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Abstract
Drawing on panel data from Germany, this paper estimates the relationship between charging infrastructure 
and the uptake of electric vehicles (EVs). We specify models with fixed effects and instrumental variables 
to gauge the robustness of our findings in the face of alternative channels through which endogeneity bias 
may emerge. We find that charging infrastructure has a statistically significant and positive impact on EV 
uptake, with the magnitude of the estimate increasing with population density. The evidence further suggests 
that although the incidence of charging points in Germany far exceeds the European Union’s recommended 
minimum ratio of one point to ten EVs, inadequate infrastructure coverage remains a binding constraint 
on EV uptake. We use the model estimates to illustrate the relative cost effectiveness of normal and fast 
chargers by region, which supports a geographically differentiated targeting of subsidies.
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1 Introduction

The European Union’s (EU) progress in reducing CO2 emissions has long been impeded

by the transportation sector. Transportation is the only sector in the EU in which CO2

emissions are on the rise, increasing by 28% between 1990 and 2017 (EEA, 2019). To

buck this trend, several European governments have turned to the promotion of electric

vehicles (EVs). In Germany, the government has set a particularly ambitious goal of

registering one million EVs by the end of 2020, encouraged in part by a subsidy for

EV purchases that was introduced in 2016. Total funding for the subsidy has been

set at e1.2 billion, but progress has been sluggish. As of December 2018, there were

only about 83,000 battery-electric (BEV) and 67,000 plug-in hybrids (PHEV) registered

(KBA, 2019a), forcing Chancellor Merkel to concede that the goal would not be reached

and igniting a debate about the reasons for the shortfall.

The aim of this paper is to assess the validity of one frequently cited impediment

to the uptake of EVs: insufficient coverage of charging infrastructure. EU policy has

prioritized guaranteeing a minimum ratio of one charge point to ten EVs (EC, 2014).

To this end, the German government is providing e300 million towards expanding the

charging infrastructure through a program that awards grants to the most competitive

bids to construct charging stations. This program is complemented by directives that

put binding rules in place to harmonize socket standards for publicly accessible charging

stations as well as plans to harmonize authentication and payment at charging stations.

Between 2016 and 2018 the number of charging points in Germany increased over

three-fold, from 4,561 to 16,085 (BNetzA, 2019), resulting in about one point for every five

EVs, far exceeding the EU’s recommended minimum. The question arises as to whether a

saturation point has been reached, or whether insufficient infrastructure continues to pose

a binding constraint on the uptake of EVs. Drawing on a panel of monthly county-level

data from Germany spanning 2016-2018, we take up this question with an econometric

analysis that quantifies the effect of charging points on EVs, distinguishing between

normal and fast charging points as well as between battery-powered (BEVs) and plug-in

hybrids (PHEVs).

2



Our work contributes to a growing body of research that has identified the accessi-

bility of charging infrastructure to be among the most important determinants of EV

purchases, alongside factors such as price and driving range (Axsen et al., 2009; Bobeth

and Matthies, 2018; Coffman et al., 2017; Dagsvik et al., 2002; Hackbarth and Madlener,

2013; Langbroek et al., 2016; Liao et al., 2017; Nazari et al., 2018; Ziegler, 2012). Studies

using revealed preference data include Li et al.’s (2017a) and Narassimhan and Johnson’s

(2018) analyses of regional data from the US, which both identify a positive effect of

charging infrastructure on EVs. Likewise, Zhang et al. (2016) find significant positive

effects of charging station density on a panel of Norwegian municipalities. Other re-

vealed preference studies using county data from California (Javid and Nejat, 2017) and

country-level panel data (Li et al., 2017b) provide additional supporting evidence.

Studies using stated preference data generally concur with these findings. Achtnicht

et al.’s (2012) choice experiment in Germany, for example, finds that inadequate ex-

pansion of alternative fuel stations represents a significant barrier to the adoption of

alternative-fuel vehicles. Lebeau et al. (2012) similarly find that enhancing the charging

infrastructure density would substantially increase the share of EVs based on a conjoint

experiment from Belgium. More recently, Patt et al. (2019) employ a randomized con-

trolled survey in Switzerland to focus on access to private charging infrastructure, finding

this to be a potentially important factor influencing people’s willingness to purchase EVs.

Studies using Chinese (Sovacool et al., 2019) and Canadian (Miele et al., 2020) survey

data present dissenting evidence that charging infrastructure plays a negligible role.

The question of causality is an issue that looms large in identifying the impact of

charging infrastructure on EV uptake, particularly when using observational data as in

the present study. To the extent that chargers are situated according to the prevalence

of EVs, their estimated effect would be biased. We consequently present results from

two estimators that address different channels from which such bias could emerge. The

first includes county-level fixed effects to control for the influence of time-invariant unob-

servables, while the second additionally addresses potential bias from simultaneity and

omitted variables by employing instrumental variables (IVs) in a two-stage least squares
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framework. We draw on three instruments. One follows Li et al. (2017a) by using a

regional count of grocery stores. The other two are counts of transformers along the

electricity grid and counts of interstate gasoline stations.

Our findings suggest that charging infrastructure remains a binding constraint on the

adoption of electric vehicles in Germany. Specifically, our IV models indicate that each

additional normal charging point installed in a month is associated with an increase of

approximately 0.06 BEVs per county per month, while the effect of a fast charger is

0.27 BEVs. The corresponding effect sizes for PHEVs are about half the magnitude of

BEVs, likely because PHEVs are partially powered by an internal combustion engine and

therefore less dependent on charging infrastructure.

As a robustness check, we allow for non-linearities using a quadratic specification,

thereby providing a test of whether a tipping point exists after which the effect of charging

infrastructure levels off. We find no evidence for diminishing effects, suggesting that

Germany – although exceeding the minimum recommendation of charging point density

– has not reached saturation. We further undertake a systematic analysis that tests

for heterogeneity in the effect of charging points according to regional socioeconomic

conditions, finding that the estimate increases with population density and fuel prices.

Taken together, these results indicate that the disappointing uptake of EVs in Germany

since the implementation of the subsidy could be accelerated by an increase in charging

infrastructure, particularly if it is regionally targeted to reflect the differential effects

across rural and urban areas.

The next section presents the data set for our analyis. Section 3 introduces the

methodology and Section 4 shows the results. Section 5 uses the model estimates to

examine the relative cost-effectiveness of an ongoing subsidy program for normal- and

fast chargers by county. The final Section 6 summarizes and provides policy implications.
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2 Data

The data analyzed in this study is assembled from several sources that we merged via

a Geographical Information System. Data on EV registrations, measured by month and

county, is taken from the Federal Office for Economics and Export Control (BAFA, 2019),

which is responsible for the subsidy program for EV purchases. The program has been

effective since July 2016 and extends a subsidy of e4,000 for the purchase of a BEV and

e3,000 for a PHEV. The subsidy applies to all cars that are priced under e60,000 and its

cost is equally split between the government and the car manufacturers.1 The data does

not include the purchase of non-subsidized vehicles, which comprised about 12% of EVs

sold in 2017 and 14% in 2018 (KBA, 2019b). Although our analysis thereby captures over

85% of the market, the absense of non-subsidized EVs is a potential caveat, particularly

if such purchasers have a systematically different response to charging infrastructure than

purchasers of subsidized EVs.

Between July 1, 2016 and December 31, 2018, we observe 91,456 subsidized purchases

in total, which include subsidies to private customers, companies, and the public sec-

tor. As commercial and public customers most likely have their own charging points,

we restrict the sample to private customers, excluding municipal companies (N=648),

municipal associations (N=111), corporations (N=442), foundations (N=63), associa-

tions (N=360), and companies (N=50,172). In addition, we exclude cars with fuel cells

(N=13), resulting in a final sample of 39,647 subsidized purchases that are summed by

county. With a total of 400 counties – or NUTS3 regions – observed over 30 months

from July 2016 until December 2018, the data forms a balanced panel comprising 12,000

observations.

Figure 1 illustrates the uptake of EVs since the start of the subsidy, which picks

up momentum by the first quarter of 2017. Moreover, we observe substantial regional

variation in the uptake of EVs (Figure 2), both across the East-West divide of the country

and between rural and urban areas. The density of electric vehicles is higher in urbanized

1As part of a larger economic stimulus package in the aftermath of the Covid-19 pandemic, the
German government stipulated an increase in the subsidy. Specifically, since June 2020, the purchase of
EVs and PHEVs can be subsidized by up to e9,000 and e6,750, respectively.
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areas, which are more prevalent in the West. In the East of Germany, which is largely

rural, only the capital Berlin stands out as a hot spot of electric cars.
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Figure 1: Temporal development of uptake of electric cars

Data on charging infrastructure is obtained by the Federal Network Agency BNetzA

(2019), which provides a list of registered charging stations, including their start date of

operation and their geographical coordinates. The data additionally includes the number

of charging points at each station, distinguishing between normal- and fast charging

points. Normal charging points have a maxmimum capacity of 22kW, while fast charging

points reach up to 350 kW. There are a total of 7,988 charging stations having an average

of two charging points that were put in operation until December 31, 2018. The majority

of these, about 88%, is normal charging points, which, as in the case of EVs, saw a more

rapid growth in the recent past than fast charging points (Figure 3). Moreover, a spatial

pattern similar to that of EVs is evident, with charging points clustering in big cities, in

particular Berlin and Hamburg (Figure 4).

Table 1 presents descriptive statistics on the dependent and explanatory variables

used in the models. Overall, we observe a mean of 2.260 BEVs purchased per county

and month as well 1.157 PHEVs. In about 31% of the month-county combinations, we

do not observe any purchase of an BEV, whereas this share increases to 46% in the case
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Figure 2: Dispersion of electric vehicles across counties by December 2018
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Figure 3: Temporal development of charging points
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Figure 4: Dispersion of charging stations (normal and fast) across counties in December 2018
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of PHEVs. On average, in a given month a county has about 20 normal charging points

and three fast charging points. In 14% of the observations, no normal charging point is

installed and in 53% no fast charging point is installed. Given the presence of zeros in

the measurements of cars and chargers, we maintain measurement in levels rather than

logs to avoid missing values.

Table 1: Summary statistics of the estimation sample

Mean St. Dev. Min Max

Electric cars (#) 2.260 3.091 0.000 45.000
Plug-in hybrids (#) 1.157 1.795 0.000 28.000
Normal charging points (#) 19.727 46.765 0.000 776.000
Fast charging points (#) 2.736 5.997 0.000 128.000
Family houses (#) 27.789 17.440 1.983 116.868
Purchase power pc (e1,000) 22.933 2.504 18.111 34.758
Population (1,000 / km2) 0.529 0.694 0.036 4.678
Fuel price (e/ liter) 1.291 0.055 1.201 1.492
Supermarkets (#) 84.805 89.504 11.000 1375.000

No. of observations 12,000

The data is completed by a suite of regional, time-varying control variables taken

from the RWI-GEO-GRID km2 raster data (Breidenbach and Eilers, 2018), including

purchasing power per capita, which we aggregate to the county level. Moreover, we

control for regional characteristics, such as population density and the number of one-

and two-family homes. The latter variable captures home-readiness to recharge, which

has been shown to be a particularly important determinant of BEV uptake (Patt et al.,

2019).

Last, we control for the deflated fuel price in the county by drawing on data from an

online portal called the Market Transparency Unit for Fuel, which records the petrol and

diesel price at three minute intervals for each of Germany’s roughly 15,000 gas stations

(LeSage et al., 2017). We aggregated this data by calculating the mean petrol price by

county over the month directly preceding the observation month.
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3 Methodology

Our empirical point of departure is a fixed effects regression specified as

evit = β + βcchargeit + βT
xXit + θi + µt + νit, (1)

where evit denotes either the number of BEVs or PHEVs in county i in period t, chargeit

measures the corresponding number of normal or fast charging points, vector Xit con-

tains time-varying control variables, and the β are the corresponding parameters to be

estimated. In additon, we control for county fixed effects θi and a set of year-month fixed

effects µt. The term νit is an idiosyncratic error that captures unobserved shocks.

One of the assumptions required for identifying the causal effect using the above model

is the absence of simultaneity, which would emerge if the number of electric vehicles was

simultaneously a determinant of charging points. We address this potential source of

endogenity by instrumenting our measure of charging points and employing two-stage-

least squares (2SLS) to estimate Model (1). We draw on three instruments.

The first follows Li et al.’s (2017a) analysis of the electric vehicle market in the United

States, which instruments charging stations using a measure of the number of grocery

stores and supermarkets in a Metropolitan Statistical Area (MSA). As this measure does

not vary over time, the authors multiply it with the one-quarter lagged number of existing

charging stations in all MSAs other than the MSA corresponding to a given observation.

The variable so constructed thereby allows differential effects of grocery stores according

to national shocks in charging station investment, as measured by the lagged number of

stations in other MSAs. We apply the same procedure here, drawing on the RWI-GEO

regional database to construct counts of grocery stores for each county, which does not

vary over the time interval of the data. We then interact this with the one-month lagged

count of charging points in all remaining counties, denoting the resulting instrument as

groceries.

The second instrument is a measure of the count of transformers along the electric

grid (denoted transformers), while the third is a count of the number gasoline stations
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located along the interstate (denoted interstate stations). Both variables are measured

at the county level. As both are static, we interact them with month-year dummies to

allow for differential effects over time.

The validity of the instruments, denoted Zit, rests on two assumptions: they are

correlated with charging points, i.e. cov(Zit, chargeit) 6= 0, while they are not correlated

with the error term νit, cov(νit, Zit) = 0. The first assumption, which is tested below

for each instrument (Table A1), comports with intuition. As in the US, grocery stores

in Germany commonly host charging points to attract EV motorists who can combine

charging with shopping excursions. Hence, a positive correlation is expected between

grocery stores and chargers. A positive correlation of chargers with transformers and

interstate gas stations is also expected: Transformers are required to reduce transmission

voltages for end uses such as charging stations, while interstate gas stations serve as a

convenient location for recharging, particularly in the case of fast chargers.

The second assumption – that the IV has no direct causal effect on the outcome –

cannot be formally tested, but receives further scrutiny below.

4 Results

We focus our analysis on BEV uptake, beginning with separate models for normal and

fast chargers that ignore heterogeneity.2 Figure 5 presents point estimates and 95%

confidence intervals from four models that either employ standard fixed effects (FE) or

that additionally couple FE with instrumental variables to control for simultaneity and

omitted variables (see Table A1 and Table A2 for the regression tables of the first and

second stage, respectively). For normal chargers, we explored the use of two alterna-

tive instruments: groceries and transformers. Noting that they yield virtually identical

point estimates, Figure 5 presents results using the transformers instrument, which has a

slightly narrower confidence interval. For fast chargers, we use the instrument interstate

stations.

Across all models, the estimates of normal and fast chargers are positive and sta-

2To request access to the data and code used in the analysis, please contact the corresponding author.
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Figure 5: Coefficient estimates for norma and fast charging points

tistically significant. The FE estimate indicates that each additional normal charger is

associated with an increase of 0.03 BEVs in the month following its installation, with the

estimate doubling to 0.062 in the instrumented case. Multiplying this coefficient with

the ratio of mean normal charging points to mean electric vehicle purchases yields an

elasticity estimate of 0.54. Thus, a 10% increase in normal charging points is associated

with a 5.4% increase in BEVs, which is somewhat lower than the 8.4% estimate reported

by Li et al. (2017a) from their generalized method of moments model.

Fast chargers are seen to have a considerably stronger influence on BEV uptake,

with an FE estimate of 0.103.3 The instrumented model suggests an even higher point

estimate that reaches 0.273. However, its wide confidence interval renders it statistically

indistinguishable from the FE estimate.

With regard to the strength and validity of the instruments, diagnostic checks pre-

sented in the appendix are generally supportive. The first stage F-statistics, ranging

3The stronger effect found for fast chargers parallels the study of (Neaimeh et al., 2017), who find
a stronger influence of fast chargers on distance driven. We also estimated a model (not presented)
that includes the interaction of normal and fast chargers to test whether the two are complements
or substitutes. While the positive interaction effect estimated from the FE model indicates tentative
evidence of complements, the IV estimates are slightly negative and statistically indistinguishable from
zero.
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between 1364 and 7422, all far exceed the commonly referenced threshold of 10 as well as

the threshold of 104.7 recently suggested by Lee et al. (2020). We additionally explored

the validity of the IV by employing a placebo test suggested by Bound and Jaeger (2000),

which involves regressing the IV on the outcome variable using a subsample of the data

with zero charging points. A statistically insignificant coefficient would lend support to

the exclusion restriction. As presented in Table A3, this is found to be the case for the

transformer and interstate IVs. The estimated coefficient on the grocery store IV, by

contrast, is highly significant, casting doubt on the exclusion restriction in this instance.

We complete the econometric analysis with models that allow for alternative sources

of heterogeneity. The first includes a quadratic specification of charging points, presented

in Table A4, to allow for a non-linear effect. The evidence for such an effect is weak.

The small magnitude of the squared term suggests that there are no counties in Germany

approaching a saturation point after which additional charging points have a zero effect.

Specifically, the estimate indicates a turning point in the effect at more than 300 chargers,

which is far beyond the range observed in our sample. We conclude that charging infras-

tructure continues to be a binding constraint on the uptake of BEVs, lending support to

the government’s plan to expand charging infrastructure (BMVI, 2020b).

We subsequently estimate models that interact charging points with each of the four

control variables, allowing for differential effects according to local socioeconomic circum-

stances. This analysis reveals evidence for a statistically significant interaction effect of

fuel prices and population density, both of which increase the positive effect of charging

points on BEV uptake (Table A5). These effects jibe with intuition. A stronger effect of

chargers in more densely populated areas likely reflects the influence of a larger customer

base, while higher prices for fuel would presumably increase the salience of chargers as

an alternative energy source for meeting mobility needs.

To glean further insight into these effects, Figure 6 and Figure 7 present cartographic

depictions of the marginal effects from the models of normal and fast chargers with the

interactions. Both maps indicate a clear division between the East and the West, with

higher marginal effects in the latter. Moreover, a pattern is seen wherein higher estimates
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tend to be clustered in more dense areas, particularly in the Ruhr Valley, a polycentric

urban area in the West that was formerly the country’s industrial heartland. This may

owe to the fact that city dwellers tend to be renters and are thus less likely to have access

to private chargers, making them more sensitive to additional charging points.

A notable exception to this pattern is the city-state of Berlin, which registers an

estimated marginal effect of fast chargers that is essentially equal to zero in the case of

fast chargers. One explanation for this anomaly is that Berlin has an exceptionally large

number of houses. With 127 houses per square kilometer, the city reaches over two times

the national average of 49 houses per square kilometer. Given the negative interaction

effect of houses and charging points evidenced from the econometric model, this high

incidence of houses would pull down the estimated marginal effect.

Figure 6: Heterogeneitiy in the estimates of normal charging points

In a final step, we estimate the impact of charging points on the uptake of PHEVs

(Table A6). In general, the magnitude of the effects are half the size identified in the

14



Figure 7: Heterogeneitiy in the estimates of fast charging points
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models of BEVs (Table A2) and only statistically significant at the 5% level when we

instrument the number of charging points with the number of transformers. This finding

supports the intuition that the uptake of PHEVs, with their partial reliance on fossil

fuels, is less responsive to charging infrastructure.

5 On the subsidy allocation

The German government has earmarked e300 million in subsidies for the establishment

of charging infrastructure. The maximum subsidy for a single normal charging point is set

at e2,500 and for a fast charging point at e12,000 (BAV, 2019). From a cost-effectiveness

perspective, an optimal allocation would dictate that the budget is spent so as to equalize

the return per Euro on normal- and fast charging points.

Using the estimates from the models with the transformers and gas stations instru-

ments (Table A2), respectively, we find that the subsidy for normal charging points leads

on average to 0.062*12/2,500=0.298 BEVs per year per e1,000, while the subsidy for

fast chargers leads to 0.273*12/12,000=0.273 EVs per e1,000. The difference of 0.025

between the two estimates is small and statistically insignificant, suggesting that the

subsidies are indeed well-calibrated.

An additional consideration concerns how the spatial distribution of subsidies for

chargers across Germany impacts BEV uptake. The recently passed budget allocates

two thirds of funding for charging infrastructure to fast chargers with the remaining one

third to normal chargers (BMVI, 2020a). Taking the subsidies noted above of e2,500

and e12,000 for normal and fast chargers would result in 40,000 normal and 16,667 fast

chargers. One extreme scenario would distribute these chargers uniformly across counties,

which, based on the mean marginal effects estimates from Table A5, would yield about

75,500 new electric vehicles over the course of a year.4

Alternatively, a cost-efficiency perspective recognizes that the subsidy is optimally

allocated when the per Euro return to charging points is the same across the counties

4We arrive at this figure by summing two products: (0.049 (the mean marginal effect of normal
chargers) X 40,000 X 12) + (0.260 (the mean marginal effect of fast chargers) X 16,667 X 12).

16



in Germany. Applying the county-specific marginal effects estimates derived from the

models in Table A5 results in about 83,000 new electric vehicles over a year, nearly an

11% increase relative to the calculation assuming a homogeneous effect of chargers. With

geographically differentiated targeting, policymakers can thus substantially improve the

effectiveness of the subsidy.

6 Conclusion

Using data on a subsidy program for electric vehicles that was implemented in Germany

in July 2016, we have analyzed the effect of charging infrastructure on the uptake of

electric vehicles. The subsidy was implemented as part of an effort to introduce one

million EVs on the road by 2020, an effort that currently faces a substantial shortfall

of over 900,000 vehicles. Our analysis suggests that insufficient charging infrastructure

remains a binding constraint on the uptake of EVs. Our instrumented estimate suggests

that an additional normal charging point is associated with 0.062 additional BEVs per

month per county, corresponding to an uptake of 0.74 BEVs per county over the course of

a year. The instrumented point estimate for fast chargers is, at 0.273, over four times the

magnitude, corresponding to 3.28 BEVs per county. These are average effects that mask

substantial heterogeneity detected over space, with stronger effects of chargers found in

densly populated areas and where fuel prices are high. Through a back-of-the-envelop

calculation, we show that geographically targeted subsidies for chargers in recognition of

this heterogeneity can greatly improve their effectiveness in promoting BEV uptake.

Germany’s budget to encourage EV car purchases via subsidies is e1.2 billon, while the

budget for charging infrastructure is more modest at e300 million. An important question

for future research is how to balance support for these two mechanisms. We suspect that a

reallocation of expenditure toward charging infrastructure would be warranted, following

a similar recommendation by Li et al. (2017a) for the US. Nevertheless, it would be

important to gauge the likely extent of free-rider effects for both EV purchases (Chandra

et al., 2010) and charging infrastructure before implementing such a reallocation.
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A Appendix

Table A1: Estimation results for the uptake BEVs

Normal Fast

Groceries Transformers Gas stations
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

# Grocery stores × L(Charging points) 0.003*** (0.001) – – – –
# Transformers × year – – 0.001*** (0.000) – –
# Fuel stations – – – – 0.003** (0.001)
Purchase power pc 0.803 (1.621) -2.917 (2.175) 0.536** (0.260)
Population density 137.818** (58.543) 130.076 (138.393) -4.158 (12.585)
No. of houses -3.806 (2.653) 2.471* (1.433) -0.302 (0.307)
Fuelprice 61.145*** (15.520) 54.614** (26.865) 2.218 (5.995)
Constant -0.000 (0.000) 0.000 (0.000) 0.000*** (0.000)

Year-month fixed effects Yes Yes Yes
Individual fixed effects Yes Yes Yes
F-statistic 7422 1364 1923

No. of observations 12,000 12,000 12,000

Note: Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical significance at the 1 %, 5 %, and
10 % level, respectively.

Table A2: Second stage estimation results for the uptake BEVs

Normal Fast

FE Groceries Transformers FE Gas stations
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Normal chargers 0.031*** (0.004) 0.058*** (0.011) 0.062*** (0.006) – – – –
Fast chargers – – – – – – 0.103*** (0.007) 0.273*** (0.087)
Purchase power pc -0.163** (0.083) -0.039 (0.127) -0.022 (0.132) -0.327*** (0.094) -0.359*** (0.105)
Population density -0.757 (3.893) -1.934 (7.629) -2.096 (8.118) 1.831 (3.478) 3.838 (4.907)
No. of houses 0.704*** (0.085) 0.422*** (0.156) 0.383*** (0.146) 0.978*** (0.222) 0.890*** (0.217)
Fuelprice 5.246*** (1.835) 4.337** (2.074) 4.212** (2.010) 5.795*** (1.831) 4.966** (2.207)
Constant 2.260*** (0.113) 2.260*** (0.113) 2.260*** (0.113) 2.260*** (0.113) 2.260*** (0.113)

Year-month fixed effects Yes Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes Yes

No. of observations 12,000 12,000 12,000 12,000 12,000

Note: Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical significance at the 1 %, 5 %, and
10 % level, respectively.
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Table A3: Placebo estimation results

Groceries Transformers Stations
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

# Grocery stores × L(Charging points) 0.000*** (0.000) – – – –
# Transformers × Yearmonth – – -0.000 (0.000) – –
# High way gas stations × Yearmonth – – – – -0.000 (0.000)
Purchase power pc -0.410** (0.168) -0.211 (0.177) -0.247 (0.172)
Population 0.874 (8.123) -1.292 (8.436) -1.297 (8.692)
Family houses -0.290 (0.259) 0.175 (0.258) 0.103 (0.218)
Fuel price -2.006 (6.528) -5.225 (5.790) -4.675 (6.286)
Constant 16.168* (8.416) 13.340 (9.282) 10.965 (8.944)

Year-month fixed effects Yes Yes Yes
Individual fixed effects Yes Yes Yes

No. of observations 1,230 1,230 1,230

Note: Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical significance at the 1 %, 5 %, and
10 % level, respectively.

Table A4: Nonlinearities in the deployment of charging infrastructure

Normal Fast

FE Transformers FE Stations
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Normal chargers 0.031*** (0.003) 0.061*** (0.006) – – – –
Normal chargers × Normal chargers -0.000 (0.000) -0.000*** (0.000) – – – –
Fast chargers – – – – 0.100*** (0.007) 0.274*** (0.088)
Fast chargers × Fast chargers – – – – -0.001*** (0.000) 0.001 (0.001)
Purchase power pc -0.158** (0.080) -0.013 (0.126) -0.323*** (0.094) -0.363*** (0.106)
Population density -1.891 (3.430) -3.892 (7.384) 1.390 (3.321) 4.355 (5.027)
No. of houses 0.692*** (0.082) 0.363*** (0.139) 0.965*** (0.227) 0.908*** (0.220)
Fuelprice 5.160*** (1.862) 4.074** (1.935) 5.730*** (1.847) 5.061** (2.250)
Constant 2.260*** (0.113) 2.260*** (0.113) 2.260*** (0.113) 2.260*** (0.113)

Year-month fixed effects Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes

No. of observations 12,000 12,000 12,000 12,000

Note: Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical significance at the 1 %, 5 %, and
10 % level, respectively.
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Table A5: Heterogeneous effects of charing points

Transformers Stations
Coeff. Std. Err. Coeff. Std. Err.

Normal chargers 0.073*** (0.014) – –
Purchase power pc 0.241 (0.228) -0.349*** (0.110)
Population density -12.859 (8.669) 2.235 (5.068)
# Houses 0.264 (0.232) 0.870*** (0.215)
Fuel price 1.532 (2.346) 2.489 (2.710)

Normal chargers × Purchase power pc -0.073 (0.070) – –
Normal chargers × Population density 1.131* (0.601) – –
Normal chargers × # Houses -0.001 (0.008) – –
Normal chargers × Fuel price 0.263*** (0.079) – –

Fast chargers – – 0.250*** (0.070)
Fast chargers × Purchase power pc – – 0.026 (0.190)
Fast chargers × Population density – – 1.577 (5.519)
Fast chargers × # Houses – – -0.076 (0.076)
Fast chargers × Fuel price – – 1.225* (0.660)

Year-month fixed effects Yes Yes
Individual fixed effects Yes Yes

No. of observations 12,000 12,000

Note: Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical significance at the 1 %, 5 %, and
10 % level, respectively.

Table A6: Second stage estimation results for the uptake PHEVs (all charging points)

Normal Fast

FE Transformers FE Stations
Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Normal chargers 0.005 (0.004) 0.020*** (0.004) – – – –
Fast chargers – – – – 0.005 (0.009) 0.075 (0.048)
Purchase power pc -0.117 (0.093) -0.048 (0.118) -0.143* (0.082) -0.156* (0.080)
Population density -7.795* (4.109) -8.455 (5.494) -7.499** (3.696) -6.670* (3.990)
No. of houses 0.443*** (0.100) 0.285*** (0.080) 0.496*** (0.114) 0.459*** (0.117)
Fuelprice 2.719** (1.362) 2.210 (1.557) 2.871** (1.276) 2.529 (1.584)
Constant 1.229*** (0.064) 1.229*** (0.064) 1.229*** (0.064) 1.229*** (0.064)

Year-month fixed effects Yes Yes Yes Yes
Individual fixed effects Yes Yes Yes Yes

No. of observations 12,000 12,000 12,000 12,000

Note: Standard errors are clustered at the NUTS3 level. ***, **, and * denote statistical significance at the 1 %, 5 %, and
10 % level, respectively.
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