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Abstract 
 
Based on the expectation that the intensified use of robots contributes to the growth of labour 
productivity, this paper presents estimates of Cobb-Douglas production functions, using data for 12 
EU countries and 9 manufacturing industries. The empirical results for the models pooling all 
available data confirm that stocks of robots per 1 million Euros non-ICT capital input contribute 
significantly to labour productivity growth in the period from 1995 to 2015. The results remain 
robust, when the whole observation period is split into two subsamples from 1995 to 2007 and 
from 2008 to 2015. Furthermore, the model is used to assess the impact of an increase of robots 
use on the labour productivity in each of the 9 manufacturing industries considered. 
 
Keywords: Automation, labour productivity, panel data, production function, productivity 
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Introduction 
 

The public debate on the growing deployment of robots and productivity unfold mostly around the 
disruptive effects these new technologies will bring in our way of organising work, firms' activities 
and their improved performances. Robots and technological change in more general terms bear the 
expectation of boosting productivity by directly increasing total factor productivity. That is, every 
increase in value added that is not explained by growth in production inputs (namely capital and 
labour) is due to technological progress. The underlying assumptions are that the technology 
production function has constant return to scale and that technological progress equally impacts all 
production factors. However, if instead technological progress is labour (capital) augmenting, the 
input share of labour (capital) is miscalculated resulting in overestimation of the contribution of 
labour (capital) and an underestimation of total factor productivity. This bias is relevant when the 
rate of return of technological progress grows much faster than the rate of return of labour or 
other types of capital. Thus, robotisation can lead to a productivity paradox similar to that observed 
by economists during the 90's (the Solow paradox) when to a sharp increase in ICT investment did 
not correspond an increase in productivity growth. As of today, the increased use of industrial 
robots and the advances in Artificial Intelligence (AI) are posing similar challenges in estimating 
their impact on productivity. 

The International Federation of Robotics (IFR), following the definition of the International 
Organization for Standardization, defines an industrial robot as "automatically controlled, 
reprogrammable, multipurpose manipulator programmable in three or more axes" (ISO 8373) with 
the potential of automating the production processes by executing complete tasks. According to the 
2017 IFR report, in 2015 sales of robots worldwide increased by 15% with respect to previous year 
and according to the Association for Advancing Automation (2019) a record number of robots were 
shipped to North America in 2018 with a 7% increase over 2017 and with more non-automotive 
companies installing robots.  

However, before calling for the advent of a new industrial revolution, two points are worth making. 
First, the automation process date back to 1913 when Ford introduced the first car production 
assembly line. Since then the industrial manufacturing automation has been constantly evolving 
and spread from the automotive sector to other manufacturing sectors to reach also the service 
sector starting from the 70's (first ATM introduction). Hence the revolution started about 100 years 
ago. Second, the suggestive picture of fully automated factories with humanoid robots wandering 
around is very far from reality. Indeed, although the majority of the new industrial robots embed 
high-quality computing capabilities, improved operational degrees of freedom, and vision systems, 
they can only operate in highly structured environments and still require a certain level of human 
intervention. In other words, even if the advance in AI will eventually make robots smarter and gift 
them with cognitive abilities that may allow them to interacts with humans and among themselves, 
the current state of the art of industrial robots resolve mostly into handling, assembling and 
welding tasks. 

Why this is important for productivity? If current industrial robots are 'only' a better and (perhaps) 
cheaper version than previous robots, then the expected boost in labour productivity should come 
from both an increase in capital investment (robot purchases) and labour quality. As such, industrial 
robots represent more a qualitative improvement in industrial mechanisation and automation than 
a radical innovation. Following this argument, the intensified use of robots leads to a kind of capital 
augmenting technical progress. This means that robots as part of the (non-ICT) capital input have 
an additional impact on labour productivity compared to traditional non-ICT or ICT capital. They not 
only substitute other types of non-ICT capital and labour, but they upgrade the non-ICT capital 
stock and allow to improve the quality of products and to expand the variety of products. At the 
same time, robots account for only 2% of total capital stock and are very concentrated in few 
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manufacturing industries (e.g. car manufacturing, rubber and plastics products, metal and metal 
products).  

On the other hand, if we are anticipating the advent of smart robots that in addition to higher 
performances will also provide new services and enable new form of work organisation (i.e. IoT 
technologies), then the real value we should try to quantify for productivity purposes is the one that 
comes from the embedded data sharing – or retention – and its rental value. Indeed, in a future 
where the economy will be increasingly data-driven, data capital should be encompassed in models 
of endogenous growth together with research and development (R&D) (Romer, 1990), human 
capital formation (Lucas, 1988) and Schumpeter's creative destruction (Aghion and Howitt 1992) 
as determinants and drivers of economic growth. This, as it has been done already for measuring 
the contribution of intangible capital (Corrado et al., 2009) using a growth accounting approach, 
could lead to a better measurement of factors of production and to a more accurate estimate of 
the impact of automation on productivity. Unfortunately the data on robots currently available do 
not permit to develop such a growth accounting approach as we miss information on robots prices 
and indirectly we cannot compute its capital services. 

Another intertwined aspect of automation is how robots will affect employment. Industrial robots 
have the potential to realise the automation of production processes, i.e. to execute complete tasks 
by taking the place of human labour. Thus, unlike the standard labour saving (augmenting) 
technical progress, this kind of technical progress does not increase the productivity of a worker, 
but might completely superseded him (labour replacing technical progress).  

Acemoglu and Restrepo (2017, 2018) develop different versions of a task-based general 
equilibrium model including robots and show that the equilibrium depends on two reverse effects. 
On the one hand, increased deployment of robots in the industry affects employment (and wages) 
negatively because of a displacement effect (by directly displacing workers from tasks they were 
previously performing). On the other hand, robots affect employment (and wages) also positively 
due to a productivity effect, since the resulting cost reductions increase product and labour demand 
in the industries concerned. Their estimates suggest that an extra robot per 1,000 workers reduces 
the employment to population ratio by 0.18-0.34 percentage points and wages by 0.25-0.5%. 

Alternatively, Graetz and Michaels (2018) present a simple model for firms' decisions to use robots 
in their production and show – based on a production function with constant returns to scale – that 
a fall in the robot rental rate leads to a rise in labour productivity in robot-using industries by 0.36 
percentage points between 1993 and 2007, but they find no evidence of a negative impact of 
robots on aggregate employment. More generally, Prettner (2019) introduce automation into a 
standard Solow growth model, where automation is a perfect substitute for labour.1 He finds that 
this constellation opens up the potential for perpetual growth of per capita income driven solely by 
capital accumulation (the saving rate as well as the shares of savings devoted to traditional capital 
and automation capital). If the saving rate is sufficiently large, the long-run growth rate increases 
with the share of savings devoted to automation investments as long as the fraction of savings 
devoted to traditional capital is larger than the elasticity of output with respect to traditional 
capital. Lankisch et al. (2017) extend this model by introducing low-skilled and high-skilled labour, 
where automation capital is a perfect substitute for low-skilled labour, but an imperfect substitute 
for high-skilled labour. Their result is a rather similar log-run growth path for per capita income, 
whose growth rate additionally increases with the substitutability between low-skilled and high-
skilled labour. Dauth et al. (2017) use a local labour market approach for Germany and find that 
the use of robots increases local labour productivity, but reduces the labour share in total income. 
While all these just mentioned studies are based on the robot data from the IFR, Koch et al. (2019) 

                                                      
 
1 A similar approach is already presented in Steigum (2011). 
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use firm level data for Spanish manufacturing firms from 1990 to 2016 with the information 
whether firms are robot adopters or non-adopters. They identify two sources of aggregate 
productivity gains due to the adoption of robot technology by individual firms of a manufacturing 
sector. First, there is evidence for direct efficiency gains in those firms that adopt robots, and, 
secondly, for indirect gains through a productivity enhancing reallocation of labour across firms, 
away from non-adopters and toward adopters. 

Our paper uses a production function approach to analyse the impact of robots on labour 
productivity in 9 manufacturing sectors of 12 EU countries. In order to include the robots per 1 
million Euros non-ICT capital in a production function, we calculate robot stocks for the considered 
country-industry pairs for the period from 1993 to 2015 using the IFR robot data. 

Our empirical analysis extends the recent empirical literature on the links between robots and 
productivity in various directions. While Graetz and Michaels (2018) only use in a more ad hoc 
approach a cross-section of growth rates of robot density and labour productivity over the period 
from 1993 to 2007, we estimate with panel data from 1995 to 2015 full Cobb-Douglas production 
functions.2 These production functions are similar to those applied by Kromann et al. (2019), but 
these authors only have data for 10 manufacturing industries in 9 countries for the period from 
2004 to 2007. Furthermore, our methods to calculate the robot stocks seem better suited to deal 
with the features and weaknesses of the IFR data. In addition, our study can be considered as a 
complement to the Koch et al. (2019) firm level study, adding a comprehensive panel data based 
country and sector perspective with regard to the impact of robots on labour productivity.  

Our paper is structured as follow. The empirical model of our econometric analysis is developed in 
section 2. This section describes also the data used. The empirical results are presented in section 
3. Finally, a summary and some conclusions round off the paper in section 4.

The empirical model and the data 

Our empirical model follows the idea of Kromann et al. (2016) and is based on a Cobb-Douglas 
production function 

Yijt = AijtCijtα Qijt
β Lijt

γ , (1) 

where Yij represents value added in industry i in country j at time t. Furthermore, A denotes the 
technical efficiency or total factor productivity, C is the input of ICT capital, Q is the input of non-ICT 
capital and L is labour input. Since the robot stock of an industry is part of its non-ICT capital, it is 
assumed that the input of this capital has a quality and a quantity dimension, such that Q = qK, 
where K denotes the quantity of non-ICT capital and q is the (average) quality per unit of non-ICT 
capital input. 

Taking into account the two dimensions of the capital input and taking logarithms, the production 
function can be re-written with labour productivity as the dependent variable as  

yijt − lijt = aijt + α(cijt − lijt) + βln (qijt) + β(kijt − lijt) + (α + β + γ − 1)lijt, (2) 

2 Although the approach of Graetz and Michaels (2018) is less structural, their empirical analysis involves the use of fixed 
effects techniques (taking long differences), deals with the problems created by the incompleteness of capital stock data 
and try to take into account the possible endogeneity of robot adaption through (quite subject to debate) instrumental 
variables. Thus, the main additional value of our paper compared to theirs comes from the more structural econometric 
modelling and the period of time considered. 
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where lowercase letters with the exception of q denote logs of the original variables. Furthermore, 
it is assumed that the quality of the non-ICT capital input depends on the intensity of industrial 
robots according to 

qijt = eλRIijt , (3) 
 

where RI is the number of industrial robots used in industry i of country j in year t relative to the 
total non-ICT capital input of this industry-country pair in year t. Thus, the parameter λ reflects the 
efficiency of a unit of non-ICT capital input with a robot index of RI relative to a unit of non-ICT 
capital input in the absence of robots (RI = 0).  

Including the robot index into the production function yields 
 

yijt − lijt = aijt + α(cijt − lijt) + δRIijt + β(kijt − lijt) + εlijt, (4) 

 

where δ = βλ is the margin return to RI. If this parameter is positive, industrial robots have an 
extra effect compared to other types of non-ICT capital and industries with higher (or faster 
growing) RI realise higher (or faster growing) labour productivity. Furthermore, ε = α + β + γ − 1 
capture economies of scale, and if ε = 0, there are constant returns to scale in production.  

In order to estimate the production function (4), we have to restrict the technical efficiency 
parameter aijt. In the simplest case, aijt can be expressed as the sum of a constant a0 and a 
random error that is uncorrelated with the regressors, so that ordinary least squares (OLS) 
estimation of equation (4) would yield consistent estimates of the other regression coefficients. 
However, if there are differences in labour productivity between countries or between sectors or 
overall changes over time that are correlated with (but not caused by the robot index or the other 
regressors), OLS will provide inconsistent estimates. Thus, we include different specifications of 
fixed country and industry effects in the empirical model in order to allow aijt to vary 
systematically across countries and industries, e.g. due to different production technologies. 
Furthermore, we include different specifications of fixed time effects to capture trends in labour 
productivity that might be correlated with the development of the number of robots used. The 
production function (4) with the simplest specification for the fixed effects is: 
 

yijt − lijt = a0 + α(cijt − lijt) + δRIijt + β(kijt − lijt) + εlijt, +bi + dj + et + uijt, (5) 

 

where bi, dj and et are fixed industry, country and time effects. The remaining random error term is 
represented by uijt. The more complex specifications of the fixed effects are combinations of 

1. Fixed industry effects and fixed country-time effects, 
2. Fixed country effects and fixed industry-time effects, and 
3. Fixed country-time effects, fixed sector-time effects and fixed country-industry effects. 3 

Next, we discuss our data. Our main source of information on robots is the International Federation 
of Robotics (IFR, 2017), which collects consolidated data provided by nearly all industrial robot 
suppliers worldwide. As already mentioned, the definition of industrial robots is based on the 

                                                      
 
3 The latter specification is more flexible than the often used specification with country-sector and time fixed effects, 
since it allows for country-specific trends (e.g. national business cycles) and sector-specific trends common to all 
countries. The more restrictive specification with country-sector and time fixed effects only allows for time trends 
common to all countries and sectors, which might introduce a omitted-variable bias.  
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International Organization for Standardization (ISO) 8373:2012: an "automatically controlled, 
reprogrammable multipurpose manipulator programmable in three or more axes" (ISO 8373). That 
is an industrial robot is "a machine that embodies the following characteristics: can be 
reprogrammed, is multipurpose in function, allows for physical alteration, and is mounted on an 
axis" (IFR, 2017). 

 
Figure 1. Frequency distribution of robots per 1 million Euro non-ICT capital input (robot stocks with 
perpetual inventory method and 15% depreciation rate) 

 
Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations 

 

The IFR collects data on annual shipment (sales) from 1993 to 2016 and compiles a measure of 
robot stock based on the assumption that the average service life of a robot is approximately 12 
years. That is to say the stock of robots do not show any input or output decay over the service life 
and it is withdrawn altogether at the end of the twelfth year (one-hoss shay depreciation). Given 
that the service life of robots might be affected by the introduction of new technology with 
subsequent effects on its capital service, in line with the mainstream literature on productivity (e.g. 
Graetz and Michaels, 2018), we recomputed the stock of robots using the perpetual inventory 
method assuming depreciation rates of 5%, 10% and 15%. In order to do so, we need to 
implement two adjustments on the original IFR data. First, for some of the countries in the initial 
years there is only aggregate country data with no information at industry level. In order to 
disaggregate the data for the total economy at industry level, we take the average industry share 
for all the years with available information to consequently reallocate the total. Secondly, starting 
from 2008 the number of robots in the "unspecified" category grows discernibly. For these 
countries we use the same average industry share as above to redistribute the unspecified 
category. 
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The second source of information comes from EUKLEMS data (2017 release) that reports 
information on inputs, outputs and prices at industry-country level up to 2015. IFR and EUKLEMS 
use different industry classifications and report data for different level of industry aggregation. We 
used the most detailed breakdown available in the EUKLEMS and we consistently match these data 
with the IFR data. Our analysis covers nine different manufacturing industries over the period 
1995-2015 in 12 EU countries. Labour productivity is calculated as real value added divided by 
total hours worked by persons engaged. Labour input is measured as total hours worked by persons 
engaged. Following O'Mahony and Timmer (2009), real ICT capital and real non-ICT capital inputs 
are calculated by multiplying the volume indices of ICT and non-ICT capital services (2010 = 100) 
by the respective capital stock in 2010. 

Figure 1 shows for the whole observation period from 1995 to 2015 the frequency distribution of 
robots per 1 million Euro non-ICT capital input, based on robot stocks calculated with the perpetual 
inventory method and a 15% depreciation rate. It is obvious that these robot densities are rather 
small (between zero and 0.03 robots per 1 million Euro non-ICT capital input) for approximately 50 
% of the observations. More detailed descriptive statistics for the individual manufacturing 
industries can be found in Table 1. The largest mean and median values for the robot densities can 
be found in the transport equipment industry, followed by the rubber and plastic products, metal 
and metal products as well as machinery and equipment industries. It is also obvious that the 
dispersions of robot densities (measured by the standard deviation and the interquartile range) are 
also rather large in these industries. 

Table 1. Descriptive statistics for the stock of robots per 1 million Euro non-ICT capital input (robot 
stocks with perpetual inventory method and 15% depreciation rate) 

Industry Mean Median Standard 
deviation 

Inter-
quartile 
range 

Mini-
mum 

Maxi-
mum 

Nobs 

All nine industries 0.046 0.021 0.067 0.056 0.000 0.619 2010 

10-12: food products,
beverages, tobacco

0.021 0.012 0.021 0.028 0.000* 0.085 225 

13-15: textiles,
wearing apparel, etc.

0.012 0.004 0.017 0.013 0.000* 0.100 225 

16-18: wood and
paper product, etc.

0.014 0.006 0.019 0.010 0.000* 0.096 225 

20-21: chemical
products, etc.

0.003 0.001 0.003 0.004 0.000 0.014 210 

22-23: rubber and
plastics products, etc.

0.088 0.068 0.062 0.081 0.010 0.277 225 

24-25: metals and
metal products

0.053 0.048 0.039 0.057 0.003 0.164 225 

26-27: electrical and
optical equipment

0.022 0.017 0.016 0.020 0.000* 0.090 225 

28: machinery and 
equipment 

0.045 0.044 0.032 0.048 0.001 0.154 225 

29-30: transport
equipment

0.157 0.125 0.113 0.136 0.010 0.619 225 

* Greater than zero, but smaller than 0.000.

Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations 



The impact of robots on labour productivity: A panel data approach covering 9 industries and 12 countries 

7 

Empirical results 

In this section, we present the results of the estimations of various versions of our empirical model 
in equation (5).  

Table 2 shows the estimation results including a robot index that is based on a robot stock 
calculated by the perpetual inventory method with a 15% depreciation rate. The models (1) and (2) 
in this table are least square dummy variable (LSDV) regressions including fixed country, industry 
and time effects. The model (1) reveals a highly significant partial production elasticity for the 
capital input per hour as well as statistically highly significant impacts of labour (hours worked) and 
the robot index. The production elasticity of capital input shows the expected size around one third 
and the statistical significance of labour confirms that there are increasing economies of scale in 
the production of the manufacturing industries. The coefficient for the robot index implies that one 
additional robot per 1 million Euro non-ICT capital input would increase labour productivity by 44%.  

However, such an interpretation is not very informative, since the observed robot stock per 1 million 
Euro non-ICT capital input is much lower than one. The industry with the highest deployment of 
robots, transport equipment, uses on average 0.157 robots per 1 million Euro non-ICT capital input 
with a standard deviation of 0.113. Thus, an increase of its robot index by one standard deviation 
would increase its labour productivity by 5%. Similarly, if the transport equipment industry of an 
average EU country would increase its robot index from the 25% quartile to the 75% quartile, its 
labour productivity would be 6% higher. In model (2), total capital input is divided into ICT capital 
and non-ICT capital, however the estimate of the ICT capital coefficient is not statistically 
significant, while the other coefficients remain very similar to model (1).  

The models (3) and (4) include fixed industry effects and fixed country-time effects. Thus, these 
models allow that the sectors of each country can follow a different flexible country-specific trend. 
Similarly, the models (5) and (6) include fixed country effects and fixed sector-time effects, so that 
the industries over all 12 EU countries can follow flexible sector specific trends. However, the 
inclusion of these more flexible trends does not change significantly the estimation results for the 
input factors and the robot index. Finitely, the models (7) and (8) capture fixed effects in a very 
flexible form with country-time, industry-time and country-industry effects. Surely, these models 
might be over-parametrised, because they lead to higher production elasticities for the capital input 
and to unrealistic high economies of scale. However, the impact of robot index, whose point 
estimate also increase, remains statistically significant at a little bit lower level. 

The Tables 3 and 4 shows the estimation results for the same models, but with robot indexes 
based on robot stocks with depreciation rates of 10% and 5%. These lower depreciation rates do 
not affect the estimates of the capital and labour coefficients, but the coefficients of the robot 
index become a little bit lower with a depreciation rate of 10% for the robot stock and distinctively 
lower with a depreciation rate of 5%. However, in all cases the robot index still has a highly 
significant impact on labour productivity. The results with a depreciation rate of 5% are very similar 
to the results in Table 5, where the robot stock is depreciated according the approach of the 
International Federation of Robotics (IFR), which assumes that all robots have a lifetime of 12 
years and are then taken out of the stock. 

The impact of the robot index decreasing with the depreciation rates confirms the guideline of the 
German Ministry of Finance (Bundesministerium der Finanzen, 1989-2001) that the economic 
lifetime of industrial robots is between five and six years, implying depreciation rates between 15% 
and 20%. Insofar, our highest depreciation rate of 15% is at the lower bound of this official 
guideline. 
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In order to check whether the impact of robots on labour productivity has changed over time, we 
split our whole observation period in two sub-periods from 1995 to 2007 and from 2008 to 2015. 
The estimation results in Table 6 show that the impact of the robot index increased in all models 
from the first to the second sub-period. Since robot densities grew rather continuously in most 
industries during the observation period, these results suggest that robots have to reach a certain 
critical mass in order to achieve their full beneficial impact on labour productivity.  
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Table 2. Fixed effects estimation results for 12 EU countries and 9 manufacturing industries (robot stocks with perpetual inventory method and 15% 
depreciation rate) 

Dependent variable: ln(value added/hours) 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(cap/hours) 0.325*** 

(0.039) 

0.302*** 

(0.039) 

0.302*** 

(0.037) 

0.454*** 

(0.113) 

ln(cap_ict/hours) -0.014

(0.033)

-0.005

(0.033)

-0.000

(0.032)

0.008 

(0.109) 

ln(cap_oth/hours) 0.339***

(0.048)

0.311***

(0.046)

0.306***

(0.044)

0.432*** 

(0.111) 

ln(hours) 0.088*** 

(0.031) 

0.089***

(0.032)

0.087*** 

(0.031) 

0.088***

(0.032)

0.098*** 

(0.031) 

0.098***

(0.032)

0.322** 

(0.149) 

0.308** 

(0.145) 

Robot index 0.442*** 

(0.148) 

0.459***

(0.149)

0.478*** 

(0.149) 

0.492***

(0.149)

0.532*** 

(0.144) 

0.541***

(0.144)

0.603* 

(0.311) 

0.594** 

(0.304) 

Country effects Yes Yes Yes Yes 

Industry effects Yes Yes Yes Yes 

Time effects Yes Yes 

Country-time 
effects 

Yes Yes Yes Yes 

Industry-time 
effects 

Yes Yes Yes Yes 

Country-industry 
effects 

Yes Yes 

Adjusted R2 0.915 0.917 0.920 0.921 0.920 0.920 0.969 0.969 

Log-likelihood 641.0 659.0 804.7 821.9 780.6 792.6 1906.1 1907.9 

NOBS 2010 2010 2010 2010 2010 2010 2010 2010 

Notes: Heteroskedasticity and autocorrelation robust standard errors (Arellano, 1987 and 2003) in parentheses. 4  ***, ** and * indicate statistical significance at the 1 %, 5 % and 10 % 
level, respectively.  

Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations. 

4 Comprehensive discussions about the adequate use of cluster-robust standard errors, including the Arellano estimator, can be found in Cameron and Miller (2015) and Abadie et al. 
(2017). 
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Table 3. Fixed effects estimation results for 12 EU countries and 9 manufacturing industries (robot stocks with perpetual inventory method and 10% 
depreciation rate) 

Dependent variable: ln(value added/hours) 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(cap/hours) 0.325*** 

(0.039) 

0.302*** 

(0.039) 

0.302*** 

(0.037) 

0.459*** 

(0.114) 

ln(cap_ict/hours) -0.014

(0.033)

-0.005

(0.033)

-0.001

(0.032)

0.007 

(0.110) 

ln(cap_oth/hours) 0.340***

(0.048)

0.311***

(0.046)

0.306***

(0.044)

0.436*** 

(0.112) 

ln(hours) 0.088*** 

(0.031) 

0.090***

(0.032)

0.087*** 

(0.031) 

0.088***

(0.032)

0.098*** 

(0.031) 

0.099***

(0.032)

0.328** 

(0.149) 

0.313** 

(0.145) 

Robot index 0.308*** 

(0.110) 

0.324***

(0.110)

0.365*** 

(0.111) 

0.377***

(0.111)

0.382*** 

(0.104) 

0.391***

(0.104)

0.542** 

(0.234) 

0.534** 

(0.231) 

Country effects Yes Yes Yes Yes 

Industry effects Yes Yes Yes Yes 

Time effects Yes Yes 

Country-time 
effects 

Yes Yes Yes Yes 

Industry-time 
effects 

Yes Yes Yes Yes 

Country-industry 
effects 

Yes Yes 

Adjusted R2 0.915 0.916 0.920 0.921 0.919 0.920 0.969 0.969 

Log-likelihood 639.0 657.0 804.5 821.8 778.0 790.1 1908.5 1910.2 

NOBS 2010 2010 2010 2010 2010 2010 2010 2010 

Notes: Heteroskedasticity and autocorrelation robust standard errors (Arellano, 1987 and 2003) in parentheses. ***, ** and * indicate statistical significance at the 1 %, 5 % and 10 % level, 
respectively. 

Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations. 
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Table 4. Fixed effects estimation results for 12 EU countries and 9 manufacturing industries (robot stocks with perpetual inventory method and 5% 
depreciation rate) 

Dependent variable: ln(value added/hours) 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(cap/hours) 0.325*** 

(0.039) 

0.302*** 

(0.039) 

0.302*** 

(0.037) 

0.459*** 

(0.116) 

ln(cap_ict/hours) -0.014

(0.033)

-0.006

(0.033)

-0.001

(0.032)

0.003 

(0.112) 

ln(cap_oth/hours) 0.340***

(0.048)

0.311***

(0.046)

0.307***

(0.044)

0.438*** 

(0.113) 

ln(hours) 0.089*** 

(0.031) 

0.090***

(0.032)

0.088*** 

(0.031) 

0.088***

(0.032)

0.099*** 

(0.031) 

0.099***

(0.032)

0.333** 

(0.149) 

0.315** 

(0.145) 

Robot index 0.189** 

(0.080) 

0.203**

(0.080)

0.256*** 

(0.078) 

0.265***

(0.077)

0.245*** 

(0.075) 

0.253***

(0.075)

0.389** 

(0.175) 

0.383** 

(0.174) 

Country effects Yes Yes Yes Yes 

Industry effects Yes Yes Yes Yes 

Time effects Yes Yes 

Country-time 
effects 

Yes Yes Yes Yes 

Industry-time 
effects 

Yes Yes Yes Yes 

Country-industry 
effects 

Yes Yes 

Adjusted R2 0.915 0.916 0.920 0.921 0.919 0.920 0.969 0.969 

Log-likelihood 636.6 654.6 803.8 821.8 774.6 786.7 1908.3 1910.1 

NOBS 2010 2010 2010 2010 2010 2010 2010 2010 

Notes: Heteroskedasticity and autocorrelation robust standard errors (Arellano, 1987 and 2003) in parentheses. ***, ** and * indicate statistical significance at the 1 %, 5 % and 10 % level, 
respectively. 

Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations. 
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Table 5. Fixed effects estimation results for 12 EU countries and 9 manufacturing industries (robot stock with stepwise 12 years depreciation) 
Dependent variable: ln(value added/hours) 

(1) (2) (3) (4) (5) (6) (7) (8) 

ln(cap/hours) 0.324*** 

(0.039) 

0.301*** 

(0.039) 

0.301*** 

(0.037) 

0.448*** 

(0.113) 

ln(cap_ict/hours) -0.013

(0.033)

-0.005

(0.033)

-0.000

(0.032)

0.005 

(0.111) 

ln(cap_oth/hours) 0.338***

(0.048)

0.310***

(0.046)

0.305***

(0.044)

0.427*** 

(0.111) 

ln(hours) 0.088*** 

(0.031) 

0.089***

(0.032)

0.087*** 

(0.031) 

0.088***

(0.031)

0.098*** 

(0.031) 

0.099***

(0.032)

0.328** 

(0.149) 

0.312** 

(0.145) 

Robot index 0.187** 

(0.080) 

0.197**

(0.080)

0.239*** 

(0.081) 

0.247***

(0.080)

0.242*** 

(0.077) 

0.247***

(0.077)

0.303* 

(0.169) 

0.297** 

(0.304) 

Country effects Yes Yes Yes Yes 

Industry effects Yes Yes Yes Yes 

Time effects Yes Yes 

Country-time 
effects 

Yes Yes Yes Yes 

Industry-time 
effects 

Yes Yes Yes Yes 

Country-industry 
effects 

Yes Yes 

Adjusted R2 0.915 0.917 0.920 0.921 0.919 0.920 0.969 0.969 

Log-likelihood 636.5 654.1 802.1 819.2 774.6 786.5 1904.0 1905.8 

NOBS 2010 2010 2010 2010 2010 2010 2010 2010 

Notes: Heteroskedasticity and autocorrelation robust standard errors (Arellano, 1987 and 2003) in parentheses. ***, ** and * indicate statistical significance at the 1 %, 5 % and 10 % level, 
respectively. 

Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations. 
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Table 6. Fixed effects estimation results for 12 EU countries and 9 manufacturing industries (two subsamples) (robot stocks with perpetual inventory 
method and 15% depreciation rate) 

Dependent variable: ln(value added/hours) 

Period 1995 – 2007 

(1) (2) (3) (4) (5) (6) (7) (8)

ln(cap/hours) 0.300*** 

(0.044) 

0.281*** 

(0.048) 

0.290*** 

(0.046) 

0.526*** 

(0.180) 

ln(cap_ict/hours) -0.009

(0.037)

-0.007

(0.038)

-0.000

(0.037)

-0.016

(0.125)

ln(cap_oth/hours) 0.312***

(0.052)

0.292***

(0.054)

0.296***

(0.053)

0.524***

(0.178)

ln(hours) 0.064* 

(0.037) 

0.066*

(0.039)

0.070* 

(0.038) 

0.071*

(0.040)

0.065* 

(0.039) 

0.065

(0.040)

0.346* 

(0.192) 

0.320*

(0.176)

Robot index 0.408** 

(0.192) 

0.422**

(0.191)

0.502** 

(0.198) 

0.513***

(0.196)

0.436** 

(0.205) 

0.442**

(0.203)

0.011 

(0.384) 

0.000

(0.380)

Country effects Yes Yes Yes Yes 

Industry effects Yes Yes Yes Yes 

Time effects Yes Yes 

Country-time effects Yes Yes Yes Yes 

Industry-time effects Yes Yes Yes Yes 

Country-industry effects Yes Yes 

R2 0.920 0.921 0.921 0.922 0.917 0.918 0.984 0.984 

Log-likelihood 410.3 420.9 473.8 484.5 438.8 447.1 1561.7 1569.0 

NOBS 1207 1207 1207 1207 1207 1207 1207 1207 
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Period 2008 – 2015 

(1) (2) (3) (4) (5) (6) (7) (8)

ln(cap/hours) 0.296*** 

(0.034) 

0.291*** 

(0.036) 

0.294*** 

(0.035) 

0.268* 

(0.138) 

ln(cap_ict/hours) 0.024 

(0.035) 

0.026 

(0.038) 

0.022 

(0.036) 

0.270 

(0.216) 

ln(cap_oth/hours) 0.279*** 

(0.044) 

0.273*** 

(0.046) 

0.278*** 

(0.045) 

0.261** 

(0.121) 

ln(hours) 0.129*** 

(0.029) 

0.126*** 

(0.029) 

0.130*** 

(0.030) 

0.127*** 

(0.030) 

0.130*** 

(0.030) 

0.127*** 

(0.030) 

0.061 

(0.191) 

0.313 

(0.270) 

Robot index 0.660*** 

(0.159) 

0.668*** 

(0.158) 

0.642*** 

(0.170) 

0.650*** 

(0.169) 

0.666*** 

(0.166) 

0.674*** 

(0.164) 

0.735** 

(0.328) 

0.736** 

(0.327) 

Country effects Yes Yes Yes Yes 

Industry effects Yes Yes Yes Yes 

Time effects Yes Yes 

Country-time effects Yes Yes Yes Yes 

Industry-time effects Yes Yes Yes Yes 

Country-industry effects Yes yes 

R2 0.939 0.939 0.936 0.937 0.937 0.938 0.978 0.978 

Log-likelihood 450.6 454.1 472.0 476.0 471.1 474.5 993.1 996.6 

NOBS 803 803 803 803 803 803 803 803 

Notes: Heteroskedasticity and autocorrelation robust standard errors (Arellano, 1987 and 2003) in parentheses. ***, ** and * indicate statistical significance at the 1 %, 5 % and 10 % level, 
respectively 

Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations.. 
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The results from the econometric analysis can be used in different ways to assess the impact of an 
increase of robot densities and robot stocks on labour productivity in the analysed manufacturing 
sectors. One possibility is to calculate for each industry the impact of a one standard deviation 
increase of robot densities. The results of this exercise are displayed in Figure 2. Since the 
industries with the highest mean and median values of robot densities also realised the highest 
standard deviations, the four industries with the highest average robot density also show the 
largest increase of labour productivity. A one standard deviation increase of the robot density 
(based on a robot stock calculated with a 15% depreciation rate) implies an increase of labour 
productivity by 5.6% in the transport equipment industry, followed by 3.1% for the rubber and 
plastic products industry, 1.9% for metals and metal products industry and still 1.6% for the 
machinery and equipment industry. 

Figure 2. The impact of a one standard deviation increase of robots per 1 million Euro non-ICT 
capital input (robot stocks with perpetual inventory method and 15% depreciation rate) on labour 
productivity 

Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations 

Another possibility is to calculate the impact of a one percent increase of sector robot stocks on 
labour productivity for a certain year with a given non-ICT capital stock. We chose for this exercise 
the year 2014 and Figure 3 shows the boxplots for each industry in the 12 EU countries considered. 
Such an increase in the deployment of robots also has the largest effect on the labour productivity 
in the transport equipment industry, followed by the industries manufacturing rubber and plastics 
products, metals and metal products as well as machinery and equipment. In the transport 
equipment industry, a 1% increase of the 2014 robot stocks would increase labour productivity on 
average by 0.105% (the green cross). The median increase for the 12 EU countries within the same 
increase would be 0.088% (the line within the box, whereby the box represents the interquartile 
range). The results for the other industries can be interpreted analogously. 

15
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Figure 3. Impact of a one percent increase of robot stocks (perpetual inventory method and 15% 
depreciation rate) in 2014 on labour productivity 

Source: International Federation of Robotics (IFR) (2017), EUKLEMS (2017 release), own calculations 



The impact of robots on labour productivity: A panel data approach covering 9 industries and 12 countries 
 

 

17 

Conclusions 

Our paper analyses the impact of industrial robots on labour productivity within a production 
function framework with panel data for 9 manufacturing industries and 12 EU countries over a 
longer time period of 21 years. Compared to Kromann et al. (2019), on the one hand, we apply 
their approach to a much broader dataset with regard to the country and time coverage. On the 
other hand, unlike their study, which uses the given IFR robot stock which "one-hoss shay" 
depreciation and several problematic allocations and non-allocations of the data to the industries, 
we reallocated some data to industries according to the approach of Graetz and Michaels (2018) 
and recalculated alternative robot stocks using the perpetual inventory method. 

Our estimation results show that robots deployed in industrial production have – compared to other 
non-ICT capital – an additional impact on labour productivity. This capital augmenting effect of 
robots contributes to total factor productivity and via this channel also increases labour 
productivity. Insofar, our results confirm those of Kromann et al. (2019), but, based on a broader 
and more elaborated dataset, our estimates of the coefficients for the robot intensity are smaller 
than theirs. 

Furthermore, the country-sector distribution of robots presented suggests that they represent the 
latest iteration of a very long-term process of industrial automation more than a break-through 
innovation. That is, it is plausible that the expected gains in productivity and employment will 
restrain to those countries and industries with an already consistent stock of industrial robots and 
that the positive spillovers will depend on how difficult will be the automation process in different 
industries and countries. Indeed, the analysis shows that with the current level of robot technology, 
the substantial effects are limited to a few industries with an already large deployment of robots 
(transport equipment industry, rubber and plastic products industry, metals and metal products 
industry and machinery and equipment industry). Particularly in these sectors robots seem to 
upgrade the non-ICT capital stock and allow to improve the quality of products and to expand the 
variety of products.  
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