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Abstract

In this paper we develop a framework for analysing the impact of AI on occupations. Leaving aside
the debates on robotisation, digitalisation and online platforms as well as workplace automation, we
focus on the occupational impact of AI that is driven by rapid progress in machine learning. In our
framework we map 59 generic tasks from several worker surveys and databases to 14 cognitive
abilities (that we extract from the cognitive science literature) and these to a comprehensive list of
328 AI benchmarks used to evaluate progress in AI techniques. The use of these cognitive abilities as an
intermediate mapping, instead of mapping task characteristics to AI tasks, allows for an analysis of AI's
occupational impact that goes beyond automation. An application of our framework to occupational
databases gives insights into the abilities through which AI is most likely to affect jobs and allows
for a ranking of occupation with respect to AI impact. Moreover, we find that some jobs that were
traditionally less affected by previous waves of automation may now be subject to relatively higher AI
impact.
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1 Introduction

There is a wide agreement that the latest advances in Artificial Intelligence (AI), driven by rapid progress
in machine learning (ML), will have disruptive repercussions on the labour market (Shoham et al., 2018).
Previous waves of technological progress have also had a sustained impact on labour markets (Autor and
Dorn, 2013), yet the notion prevails that the impact of ML will be different (Brynjolfsson et al., 2018). An
argument that supports this notion is that ML seems to circumvent the previously hard limit to automation
known as Polanyi's Paradox (Polanyi, 1966), which states that we humans ``know more than we can tell''.
While past technologies could only automate tasks that follow explicit, codifiable rules, ML technologies
can infer rules automatically from the observation of inputs and corresponding outputs (Autor, 2014).
This implies that ML may facilitate the automation of many more types of tasks than were feasible in
previous waves of technological progress (Brynjolfsson et al., 2018).

In this paper we develop a framework for analysing the occupational impact of AI progress. The explicit
focus on AI distinguishes this analysis from studies on robotisation (Acemoglu and Restrepo, 2018), digi-
talisation and online platforms (Agrawal et al., 2015) and the general occupational impact of technological
progress (Autor, 2015). The framework links tasks to cognitive abilities, and these to indicators that mea-
sure performance in different AI fields. More precisely, we map 59 generic tasks from the worker surveys
European Working Conditions Survey (EWCS) and Survey of Adult Skills (PIAAC) as well as the occupational
database O*Net to 14 cognitive abilities (that we extract from the cognitive science literature) and these
to a comprehensive list of 328 AI-related benchmarks which are metrics on publicly available datasets
that indicate progress in AI techniques (see Figure 1).

Differently from previous approaches that have tried to link directly AI developments with task charac-
teristics (Brynjolfsson et al., 2018), our framework adds an intermediate layer of cognitive abilities. With
14 distinct cognitive abilities, this layer is more detailed than the task charakteristics mentioned in the
task-based approach as introduced in (Autor et al., 2003). In this model work tasks are defined by their
routine, abstract, and manual content, all three characteristics of work organisation that point towards
task automation (Autor and Handel, 2013). Although this approach has been very fruitful and inspired
many studies (including this one), in our view these characteristics do not suffice to capture AI's potential
to affect and transform work tasks that are not (yet) tailored to be performed (fully or partially) by a ma-
chine. Hence, we leave open the possibility that besides substituting an already standardised task, AI may
cause workplaces to transform the way a task is performed by acquiring some of the abilities required for
the task.

The ability perspective allows us to distinguish machines that, through ML, are empowered with the abil-
ities of performing in a range of several tasks from machines that are constructed or programmed to
perform a specific task. For instance, the ability of understanding human language (covered by the
area of Natural Language Processing) can be applied in a variety of tasks (such as reading or writing
e-mails, or advising costumers/clients). Abilities are therefore a better parameter to evaluate progress in
AI (Hernández-Orallo, 2017a). We focus on abilities instead of skills because from a human perspective
abilities are innate and primary. Instead, skills instead acquired through a combination of abilities, experi-
ence and knowledge (Fernández-Macías et al., 2018). Since knowledge and experience are not appropriate
properties of AI, linking AI benchmarks to abilities (instead of skills) should be less prone to measurement
error (Hernández-Orallo, 2017a).
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Figure 1: Bidirectional and indirect mapping between job market and Artificial Intelligence (abilities described in
Appendix A).

Due to the intermediate layer of 14 different abilities, we also gain a broader understanding on the oc-
cupational impact of AI. That is, the framework allows us to not only define a single occupation-level AI
exposure score but also lets us identify the different abilities that are most likely driving the implementa-
tion of AI in the workspace. In other words, we can identify which abilities are less likely to be performed
by AI and are therefore less prone to changes in the way they are currently being performed.

Furthermore, we rely on a wide range of AI benchmarks to approximate the direction of AI progress. These
benchmarks are performance indicating metrics (such as accuracy, or area under the receiver operating
characteristics) on openly accessible datasets which are prominently promoted on online platforms where
both AI researchers and industry players present their current performance in different AI domains. The
collection of these benchmarks provides a thorough overview of the direction of AI progress. In many
cases these benchmarks and the work on them exist before the explicit formalisation of its use at work.
For instance, performing well in the game of ``Go'', which is recorded in a corresponding benchmark, is
not explicitly mentioned in any work-related task. However, AI that performs well on these benchmarks
needs to exhibit abilities in memory processing and planning. Both abilities are useful in the performance
of some work-related tasks. Moreover, instead of looking at past progress of these benchmarks, we mea-
sure interest in specific AI domains through the prevalence of benchmarks in each category. This measure
allows for the computation of future trends based on past developments in each category and can be
easily updated for future years.

This paper contributes to the literature on measuring the occupational impact of AI (Frey and Osborne,
2017; Arntz et al., 2016; Nedelkoska and Quintini, 2018), although we distinguish between technological
feasibility of AI and the full automation (substitution through machines) of a task. We further complement
this literature by measuring AI potential in cognitive abilities using AI field benchmarks that are used as
orientation by AI researchers and other AI industry players. This approach captures the entire AI research
field more comprehensively than expert predictions on the future automatibility of occupations as in Frey
and Osborne (2017) and subsequent studies.

This measure of AI progress complements Brynjolfsson et al. (2018)'s rubric to determine the suitability
of tasks for ML since it can be easily updated to future developments in the already recorded benchmarks.
In addition, some of Brynjolfsson et al. (2018)'s defined task properties are endogenous to the redefinition
of an occupational task in which AI is already established. For instance, the property "task information
is recorded or recordable by computer" emerges once the corresponding AI technology is specified to the
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task. That is, if AI performs well in one of the abilities required to perform the task, it requires a redefi-
nition of the affected task around this ability in order to be considered a separate work task. In contrast,
the ability perspective assesses AI progress one step ahead and does not require a redefinition of tasks.

Our approach relates most to Felten et al. (2018) who also link AI field benchmarks of to work-related
abilities but there are some noteworthy differences. First, Felten et al. (2018)'s measure of AI progress
relies on one platform only, the Electronic Frontier Foundation (EFF)1, which is restricted to a limited set
of AI benchmarks. The benchmarks in the present framework further rely on our own previous analysis
and annotation of papers (Hernández-Orallo, 2017c; Martínez-Plumed et al., 2018; Martinez-Plumed and
Hernandez-Orallo, 2018) as well as on open resources such as Papers With Code2, which includes data
and results from a more comprehensive set of AI benchmarks, competitions and tasks. This ensures a
broad coverage of AI tasks, also providing insight into AI performance in cognitive abilities that go beyond
perception, such as text summarisation, information retrieval, planning and automated deduction.

For better comparability across these benchmarks that come from a multitude of different AI domains,the
measure of AI progress is also different. Felten et al. (2018) assess AI progress by computing linear trends
in each benchmark. However, nonlinear performance jumps at different thresholds of each benchmark,
impede comparability between different benchmarks. We address this issue by translating benchmarks
to a measure of AI research activity that enables comparability across benchmarks from different AI fields.

In a more recent article, Webb (2020) measures AI's occupational impact by computing the overlap be-
tween O*NET job task descriptions and the text of patents. We complement this approach by measuring
AI progress before it is formulated in patents.

The remainder of this paper is structured as follows. The following section provides background informa-
tion on the construction of the layer of cognitive abilities in the framework. In Section 3 we describe the
different data sources that we combine to construct the framework which is followed by Section 4 where
we present the methodology used to construct the framework. We present the results of the application
of our framework in Section 5. Section 6 concludes.

2 Background: cognitive abilities

A first glance at the tasks that are usually identified in the workplace and those that are usually set in AI
as benchmarks (see Figure 1) reveals the difficulty of matching them directly, as the lists are very differ-
ent. However, tasks and benchmarks have some latent factors in common, what we refer to as `cognitive
abilities', which we can use to map them indirectly but at a level of aggregation that is more insightful. For
this characterisation of abilities we look for an intermediate level of detail, excluding very specific abilities
and skills (e.g., music skills, mathematical skills, hand dexterity, driving a car, etc.) but also excluding very
general abilities or traits that would influence all the others (general intelligence, creativity, etc.). As we
just cover cognitive abilities, we also exclude personality traits (e.g., the big five (Fiske, 1949): openness,
conscientiousness, extraversion, agreeableness and neuroticism). Although we consider the latter essen-
tial for humans, their ranges can be simulated in machines by changing goals and objective functions.

1https://www.eff.org/es/ai/metrics
2https://paperswithcode.com/
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At the intermediate level, we aim at a number and breadth similar to the “broad abilities” of the Cattell-
Horn-Carroll hierarchical model (see Figure 2) (Carroll et al., 1993). However, some of them are very
anthropocentric and are not really categorical, but orthogonal (such as processing speed or the distinction
between short-term and long-term memory).
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Figure 2: Cattell-Horn-Carroll's three stratum model. The broad abilities are Crystallised Intelligence (Gc), Fluid
Intelligence (Gf), Quantitative Reasoning (Gq), Reading and Writing Ability (Grw), Short-Term Memory (Gsm), Long-
Term Storage and Retrieval (Glr), Visual Processing (Gv), Auditory Processing (Ga), Processing Speed (Gs) and Deci-
sion/Reaction Time/Speed (Gt).

For our purposes we use 14 categories as the result of the integration of several tables and figures from
Hernández-Orallo (2017c), originally collected from psychometrics, comparative psychology, cognitive sci-
ence and artificial intelligence. The 14 categories are defined as follows:

• Memory processes (MP)

• Sensorimotor interaction (SI)

• Visual processing (VP)

• Auditory processing (AP)

• Attention and search (AS)

• Planning and sequential decision-making and acting (PA)

• Comprehension and compositional expression (CE)

• Communication (CO)

• Emotion and self-control (EC)

• Navigation (NV)

• Conceptualisation, learning and abstraction (CL)

• Quantitative and logical reasoning (QL)

• Mind modelling and social interaction (MS)

9



Measuring the Occupational Impact of AI: Tasks, Cognitive Abilities and AI Benchmarks

• Metacognition and confidence assessment (MC)

The hierarchical theories of intelligence in psychology, animal cognition and the textbooks in AI are gen-
erally consistent (at least partially) with this list of abilities, or in more general and simple terms, with
this way of organising the vast space of cognition. The definition of cognitive abilities can be found in
Appendix A, which also includes a rubric so that we can determine for each ability whether it is required
for a particular task.

3 Data

For our analysis we rely on two different sources of data that provide information on task intensity in
occupations (i.e. the relevance of and time spent on that task) on the one side and on AI research intensity
on the other side. We start with a description of the data on tasks before moving to a description of the
data on AI.

3.1 Tasks: work intensity

For the task dataset, we draw from the framework developed in Fernández-Macías and Bisello (2017).
This data entails a list of tasks (presented in Table 3 in Appendix D) and their respective intensity (i.e.
relevance and time spent) across occupations. The development of this dataset is described in detail in
Fernández-Macías et al. (2016). In the following we provide a summary of the construction of this dataset.

We classify occupations according to the 3-digit International Standard Classification of Occupations
(ISCO-3)3. Since there is no international data source that unifies information on all tasks required, we
combine data from three different sources: the worker surveys the European Working Conditions Survey
(EWCS)4 and the OECD Survey of Adult Skills (PIAAC)5 as well as the database the Occupational Informa-
tion Network (O*NET)6.

The data in the worker surveys are measured at the individual worker level based on replies to questions on
what they do at work. Task intensity is derived as a measure of time spent on specific tasks. For instance,
in the EWCS we derive the task "Listing or moving people" from the survey question q24b "Does your main
paid job involve listing or moving people?" and the corresponding 7-point scale answers ranging from "All
of the time" to "Never". Analogously, in the PIAAC we derive the task "Read letters, memos or e-mails"
from the survey question G_Q01b "Do you read letters, memos or e-mails?" and the corresponding 5-point
scale answers ranging from "Every day" to "Never". Due to the nature of survey data, we need to be aware
of issues such as measurement error, high variation in responses across individuals and biased responses.

Similarly, the occupational database, O*NET is based on multiple waves of individual worker surveys but
also on employer job postings, expert research and other sources. The data is curated by occupational
experts and provided on a standardised occupational level. In this case, task intensity is derived from a
variable that measures the extent to which the task is required to perform a job. For instance, the task
"Oral Comprehension" is derived from the same variable and the corresponding level defined on a 7-point

3https://www.ilo.org/public/english/bureau/stat/isco/
4https://www.eurofound.europa.eu/surveys/european-working-conditions-surveys
5https://www.oecd.org/skills/piaac/
6https://www.onetonline.org/
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scale.

The O*NET is widely used in the literature on labour markets and technological change (Acemoglu and
Autor, 2011; Frey and Osborne, 2017; Goos et al., 2009). Moreover, it covers a large share of the task list
that we construct. However, the occupational level of the data precludes a further analysis into variation
in task content within occupations. Moreover, much like the EWCS for Europe, the O*NET is based on US
data only. Therefore, likely differences in the task content of occupations across countries due to institu-
tional as well as socio-economic differences cannot be considered in the present analysis.

Finally, in order to make the measures of task intensity comparable across all three data sources, we
equalise scales and levels of all variables. For this purpose, we rescale the variables to a [0,1] scale
with 0 representing the lowest possible intensity and 1 representing the highest possible intensity of each
variable. Moreover, we average scores measured on an individual level (i.e. all variables from PIAAC and
EWCS) to the unified level of standardised 3-digit occupation classifications. The final database contains
the intensity of 59 tasks across 119 different occupations.

To test the consistency of the variables that are derived from multiple datasources, Fernández-Macías
et al. (2016) look at pairwise correlations and Cronbach's Alpha for multiple variables that measure similar
concepts. Reassuringly, all tests yield high correlations and Cronbachs's Alpha values of between 0.8
and 0.9, suggesting consistency in the measurement of task intensity across the different data sources.
Moreover, it is reasonable to doubt the comprehensiveness of the task framework. In fact, the results of
the current study (see below) suggest that the following tasks are missing from the framework:

1. (Within Physical tasks) Navigation: moving objects or oneself in unstructured and changing spaces

2. (Within Intellectual - Information processing tasks) Visual and/or auditory processing of uncodified
and unstructured information

3. (Within Intellectual - Problem Solving tasks) Information search and retrieval

4. (Within Intellectual - Problem Solving tasks) Planning

Since the collection of data on these additional task categories is yet to be conducted, the results of this
paper will not include them.

3.2 Benchmarks: AI intensity

We consider a comprehensive set of AI benchmarks for our framework based on our own previous analysis
and annotation of AI papers (Hernández-Orallo, 2017b; Martínez-Plumed et al., 2018; Martinez-Plumed
and Hernandez-Orallo, 2018) as well as open resources such as Papers With Code7 (the largest, up to
date, free and open repository of machine learning code and results), which includes data from several
repositories (e.g, EFF8, NLP-progress9, SQuAD10, RedditSota11, etc.). All these repositories draw on data
from multiple (verified) sources, including academic literature, review articles and code platforms focused
on machine learning and AI.

7https://paperswithcode.com/
8https://www.eff.org/es/ai/metrics
9https://github.com/sebastianruder/NLP-progress

10https://rajpurkar.github.io/SQuAD-explorer/
11https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems

11

https://paperswithcode.com/
https://www.eff.org/es/ai/metrics
https://github.com/sebastianruder/NLP-progress
https://rajpurkar.github.io/SQuAD-explorer/
https://github.com/RedditSota/state-of-the-art-result-for-machine-learning-problems


Measuring the Occupational Impact of AI: Tasks, Cognitive Abilities and AI Benchmarks

For the purposes of this study, from the aforementioned sources we track the reported evaluation results
(when available or sufficient data is provided) on different metrics of AI performance across separate AI
benchmarks (e.g., tasks, datasets, competitions, awards, etc.) from a number of AI domains, including
(among others) computer vision, speech recognition, music analysis, machine translation, text summari-
sation, information retrieval, robotic navigation and interaction, automated vehicles, game playing, pre-
diction, estimation, planning, automated deduction, etc. This ensures a broad coverage of AI tasks, also
providing insight into AI performance in cognitive abilities that go beyond perception, such as the ability
to plan and perform actions on such plans. Note that most of these benchmarks we are addressing are
specific, implying that their goals are clear and concise, and that researchers can focus on developing spe-
cialised AI systems for solving these tasks. This does not mean researchers are not allowed to use more
general-purpose components and techniques to solve many of these problems, but it may be easier or
most cost-effective for the researchers to build a strongly specialised system for the task at hand. Specif-
ically, our framework uses data from 328 different AI benchmarks for which there is enough information
available to measure their progress for different evaluation metrics. Table 4 in Appendix E contains the
details from the benchmarks used in our analysis.

When aiming at evaluating the progress in a specific (AI) discipline, we need to focus on objective evalu-
ation tools to measure the elements and objects of study, assess the prototypes and artefacts that are
being built and examine the discipline as a whole (Hernández-Orallo, 2017b). Depending on the disci-
pline and task, there is usually a loose set of criteria about how a system is to be evaluated. See for
instance Figure 3 showing the progress for various evaluation metrics of object recognition in the COCO
(Common Objects in COntext) (Lin et al., 2014) benchmark. Several questions might arise regarding the
latter: How can we compare results or progress between different metrics? How to compare between
different benchmarks for the same task (e.g., COCO vs. MNIST (Bottou et al., 1994) vs. ImageNet (Deng
et al., 2009)) or different tasks for the same benchmark? Or, even more challenging, how can we compare
results from different tasks in the same domain or different domains? Actually, although there might
be a general perception of progress due to the increasing trends of the metrics (or decreasing in case of
error-based measures), it would be misleading to consider that the progress in AI should be analysed by
the progress of specific systems solving specific tasks as there may be a complete lack of understanding
of the relationships between different tasks. What does it mean, for instance, that one AI system demon-
strates impressive (e.g., super-human) performance on a natural language processing task and another
demonstrates impressive performance in a perception task (wrt. some evaluation metrics) if this does
not imply that these developments can be integrated easily into a single agent in order to display more
general perceptual or linguistic capabilities, or both at the same time (Brundage, 2016)? On the other
hand, it is also hard to tell in many domains whether progress comes from better hardware, data, com-
puting, sostware, and other resources, or better AI methods (Martínez-Plumed et al., 2018). Furthermore,
the specialisation of many metrics to the domain, the evaluation overfitting (Whiteson et al., 2011), and
the lack of continuity in some evaluation procedures can also be recognised as limitations and constraints
(Hernández-Orallo, 2017b) when evaluating the progress of AI.
Given the above difficulties, instead of using the rate of progress, what we can analyse is the activity level
around a specific benchmark, indicating the research intensity in a specific task in terms of the production
(e.g., outputs such as research publications, news, blog-entries, etc.) from the AI community related to
the above AI benchmarks. Benchmarks that have an increasing trend in their production rates indicate
that more AI researchers and practitioners are working on them (i.e., there is a clear research effort and
intensity). Note that this is not an indication of progress, although, presumably, effort may lead to some
progress eventually. It is also worth considering that areas that usually gather more intensity are those
where there is a general perception that breakthroughs are being made or about to be made. For instance,
those problems that are already solved, where progress is expected to be minimal or those that are too
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Figure 3: Progress (trends represented with dashed coloured lines) across different evaluation metrics for COCO
object recognition benchmark (Krizhevsky et al., 2009).
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Figure 4: Average rate of activity level or intensity (green dashed line) for a set of illustrative AI benchmark over the
last decade (2008-2018).

We can derive the activity level or intensity using some proxies. In particular, we performed a quantitative
analysis using data obtained from AI topics12, an archive kept by the Association for the Advancement of

12https://aitopics.org
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Artificial Intelligence (AAAI)13. This platform contains a myriad of AI-related documents (e.g. news, blog
entries, conferences, journals and other repositories from 1905 to 2019) that are collected automatically
with NewsFinder (Buchanan et al., 2013). In this regard, in order to calculate the intensity in each particular
benchmark, we average the (normalised14) number of hits (e.g., documents) obtained from AI topics per
benchmark and year over a specific period of time (e.g, last year, lustrum or decade). This way we obtain a
benchmark intensity vector (328 × 1) with values in [0,1], as they are counts divided by the total number
of documents. Figure 4 presents the calculated relative intensity for a set of illustrative AI benchmarks
over the last decade. Note that we make the assumption that a high relative intensity corresponds to
breakthroughs or significant progress that can be translated to real applications in the short term.

4 Methodology

In this section we explain the construction of the framework. That is, we map between the three layers:
(1) tasks (2) cognitive abilities, and (3) AI research.

4.1 Tasks to cognitive abilities

This section elaborates on the construction of the links between tasks (see Section 3.1) and cognitive
abilities (see Section 2). To generate this mapping, a multidisciplinary group of researchers conducted an
annotation exercise for each item of the task database. More precisely, in a cross-tabulation of the list
of tasks (rows) and the cognitive abilities (columns) rubric (see Appendix A), each annotator was asked
to put a 1 in a cell if an ability is inherently required, i.e. absolutely necessary to perform the respective
task. In order to increase robustness in the annotations, we followed a Delphi Method approach (Dalkey
and Helmer, 1963). That is, this process is repeated, in order to increase agreement among annotators.
In the second round the annotators were asked to repeat the mapping exercise in light of the results of
the first round and corresponding feedback. To increase robustness in the assignment of abilities to tasks,
we define an ability as assigned to a task if at least two annotators assigned this ability. This makes the
assignment less sensitive to outlier assignments.

Next, we adjust the {1,0} assignment of abilities to tasks by the intensity of the respective task in each
occupation, where we obtain the measure of task intensity in each occupation from the dataset described
in Section 3.1. The outcome of this reflects the occupational task intensity in the abilities assigned to the
tasks in each occupation.

4.2 AI benchmarks to cognitive abilities

Similar to the mapping between cognitive abilities to tasks, we link these 14 cognitive abilities to the
data on AI benchmarks (see Section 3.2). Specifically, a group of AI-specialised researchers was asked to
consider how each AI benchmark is related to each cognitive ability: in a cross-tabulation of the vector
of benchmarks b of length |b| = 328 and cognitive abilities a of length |a| = 14, a 1 is put in a ability-
benchmark correspondence (or mapping) matrix (14 × 328) if an ability is inherently required, i.e. ab-
solutely necessary to solve the respective benchmark. Note that since our correspondence or mapping
matrix mean ``requires" (e.g, a particular benchmark needs a particular (set of) cognitive abilities to be
addressed successfully), it makes sense to distribute the intensity values when a benchmark requires
many abilities So, assuming that when more abilities are needed this requires more research effort or

13https://www.aaai.org/
14Document counts are normalised to sum up to 100% per year
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work, we normalise the correspondence matrix through abilities. This means that columns are normalised
to sum up 1 and values are thus in [0,1].
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Figure 5: Relevance (counting) of the cognitive abilities.

From here we can calculate the vector of relevance for each cognitive ability from the correspondence
matrix as row sums, thus obtaining the results in Figure 5. We see a clear dominance of visual process-
ing (VP), attention and search (AS), comprehension and compositional expression (CE), conceptualisation,
learning and abstraction (CL) and quantitative and logical reasoning (QL).

4.3 Combining occupations and AI through abilities

From the lest side in Figure 1 we now have every occupation described in terms of 59 task intensities and
the assignment (or non-assignment) of 14 abilities. That is, every cognitive ability appears in each occu-
pation multiple times, depending on the number of tasks the ability has been assigned to. We simplify this
mapping by summarising the information on the task layer in the abilities layer. In order to make sure that
the ability scores are not driven by data availability of tasks, we first sort the task variables, to which the
abilities have been assigned to, into the lest side of the task framework presented in Fernández-Macías
and Bisello (2017) and create task-ability indices by averaging within each task subcategory. In order to
take into account the number of tasks that a cognitive ability is assigned to, we sum over all task indices
linked to the same cognitive ability for each occupation. The final score indicates the total required inten-
sity of each of the cognitive abilities for each of the 119 occupations.

Note that the differences in the intensities across different cognitive abilities are not linear, since the
score of each cognitive ability derives from variables with highly varying scales. However, these scores
take into account the number of tasks for which an ability is required weighted by the intensity of each
task in each occupation. The scores therefore do allow for a ranking of the relevance of each ability within
an occupation with a disregard for the distances. Similarly, the scores for the same cognitive ability across
different occupations are measured on the same scale, which allows for a clear ranking of occupations
along the same cognitive ability, again without interpretation of the distances between occupations.

For the computation of an AI impact score, we want the ability-specific scores to take into account the
inter-connectivity of abilities that are required at the same time for the same occupation. That is, two very
different occupations can have the same degree of intensity of one ability but can still be affected in very
different ways by AI research intensity of this ability if the corresponding tasks require a different number
of abilities at the same time. For instance, visual processing may be a very relevant ability for a person
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classifying offensive online content. Similarly, visual processing may be equally relevant for surgeons
but also in combination with sensorimotor interaction. If we considered the intensity of each cognitive
ability separately this would suggest that high AI intensity in visual processing but relatively low intensity
in sensorimotor interaction would affect both occupations equally. However, in reality the surgeon would
be affected less than the person classifying online content because the impact of high AI performance in
visual processing would not be that high if performance in sensorimotor interaction would not also be high.

This is not an issue if we only compare the impact of AI on occupations through specific abilities. However,
since AI research intensity is also connected with cognitive abilities, the ability-specific AI impact would be
the same for every occupation. In order to construct an overall occupation-specific AI impact score that
distinguishes occupations, we first establish a relation between the intensity scores of cognitive abilities
for each occupation, which we denote relative ability-specific AI impact score. In detail, we transform the
total score of each cognitive ability for each occupation such that the sum of scores within each occupa-
tion is equal to one. This transformed score entails a relationship between the different cognitive ability
scores within each occupation.

Finally, we combine AI benchmarks (see Section 4.2) to labour market information using the common link
to cognitive abilities. For this purpose we multiply the relative scores (described in the previous section)
with the respective AI research intensity for each cognitive ability. Next, we take the sum over the products
for each occupation. The final score indicates which of the studied occupations are relatively more likely
to be affected by AI research intensity in the analysed cognitive abilities. For illustrative purposes we
normalise this score, which we denote AI impact score, to a [0,1] scale.

5 Results

Before presenting results of the AI impact score, we illustrate the process of the development of the frame-
work through intermediate results of the mapping of abilities to tasks and the mapping of AI benchmarks
to abilities. More detailed results of the annotation exercise for the assignment of abilities to tasks are
shown in Appendix B.

5.1 Tasks and cognitive abilities

In order to gain an overview of the task-ability mapping, we implement a principal component factor anal-
ysis on tasks and abilities. Principal component analysis (PCA) consists in the orthogonal transformation
of a set of possibly correlated variables into components (values) that are linearly uncorrelated. That is,
this transformation could be thought of as revealing the underlying structure in the data explaining the
most of data variance.

PCA could provide us with two useful insights. First, it will tell us how many principal components we need
to explain the most of the variance in the data. Second, it might help us gain a better insight into the
structure of abilities and tasks. Let us clarify using the results reported in Figure 6.

The results of the PCA in Table 6 show that the first four components explain 66% of the variance in the
data, two thirds of the original variance of all 14 cognitive abilities. The first component mostly sum-
marises cognitive abilities that have a direct relationship with other abilities (such as mind modelling and
social interaction, planning and communication) and could be interpreted as the latent variable measuring
cognitive abilities in what we categorise as social tasks (i.e. tasks whose object is people). The second
and the third components are mostly associated with tasks that necessitate a processing of information
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Figure 6: PCA on tasks and abilities

streams without social interaction. The second component identifies particularly those tasks that involve
the processing of encoded information (text and numbers) but requires a less extent of originality or
problem-solving. Indeed the main cognitive abilities explaining the second factor are memory processing,
attention and search and conceptualisation, learning and abstraction, which all resemble the abilities of
recognising specific patterns/criteria in order to perform the task. On the other hand, the third component
presents a broader variety of cognitive abilities which seems to point mostly to those tasks that require a
certain degree of flexibility and problem solving capacity, without necessarily being demanding in terms
of abstraction. The fourth component is clearly associated to more physical abilities since navigation and
sensorimotor interaction are mostly required in more physical tasks. Finally, the fisth and sixth components
are mostly explained respectively by visual processing and auditory processing associated to quantitative
and logical reasoning.

In order to structure the discussion on cognitive abilities, we conduct a cluster analysis to categorise them.
The detailed analysis and results can be found in Appendix C. Overall, the resulting clusters allow us to
sort the cognitive abilities in more rough categories of social abilities (EC, MS, MC, CO), object oriented
abilities (CE, PA, MP, AS, CL, QL), and physical abilities (SI, NV, VP, AP). This gives further insights into the
nature of abilities and the corresponding occupations.

As mentioned in Section 4.3, we expect the impact of higher AI research intensity in a specific ability on a
specific task and occupation to be lower, if the performance of this tasks requires a combination of multiple
cognitive abilities. To further explore this idea, we analyse the likelihood of each cognitive ability to be
assigned to a task in combination with multiple other cognitive abilities. For this purpose we compute the
sum of assigned abilities per task and conduct a dominance analysis, an extension of multiple regression
developed by Budescu (1993), of this sum on the 14 cognitive abilities.15 The findings of the dominance
analysis confirm the results of the cluster analysis. We can group the ranked abilities into social (rank
1-4), object oriented (rank 5-10) and physical abilities (rank 11-14).

5.2 AI research intensity in cognitive abilities

We can translate also the benchmark intensity vector (see Section 4.2) to cognitive abilities as a matrix-
vector multiplication thus obtaining an ability intensity vector (14 × 1). This yields the relative ability

15More detailed results can be found in Appendix C.
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indirect intensity, i.e. the relative AI research intensity for different periods of time. Figure 7 shows the
computed AI research intensity for each cognitive ability for every two-year period from 2008 to 2018.
The figure depicts that AI is currently having a larger relative intensity on those cognitive abilities that rely
on memorisation, perception, planning and search, understanding, learning and problem solving, and even
communication; smaller influence on physical-related abilities such as navigation or interaction with the
environment. Since ``intensity'' depends on the the level of activity on AI topics, this would mean that
there is a lower amount of documents related to those benchmarks for physical AI, but also, although to
a lesser extent, due to a more limited number of robotics benchmarks, which are usually more difficult to
build and maintain. Moreover, note that the focus of this paper is AI (i.e. rather cognitive robotics), which
in many cases is distinct from robotics.
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Figure 7: Relevance per cognitive ability weighted by (average) rate intensity for different periods of years over the
last decade (2008-2018). Empty grey dashed bars represent average values per ability for the whole period.

We also see almost no research intensity on those abilities related to the development of social interaction
(MS) and metacognition (MC). This may be due to the lack of suitable benchmarks to evaluate the inter-
actions of agents (human and virtual) in social contexts; as well as the challenge (today) of developing
agents able to properly perform in social contexts with other agents having beliefs, desires and intentions,
coordination, leadership, etc. as well as being aware of their own capacities and limits.

Note that Figure 7 also shows trends over the years for each cognitive ability. There is a clear "increasing"
trend in visual processing (VP) and attention and search (AS), while other abilities remain more or less
constant (MP, SI, AP, CO, CL and MS) or have a small progressive decline (PA, CE, EC and QL). Note that
these values are relative. For instance, PA, CE or QL have decreased in proportion to the rest. In absolute
numbers, with an investment in AI research that is doubling every 1-2 years (Shoham et al., 2018), all of
them are actually growing. Thus the figure shows that imbalances are becoming more extreme.

18



Measuring the Occupational Impact of AI: Tasks, Cognitive Abilities and AI Benchmarks

5.3 AI impact score

In this section we present the results from the the combination of all three layers of the framework:
(1) tasks, (2) cognitive abilities, and (3) AI benchmarks in terms of occupations (see Section 4.3 for the
corresponding methodology). We compute the AI impact score for each occupation using the AI research
intensity scores from 2018. Before showing the final AI impact scores, we present the task-intensity of
each cognitive ability and the ability-specific AI impact score in detail and focus on the following relevant
selected occupations from ISCO-3 specifications: general office clerks; shop salespersons; domestic, hotel
and office cleaners and helpers; medical doctors; personal care workers in health services; primary school
and early childhood teachers; heavy truck and bus drivers; waiters and bartenders; building and related
trades in construction.

Figure 8: Ability-specific scores of cognitive abilities for selected occupations

Figure 8 depicts the relative ability-specific task intensity scores for the nine selected occupations men-
tioned above. That is, the figure shows for each of the nine selected occupations the relevance of each
cognitive ability relative to the other cognitive abilities. In line with above findings, each subfigure is di-
vided between social, object oriented and physical abilities. First, note that all occupations tend to exhibit
similar profiles. On average, the most relevant ability is comprehension (CE), which is followed by com-
munication (CO), and ? (AS). Furthermore, we find a relatively high relevance for conceptualisation (CL)
and quantitative reasoning (QL). Thus, all occupations tend to require social and object oriented abilities
more than physical abilities.
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Moreover, the figure shows that medical doctors, teachers and office clerks have high intensity scores for
most cognitive abilities. These occupations also exhibit less pronounced scores for physical abilities. In
contrast, heavy truck and bus drivers, waiters and bartenders as well as workers in building and related
trades in construction have lower intensity levels for social and object-oriented abilities but higher in-
tensity levels for the physical ability, sensorimotor interaction (SI). Finally, shop salespersons and waiters
and bartenders have the highest levels for the social cognitive abilities, while these levels are very low
for general office clerks. Overall, considering the nature of these occupations, the present scores depict
reasonable ability profiles.

Figure 9 depicts the computed AI exposure score differentiated by cognitive abilities, for nine selected
occupations. First, the figure shows that high-skill occupations such as medical doctors and teachers are
more exposed to AI progress than comparatively low-skill occupations such as cleaners, waiters or shop
salespersons. This is in line with the findings from Brynjolfsson et al. (2018) and Webb (2020). According
to some studies, previous waves of technological progress led to more automation of mid-skill occupa-
tions, pushing mid-skill workers to either low- or high-skill occupations depending on education and skills,
a phenomenon called technology driven labour market polarisation (Autor et al., 2003; ?). This would
contrast with the occupational impact of AI, which would be stronger in high-skilled occupations. If this
effect is in fact a labour-replacement one, it would affect occupations that mostly remained unaffected
by previous waves of automation, potentially leading to unpolarising effects and a reduction in income
inequality (Webb, 2020). If this effect is a labour-enhancing one, it could imply a significant expansion of
productivity for high-skilled occupations, potentially leading to occupational upgrading effects and an ex-
pansion of income inequality (very much like the traditional hypothesis of skills-biased technical change;
see Acemoglu (2002)).

Second, Figure 9 shows that most of AI exposure is driven by its impact on tasks that require intellectual
abilities, such as comprehension, attention and search as well as conceptualisation. On the other hand, not
much AI impact can be expected through basic processing abilities, such as visual or auditory processing,
nor through more social abilities, such as mind modelling and social interaction, or communication. How-
ever, our findings based on the task and occupation data indicate a relatively high need for social abilities
in most occupations and a relatively low need for basic processing abilities. Equivalently, the findings on
AI research intensity suggest high activity in AI areas that contribute to basic processing abilities but also
to the abilities with the highest exposure score mentioned above, and low activity for social abilities.

This finding contributes to Deming (2017) who finds growing market returns to social skills in the 2000s
as opposed to the 1980s and 1990s because social and cognitive skills (i.e. maths, statistics, engineering
and science) are complements. In more detail, an increase in efficiency and quality due to automation of
intellectual abilities could lead to increased demand for tasks that require intellectual abilities (Bessen,
2018). If these tasks also contain a high need for social abilities, of which we find that they are not likely
to be automated in the near future, we can expect an increase in the returns to social abilities.

To complete this analysis, we present in Table 5 in Appendix F the overall AI impact score for all occupa-
tions. Note that this score does not represent a percentage but it can be used to infer a ranking between
occupations in terms of AI impact. Regarding the nine selected occupations the table reflects the findings
from the more detailed analysis. General office clerks have a relatively high AI impact score while we find
relatively lower scores for shop salespersons. Surprisingly, the table suggests higher impact for many high
skill occupations such as medical doctors or school teachers. These are occupations that were traditionally
less affected by previous waves of automation. However, since we do not focus on the automation effect
of AI but rather on the general impact, a lot of this impact can also be an indicator for a transformation
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Figure 9: Ability-specific AI impact scores for selected occupations

of this occupation around the implementation of AI.

6 Conclusion

In this paper we developed a framework that allows for the analysis of the impact of Artificial Intelligence
on the labour market. The framework combines occupations and tasks from the labour market with AI
research intensity through an intermediate layer of cognitive abilities. This approach allows us to accu-
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rately assess the technological feasibility of AI in work related tasks and corresponding occupations. We
use the framework to rank selected occupations by potential AI impact and to show the abilities that are
most likely to drive the AI impact. Moreover, we find that some jobs that were traditionally less affected
by previous waves of automation may now be subject to relatively higher AI impact.

The focus on abilities, rather than task characteristics, goes beyond measuring the substitution effect of
AI. Most AI applications are built to perform certain abilities, rather than execute full work-related tasks
and most tasks will require multiple abilities to be executed. Identifying the specific abilities that can be
performed by AI gives a broader understanding on the impact of AI. Relying on AI field benchmarks that
are used as orientation by AI researchers and other AI industry players makes the framework adoptable
to future developments in AI research.

As mentioned above, AI exposure does not necessarily mean automation. Our findings do not imply that
purely intellectual tasks will be automated, as other processes could occur when technology takes over
some work that was previously performed by a human. For instance, better analytical predictions through
AI could increase the value of human judgement, i.e. the ability to conduct meaningful inference and
suggest appropriate actions (Agrawal et al., 2018). Overall, our findings show that most occupations will
be significantly affected by AI but suggests that we should not fear an AI that is "taking over our jobs".
For instance, most occupations involve a significant amount of social interaction tasks, and as previously
mentioned progress in AI can in fact increase the value of social abilities and thus their demand in the
future. We can be much more certain about the capacity of AI to transform jobs than about its capacity
to destroy them.

In future work, this framework can be extended to integrate task characteristics of work organisation. This
will allow us to measure and distinguish the impact of AI through newly acquired technical capabilities
and the automation potential of tasks. Moreover, the measurement can be refined as more data on the
relevance of specific work-related tasks as well as new benchmarks on AI progress arise. Overall, this
framework presents an appropriate way to measure AI impact on labour markets as the connecting link,
cognitive abilities, can capture general advances and advances in data collection well for both labour
markets and AI research.
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7 Appendix

A Cognitive abilities rubric

We integrate several seminal psychometric models of intelligence to construct the following rubric of cog-
nitive abilities.

MP: Memory processes: part of the information that is processed is stored in an appropriate medium to
be recovered at will according to some keys, queries or mnemonics. This covers long-term memory and
episodic memory, possibly using external devices such as books, spreadsheets, logs, databases, annota-
tions, agendas and any other kind of analogical or digital recording and retrieval of data.

• Rubric question: Do all instances of this task inherently require that a robot or a human stores new
memories to be recovered at a future time?

• Note: the ability is about creating new memories, not only recovering them. We exclude short-term
and working memory, as almost any cognitive task requires them.

SI: Sensorimotor interaction: this deals with the perception of things, recognising patterns in different
ways and manipulating them in physical or virtual environments with parts of the body (limbs) or other
physical or virtual actuators, not only through various sensory and actuator modalities but in terms of
mixing representations.

• Rubric question: Do all instances of this task inherently require that a robot or a human perceives
the surrounding physical or virtual world, the body and the manipulation of objects with the physical
properties of these objects?

• Note: this may be done through different modalities, e.g., blind people can do this well or a bat/robot
using a radar.

VP: Visual processing: this deals with the processing of visual information, recognising objects and
symbols in images and videos, movement and content in the image, with robustness to noise and different
angles and transformations.

• Rubric question: Do all instances of this task inherently require that a robot or a human recognises
static or moving elements in images or videos?

• Note: this processing excludes the assessment of the consistence of what is seen.

AP: Auditory processing: this deals with the processing of auditory information, such as speech and
music, in noise environments and at different frequencies.

• Rubric question: Do all instances of this task inherently require that a robot or a human recognises
specific sounds, signals, alarms, speech, melodies, rhythm, etc.?

• Note: in the case of speech, we exclude the full understanding of sentences or the subjective per-
ception of harmony in music.

AS: Attention and search: this deals with focusing attention on the relevant parts of a stream of
information in any kind of modality, by ignoring irrelevant objects, parts, patterns, etc. Similarly, it is the
ability of seeking those elements that meet some criteria in the incoming information.
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• Rubric question: Do all instances of this task inherently require that a robot or a human identi-
fies, tracks or focuses on elements that meet some criteria, especially when surrounded by other
elements not meeting the criteria?

• Note: criteria may be about any perceptual modality, and they can also be categories: for instance,
focusing on the trajectory of straws in a stream of water or instruments in a symphony.

PA: Planning and sequential decision-making and acting: this deals with anticipating the conse-
quences of actions, understanding causality and calculating the best course of actions given a situation.

• Rubric question: Do all instances of this task inherently require that a robot or a human evaluates
the effects of different sequences of events, plan various courses of actions and make a decision
accordingly?

• Note: this excludes complex reasoning processes about the world and assumes planning under
mostly consistent information. Note also that we are not referring to simple actions or decisions,
as almost any cognitive system makes actions; the task must involve sequences, time or other
dependencies to be considered under planning.

CE: Comprehension and compositional expression: this deals with understanding natural language,
other kinds of semantic representations in different modalities, extracting or summarising their meaning,
as well as generating and expressing ideas, stories and positions.

• Rubric question: Do all instances of this task inherently require that a robot or a human under-
stands text, stories and other representations of ideas in different formats, and the composition or
transformation of similar texts, stories or narratives, summarising or expressing ideas?

• Note: this may be done through different modalities: text, auditory, drawings, etc. Note also that
we are not referring to the processing of simple and predefined phrases or symbols; the task must
involve the understanding or compositional use of elements that make a whole: sentences, stories,
summaries, etc..

CO: Communication: this deals with exchanging information with peers, understanding what the content
of the message must be in order to obtain a given effect, following different protocols and channels of
informal and formal communication.

• Rubric question: Do all instances of this task inherently require that a robot or a human com-
municates information between peers or units, using different kinds of protocols and channels, at
different registers, ensuring that the messages are sent, received and processed appropriately by
all the interested peers?

• Note: this excludes the narratives that themessagesmay contain, focusing on the effective channels
of information.

EC: Emotion and self-control: this deals with understanding the emotions of other agents, how they af-
fect their behaviour and also recognising the own emotions and controlling them and other basic impulses
depending on the situation.

• Rubric question: Do all instances of this task inherently require that a robot or a human understands
emotions of others/themselves, when they are true or fake, expressing the right emotional reactions,
controlling and using them in the appropriate context?

• Note: this excludes the complexities of social modelling and anticipation.
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NV: Navigation: this deals with being able tomove objects or oneself between different positions, through
appropriate, safe routes and in the presence of other objects or agents, and changes in the routes.

• Rubric question: Do all instances of this task inherently require that a robot or a human transfers ob-
jects and oneself from one place to another at different scales (rooms, buildings, towns, landscape,
roads, etc.), using basic concepts for locations and directions?

• Note: this may be done through different modalities, and approaches such as landmarking, geolo-
cations, etc..

CL: Conceptualisation, learning and abstraction: this deals with being able to generalise from ex-
amples, receive instructions, learn from demonstrations, and accumulate knowledge at different levels of
abstraction.

• Rubric question: Do all instances of this task inherently require that a robot or a human generate
different levels of abstractions, provided by peers or self-generated, acquiring knowledge incremen-
tally built upon previously acquired knowledge?

• Note: this ability to learn or to abstract must be present and happen to complete the task; in other
words, the task is not limited to the use of abstractions or concepts or operations learnt in the past.

QL: Quantitative and logical reasoning: this deals with the representation of quantitative or logical
information that is intrinsic to the task, and the inference of new information from them that solves the
task, including probabilities, counterfactuals and other kinds of analytical reasoning.

• Rubric question: Do all instances of this task inherently require that a robot or a human produces new
conclusions or facts from quantities, logical facts or rules given as inputs, detecting inconsistencies
and fallacies?

• Note: this goes beyond the simple combination of rules or instructions, such as ordering a deck of
cards. Note also that we are not referring to the internal processing of symbols or numbers that are
not part of the task, such as the potentials of a neuron, the instructions of a programming language
or the arithmetic of a CPU/GPU.

MS: Mind modelling and social interaction: this deals with the creation of models of other agents, so
that their beliefs, desires and intentions can be understood, and anticipate the actions and interests of
other agents.

• Rubric question: Do all instances of this task inherently require that a robot or a human successfully
interacts in social contexts with other agents having beliefs, desires and intentions, the understand-
ing of group dynamics, leadership and coordination?

• Note: this is not about sociability or agreeableness, i.e., how willing an agent is to social situations.

MC: Metacognition and confidence assessment: this deals with the evaluation of the own capabilities,
reliability and limitations, self-assessing the probability of success, the effort and risks of own actions.

• Rubric question: Do all instances of this task inherently require that a robot or a human recog-
nises accurately their own capabilities and limitations, when to assume responsibilities and when
to delegate tasks and risks according to competences?

• Note: this goes beyond those cases covered by planning when considering the outcomes of several
actions or no action. Note also that we are not referring to the mere selection of the action with
highest probability or utility, as this is necessary for almost any task. This ability is about estimating
and using the confidence of actions appropriately.
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B Mapping abilities to tasks

In this section we summarise the results of the annotation of abilities to tasks. The annotations of each
round are put together in a Matrix M = T×A with dimensions (62×14) for 62 tasks (t ∈ T) and 14 cognitive
abilities (a ∈ A), where each cell in M (ct ,a) represents the sum over all annotations of a respective round.
On the task level we describe our results by number of assigned abilities and consensus. An ability is
assigned to a task if at least one annotation is equal to 1 for a respective task-ability cell. That is, for
each task t , we define the number of assigned abilities as:

S(t ) =∑
a

[
ct ,a ≥ 1

]
where [P] are the Iverson brackets : [P] is defined to be 1 if P is true, and 0 if it is false.

We also compute the level of consensus among respondents using a geometry-based disagreement mea-
sure following on from the work of Saari (2008); Claveria et al. (2019). Here, the authors define a frame-
work to proxy economic uncertainty or to determine the likelihood of discrepancy among respondents. In
our setting, we assume a dichotomous questionnaire with N = 2 reply options (e.g., ability is assigned or
not to a task), and Ri ,a denoting the aggregate percentage of responses in category i ∈ {1,0} for a specific
ability a ∈ A. As the sum of R adds to 100, a natural representation of the vector containing all the infor-
mation from the respondents for a given ability a is as a point on a 1-dimensional (2 vertexes) simplex
(Coxeter, 1961). Note that, while each of the N vertexes corresponds to a point of maximum consensus, if
the point is near the barycenter, there would be a maximum discrepancy among the respondents. We can
then compute the consensus between respondents as the relative weight of the distance of each point to
the barycenter, formalised as:

Ca =

√√√√√√
N∑

i=1
(Ri ,a − 100

N )2

(N−1)
N

As can be seen in Table 1, we find that the annotators become stricter with their assignments of cognitive
abilities to tasks in the second round. In addition, consensus in assignments increases from on average
80.65% to 87.6% from one round to the next.

Table 1: Difference in annotations between round 1 and round 2

S C
round 1 round 2 diff. round 1 round 2 diff.

Average 6.03 5.34 -0.69 80.65% 87.7% 7.05 p.p
Min 0 0 0 57.14% 69.05% 11.91 p.p
Max 13 10 -3 100.00% 100.00% 0
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C Cluster analysis of tasks to abilities mapping and multi-ability tasks

The next step is to perform a cluster analysis to see how the tasks group together given the underlying
structure of cognitive abilities. We perform a k-means cluster where the number of clusters is decided
according to the elbow method (Kodinariya and Makwana, 2013) and following the results of the PCA.
The elbow method minimizes the total within-cluster variance up to the point where adding an additional
cluster does not increase the percentage of variance explained. Figure 10 shows the results of the elbow
method including all the cognitive abilities (Panel 10a) and excluding vision and auditory processes (Panel
10b).

(a) (b)

Figure 10: Elbow method

Looking at panel a in Fig 10, the elbow criterion seems to be reached somewhere between 4 and 6 clusters.
Indeed, even if the data in panel a do not show a sharp decrease of the total within sum of squares it could
be argued that aster 4 the decline is less steep and the additional clusters do not contribute substantially
to a reduction of the total within-cluster sum of squares. Following the PCA results, we compute the
optimal number of clusters excluding auditory and visual processing from the set of cognitive abilities.
The results shown in Panel 10b show how the data structure is better identified by four clusters, reinforcing
the argument that visual and auditory processing might create some distortions in the underlying structure
of the data. Fig 11 shows the projection of the tasks on the bi-dimensional plane identified by the two first
principal components. The cluster to which social tasks belong to (the purple one) is clearly identified and
separated from the rest. This cluster is characterised by tasks that involve human interactions. The blue
cluster groups intellectual tasks that require a certain degree of information processing as well as the
ability to understand natural language and identify a relevant stream of information. The green cluster
includes mostly physical tasks. Finally, the red cluster shows an overlap with both the blue and the green
ones suggesting the presence of multiple local optimums on the line of the complexity of the tasks. In a
sort of polarised interpretation of complexity of the task, some simple tasks such as basic numeracy (i.e.
calculate fractions, use of calculators, etc.) overlap with the cluster of physical tasks. On the upper end
of complexity, learning new things overlaps with the blue cluster of intellectual task.
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Figure 11: K-means plot on the first two principal components

Tasks with multiple abilities

We analyse the abilities in terms of their marginal contributions to R2 (i.e., whether a predictor variable is
dominant over another predictor) in a linear regression of the sum of abilities per task on the 14 cognitive
abilities.
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Table 2: Ranking of abilities most likely to predict a task
that requires multiple abilities combined

Cognitive
Ability

Dominance Dominance
(std)

Ranking

EC 0.1602 0.1703 1
MS 0.1390 0.1478 2
MC 0.1386 0.1474 3
CO 0.1099 0.1169 4
PA 0.1089 0.1158 5
MP 0.0685 0.0728 6
CL 0.0651 0.0692 7
AS 0.0510 0.0542 8
CE 0.0477 0.0507 9
QL 0.0212 0.0225 10
SI 0.0129 0.0137 11
NV 0.0080 0.0085 12
VP 0.0078 0.0083 13
AP 0.0017 0.0018 14

Ranking of cognitive abilities in terms of contribution to explain-

ing the sum of assigned abilities in a task. The abbreviation "std"

stands for "standardised. R2 = 0.9405 for a regression of the sum of

assigned abilities per task on all cognitive abilities. Dominance rep-

resents average marginal contribution of cognitive ability towards

R2 over all potential model combinations.

Figure 12: Number of tasks with all abilities filled
per additional ability

Table 2 shows the ranking of the cognitive abilities in terms of their average contribution to explaining
the variation in the sum of assigned abilities per task (Dominance). In other words, the higher the ranking
of one ability the higher the sum of assigned abilities in the tasks that requires this particular ability.

Correspondingly, starting from the ability with the lowest complexity ranking (auditory processing) Figure
shows the number of tasks that only require abilities up to higher ranks. For instance, there are four tasks
that only require auditory processing, navigation and visual processing or a combination of these abilities
but no abilities with a higher rank. Some additional abilities increase the number of "solved" tasks more
than others; e.g. assuming that abilities are acquired from lowest to highest rank, the additional ability
comprehension (CE) solves fewer additional tasks than the additional ability attention and search (AS) that
is ranked one step higher. Similarly, social interaction (MS) does not enable as many additional abilities
as the ability emotion and self-control (EC) that is ranked one step higher.
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D List of tasks

Table 3: Lists of Tasks used in Mapping

1 Task involving tiring or painful positions
2 Listing or moving people
3 Carrying or moving heavy loads
4 Standing
5 Static Strength
6 Dynamic Strength
7 Trunk Strength
8 Arm-Hand Steadiness
9 Manual Dexterity
10 Finger Dexterity
11 Oral Comprehension
12 Written Comprehension
13 Oral Expression
14 Written Expression
15 Read letters, memos or e-mails
16 Read bills, invoices, bank statements or other financial statements
17 Write letters, memos or e-mails
18 Read directions or instructions in your job
19 Read manuals or reference materials?
20 Read diagrams, maps or schematic in your job
21 Have to write reports
22 Have to fill in forms
23 Read articles in newspapers, magazines or newsletters
24 Read articles in professional journals or scholarly publications
25 Read books
26 Write articles for newspapers, magazines or newsletters
27 Mathematical Reasoning
28 Number Facility
29 Calculate prices, costs or budgets
30 Use or calculate fractions, decimals or percentages
31 Use a calculator either hand-held or computer based
32 Prepare charts, graphs or tables
33 Use simple algebra or formulas
34 Use more advanced math or statistics
35 Learning new things
36 Deductive Reasoning
37 Inductive Reasoning
38 Information Ordering
39 Solving unforeseen problems on your own
40 Apply your own ideas in your work
41 Originality
42 Performing for or Working Directly with the Public
43 Selling a product or selling a service
44 Advising people
45 Persuading or influencing people
46 Negotiating with people either inside or outside your firm or organisation
47 Persuasion
48 Negotiation
49 Selling or Influencing Others
50 Resolving Conflicts and Negotiating with Others
51 Instructing, training or teaching people
52 Making speeches or giving presentations in front of five or more people
53 Instructing
54 Training and Teaching Others
55 Coaching and Developing Others
56 Manage or supervise other employees
57 Planning the activities of others
58 Coordinating the Work and Activities of Others
59 Guiding, Directing, and Motivating Subordinates
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E List of AI benchmarks

Table 4: Set of AI benchmarks and their mean intensity calculated using AI topics.

Benchmark Mean intensity Benchmark Mean intensity Benchmark Mean intensity Benchmark Mean intensity
20NEWS 0.00498666 Event2Mind 0.000004 MR 0.042382 Shogi 0.00029975
300W 0.00064231 Fashion-MNIST 0.001135 MRR 0.004226 SighanNER 0.00000000
ACE 2004 0.00011392 FB15k 0.000759 MS COCO 0.001450 SimpleQuestions 0.00154478
ACE 2005 0.00063344 FB15k-237 0.000153 MS MARCO 0.000415 Sintel 0.00018307
ADE20K 0.00012735 FCE 0.000201 MSRA 0.002307 SK-LARGE 0.00000405
Aerial-to-Map 0.00000000 FDDB 0.000052 Multi-Domain Sentiment Dataset 0.000759 SLAM 2018 0.00000809
AEROBCOMP 0.00000000 FFHQ 0.000004 MultiMNIST 0.000124 SNLI 0.00047133
AFAD 0.00000000 FGNET 0.000557 MultiNLI 0.000150 Sogou News 0.00005982
AFLW 0.00011200 FGVC Aircrast 0.000057 MultiRC 0.000008 spider 0.00275807
AG News 0.00017801 fisher WER 0.000000 Mushroom 0.007158 SQuAD 0.00075022
AI2 Kaggle Dataset 0.00000000 FLIC 0.000180 Music domain 0.000850 SR11Deep 0.00000000
Amazon Review 0.00094449 Flixster 0.000882 MUV 0.000432 SST 0.00261894
ANGRY-BIRDS 0.00019157 Florence 0.003080 NABirds 0.000020 Stanford Cars 0.00006772
Annotated Faces in the Wild 0.00002672 Flowers-102 0.000252 NarrativeQA 0.000058 Stanford Dogs 0.00033553
Arcade Learning Environment 0.00088491 GENIA 0.001328 NELL 0.002441 STARE 0.00037779
bAbi 0.00004494 GigaWord 0.000357 NER 0.008085 Static Facial Expressions in the Wild 0.00000000
Bing News 0.00009736 GLUE 0.003006 Netflix 0.020838 STL-10 0.00191744
BIWI 0.00008235 Go 0.172822 New York Times Corpus 0.000721 Story Cloze Test 0.00004344
BlogCatalog 0.00084899 Google Dataset 0.001131 NewsQA 0.000139 STS 0.00359873
Bosch Small Traffic Lights 0.00000405 Google Street Images 0.000034 North American English 0.000014 SUBJ 0.00524186
BotPrize 0.00021779 GTA V 0.000045 Noun Phrase Canonicalization 0.000000 SUN-RGBD 0.00009389
BP4D 0.00005449 GTSRB 0.000375 NYU Depth v2 0.000311 SVHN 0.00392847
BPI challenge 0.00004494 GVGAI 0.000047 NYU Hands 0.000000 SVNH-to-MNIST 0.00000000
BRATS 0.00013988 HANDS 2017 0.000000 Occluded LINEMOD 0.000000 SWAG 0.00010718
BSD* 0.00267574 Helpdesk 0.000621 OCCLUSION 0.015062 Switchboard 0.00214692
BUCC 0.00003076 HIV dataset 0.000448 Ohsumed 0.003953 SYNTHIA 0.00011521
BUS 2017 0.00000000 HotpotQA 0.000000 OMNIGLOT 0.001333 T-LESS 0.00014327
CACD 0.00002522 Human3.6M 0.000198 One Billion Word 0.000602 TACRED 0.00001214
CACDVS 0.00001713 Hutter Prize 0.000429 OntoNotes 0.000543 TCIA Pancreas CT 0.00000000
CAFR 0.00003405 ICSI MRDA Corpus 0.000000 OpenML 0.000469 TempEval-3 0.00007928
Caltech 0.02095834 ICVL Hands 0.000000 Oxford 102 Flowers 0.000080 Text8 0.00151862
CamVid 0.00022812 IDHP 0.000000 Oxford IIIT Pets 0.000008 The ARRAU Corpus 0.00000959
Cats and Dogs 0.00148122 IEMOCAP 0.000122 PA-100K 0.000000 TimeBank 0.00053232
CCGBank 0.00002172 IJB 0.000530 Par6k 0.000000 TIMIT 0.00443222
CelebA 0.00244468 ILSVRC 0.006063 PASCAL VOC 0.008332 Tox21 0.00029954
ChaLearn 0.00059309 IMAGECLEF 0.000839 Pascal3D+ 0.000069 ToxCast 0.00005048
CHALL 0.00022490 ImageNet 0.028748 PATHFINDMAZES 0.000000 Trading Agents Competition 0.00030921
Children's Book Test 0.00012210 IMDb 0.010094 Pavia University 0.000115 TREC 0.01721892
CHiME 0.00015276 iNaturalist 0.000089 PCBA 0.000113 TrecQA 0.00135855
Chinese Poems 0.00006816 Indian Pines 0.000211 Penn Treebank 0.009668 TriviaQA 0.00012031
CIFAR 0.02494334 iPinYou 0.000018 PETA 0.000678 Tsinghua-Tencent 0.00010600
CIHP 0.00000000 ISBI 2012 EM Segmentation 0.000078 PhC-U373 0.000000 Turing Test 0.00261238
Citeseer 0.02500602 iSEG 2017 Challenge 0.000004 Photo Art 50 0.000000 TuSimple 0.00002172
Cityscapes 0.00069756 ISIC 2018 0.000016 PLANNINGCOMP 0.000000 Twitter Dialogue 0.00008427
Click-Through Rate Prediction 0.00097511 ITOP 0.000078 PROMISE 2012 0.000000 Ubuntu Dialogue 0.00028614
CliCR 0.00000405 IWSLT 0.001082 Pubmed 0.006882 UCF CC 50 0.00000809
CMU-SE 0.00001363 JFLEG 0.000016 QAngaroo 0.000016 UCI 0.09358595
CNN / Daily Mail 0.00039284 JIGSAWS 0.000302 QASent 0.000017 UCI-KEEL 0.00000809
COCO 0.00412190 Kaggle Skin Lesion Segmentation 0.000000 QM9 0.000186 UD 0.00818373
Cohn-Kanade 0.00041558 KITTI 0.001659 QuAC 0.000016 Urban100 0.00005708
CompCars 0.00003809 Labeled Faces in the Wild 0.001891 Quasar 0.001982 UT Multi-view 0.00000000
COMPLEXQUESTIONS 0.00000000 Leeds Sports Poses 0.000058 Quora Question Pairs 0.000104 UTKFace 0.00000000
CoNLL 0.02031269 LexNorm 0.000000 R52 0.001746 V-SNLI 0.00000000
CoQA 0.00001618 LibriSpeech 0.000207 R8 0.014510 VggFace2 0.00001713
Cora 0.00826819 LineMOD 0.000027 RACE 0.019478 Vid4 0.00001363
CR 0.03195242 Loebner Prize 0.000045 RaFD 0.000014 Visual7W 0.00020654
Criteo 0.00067999 Long-tail emerging entities 0.000000 RAP 0.002529 VoxForge 0.00010058
CT-150 0.00000000 LSUN Bedroom 256 x 256 0.000000 Real-World Affective Faces 0.000008 WAF 0.00068041
CUB 0.00254865 LUNA 0.001589 RecipeQA 0.000000 WebFace 0.00010956
CUB-200-2011 0.00040947 MAFA 0.000071 RecSys 0.009449 WebNLG 0.00000809
CUFS 0.00005044 Mandarin Chinese 0.000233 Reuters-21578 0.004667 WebQuestions 0.00018390
CUFSF 0.00001214 Market 1501 0.000093 Reverb 0.000499 Weibo NER 0.00000000
CUHK 0.00562678 MCTest 0.000448 RLCOMP 0.000000 WikiBio 0.00000405
DailyDialog 0.00001618 MediaEval 0.000114 Robo chat challenge 0.000000 WikiHop 0.00002832
DARPAGC 0.00000000 Medical domain 0.003382 Robocup 0.004842 Wikipedia 0.05339900
DARPARESAVE 0.00000000 MegaFace 0.000164 RotoWire 0.000000 WikiQA 0.00019131
DARPAUC 0.00000000 METR-LA 0.000008 RT-GENE 0.000004 WikiSQL 0.00005259
DBpedia 0.00824343 MHP 0.000122 RumourEval 0.000008 WikiText-103 0.00005409
DCASE 0.00033334 Million Song Dataset 0.001785 RVL-CDIP 0.000000 WikiText-2 0.00018803
DensePose-COCO 0.00000809 MIMIC-III 0.000607 SBD 0.000265 Winograd Schema Challenge 0.00037346
Dianping 0.00014017 Mini-ImageNet 0.000245 Scan2CAD 0.000000 Wizard-of-Oz 0.00066401
DIC HeLa 0.00000000 MIREX 0.000934 ScanNet 0.000042 WMT 0.00329137
DISFA 0.00003736 MLDoc 0.000000 SciTail 0.000040 WN18 0.00049114
Disguised Faces in the Wild 0.00000000 MMI 0.001267 SCUT-FBP 0.000017 WOS 0.00023507
Douban 0.00058997 MNIST 0.063154 SearchQA 0.000114 WSJ 0.00565300
DRIVE 0.04997003 ModelNet40 0.000164 Second dialogue state tracking challenge 0.000008 XNLI 0.00001214
DUC 2004 Task 1 0.00000405 Monologue 0.000763 SemEval 0.004884 Yahoo! Answers 0.00375964
DukeMTMC-reID 0.00002427 MORPH 0.002163 SensEval 0.000159 YCB-Video 0.00000000
DuReader 0.00000405 MORPH Album2 0.000017 SentEval 0.000044 Yelp 0.00362348
ECCV HotOrNot 0.00000000 MOSI 0.000054 Sentihood 0.000004 YouTube Faces 0.00019026
EMNLP 2017 0.00062733 MovieLens 0.014568 Sequential MNIST 0.000247
enwiki8 0.00000000 MPII 0.000567 ShanghaiTech 0.000115
NULL NULL MPQA 0.002706 ShapeNet 0.000461
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Table 5: AI impact score for studied occupations

ISCO
code Occupation AI impact

score

952 Street vendors (excluding food) 0.7703
912 Vehicle, window, laundry and other hand cleaning workers 0.7811
911 Domestic, hotel and office cleaners and helpers 0.7847
513 Waiters and bartenders 0.7856
961 Refuse workers 0.7884
921 Agricultural, forestry and fishery labourers 0.7895
941 Food preparation assistants 0.7907
523 Cashiers and ticket clerks 0.7969
521 Street and market salespersons 0.8185
933 Transport and storage labourers 0.8200
141 Hotel and restaurant managers 0.8220
522 Shop salespersons 0.8259
932 Manufacturing labourers 0.8288
962 Other elementary workers 0.8288
835 Ships' deck crews and related workers 0.8312
514 Hairdressers, beauticians and related workers 0.8365
622 Fishery workers, hunters and trappers 0.8372
751 Food processing and related trades workers 0.8405
524 Other sales workers 0.8457
515 Building and housekeeping supervisors 0.8465
834 Mobile plant operators 0.8486
711 Building and related trades in construction 0.8493
512 Cooks 0.8517
833 Heavy truck and bus drivers 0.8614
713 Painters, building struct. cleaners, related trades workers 0.8616
931 Mining and construction labourers 0.8621
324 Veterinary technicians and assistants 0.8646
832 Car, van and motorcycle drivers 0.8655
532 Personal care workers in health services 0.8663
224 Paramedical practitioners 0.8666
342 Sports and fitness workers 0.8675
815 Textile, fur and leather products machine operators 0.8705
753 Garment and related trades workers 0.8705
142 Retail and wholesale trade managers 0.8708
312 Mining, manufacturing and construction supervisors 0.8710
811 Mining and mineral processing plant operators 0.8721
754 Other crast and related workers 0.8722
814 Rubber, plastic and paper products machine operators 0.8729
222 Nursing and midwifery professionals 0.8743
516 Other personal services workers 0.8750
531 Child care workers and teachers' aides 0.8790
731 Handicrast workers 0.8801
821 Assemblers 0.8804
511 Travel attendants, conductors and guides 0.8821
143 Other services managers 0.8826
816 Food and related products machine operators 0.8838
322 Nursing and midwifery associate professionals 0.8875
712 Building finishers and related trades workers 0.8877
421 Tellers, money collectors and related clerks 0.8879
611 Market gardeners and crop growers 0.8893
265 Creative and performing artists 0.8900
541 Protective services workers 0.8904
818 Other stationary plant and machine operators 0.8916
225 Veterinarians 0.8936
422 Client information workers 0.8944
612 Animal producers 0.8959
226 Other health professionals 0.8970
721 Sheet and structural metal workers, related workers 0.8975
134 Professional services managers 0.8979

ISCO
code Occupation AI impact

score

752 Wood treaters, cabinet-makers, related trades workers 0.8999
432 Material-recording and transport clerks 0.9008
112 Managing directors and chief executives 0.9009
817 Wood processing and papermaking plant operators 0.9030
722 Blacksmiths, toolmakers and related trades workers 0.9033
813 Chemical products plant and machine operators 0.9042
111 Legislators and senior officials 0.9068
335 Regulatory government associate professionals 0.9082
723 Machinery mechanics and repairers 0.9096
343 Artistic, cultural and culinary associate professionals 0.9099
332 Sales and purchasing agents and brokers 0.9101
235 Other teaching professionals 0.9105
262 Librarians, archivists and curators 0.9118
621 Forestry and related workers 0.9130
232 Vocational education teachers 0.9135
132 Manufacturing, mining, construct., distribution managers 0.9139
741 Electrical equipment installers and repairers 0.9144
321 Medical and pharmaceutical technicians 0.9144
341 Legal, social and religious associate professionals 0.9158
315 Ship and aircrast controllers and technicians 0.9182
333 Business services agents 0.9189
121 Business services and administration managers 0.9212
122 Sales, marketing and development managers 0.9217
812 Metal processing and finishing plant operators 0.9220
133 ICT service managers 0.9225
441 Other clerical support workers 0.9242
234 Primary school and early childhood teachers 0.9250
263 Social and religious professionals 0.9257
732 Printing trades workers 0.9280
221 Medical doctors 0.9284
831 Locomotive engine drivers and related workers 0.9297
412 Secretaries (general) 0.9315
742 Electronics and telecommunications installers, repairers 0.9356
216 Architects, planners, surveyors and designers 0.9390
334 Administrative and specialised secretaries 0.9390
243 Sales, marketing and public relations professionals 0.9409
613 Mixed crop and animal producers 0.9415
411 General office clerks 0.9421
431 Numerical clerks 0.9421
261 Legal professionals 0.9428
233 Secondary education teachers 0.9447
413 Keyboard operators 0.9487
352 Telecommunications and broadcasting technicians 0.9492
314 Life science technicians,related associate professionals 0.9500
242 Administration professionals 0.9503
231 University and higher education teachers 0.9510
211 Physical and earth science professionals 0.9522
264 Authors, journalists and linguists 0.9545
313 Process control technicians 0.9555
213 Life science professionals 0.9563
212 Mathematicians, actuaries and statisticians 0.9662
331 Financial and mathematical associate professionals 0.9700
311 Physical and engineering science technicians 0.9702
241 Finance professionals 0.9704
214 Engineering professionals (excluding electrotechnology) 0.9731
351 ICT operations and user support technicians 0.9829
251 Sostware and applications developers and analysts 0.9906
215 Electrotechnology engineers 0.9974
252 Database and network professionals 1.0000
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