because the weaker instruments lead to rate of convergence and asymptotic
variances that are different vis-a-vis that obtained by assuming faster growth of the concentration
parameter relative to K.



(iv) Note that our assumptions involve a tradeoff of conditions relative to Donald and Newey (2001)
and Stock and Yogo (2003). In particular, we do not make i.i.d. assumptions on the triangular array
of exogenous variables Z;,. Thus, our assumptions on the exogenous variables are weaker than
those made in Donald and Newey (2001) and Stock and Yogo (2003). On the other hand, we make
more stringent assumptions on the moments of the error distributions. In addition to the symmetry
condition discussed in Remark 2.1(ii) above, our Assumption 4(b) require the error distributions to
possess finite eighth moments, whereas Donald and Newey (2001) and Stock and Yogo (2003) only
assume finite fourth moments. Finally, our Assumption 2(a) impose a less stringent condition on
the rate of increase of the number of instruments relative to Donald and Newey (2001) and Stock
and Yogo (2003). While Donald and Newey (2001) require that % — 0 as n — oo in deriving their
asymptotic normality result for LIM L and while Stock and Yogo (2003) require that K?TQL — 0, we

require only that % — «a, with 0 < o < 1, so that the results of this paper will hold with K,
growing either at the same rate as n or at a slower rate relative to n.

3 Asymptotic Normality of Single-Equation Estimators

We focus our analysis on the following three estimators:

1. Limited Infomation Maximum Likelihood (LIM L) Estimator

BLiMLn = (ylanXn?JQn - ALIML,nylaninyzn> (yénMXnyln - )\LIML,nyénMZnyln) ,

(7)

where XL IML,n is the smallest root of the determinantal equation:

YinMx, Y10 Y1 Mx,Y2n YinMz Yin Y1,Mz yon B
et gy b M T\ My yin yha My =0 ®
Yo M X, Yin Yo, M X, Yon Yo M7z Yin YoMz Yon

2. Fuller’s Modified LIML (FLIML) Estimator:

ﬁFLIML,n = (yénMXnyzn - %FLIML,nyénMZny%L) (yénMXnyln - /k\FLIMLmyénM zny1n> )
(9)

where kprivnn = Aivon — ﬁ“nﬂ, for some positive constant a.

3. Bias-Corrected Two-Stage Least Squares (B2SLS) Estimator:

-1
~ n
BrrivMrn = (yénMXnan - <nKn+2> YoMz, y2n)

n
x (yénMXnyln - (n—K+2) yénMZnyUL) - (10)
n



All three of these estimators are, of course, special cases of the k-class estimator defined by

> —1
Brn = (YonMx, Yon — k3, Mz yon) (Yo, Mx, Y1n — kY3, Mz y1n) - (11)

These three estimators are three of the most well-known k-class estimators, and the asymptotic
properties of one or more of these estimators have been studied previously in the many instruments
context by Morimune (1983), Bekker (1994), Donald and Newey (2001) and Stock and Yogo (2003).
However, as discussed above, the purpose of this paper is to derive the asymptotic distributions of
these estimators in the case where the instruments are weaker than that assumed in these earlier
papers.

The following theorems present the main asymptotic results of this paper

Theorem 3.1: (LIML)

Let BLIML’” be as defined in equation (7) above. Then, under assumptions 1-5,

< T ) (BLIML,n — ﬂo) 4N (0,1) asn — oo,

OL,n
where W, = b, 2c, Z! Mx, Zncn, where

n 2 n

g
Frn = (B2 =) B () + 0 [B () —0%] YD B (g3)
j=1

n

~27 [ (o) = owuow] Y (93;)
j=1

+2 (Uuuo'vv - 0'12,,1;) Z E (g?jm) ’ (12)
1<i<j<n

and where g;;, and g;;, denote, respectively, the 4% diagonal element and the (4, )" element of
the matrix Gy = Py, — Py, — (== ) My, .
Theorem 3.2: (FLIML)

Let BFL 1ML be as defined in equation (9) above. Then, under assumptions 1-5,

( T ) (BFLIML,n - 50> 4N (0,1) asn — oo,

OLn
where ¥,, and o, ,, are as defined in Theorem 3.1 above.

Theorem 3.3: (B2SLS)

Let //B\BQSLS,n be as defined in equation (10) above. Then, under assumptions 1-5,

( o ) (BBQSLS,n - Bo) L N(0,1) asn— oo,

OBn



where V,, is as defined in Theorem 3.1 and where

n
U%m = [E (u?v?) — agv] Z E (gjzjn) + 2 (oyuov + agv) Z E (gfjn) , (13)
J=1 1<i<j<n

with gj;, and g;j,, is as defined in Theorem 3.1.

Remark 3.2: (i) Note that Lemma shows that a%}n and O'QBJL grow at the same rate as K, as
n — oo. If we make the additional assumptions that, as n — oo, ¥,, = r;1¥,, 2, O‘%m — O‘%,
and UQBJL — 0’% for positive constant W, a%, and 0’%; then the asymptotic normality results given
in Theorems 3.1-3.3 can be restated as
r ~ d — 2
\/7;(—” (ﬁLIML,n — 50) — N (070%‘1’ ) ;

Tn

VE,

Tn

VE,

Interestingly, under Assumption 6, B LIML,n; B FLIML,n, and B B25Ls,n are all consistent, but the rate

> d —9
(,BFLIML,n - 50) — N (070%‘11 ) ;

> d —2
(ﬁBzSLS,n - ﬁo) = N (0, o4 ) .
Tn

VEKn
and on the rate of increase of the number of instruments. Note further that under Assumptions 2(a)

of convergence is , which depends both on the rate of growth of the concentration parameter r,

and 6, \/TI%L = 0(y/n), so this rae of convergence is slower than the usual \/n rate of convergence.
This slower rate of convergence, in turn, reflects the fact that here we are studying the case where
the instruments are weaker than that under the conventional strong identification case, where the
concentration parameter grows at the rate n.
(ii) It is of interest to briefly compare the results we obtained here under Assumption 5 with results
which occur in cases where 7, is assumed to grow at the same rate or at a faster rate than K,,. Such
a comparison illuminates the differences between our results and those obtained by other authors
employing a many-instruments setup.

To begin, note that, in general, it can be shown that the three estimators studied here have the
generic (asymptotic) representation

U, /-~ fruy + dyvl Gpuy + doul, Gru
f(ﬁ—ﬂo): n = ;n = nn“‘ap(l)» (14)
N N
where R R
dy = —gw  for BLimMLmn, BFLIMLN
0 for BpasLs.n ’
where R R
b2 — 0%+ 0w (fifn)  for BLivim, BrLivLn
" 0%+ 0w E (f1,.fn) for Bpasrsn ’
with ain and U%}n as defined in expressions (12) and (13) above, and where W,, = Wé{%,

fn =0, "Mx, Z,cp, and d; = 1 for all three estimators. Under Assumption 5, ]Zl—u: = 0p(1), so that

7



the asymptotic distributions of the estimators depend only on the bilinear part of (14), i.e.,

U, [/~ dyv], Gpuy, + dou, Grun,
S (F-m) = +o,(1).

It is of interest to first compare our case with the case studied recently by Stock and Yogo
(2003), which assumes that 7, grows at the same rate as K,,. In the Stock-Yogo case, the asymptotic

distributions of LIM L, FLIM L, and B2SLS depend on both the linear part, ! %u" , and the bilinear
dl’U Gn un—l-dzu Gnun

part . Thus, the general form of the asymptotic variance for these estimators in

the Stock- Yogo case is different from that which we obtained in Theorems 3.1-3.3 and in Remark
3.2(i) above, as the asymptotic variance in their case also depends on contribution from the linear
component. In addition, Stock and Yogo (2003) find the rate of convergence in their case to be

v K,,. This is the same as our rate of convergence of in the case where r,, ~ K,,. However, for

rn, = o (K,), our rate of convergence is slower than tﬁs reflecting the fact that we treat a case
with weaker instruments.

It should be noted that earlier papers by Morimune (1983) and Bekker (1994) have also examined
the case where the concentration parameter grows at the same rate as the number of instruments,
but those papers differ from Stock and Yogo (2003) and also from this paper in that they assume
r, and K, to grow at the same rate as the sample size n. Hence, the situation studied in those
papers might be better characterized as one with strong, as opposed to weak, instruments.

Finally, in the case where r,, grows faster than K,

d1v), Gy + doul, Gy,

O.n

= Op(1)7

and the asymptotic distributions depend only on the linear part, le—u: and not on the bilinear
component at all. Thus, the general form of the asymptotic variance of LIM L, FLIML, and
B2SLS in this case is also qualitative different from what we derived under Assumption 5. The
case where r,, grows faster than K, is one which has been well studied in the literature. In particular,
and as mentioned above, Donald and Newey (2001) derive asymptotic normality results for LIM L
under the assumptions that r, ~ n and % — 0, as n — oco. Note also that the case where r),
grows faster than K, includes the conventional case with full identification and \/n convergence
of estimators to asymptotic normal distributions, since the conventional setup can be obtained by
assuming r, ~ n and taking K, to be fixed for all n.

(iii) Note further that Theorem 3.1-3.3 show that LIML and FLIM L are asymptotically equiv-
alent. However, the B2SLS estimator is not asymptotically equivalent to LIML or FLIML.
Indeed, the following result shows that if the distribution of the disturbances of the simultaneous
equations system (1)-(2) are taken to belong to the family of elliptically distributions with finite
eighth moments, then LIML and FLIML can be shown to be asymptotically more efficient than

B2SLS.

Theorem 3.4: Suppose that Assumptions 1-5 hold. Suppose, in addition, that n; ~ FEs (0,Z),
where Z = 7% for some positive constant 7 and where Es (0,E) is as defined in Definition A1l of



Appendix A with m = 2. Then, there exists a positive integer N such that for all n > N,

J%m > Uin. (15)

Note that when the error distribution is Gaussian, LIM L and FLIML have interpretations as
maximum likelihood (ML) estimators, so one would expect LIML and FLIML to be more effi-
cient than B2SLS within a many-weak-instruments asymptotic framework. However, our result
shows that even when the errors are non-Gaussian but lie within the elliptical family, in which
case LIML and FLIML do not have strict interpretations as ML estimators, these estimators are
still asymptotically more efficient than B2SLS within the local-to-zero, many instruments frame-
work studied in this paper. This result is consistent with the asymptotic mean square error results
obtained by Donald and Newey (2001) for these estimators under the assumption of i.i.d. instru-
ments. With regard to the relative efficiency of LIM L vis-a-vis the B2SLS' estimator, our results
might be viewed as extending the work of Donald and Newey (2001) both to the case with weaker
instruments and to the case where the instruments are possibly not 4.i.d.

(iv) Another well-known k-class estimator is the (unadjusted) Two-Stage Least Squares (2SLS)
estimator. However, we did not derive the asymptotic distribution of this estimator here because,
as shown in Chao and Swanson (2002b), the 25LS estimator is inconsistent under Assumption 5.
More specifically, part (a) of Theorem 3.4 of Chao and Swanson (2002b) shows that, when 2= — 0
as n — oo,

B2SLS,n L Bo + Tou,

Vv

Note further that, as shown in Chao and Swanson (2002a), Gy + ‘;ﬁ is also the probability limit of
the Ordinary Least Squares (OLS) estimator in a local-to-zero framework, so that the 2SLS and

the OLS estimators have the same asymptotic bias in the case where the concentration parameter
grows at a slower rate than the number of instruments. Hence, under Assumption 5, both 25LS
and OLS are asymptotically deficient relative to the three estimators studied in this paper.

4 Concluding Remarks

This paper derives the limiting distributions of the LIM L, FLIML, and B2SLS estimators in a
many weak instruments setup where the concentration parameter is assumed to grow at a slower
rate than the number of instruments K,, but at a faster rate than /K,. Thus, we have obtained
asymptotic normality results for these estimators in situations with weaker instruments than in
previous papers that use the many instruments asymptotic framework. In our context, both the
rate of convergence and the form of the variance of the limiting distributions are different than for
cases where the instruments are stronger, i.e., cases where the instruments grow at the same rate
or at a faster rate than K,. In addition, in constrast to the conventional full-identification case
where all three estimators are asymptotically equivalent, we find that the B2SLS estimator is not
asymptotically equivalent to LIM L and FLIM L under the weak instruments scenario studied in



this paper. In particular, we show that LIM L and FLIM L are asymptotically more efficient than
B2SLS if the distribution of the distrubances of the underlying instrumental variables regression
model is assumed to belong to the elliptical family.

5 Appendix

Appendix A

In this appendix, we collect some definitions and preliminary lemmas, which we will use to
prove our main results.

Definition Al: The m x 1 random vector X is said to have an elliptical distribution with
parameters g (m x 1) and = (m x m) if its density function is of the form

b (det 2) 2 A (2 — ) 271 (@ — ) (16)

for some normalizing constant k,, and some function A (-), where = is positive definite. (Note: A
similar definition appears in Muirhead, 1982, page 34.)

Lemma A2:

Let
K,
n=P- — Py —(—2" ) 1
G Zn Xn <n—Kn—J> Zn (7)

and let gj;, and g;;, denote, respective, the 4% diagonal element and the (i,7)"" off-diagonal
element of the matrix G,,. Then, under Assumptions 2(a) and 2(b), the following statements hold
as n — 0o

i=1j5=1

(C) [ g%’ngr?kﬂ—b = Oa.s.<Kn)7
I<i<n |[lI<j<k<n

(d) Z gzgi,ng?j,n = Oa~5-(Kn)7
1I<i<j<n

(e) Z g?]7ng%7n = Oa-s-(Kn)7
1I<i<j<n

(f) > gfj,ngfk,n = Oq.5.(Kn),

1I<i<j<k<n

10



(2) > g?jmg]zk’n = Oq.5.(Kn),

1I<i<j<k<n

(h) Z gizk,ngjzk,n = OCL&(KTL)?

1I<i<j<k<n

Proof of Lemma A2:
To show part (a), note that, by direct calculation,
K 4
Gr=P; —P — ") My

where P5 and Px,,, and thus G4, are well-defined with probability one for n sufficiently large given
Assumption 2(b). It follows that, with probability one for n sufficiently large,

1 K, 4
IrG) = & T?“(Pzn—PXn)JF(W) Tr (Mzn)]
K3
= 1+—”7
(n—K,—J)>*

so that Tr (Gp) = Oq.s.(Ky) as required.
To show (b), note that, for n sufficiently large with probability one, we have

2 2

TT(Gi) = Z Z g?j,n + Z Z 9kinGkjn
1<k<n

1<i<n \1<j<n 1I<i<j<n
2

oy

Z Jkin9Gkjn
1<k<n

<n
= 2.
1<:<n \1<j<n
n n
> ZZ Gijm:

where g;;,, denotes the (i, )" element of G,,. It follows from the result given in part (a) that

Oa.s. (Kn) = TT(Gi) > Zn: zn:g?j,n'

i=1 j=1

11



Similarly, for part (c), we have, for n sufficiently large with probability one, that

2

> | 2 in

1I<i<n \1<j<n

> 2 Z Z g?j,ngz?k,n )

1<i<n |1<j<k<n

Tr(Gh)

Y

so again the result given in part (a) implies that

1
Og.s. (Kn) = §TT(Gi) > Z Z g?j,nggk,n

1I<i<n [1I<j<k<n

To show parts (d)-(h), we note that part (c) of this lemma implies that

Oa.s.(Kn) = Z Z gizj,ngzzk,n

1I<i<n [1I<j<k<n

_ 2 2 2 2 2 2
= 2 § 9ijnYikm + E JiinYijn T E 9ijn9jkn
1<i<j<k<n 1<i<j<n 1<i<j<k<n
Z 2 9 2 2
+ 9jjmIijn + Z ik n9jk,n (18)
1<i<j<n 1<i<j<k<n

The results stated in parts (d)-(h) then follow directly from the expression on the right-hand side
of the last equality in (18) above since each term of the sum which comprises that expression is
non-negative.

The proofs for parts (i)-(k) are very similar to the proofs for parts (a)-(h) by noting that

2
G2 =P, —Px, + SN I VS
" Zn " n—K,—J Zn

Hence, to avoid redundancy, we omit these proofs. [J

Lemma A3:

Let Gy, and gj;, and g;;, be as defined in Lemma A2. Then, under Assumptions 2(a) and 2(b)
2
as n — 0o, > (E (gfjn» = O(K,) and > E (gfjn> E (gfk7n> = O(Ky).

1I<i<j<n 1I<i<j<k<n

12



Proof of Lemma A3: To proceed, note that part (a) of Lemma A2 implies that

O(Kn) = B[Tr(Gy)]

> E| > | X i
1I<i<n \1£j5<n
2
n n
> > | D E(9n)
i=1 \j=1
> Y (EB@)' Y E(3.)E (R (19)
1<i<j<n 1I<i<j<k<n

where the second inequality above follows from application of the Jensen’s inequality. The desired

2
result follows immediately from (19) by noting that both > (E (gfjn>> and
1<i<j<n

> E (gfj n) E (91213 n) are non-negative, so they cannot be of an order greater than K.
1<i<j<k<n ’ ’

Lemma A4: Define the bilinear form
W,, = dyv,Gpuy, + doul, Gy, (20)

where djand dy are constants and G,, is as defined in (17) above. Let O"Q/VH denote the variance of
W,,. Suppose Assumptions 2-4 hold, then

(a) 03, = é B (2, [B (u202) —o2,] + é BE (a4,) [B (uf) - o]

rof S s () £ (0) o] | 2{ 5 a8 () (e

1I<i<j<n

1<i<j<n 1<i<j<n

+2 Z d%E (gz'zj,n> 0-12w +4 Z dids B (g%7n> Uuuauv}

(b) ‘712/[/” = K,,

where g;;, and g;;,, denote, respective, the 4 diagonal element and the (i, )™ off-diagonal element
of the matrix GG,, and where, for two sequences x, and y,, the notation “z, < y,” means that z,
is of the same order as y,, i.e., T, < y, if and only if z,, = O (y,) and y, = O (x,).

Proof of Lemma A4: "
To show part (a), note that we can write W,, = Y Wy, where

7j=1
Win = digjjm (uv; —ow) + > digijn (viuj + vjus)
1<i<j
+dagjjm (W3 — Ou) +2 Z d20ij il (21)
1<i<j

13



and where expression (21) has made use of the fact that G,, is a symmetric matrix. Moreover,
given that 7; = (u;,v;) is an independent sequence by Assumption 4(a), it is easy to see that

n
a%vn = Zl E (I/an) It follows by straightforward calculation that

Z d2 gJJ n ( + Z d2 gjj n (u;l) - U?Lu]

28 S DB () [E (120,) — o]

j=1

+2 Z d%E (gizjm) (Guuaw + 012“)) +2 Z d%E (gin’n) Jiu
1<i<j<n 1<i<j<n

+ 4 Z didoE (912]771) OuuOuv (22)
1<i<j<n

as required.
To show part (b), we first show that UI%V” is at most of order K,. To show this, note that

U‘z’Vn - Z diE gJJ n ( + Z GE gj] n (“;1) - Giu}

2 Z didoE (93;,) [E (u]v)) = Ouwuou)
j=1

+2 Z d%E (gizjm) (Guuaw + 012“)) +2 Z d%E (gin’n) Jiu
1<i<j<n 1<i<j<n

+4 Z dido B (912],71) OuuOuv
1<i<j<n

IA

.
2 (d3 + d} + 2dvdo) D7 Y E (g3,
A& 23 +add) DF Y B (g,

1<i<j<n

= O(K,), (23)

where the last equality is implied by parts (j) and (k) of Lemma A2.

14



Next, we show that J%Vn is not of an order lower than K,. To proceed, note that

n
o, = @Y Elghal | 2= > Elghl
Jj=1 1<i<j<n

n n

R AP
i=1 j=1

= wlE[Tr(G})]

K?
_ 2 n
= w; (Kn—l-n_Kn_J), (24)

2
where @} = E <d2 [ujvj — oul + ds {u? — Guu]> , w3 = E (da [ujv; + wivj] + dguiuj)z, and w? =
min {w?}, w3} and where the last equality follows from direct calculation. The desired result follows
immediately from expressions (23) and (24) given Assumption 2(a). O

Lemma A5: Let G, be as defined in (17) above and let g;;,, and g;;, denote, respective, the gt
diagonal element and the (i, )" off-diagonal element of the matrix G,. Then, under Assumption
2-4 as n — oo,

1
ﬁ Z E (gik,ngjk,ngil,ngjl,n) =0 (1) (25)
Ti<i<j<k<l<n

Proof of Lemma A5:

We will prove this lemma in two steps. First, we will show that

1
K2 Z [9iknGjknGitnditn + GijnGiknditndkin + Gijngikngjlngkln]
"i<i<j<k<l<n
= 045(1). (26)

We will then use (26) to show the desired result (25). To proceed, first define

Gn = Gn _dg (G’n)7

where dg (G,) = diag (g11,n; s Gnnn), 1-€., dg(Gy) is an n x n diagonal matrix whose diagonal
elements are the same as that of GG,,. Now, note that, by direct calculation, we obtain
2 2
—A
TT(Gn) - Z ngj,n + 2 Z Z 9kinJkjn
1<i<n \j# 1<i<j<n \kik#j
4
= 2 Z ijn
1<i<j<n
2 2 2 2 2 2
+4 Z [gik,ngjk,n + gij,ngik,n + gij,ngjk,n]
1<i<j<k<n
+ 8 Z [9iknGjknGit nGjtn + GijndiknGil.nkln

1<i<j<k<l<n
+ GijnGikndjlnIkin- s (27)

15



where P7 and P, and, thus, G, and éi are each well-defined with probability one for n sufficiently
large in light of Assumption 2(b). Now, let A1, < A2, < -+ < A\, be the eigevalues of the matrix

G, and note that
Tr(G) = Y Mo (28)
i=1

Next, observe that part (b) and parts (f)-(h) of Lemma A2 imply that

(31)

1 4 -1
K2 Y. G = Oas (K1), (29)
M1<j<k<n
1 2 2 2 2 2 2 -1
ﬁ Z [gik,ngjk,n + gij,ngjk,n + gij,ngik,n] = Oa-s~ (Kn ) (30)
"i<i<j<k<n
It follows from equations (27)-(30) that showing that
1
7@ > [9ik,nGjknGit,nGitn + GijnIjknitnIkin + GijnGiknjinIkin]
"1<i<j<k<l<n
= 045 (1), asn — oo,
is equivalent to showing that
1 n
7 Z )\in =045 (1) asn — oc.
n =1
To show (31), we first note that, for each n,

n n
4 4 2 2
)‘n,n S Z )‘i,n S )‘n,n (Z )‘i,n>
i=1 i=1

16



and

1 1 —2
— N\ = T (G )
Kn Zz; ,n Kn r n

n n

1 2
S Ry 2 2 Y
=1 j=1
—1T(G2dGGGdG dg (G2
= Kﬁ” n 9( n) Gn — Grdg ( n)"‘[g( n)]
_ 1 2 2
= ETT (Gn_[dg(Gn)])
1 K, 2
= Kn{” = =) MZ"]
- n—.J 7 X K, 2
+;[<nK J)pjj’" Piin (nKnJ)]
1 K, 2
< K7n Tr PZ PX7L+< _Kn_']> an
n—J ? & 7 \2
+<n—Kn—J) : (pm>
7j=1
1 K?2 n—J \?
< = Kn & Kn
- Kn{ +n—Kn—J+<n—Kn—J> }
n—J 2 K,
B 1+<n—Kn—J> +n—Kn—J (33)

where p]Zjn and pJXjn are the j* diagonal elements of the projection matrices Pz and Px,. It

n
follows from Assumption 2(a) that K%l > )\?,n = Oq.s. (1). Hence, to show (31), we need to show
i=1

that
L o
K—)\mn =045 (1) asn — oo. (34)
n
To show (34), we proceed as follows: let z,, be any n x 1 vector such that ||z,| = 1 and let x;,

denote the j** element of z,. Now, consider the quadratic form

x%@ixn = 2 G?x, — 2l [dg (G,) G,z

_xgz (Gndg (Gn)] o + 33;1 [dg (Gn)]2 Ln
! GPa, + ‘x;l [dg (Gr) Gy] xn|
+ }x;z [Grdg (Gy)] $n‘ +ay, [dg (Gnﬂ2 Tn (35)

IN

Note that, for n sufficiently large so that P and Py, are well-defined with probability one, we

17



have that

n 2
, 2 . n — J 7 X Kn 2
T [dg (Gn)]" 2 = > [(n_Kn_> Pjjn = Pjjn — <n_Kn_J>] Ljn

IA
7 N N
3
|
3
2
|K«
<
N———
[\)
3
5]
<o
3

2
n—J
_ 36
(n o J) , (36)
where inequality above follows from the fact that 0 < pzn <1,0< pj)gn <1, and <n7§2— J> > 0,
and note that

K 2
2,Gran < @ Py an + 2y Py, @0 + <n_Kn_J> 2, Mz an
n
K, 2
< o4 (—Tn 37
= e <n - K, - J> ’ (37)

where the inequality follows from the Rayleigh quotient by making use of the fact that Apax (an) =
Amax (Px,)) = Amax (le) = 1since Py , Px,, and M7 are idempotent matrices. (See pages 203-
204 of Magnus and Neudecker, 1988, for a statement of the Rayleigh quotient.) It then follows from
the Cauchy-Schwarz inequality that

120, [dg (Gn) Gal 2a| < /a0, [dg (G 2 /7nGotm

- (=5 \/2+ <n_[z§_!1>2 (3%)

n—J 2 K 2
A, = - ¢ 9 "
<n—Kn—J> * +<n—Kn—J>

n—J K, 2
2 —— 2 _
+ (n—Kn—J>\/ * <n—Kn—J>
and note that, for n sufficiently large so that G,, is well-defined with probability one, expressions

(36), (37), and (38) imply that xﬁléixn < A,, for any n x 1 vector x,, such that ||z,| = 1. Moreover,
since Assumption 2(a) implies that

1 2 o 2 1 o 2
JANS 2 2 2
- (i) +(2a) () ()

< oo,

Define

18



so that there exist a positive constant A, and a positive integer N such that for all n > N
A, <A, < .

It then follows that, for all n > N,

2

n,n

72 PR
= max 2,G.r, <A, <A, <

anifenl=1 """
with probability one, from which (34) and thus (26) follow immediately as K, — oc.
Next, we show that (26) implies the desired result (25). To proceed, first define

Cin = E GiknGikn (ViVjOuy + UiVjOyy + VilhjOuy + Uit Oy
1<i<j<k<n

and note that

E (ClQn) = (2012Lua12)v + 120’“’&07}170-31; + 2031}) Z E (gfk,ngzk,n)
1Ii<j<k<n

+2 Z E (gik,ngjk,ngil,ngjl,n)
1I<i<j<k<lI<n

Since part (h) of Lemma A2 implies that - > E (gfk ng]2'k: n) = 0(1), it follows, given
n < . < )
Assumption 4, that
1
2 E(giknGjknitngjin) = 0 (1) (39)
"1<i<j<k<l<n

if and only if

1
o (Gin) =0 (1). (40)
n
To show equation (40), further define
CGon = Z [gik,ngjk,n (Ui'UjO'uu + UV Oy + ViUjOyy + uiujavv>

I<i<j<k<n
+9ijnGjkn (Uivko-uu + UV Oy + ViUgOuy + uiukavv)
+0ijnGikn (VjUkOuu + UjULTwy + VjULOuy + UjULTw)]

(3n = > [ginGikn (VivkOu + UitkOuy + VitlkOuy + Uitk Ouy)
1<i<j<k<n

+0ijnGikn (VjUROuu + UjULTwy + VjULOuy + UjULTw)]

and note that (1, = (25, — (3n, so that

E (<12n) =F (C22n) +FE (an) -2E (C2n€3n) . (41)

19



By direct calculation, we obtain
E (C22n) =T + 47,

where
T = (QUqu?w + 120000002, + 20;4“))
2 9 2 2 2 2
X Z E [gik,ngjk,n + gij,ngjk,n + gij,ngik,n] )
1I<i<j<k<n
_ 2 2 2 4
T = (QUuuUm, + 120uu0vv0'uv + 20'1“,) Z E (gik,ngil,ngjk,ngjl,n)
I<i<j<k<l<n
+ > E (9ijn9it,ngjknrin) + > E (9ijnGiknGitngkin)
Ii<j<k<Il<n Ii<j<k<li<n
and
E () =T+ 2T,
where

2 2 2 4 § : 2 2 2 2
73 = (2Uuuo-vv + 12UUUUUU0uU + 2qu) E [gij,ngjk,n + gij,ngik,n] )
1ISi<j<k<n

Next, observe that Assumption 4 and Lemma A2 parts (f)-(h) imply that K277 = o(1) and
K, 2T3 = o(1). In addition, (26) implies that

1
K2 ) [E (9ik,n9jknitngjin) + E (9ijnGjknGitndkin) + E (9ijngiknjinkin)]
T1<i<j<k<l<n
= o(1),
so that K, 275 = o(1) given Assumption 4. It follows that
K.’E(¢,) — 0, (42)
K,?FE (&, — o. (43)

The Jensen and Cauchy-Schwarx inequalities then imply that, as n — oo,

K |B (GonGan)| < K E|GanGonl < /KB () Ea?E (G,) — 0. (44)

K, 2E (¢},) — 0 then follows as a direct consequence of (42), (43), and (44) in view of equation

n

(41). O

1
Lemma A6: Under Assumptions 1-5, by 'K, 2¢,, Z! Mx, un = 0 as n — oc.
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Proof of Lemma A6: )
We will show the mean square convergence of b, 'K, ¢, Z! Mx, u, to zero. To proceed, note
that Assumptions and the law of iterated expectations imply that

A ZMx, E (un|Zy)
bpv Kn
[czngan<un> ] 0
bV Kn

Zn

B [cﬁqu’@Mxnun}
bV K,

Zn

A Z\Mx, E (unup| Zn) Mx, Zncy
b2 K,
[C;ZZ;ZMXnE (unul) Mx, Zncn, ]
2K,

/ !
T e,z Mx. Zncn,
— Ef n—n n
o (KH) Zn [ b2rn }

= o(1), (46)

I Mx,un \*| e
bn /K “

= Efn

) . ' 7! Mx, Z
given that L= — 0 as n — oo, where the expectation F-,; |&fnXnZntn
Kn ’ Zn bnTn

large in light of Assumptions 2. The desired result follows immediately from (45) and (46). O

} exists for n sufficiently

Lemma A7: (Géansler and Stute, 1977)

Let {Xin,Fin, 1 <i<l,,n>1} be asquare integrable martingale difference array. Also, let
lp, /" 00 as n — oo, and suppose that for all € > 0

ln

ST E[X2I(1Xinl > ) | Fictn] 20 (C1)
i=1
and
In
STE[X?, | Fiia] S 1. (C2)
i=1

In
Then, 3 X, -5 N (0,1).

=1

Proof of Lemma A7: See Génsler and Stute (1977).

Remark: Note that, as discussed in Kelejian and Prucha (1999), a sufficient condition for condition
(C1) is the following:
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Condition C1’ : i

> E{E|IX;nl" | Fiora] } =0

=1
for some § > 0.

Since condition C1’ is easier to verify in our case, in the proofs which follow, we will be verifying
condition C1’ instead of condition C1 for the case § = 2.

Lemma A8: Let W, be as defined in (20) above and let J%Vn be the variance of W, with explicit
formula given in expression (22). Define

By = oy} Wa. (47)
Then, under Assumptions 2-4,
B, % N(0,1) asn— oo.
Proof of Lemma AS:

The proof of this lemma involves verifying conditions C1’ and C2 which jointly imply the central
limit theorem given in Lemma A7. As discussed in the Remark above, we shall verify conditions
C1’ in lieu of condition C1. The proof is, thus, divided into two parts: in part I, we check condition
C1’ and, in part II, we check condition C2.

I. Checking Condition C1’:

As in the proof of Lemma A3, we can write W, = 3°7_ | Wj,,, where Wj, is as defined in (21)
above. To verify condition C1’ for 6 = 2, we need to show that Z?Zl E{(a;Vinn)él} — 0 as

n — oco. In light of Lemma A4 part (b), this is equivalent to showing that K, 2 Y E (an) —0
as n — oo. To proceed, note that direct calculation yields the following expression for the fourth
moment of Wy,

where

Eijn = d‘llE (g;-ljvn) E (ujv; — ouv)4 + 6did5E (g;-lj’n) E [(u? — auu)2 (ujv; — qu)ﬂ
—|—d§1E (g;-ljm) E (u? — Ouu )4 + 4d§’d2E (g;-ljm) E [(ujvj — O'uv)g (u? — O‘uu):|

+4d1d§’E (g;-ljvn) E [(ujvj — Ouwy) (u? — O’uu)?’} ,
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Eajm

Eajm = 44 Y diE(g}.95.) F [(Ujvj — ou)? (viu; + Ujuz')Z]

1<i<j
2
t4 DT AB (gl B vl (4~ ow)’]
1I<i<j
+4 Z did;E (gjgjvng?jm) B [“3“§ (ujv; — Ouv)ﬂ
1<i<j

+ Z d3d3E (gfjngfjn) E [(uj2 — auu)2 (viuj + vjui)ﬂ

1< i < j

E3jm =444 Z d%d%E (gjzj,ng%-,n) E [uiuj (uj2 — auu) (ujvj — ouw) (Viuj + vjui)]
1<i<j

+2 Z d3dy B (g]zj’ng?j,n) E [uiuj (U0 — Oup)” (Vitj + vjui)}
1<i < j

+ Z d3dyE (g?jmg?j,n) E [(u? — ouu) (ujv; — ouw) (Vi + vjui)Q]
1<7i < j

+4 Z dldgE (gjzjmgl?j,n) E [u?u? (u]2 — auu) (ujvj — UW)}
1<i<j

+2 Z d\d3E (g?mgfj,n) E [uiuj (u? - Juu)2 (viuj + vjui)}
1<i<j
+ 2 Z d2diE (g?j’nggj’n) E [uiu; (ujv; — ouy) (uj2 — Ouu) (vitj + vju;)]

1<i<j

> diE(g},) [(Uiuj+vjui)4}+96 > BE(g5,950) e E ()

1<i < j 1<h<i<j
+6 Z d‘llE (g%jvng%’n) E {(vhuj + vjuh)2 (viuj + Ujui)ﬂ
I<h<i<y
+16 Z diE gZ] ») B (u f) E (u;l) +16 Z d3d3E (gfjn) E [u?u? (viuj + vjui)2]
1<i<j 1<i<yg

+32 Z dId5E (97t5095.0) B [unuiv? (vauy + vjus) (ving + vjug)]
1Sh<i<j

+16 Z d%d%E (g,%jmgijn) E [u? JQ (vpuj + vjup) }
I<h<i<j

116> BABE (g3,95.) B [ud (v + vjw)’]
I<h<i<j
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55j,n = 8 Z d2d2 gZ] n) [ ?u? (Uin +Ujui)2]

E6jn

1I<e<yj
2
+8 Z d%d%E (g,%jvng%’n) E [uiu? (viuj + vju,) }
I<h<i<yg

2
+8 Z d%d%E (g%mng%n) E {u? ?(vhu] + vjup) }
I<h<i<j

+8 Z d?dgE (gglj’n) FE {uiuj (viuj + vjui)?’]
1<i<j
+32 Z d\d5E (gfjn) E [uf’u? (viuj + vjui)]
1<i<j
+8 BAE (g5 0955 n) B |uivg (viug +vjug) (vpu; + vju )2
142 9hjnTijn Uy \UiUy UG hUj jUR
1<h<i<j

+8 Z d3dyE (g,zwngfjn) E [uhu]- (viuj + vjui)Q (vhu; + 'UjUh)i|
1<h<i<j

496 Z dldgE (gijngfjn) E [uhufu;” (vpu; + vjuh)]
ISh<i<j

+96 Z did3E (gi]ngfjn) E [u%ul 2 (viuj + vjuy)]
ISh<i<j

+32 Z d%d%E (gij,ngzzj,n) E [u?ul (viwj + vjug) up (vpuj + vjuh)]
1Sh<i<j

+16 Y ddE( gh]ngwE[
Ih<i<j

+16 Z dldgE ghj ng”n ) E |upu; (viu; +Ujul)2 (vhu; +'UjUh):|
I<h<i<yjy

+32 Z dId5E (i n95m) B [unuiud (viug + viug) (vpus + viug)]
ISh<i<j

wing (viuj + vjug) (vhuy + vjuh)z}

2 Z diE (g?]ngfjn) E {(ujvj — ow)? (viuj + vjui)z}
1<i<j

+ Z d%d%E (g?j’ng?jm) E [(u? — O'uu)2 (viuj + vjui)ﬂ
1<i<j

+2 Z d3dyE (gjzjmgl?j’n) E [(ujvj — Ouw) (u? — ouu) (viu; + vjui)z}

1<i < j
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Eon = 80 3 BB (k) ot [ (5 o)’
1<i<j

2
+ Z d%d%E (g?jngfjn) ol [u? (ujvj — Ou) }
1<i<j

+ 2 Z dldgE (gjz-j’ng%m) o [u? (ujvj — oTuw) (u? — auu)]
1I<i<yj

68]'771 = 8 Z d?dQE (g?-j’ngfjm) ) [uiuj (ujvj - qu)2 (Uin + Ujui)]
1I<e<yj

+ Z dldgE (gf.j,ng,?j,n) E [uiuj (u? — Uuu)2 (viuj + vjui)}
1<i<j
+2 Y BABE(95,95.,) E [wig (wv; — ow) (uF — o) (vin + vju;)]
1<i<j

Now, making use of Lemmas and Assumption, we see that

1< 1 <
ﬁ Z ’glj,n‘ S 14D77ﬁ Z E (g?j,n)
nj=1 =1

= o(1),

Ni<i<j<n

1 n
77 D Egnl < 16VIAD, (di 4 dy +200d3) 5 Y E(g55090)

= o(1),

1 — a1
w2 2 |Esinl < 16VIAD, (347 + 2ddy + did3) o5 Y B (9,0950)

NTi<i<j<n

1T 1
H16V2(14)1 Dididyges D B (g5ndn)

N1<i<ji<n
= 0(1>7

1< 1
K%Z;y&j,nl < 16Dy (di +dy +4did}) 7 D E (i)
i=

Ni<i<ji<n

1
+32Dy (31 +3d3 + 87d3) 5 D> E(0h;9%)
Ti<h<i<j<n

= of1),
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1 n
el > |&siml < 32Dy (dids + 2didy + 2dyd3)

K2 Z L (g?j,n)
Mi<i<j<n
1
+64D,, (5d1d3 + 6d3ds + 3d1d3) el > E (75095 0)
"i1<h<i<ji<n

= o(1), (52)

1

1 « 1
el > |Ejml < 814D, (df + did3 + 2d3dy)

31\3‘

Z b (gjzj,ngz?j,n)
1<i<j<n

= o(1), (53)

1
< 8D, (VU + VURG +4dd}) = > E(ohu95)
Ni<i<j<nm

= o(1), (54)

1 n
K2 Z €7j,m

1 & 1
el > [Esjnl < 16V14D, (didy + dydi + 2d3d3) el > E(g}n95n)
n =1 Mi1<i<j<n

= o(1), (55)

where the inequalities in expressions (48)-(55) are obtained by repeated applications of the Cauchy-
Schwarz and the triangle inequalities. From expressions (48)-(55), it follows immediately that

1 n 8 1 n

II. Checking Condition C2:

First define
Bjn = O';Vi an7

where Wj,, and U%Vn are as defined in expression (21) and (22), respectively. Now, consider the
o-fields Fj,, = o (771, ey nj,fn), i =1,...,n, and take Fo, to be the trivial o-field. It follows that
by construction that F;_1, C Fj,. Moreover, note that Wj, is F;,—measurable, and straight-
forward calculation shows that E (Wj, | Fj_1,) = 0, so that {Wj,, Fj,,1 < j <n,n>1} forms a
martingale difference array.

Hence, to verify condition 2, we need to show

n
ZE [B]z’n | Fi-1a] il 1, asn — oo, (57)
j=1
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or, alternatively,

NI AL

p 2.0, asn — oo. (58)
j=1 Wn
(58), in turn, is implied by
2
1 n
ﬁE Z {E [WJQJL | Fj-1m] — E [Wj%n]} — 0, asn — oo, (59)

in light of the result we obtained in part (b) of Lemma A4. To show (59), we proceed by noting
that

n
> (EWE, | Fimia] - E[W],])
=1

= Z d% [Uuu (Q?j,nU@'Z - K (gizj,n) va) + 20w (g?j,nuivi - F (g?j,n) qu)
I<i<j<n
+ v (ghnuf = B (9) ow)| +4 D dBow (9007 — B (9550) 0un)

1I<i<j<n
+ 2 Z d%ghj,ngij,n [Uuuvhvi + TuUpV; + Ty Vp, + vauhui]
I<h<i<j<n

+8 EE: d3Ghj nGijnTuutint;

I<h<i<j<n

+4 Z dydy [Juu (Q?j,nuivi ) (91‘2]',”) qu) + Ouw (gizj,n 12 - K (gin,n) UU“)}
1<i<j<n

+4 EE: d1d2gnjnGijn [CuuVnti + Ouptipiis]
I<h<i<j<n

+4 2{: d1d2gnjnGijn [CuntnVi + Cuptpiis]
I<h<i<j<n

Further calculations yield

2

1 - 1
ﬁE Z {E [WJQJZ ‘ ‘7:5*17”] —-FE [W]%n]} = ﬁ ZAi,na
n j=1

where
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A = > dE(gh,) [00.F (v}) + 400, E (ufv]) + 05, F (uy)
1<i<j<n

+40 4y Ou (uzvf’) + 204 O (u?vf) + 40yyouwF (uf’vz)]
4 > al(B(g2,)" [02.02, + oty + 2000002,

1<i<j<n
#1630 A [B(gha) o B (ul) - (B (950))" ol
1<i<j<n
+8 Z dzllE (ggj,ngzzj,n) [Uiuggv + 6012”)UUUO-UU + U?w}
ISh<i<j<n
+64 Y BE(Gaghn) o T16 Y BBE (gy,) (00, (uiv])
I<Sh<i<j<n 1<i<j<n
+ o2 E (uf) + 2040w F (ufvl)] — 64 Z d2d3 (E (gfjn))z 02,02,
1<i<j<n
+32 Z d%d%E (gl%j,ngzzj,n) [O—zua—’uv + 30—12;11012“)]

I<h<i<j<n

Asy = 2{ Y. AE(gu0h) [ouE (v) + 405, B (ufv]) + o3, B (u;)

1<i<j<k<n

+ 40y oul (ulvf) + 2000l (u?vf) + 40,0 F (u?vz)]}

—4 Z dzllE (g7j2j,n) E (gz'zk,n) [Uiuagv + 0-;4“) + 2O-UUO-UUO.12W]
I<i<j<k<n
+16 Z d% [E (glgj,ng?k,n) 0-121UE (Uf) —-F (gin,n) E (gz?k,n) Uiu]
1<i<j<k<n
+8 Z dzllE (ghj,ngij,nghk,ngik:,n) [Uiuggv + 60'72“)0'uu0'm, + O"iq}]
ISh<i<ji<k<n
+64 Z A3 E (GhjinGijinGhknGikn) Ouy
ISh<i<ji<k<n
+16 Z d%d%E (gfjngfkn) [U?WE (ufvf) + U?WE’ (uf) + 2000w F (uf’vz)]

1<i<j<k<n

—64 > BBE(95,) E(ghn) 020k,
1I<i<j<k<n

+ 32 > A3 A5 E (9hjndijndnknik.n) [TauOu0 + 300,00, ]
I<h<i<j<k<n
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2 { Z d2diE (gf]n) [aqu (ugvf) + 2000w (uf’vz) + CuuOwl (uf)]

1<i<j<n

-9 Z d%d% (E (gfjn))2 [Ui’uaw + O'%MUZU]
1I<i<j<n

+4 Z d3dyE (gfjn) [O‘qu (uzvf’) + 30wl (ufvf)
1I<i<j<n

+205vE (u?vz) + CuuOuo P (uf’vz) + OpuOuwE (uf)]

~16 Y &y (E (920))° [02u0 00000 + 0un0ly)

1<i<j<n

+16 Y did3E (g8,) [00,E (uvi) + ouuouw B (uf)]
1<i<j<n

32 Y add(E(¢,) 0duouw
1<i<j<n

+16 Z d%d%E (g?zj,ng?j,n) [303u01%v + O—z?zuO—’UU]
I<Kh<i<j<n

+64 Z d{’dgE (gzjngf]n) [Jﬁuawaw + Uuuagv]

I<h<i<j<n

+128 Z dldgE (g%zj,ngz?j,n) Uiuauv + 64 Z dldgE (giQLj,ngin,n) Uiuggv}

IKh<i<ji<n I<h<i<jis<n
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A = 4 Z d2d3E (ggj,ngfk,n) [ame (u?vf) + 2040w (u?vl) + CuuOo B (uf)]
1I<i<j<k<n

—2 Z d%d%E (912],71) E (gzzk,n) [Uzuavv + Uguazzw]
1<i<j<k<n
+4 Z d“i’dgE (gfjngfkn) [aZuE (uzvf) + 30yuoun F (u?vf)

1<i<j<k<n
+ 20_12wE (u?vl) + Oyl (vaz) + OOy B (uf)}

—16 Z d:{’dzE (ggjm) E (gl-zk’n) [aiuawauv + Juuaf’w]
I<i<j<k<n

+16 > i d3E (6 195 n) (02 E (u$vi) + 0uuoun B (uf)]
1<i<j<k<n

—32 Z dldgE (gzjn) FE (gfkn) aiuauuauv
1<i<j<k<n

+16 Z A3 A5 E (GhjnGijngnknTikn) [305u012w + Uiuavv]
I<h<i<j<k<n

+64 Z d?d2E (ghj,ngij,nghk,ngik‘,n) [Uiuavvauv + Uuuaiy]
I<h<i<j<k<n

+128 Z dldgE (ghj,ngij,nghk,ngik,n) O-q?;uo'uv
I<h<i<ji<k<n

+ 64 > drd5 E (ghjinGijnGhknJikn) TauCay
I<h<i<j<k<n

Again, making use of Lemma A2 and Assumption 3 and 4, we see that

1 1
I Aral <16 (db + db + 4d3d3) Diics - ; ) nE (937.0)
1
16 (df + B+ 4B B) Dy D (B (950))
NTi1<i<ji<n
1
64 (A + d3 2B B) Dy DD E(97000)
"1<h<i<ji<n
= O(K;Y) =o(1), (60)
1 1
7 Az < 32(d} +d3 + 4d7d3) Dnﬁ Z E (95n90n)
n "i<i<j<k<n
1
+32(df + 3 +4did3) Doy D E(ghn) E (dhn)
"i<i<j<k<n
1
+128 (df + d3 + 2d7d3) Dy== > E (ghjn9ijnIhknGikn)
"i<h<i<j<k<n
= o(1), (61)
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1 1
72 Manl < 8(did3 +8didy +8hd3) Doz D E(g)
" n1<i<j<n
1
+8 (did; + 8did; + 8d1d5) Dy S (B()
Tl<i<j<n

1
+128 (did3 + 2d3ds + 3d1d3) Dz > E (9} n9%n)

Ti<h<i<j<n

1 1
gz Manl < 16 (A& 48y + 80 ) Dy DL E(Gngikn)

"i<i<j<k<n

1
+16 (did3 + 8didy + 8hd3) Dyrs Y E(gha) E (k)

"1<i<j<k<n

1
+256 (d%d% +2d}d; + 3d1d§) Dnﬁ Z E (ghjn9ijnInknikn)
"i1<h<i<j<k<n

= o(1), (63)

where the inequalities in expressions (60)-(63) have been obtained by repeated applications of the
Cauchy-Schwarz and the triangle inequalities. The (59) follows directly from expressions ((60)-(63).
U

Lemma A9: Under assumptions, let XL 1MLn be the smallest root of the determinantal equation
given by (8). Then, under Assumptions 1-5,

3\\ — n—J + VK i—i—o _v-n V Ky
LML = 0 Ky — T \n—Kn—J) 0w P\n-K,—J)"
where ,
a uy, Gpun
n

and where Gy, is defined in (17) above.

Proof of Lemma A9: To proceed, note first that, by definition, XLIML’” is the smallest root of
the determinantal equation

det {( Vi Moabin. YoM, ton > ~ A < Wz Uin Y1u 2z, bon >}= 0 (64)
Yo Mx,Y1n Yo, Mx,Y2n YoMz Yin Yo, Mz yon

or, in more succinct notation,
det {Y, Mx, Y, — X\, Y, M5 Y, } =0, (65)

where Y,, = [y1n, Y2n] and where the elements of the determinantal equation given above are all
well-defined with probability one for n sufficiently large, as a consequence of Assumption 2. Now,
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1
define T =
< —Bo 1
root of the equation

)and note that the smallest root of equation (64) is the same as the smallest

det {T'Y, Mx, Y, T = X\, Y'Y, My Y, T} =0, (66)
where

0 1 Yo Mx, y1n Yo Mx, Y2n

B < uL, Mx, up,  ul, Mx, Yon ) (67)
- / / N

and

T, My, Y, T = < wn Mz wn wn Mz v, ) .

v IS
v, Mz un v, My vy

Now, let A\, = n_”[;n‘]_ 7 + 7 —yand rewrite (66) as

et {( u My, un  u,Mx, yon ) B ( on—=J > < UMz un u, Mz vy >

/ / / !
Yo Mx, Un Yo, Mx, Yon n—K, —J UnMZnun vnMvan

rRul, an Un rnu%an Un
-, n—Kn,—J n—K,—J — O, (69)

rnv;LMZn Up  TnUL, an Un
n—Kp—J n—Kn,—J

which, in turn, can be shown, by straightforward manipulation, to be equivalent to the determi-
nantal equation

/
/ u MX Znc /

det' / ! unGnun / ! n/ ?: = + un/GnUn

CnZnéan“n + ,U;ZGTLUTL CnZnJ‘Jbgnchn + CnZnéMXnvn + UnM)I()nZnCn + 'U;.LGn'Un

n n n n

Tnup Mz un  Tnun Mz vn

_ n—Kp,—J n—Kp,—J _
Tn rnv%M%nun rnv;]\/[n?nvn = 0. (70)
n—K,—J n—Kp,—J

Moreover, it is apparent that XL IML,n, the smallest root of equation (64), is related to Tpras L, the
smallest root of (70), by the equation

/)\\ n—J TLIMLn"n (71)
LIMLn = .
T n—-Ky,—J n—-K,—J
Furthermore, note that 7rrarr., is also the smallest root of the determinantal equation
ul Gpunp ul, Mx,, Zncn up, Gpuop
det ! 7l M "'n ’ ! 7' M~ 7 / g’??@ /T}M A ’
CnlnMXpUn + v Gnn CnlnM Xy 4ntn + Cnln Xy Un + U I X, 4nCn + v;,Gnon
bnTn Tn b2y bnTn bnTn Tn
ul, an Un uﬁLMgn Un
_ n—Kp—J n—Kp—J —
Tn v%anun v;anvn 0. (72)
n—Kp—J n—Kp—J
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Now, rewrite (72) as follows

VK, .G 1 VvVEn .G
det{( Tn o Suu ﬁxcu‘i’ T Suv >

\/%—nxcu + VTIE" sfjv v, + \/%:L‘m, + VTK" sg’;)
1 M 1 M
o [ T T e T g Y L (73)
n 1 M 1 M )
Ouy T Vi Suww Tvu + Vi Svv

* G _ u,Gpu _ Lz Mx, u o
where n* =n - K, — J, s, = ?/KLH", Suv = TR Sve = g Tou = W, Tep =
ch Z! Mx, v M up M un M up, M vp, M vy, My vy,
W, Suu — \/n* "ni*n — Ouuly Syp = \/n* nTn — Oyv ,andsw = vn* ”ni*n — Oy |-
Next, using arguments similar to those used to derive results in Lemmas A1l and A2 of Chao and
Swanson (2002b) and also using Theorem 4.5 of White (1984), we can, after ignoring lower order

terms, write

det Tn Suu Tn Suw Op T
VEL G+ o, (\/rifn) W, + G 1o, ( Tlsn)
1 1
- Tun+ Op ) Twt Or Vn* =0 (74)
n =0.
ouw + Op \/% o + O \/%

Explicit calculation of the determinant yields

(R o 0n ()] ) (s 2T (52) = e on (7))

(S (F5) n e (5)])

= 0’

1
so that by rearranging terms, we obtain, up to terms of order O, <K€ T, 1>, the quadratic rela-

tionship

1

2 2
CunOvy — Oy +Op | ——= T
( ? <\/n*>>

VK, VK VK, VK,
_ (auu\IJn + "sfvauu + nsfuam, -2 nsfvauv + op < n)) Tn
n n Tn Tn
VK, K,
+ ”sfqun + 0, (;)
Tn Ta

= 0.
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It follows from the quadratic formula that

- 1 -1
TLIMLn = [2 <0uuaw —o2 + Op <\/7? )} X

{ (ot s S 2 oy (112

wOuu T SuuTvv SuypOuv T Op
‘KW” S (15))
|

voOuu t Owy SuvTuv T Op
n Tn n

_4(%% e <\/77>> (\/r:%f +0, ( )) }
) [Q(Juuaw—azu—i-Op(\/%))]—lx

K VK
{ <auu\11n + VEn [sﬁ,ouu + Sfuaw — 2sfvauv] + 0p < n))

Tn Tn

I [ D

G
ST — SyuOvv — 284p0up + 25,

- |:0'uu\1’n <0'uu\lln +2

Tn uu
1
K 3
e ()] -
Tn
Now, focusing on the square root function
VK o2
Rin = |:UUu\I/” <Uuu\Iln +2 = Sg)auu - Sguavv - 2351)0“”0 + QSgu »
Tn Ouu
1
Sl
+ op )
Tn

we note that we can expand R, as a power series as follows:

\/K 2 VK,
T g (76)

n

Inserting (76) into (75), we obtain, after minor manipulations,

i = Plown o] (140, (1))
x {2\/K7 [sfuffvv — sl Z2 } o (VE)}

n o n
K, sgu
= —— = (140,(1)). (77)

™ Ouu

The desired result follows immediately by substituting (77) into (71). O
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Appendix B
This part of the appendix contains proofs of the main theorems of this paper.
Proof of Theorem 3.1:
By the usual regression algebra, we can write
BLIMLJL By = (yén [Pzn - Px, — XLIMLJLMZJ y2n>_1
X (yén [PZL — Px, — XLIML,anL] un> ;

so that
-1

U, /- v,\ [ Yon [PZL - Px, — XLIML,ann} Yon
(/BLIML,n - ﬂo) = (—

OLmn Tn Tn

Yon [—P 'z — Px,, — XLIML,nMZn] Up

, (78)

OLn

where the inverse in (78) exists in probability as n — oo in the sense of White (1984) given our
assumptions, as will be shown in expression (81) below. (See page 24 of White, 1984, for a definition
of “existence in probability”) To derive the limiting distribution of (78), first write

Yo, | Pz, — Px, — XLIML,nMZJ Un Yo, [PZL - Px, — <)\L1ML,n - 1) Mzﬁ} Up,

OLn OLn

B VEn\ d,Z, Mx, up,
- OLn bV Ky,
U;L [PZn — PXn — (/)\\LIML,n — 1> an} Unp,

+ ;
OLn

where the first equality above follows from the definition of XL IMLn- It then follows from Lemmas
A6 and A9 that

y’gn PZ — Px, — )\LIML,nMin} Up, B < /7Kn> CZZLMXnUn N U,'TGnun
OLn OLmn bV Ky OLn

e vl M- u
e (e ) e ()
OLn n—K,—J
_ (\/Kn> < rn> chZ! Mx, un N v, Grun,
OLn K, bn\/ Tn OLn

!
Ouv Uy, Gty

— +0,(1
Ouwuw OLn p( )
_ vl Gy B @u;@Gnun +op(1) (79)
OLn Ouu OLn P
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where G, = Pz —Px,, — (#:_J) Mz, where the second equality above from part (d) of Lemma

Un P

A2 of Chao and Swanson (2002b), which show that ﬁ = ou, and where the last equality
above follows from arguments similar to that given in part (e) of Lemma A1 of Chao and Swanson
(2002b), which can be used to show that % = Op(1) and from part (d) of Lemma A2 of
Chao and Swanson (2002b). Note also that by setting d; = 1 and dy = — &= in the general formula

(22), we deduce that

n 2 n

Ol = [E(0)) = 00] DB (6550) + 5% [B (uf) = 0] D (9)

jil uu

-9 Tuv [E (u?vj — OyuOup Z g]J”

Ouu =

+2 (Juuam, — 012“}) Z E (gf n)

1I<i<j<n

is the variance of the bilinear form v}, Gpu, — %uﬁlGnun. It follows from Lemma A8 above that,
as n — oo,

Yo [PZ - Px, — )\LIML,nMZJ Up,

OLn
e "G
= Unnln Tuo UnSratn |,y 4 N0, 1), (80)
OL.n Ouu OLmn
Note further that
yén |:an PX - )\LIML nM i| Yon _ C/nZ;ALMXnZnCn QCnZ'r,lMXnvn

vy, [PZ - Px, — XLIML,nMZn] Un

+ r
_ chZ My, Znen, N 2an,’LMXnvn
b2ry, bnrn
Uy, [Pzn - Px, — (%ﬁﬁ—‘]) MZJ Un
+ , + Op(l)
= U, +o0,(1), (81)

where U,, = r,;1W,, is nonsingular with probability one for n sufficiently large given Assumption
2, where the second equality above follows from Theorem 3.3 of Chao and Swanson (2002b), and
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where the third equality follows from parts (c) and (f) of Lemma Al. (80) and (81) imply that

<U\I[l/ n) </6LIML

so that

(

as required. [

Proof of Theorem 3.2:

By the usual regression

Brrivon — Bo =

—1
Yo [Pzn — Px, — A\Liur Mz } Yon

Tn

n ﬁo) = v,

Yo [Pzn - Px, — XLIML,nMZL} Un

OLn

X

/ /
v, Gpn Oy U, Gpun
= InTnln TwtnTnln 4o 1),

OLn Ouu OLn

v,

OLn

) (ﬂLIMLn 50) 4, N(0,1) as n — oo,

algebra, we can write

(yzn [Mxn — kprivr Mz } an)_l

X (?/Qn [MX,L - EFLIML,nMZJ un)

-1
= a
(she = P~ (Rasnrzn =1 g ) vz )

. a
<ygn [PZn ~Px, - (*“ML’" - —K—J) MZ"] ) -

where again the inverse in (82) exists in probability as n — oo in the sense of White (1984) given
our assumptions, as will be shown in expressmn (84) below. Note that the second equality above

follows from the fact that k:FLIML n= )\LIML n

m by definition. It follows from calculations

similar to that used to derive expressions (79) and (81) above that

[P~ (i1 )

OLn

B <\/Kn> chZ Mx, un, N v, Grun,

OLn

bnm OLn

/ /
_uInGnunO_—l( UnMZnun > a ( v, M5 uy,

OLn
/ /
v, Gy, _ Ow u, Gpun

OLn

+0p(1) (83)

n—K,—J OLn

Ouu OLn
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and

vh [P?n — Px, — (ALIML,n —-1- ﬁ‘n_tz) MZ} Yan
Tn
M, o 7o Moy

— 2 n—n
b2r, + bnrn

" [PZ — Px, = (Rervna - 1) MZ} Vn

Tn

Lo v Mz vy,
rm \n—K, —J

= U, +o0,(1), (84)

_|_

where W,, is nonsingular with probability one for n sufficiently large given Assumption 2. It follows
immediately from (83) and (84) that

< n ) (BFLIML,n - ﬁo) < N(0,1) as n — oo,

OLn

as required. [

Proof of Theorem 3.3:

To proceed, note first that, using the usual regression algebra, we can write

_ / K, -2 -
Bpastsn =Po =\ You | Pz, = Pxo =\ T g 73 ) Mza| Y20

K, -2
([P, P = (55 ) ).

(2) (Boastsn-0) = (%) vin [Pz, = P = (E55a) Mz, | on

0B n Tn Tn

so that

-1

Voo [Pz, = Pr. — (+532) Mz, | v

0Bn

X

; (85)

where the inverse in (85) exists in probability as n — oo in the sense of White (1984) given our
assumptions, as will be shown in expression (89) below. Next, note that

K,—2 B K, n—K,—J K,—2
n—K,+2 n—K,—J n—K,+2 K,

= (i) 0rou) )
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To derive the limiting distribution of (85), we write

Yo |Pz, — Px. — (E555%) Mz, | un <\/K7 ) Yo [Pz, = Px = (755525 ) Mg, | un
O0Bn B 0Bn VK,
_ (x/Kn> < m) ch Z Mx, un
UB,n Kn bn Tn
+u; Pz, — Px, — (F52) My, | wn
OBn
_ (vKn> < m) chZ! Mx, up
0Bn K, bp/Tn
+v,g Pz, = P, — (i) M, | un
0Bn
Ly 1 vy, M7 up, Lo VE,
n—K,—J OBn P n
B Pz, = Px, — (=5 ) Mz, |
B OBn
Tn
+0, ) (87)
n

where the fourth equality above follows from arguments similar to that given in part (e) of Lemma

A1 of Chao and Swanson (2002), which can be used to show that Wi\/%w = Op(1) and from

part (d) of Lemma A2 of Chao and Swanson (2002), which show that % 2s 6w, so that

( 1 ) U;LMZLU” B VK, 1 U;LMZnun
n—K,—J OBn N OBn vVK,) n—K,—J

)

given Lemma A4 part (b). Note also that by setting d; = 1 and dy = 0 in the general formula (22),

- 0, (%

N

we deduce that

n

01297,1 = [E (u?vf) — afw] Z E (gfjn) +2 (Uuudm; + 012“}) Z E (gfjn) .

7j=1 1I<i<j<n

is the variance of the bilinear form v),Gpuy,. It follows from Lemma A8 above that, as n — oo,

/ Kn—2
Yo | Pz, = P — (725%55) Mz, | un o

0Bn 0Bn
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where G,, = PZL — Px, — (%) M . Moreover, note that

Ky—2
Yon [PZ ~ P <”—Kn+2> MZ} o wZp M, Znn o ZnMx, O
T - b2ry, bnrn
+u;l 1Pz, — Px, — (595%5) Mz, | vn
Tn
_ chZ! Mx, Zycn, anZ;lMXnvn
b2ry, bnrn
vl |Py — Px, — (B2~ ) My |v
n n |4 Z, Xn n—Kn—J Zn| “n
"n
1 v M= u VK
-2 ( > I 40, < n>
- Ky — OBn n
= U, +0,(1) (89)

where W, = ¥, is nonsingular with probability one for n sufficiently large given Assumption 2
and where the third equality follows from parts (a), (c), and (f) of Lemma A1 of Chao and Swanosn
(2002b) and from the fact that

1 U;anvn B VK, 1 v,’lenvn
n—K,—J OBn N OBn VK, n—K,—J

_ o, <K,;> |

using arguments similar to that given to prove part (e) of Lemma A2 of Chao and Swanson (2002b).
(88) and (89) imply that

-1
/ K,—2
w, A - LA
( ) (5stLSn ﬁo) = ¥, ‘
OBn Tn
X
0Bn
!
G
_ U, Gnln +Op(1)7
0Bn

so that

(U\I;n> (BB25Lsn ﬂo) 4 N(0,1) as n — oo,

as required. O
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Proof of Theorem 3.4:

Making use of expressions (12) and (13), we see that

n
0]237n — U%m = 207“} [E (u?vj) — UuuUm,] Z E (g?j’n) + 403“) Z E (g?j,n)
Tuu j=1 1I<i<j<n

o8 B @) ~oh] B (g). %0)

Uuu

Since by assumption 7; is E2 (0.Z), we have, as a result of special properties of elliptical distribu-
tions, that

uu

E (u?v]) = 3(k+1)owuou,

E ugl) = 3(k+1)0?

where x here denotes the kurtosis parameter of an elliptical distribution as defined in Muirhead
(1982) page 41. It follows that we can rewrite (90) as

n
Obp—0tn=0r+2)00,> E(g};,) +400, > E(g,)-
j=1 1<i<j<n

Moreover, Bentler and Berkane (1986) show that the kurtosis parameter x for a m—variate con-
tinuous elliptical distribution with real positive definite covariance matrix ¥ = 7= must be greater
than —2/ (m + 2). Setting m = 2, we have that

n

U%,n - O%,n = (3k+2) Ugv Z E (ggzj,n) + 40_12w Z E (g?j,n)
=1 1I<i<j<nm
1 n
> 50w ) E(gha) + o, Y E(g,)
= 1<i<j<n
> 0,

as required. [
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