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Abstract

In this paper, we show the first order validity of the block bootstrap in the context of Kolmogorov
type conditional distribution tests when there is dynamic misspecification and parameter estimation
error. Our approach differs from the literature to date because we construct a bootstrap statistic that
allows for dynamic misspecification under both hypotheses. We consider two test statistics; one is the
CK test of Andrews (1997), and the other is in the spirit of Diebold, Gunther and Tay (1998). The
limiting distribution of both tests is a Gaussian process with a covariance kernel that reflects dynamic
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1 Introduction

In recent years there has been growing interest in providing tests for the correct specification of conditional

distributions. One reason for this is that testing for the correct conditional distribution is equivalent to jointly

evaluating many conditional features of a process, including the conditional mean, variance, and symmetry.

Along these lines, Bai and Ng (2001) construct tests for conditional asymmetry. Just as importantly, these

sorts of tests allow for the evaluation of predictive densities, thus generalizing the evaluation of point and

interval forecasts.1

In this paper, we show the first order validity of the block bootstrap in the context of Kolmogorov type

conditional distribution tests when there is dynamic misspecification and parameter estimation error. Our

approach differs from the literature to date because we construct a bootstrap statistic that allows for dynamic

misspecification under both hypotheses, rather than assuming correct dynamic specification under the null

hypothesis. This difference between our approach and that taken elsewhere can be most easily motivated

within the framework used by Diebold, Gunther and Tay (DGT: 1998), Bai (2003), and Hong (2002). In their

paper, DGT use the probability integral transform (see e.g. Rosenblatt (1952)) to show that Ft(yt|=t−1, θ0),

is identically and independently distributed as a uniform random variable on [0, 1], where Ft(·|=t−1, θ0) is

a parametric distribution with underlying parameter θ0, yt is the random variable of interest, and =t−1 is

the information set containing all “relevant” past information (see below for further discussion). They thus

suggest using the difference between the empirical distribution of Ft(yt|=t−1, θ̂T ) and the 45◦−degree line as

a measure of “goodness of fit”, where θ̂T is some estimator of θ0. This approach has been shown to be very

useful for financial risk management (see e.g. Diebold, Hahn and Tay (1998)), as well as for macroeconomic

forecasting (see e.g. Diebold, Tay and Wallis (1998) and Clements and Smith (2000,2002)). Likewise, Bai

(2003) proposes a Kolmogorov type test of Ft(u|=t−1, θ0) based on the comparison of Ft(yt|=t−1, θ̂T ) with

the CDF of a uniform on [0, 1]. As a consequence of using estimated parameters, the limiting distribution

of his test reflects the contribution of parameter estimation error and is not nuisance parameter free. To

overcome this problem, Bai (2003) uses a novel approach based on a martingalization argument to construct

a modified Kolmogorov test which has a nuisance parameter free limiting distribution. This test has power

against violations of uniformity but not against violations of independence. Two features differentiate our

approach from that taken in the above papers. First, we assume strict stationarity, while they do not. Second,
1A few recent contributions in the area of predictive evaluation include: Diebold and Mariano (1995), West (1996), Christof-

fersen (1998), McCracken (2000), White (2000), Chao, Corradi and Swanson (2001), Corradi, Swanson, and Olivetti (2001),

and Clark and McCracken (2001).
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we allow for dynamic misspecification under the null hypothesis, while they do not. While our approach is

clearly less general because of the first feature, the second feature allows us to obtain asymptotically valid

critical values even when the conditioning information set does not contain all of the relevant past history.

More precisely, we are interested in testing for correct specification, given a particular information set which

may or may not contain all of the relevant past information. This is relevant when a Kolmogorov test is

constructed, as one is generally faced with the problem of defining =t−1. If enough history is not included,

then there may be dynamic misspecification. Additionally, finding out how much information (e.g. how many

lags) to include may involve pre-testing, hence leading to a form of sequential test bias. By allowing for

dynamic misspecification, we do not require such pre-testing. Another key feature of our approach concerns

the fact that the limiting distribution of Kolmogorov type tests is affected by dynamic misspecification.

Critical values derived under correct specification given =t−1 are not in general valid in the case of correct

specification given a subset of =t−1. Consider the following example. Assume that we are interested in

testing whether the conditional distribution of yt|yt−1 is N(α†1yt−1, σ1). Suppose also that in actual fact

the “relevant” information set has =t−1 including both yt−1 and yt−2, so that the true conditional model

is yt|=t−1 = yt|yt−1, yt−2 = N(α1yt−1 + α2yt−2, σ2), where α†1 differs from α1. In this case, we have correct

specification with respect to the information contained in yt−1; but we have dynamic misspecification with

respect to yt−1, yt−2. Even without taking account of parameter estimation error, the critical values obtained

assuming correct dynamic specification are invalid, thus leading to invalid inference. Stated differently, tests

that are designed to have power against both uniformity and independence violations (i.e. tests that assume

correct dynamic specification under H0) will reject; an inference which is incorrect, at least in the sense that

the “normality” assumption is not false. In summary, if one is interested in the particular problem of testing

for correct specification for a given information set, then our approach is appropriate.

We consider two Kolmogorov type test statistics; one is the CK test of Andrews (1997), and the other

is based on the arguments presented in DGT (1998), and is similar to the statistic proposed by Bai (2003).

The limiting distribution of both tests is a Gaussian process with a covariance kernel that reflects dynamic

misspecification and parameter estimation error.2 Therefore, critical values are data dependent and cannot

be tabulated. In addition to the generalized spectrum test mentioned above, Hong (2002) also proposes a

test for uniformity that is robust to non independence, and that is based on the comparison of a kernel

density estimator and the uniform density. His a test has a normal limiting distribution, but converges at

a nonparametric rate. The tests suggested here converge instead at a parametric rate and do not require

2As we allow for possible dynamic mispecification, Bai’s (2003) martingalization argument does not apply in our context.

2



the choice of the bandwidth, although nuisance parameters free limiting distributions do not obtain. With

regard to the CK test, for the case of non vanishing parameter estimation error and independent observations,

Andrews (1997) suggests a parametric bootstrap based on drawing observations from the distribution implied

under the null, which is in turn evaluated at some given estimated parameters, conditional on observed

covariates, say Xt. If our null is correct dynamic specification (i.e. if Xt = =t−1), then we can still use

Andrews’ parametric bootstrap and draw observations from F (yt|Xt, θ̂T ). However, if instead Xt ⊂ =t−1,

then the long run variance of the resampled statistic does not properly mimic the long run variance of the

original statistic, thus leading to invalid asymptotic critical values. In the case of dependent observations

and dynamic misspecification, but no parameter estimation error, we could almost straightforwardly apply

an empirical process version of either the block bootstrap (see e.g. Buhlmann (1994), Naik-Nimbalkar and

Rajarshi (1994) or Peligrad (1998)) or the stationary bootstrap of Politis and Romano (1994a,b), as the only

difference is that we are evaluating conditional rather than marginal distributions. In the present context,

though, we require a bootstrap that is valid for dependent observations, possible dynamic misspecification

under both hypotheses, and non vanishing parameter estimation error. One possibility in this case is to use

the conditional p-value approach of Corradi and Swanson (2002), which extends Inoue’s (2001) approach

to the case of parameter estimation error.3 A drawback of this approach is that the simulated critical

values under the alternative are of order O(l), (where l plays the same role as the block length in the

block bootstrap) and so the finite sample power can be somewhat low with small and medium size samples.

Another possibility, which we examine in this paper, is the use of an extension of the empirical process

version of the block bootstrap to the case of non vanishing parameter estimation error.

The rest of this paper is organized as follows. In Section 2 we describe our setup, and examine the

asymptotic behavior of the two statistics. In Section 3 we show the first order validity of the block bootstrap

in our context. The fourth section contains the results of a small Monte Carlo study, and Section 5 concludes.

All proofs are contained in the appendix.

2 Setup and Asymptotic Behavior of the Tests

Before stating the hypotheses and defining the test statistics, it is worthwhile to sketch some examples of

conditional distributions which are correctly specified for a given information set, but misspecified for a

larger information set.

3Inoue (2001) in turn extends Hansen’s (1996) conditional p-value approach to the case of non martingale difference scores.
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Assume that Y t = (yt, yt−1, ..., yt−p+1)′ is jointly elliptically distributed; then the density can be expressed

as (see e.g. Ingersoll (1987), Ch.4, Appendix B)

fp(y) = |Σ|−1/2
g

(
(y − µ)′Σ−1(y − µ); p

)
, (1)

where µ is the mean vector and Σ is a positive definite matrix, proportional to the covariance matrix if the lat-

ter exists. Then, by Cambanis, Huang and Simons (1981), for any m < p, the distribution of yt, yt−1, ..., yt−m

conditional on yt−m−1, ..., yt−m−p+1 belongs to the same elliptical family as in (1). Furthermore, for any

m < p, the distribution of yt, yt−1, ..., yt−m is given by

fm(y1) = |Σ1|−1/2
g

(
(y1 − µ1)

′Σ−1
1 (y1 − µ1); m

)
,

and also yt|yt−1, ..., yt−m is elliptically distributed, with a density belonging to the same family as in (1).

We can now specialize the argument above to two well known elliptic distributions, the normal and the

Student’s-t. Suppose,

(a)




yt

yt−1

yt−2


 ∼ N (µ,Σ) and (b)




yt

yt−1

yt−2


 ∼ St (µ, Σ, v) ,

where v > 2 denotes the degree of freedom, and

µ =




0
0
0


 , Σ =




σ2 σ12 σ13

σ12 σ2 σ23

σ13 σ23 σ2


 .

Also, let Σ22 =
(

σ2 σ23

σ23 σ2

)
, Σ12 = (σ12, σ13)′, and Σ21 = Σ′12. Now, in the normal and Student’s-t cases,

respectively,

yt|yt−1, yt−2 ∼ N

(
Σ12Σ−1

22

(
yt−1

yt−2

)
,
(
σ2 − Σ12Σ−1

22 Σ21

))
, and

yt|yt−1, yt−2 ∼ St

(
Σ12Σ−1

22

(
yt−1

yt−2

)
,

(
v

v − 2 + 2

(
1 +

(
yt−1 yt−2

)
Σ−1

22

(
yt−1

yt−2

)) (
σ2 − Σ12Σ−1

22 Σ21

))
; v

)
.

Because of ellipticity, it also follows that

(
yt

yt−1

)
∼ N

((
0
0

)
,

(
σ2 σ12

σ12 σ2

))
,

(
yt

yt−1

)
∼ St

((
0
0

)
,

(
σ2 σ12

σ12 σ2

)
; v

)
,

and (see e.g. Spanos (1999)), for the normal and Student’s t cases, respectively,

yt|yt−1 ∼ N

(
σ12

σ2
yt−1,

(
σ2 − σ2

12

σ2

))
, and (2)
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yt|yt−1 ∼ St

(
σ12

σ2
yt−1,

(
v

v − 1

(
1 +

y2
t−1

σ2

)(
σ2 − σ2

12

σ2

))
; v

)
. (3)

Therefore, (2) and (3) are correctly specified for the distribution yt|yt−1, but are misspecified for the dis-

tribution of yt|yt−1, yt−2. Given (3), a joint t-distribution seems appropriate when the conditional mean is

a linear function and the conditional variance is a quadratic function of the conditioning variables. For

example, financial series characterized by conditional heteroskedasticity and heavy tails might be suitably

modelled using a multivariate t distribution with “few” degrees of freedom.

Turning now to the main topic of this section, assume that we have a sample {yt, Xt}T
t=1 from an

underlying (stationary) process {yt, Xt}∞t=−∞. We wish to test whether the distribution of yt|Xt has a given

parametric form, where Xt may contains lags of yt and/or lags of some other variables. Hereafter, let =t−1

denote the information set containing all relevant past information, such that for any set Gt−1 ⊃ =t−1,

Y |=t−1 ≡ Y |Gt−1, where ≡ denotes equality in distribution. We define dynamic misspecification as the case

in which Xt ⊂ =t−1 and yt|Xt not≡ yt|=t−1, where “not≡ ” denotes non equality in distribution.

The null and alternative hypotheses of interest are:

H0 : Pr(yt ≤ y|Xt, θ0) = F (y|Xt, θ0), a.s. for some θ0 ∈ Θ (4)

HA : the negation of H0 (5)

The DGT type test is:

V1T = sup
r∈[0,1]

|V1T (r)|, (6)

where,

V1T (r) =
1√
T

T∑
t=1

(
1{F (yt|Xt, θ̂T ) ≤ r} − r

)
,

and

θ̂T = arg max
θ∈Θ

1
T

T∑
t=1

ln f(yt|Xt, θ).

The standard rationale underlying the above test, which is known to hold when Xt = =t−1, is that under

H0, F (yt|Xt, θ0) is distributed independently and uniformly on [0, 1]. The uniformity result also holds under

dynamic misspecification. To see this, let cr
f (Xt) be the r − th critical value of f(·|Xt, θ0), where f is the

density associated with F (·|Xt, θ0) (i.e. the conditional distribution under the null)4. We have,

Pr(F (yt|Xt, θ0) ≤ r) = Pr
(∫ yt

−∞
f(y|Xt, θ0)dy ≤ r

)

= Pr
(
1{yt ≤ cr

f (Xt)} = 1|Xt

)
= r, for all r ∈ [0, 1],

4For example, if f(Y |Xt, θ0) ∼ N(αXt, σ2), then c0.95
f (Xt) = 1.645 + σαXt.
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if yt|Xt has density f(·|Xt, θ0). Now, if the density of yt| Xt is different from f(·|Xt, θ0), then,

Pr
(
1{yt ≤ cr

f (Xt)} = 1|Xt

) 6= r

for some r with nonzero Lebesgue measure on [0, 1]. However, under dynamic misspecification, F (yt|Xt, θ0)

is no longer independent (or even martingale difference), in general, and this will clearly affect the covariance

structure of the limiting distribution of the statistic.5

Notice that, if the statistic V1T in (6) is constructed using the residuals from a regression, then we cannot

rule out the possibility that uniformity is not violated even if F (y|Xt, θ0) is not correctly specified for the

conditional distribution of yt|Xt. The intuitive reason for this is that we might misspecify the conditional

mean and/or conditional variance and/or the marginal distribution of the “true” error, but still get the

right marginal for the “wrong” error. Broadly speaking, if we correctly specify the marginal of (yt −
µ(yt−1; θ†))/σ2(yt−1; θ†), say, then uniformity is not violated even if µ(yt−1; θ†) and/or σ2(yt−1; θ†) are

not correctly specified for the conditional mean and variance respectively.

The other test that we examine is the CK test of Andrews (1997).6 This test is constructed by comparing

the empirical joint distribution of yt and Xt with the product of the distribution of yt|Xt and the empirical

CDF of Xt. In practice, the empirical joint distribution, say ĤT (u, v) = 1
T

∑T
t=1 1{yt ≤ u}1{Xt < v}, and

the semi-empirical/semi-parametric analog of F (u, v, θ0), say F̂T (u, v, θ̂T ) = 1
T

∑T
t=1 F (u|Xt, θ̂T )1{Xt < v}

are used, and the test statistic is:

V2T = sup
u×v∈U×V

|V2T (u, v)|, (7)

where U and V are compact subsets of < and <d, respectively, and

V2T (u, v) =
1√
T

T∑
t=1

(
(1{yt ≤ u} − F (u|Xt, θ̂T ))1{Xt ≤ v}

)
.

Note that V2T is given in equation (3.9) of Andrews (1997).7 Note also that when computing this statistic,

a grid search over U × V may be computationally demanding when V is high-dimensional. To avoid this
5The above explanation of the uniformity result is rather long-winded, although we still include it for the sake of clarity. As

pointed out by an anonymous referee, a simpler way of stating the result is to simply note that if Z has a continuous CDF, say

F (z), then F (Z) is uniform. This is universally true for any distribution, including conditional distributions, for example.
6In a related paper, Li and Tkacz (2004) discuss an interesting approach to testing for correct specification of the conditional

density which involves comparing a nonparametric kernel estimate of the conditional density with the density implied under the

null hypothesis. Also, Whang (2000,2001) proposed a version of Andrews CK test for the correct specification of the conditional

mean.
7Andrews (1997), for the case of iid observations, actually addresses the more complex situation where U and V are

unbounded sets in R and Rd, respectively. We believe that an analogous result for the case of dependent observations holds,

but showing this involves proofs for stochastic equicontinuity in Theorems 2 and 4 which are much more demanding than those

included in this paper. This subject is left to future research.
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problem, Andrews shows that when all (u, v) combinations are replaced with (yt, Xt) combinations, the

resulting test is asymptotically equivalent to V2T (u, v).

Theorems 1 and 2 below rely on the following assumptions.

Assumption A1: (yt, Xt), are jointly strictly stationary and strong mixing with size −4(4 + ψ)/ψ, 0 <

ψ < 1/2.

Assumption A2: (i) F (yt|Xt, θ) is twice continuously differentiable on the interior of Θ ⊂ Rp, Θ compact;

(ii) E(supθ∈Θ |∇θF (yt|Xt, θ)i|5+ψ) ≤ C < ∞, i = 1, ..., p, where ψ is the same positive constant defined in

A1, and ∇θF (yt|Xt, θ)i is the i−th element of ∇θF (yt|Xt, θ); (iii) F (u|Xt, θ) is twice differentiable on the

interior of U ×Θ, where U and Θ are compact subsets of < and <p respectively; and (iv) ∇θF (u|Xt, θ) and

∇u,θF (u|Xt, θ) are jointly continuous on U ×Θ and 4s−dominated on U ×Θ for s > 3/2.

Assumption A3: (i) θ† = arg maxθ∈Θ E(ln f(y1|X1, θ)) is uniquely identified, (ii) f(yt|Xt, θ) is twice con-

tinuously differentiable in θ in the interior of Θ, (ii) the elements of ∇θ ln f(yt|Xt, θ) and of ∇2
θ ln f(yt|Xt, θ)

are 4s−dominated on Θ, with s > 3/2, E
(−∇2

θ ln f(yt|Xt, θ)
)

is positive definite uniformly in Θ.8

A2 imposes mild smoothness and moment restrictions on the cumulative distribution function under

the null, and is thus easily verifiable. We use A2(i)-(ii) in the study of the limiting behavior of V1T and

A2(iii)-(iv) in the study of V2T .9

Theorem 1: Let A1, A2(i)–(ii) and A3 hold. Then: (i) Under H0, V1T ⇒ supr∈[0,1] |Z(r)|, where Z is a

zero mean Gaussian process with covariance kernel K1(r, r′) given by:

E(Z(r)Z(r′)) = K1(r, r′) = E(
∞∑

s=−∞
(1{F (y0|X0, θ0) ≤ r} − r) (1{F (ys|Xs, θ0) ≤ r′} − r′))

+E(∇θF (yt|Xt, θ0))′A(θ0)
∞∑

s=−∞
E(q0(θ0)qs(θ0)′)A(θ0)E(∇θF (yt|Xt, θ0))

−2E(∇θF (yt|Xt, θ0))′A(θ0)
∞∑

s=−∞
E((1{F (y0|X0, θ0) ≤ r} − r) qs(θ0)′)

8Let ∇θ ln f(yt|Xt, θ)i be the i− th element of ∇θ ln f(yt|Xt, θ). For 4s−domination on Θ, we require |∇θ ln f(yt|Xt, θ)i| ≤
m(Xt), for all i, with E((m(Xt))4s) < ∞, for some function m.

9For the case of the CK test, a “natural” estimator can be defined as

θ̃T = arg min
θ∈Θ

∫

U

∫

V

1

T

T∑
t=1

((1{yt ≤ u} − F (u|Xt, θ)) 1{Xt ≤ v})2 dudv

Under mild regularity conditions, θ̃T
pr→ θ‡, where θ‡ satisfies the moment conditions∫

U

∫

V

E
((

1{yt ≤ u} − F (u|Xt, θ
‡)

)
1{Xt ≤ v}∇θF (u|Xt, θ

‡)
)

= 0.
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with qs(θ0) = ∇θ ln fs(ys|Xs, θ0), and A(θ0) = (E (∇θqs(θ0)∇θqs(θ0)′))
−1

.

(ii) Under HA, there exists an ε > 0 such that limT→∞ Pr( 1
T 1/2 V1T > ε) = 1.

Theorem 2: Let A1, A2(iii)-(iv) and A3 hold. Then: (i) Under H0, V2T ⇒ supu×v∈U×V |Z(u, v)|, where

V2T is defined in (7) and Z is a zero mean Gaussian process with covariance kernel K2(u, v, u′, v′) given by:

E(
∞∑

s=−∞
((1{y0 ≤ u} − F (u|X0, θ0))1{X0 ≤ v})((1{ys ≤ u′} − F (u|Xs, θ0))1{Xs ≤ v′}))

+E(∇θF (u|X0, θ0)′1{X0 ≤ v})A(θ0)
∞∑

s=−∞
q0(θ0)qs(θ0)′A(θ0)E(∇θF (u′|X0, θ0)1{X0 ≤ v′})

−2
∞∑

s=−∞
((1{y0 ≤ u} − F (u|X0, θ0))1{X0 ≤ v})E(∇θF (u′|X0, θ0)′1{X0 ≤ v′})A(θ0)qs(θ0)).

(ii) Under HA, there exists an ε > 0 such that limT→∞ Pr( 1
T 1/2 V2T > ε) = 1.

Notice that in both cases, the limiting distribution is a zero mean Gaussian process, with a covariance

kernel that reflects both dynamic misspecification as well as the contribution of parameter estimation error.

Thus, the limiting distribution is not nuisance parameter free and so critical values cannot be tabulated. In

the next section we outline a bootstrap procedure that takes into account the joint presence of parameter

estimation error and possible dynamic misspecification.

3 Validity of the Block Bootstrap

Given that the limiting distributions of V1T and V2T are not nuisance parameters free, our approach is to

construct bootstrap critical values for the tests. In order to show the first order validity of the bootstrap,

we shall obtain the limiting distribution of the bootstrapped statistic and show that it coincides with the

limiting distribution of the actual statistic under H0. Then, a test with correct asymptotic size and unit

asymptotic power can be obtained by comparing the value of the original statistic with bootstrapped critical

values.

As discussed above, if the data consists of iid observations, we should consider proceeding along the

lines of Andrews (1997), by drawing B samples of T iid observations from the distribution under H0,

conditional on the observed values for the covariates, Xt. The same approach could also be used in the case

of dependence, if H0 were correct dynamic specification, (i.e. if Xt = =t−1); in fact, in that case we could use

a parametric bootstrap and draw observations from F (yt|Xt, θ̂T ). However, if instead Xt ⊂ =t−1, using the

parametric bootstrap procedure based on drawing observations from F (yt|Xt, θ̂T ) does not ensure that the
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long run variance of the resampled statistic properly mimics the long run variance of the original statistic;

thus leading in general to the construction of invalid asymptotic critical values.

Our approach is to compare the empirical CDF of the resampled series, evaluated at the bootstrap

estimator, with the empirical CDF of the actual series, evaluated at the estimator based on the actual data.

For this, we use the overlapping block resampling scheme of Künsch (1989), as follows:10 At each replication,

draw b blocks (with replacement) of length l from the sample Wt = (yt, Xt), where T = lb. Thus, the first

block is equal to Wi+1, ..., Wi+l, for some i, with probability 1/(T − l + 1), the second block is equal to

Wi+1, ..., Wi+l, for some i, with probability 1/(T − l + 1), and so on for all blocks. More formally, let Ik,

k = 1, ..., b be iid discrete uniform random variables on [0, 1, ..., T − l], and let T = bl. Then, the resampled

series, W ∗
t = (y∗t , X∗

t ), is such that W ∗
1 , W ∗

2 , ..., W ∗
l ,W ∗

l+1, ...,W
∗
T = WI1+1,WI1+2, ...,WI1+l,WI2 , ..., WIb+l,

and so a resampled series consists of b blocks that are discrete iid uniform random variables, conditional on

the sample. Also, let θ̂∗T be the estimator constructed using the resampled series. For V1T , the bootstrap

statistic is:

V ∗
1T = sup

r∈[0,1]

|V ∗
1T (r)|,

where

V ∗
1T (r) =

1√
T

T∑
t=1

(
1{F (y∗t |X∗

t , θ̂∗T ) ≤ r} − 1{F (yt|Xt, θ̂T ) ≤ r}
)

, (8)

and

θ̂∗T = arg max
θ∈Θ

1
T

T∑
t=1

ln f(y∗t |X∗
t , θ).

The rationale behind the choice of (8) is the following. By a mean value expansion we can show (see the

appendix) that,

V ∗
1T (r) =

1√
T

T∑
t=1

(
1{F (y∗t |X∗

t , θ†) ≤ r} − 1{F (yt|Xt, θ
†) ≤ r})

− 1
T

T∑
t=1

∇θF (yt|Xt, θ
†)
√

T (θ̂∗T − θ̂T ) + oP∗(1), Pr−P, (9)

10The main difference between the block bootstrap and the stationary bootstrap of Politis and Romano (PR: 1994a) is that

the former uses a deterministic block length, which may be either overlapping as in Künsch (1989) or non-overlapping as

in Carlstein (1986), while the latter resamples using blocks of random length. One important feature of the PR bootstrap

is that the resampled series, conditional on the sample, is stationary, while a series resampled from the (overlapping or non

overlapping) block bootstrap is nonstationary, even if the original sample is strictly stationary. However, Lahiri (1999) shows

that all block boostrap methods, regardless of whether the block length is deterministic or random, have a first order bias of

the same magnitude, but the bootstrap with deterministic block length has a smaller first order variance. In addition, the

overlapping block boostrap is more efficient than the non overlapping block bootstrap.

9



where P ∗ denotes the probability law of the resampled series, conditional on the sample; P denotes the

probability law of the sample; and where “oP∗(1), Pr−P ”, means a term approaching zero according to P ∗,

conditional on the sample and for all samples except a set of measure approaching zero. Now, the first term

on the RHS of (9) can be treated via the empirical process version of the block bootstrap, suggesting that

the term has the same limiting distribution as 1√
T

∑T
t=1

(
1{F (yt|Xt, θ

†) ≤ r} − E
(
1{F (yt|Xt, θ

†) ≤ r})) ,

where E
(
1{F (yt|Xt, θ

†) ≤ r}) = r under H0, and is different from r under HA, conditional of the sample.

If
√

T (θ̂∗T − θ̂T ) has the same limiting distribution as
√

T (θ̂T − θ†), conditionally on the sample and for all

samples except a set of measure approaching zero, then the second term on the RHS of (9) will properly

capture the contribution of parameter estimation error to the covariance kernel. For the case of dependent

observations, the limiting distribution of
√

T (θ̂∗T − θ̂T ) for a variety of quasi maximum likelihood (QMLE)

and GMM estimators has been examined in numerous papers in recent years.

For example, Hall and Horowitz (1996) and Andrews (2002) show that the block bootstrap provides

improved critical values, in the sense of asymptotic refinement, for “studentized” GMM estimators and

for tests of overidentifying restrictions, in the case where the covariance across moment conditions is zero

after a given number of lags.11 In addition, Inoue and Shintani (2004) show that the block bootstrap

provides asymptotic refinements for linear overidentified GMM estimators for general mixing processes. In

the present context, however, we cannot “studentize” the statistic, and we are thus unable to show second

order refinement, as mentioned above. Instead, and again as mentioned above, our approach is to show

first order validity of
√

T (θ̂∗T − θ̂T ). An important recent contribution which is useful in our context is

that of Goncalves and White (2002a,b), who show that for QMLE estimators, the limiting distribution of
√

T (θ̂∗T − θ̂T ) provides a valid first order approximation to that of
√

T (θ̂T − θ†) for heterogeneous and near

epoch dependent series.

Theorem 3: Let A1, A2(ii)–(iii) and A3 hold, and let T = bl, with l = lT , such that as T →∞, l2T /T → 0.

Then,

P

(
ω : sup

x∈<

∣∣∣∣∣P
∗ [V ∗

1T (ω) ≤ u]− P

[
sup

r∈[0,1]

1√
T

T∑
t=1

(
1{F (yt|Xt,θ̂T ) ≤ r} − E

(
1{F (yt|Xt, θ

†) ≤ r}
))
≤ x

]∣∣∣∣∣ > ε

)
→ 0.

Thus, V ∗
1T has a well defined limiting distribution under both hypotheses, which under the null coincides

with the same limiting distribution of V1T , Pr - P, as E(1{F (yt|Xt, θ
†) ≤ r}) = r. Now, define V ∗

2T =

11Andrews (2002) shows first order validity and asymptotic refinements of the equivalent k−step estimator of Davidson and

MacKinnon (1999), which only requires the construction of a closed form expression at each bootstrap replication, thus avoiding

nonlinear optimization at each replication.
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supu×v∈U×V |V ∗
2T (u, v)|, where

V ∗
2T (u, v) =

1√
T

T∑
t=1

(
(1{y∗t ≤ u} − F (u|X∗

t , θ̂∗T ))1{X∗
t ≤ v} − (1{yt ≤ u} − F (u|Xt, θ̂T ))1{Xt ≤ v}

)
.

Theorem 4: Let A, A2(iii)–(iv) and A3 hold, and let T = bl, with l = lT , such that as T →∞, l2T /T → 0.

Then,

P

(
ω : sup

x∈<
|P ∗[V ∗

2T (ω) ≤ x]

− P

[
sup

u×v∈U×V

1√
T

T∑
t=1

((1{yt≤ u} − F (u|Xt,θ̂T ))1{Xt≤ v} − E((1{yt≤ u} − F (u|Xt, θ
†))1{Xt≤ v})) ≤ x

]∣∣∣∣∣ > ε

)

→ 0.

In summary, from Theorems 3 and 4, we know that V ∗
1T (ω) (resp. V ∗

2T (ω)) has a well defined limiting

distribution, conditional on the sample and for all samples except a set of probability measure approaching

zero. Furthermore, the limiting distribution coincides with that of V1T (resp. V2T ), under H0. The above

results suggest proceeding in the following manner. For any bootstrap replication, compute the bootstrapped

statistic, V ∗
1T (resp. V ∗

2T ). Perform B bootstrap replications (B large) and compute the percentiles of

the empirical distribution of the B bootstrapped statistics. Reject H0 if V1T (V2T ) is greater than the

(1−α)th-percentile. Otherwise, do not reject H0. Now, for all samples except a set with probability measure

approaching zero, V1T (V2T ) has the same limiting distribution as the corresponding bootstrapped statistic,

under H0. Thus, the above approach ensures that the test has asymptotic size equal to α. Under the

alternative, V1T (V2T ) diverges to infinity, while the corresponding bootstrap statistic has a well defined

limiting distribution. This ensures unit asymptotic power. Note that the validity of the bootstrap critical

values is based on an infinite number of bootstrap replications, although in practice we need to choose B.

Andrews and Buchinsky (2000) suggest an adaptive rule for choosing B, Davidson and McKinnon (2000)

suggest a pretesting procedure ensuring that there is a “small probability” of drawing different conclusions

from the ideal bootstrap and from the bootstrap with B replications, for a test with a given level. However,

in our case, the limiting distribution is a functional of a Gaussian process, so that we do not know the explicit

density function; and thus we cannot directly apply the approaches suggested in the papers above. In the

Monte Carlo section below, we analyze the robustness of our findings to the choice of B, and find that even

for values of B as small as 100, the bootstrap has good finite sample properties.

Needless to say, if the parameters are estimated using T observations, and the statistic is constructed

using only R observations, with R = o(T ), then the contribution of parameter estimation error to the
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covariance kernel is asymptotically negligible. In this case, we do not need to compute θ̂∗T . For example,

when bootstrapping critical values for a statistic analogous to V1T , but constructed using R observations,

say V1R, we could instead construct V ∗
1R as follows:

V ∗
1R = sup

r∈[0,1]

1√
R

R∑
t=1

(
1{F (y∗t |X∗

t , θ̂T ) ≤ r} − 1{F (yt|Xt, θ̂T ) ≤ r}
)

. (10)

The intuition for this statistic is that
√

R(θ̂T − θ†) = op(1), and so we do not need to use the bootstrap

estimator of θ to mimic the distribution of
√

T (θ̂T −θ†). Analogs of V1R and V ∗
1R can similarly be constructed

for V2T . We do not suggest using this approach because of the cost to finite sample power, and also because

we do not have an adaptive, data-driven rule for choosing R.

4 Monte Carlo Results

In this section we report the results of a small Monte Carlo study of V1T and V2T . Data are generated

according to the following processes:

Size Experiments:

Size1: Generate yt = α1yt−1 + α2yt−2 + εt = 0.2yt−1 + εt, εt ∼ iidN(0, σ2
ε ) with σ2

ε = 1. Estimate an

AR(1)model..

Size2: Generate yt = α1yt−1 + α2yt−2 + εt = 0.2yt−1 + 0.2yt−2 + εt, εt ∼ iidN(0, σ2
ε ) with σ2

ε = 1. Estimate

an AR(1)model.

The null hypothesis is that yt|yt−1 ∼ N(α†1yt−1, σ
†,2
ε ); that is H0 : Pr(yt ≤ y|yt−1, θ0) = 1√

2πσ†ε

∫ y

−∞ exp((u−
α†1yt−1)2/2σ†,2ε )du, while the alternative is the negation of H0. Notice that we allow for dynamic misspec-

ification in Size2, as Pr(yt ≤ y|yt−1, θ0) 6= Pr(yt ≤ y|yt−1, yt−2, θ
0), where θ0 6= θ0. On the other hand, in

Size1, the AR(1) model is dynamically correctly specified. As yt|yt−1 is conditionally normal in the size

experiments, the parameter in the conditional mean expression can be consistently estimated by least squares

(i.e. α̂T =
∑T

t=1
ytyt−1∑T

t=1
y2

t−1

), and a consistent estimator for σ†,2ε is σ̂2
ε,T = 1

T

∑T
t=1(yt − α̂T yt−1)2. Also, α̂∗T and

σ̂2∗
ε,T are defined in an analogous way, using appropriately resampled observations (as discussed above).

Power Experiments:

Power1: Generate yt = α1yt−1 + α2yt−2 + εt = 0.2yt−1 + 0.2yt−2 + εt, εt ∼ iid t3, and estimate an AR(1)

model.

Power2: Generate yt = α1yt−1 + α2yt−2 + εt = 0.2yt−1 + 0.2yt−2 + εt, εt ∼ iid t5, and estimate an AR(1)

model.

12



Power3: Generate yt = α1yt−1+α2yt−11{yt−1 ≥ 0}+εt = 0.2yt−1+0.2yt−11{yt−1 ≥ 0}+εt, εt ∼ iidN(0, 1),

and estimate an AR(1) model.

Power4: Generate yt = α1yt−1+α2yt−11{yt−1 ≥ 0}+εt = 0.2yt−1+0.4yt−11{yt−1 ≥ 0}+εt, εt ∼ iidN(0, 1),

and estimate an AR(1) model.

Power5: Generate yt = α1yt−1 + α2yt−11{yt−1 ≥ 0} + εt = 0.2yt−1 + 0.4yt−11{yt−1 ≥ 0} + εt, εt ∼ iid t3,

and estimate an AR(1) model.

Power6: Generate yt = α1yt−1 + α2yt−11{yt−1 ≥ 0} + εt = 0.2yt−1 + 0.4yt−11{yt−1 ≥ 0} + εt, εt ∼ iid t5,

and estimate an AR(1) model.

Notice that in these experiments, rejection arises because of misspecification of the marginal distribu-

tion of εt (Power1 and Power2), misspecification of the conditional mean (Power3 and Power4), and

misspecification of the marginal distribution of εt and of the conditional mean (Power5 and Power6).

For both size and power experiments, we construct the statistics

V1T = sup
r∈[0,1]

∣∣∣∣∣∣
1√
T

T∑
t=1


1





∫ yt

−∞

1√
2πσ̂2

ε,T

exp

(
−(y − α̂T yt−1)2

2σ̂2
ε,T

)
dy ≤ r



− r




∣∣∣∣∣∣

and

V2T = sup
u×v∈U×V

∣∣∣∣∣∣
1√
T

T∑
t=1





1{yt ≤ u} −

∫ u

−∞

1√
2πσ̂2

ε,T

exp

(
−(y − α̂T yt−1)2

2σ̂2
ε,T

)
dy


 1{Xt ≤ v}




∣∣∣∣∣∣
,

The bootstrap statistics are constructed in an analogous manner using

F (y∗t |X∗
t , θ̂∗T ) =

∫ yt

−∞

1√
2πσ̂2∗

ε,T

exp

(
−(y − α̂∗T y∗t−1)

2

2σ̂2∗
ε,T

)
.

Rejection frequencies for experiments with B = 100, T = 500, 1000, and l = 25, 40, 50 are reported in

Tables 1 (V1T ) and 2 (V2T ).12 Notice first that empirical level figures are rather close to the respective nominal

levels of the tests, regardless of the value of l, and regardless of whether there is dynamic misspecification

(Size2) or not (Size1). Additionally, empirical level is neither consistently above or consistently below

nominal level. This may be due to the fact that only 500 Monte Carlo replications are carried out and B is

set equal to 100. As expected, empirical level is in general closer to nominal level when 1000 instead of 500
12Further results for different values of B, T , and l are available upon request from the authors. Although the choice of block

length is important, and there exist data-dependent methods for block length selection, they may not work in our context, for

the reasons discussed above and in Inoue (2001). For this reason, we simply use l = 25, 40 and 50. Due to computational costs,

more detailed simulations are left to future research. Additionally, and also due to computational costs, all rejection frequencies

reported in the tables are based on 500 Monte Carlo replications. A GAUSS program implementing the tests and the bootstrap

is available upon request.
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observations are used. Turning to the empirical power figures reported in the tables, a number of clear-cut

conclusions emerge. First, power increases with sample, as expected, and is in many cases 1.0 (or very close

to it) when T = 1000. Second, there are marked improvements in finite sample power when: (i) the errors

are distributed as t3 (see Power1) as opposed to when they are distributed as t5 (see Power2); and when (ii)

the magnitude of the coefficient associated with the nonlinear component is 0.4 (see Power4) rather than 0.2

(see Power3). Third, when the departure from normality enters both through the error being non-normal

and the conditional mean being nonlinear (see Power5 and Power6), rejection frequencies are the highest,

as expected; and in some cases are 1.0, even for T = 500. Finally, there again appears to be little to choose

between the two tests, although V1T appears to have slightly higher power overall when comparing results

for the cases where the tests do worst (i.e. Power2 and Power3). In summary, both tests appear to perform

reasonably well in finite samples, although it should be stressed that the results here are only preliminary,

as they are based on a limited number of Monte Carlo experiments.

5 Concluding Remarks

We propose an extension of two conditional Kolmogorov type tests to the case of dynamic misspecification

under both the null and alternative hypotheses. We additionally outline conditions under which a version of

the block bootstrap can be used to construct valid critical values for the tests, in the context of parameter

estimation error and dynamic misspecification. Our approach is useful because critical values derived under

correct (dynamic) specification given =t−1 are not in general valid in the case of correct specification given

a subset of =t−1, where =t−1 is taken to mean the “relevant” information set. Allowing for dynamic mis-

specification enables us to test for correct specification given a particular information set, rather than given

the “correct” information or given the “entire” history. The findings from a Monte Carlo study illustrate

that the finite sample properties of both suggested statistics are satisfactory, for samples as small as 500

observations.
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6 Appendix

In the sequel, the notation “oP∗(1), Pr−P” and “
p∗→ 0, Pr−P” is used to denote convergence in probability

to zero, according to P ∗, the probability law governing the resampled series, conditional on the sample,

and for all samples except a subset with probability measure approaching zero. Also, E∗ and V ar∗ denote

expectation and variance operators, with respect to the probability measure P ∗.

Proof of Theorem 1: (i) Given A1 and A3, θ̂T
a.s.→ θ†, with θ† = θ0, under H0. Give A2(i), by a mean

value expansion of F (yt|Xt, θ̂T ) around θ0, we have,

1√
T

T∑
t=1

(1{F (yt|Xt, θ̂T ) ≤ r} − r) =
1√
T

T∑
t=1

(1{F (yt|Xt, θ0) ≤ r −∇θF (yt|Xt, θT )(θ̂T − θ0)} − r)

=
1√
T

T∑
t=1

(1{F (yt|Xt, θ0) ≤ r −∇θF (yt|Xt, θT )(θ̂T − θ0)} − (r −∇θF (yt|Xt, θT )(θ̂T − θ0)))

− 1√
T

T∑
t=1

∇θF (yt|Xt, θT )(θ̂T − θ0),

with θT ∈ (θ̂T , θ0). We begin by showing that,

1√
T

T∑
t=1

(1{F (yt|Xt, θ0) ≤ r −∇θF (yt|Xt, θT )(θ̂T − θ0)} − (r −∇θF (yt|Xt, θT )(θ̂T − θ0))

=
1√
T

T∑
t=1

(1{F (yt|Xt, θ0) ≤ r} − r) + oP (1), (11)

where the oP (1) term holds uniformly in r. Now, (11) follows, once we have shown (12) and (13) below,

Pr( sup
r∈[0,1]

sup
r′:|r−r′|<δ

| 1√
T

T∑
t=1

((1{F (yt|Xt, θ0) ≤ r} − r)− (1{F (yt|Xt, θ0) ≤ r′} − r′))| > ε) → 0, as δ → 0
(12)

sup
t
∇θF (yt|Xt, θT )(θ̂T − θ0)

a.s.→ 0. (13)

Given that r ∈ [0, 1], the indicator function is bounded, and F (yt|Xt) is a strictly stationary strong mixing

process, with size given in A1, the stochastic equicontinuity of 1√
T

∑T
t=1(1{F (yt|Xt, θ0) ≤ r}−r) (and hence

equation (12)) follows from Andrews ((1993), Example 2b, p. 199), once we notice that his Lp− continuity

condition (p. 201) is immediately satisfied. Notice that via a mean value expansion around θ0,

√
T

(
θ̂T − θ0

)
=

(
− 1

T

T∑
t=1

∇θqs(θT )∇θqs(θT )′
)−1

1√
T

T∑
t=1

∇θqs(θ0),
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with θT ∈
(
θ̂T , θ0

)
. Given A1 and A3(ii), Tϑ(θ̂T − θ0)

a.s.→ 0, for all ϑ < 1/2, as direct consequence of the

strong law of large numbers and of the law of iterated logarithms for stationary strong mixing process (e.g.

Eberlain (1986)). Also,

Pr
(

T−7/15 sup
t
|∇θF (yt|Xt, θT )| > ε

)
≤

T∑
t=1

Pr
(
T−7/15|∇θF (yt|Xt, θT )| > ε

)

≤
T∑

t=1

1
ε5T 7/3

E

(
sup
θ∈Θ

|∇θF (yt|Xt, θ|)
)5

≤ CT−4/3,

given A2(ii). Thus, (13) follows from the Borel Cantelli Lemma. Hence, recalling that θT ∈ (θ̂T , θ0), it is

immediate to see that,

1√
T

T∑
t=1

(1{F (yt|Xt, θ̂T ) ≤ r} − r) =
1√
T

T∑
t=1

(1{F (yt|Xt, θ0) ≤ r} − r)

− 1√
T

T∑
t=1

∇θF (yt|Xt, θ0)(θ̂T − θ0) + oP (1), (14)

with the oP (1) term holding uniformly in r. Given A1 and A3, pointwise convergence follows from the central

limit theorem for strong mixing processes and from application of the Cramer Wold device. The first term

on the RHS of (14) is stochastic equicontinuous, given Example 2b in Andrews (1993). The desired result

then follows by the continuous mapping theorem.

(ii) Under H0, θ† 6= θ0. Let cr
f (Xt, θ

†) denote the r − th critical value of the density associated with F,

conditional on Xt. Note that E(1{F (yt|Xt, θ
†)} ≤ r) = Pr(yt ≤ cr

f (Xt, θ
†)) 6= r, for some subset of r, with

nonzero Lebesgue measure, if the true conditional distribution differs from F (·|Xt, θ
†). The results then

follows by noting that,

V1T (r) =
1√
T

T∑
t=1

(1{F (yt|Xt, θ̂T ) ≤ r} − E(1{F (yt|Xt, θ̂T ) ≤ r})) +
√

T (E(1{F (yt|Xt, θ̂T ) ≤ r})− r),

as the first term is bounded in probability uniformly in r, and E(1{F (yt|Xt, θ̂T ) ≤ r}) − r 6= 0 for some r

with nonzero Lebesgue measure.

Proof of Theorem 2: Given A2(iii),

1
T 1/2

T∑
t=1

(1{yt ≤ u} − F (u|Xt, θ̂T ))1{Xt ≤ v}

=
1

T 1/2

T∑
t=1

(1{yt ≤ u} − F (u|Xt, θ0))1{Xt ≤ v} −

1
T

T∑
t=1

(∇θF (u|Xt, θT )′1{Xt ≤ v})T 1/2(θ̂T − θ0), θT ∈ (θ̂T , θ0).
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We first show pointwise convergence in distribution for any (u, v). Note that under the null,

E ((1{yt ≤ u}1{Xt ≤ v}) |Xt) = F (u|Xt, θ0)1{Xt ≤ v}.

Given Assumption A1, A2(iii)-(iv) and A3, and recalling that under H0, θ† = θ0, pointwise convergence in

distribution follows from the central limit theorem for stationary strong mixing processes. Convergence of

the finite dimensional distribution follows straightforwardly from the multivariate central limit theorem and

application of the Cramer Wold device. We now need to show stochastic equicontinuity, the desired result

will then follow from the continuous mapping theorem. In order to show that,

lim sup
T→∞

Pr


 sup

u×v∈U×V
sup

u′:|u−u′|<δ
v′:|v−v′|<δ

|V2T (u, v)− V2T (u′, v′)| > ε


 = 0,

it suffices to show that,

lim sup
T→∞

Pr


 sup

u×v∈U×V
sup

u′:|u−u′|<δ
v′:|v−v′|<δ

∣∣∣∣∣
1

T 1/2

T∑
t=1

(mt(u, v)−mt(u′, v′))

∣∣∣∣∣ > ε/2


 = 0, (15)

where mt(u, v) = (1{yt ≤ u} − F (u|Xt, θ0))1{Xt ≤ v}, and that

lim sup
T→∞

Pr


 sup

u×v∈U×V
sup

u′:|u−u′|<δ
v′:|v−v′|<δ

∣∣∣∣∣
1
T

T∑
t=1

(∇θF (u|Xt, θ)′1{Xt ≤ v} − ∇θF (u′|Xt, θ)′1{Xt ≤ v′})

×
√

T (θ̂T − θ0)
∣∣∣ ≥ ε/2

)
= 0. (16)

We begin by showing (15). First, almost surely,

sup
u′:|u−u′|<δ
v′:|v−v′|<δ

|mt(u, v)| = 1. (17)

Now, as U and V are assumed to be compact, it suffices to show that the Lp−continuity condition in Andrews

(1993, p. 201) holds, so for p ≥ 2,

sup
t≤T,T>1


E


 sup

u′:|u−u′|<δ
v′:|v−v′|<δ

|mt(u, v)−mt(u′, v′)|p







1/p

(18)

≤ sup
t≤T,T>1


E


 sup

u′:|u−u′|<δ
v′∈V

|(1{yt ≤ u} − 1{yt ≤ u′})1{Xt ≤ v′}|p






1/p

17



+ sup
t≤T,T>1


E


 sup

u′:|u−u′|<δ
v′∈V

|(F (u|Xt, θ0)− F (u′|Xt, θ0))1{Xt ≤ v′}|p






1/p

+ sup
t≤T,T>1


E


 sup

u∈U
v′:|v−v′|<δ

|(1{Xt ≤ v} − 1{Xt ≤ v′})(1{yt ≤ u} − F (u|Xt, θ0))|p






1/p

≤ (sup
u∈U

∣∣∣∣∣
∫ u+δ

u

fy(s)ds

∣∣∣∣∣)
1/p +

∣∣∣∣E
(

sup
u∈U

∇uF (u, θ0)
)p∣∣∣∣

1/p

δ + (sup
v∈V

∣∣∣∣∣
∫ v+δ

v

fx(s)ds

∣∣∣∣∣)
1/p ≤ Cδ (19)

where fx, fy denote the marginal densities of X and y respectively. Equation (15) then follows by Example

2a in Andrews (1993). In fact, condition (i) in that example is satisfied given A1; condition (ii) is ensured

by (17) and condition (iii) is implied by the fact that (18) is majorized by (19). As for (16),

1
T

T∑
t=1

(∇θF (u|Xt, θ)′1{Xt ≤ v} − ∇θF (u′|Xt, θ)′1{Xt ≤ v′})

=
1
T

T∑
t=1

(∇θF (u|Xt, θ)′ −∇θF (u′|Xt, θ)′)1{Xt ≤ v} (20)

+
1
T

T∑
t=1

(∇θF (u′|Xt, θ))′(1{Xt ≤ v} − 1{Xt ≤ v′}) . (21)

it suffices to show that the supu′:|u−u′|<δ of equation (20) converges to zero in probability and that the

supv′:|v−v′|<δ of (21) also converges to zero in probability. The summands in (20) satisfy condition WLIP in

Andrews (1992), as
∣∣(∇θF (u|Xt, θ)′ −∇θF (u′|Xt, θ)′)1{Xt ≤ v}

∣∣ ≤ |∇u,θF (u|Xt, θ)||u− u′|, u ∈ (u, u′),

and E|∇u,θF (u|Xt, θ)| < ∞ uniformly in Θ× U because of A2(iv). This ensures that supu′:|u−u′|<δ of (20)

converges to zero in probability. Finally the summands in (21) satisfy conditions TSE and DM in Andrews

(1992). In particular,

lim
δ→0

lim
T→∞

1
T

T∑
t=1

Pr

(
sup

v′:|v−v′|<δ

∣∣∇θF (u|Xt, θ)′
∣∣ 1{v ≤ Xt ≤ v′} > ε

)
= 0, v < v′

as 1
T

∑T
t=1(∇θF (u|Xt, θ)′ = Op(1) uniformly in U ×Θ, given A1 and A2(iii), thus satisfying TSE. Further-

more, DM is trivially satisfied because of A2(iv). This ensures that supv′:|v−v′|<δ of (21) also converges to

zero in probability.

Proof of Theorem 3: By a mean value expansion around θ†,

1√
T

T∑
t=1

(1{F (y∗t |X∗
t , θ̂∗T ) ≤ r} − 1{F (yt|Xt, θ̂T ) ≤ r}) =

18



1√
T

T∑
t=1

(1{F (y∗t |X∗
t , θ†) ≤ r −∇θF (y∗t |X∗

t , θ
∗
T )(θ̂∗T − θ†)} − (r −∇θF (y∗t |X∗

t , θ
∗
T )(θ̂∗T − θ†))

− 1√
T

T∑
t=1

(1{F (yt|Xt, θ
†) ≤ r −∇θF (yt|Xt, θT )(θ̂T − θ†)}+ (r −∇θF (yt|Xt, θT )(θ̂T − θ†))

− 1√
T

T∑
t=1

(
∇θF (y∗t |X∗

t , θ
∗
T )(θ̂∗T − θ†)−∇θF (yt|Xt, θT )(θ̂T − θ†)

)
, (22)

where θ
∗
T ∈ (θ̂∗T , θ†) and θT ∈ (θ̂T , θ†). We begin by showing that the last term on the right hand side of (22)

has the same limiting distribution as 1√
T

∑T
t=1∇θF (yt|Xt, θ0)(θ̂T − θ†) conditionally on the sample, and for

all samples except a subset with probability measure approaching zero. We can write the last term on the

RHS of (22) as,

1
T

T∑
t=1

(
∇θF (yt|Xt, θT )−∇θF (y∗t |X∗

t , θ
∗
T )

)√
T (θ̂∗T − θ†)

− 1
T

T∑
t=1

∇θF (yt|Xt, θT )
√

T (θ̂∗T − θ̂T ). (23)

Given A1 and A3, by Theorem 2.2 in Goncalves and White (2002(b))there exists an ε > 0 such that,

Pr
(

sup
x∈<p

∣∣∣P ∗
(√

T
(
θ̂∗T − θ̂T

)
≤ x

)
− P

(√
T

(
θ̂T − θ†

)
≤ x

)∣∣∣ > ε

)
→ 0, (24)

thus the second term on the RHS of (23) has the same limiting distribution of 1
T

∑T
t=1∇θF (yt|Xt, θT )

√
T (θ̂∗T−

θ̂T ), conditionally on the sample and for all samples except a subset with probability measure approach-

ing zero. We also need to show that the first term on the RHS of (23) is oP∗(1) Pr−P. First note that,
√

T (θ̂∗T − θ†) =
√

T (θ̂∗T − θ̂T ) +
√

T (θ̂T − θ†) = OP∗(1) + O(1) = OP∗(1), Pr−P. As θ
∗
T ∈ (θ̂∗T , θ†) and

θT ∈ (θ̂T , θ†), it follows that θ
∗
T − θT = oP∗(1), Pr−P. Thus, by the same argument used in Lemma A4 of

Goncalves and White (2000(b)), it suffices to show that,

sup
θ∈Θ

∣∣∣∣∣
1
T

T∑
t=1

(∇θF (yt|Xt, θ)−∇θF (y∗t |X∗
t , θ))

∣∣∣∣∣
P∗→ 0, Pr−P.

For any given θ,

1
T

T∑
t=1

(∇θF (y∗t |X∗
t , θ)−∇θF (yt|Xt, θ)) =

1
T

T∑
t=1

(∇θF (y∗t |X∗
t , θ)− E∗(∇θF (y∗t |X∗

t , θ))) (25)

− 1
T

T∑
t=1

(∇θF (yt|Xt, θ)− E∗(∇θF (y∗t |X∗
t , θ))) (26)
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Recall that Ik is an iid uniform random variable on [0, 1, ..., T − lT + 1], and T = lT b, where b is the number

of blocks. Thus, 1
T

∑T
t=1∇θF (y∗t |X∗

t , θ) = 1
T

∑b
k=1

∑lT
i=1∇θF (yIk+i|XIk+i, θ), and so, pointwise in θ,

E∗
(

1
T

T∑
t=1

∇θF (y∗t |X∗
t , θ)

)
=

1
lT (T − lT + 1)

T−l∑
t=0

lT∑

i=1

∇θF (yt+i|Xt+i, θ) + O(lT /T ), Pr−P

=
1
T

T∑
t=0

∇θF (yt|Xt, θ) + O(lT /T ), Pr−P,

where the last equality follows from Lemma A1 in Fitzenberger (1997). Thus, the term in (26) is O(lT /T ),

Pr−P, pointwise in θ. With respect to the RHS in (25), by the Chebyshev inequality,

P ∗
(∣∣∣∣∣

1
T

T∑
t=1

(∇θF (y∗t |X∗
t , θ)− E∗(∇θF (y∗t |X∗

t , θ)))

∣∣∣∣∣ > ε

)
≤ 1

Tε2
V ar∗

(
1√
T

T∑
t=1

∇θF (y∗t |X∗
t , θ)

)
.
(27)

Now,

V ar∗
(

1√
T

T∑
t=1

∇θF (y∗t |X∗
t , θ)

)
= V ar∗

(
1√
T

b∑

k=1

lT∑

i=1

∇θF (yIk+i|XIk+i, θ)

)

= E∗


 1

T

b∑

k=1

lT∑

i=1

lT∑

j=1

∇θF (yIk+i|XIk+i, θ)∇θF (yIk+j |XIk+j , θ)




=
1

T − lT + 1
1
l

T−lT∑
t=0

lT∑

i=1

lT∑

j=1

∇θF (yt+j |Xt+j , θ)∇θF (yt+i|Xt+i, θ)′ = O(1), Pr−P,

pointwise in θ. Thus, the LHS of (25) is oP∗(1), Pr−P, pointwise in θ. By noting that given A2(i)-(ii),

∇θF (yt|Xt, θ) is almost surely Lipschitz (as in Andrews (1992), Definition S-Lip, p. 248), the LHS of (25)

is o∗P (1), Pr−P uniformly in θ, given Lemma A.2 in Goncalves and White (2000(b)). We now need to show

that,

1√
T

T∑
t=1

(1{F (y∗t |X∗
t , θ†) ≤ r −∇θF (y∗t |X∗

t , θ
∗
T )(θ̂∗T − θ†)} − (r −∇θF (y∗t |X∗

t , θ
∗
T )(θ̂∗T − θ†))

=
1√
T

T∑
t=1

(1{F (y∗t |X∗
t , θ†) ≤ r} − r) + oP∗(1), Pr−P.

Along the same lines as in the proof of Theorem 1, we first show that 1√
T

∑T
t=1(1{F (y∗t |X∗

t , θ†) ≤ r} − r)

is P ∗−stochastic equicontinuous in r, and then that ∇θF (y∗t |X∗
t , θ

∗
T )(θ̂∗T − θ†) is oa.s.∗(1), a.s.−P. Without

loss of generality suppose that r′ < r. Then,

P ∗
(

sup
r∈[0,1]

sup
r′:|r−r′|<δ

1√
T

T∑
t=1

(1{r′ ≤ F (y∗t |X∗
t , θ†) ≤ r} > ε

)

≤ P ∗
(

sup
r∈[0,1]

1√
T

T∑
t=1

(1{r − δ ≤ F (y∗t |X∗
t , θ†) ≤ r} > ε)

)
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≤ 1
ε2

E∗
(

sup
r∈[0,1]

1√
T

T∑
t=1

1{r − δ ≤ F (y∗t |X∗
t , θ†) ≤ r}

)2

= sup
r∈[0,1]

1
ε2

1
T − lT + 1

1
lT

T−lT∑
t=0

lT∑

i=1

lT∑

j=1

1{r − δ ≤ F (yt+j |Xt+j , θ
†) ≤ r}1{r − δ ≤ F (yt+i|Xt+i, θ

†) ≤ r}

≤ Cδ, Pr−P.

The fact that ∇θF (y∗t |X∗
t , θ

∗
T )(θ̂∗T − θ†) is a.s.∗(1), a.s. − P follows by a similar argument to that used in

the proof of Theorem 1. Thus,

1√
T

T∑
t=1

(1{F (y∗t |X∗
t ,θ̂

∗
T ) ≤ r} − 1{F (yt|Xt,θ̂T ) ≤ r}) =

1√
T

T∑
t=1

(1{F (y∗t |X∗
t , θ

†) ≤ r} − 1{F (yt|Xt, θ
†) ≤ r})

(28)

− 1
T

T∑
t=1

∇θF (yt|Xt, θ
†)
√

T (θ̂∗T − θ̂T ) + oP∗(1), Pr−P. (29)

Given (24), it is immediate to see that the first term in (29) has the same limiting distribution as

E(∇θF (yt|Xt, θ
†))
√

T (θ̂T − θ̂†), Pr−P, given the law of large numbers. Now, consider the term on the RHS

of (28), which can be written as,

1√
T

T∑
t=1

(1{F (y∗t |X∗
t , θ†) ≤ r} − E∗ (

1{F (y∗t |X∗
t , θ†) ≤ r})

− 1√
T

T∑
t=1

(1{F (yt|Xt, θ
†) ≤ r} − E∗ (

1{F (y∗t |X∗
t , θ†) ≤ r}) , (30)

where

E∗(1{F (y∗t |X∗
t , θ†) ≤ r}) =

1
lT (T − lT + 1)

T−l∑
t=0

lT∑

i=1

1{F (yt+i|Xt+i, θ
†) ≤ r}

=
1
T

T∑
t=0

1{F (yt+i|Xt+i, θ
†) ≤ r}+ O(lT /T ), Pr−P,

uniformly in r. Thus, the second term in (30) is o(1), Pr−P. We now need to show that the first term in (30)

has the same limiting distribution as 1√
T

∑T
t=1(1{F (yt|Xt, θ

†) ≤ r} − E
(
1{F (yt|Xt, θ

†) ≤ r}) , uniformly

in r, Pr−P. This follows from the empirical process version of the block bootstrap of Naik-Nimbalkar and

Rajarshi (1994, Theorem 2.1), once we note that given ψ < 1/2, A1 and A2(i)-(ii) imply their conditions (a)

and (b).13

Proof of Theorem 4: Given A2(iii),

V ∗
2T (u, v) =

1√
T

T∑
t=1

(
(1{y∗t ≤ u} − F (u|X∗

t , θ†))1{X∗
t ≤ v} − (1{yt ≤ u} − F (u|Xt, θ

†))1{Xt ≤ v})

13The almost sure validity of the block bootstrap for empirical processes is obtained by Naik-Nimbalkar and Rajarshi (1994)

assuming that lT = o(T 1/4), and by Peligrad (1998) under milder mixing conditions and assuming lT = o(T 1/3).
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− 1
T

T∑
t=1

((
∇θF (u|X∗

t , θ
∗
T )′1{X∗

t ≤ v}
)

T 1/2(θ̂∗T − θ†)− (∇θF (u|Xt, θT )′1{Xt ≤ v}) T 1/2(θ̂T − θ†)
)

.
(31)

Given A2(iii)-(iv) and (24), by the same argument as that used in the proof of Theorem 3, the term in (31)

has the same limiting distribution as 1
T

∑T
t=1

(∇θF (u|Xt, θ
†)′1{Xt ≤ v})T 1/2(θ̂T − θ†), conditional on the

samples and for all samples except a subset with probability measure approaching zero. Again by the same

argument as that used in the proof of Theorem 3,

1√
T

T∑
t=1

(
1{yt ≤ u} − F (u|Xt, θ

†))1{Xt ≤ v} − E∗ (
1{y∗t ≤ u} − F (u|X∗

t , θ†))1{X∗
t ≤ v}))

= o(1), Pr−P, for lT = o(T 1/2).

Now, P ∗−convergence in distribution, Pr−P, pointwise in u and v of

1√
T

T∑
t=1

(
1{y∗t ≤ u} − F (u|X∗

t , θ†))1{X∗
t ≤ v} − E∗ (

1{y∗t ≤ u} − F (u|X∗
t , θ†))1{X∗

t ≤ v}))
(32)

follows from Theorem 3.5 in Künsch (1989). Finally, along the same lines as used in the proof of Theorem

2, it can be shown that (32) is P ∗−stochastic equicontinuous in U × V, Pr−P. As,

V ar∗
(

1√
T

T∑
t=1

1{y∗t ≤ u} − F (u|X∗
t , θ†))1{X∗

t ≤ v}
)

=
1
T

T−lT∑

t=lT

lT∑

j=−lT

(
1{yt ≤ u} − F (u|Xt, θ

†)
) (

1{yt−j ≤ u} − F (u|Xt−j , θ
†)

)
+ O

(
lT√
T

)
,

the desired results follows from application of the continuous mapping theorem.
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Table 1: Monte Carlo Rejection Frequencies - V1T

Model l=25 l=40 l=50
10% 5% 10% 5% 10% 5%

Panel A: Sample Size = 500 Observations
Size1 0.066 0.034 0.098 0.060 0.088 0.046
Size2 0.092 0.058 0.104 0.064 0.098 0.060

Power1 0.934 0.854 0.920 0.806 0.926 0.810
Power2 0.420 0.250 0.402 0.280 0.414 0.276
Power3 0.434 0.324 0.428 0.320 0.442 0.316
Power4 0.944 0.880 0.928 0.902 0.966 0.928
Power5 1.000 0.998 1.000 1.000 1.000 1.000
Power6 0.998 0.990 0.996 0.992 1.000 0.994

Panel B: Sample Size = 1000 Observations
Size1 0.076 0.040 0.106 0.052 0.104 0.062
Size2 0.102 0.042 0.108 0.058 0.122 0.070

Power1 1.000 0.996 1.000 0.998 1.000 0.994
Power2 0.738 0.546 0.752 0.576 0.760 0.578
Power3 0.676 0.590 0.700 0.594 0.682 0.580
Power4 1.000 0.996 1.000 0.998 1.000 0.998
Power5 1.000 1.000 1.000 1.000 1.000 1.000
Power6 1.000 1.000 1.000 1.000 1.000 1.000

Notes: All entries are rejection frequencies of the null hypothesis correct conditional specification, given a particular information set,
based on 5% and 10% critical values constructed from the empirical bootstrap distribution, and based on the block bootstrap with
blocks of length 25, 40, and 50 observations. Model descriptions are outlined above. All rejection frequencies are based on 500 Monte
Carlo replications, and B=100 bootstrap replications. See above for further details.
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Table 2: Monte Carlo Rejection Frequencies - V2T

Model l=25 l=40 l=50
10% 5% 10% 5% 10% 5%

Panel A: Sample Size = 500 Observations
Size1 0.114 0.072 0.112 0.068 0.144 0.068
Size2 0.116 0.072 0.114 0.068 0.132 0.082

Power1 0.916 0.846 0.910 0.766 0.912 0.792
Power2 0.424 0.270 0.414 0.262 0.422 0.268
Power3 0.392 0.274 0.410 0.290 0.418 0.310
Power4 0.900 0.808 0.906 0.826 0.910 0.852
Power5 0.998 0.998 0.998 0.992 0.996 0.986
Power6 0.984 0.970 0.982 0.952 0.982 0.942

Panel B: Sample Size = 1000 Observations
Size1 0.108 0.058 0.140 0.088 0.128 0.074
Size2 0.136 0.068 0.126 0.076 0.144 0.090

Power1 0.998 0.994 1.000 0.998 1.000 0.992
Power2 0.716 0.526 0.728 0.528 0.706 0.524
Power3 0.644 0.508 0.660 0.534 0.620 0.522
Power4 0.998 0.988 0.996 0.992 0.990 0.974
Power5 1.000 1.000 1.000 1.000 1.000 1.000
Power6 1.000 1.000 1.000 1.000 1.000 1.000

Notes: See notes to Table 1.
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