
Kirstein, Roland; Cooter, Robert

Working Paper

Anti-Sharing.

CSLE Discussion Paper, No. 2003-02

Provided in Cooperation with:
Saarland University, CSLE - Center for the Study of Law and Economics

Suggested Citation: Kirstein, Roland; Cooter, Robert (2003) : Anti-Sharing., CSLE Discussion Paper,
No. 2003-02, Universität des Saarlandes, Center for the Study of Law and Economics (CSLE),
Saarbrücken

This Version is available at:
https://hdl.handle.net/10419/23131

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/23131
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Anti-Sharing.

Roland Kirstein∗ and Robert Cooter∗∗

Center for the Study of Law and Economics
Discussion Paper 2003-02 - Draft of July 2003

Abstract
The paper proposes a mechanism that may implement first-best

effort in simultaneous teams. Within the framework of this mecha-
nism, each team members is obliged to make a fixed, non-contingent
payment, and chooses his individual effort. After the output is pro-
duced, each team member receives a gross payment that equals the
actual team output. We demonstrate that a Nash equilibrium exists in
which each team member chooses first-best effort. We call this mech-
anism “Anti-Sharing” since it solves the sharing problem that causes
the inefficiency in teams. The Anti-Sharing mechanism requires one
player to specialize on the role of an “Anti-Sharer”. With an exter-
nal Anti-Sharer who works on a non-profit base, the mechanism can
implement first-best effort. If, however, the Anti-Sharer comes from
within the team and desires a positive payoff, then the mechanism may
implement not more than second-best effort. The latter version of the
model could be interpreted as a new theory of firms and partnerships
in the sense of the theory of Alchian and Demsetz (1972).
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1 Introduction

This paper proposes a new mechanism to solve the problem of inefficient
effort provision in teams. Even if the team output is deterministic and team
members are risk-neutral, the sharing of the output induces the players to
spend suboptimal low effort. We call this mechanism “Anti-Sharing”. Within
its framework, the team members are obliged to make a fixed payment to
an “Anti-Sharer”. Each team member chooses his effort, which produces
the actual team output. This team output is collected by the Anti-Sharer,
who finally pays exactly this amount to each of the team members. With
an external Anti-Sharer who works on a non-profit basis, this mechanism
implements the first-best efforts as a Nash equilibrium.

If, however, one of the team members takes over the role of the Anti-Sharer,
only a suboptimal solution can be implemented. We prove that an internal
Anti-Sharer must not be productive. Thus, our mechanism can be interpreted
as a theory of a firm, since it provides an explanation for the division of labor
between inactive (senior) partners and active (junior) partners.

The idea that a team member assumes a specialized role to solve the team
problem is very similar to the proposal of Alchian/Demsetz (1972). In their
seminal paper, these authors have based their theory of the firm on the idea
of team production: if the inputs of the agents are not linear separable, then
individual incentive contracts are of no use. According to their proposal,
one agent should become the residual claimant and monitor the effort of the
other agents. Being the residual claimant motivates the monitor to fulfill his
monitoring duties. However, this proposal requires the effort to be observable
by the specialized monitor.

However, in the Alchian/Demsetz model specialization in monitoring may
raise opportunity costs, since it is likely that the monitoring task may keep
this agent from contributing productive effort to the team output. If mon-
itoring is possible without opportunity costs, then a first-best solution can
be achieved. Taking the opportunity costs of monitoring into account, the
Alchian/Demsetz solution is not first-best, due to two reasons: first of all,
the monitor’s effort is not contributed to the output. Moreover, this may
decrease the other agents’ marginal productivity if, as it is usually assumed
for team problems, the production function is characterized by positive cross-
partials.

Holmstrom (1982) has shown that, within a fairly general framework, budget-
balanced sharing schemes are unable to induce a first-best effort. Unbalanced
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rules would implement first-best effort as a Nash quilibrium. However, such
a Nash equilibrium is not subgame perfect, since it would require the agents
to waste a part of the output. No agent anticipates such a threat to be
actually carried out. Without some outside enforcer who has an interest
in enforcing such an ex-post inefficient punishment, the unbalanced sharing
scheme introduced by Holmstrom would not work.

Our mechanism is different from the outside enforcer of a non-balanced shar-
ing rule in Holmstrom (1982). In our model, the payments to the Anti-Insurer
are not contingent on the observation of an output which is smaller than the
efficient one. Our mechanism obliges the agents to make a fixed payment to
the Anti-Sharer. In turn, they receive a payment that equals the full actual
output (instead of only a share). The fixed payments enable the Anti-Sharer
to pay each of the team members. Since these payments are fixed, they are
irrelevant for the effort decision of the agents. Therefore, our mechanism is
different from “bonding” as mentioned in Holmstrom (1982).

Rasmusen (1987) has demonstrated that, in the case of risk-averse team-
members, a budget balanced Sharing contract may implement the first-best
effort. The mechanism is based on random punishment in case of under-
performance. Strausz (1999) has derived a simple sharing rule for sequen-
tial teams that is budget-balanced (thus credible) in equilibrium, and which
implements first-best efforts if earlier inputs are observable by those team
members who move later during the game.1 In our model, we focus on si-
multaneous teams that consist of risk-neutral agents. Hence, the proposals
of Rasmusen and Strausz are not applicable.

Finsinger/Pauly (1990) have applied the idea of Holmstrom to Law and Eco-
nomics2 and demonstrated that an optimal liability rule would require bur-
dening both parties with the full damage. A budget balanced liability rule,
however, leads to an over-insurance problem. At least one party (or even
both) does not have to bear the full damages, and thus enjoys too much
insurance. E.g., strict liability and no liability imply that one party bears
the full risk, whereas the respective other party is fully insured. Under neg-
ligence rules as well as under liability rules that require each party to bear
a part of the damage, there is no situation in which each party has to bear
the full damage simultaneously.

The idea of Cooter/Porat (2002) proposes “Anti-Insurance” as a solution
to the over-insurance problem. If, in a tort case with two parties, a third

1See Lülfesmann (2001) for a generalization of this result.
2See already Brown (1973), Coase (1960). See also Görke (2002).
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person plays the role of an “Anti-Insurer”, then both parties can be exposed
to the full risk, which provides incentives to spend efficient effort. Under
the strict liability rule, e.g., the Anti-Insurer initially pays an amount that
equals the damage to the insured party. If an accident occurs, the uninsured
party bears the damage, whereas the insured party has to pay the same
amount to the Anti-Insurer. Thus, both parties have to pay full damages
in case of an accident. The ex-ante payment by the Anti-Insurer is required
to satisfy the participation constraints of the two parties. If the liability
rule distributes the damage among the parties, then the ex-ante payment
from the Anti-Insurer and the ex-post payments to the Anti-Insurer have
to be adjusted accordingly.3 This mechanism is different from the one in
Varian (1994), where each agent pays the other agents for their effort, and
simultaneously demands from all agents a compensation for his own effort.
Varian’s mechanism requires each of the n team members to announce 2n
prices, whereas in the simplest version of the Anti-Insurance mechanism, only
one payment of each team member to the Anti-Insurer has to be computed.

The paper by Cooter/Porat (2002) is closely related to ours, since the au-
thors have already pointed out that their idea can also be applied to un-
certain gains. A difference between their paper and ours is that our model
can be applied to teams with deterministic output, while their paper fo-
cuses on stochastic outcomes. Note furthermore that the Anti-Insurer in
Cooter/Porat (2002) is introduced as an additional player, while we also an-
alyze Anti-Sharers who come from within the team. Insofar, our model could
be interpreted as an explanation of the division of labor between (inactive)
senior partners and (productive) junior partners. Partnerships are defined
by Farrell/Scotchmer (1988) as coalitions that divide their output equally.
Their concept differs from ours since they expressly exclude team production
in the sense of Alchian/Demsetz (1972). Consequently, they focus on the
optimal team size, while moral hazard within the partnership plays no role
in their analysis. This is also true for the model in Lang/Gordon (1995), who
explain partnership as a risk-pooling device. In our model, risk is excluded.

In section 2, we set up our model and notation by repeating the results of
team production under a Sharing contract as demonstrated by Holmstrom
(1982). We maintain the assumption that individual efforts are unobservable.
This excludes the application of monitoring - as in Alchian/Demsetz (1972)
- or sequential teams - as in Strausz (1999).

Section 3 demonstrates the implementation of first-best effort by an external
Anti-Sharing contract, offered to the team members by a zero-profit Anti-

3See also Polinsky/Rubinfeld (2003) with a related idea.

4



Sharer. The introduction of an Anti-Sharer addresses the sharing problem,
as expressed by Lang/Dordon (1995): “Pooling of profits denies a partner the
entire value of his marginal effort and therefore reduces the effort”. Under an
(external) Anti-Sharing contract, the complete value of each team member’s
effort appears in his respective yield function.

However, the case of an external Anti-Sharer who operates on a zero-profit
base is not the most realistic one. More relevant appears to be a scenario in
which one of the team members takes over the role of the Anti-Sharer. In
section 4 we therefore endogenize the Anti-Sharing. If a team that consists
of n agents faces the problem that the spontaneous interaction leads to an
equilibrium with inefficient effort, then one out of these n agents may serve
as Anti-Sharer. An internal Anti-Sharing contract may implement cannot
implement first-best efforts among the remaining (n − 1) agents, since it is
necessary to keep the agent who plays the role of the Anti-Sharer from con-
tributing productive effort. However, we demonstrate the conditions under
which an internal Anti-Sharing contract leads to a Pareto-improvement for
the team members, compared to the situation under a Sharing contract.

In section 5, we discuss the constitutional aspects of internal Anti-Sharing: if
the team members are homogenous with respect to their productivity, then
an equilibrium requires the ex-ante payoff of the Anti-Sharer to equal those
of the remaining team mambers. In a case of a heterogenous agents, the
agent with the lowest productivity should assume the role of the Anti-Sharer.
Section 6 concludes the paper.

2 Teams without “Anti-Sharing”

2.1 Basic notation

Consider a group of n agents who may spend effort ei, i = 1..n to produce
an output Y (e1..en).4 The individual efforts are assumed to be unobservable,
thus not contractible.5 The agents are assumed to dislike effort. We denote

4The subscript i denotes player i = 1..n. We also use the subscript i to denote the
derivative of Y with respect to player i’s effort ei.

5It is not possible to infer the individual effort from the observed output if n > 2, or if
output is stochastic, i.e., when a random variable influences the output. An example for
the latter would be a situation where the agents’ efforts increase the probability of success,
whereas the project value is fixed. However, even if an agent could infer another agent’s
effort, this still does not imply that efforts are verifiable.
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the effort cost of agent i as ci(ei),
6 and assume that individual costs are

independent of other players’ effort choices.7 We assume furthermore that
players’ utility is separable in wealth and effort cost - the players maximize
their income minus their effort cost.

To simplify the notation, we employ the following convention for effort vec-
tors. While a lower case letter ei denotes the individual effort of player i, a
capital letter E represents a vector of individual efforts, with the following
subscripts:

• E is the effort vector of all n players: E = (e1..en).

• E(−i) is the effort vector of all n players except player i: E(−i) =
(e1..ei−1, ei+1..en). Consequently, E(−i,−j) denotes the effort vector
without the contributions of players i and j.

• For convenience, we write E = (E(−i), ei) = (E(−i,−j), ei, ej).

The production function Y (E) is twice differentiable, continuous, and in-
creasing in individual efforts, but with diminishing marginal returns: Yi >
0 > Yii. We assume Yij > 0; thus, efforts are not linear separable and a team
production problem exists in the sense of Alchian/Demsetz (1972).8

2.2 Optimal and equilibrium efforts

The socially optimal effort (E∗) solves

E∗ = arg max Y (E)−
n∑

i=1

ci(ei)

and therefore satisfies the following first order conditions:9

6Note that we do not assume the agents to be homogeneous. Individual productivity
and effort cost may be different.

7Different in Strausz (1999), who introduces individual cost functions that are decreas-
ing in other agents’ effort. We follow an alternative way to model a team problem and
assume an output function with positive cross derivatives, see below.

8We exclude the case of negative cross-partials.
9Due to the assumptions we have made concerning the second derivatives, we can

neglect the second-order conditions.
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Yi(E
∗
(−i), ei)

!
=

dci(ei)

dei

∀ i = 1..n (1)

All players should choose their individual effort such that their marginal
productivity equals their marginal cost, given that all other players have
chosen optimally.

However, as Holmstrom (1982) has demonstrated, with a budget-balanced
Sharing contract the players will not have an incentive to do so: si denotes
the share player i receives from the output Y . A Sharing contract is called
“budget-balanced” if

∑
si = 1.

Let e′i denote the actual choice of player i under a Sharing contract. In
equilibrium, i’s actual choice solves the following maximization problem:

e′i = arg max siY (E ′
(−i), ei)− ci(ei).

Thus, the first-order conditions for the individually optimal choices are:

siYi(E
′
(−i), ei)

!
=

dci(ei)

dei

∀ i = 1..n (2)

Note that the right hand side of equation (1) equals the right hand side of
equation (2). The difference between socially optimal and individually ratio-
nal behavior lies in the respective left hand side. If, given a budget-balanced
Sharing contract, a player exists whose share is greater than zero, then at
least one other player exists whose share is smaller than one. Therefore, at
least for some player (if not for all of them) the left hand side of equation (2)
must be smaller than in equation (1), even if all other players were choosing
efficient effort. This leads to two different disincentives:10

1. Since at least some players acquire a share smaller than one, they have
an incentive to choose e′i < e∗i .

2. If other players exist who choose e′j < e∗j , and Yij > 0, player i’s
marginal productivity decreases, which motivates him to further de-
crease his effort.

10The first inefficiency effect is taken into account in Holmstrom (1982), but not he
second.
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In a team according to the Alchian/Demsetz (1972) terminology, i.e., with
a positive cross derivative, the moral hazard problem is even worse than
predicted by the Holmstrom model. Without some additional institution,
the n agents will produce Y ′ = Y (E ′) as their output, which is smaller than
the efficient output Y ∗ = Y (E∗).

The individual payoff in equilibrium amounts to π′
i = siY

′−ci(e
′
i). Assuming

positive cross-partials, this is for all agents smaller than the individual payoff
if all agents choose efficiently, i.e., π∗

i = siY
∗ − ci(e

∗
i ). Even an agent who

is entitled to a share si = 1 would receive less than Y ∗, due to Yij > 0 and
e′j < e∗j∀ j 6= i. The difference between the efficient and the equilibrium
payoff leaves room for a Pareto-improvement, even if the institution that
implements a higher output level raises transaction costs.

3 First-best Anti-Sharing

In this section we add an external Anti-Sharer to a team of n members. The
Anti-Sharer thus is introduced as a player (n + 1). Moreover, we assume
the external Anti-Sharer to be competitive, thus to work without profit.
We demonstrate that, under these circumstances, first-best effort is a Nash
equilibrium. Let us denote the actual effort of player i as e′′i ; thus, e′′i = e∗i is
to be proven.

The contract between the team members and the external zero-profit Anti-
Sharer consists of two components. The contract obliges

• each of the n team members to make a fixed payment n−1
n

Y (E∗) to the
Anti-Sharer.

• the team members to deliver the actual output Y (E ′′) to the Anti-
Sharer (who becomes residual claimant).

• the Anti-Sharer to pay Y (E ′′) to each of the team members.

We will prove the following11

Proposition 1: If an external, zero-profit Anti-Sharer offers the
above contract to the n team-members, then

11A parallel result has been demonstrated in Cooter/Porat (2002).
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a) To choose the efficient effort e∗i is a Nash equilibrium for all
team members i = 1..n.

b) If the team members choose efficient effort, then the mech-
anism obeys the zero-profit condition.

The proof of part a) is based on the following maximization problem that
each team member solves by choosing his actual effort:

e′′i = arg max Y (E ′′
(−i), ei)− c(ei)−

n− 1

n
Y ∗.

The first-order condition for e′′i thus is

∂Y (E ′′
(−i), ei)

∂ei

=
dci(ei)

dei

∀ i = 1..n (3)

which is identical to equation (1), the condition for first-best effort. Thus,
we have established that it is a Nash-equilibrium for all team members to
choose first best effort under this mechanism. It is individually rational to
choose the efficient effort if all other team-members do the same.

To prove part b) of proposition 1, we calculate the Anti-Sharer’s net payoff.
He collects (n − 1)Y ∗ + Y (E ′′) and pays out nY (E ′′). Obviously, his net
payoff is zero if E ′′ = E∗; q.e.d.

The mechanism is not budget-balanced if the team members do not choose
first-best efforts. Without Anti-Sharer, a Sharing contract that is not budget-
balanced imposes a credibility problem (the parties would be motivated to
spend efficient effort, if they were credibly committed to throw away some
part of the output in case of inefficient effort, but they anticipate that they
would not do so). However, the existence of an Anti-Sharer avoids this
credibility problem, since he may claim the agents’ payments and only has to
pay out their actual achievement. If the parties choose less than the efficient
effort, then the Anti-Sharer’s net payoff accrues to (n− 1)Y ∗− (n− 1)Y (E ′′)
which is positive.

Individual rationality keeps the team-members form investing more than the
efficient effort, since they had to bear the effort costs. Thus, the Anti-Sharer
does not face the problem to have to pay out more than he collects. The only
weakness of this mechanism is that the efficient equilibrium is not unique. If
some team players expect their colleagues to spend less than efficient effort,
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it is individually rational to spend lower effort as well (due to the positive
cross-partial), which makes the expectation self-confirming.

The mechanism implements first-best efforts since each team member calcu-
lates with the total actual output Y (E ′′) - and not with a share siY (E ′′) - in
his individual yield function. Therefore, the total marginal return of his ef-
fort is internalized. Of course, the actual effort can be distributed only once,
but the difference between nY ′′ (what the n team members are heading for)
and Y ′′ (what is actually distributed among them) is covered by their fixed
payment. This payment is fixed, since it is independent of their actually
chosen effort.

However, from the viewpoint of institutional economics this approach is not
satisfying. It leaves the question unanswered where the player (n + 1) comes
from. If he does not appear out of the blue, but has already been present
in society before the team chooses to employ the mechanism under scrutiny,
then the question arises what this agent has been doing before. If this was
a productive activity, then being employed by the team may keep him from
pursuing this alternative activity.

4 Internal Anti-Sharing

4.1 Setup

In the previous section, the first-best solution was generated by introducing
an additional player, the Anti-Sharer. This leaves two questions unanswered:

• Where does this (n + 1)st player come from?

• What are the opportunity costs (in the sense of omitted productive
activity) of being Anti-Sharer?

In this section, we analyze the case when one of the n team members plays
the role of the Anti-Sharer. Without loss of generality, we assume agent
number n to specialize in Anti-Sharing for the other (n − 1) agents who
remain productive. An Anti-Sharing contract requires the productive (n−1)
agents to make a lump-sum payment to the Anti-Sharer.12 After the (n− 1)

12We disregard liquidity constraints, since the lump-sum payment does not actually
have to be made; it is sufficient for the mechanism to work that the payment is subtracted
from the respective agent’s payoff after the output has been produced.
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agents have chosen their efforts, each of them receives a payment that equals
the actual output from the Anti-Sharer. Note that these payments do not
necessarily have to be made in chronological order; it is sufficient for the
players to be obliged by the Anti-Sharing contract to make these payments.
We therefore assume the fixed payments and the actually produced output
to be contractible.

The lump-sum payment may consist of two components: a fee for player n
and the necessary payment that enables player n to pay out the actual output
(n − 1) times. The fee can be zero or positive. Let us describe the Anti-
Sharing mechanism that implements (second-best) efficiency by describing
the necessary contractual provisions in more detail:

1. The (n− 1) productive agents pay an amount of

n− 2

n− 1
Ŷ + Ti

where êi describes the efficient effort of player i = 1...(n − 1) and
Ŷ = Y (ê1..ê(n−1), 0) represents the efficient output, given that player
n contributes en = 0. Note that both components of this payment are
fixed amounts of money which are independent of the actually chosen
effort of either player.

2. Each player i = 1..(n−1) chooses his actual effort, denoted as ẽi, which
leads to an actual output

Ỹ = Y (ẽ1..ẽn−1, 0)

3. Player n acquires the actual output.

4. Player n pays Ỹ to each of the other (n− 1) players.

4.2 Optimal efforts with internal Anti-Sharing

Since the agent n abstains from productive activity, the highest output that
can be achieved by making use of an internal Anti-Sharer is smaller than the
first-best output.13 Moreover, the lack of effort exerted by agent n decreases
the marginal productivity of all other agents 1..(n − 1). Hence, the maxi-
mum output under the Anti-Sharing mechanism is smaller than the first-best

13In a situation where the agents’ efforts are perfect complements, Anti-Sharing thus is
useless.
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output Y (E∗). Let us now derive the condition for optimal efforts under the
assumption en = 0. The optimal efficient efforts êi, i = 1..(n− 1) maximize

Y (Ê(−n), 0)−
n−1∑
i=1

c(êi)

and satisfy the first-order conditions (we again assume second-order condi-
tions to be satisfied):

Yi(Ê(−n), 0)
!
=

∂ci

∂ei

∀ i = 1..(n− 1) (4)

4.3 Equilibrium efforts with Anti-Sharing

Now we prove the following

Proposition 2: If in a team of n members, player n assumes the
role of an internal Anti-Sharer and offers the above contract to
the other n− 1 team-members, then:

a) It is a Nash-equilibrium to choose the efficient effort êi for
all team members i = 1..(n− 1).

b) If the team members choose efficient effort and
∑

Ti = 0,
then the mechanism obeys the zero-profit condition.

We denote the individually rational efforts of player 1..(n − 1), given that
player n chooses en = 0, as ẽi. We have to demonstrate that ∀ i = 1..(n−1) :
ẽi = êi. The equilibrium effort of agent i = 1..(n− 1) is determined by

ẽi = arg max Y (Ẽ(−i,−n), ei, 0)− n− 2

n− 1
Ŷ − Ti − ci(ei)

and satisfies the following first-order conditions:

Yi(Ẽ(−i,−n), ei, 0)
!
=

dci

dei

∀ i = 1..(n− 1) (5)
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If all of the (n− 1) productive players choose their optimal reply on en = 0,
then equations (5) and (4) are identical. These efforts hence constitute a
Nash equilibrium.14

Part b) of the proposition requires to show that, with
∑

Ti = 0, this mecha-
nism is budget balanced in the efficient Nash equilibrium. The Anti-Sharer
receives (n− 1) times the lump-sum payment, which amounts to

(n− 2)Ŷ +
n−1∑
i=1

Ti

If the players i = 1..(n − 1) choose ẽi = ê1, then the actual output is Ŷ .
Thus, the net payment of player n is

(n− 2)Ŷ +
n−1∑
i=1

Ti + Ŷ − (n− 1)Ŷ

which equals
∑

Ti. If the productive agents choose optimal efforts, then
the payoff of player n equals the sum of fees. Hence, if

∑
Ti = 0, then the

mechanism is budget balanced in this Nash equilibrium.

If the other n−1 players choose suboptimal efforts, then the mechanism is not
balanced. Even tough, the mechanism is credible, since the Anti-Sharer may
retain the remainder. It is in his vital interest to carry out the mechanism.

4.4 Is a first-best solution possible?

In this section we allow for player n, who assumes the role of the Anti-Sharer,
to contribute effort. We show that, even though all n team members may
contribute effort, Anti-Sharing is unable to implement the first-best outcome
among the n agents.

In this setting, the Anti-Sharing contract requires the n− 1 other agents to
make a lump-sum payment Ťi = Y ∗/n to agent n, who becomes the only
residual claimant. Having made this arrangements, all n agents choose their
effort. And finally, agent n pays their shares of the actual output to his n−1

14This is one Nash equilibrium among others; the mechanism turns the initial Prisoners’
Dilemma into a coordination game. E.g., ei = 0 ∀ i = 1..(n− 1) is a Nash equilibrium as
well. We disregard here the problem of equilibrium selection. According to the selection
criterion of Pareto-dominance the parties would play the efficient equilibrium.
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partners. We assume zero transaction costs and free competition among the
n agents for the position of the Anti-Sharer. Thus, this position does not
allow agent n to generate an individual rent; he only receives a share due to
his productive effort choice. The outcome is described by the following

Proposition 3: If a team member offers an external zero-profit
Anti-Sharing contract to each team member of the team, includ-
ing himself, then all team members choose less than optimal ef-
fort.

We label the equilibrium efforts chosen under this scheme as Ě. In formal
notation, this proposition claims Ť = n−1

n
Y (E∗) ⇒ Ě < E∗. The proof

requires us to analyze the maximization problems of the agents 1..(n−1) and
the internal Anti-Sharer n separately. We start with the agents j = 1..(n−1):
each one of these chooses his effort such that

ěj = arg max
n− 1

n
Y ∗ + Y (Ě(−j))− cj(ej).

Thus, ěj satisfies the first-order condition

∂Y (Ě(−j), ej)

∂ej

=
dcj

dej

which is equivalent to equation (1) above, the condition for a first-best out-
come, provided that all players (including n) do the same.

However, player n remains to be analyzed: he receives the lump-sum pay-
ments from the other players and the actual outcome. He has to pay out
n − 1 times the actual outcome and to bear his own effort costs. Thus, he
chooses

ěn = arg max(n− 1)Y ∗ + Y (Ě(−n), en)− (n− 1)Y (Ě(−n), en)− cn(en)

to satisfy the following first-order condition:

(2− n)
∂Y (Ě(−n), en)

∂en

− dcn

den

!
= 0 (6)

which yields ěn < e∗n. Note that n > 2 implies that the left-hand side of
equation (6) is negative, thus ěn = 0. All the other players hence face a
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situation in which, due to the assumption Yij > 0, the marginal productivity
of their input is smaller than in the case where all n players choose efficient
effort. Therefore, ∀ i = 1..n : ěi < e∗i ; q.e.d.

The fact that player n collects the actual product and has to pay it out (n−1)
times distorts his incentives to contribute effort. Therefore, the successful
application of the Anti-Sharing mechanism requires the Anti-Sharer to be
unproductive. He is supposed to be (or to become) an outsider rather than
(to remain) a team member.

5 Constitutional economics of Anti-Sharing

This section compares two contractual arrangements: the Sharing contract
and the internal Anti-Sharing contract. Consider a team of n members that
operates under a sharing contract. Assume that no player n + 1 is available
to play the role of an external Anti-Sharer. In this situation, the team will
find it beneficial to switch to an Anti-Sharing contract only if this is Pareto-
superior. This problem is analyzed in section 5.1.

Pareto-superiority, however, leaves the question unanswered which team
member shall assume the role of the Anti-Sharer. If the productivity of
the team members is homogenous, then a constitutional equilibrium requires
the payoffs for both roles (Anti-Sharer and productive team member) to be
equal. This is discussed in section 5.2. If agents are heterogenous with re-
spect to their marginal productivity or their cross derivatives, then the role
of the Anti-Insurer should be assigned in order to minimize the productivity
loss.

5.1 Efficiency

This section derives the condition under which internal Anti-Sharing imple-
ments a better solution than the Sharing contract analyzed in Holmstrom
(1982). Moreover, we discuss under which conditions the introduction of
Anti-Sharing is even Pareto-superior for the team members.

Under a budget-balanced Sharing contract, the agents 1..n spend efforts E ′

and generate the output Y ′ = Y (E ′), yielding the total net benefit Y (E ′)−∑n
i=1 ci(ei). The net benefit under Anti-Sharing is greater if, and only if,
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Y (Ê(−n), 0)−
n−1∑
i=1

ci(êi) > Y (E ′)−
n∑

i=1

ci(e
′
i)

which is equivalent to

Ŷ − Y (E ′) >
n−1∑
i=1

[ci(êi)− ci(e
′
i)]− cn(e′n).

For simplicity, we have written Ŷ = Y (Ê(n−1), 0). The improvement in out-
put is required to be greater than the increase in effort costs, net of the effort
costs saved by player n (who assumes the role of the Anti-Sharer). This
condition is more likely to hold, the smaller the cross partials ∂2Y/∂ei∂en for
i = 1..(n− 1), and the smaller the marginal productivity of player n.

If this condition holds, and the only available institutions are Sharing con-
tracts and internal Anti-Sharing contracts, then the latter is Kaldor-Hicks
efficient. The more interesting question is whether Anti-Sharing is Pareto-
superior, compared to the Sharing contract. This requires each individual
payoff (for player i = 1..n) to be greater when an Anti-Sharer is employed,
which can be guaranteed by side payments, as the following proposition
states:

Proposition 4: If a team of n members can only choose between
a Sharing contract and an internal Anti-Sharing contract, and
the latter is Kaldor-Hicks-efficient, then a vector of lump-sum
payments (T1, T2, ..., T(n−1)) exists such that the internal Anti-
Sharing contract is Pareto-superior.

For the proof of this proposition, recall that Kaldor-Hicks-efficiency implies

∆Y >

n−1∑
i=1

∆ci + cn(e′n)

where ∆Y denotes the increase in output (∆Y = Ŷ − Y ′, whereas ∆ci rep-
resents the increase in costs that player i bears: ∆ci = ci(ê)− ci(e

′). Pareto-
superiority of the internal Anti-Sharing contract requires two conditions to
be fulfilled:15

15At least one of the conditions a) and b) needs to be strictly fulfilled.
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a) ∀i = 1..(n− 1) : Ŷ
n−1

− siY
′ ≥ ∆ci + Ti

b)
∑n−1

i=1 ≥ snY
′ − cn(e′)

If a vector of lump-sum fees Ti fulfills condition a), then this implies

n−1∑
i=1

Ti ≤ Ŷ − Y ′
n−1∑
i=1

si −
n−1∑
i=1

∆ci.

The right-hand side of this inequality denotes the incremental rent generated
by the efforts of agents i = 1..(n−1) by switching to the internal Anti-Sharing
contract. Kaldor-Hicks-efficiency implies that this rent is greater than the
payoff of player n under a Sharing contract:

Ŷ − Y ′
n−1∑
i=1

si −
n−1∑
i=1

∆ci ≥ snY
′ − cn(e′n) = π′

n.

Thus, lump-sum fee vector the components of which add up to less than the
complete rent, but more than π′

n can satisfy condition a) and b) simultane-
ously.

5.2 Constitutional equilibrium

We have assumed that the activity of the Anti-Sharer can be carried out
without cost. Thus, the Anti-Sharer’s payoff is

∑n−1
i=1 Ti, whereas the other

players’ receive

π̂i =
1

n− 1
Ŷ − Ti − ci(êi)

each.

Consider now the constitutional stage of this partnership: If the n partners
assign the roles of the Anti-Sharer and the productive agents through nego-
tiations, a constitutional equilibrium would require all individual payoffs to
be equal. Otherwise, on of the roles would be more attractive than the other.
In algebraic terms, the constitutional equilibrium condition is

∀ i = 1..n :
n−1∑
i=1

Ti
!
=

1

n− 1
Ŷ − Ti − ci(êi)
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which is equivalent to

∀ i = 1..n : Ti
!
=

1

n− 1
Ŷ −

n−1∑
i=1

Ti − ci(êi).

Given the assumption of a symmetric solution, the total fee collected by the
Anti-Sharer is

∀ i = 1..n :
n−1∑
i=1

Ti = Ŷ − (n− 1)
n−1∑
i=1

Ti −
n−1∑
i=1

ci(êi).

This is equivalent to

n
n−1∑
i=1

Ti = Ŷ −
n−1∑
i=1

ci(êi)

which implies

n−1∑
i=1

Ti =
1

n
[Ŷ −

n−1∑
i=1

ci(êi)]. (7)

Note that the left hand side of equation (7) shows the nth player’s equilibrium
payoff, i.e., the sum of fees. The right hand side represents the cooperation
rent if players 1..(n− 1) choose optimal effort, which they do in equilibrium.
The equation demonstrates that, in an equilibrium among the n agents with
player n specializing into the role of the Anti-Sharer while the other (n −
1) remain productive, the Anti-Sharer receives the nth part of the optimal
cooperation rent. This implies that all of the n players share the cooperation
rent evenly.

Interesting question: Given XAS is Kaldor-Hicks efficient. Do the
constitutional equilibrium condition and the payment scheme that
implements Pareto-efficient exclude each other or are they consis-
tent?
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6 Conclusions

To implement efficiency requires the Anti-Sharer not to take part in the
productive activity. Thus, if one player specializes on the role of the Anti-
Sharer, the lack of his effort leads to a productivity loss. However, this
division of labor between him and his (n − 1) colleagues leads to a second-
best effort choice of the latter. If the resulting cooperation rent exceeds the
one under spontaneous team work (which is necessarily below the first best
cooperation rent), then each can be made better off by an equal split.

Even though this mechanism is not budget-balanced, it is credible, since it
is in the Anti-Sharer’s interest to retain the lump-sum payment if the other
agents fail to provide efficient effort. The necessary ex-ante and ex-post
payments are contractible, as long as the actual output is verifiable. In case
the nth agent remains productive, this rule does not implement the first-best
outcome.

We think that this mechanism provides a new theory of the firm, at least as
far it concerns partnerships of risk-neutral teams. Apart from the theory of
the firm in Alchian /Demsetz (1972) and from the sequential team mechanism
in Strausz (1999), our theory does not require the nth agent to be able to
monitor the other agents’ effort choices.
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