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Abstract

This paper offers a simulation-based method for the estimation of heuristic switching in nonlinear

macroeconomic models. Heuristic switching is an important feature of modeling strategy since

it uses simple decision rules of boundedly rational heterogeneous agents. The simulation study

shows that the proposed simulated maximum likelihood method identifies the behavioral effects

that stay hidden for standard econometric approaches. In the empirical application, we estimate

the structural and behavioral parameters of the US economy. We are especially able to reliably

identify the intensity of choice that governs the models’ nonlinear dynamics.
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1. Introduction

The implications of the departures from fully rational agents have become one of the central issues

of macroeconomic modeling. As suggested by Simon (1972), economic agents act under bounded

rationality (BR) instead of perfectly processing all information using unlimited cognitive capacities.

In most situations, human behavior follows simple decision rules known as behavioral heuristics

that have proven to be suitable in the past.

The theoretical literature has been attempting for a long time to formalize deviations from

rational expectations (RE) and to describe the decision making of boundedly rational heterogeneous

agents. One such possible macroeconomic framework is business cycle models with heuristics

and a nonlinear switching mechanism (De Grauwe, 2010; Hommes et al., 2019). However, these

approaches have not yet been satisfactorily reflected in the empirical literature, and it is often

difficult to identify some behavioral effects in the current nonlinear macroeconomic models. We

thus propose a new econometric method that allows estimating these models, especially to identify

important behavioral parameters.

Although the related econometric research has made significant progress in the last decade,

using these types of models with the empirical data is still challenging. First, the choice of the

empirical variables is not straightforward, as standard econometric tools assume the stationarity of

the input data that is often violated for macroeconomic time series. Second, because of a relatively

large number of unknown parameters, some of the coefficients might not be identified. This requires

new tools for parameter estimation (Del Negro et al., 2007; Kleibergen and Mavroeidis, 2014; Kulish

and Pagan, 2017). Third, although nonlinear models can be represented in the state-space form,

analytical solutions of the joint probability density seldom exist to allow for, e.g., the maximum

likelihood inference. Fourth, because of a nonlinear structure, “a possibly non-monotonic likelihood

surface . . . tends to be rugged making it challenging to find a global optimum” (Lux and Zwinkels,

2018). Finally, some authors emphasize the insufficient testing of model ergodicity (Grazzini and

Richiardi, 2015; Fagiolo et al., 2019); however, a toolkit for ergodicity testing for dynamic nonlinear

multivariate models is still extremely scarce. The presented challenges and rapidly increasing

operational capacity of computers have motivated simulation-based estimation methods that make
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empirical inference possible for analytically intractable models.

We propose a simulated maximum likelihood (SML) estimation method, which addresses the

first four issues mentioned above. Our main contribution lies in the modification of the univariate

SML estimator and its transfer from financial econometrics (Altissimo and Mele, 2009; Kristensen

and Shin, 2012; Lee and Song, 2015; Kukacka and Barunik, 2017) to macroeconomic optimization.

We first pursue a simulation study to test its performance in a controlled environment. Compared

to the standard maximum likelihood estimator (MLE), the SML technique numerically approxi-

mates each observation’s conditional density via a standard kernel method. The derivation of the

SML estimator is then similar to the MLE. Through a kernel approximation, the method elegantly

bypasses the distributional assumptions of the MLE, the Bayesian approach or the moment selec-

tion problem of the simulated method of moments (SMM). It also leads to a smooth surface of

the simulated likelihood function, which generally supports the optimization search. Finally, we

illustrate the first empirical application of the multivariate SML for the estimation of a heuristic

switching New-Keynesian model (NKM).

The model specification relates to the research on alternative explanations of expectation

formation where agents apply simple forecasting heuristics. Agents form their individual expecta-

tions in a boundedly rational way based on past experience and dynamically sort themselves into

groups populated by individuals who apply a particular heuristic. The heuristics are microfounded

based on the previous literature on laboratory experiments and allow for heterogeneity in different

groups. A suitable mechanism for such a dynamic endogenous sorting of agents is the multinomial

logistic switching approach. This approach has become a prominent feature of models in financial

economics over the last two decades (Hommes, 2006; Franke and Westerhoff, 2012; Dieci and He,

2018, among others) and recently, also in system-of-equations models such as the dynamic stochas-

tic general equilibrium (DSGE)-type. We recognize Hommes et al. (2019) and De Grauwe and Ji

(2020) as the most recent key contributions to DSGE modeling under BR, and we directly build

on their work.

As an empirical novelty, we report the statistically significant estimates for the macroeco-

nomic intensity of choice, which is a parameter that governs the multinomial logistic switching
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mechanism. The intensity of choice drives the agents’ sensitivity regarding the individual heuris-

tics, and its value is crucial for the switching process from one group to another. Several previous

macroeconomic studies have had difficulties estimating this parameter as heuristic switching mod-

els exhibit a much more complex nonlinear structure compared to linearized DSGE models under

RE (Jang and Sacht, 2016; Lux and Zwinkels, 2018). Using simulations, we first show that the

SML method can identify this parameter. We then successfully identify the empirical value of the

intensity of choice for the US economy that is approximately between 1.4 and 1.5. We thus find the

switching process to be less intense and rather smooth. We also estimate all additional behavioral

parameters together with structural ones, especially the Taylor rule parameters. Thus, our results

help to understand the implications of shocks and policy interventions in the absence of RE.

This paper proceeds as follows. The next section provides an overview of the related lit-

erature. Section 3 describes the heuristic switching NKM. In Section 4, we introduce the SML

estimation method modified for multivariate macroeconomic models. Section 5 presents a Monte

Carlo simulation study of the suggested estimation framework’s performance before we discuss the

empirical results in Section 6. Finally, Section 7 concludes the paper. The technical details and

additional results are relegated to a regular Appendix and an Online Appendix.

2. Related Literature

The analysis of behavioral macroeconomic models has become prominent over the last decade; see

Franke and Westerhoff (2017) for an overview. The reasons are manifold. For example, Hendry and

Mizon (2010) state that conditional rational expectations are not unaffected by structural breaks in

economic times series. As a result, neither unbiased nor minimum mean-squared error predictions

are observed. The authors call for a state-contingent expectation formation process that should be

flexible within the standard prediction methods. Coibion and Gorodnichenko (2012, 2015) argue

that information rigidities lead to a delayed response of mean forecasts to macroeconomics shocks.

They show that a model framework with noisy information processing is much more empirically

sound in displaying the expectation formation capability of agents compared to a model under RE.

Various approaches also advocate the design of optimal policy strategies within a model

framework under BR. Related to this development, macroeconomists face the question of how
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monetary and fiscal policy interventions can be conducted in the presence of non-RE formation.

Angeletos and Lian (2018) discuss agents’ response to news about future changes in policy interest

rates. The authors emphasize that heterogeneous beliefs avoid the so-called “forward guidance

puzzle” (Giannoni et al., 2015). If a central bank promises to hold interest rates lower in the

future, then a standard DSGE model under RE overestimates the impact of forward guidance

on the economy. Woodford (2019) suggests that an objective function related to the outcome

being achieved under forward guidance should be considered, which might solve the puzzle. As

an essential feature of his approach, the objective function is updated under non-RE formation

techniques such as constant gain learning. Goy et al. (2020) allow for an endogenous expectation

formation process of private agents concerning central bank credibility and study the effectiveness

of forward guidance in a switching model similar to the one discussed in our paper.

2.1. Heuristic Switching Models in Macroeconomics

Although heuristic switching models have been considered in financial economics for more than two

decades (Brock and Hommes, 1997), in macroeconomics, such a modelling approach is rather new

(De Grauwe, 2010, 2011). Heuristics represent simple rules of behavior that originate from the fact

that the structure of the economy is observable, but the interactions between relevant variables

such as output and inflation are barely comprehensible (Munier et al., 1999). Such boundedly

rational behavior in response to a lack of complete information is based on habits, imitation

and/or procedural optimization (Day and Pingle, 1991). Related research questions have already

drawn interest in the field of experimental economics; see, e.g., Anufriev et al. (2016, 2018). Various

studies reveal that switching between forecasting heuristics based on the multinomial logistic model

can indeed be observed within a laboratory environment; we refer to Assenza et al. (2014) and

Hommes (2021) for literature reviews that include corresponding evidence in a DSGE context.

The importance of studying these models seems to be undeniable. Haldane and Madouros

(2012) emphasize the “less-is-more” principle, whereby the cost of cognition and information pro-

cessing might outweigh the desired optimized response in a complex environment. Gigerenzer

and Brighton (2009) empirically show that a biased mind can achieve much more accurate re-

sults regarding desired preferences when using heuristics. Therefore, resource-intensive forecasting
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strategies might be subconsciously avoided due to humans’ limited cognitive abilities although they

may increase forecast accuracy in a complex environment.

Two very recent contributions that we directly build on are De Grauwe and Ji (2020) and

Hommes et al. (2019). De Grauwe and Ji (2020) study the effects of structural reforms regarding

price flexibility and labor market rigidities in a hybrid heuristic switching NKM, i.e., a model

framework with leads and lags. The authors show that their model accounts for the empirical

observation of a non-Gaussian distributed and highly persistent output gap. Hommes et al. (2019)

consider a forward-looking model analogical to the model of De Grauwe and Ji (2020) but with a

higher number of heuristics to choose from. The microfoundations of the corresponding heuristics

based on experiments are presented in Anufriev and Hommes (2012). The authors provide evi-

dence that the heuristic switching macroeconomic models can fit the empirical data obtained in a

laboratory environment very well.

2.2. Estimation of Heuristic Switching Models

The empirical estimation of behavioral models has rapidly gained attention in macroeconomics over

the years, which naturally include heuristic switching models. Before specific examples are pro-

vided, it might be important to distinguish between estimation and two related concepts of apply-

ing economic models to data, specifically, validation and calibration. By validation, we specifically

mean the empirical validation of model outputs that Fagiolo et al. (2019) aptly define as a general

“process of evaluating the extent to which the outcome of a simulated model is a good represen-

tation of real-world observations”.1 This is achieved in practice through Monte Carlo simulations

that allow for verification to the extent that the model can replicate the characteristic patterns

and regularities of real-world datasets, e.g., a set of stylized facts or moments of distributions of

various economic variables. Both empirical and simulated data are thus essential for a validation

analysis.

Model estimation, in contrast, is typically performed purely with empirical data. The aim

is to assess the approximate size of an economic phenomenon. Estimation is a traditional rigorous

1The growing interest in behavioral macroeconomic models has recently been accompanied by novel approaches
to their empirical validation (Guerini and Moneta, 2017; Barde and van der Hoog, 2017; Lamperti, 2018b; Lamperti
et al., 2018; Barde, 2017, 2020). Lux and Zwinkels (2018) provide an excellent survey of these attempts.
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optimization approach for which a loss function is unambiguously defined. The estimated parameter

value then provides the best fit in a clearly defined statistical sense. Finally, model calibration

is generally understood as a process of “tuning” a model, i.e., the careful manipulation of its

parameters until the model accurately mimics pre-defined characteristics. Compared to estimation,

model calibration in its simplest form can be conducted even without any empirical data and

subsequent iterations similar to a model parametrization according to some best practices in the

literature. As previous econometric estimates often provide a basis for model calibration and

because both are often a part of a more general validation analysis, the difference can become

fuzzy. Moreover, there is a considerable terminological overlap that leads to some confusion in the

literature as all three concepts largely use similar tools. Kukacka (2019) therefore compares and

contrasts these concepts in detail by focusing on their main advantages and potential drawbacks.

Among the first to estimate a heuristic switching macroeconomic model are Liu and Minford

(2014) who employ the indirect inference method (Gourieroux et al., 1993). The authors primarily

test the model by De Grauwe (2010) against US data and strongly reject the behavioral model

in favor of the RE model. However, a set of numerical parameter values via indirect estimation

is also provided with a low estimated value (0.85) for the intensity of choice being reported. The

estimates’ standard errors are not available, which calls into question the statistical significance

of the true parameters. Grazzini et al. (2017) estimate the model by De Grauwe (2012) via

Bayesian techniques. They report a limited effect of the intensity of choice on the model behavior

as the corresponding posterior distribution does not depart significantly from the prior one. Other

proponents of the Bayesian estimation of a heuristic switching NKM are Deák et al. (2017). Jang

and Sacht (2016, 2019) apply the SMM but leave the intensity of choice unestimated for the

De Grauwe (2011) model. Instead, they follow a grid calibration strategy in which they compare

the results while varying the intensity of choice between 0.1 and 100.

2.3. Advantages and Limitations of the Simulated Maximum Likelihood Method

The SML estimator addresses most of the potential issues related to the abovementioned estimation

methods. It is universally applicable without additional theoretical assumptions, it does not require

the stationarity of the input variables, and it further reduces the discretionary choices necessary
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for practical implementation. Compared to the indirect estimation, it requires neither an auxiliary

time-series model nor the initial parametrization to be selected. Compared to the SMM, it avoids

the selection of moments and the weighting matrix, which is to some extent inevitably “arbitrary

and different choices may lead to differing estimation results” (Fagiolo et al., 2019). Finally,

compared to the Bayesian approach, it reduces a potential arbitrariness of prior distributions’

specification. One can reliably take advantage of the Bayesian inference especially if the prior

distributions of the macroeconomic variables are generally accepted. Of course, Bayesian methods

can also be used with uninformative uniform distributions if there is no consensus about prior

distributions for some estimated parameters. SML also naturally allows for empirical discrimination

among alternative models similarly to the MLE, while “Bayesian methods cannot be used to test

models against the data” (Liu and Minford, 2014) based on the traditional hypothesis testing

procedure.

Perhaps most importantly, the kernel approximation generally leads to a smooth surface of

the simulated likelihood function, which supports an optimization search. This is in sharp contrast

especially with the SMM for which an often rugged surface of the objective function “would render

standard derivative-based optimization routines useless” (Lux and Zwinkels, 2018). The SML

approach also tends to be more asymptotically efficient as the entire empirical distribution is taken

into account, not just selected moments. Finally, SML allows for the estimation of the intensity of

choice that governs the switching mechanisms in the behavioral macroeconomic models that was

found to be difficult to estimate by related studies that employed other inference methods in the

past (Lux and Zwinkels, 2018).

The main limitation shared with all methods above lies in a relatively high computational

burden. Another disadvantage of the SML approach is that the standard deviations of the id-

iosyncratic independent and identically distributed (i.i.d.) shocks have to be parametrized as the

method requires their distribution to be known.

Another promising approach to some extent similar to SML is designed especially for the

state space models and is based on recent advances in the Markov Chain Monte Carlo estimation

technique (Doucet et al., 2015; Herbst and Schorfheide, 2015; Fernández-Villaverde et al., 2016;
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Fernández-Villaverde and Guerrón-Quintana, 2020). In the so-called sequential Monte Carlo, which

is also known as a particle filter, the distribution of an unobserved variable can be approximated by

a swarm of particles propagated from one time step to the next via a resampling algorithm (Doucet

et al., 2001; Fernández-Villaverde and Rubio-Ramı́rez, 2007; Herbst and Schorfheide, 2014; Lux,

2018). However, we are not aware of applying the particle filter to the estimation of heuristic

switching macroeconomic models. This may be because the resulting likelihood approximation is

not a smooth function of the parameters (Lux and Zwinkels, 2018), which generally complicates

an optimization search, and also because computational costs can become extensive.

3. Expectation Formation in the Heuristic Switching Model

3.1. The Core Structure of the Baseline NKM

The baseline NKM represents a realistic macroeconomic model with multivariate observables. It

allows the study of the performance of the SML estimator in a more complex framework compared

to univariate applications in finance.2 The baseline NKM reads as follows:

yt =
1

1 + χ
Ẽjt yt+1 +

χ

1 + χ
yt−1 − τ(rt − Ẽjt πt+1) + εy,t, (1)

πt =
ν

1 + αν
Ẽjt πt+1 +

α

1 + αν
πt−1 + κyt + επ,t, (2)

rt = φrrt−1 + (1− φr)(φππt + φyyt) + εr,t, (3)

where superscripts j = {BR, RE} refer to the BR and the RE model specification, respectively.

Therefore, we distinguish between the BR NKM and the hybrid RE NKM. The corresponding

expectations operator is Ẽjt , which is explicitly specified below for both models.

All variables are given in quarterly magnitudes. In equation (1), the dynamic IS curve re-

sults from the intertemporal optimization of consumption and saving, which leads to consumption

smoothing. Parameter τ ≥ 0 denotes the inverse intertemporal elasticity of substitution in con-

sumption behavior. Equation (2) represents the New-Keynesian Phillips Curve, where the output

2Examples are given by Kristensen and Shin (2012) and Kukacka and Barunik (2017). Kristensen and Shin (2012)
estimate the following three types of models: the short-term interest rate model by Cox et al. (1985); the jump-
diffusion model of daily stock returns by Andersen et al. (2002); and generic Markov decision processes. Kukacka
and Barunik (2017) estimate the Brock and Hommes (1998) heterogeneous agent model. An introduction to the
baseline NKM is presented in Gaĺı (2015).
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gap (yt) acts as the driving force for inflation dynamics that originates from monopolistic compe-

tition and Calvo-type sticky prices. The slope of the New-Keynesian Phillips Curve is given by

parameter κ ≥ 0. Parameter ν represents the discount factor (0 < ν < 1). Intrinsic persistence

is incorporated into the demand and supply equations using the parameters for habit formation

0 ≤ χ ≤ 1 and price indexation 0 ≤ α ≤ 1, respectively. According to the Taylor rule (3) with

interest rate smoothing (φr ≥ 0), the monetary authority reacts directly to contemporaneous move-

ments in output (φy ≥ 0) and inflation (φπ ≥ 0). We assume that the exogenous driving forces

in the model variables follow idiosyncratic shocks ε{y,π,r},t, which are i.i.d. with mean zero and

variances σ2
{y,π,r}.

3.2. The Model under Bounded Rationality

For the BR specification of the model, we directly follow the modelling approach by Hommes et al.

(2019) where in its core, the purely forward-looking version of the baseline NKM is considered,

i.e., with the intrinsic persistence parameters χ, α, and φr all set to zero. Regarding the expecta-

tion formation process, specific heuristics are applied, which are discussed below. The empirical

microfoundation of these heuristics is discussed in Anufriev and Hommes (2012) who conduct

learning-to-forecast experiments given a standard asset pricing model taken from financial eco-

nomics. The authors report that the heuristics being used account for the stylized facts of a slow

(almost) monotonic convergence, persistent oscillations with almost constant amplitude, and/or

large initial but then dampening oscillations observed in the dynamics of their model. Hommes

et al. (2019) confirm these findings based on their own experimental macroeconomic set-up where

all three types of heuristics are supported by experimental evidence.

The following heuristics are considered in Hommes et al. (2019) and described in Anufriev

and Hommes (2012):

EADAxt+1 = ηxt−1 + (1− η)xt, (4)

ETRxt+1 = xt−1 + ι(xt−1 − xt−2), (5)

ELAAxt+1 = µ(xobst−1 − xt−1) + (xt−1 − xt−2). (6)

Similarly to Hommes et al. (2019), we apply these heuristics with respect to both the output gap
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and inflation rate expectations, which implies that x = {y, π}. Agents therefore sort themselves

into three groups of output gap and inflation forecasters. Based on the adaptive (ADA) heuristic

(4), future expectation results from the weighted sum of the previous and current realizations of

x with 0 ≤ η ≤ 1. In the polar case η = 1, the expression stands for a static/näıve expectation

formation process. In the trend-following (TR) heuristic (5), the past realization is considered while

this forecasting rule follows the direction of the last change in x given by the term (xt−1 − xt−2).

The corresponding parameter of extrapolation denoted by ι ≥ 0 is crucial for observing specific

patterns in the variable’s dynamic. Although small values of ι around a value of 0.5 give rise

to rather monotonic convergent movements, relatively large values already around unity might

induce convergent but oscillatory dynamics. Finally, in the learning anchoring and adjustment

(LAA) heuristic, the last change in x given by (xt−1 − xt−2) is further extrapolated from an

anchor learned through a sample average of the previous realizations of x denoted by xobst−1. The

corresponding extrapolation parameter is given by µ ≥ 0.

For the BR specification, the switching from one group to the other is based on the multi-

nomial logistic model. The expression for the market forecast regarding the output gap and the

inflation rate across the three groups is given by

ẼBRt xt+1 =

3∑
i=1

( α
k{i}
x,t · E

k{i}
t xt+1), (7)

with k = {ADA,TR,LAA}. The probability αkx,t represents stochastic behavior by the agents who

adopt a particular forecasting heuristic. Thus, αkx,t can be interpreted as the probability of being

an adaptive forecaster, a trend-follower, or an anchored forecaster with respect to the development

of the output gap and inflation rate at time t. The selection of the forecasting heuristics (4)-

(6) depends on the forecast performance of each group Ukt , which is given by the mean squared

forecasting error. The utility of the forecast performance can be simply updated in every period

(Brock and Hommes, 1997) as

Ukx,t = ρUkx,t−1 − (Ekt−2xt−1 − xt−1)2, (8)

where the memory parameter ρ (with 0 ≤ ρ ≤ 1) determines the speed of a geometric dilution
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of the impact of the lags of Ukx,t on the current utility of the forecast performance. Here, ρ = 0

suggests that agents do not consider the past observations of Ukx,t in their updating scheme (8) at

all, while ρ = 1 means that they give the same weight of 1 to all past observations. The switching

mechanism is that agents can adaptively revise their expectations given the forecast performance

of particular heuristics based on the multinomial logistic model:

αkx,t =
exp(γUkt )∑3

i=1 exp(γU
k{i}
t )

, (9)

where the parameter γ ≥ 0 denotes the intensity of choice, a parameter crucial to the stability of

the system (cf. Hommes, 2013; Jang and Sacht, 2016, among others). Note that a negative γ lacks

economic sense as it would imply irrational switching towards less precise forecasting heuristics.

Although we consider the BR model by Hommes et al. (2019) as our flagship one due to the

existing micro evidence for the applied heuristics, in Appendix B, we conduct an additional Monte

Carlo exercise similar to Section 5 for various different switching models that are directly taken

from the macroeconomic literature. Our focus is on the estimation of models with alternative sets

of heuristics since transferring the SML technique from financial economics to macroeconomics is

the main goal of our paper. We believe this additional robustness analysis markedly fosters our

intentions in this regard and enables us to forestall potential criticism related to the “wilderness

of bounded rationality” argument by Sims (1980).

3.3. The Model under Rational Expectations

Under RE, the lead terms are described by the expectations of the output gap and inflation rate

at time t+ 1 in equations (1) and (2):

ẼREt xt+1 = Etxt+1, (10)

with, again, x = {y, π}, and where Et denotes the statistical expectation operator conditional on

information at time t. For the corresponding random error term usually to be found in equation (10)

and denoted by ε̃x,t, Etε̃x,t = 0 holds since it is independent of the future realizations in x. This

implies that agents’ expectations are not systematically biased under RE.

In the Monte Carlo study and for the empirical application, we follow Jang and Sacht (2016)
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and consider the BR NKM and the baseline RE NKM in the hybrid version with a lead and lag

structure. With respect to the former, χ = α = φr = 0 holds. We distinguish between both

specifications according to a potential “persistence anomaly” (Chari et al., 2002), where the DSGE

models that produce only monotonic dynamic patterns fail to empirically capture observable hump-

shaped movements in output and inflation. This is indeed true for a purely forward-looking RE

model, i.e., without any lag terms in the demand and supply equations (1) and (2), especially in the

absence of auto-correlated shocks. However, in the BR model framework, the inertia in the model

variables is ensured based on the heuristics (4)-(6) being applied. Being aware of the persistence

in real-world data, we therefore explicitly account for intrinsic persistence due to the assumption

of consumption habits, price indexation, and interest rate smoothing in the hybrid baseline NKM

under RE. This explains why the term “hybrid” is attached to the RE NKM expression as it helps

to clearly distinguish between both model specifications.

3.4. Model Solutions and Estimation

The state space representation of the baseline NKM is given by

AXt + BXj
t+1 + CXt−1 + DΓt = 0, (11)

with Xt = (yt, πt, rt)
′, Xj

t+1 = (Ẽjt yt+1, Ẽ
j
t πt+1, Ẽ

j
t rt+1)′, Xt−1 = (yt−1, πt−1, rt−1)′ and Γt =

(εy,t, εr,t, επ,t)
′. The corresponding general reduced-form solution of

Xt = −A−1[BXj
t+1 + CXt−1 + DΓt] (12)

is then obtained by applying the method of undetermined coefficients. For the BR specification,

the forward-looking elements in XBR
t+1 are replaced by the forecasting heuristics (4)-(6), obviously

except for the expectations on the interest rate Ẽjt rt+1. Since the BR NKM exhibits a backward-

looking structure due to the heuristics (4)-(6), it has to be solved by backward induction. The

solution for the hybrid RE NKM is instead obtained by applying the brute force iteration method

introduced by Binder and Pesaran (1999).

With respect to the BR model specification, in the following section, we describe how the

SML method estimates the structural (τ, κ, φy, φπ) and the bounded rationality (η, ι, µ, γ) param-
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eters. For the RE model, the parameters for habit formation, price indexation, and interest rate

smoothing (χ, α, and φr) are estimated, while the BR parameters are not considered at all.

4. The Simulated Maximum Likelihood Approach for the NKM

This section introduces the SML estimator to macroeconometrics. The SML method is primarily

known from the financial econometric literature on the estimation of univariate time series models

(Kristensen and Shin, 2012; Lee and Song, 2015; Kukacka and Barunik, 2017). For macroeconomic

optimization problems, it requires subsequent modification to a multivariate version.

Let us assume a generic multivariate time series process (zt, xt), zt : t 7→ Rl, l ∈ N; xt : t 7→

Xt, t = 1, . . . ,∞. Suppose that we have T realizations {(zt, xt)}Tt=1. We further assume that the

time series {zt}Tt=1 has been generated by a fully parametric model:

zt = mt(xt, εt, θ), t = 1, . . . , T, (13)

where a model function mt maps {xt, εt, θ} to Rl, θ ∈ Θ ⊆ Rn is an unknown parameter vector,

and εt ∈ Rl is an i.i.d. sequence with known distribution Fε, which is assumed to be disconnected

from t or θ. Realizations zt directly represent empirical observables. In general, both multivariate

processes (zt, xt) can be non-stationary, xt is also allowed to contain other exogenous explanatory

variables in addition to lagged dependent variables zt, and the space Xt can be time-varying.

Finally, we assume the model to have an associated conditional density pt(z|x; θ):

P (zt ∈ A|xt = x) =

∫
A
pt(z|x; θ)dz, t = 1, . . . , T, (14)

for any Borel set A ⊆ Rl.

Let us now for intuitiveness consider the case of the heuristic switching model suggested in

Section 3. For the given NKM specification, zt = {yt, πt, rt}; therefore, l = 3 following equations (1)

to (3). xt only contains lagged dependent variables zt, i.e., no other exogenous explanatory variables

are considered in this model specification. εt stands for a set of l idiosyncratic shocks {εy,t, επ,t, εr,t}

that are i.i.d. around mean zero with variance σ2
{y,π,r}. Finally, the set of estimated parameters con-

tains all structural and bounded rationality coefficients, i.e., θ = {τ, κ, φy, φπ, η, ι, µ, γ} and n = 8.

Recall that for the intrinsic persistence parameters χ = α = φr = 0 hold, and the remaining model
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parameters are parametrized. In contrast, for the hybrid RE NKM, θ = {χ, α, τ, κ, φy, φπ, φr}, i.e.

n = 7.

As a result of the adaptive revisions of the expectations introduced by equation (9), the

probability pt(z|x; θ) in equation (14) does not have a closed-form representation. Therefore, an

exact mathematical derivation of the likelihood function of the model in equation (13) does not

exist, and a standard estimator of θ, the maximizer of the conditional log-likelihoods

θ̃ = arg max︸︷︷︸
θ∈Θ

LT (θ), (15)

where LT (θ) =
∑T

t=1 log pt(zt|xt; θ), is infeasible.3 However, we are always able to obtain simulated

observations from the model (13). The SML method presented below then allows us to numerically

compute a simulated conditional density, which we use to obtain a simulated version of the MLE.

To obtain a simulated approximation of the conditional density pt(zt|xt; θ), t = 1, . . . , T , we

first generate N × T,N ∈ N, i.i.d. draws from the l-dimensional distribution Fε, and {εi,t}Ni=1 to

compute

Zθi,t = mt(xt, εi,t, θ), i = 1, . . . , N. (16)

These N simulated i.i.d. random l-multiples, which are labelled {Zθi,t}Ni=1, follow the tar-

get distribution by construction: Zθi,t ∼ pt(·|xt; θ). Thus, we can utilize them to estimate the

conditional density pt(z|x; θ) via a standard kernel approximation method. Let us define

p̂t(zt|xt; θ) =
1

N

N∑
i=1

KH(Zθi,t − zt), (17)

where KH(ψ) = K(ψ/
√
H)/
√
H, K : Rl 7→ R is a generic kernel function that is a symmetric

multivariate density, and H is a symmetric positive definite l × l bandwidth matrix.

Using the simulated conditional density p̂t(zt|xt; θ), we can derive the SML estimator of θ:

θ̂ = arg max︸︷︷︸
θ∈Θ

L̂T (θ), (18)

3Moreover, the usual assumptions for the consistency and asymptotic normality of the MLE in stationary and
ergodic models are imposed on the actual log-likelihood function LT (θ) and the associated MLE to ensure that the
actual, yet infeasible, MLE θ̃ is asymptotically well-behaved.
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where L̂T (θ) =
∑T

t=1 log p̂t(zt|xt; θ). We use the same set of draws from Fε(·), {εi,t}Ni=1 for all

values of θ. If L̂T (θ) is continuous and differentiable in θ, then numerical optimization is facilitated.

Considering equation (17), if K and θ 7→ mt(xz, εt, θ) are q ≥ 0 continuously differentiable, then

the same holds for L̂T (θ). Under the regularity conditions on the conditional density pt and kernel

K (Kristensen and Shin, 2012, conditions A.1-4, K.1-2, pg. 80–81), p̂t(zt|xt; θ)
P−→ pt(zt|xt; θ),

which implies that L̂T (θ)
P−→ LT (θ) as N −→ ∞ for a given T ≥ 1. Thus, the SML estimator,

θ̂, retains the same properties as the infeasible MLE, θ̃, as T,N −→ ∞ under suitable conditions.

Other important properties of the SML estimator are discussed in the Online Appendix A.

5. Monte Carlo Study

This section numerically investigates the finite-sample properties of the SML estimator in a macroe-

conomic framework. We conduct an extensive Monte Carlo simulation study to determine its ca-

pability to consistently recover the pseudo-true parameters in a controlled environment. We focus

on issues such as the sources of estimation bias and uncertainty, on potential specifications and

parametrizations of the model, and on the computational setup of the optimization procedure. The

following two sections summarize the general settings for all numerical exercises if not explicitly

stated otherwise.4

5.1. Model Parametrization for the Study

Starting with the BR NKM, we first parametrize the discount factor ν = 0.99 whose value has

strong support in the related empirical estimation literature. Other structural parameters (τ , κ,

φy, φπ), which are subject to estimation, and the standard deviations of the idiosyncratic shocks

(σy = 0.543, σπ = 0.240, σr = 0.151) are parametrized according to the recent results for the

US data by Jang and Sacht (2019, Table 2, EFB scenario). The idiosyncratic shocks ε{y,π,r} are

4All computations are conducted using Julia version 1.4.0 (2020-03-21). The computational burden becomes
manageable by utilizing the Distributed.jl package for parallel computing on multi-core computers/servers.
For optimizations, the BFGS algorithm from the Optim.jl package is used with an additional LineSearches.jl

(.BackTracking) functionality to decide the step length. BFGS is a gradient-based iterative optimization algorithm
that searches for a local minimum of a differentiable function. In our specification, it minimizes the negative simu-
lated log-likelihood function L̂T (θ). BFGS approximates the Hessian using differences in the gradient across iterations.
The starting matrix is an identity matrix. The BFGS algorithm was tested against other algorithms available in the
Optim.jl package, and it delivers the best performance for the given optimization problem. It also delivers a largely
comparable performance to differential evolution algorithms from an alternative BlackBoxOptim.jl package.
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therefore independently drawn from a normal distribution with mean zero and variance σ2
{y,π,r},

which is a standard and reasonably realistic assumption for the distribution Fε in equation (13).

We also take advantage of the favorable theoretical properties of the Gaussian kernel (Kristensen

and Shin, 2012, pg. 81) related to equation (17). The standard deviations of the idiosyncratic

shocks σ{y,π,r} cannot be subject to estimation as the SML method requires the distribution Fε of

the i.i.d. shocks to be known.

The BR parameters (η, ι, µ) follow the parametrization by Hommes et al. (2019) except

that our trend-following parameter ι is defined as an average of their “weak” and “strong” trend-

following parameters to avoid issues with parameter identification. The parameter for the intensity

of choice is set to γ = 1, which follows an economic intuition of a low intensity of the switching

of agents between forecasting heuristics.5 Finally, no memory of the past forecast performance

is assumed, ρ = 0, based on the results of Jang and Sacht (2016, 2019), who generally find

this parameter to be insignificant for the heuristic switching model using the SMM estimation

technique. However, as other purely simulation-based studies (De Grauwe, 2011; Hommes et al.,

2019; De Grauwe and Ji, 2020) generally calibrate the memory parameter to non-zero values, an

additional sensitivity analysis for ρ = {0.3, 0.5, 0.7} is provided in Subsection 5.3.5.

For the hybrid RE NKM, we again calibrate the discount factor by ν = 0.99. The structural

parameters together with the standard deviations of the shocks follow common parametrizations

based on Hommes et al. (2019) and De Grauwe and Ji (2020).

Accordingly, the values of the pseudo-true parameters that are subject to estimation are

listed in Table 1. However, the qualitative results presented are robust with respect to other

realistic parametrizations of the model, e.g., based on additional results by Jang and Sacht (2019)

and parametrization setups by Hommes et al. (2019) and De Grauwe and Ji (2020) to which we

devote attention in Subsection 5.3.5.

5Our choice of the numerical value of γ closely follows the related literature. For comparison, De Grauwe (2010,
2011, 2012); Liu and Minford (2014); Jang and Sacht (2019) also calibrate γ = 1, Hommes et al. (2019) calibrate
this parameter to 0.4, De Grauwe and Ji (2020) set γ = 2, while Grazzini et al. (2017) use γ = 5 when estimating
the De Grauwe (2012) model. Jang and Sacht (2016) employ a range γ = {0.1, 1, 10} for negligible, smooth and
slow, and strong switching, respectively, to estimate the De Grauwe (2011) model. We recall that a negative γ lacks
economic sense, while a high value of this parameter would imply an unrealistic speed of opinion updating that is
unlikely in macroeconomic reality for the quarterly periodicity of data. Indeed, Jang and Sacht (2016) use γ = 100
as an approximation to infinity. Importantly, a high γ value may also lead to a numerical divergence of the model.
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5.2. Simulation Setup

We study the performance of the SML estimator under three lengths of time series generated

from the model, namely, 250, 500, and 5,000. This allows us to maintain an admissible time span for

common quarterly macroeconomic data while studying the asymptotic tendencies of the estimator

with an increasing sample size. Moreover, 1,000 additional initial simulated observations are always

discarded as a burn-in period. The random seed is controlled at the level of individual Monte Carlo

runs, which allows for the replicability of the results.

In the general setup, we apply a constrained optimization of a multivariable function and

jointly estimate 8 parameters for the BR NKM or 7 parameters for the hybrid RE NKM. The

parameter space is restricted to the intervals summarized in Table 1. The constraints are based

on the theoretical borders for given parameters (cf. Section 3) combined with a preliminary rough

search based on a broader space to verify the sufficient lengths of the intervals. The random starting

point for the optimization search is uniformly generated from given intervals. The precision of the

kernel density approximation is set to N = 1000, and to ensure the statistical validity of the results

while keeping the computational burden manageable, 300 independent runs are always conducted.

For the estimation of the conditional density pt(z|x; θ), we consider the multivariate Gaussian kernel

and Silverman’s (1986) rule of thumb to set an optimal bandwidth matrix:
√
Hs,s =

(
4/[(l +

2)N ]
)1/(l+4)

σ̂s, where l = 3, s = {1, . . . , l}, σ̂s denotes the sample standard deviation of the

elements of the sth dimension of {εi}Ni=1 and off-diagonal terms Hs1,s2 = 0, s1 6= s2.

5.3. Numerical Results

We primarily investigate the capability of the SML estimator to recover the pseudo-true parameters

in finite samples. The focus is on the estimation precision for the BR NKM and on a discussion

of the probable sources of a potential estimation bias. Another dimension of the analysis is a

numerical evaluation of the asymptotic tendencies to the consistency and efficiency of the estimator.

A comparison with the hybrid RE NKM is also provided.

5.3.1. Estimation Accuracy

Table 1 reveals a very promising performance of the SML estimator. An alternative graphical

depiction of the identical results is provided in Figure 1. First, by focusing on the BR NKM in the
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Table 1: Results of the Monte Carlo simulations

Par. BR NKM Par. Hybrid RE NKM

T=250 500 5000 T=250 500 5000

χ – – – – .50 .53 .53 .53
〈0, 1〉 (.31-.83) (.37-.70) (.48-.59)
α – – – – .50 .53 .52 .53

〈0, 1〉 (.27-.85) (.37-.73) (.48-.60)
τ .371 .48 .47 .47 .20 .23 .22 .22

〈0, 1〉 (.38-.58) (.39-.55) (.44-.49) (.13-.35) (.15-.31) (.20-.24)
κ .213 .23 .23 .23 .30 .36 .35 .35

〈0, 1〉 (.16-.30) (.18-.28) (.22-.24) (.22-.51) (.26-.46) (.32-.38)
φy .709 .71 .71 .71 .50 .49 .47 .47

〈0, 1〉 (.69-.74) (.69-.73) (.70-.72) (.18-.85) (.25-.70) (.39-.54)
φπ 1.914 1.91 1.91 1.91 1.50 1.62 1.61 1.62

〈1, 3〉 (1.87-1.94) (1.89-1.93) (1.90-1.92) (1.20-2.06) (1.37-1.92) (1.54-1.70)
φr – – – – .50 .49 .49 .49

〈0, 1〉 (.37-.58) (.42-.56) (.47-.51)
η .65 .67 .66 .67 – – – –

〈0, 1〉 (.28-1) (.51-.90) (.62-.71)
ι .85 .90 .88 .87 – – – –

〈0, 2〉 (.39-1.26) (.61-1.13) (.81-.93)
µ .50 .53 .54 .56 – – – –

〈0, 1〉 (.34-.76) (.42-.67) (.52-.60)
γ 1.00 .98 1.04 1.01 – – – –

〈0, 5〉 (.08-2.98) (.40-1.98) (.83-1.21)

The constraints for optimization and its starting point are given in 〈〉 brackets. T denotes the length of
the executed time series. The sample medians based on 300 random runs are reported while the 95%
confidence intervals of the sample estimates are reported in () parentheses. The parametrization is based
on Jang and Sacht (2019), Table 2, EFB, for the BR NKM and on Hommes et al. (2019); De Grauwe and
Ji (2020) for the hybrid RE NKM. The figures are rounded to 2 or 3 decimal places.

left half of the table/figure, the values of the Taylor rule coefficients φy and φπ are recovered nearly

perfectly, and the 95% sample confidence intervals suggest a minimal variance of the estimator for

the given parameters. The slope of the New-Keynesian Phillips Curve κ is also estimated very

precisely. For the elasticity of substitution in consumption τ , we observe positively biased results

that suggest a stable bias of the SML estimator for this parameter. The sampling distributions have

regular symmetric shapes with a skewness close to zero and kurtosis close to a normal distribution.

The bias for τ can be explained at the level of the model structure as follows. Equation

(1) essentially plugs rt (3) into the dynamic IS curve where it directly interacts with τ . This

creates a composite error term εy,t + τεr,t that introduces a correlation between the individual

errors in the model. It also naturally correlates with τ . Moreover, τ thus also loads directly

on the Taylor rule coefficients and indirectly on κ through the φyyt term in equation (3). All
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of this leads to a problematic identification of τ that results in a bias of the estimator for this

parameter. This seems to be a fundamental finding gained for the interpretation of the empirical

results, where unfortunately, we can hardly predict even the direction of the bias for τ . One

potential solution analyzed in Subsection 5.3.5 is to calibrate this parameter. It is important to

emphasize, however, that in such a complicated nonlinear system as the BR NKM, similar biases

are practically inevitable. The purpose of Monte Carlo situations is exactly to learn about their

existence as concretely as possible through numerical simulations.

[Place Figure 1 around here.]

The BR parameters are generally more challenging to estimate, but the SML method still

delivers a very good performance. The sample variances for η, ι, and µ are relatively larger than

for the structural parameters; however, the sampling distributions have regular and reasonably

symmetric shapes with kurtosis generally higher compared to a normal distribution. We also do

not observe any considerable bias tendencies except for a small positive bias for µ. The most

important result is undoubtedly the estimation performance for the switching parameter of the

intensity of choice γ. Even in simple univariate financial models, capturing the effect of this

coefficient is generally difficult (Boswijk et al., 2007; Hommes, 2013; Lamperti, 2018a; Lux and

Zwinkels, 2018). In addition, a handful of previous macroeconomic studies have had difficulties

estimating this parameter (cf. Subsection 2.2). On the contrary, our results show that the SML

estimator is well capable of estimating the pseudo-true intensity of choice γ under the multinomial

logistic updating scheme (9). That is, compared to other estimation methods applied to date, the

SML estimator demonstrates a considerable ability to estimate γ without any bias and without

issues with statistical insignificance at the standard 5% level. It is thus capable of detecting signs

of behavioral switching in the simulated model output.

5.3.2. Asymptotic Tendencies

Favorable asymptotic tendencies of the estimator are apparent with an increasing sample size

T = 250, 500, 5000. We generally observe a considerable narrowing of the 95% confidence intervals

of the sample estimates when T goes from 250 to 500 and further to 5,000. This tendency leads to
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markedly stronger improvements of the estimation efficiency for the BR parameters compared to the

structural parameters. The results further demonstrate significant improvements in the estimation

precision for the intensity of choice γ with an increasing sample size. Moreover, although we observe

a positive skew of the sampling distribution of the estimator for γ for T = 250, this asymmetry

decreases for T = 500 and disappears completely for T = 5000. The same normalization of the

shape of the sapling distribution can be observed at the level of kurtosis. For T = 250, 500,

the excess kurtosis is slightly positive for the structural parameters and rather large for the BR

parameters, whereas for T = 5000, such a non-normal shape disappears with the excess kurtosis

for all parameters approaching zero. In contrast, the bias of the SML estimator for parameters

τ and µ appears to be stable regardless of the sample size. A very subtle tendency towards bias

reduction can be observed for a small bias for ι.

5.3.3. Shape of the Log-Likelihood Function

A set of regularity conditions A.1-A.4, that impose restrictions on the model and the con-

ditional density, are defined in Kristensen and Shin (2012) such that the estimated conditional

density p̂ converges sufficiently fast to the true conditional density p. Therefore, the asymptotic

equivalence of the estimated θ̂ and the true θ parameter vectors are assured. Kristensen and Shin

(2012) assert that these assumptions are “quite weak and are satisfied by many models”; nonethe-

less, the analytical intractability of the analyzed heuristic switching macroeconomic model does

not allow us to mathematically verify these conditions. Therefore, we take advantage of the compu-

tational approach and verify the smoothness condition, identification of parameters, and existence

of a unique optimum by assessing the simulated log-likelihood functions via graphical tools.

[Place Figure 2 around here.]

The left half of Figure 2 shows the shape of the simulated log-likelihood function for the BR

NKM. As we are unable to graphically depict an 8-dimensional object, the individual curves show

the transversal profiles of the simulated log-likelihood function in the planes of given parameters.

Other parameters are held fixed at their parametrized values (Table 1). A smooth shape of the

surface that results from the use of a Gaussian kernel based on N = 1000 approximation points
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is clearly observable for all structural parameters and the intensity of choice γ over the entire

parameter space. Moreover, the unique maxima are well detectable for the structural parameters

with the strongest curvature in the direction of the parameter φπ, which naturally corresponds to

the numerical results reported in Table 1 and Figure 1. For the remaining BR parameters except

for γ, one can observe considerable differences and irregularities between some of the independent

realizations of the simulated log-likelihood function. Together with a rather flat surface of the

average likelihood function, these differences are likely the cause of higher sample variances for η,

ι, and µ. This observation explains our findings regarding the more challenging estimation of these

parameters. The bias for τ is also obvious from the shape of the simulated log-likelihood. When

increasing the sample size from T = 500 (panel c) to T = 5000 (panel e), we obtain distinctively

sharper shapes and also a more regular behavior of the log-likelihood for all independent runs.

Accordingly, based on the smooth surfaces of the average simulated log-likelihood functions and

unique maxima observed in the directions of all estimated parameters, we can generally assume

that the regularity conditions and identification of the parameters are satisfied for the BR NKM.

5.3.4. Comparison with the RE Model

The results for the hybrid RE NKM are also summarized in Table 1 and the right half of

Figure 1. The estimation performance is generally worse for the hybrid RE NKM than for the

BR NKM, while the number of estimated parameters is one smaller. This result might appear

counterintuitive at first, since the BR NKM is expected to generate more complex dynamics than

the RE NKM. One reason for this finding might be the qualitatively different behavior of the

output time series of the realizations in the RE case. In contrast, in the model under BR, the

output displays a considerable stability and path dependency that emerges from the incorporation

of behavioral heuristics, and the fluctuations of the output time series of the hybrid RE NKM

are more intense, regardless of the impact of the intrinsic persistence parameters χ, α and φr.

Exogenous random shocks rather than (cross-)autocorrelation structures thus seem to be a driver

for the hybrid RE NKM dynamics, which would naturally complicate the proper detection of the

pseudo-true parameter values for any estimation method. The inability of the SML estimator

to approximate the likelihood function accurately enough for more volatile time series is widely
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studied in Kukacka and Barunik (2017). In such cases, the SML criterion function displays a

flatter surface that hinders the optimization algorithm from reaching the global optimum in a

multidimensional parameter space. This can generally be observed in the right half of Figure 2,

especially for parameters κ, φy, and φπ in which the individual courses of the depicted shapes are

more dispersed.

Another related issue regards small biases of the estimator that are mostly visible for pa-

rameters κ and φπ. Moreover, the bias does not tend to disappear as the sample size increases,

which suggests unfavorable asymptotic tendencies. In terms of efficiency, the 95% sample estimate

intervals are rather large for the intrinsic persistence parameters χ and α and also for the Taylor

rule coefficients φπ and φy. However, for φπ and φy the estimation performance is incomparable

to that of the BR NKM as the interest rate smoothing parameter φr takes over their impact. The

relative improvement in efficiency as the sample size increases seems comparable.

5.3.5. Additional Model Specifications

To support the qualitative robustness of our findings, we repeat the same numerical analysis

for additional alternative realistic parametrizations for both the BR and the hybrid RE NKM.

Because of space constraints, in Appendix A, we only report the outputs based on the T = 500

sample size, which is comparable to Figure 1, panels (c) and (d). First, Figure 3 reports the results

for the BR NKM parametrizations based on the estimates for the Euro Area data by Jang and

Sacht (2019, Table 3, EFB scenario) and based on the parametrization setups of Hommes et al.

(2019); De Grauwe and Ji (2020) with the value of the parameter τ = 1. In both cases, we observe

an estimation performance largely comparable to our benchmark setup (Figure 1). The bias for τ is

also apparent for both parametrizations. Interestingly, for the Jang and Sacht (2019, Table 3, EFB

scenario) parametrization, the bias for µ disappears, while for the Hommes et al. (2019); De Grauwe

and Ji (2020) parametrization, we instead detect new biases for the Taylor rule parameters φy and

φπ. The same similarity of the qualitative results holds for the alternative parametrizations of the

hybrid RE NKM based on Jang and Sacht (2019, Tables 2 and 3, REH scenario); De Grauwe and

Ji (2020) reported in Figure 4. Interestingly, under the given parametrization, the SML estimator

seems to be more accurate for α, and also the small biases for the structural parameters apparent
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in Figure 1 seem to diminish. However, τ generally suffers from statistical insignificance, which

is due to its very small pseudo-true values while maintaining the same estimation interval 〈0, 1〉

for comparability. We can thus conclude that the properties of the SML estimator are not only

model-dependent but also parametrization-dependent.

Second, to address the issue of the consistent bias for the inverse intertemporal elasticity of

substitution in consumption τ for the BR NKM, we parametrize its value, and only 7 remaining

parameters are now subject to estimation. The results for the three alternative parametrizations

of τ are depicted in Figure 5. Although holding this weekly identified coefficient constant does

not lead to a better estimation performance for the other parameters compared to the benchmark

case, the bias does not spill over to the other parameters, and the issue therefore seems to be well

resolved.

Third, we also experiment with parametrizing the memory parameter ρ in equation (8)

to nonzero values, specifically to ρ = {0.3, 0.5, 0.7}. We recall that Jang and Sacht (2016) find

this memory coefficient to be statistically insignificant from estimation via the SMM. Grazzini

et al. (2017) also report ρ = to have a negligible effect for the model behavior as its posterior

distribution does not depart significantly from the prior distribution in a Bayesian estimation.

Setting ρ to nonzero implies the issue of the latent dynamics in the model in which the conditional

log-likelihood L̂T (θ) is infeasible. However, here, we are instead interested in what numerical issues

this theoretical imperfection brings. The “experimental” results reported in the Online Appendix

B, Figure 7, clearly show that increasing ρ first deteriorates the estimation performance for all

BR parameters (ρ = 0.3), it further deteriorates the estimation of the structural coefficients τ

and κ, it makes the estimates of the BR parameters unreliable (ρ = 0.5), and it finally leads to

a complete loss in the estimation performance of the SML estimator for all coefficients except the

Taylor rule coefficients (ρ = 0.7). The explanation is twofold. In addition to the latent dynamics

issue, the memory parameter ρ in equation (8) interacts with the intensity of choice parameter

γ in equation (9) through Ukx,t. If both parameters are estimated simultaneously, then a serious

joint-identification problem arises. In our case, however, the memory parameter ρ is parametrized.

The interaction of the two parameters thus leads only to a suppression of the effect of the intensity
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of choice γ on the model dynamics. This, in turn, causes the abovementioned effects.

Finally, in Appendix B, Figure 6, we report additional results for the application of the

SML estimator to different heuristic switching models derived based on alternative sets of heuris-

tics. Specifically, we estimate the models following the heuristic structure by Gaunersdorfer and

Hommes (2007); De Grauwe (2011); De Grauwe and Ji (2020) and with τ parametrized to avoid

the estimation bias. The accuracy and efficiency of the SML estimator for these alternative models

is largely comparable to our findings in the previous sections. This provides an additional strong

robustness check to our Monte Carlo simulation study.6

6. Empirical Applications

This section examines the empirical performance of the SML in a multivariate macroeconomic

setup. We are also interested in evaluating and reporting the parameter estimates used for activities

in policy advisory. Both the BR NKM and its hybrid RE NKM counterpart are considered since

a purely forward-looking RE NKM without lag terms does not capture the empirically observed

inertia in inflation and output due to the aforementioned “persistence anomaly” (Chari et al.,

2002). Since the data for the US economy exhibit a high degree of persistence, it is worthwhile

to investigate different model specifications where inertia is technically incorporated either by

heuristics (BR NKM) or by the assumption regarding habit formation and price indexation (hybrid

RE NKM).

6.1. Estimation Setup

The algorithm for empirical estimation generally adopts the setup of the simulation study in

subsections 5.1 and 5.2 with two minor alterations. First, compared to the parameter space for the

numerical study, we restrict the interval for the intensity of choice γ by 10 from above based on a

preliminary rough search. We further extend the interval for the Taylor rule coefficient φπ to 〈0, 3〉,

which supports an optimization search. Second, we increase the precision of the kernel density

approximation to N = 2000. For comparison exercises, we consider three additional parameter

sets where we parametrize the structural parameters τ and/or κ as summarized in Table 2.

6As an additional robustness exercise, Online Appendix C, Table 4 and Figure 8, report the results designed for a
direct numerical comparison of the estimation performance between the SML method and the SMM, which suggests
the superiority of the SML estimator at least for the given model setup.
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Table 2: Results of the empirical study for US data: BR vs. hybrid RE NKM

BR NKM Hybrid RE NKM

All B C All D All via MLE

χ – – – .99 .74 1.00
〈0, 1〉 (.81-1.00) (.67-.999) (.81-1.00)
α – – – .77 .999 .81

〈0, 1〉 (.70-.83) (.90-1.00) (.76-.86)
τ .00 .371 .20 .05 .02 .04

〈0, 1〉 (.00-.00) (.02-.08) (.004-.04) (.03-.05)
κ .09 .213 .05 .00 .03 .00

〈0, 1〉 (.007-.17) (.00-.00) (.00-.003)
φy .12 .05 .04 .78 .69 .79

〈0, 1〉 (.10-.14) (.03-.07) (.01-.06) (.60-.98) (.45-.93) (.50-1.08)
φπ 1.26 1.23 1.27 1.28 1.32 1.51

〈0, 3〉 (1.14-1.31) (1.19-1.29) (1.22-1.33) (1.03-1.54) (.26-1.58) (1.26-1.76)
φr – – – .91 .90 .93

〈0, 1〉 (.88-.93) (.87-.93) (.91-.95)
η .19 .21 .20 – – –

〈0, 1〉 (.04-.27) (.09-.25) (.09-.26)
ι .00 .00 .00 – – –

〈0, 1〉 (.00-.002) (.00-.02) (.00-.05)
µ .31 .38 .44 – – –

〈0, 1〉 (.07-.67) (.15-.62) (.19-.65)
γ 1.40 1.49 1.39 – – –

〈0, 10〉 (.50-7.26) (.79-6.22) (.78-6.35)

The constraints for optimization and its starting point are given in 〈〉 brackets. The sample
medians based on 300 random runs are reported, while the 95% confidence intervals of the
sample estimates are reported in () parentheses. The parametrization is based on Jang and
Sacht (2019), Table 2, EFB (for B), the hybrid RE (for D), and De Grauwe and Ji (2020) for C.
The fixed parameters are marked in italics. The figures are rounded to 2 or 3 decimal places.

6.2. Data

We obtain the US quarterly data from the website of the Federal Reserve Bank of St. Louis.7

Inflation is measured using the seasonally adjusted consumer price index (for all urban consumers

& items). Output is obtained from seasonally adjusted real GDP based on billions of chained 2012

dollars. A standard smoothing parameter of λ = 1600 is used to estimate the trend of the observed

data from the one-sided Hodrick-Prescott filter (Stock and Watson, 1999) for output. The effective

federal funds rate is used to measure the short-term nominal interest rate in the US. The sample

covers the period from 1954:Q3 to 2019:Q2 with 260 observations in total.
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6.3. Empirical Results

The parameter estimates for both model specifications are shown in Table 2. We first focus on the

BR NKM for which all BR parameters are statistically significant (except for the trend-following

parameter ι; see below). Note that the column entitled “All” reports the results for which none of

the parameters are parametrized to a pre-defined fixed value. Under this scenario, the adaptation

parameter η exhibits a median value of 0.19, i.e., approximately 20% of the past realization in

the output gap, and the inflation rate is considered in case the adaptive heuristic (4) is applied.

Therefore, a näıve expectation formation process, with η being close or equal to unity, can be ruled

out. The estimate of the extrapolation parameter µ given by 0.31 reveals a weak importance of

the deviations in the output gap and of the inflation rate from the corresponding anchor point,

which is defined as a sample average of the previous realizations. This median value of µ from the

heuristic (6) comes close to the one proposed by Hommes et al. (2019).

A novelty of our empirical investigation is that we are reliably able to identify the intensity

of choice parameter γ in a macroeconomic model setup. We obtain a clearly statistically signifi-

cant estimate of 1.40. This implies that the agents have the incentive to revise their expectation

formation process in every period. According to De Grauwe and Ji (2020), γ can be interpreted as

“expressing a willingness to learn from past performance”. Based on our estimate, this degree of

willingness turns out to be rather low. As a result, the switching from one forecasting heuristic to

the other becomes smooth and slow considering the quarterly frequency of the data.8

We now briefly discuss the estimate for ι, which denotes the extrapolation parameter in the

trend-following heuristic (5). It measures how strongly the expectation formation based on this

specific forecasting rule considers the change in the direction of the output gap or the inflation rate

up to the second lag. The observation that ι turns out to be insignificant comes not as a surprise.

The reason for this is twofold. First, technically speaking, one can note that the corresponding

term (xt−1 − xt−2) can be found in both heuristics for trend-following and learning anchoring and

7Available at fred.stlouisfed.org [accessed 9 September 2019].
8Note that the results regarding the intensity of choice γ can be compared to those presented for similar represen-

tations of the BR NKM obtained via the SMM in Jang and Sacht (2016, 2019), where a Taylor rule with interest rate
smoothing is assumed. The intensity of choice parameter is fixed in their study, which means that as a cross-check,
the case of γ = {0.1, 1} for the US should be considered since we find the median value of γ close to unity.
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adjustment, i.e., (5) and (6), respectively. The difference lies in the weighting scheme of ι and unity.

An insignificant estimate for ι therefore indicates the redundancy of an additional but identical term

as part of both forecasting rules. Second, note that the following economic interpretation holds

with respect to heuristic (5) in isolation. By acknowledging the extrapolation effect, it gives rise

to strong oscillatory dynamics for a high value of ι (Anufriev and Hommes, 2012). This resembles

a destabilized economy with high degrees of fluctuation in the macroeconomic variables. However,

the trend-following heuristic hardly survives if the central bank reacts strongly to disturbances in

output and inflation (Hommes, 2021). This is, in fact, suggested by our estimates for φy and φπ.

Instead, the agents’ expectation formation is dominated by the other two heuristics, namely, ADA

(4) and LAA (6). Our empirical results thus support the experimental findings by (Hommes et al.,

2019, Figure 11) who also find that these two heuristics strongly dominate various experimental

setups. According to Assenza et al. (2013), as the central bank successfully does its job in stabilizing

the economy over time, changes in (xt−1 − xt−2) flatten out. Such negative-feedback policies of

the central bank prevent coordination on the trend-extrapolating behavior and the survival of

trend-following strategies (Assenza et al., 2019). This makes the term in the TR heuristic (5) most

likely obsolete when it comes to expectation formation, which is then reflected by ι not deviating

significantly from zero.

A discussion on the estimates for the structural parameters follows. We focus again on the

“All” scenario first. Although the estimates of the monetary policy parameters indicate a strong

emphasis on inflation over output stabilization with median values of φy = 0.12 and φπ = 1.26, the

remaining structural parameters τ and κ turn out to be (close to) statistically insignificant. This

observation regarding the slopes of the dynamic IS equation (1) and the New-Keynesian Phillips

Curve (2) holds under the inspection of the corresponding 95 % confidence intervals. At least

for τ , the result ties into our discussion in Subsection 5.3.1 concerning a weak identification and

the estimation bias for this parameter. It follows that the demand and supply curves seem to be

decomposed from the remaining system of equations and that inherited persistence, in terms of

cross-volatility within the inflation-output gap nexus, is largely absent.

As output and inflation dynamics seem to be only characterized by the parametrized shocks
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and heuristics, this raises the issue of a potential model mis-specification. Although the BR NKM is

by definition a perfectly specified model in the Monte Carlo environment, it struggles when dealing

with an empirical data set that exhibits structural breaks in inflation volatility. Such structural

breaks are, however, a widely known phenomenon for the US economy in the second half of the

20th century.

The following exercise reveals that the estimates of all additional parameters turn out to be

robust with respect to different parametrizations of τ and κ. Therefore, we report two additional

sets of estimates denoted by “B” and “C” in the third and fourth columns of Table 2, respectively.

For “B”, both critical parameters are parametrized according to Jang and Sacht (2019, Table 2,

EFB scenario). For “C”, we apply a plain vanilla parametrization following De Grauwe (2011, p.

452). We choose both parametrizations since these are directly linked to the empirically examined

BR NKMs similar to the one considered in this paper.

6.3.1. Hybrid RE NKM

We now shed light on the empirical results linked to the hybrid RE NKM. We consider two different

sets. In the set “All”, none of the parameters are parametrized. For “D”, we parametrize κ, which

happens to be statistically insignificant under the “All” set. We choose a standard value of 0.03

taken from the literature on RE NKMs in general. For κ being parametrized, τ now becomes

nearly insignificant as seen in the “D” column of Table 2. This is, once again, an indication of the

distorted cross-correlation between output and inflation. Potential explanations include not only

a mis-specification of the theoretical model but also a weak identification of κ in general. This

might be caused by the existence of structural breaks in the underlying time series for the US as

discussed above. However, this seems to be a puzzling observation as, like in the BR NKM case,

the estimation method performs well in simulations. We conclude that a further exploration of

this issue is needed in future research.

We now offer a brief economic interpretation of the estimates for the hybrid RE NKM. The

median values for χ, α, and φr under the set “All” come close to their upper bounds, which are

given by unity in all cases. This reflects a high degree of persistence in the underlying empirical

time series. It must then be mimicked by a high degree of hybridity in the theoretical model,
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i.e., high values of the parameters for habit formation (χ), price indexation (α), and interest rate

smoothing (φr). The result of φπ = 1.28 reveals a value that is virtually identical to the one

obtained in the BR NKM estimates. With respect to φy, it attains a comparatively high value of

0.78, which also implies a strong focus on output stabilization.

For completeness, we take advantage of the linearity of the hybrid RE NKM and estimate

the model via the maximum likelihood technique. The classical MLE based on the true likelihood is

derived in Appendix C. We consider the “All via MLE” set where no parameters are parametrized.

The results are reported in the last column of Table 2. In a direct comparison to the estimates

obtained via the SML method, these are hardly distinguishable from the estimates obtained through

the MLE. The only exception are the estimates for φπ. In addition, for the MLE the width of

the 95% confidence interval is narrower compared to the “D” column but is similar to the “All”

column. Overall, it can be concluded that the SML approach approximates the MLE method very

well.

7. Conclusion

In the absence of the RE paradigm, a growing number of studies on DSGE models address the

importance of boundedly rational expectation formation. This paper examines a baseline NKM

with heterogeneous agents who adopt simple heuristics in forecasting future movements of output

and inflation. In this heuristic switching model by Hommes et al. (2019), different groups of

agents form expectations according to an adaptive, a trend-following, or a learning anchoring

and adjustment scheme. The corresponding nonlinear specification of the model is for the first

time estimated via the SML method (Kristensen and Shin, 2012). This approach relaxes some

restrictive theoretical assumptions required by competing estimation methods and further reduces

the discretionary choices necessary for their practical implementation. We modify the univariate

version of the SML applied in financial econometrics and transfer it to multivariate macroeconomic

optimization. The results are compared to the findings obtained for a hybrid NKM with a lead

and lag structure under RE.

In a Monte Carlo simulation study, we investigate the finite-sample properties of the SML

estimator in a multivariate framework. An important advantage lies in its ability to estimate
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the intensity of choice that governs the multinomial logistic switching process from one group to

another. In previous related empirical studies, this parameter had to be parametrized or was

estimated as potentially statistically insignificant or uninformative for the model behavior. On

the contrary, our results show that the SML can estimate the switching parameter with surprising

precision and with no small sample bias. Moreover, all three additional behavioral parameters and

most of the structural parameters are also estimated very precisely. Accordingly, our numerical

analysis confirms a strong capability of the SML method to estimate the heuristic switching model

parameters.

In an empirical application, we estimate the model in its BR version and its hybrid counter-

part under RE. Based on the US economy’s data covering the period from 1954:Q3 to 2019:Q2, the

majority of parameters in both models are estimated to be statistically significant. This includes

most of the behavioral parameters to be found within the set of forecasting heuristics. A novelty

of our analysis is that we are reliably able to identify the parameter for the intensity of choice in

a macroeconomic model. Clearly statistically significant estimates between approximately 1.4 and

1.5 reveal a rather smooth and slow turnover from one forecasting heuristic to the other over time.

The estimation results for the model under RE are also confirmed by applying the classical MLE.

However, both models partially fail to capture the cross-correlation structure within the output-

inflation nexus as the corresponding parameters turn out to be (close to) insignificant. This raises

the issue of a potential model mis-specification under bounded and perfect rationality.

We conclude that this study considerably expands our understanding of heuristic switching

models with heterogeneous agents used in macroeconomic research. Specifically, concerning the

intensity of choice parameter, our empirical results are fruitful for the future parametrization of

behavioral NKMs used for policy analysis. Future work in this area should focus on the estimation

of more complex large-scale macroeconomic models.
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Figures

(a) BR NKM, T = 250
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(b) Hybrid RE NKM, T = 250
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(c) BR NKM, T = 500
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(d) Hybrid RE NKM, T = 500
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(e) BR NKM, T = 5000
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(f) Hybrid RE NKM, T = 5000
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Figure 1: Densities of the pseudo-true parameter estimates. The bold black curves depict the kernel density estimates
of the sample densities, the bold red vertical lines show the pseudo-true values, and the dashed red vertical lines
depict the 95% confidence intervals of the sample estimates. Based on 300 random runs, the parametrization follows
Table 1.
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(a) BR NKM, T = 250
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(b) Hybrid RE NKM, T = 250
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(c) BR NKM, T = 500
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(d) Hybrid RE NKM, T = 500
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(e) BR NKM, T = 5000
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(f) Hybrid RE NKM, T = 5000
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Figure 2: Profiles of the simulated log-likelihood function. The bold red vertical lines show the pseudo-true values,
and the bold black curves depict the average log-likelihood. Based on 300 random runs, the parametrization follows
Table 1.

36



Appendix A: Robustness Analysis

(a) Jang and Sacht (2019), Table 3, EFB
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(b) Hommes et al. (2019); De Grauwe and Ji (2020)
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Figure 3: Densities of the pseudo-true parameter estimates for the BR NKM. The bold black curves depict the kernel
density estimates of the sample densities, the bold red vertical lines show the pseudo-true values, and the dashed red
vertical lines depict the 95% confidence intervals of the sample estimates. Based on 300 random runs, T = 500, the
parametrization of the structural parameters and the standard deviations of shocks are based on the cited papers,
and the parametrization of the BR parameters follows Table 1.

(a) Jang and Sacht (2019), Table 2
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(b) Jang and Sacht (2019), Table 3
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Figure 4: Densities of the pseudo-true parameter estimates for the hybrid RE NKM. The bold black curves depict
the kernel density estimates of the sample densities, the bold red vertical lines show the pseudo-true values, and the
dashed red vertical lines depict the 95% confidence intervals of the sample estimates. Based on 300 random runs,
T = 500, the parametrization of the intrinsic persistence parameters χ, α, φr and the standard deviations of shocks
follow De Grauwe and Ji (2020), and the parametrization of the remaining structural parameters is based on Jang
and Sacht (2019, Tables 2 and 3, REH scenarios).
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(a) Parametrization follows Table 1
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(b) Jang and Sacht (2019), Tab. 3, EFB

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

1.0 1.5 2.0 2.5 3.0
0

10

20

30

40

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

0 1 2 3 4 5
0.0

0.5

1.0

1.5

(c) Hommes et al. (2019); De Grauwe and Ji (2020)
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Figure 5: Densities of the pseudo-true parameter estimates for the BR NKM with fixed τ and alternative parametriza-
tions. The bold black curves depict the kernel density estimates of the sample densities, the bold red vertical lines
show the pseudo-true values, and the dashed red vertical lines depict the 95% confidence intervals of the sample
estimates. Based on 300 random runs, T = 500, the parametrization of the structural parameters and the stan-
dard deviations of shocks for panels (b) and (c) are based on the cited papers, and the parametrization of the BR
parameters follows Table 1.
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Appendix B: Alternative Sets of Heuristics

In this section, we apply a robustness exercise with respect to alternative sets of forecasting heuris-

tics. At its core, the model consists of the same structure as given by the equations (1)-(3) with

χ = α = φr = 0. The expressions for the market forecast (7) and the switching mechanism in

general up to equation (9) remain unaltered but must be adjusted under the consideration of the

heuristics displayed in the following Table 3.

Table 3: Alternative sets of forecasting heuristics

Alternative set of heuristics Types of agents Paper

A1 EF yt+1 = y + ψy(yt−1 − y) Fundamentalists Gaunersdorfer and Hommes (2007)

ECyt+1 = yt−1 + ξy(yt−1 − yt−2) Chartists

A2 E0
yt+1

= (1/2)(β + δλy,t) Optimists De Grauwe (2011)

EPyt+1
= −(1/2)(β + δλy,t) Pessimists

A3 Efyt+1 = y ‘Strict’ fundamentalists De Grauwe and Ji (2020)

ENyt+1 = yt−1 Näıve ones

The behavioral parameters ψy , ξy , β, and δ denote the speed of convergence, the degree of extrapolation, the subjective
mean value, and the degree of divergence, respectively. The time-varying unconditional standard deviation in output
is given by λy,t, where the steady state output gap is denoted by y.

For an in-depth description of the alternative sets A1 and A2, we refer directly to Jang

and Sacht (2019). With respect to set A3, it becomes apparent that ψy = ξy = 0 holds as we

consider the heuristics included in set A1. Note also that in general, we assume zero values for the

steady states in output and inflation, i.e., that y = π = 0 holds. Inflation expectations are formed

consistently for A1-A3 based on two heuristics for the so-called extrapolators (E) and targeters

(T ):

EEπt+1 = πt−1 (19)

ETπt+1 = π. (20)

Therefore, regardless of the alternative sets under consideration, inflation expectations are

always formed based on the expressions (19) and (20) above. This is in line with the approaches

discussed in Jang and Sacht (2019) and De Grauwe and Ji (2020). Figure 6 displays the outcome
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of a Monte Carlo study for all alternative sets A1-A3 under a setup similar to Section 5.

(a) A1: Gaunersdorfer and Hommes (2007)
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(b) A1: Gaunersdorfer and Hommes (2007)
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(c) A2: De Grauwe (2011)
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(d) A2: De Grauwe (2011)
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(e) A3: De Grauwe and Ji (2020)
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(f) A3: De Grauwe and Ji (2020)
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Figure 6: Densities of the pseudo-true parameter estimates for the BR NKM with alternative sets of heuristics. The
bold black curves depict the kernel density estimates of the sample densities, the bold red vertical lines show the
pseudo-true values, and the dashed red vertical lines depict the 95% confidence intervals of the sample estimates.
Based on 300 random runs, T = 500, the parametrization is based on Jang and Sacht (2019, Tables 2 (left half) and
Table 3 (right half), EFB scenarios).
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Appendix C: MLE for the Hybrid RE NKM

This section derives the classical MLE based on the true likelihood for the hybrid RE NKM. We

take advantage of the linearity of the RE specification of the model and follow the MLE derivation

in Hamilton (1994); Lindé (2005); Jang (2012); Franke et al. (2015).9 We also estimate the hybrid

RE NKM via MLE as an additional empirical exercise, which is reported in the last column of

Table 2. We compare the results with those based on the SML estimator in Subsection 6.3 and

conclude that the SML approach approximates the MLE method very well.

Based on the state space notation in sections 3.4 and 4, the law of motion follows:

Xt = ΩXt−1 + ΦΓt, Γ ∼ i.i.d. N (0,ΣΓ), (21)

where Ω and Φ are the resulting RE-based projection matrices that can be obtained using a typical

iterative method, and ΣΓ = I(σ2
y , σ

2
π, σ

2
r )
′, where I is a 3 × 3 identity matrix. The conditional

probability for the vector of the state variables Xt is then

Xt|Xt−1 ∼ N (ΩXt−1,ΦΣΓΦ′). (22)

The likelihood function looks like

LT (θ) = −3T

2
ln(2π)− T

2
ln|ΦΣΓΦ′| − 1

2

T∑
t=2

Γ′t(ΦΣΓΦ′)−1Γt (23)

and the standard maximizer of the conditional log-likelihoods is already displayed in equation (15).

Finally, the asymptotic properties of the MLE θ̃ that allow for the estimation of the standard errors

of the estimated coefficients lead to

√
T (θ̃ − θ) ∼ N

(
0,

(
H

T

)−1)
, (24)

where the Hessian information matrix is given by H = E
[
∂2L(θ)
∂θ∂θ′

]
.

9We thank Tae-Seok Jang for sharing the Matlab code with us, which is needed to apply the MLE, and his related
consultations on the MLE derivation. This code was written for use in Franke et al. (2015).
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Online Appendices (not for publication)

Kukacka and Sacht; February 2021; Estimation of Heuristic Switching in Behavioral Macroeco-

nomic Models

Online Appendix A: Important Properties of the SML Estimator

Kristensen and Shin (2012) argue that the main advantage of the SML is its general applicability.

Starting with observables, the density estimator based on i.i.d. draws is not affected by potential

dependence structures in the data, and the SML works even if the observables zt are non-stationary.

An important issue to consider is the potential curse of dimensionality with respect to the dimension

of the vector of observables, as we smooth over only zt. Generally, for multi-dimensional models,

the estimation performance deteriorates as l ≡ dim(zt) increases. We devote careful attention to

this issue and extensively study the estimation performance of the SML for the three-equation

NKM in Section 5. Importantly, the SML does not suffer from the usual curse of dimensionality

associated with kernel estimators, as substantially discussed in Kristensen and Shin (2012). The

variance component of the resulting estimator does not need to be controlled by an unbearably

large number of simulations, as the summation in equation (17) reveals an additional smoothing

effect, and the additional variance of L̂T (θ) caused by simulations recovers the standard parametric

rate of 1/N . Therefore, the curse of dimensionality remains only of order l ≡ dim(zt), and the

SML will behave similarly to other estimation techniques including the MLE in this respect.

In contrast, given the kernel approximation method and its asymptotic properties, the simu-

lated L̂T (θ) is generally a biased estimator of the actual LT (θ) for a fixed approximation precision

N and bandwidth H > 0. Only N −→∞ and H −→ 0 imply asymptotic consistency. Careful at-

tention thus needs to be devoted to the selection of the bandwidth H with respect to the simulation

size and a specific sample of data. Fortunately, in a simulation study, Kristensen and Shin (2012)

demonstrate that the SML performs well using a broad range of bandwidths. A standard identifi-

cation assumption for the stationary case requires E[log p(zt|xt, θ)] < E[log p(zt|xt, θ0)], ∀ θ 6= θ0.

Altissimo and Mele (2009) argue that under its stronger version, the specific choice of bandwidth
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H is even less important because one can prove the consistency for any fixed 0 < H < H̄ for some

H̄ as N −→∞. This suggests that the proposed methodology is robust to the choice of H from a

theoretical perspective because one can assuredly well identify the model parameters in large finite

samples after H̄ is set. However, in a practical application, one still needs to know the threshold

level of H̄ that can be examined through simulations. In addition to a proper selection of N and H,

the kernel K itself is assumed to satisfy conditions K.1–2 specified in Kristensen and Shin (2012,

p. 81), i.e., to be continuously differentiable, allow for unbounded support, and belong to so-called

higher-(than second)-order or bias-reducing kernels. For instance, from the most commonly used

kernels, the Gaussian kernel naturally satisfies all given assumptions. A higher number of deriva-

tives of p then facilitate a faster rate of convergence and determine the degree of bias reduction for

the estimated conditional density p̂.

With respect to additional theoretical properties, Kristensen and Shin (2012) demonstrate

that the SML θ̂ is first-order asymptotically equivalent to the infeasible MLE θ̃ under a set of

general conditions satisfied by most models and ensures that p̂ −→ p sufficiently fast, which even

allows for mixed discrete and continuous distributions and the non-stationarity of the dependent

variables. A set of regularity conditions (A.1–4, K.1–2, p. 80–81) on the model and its associated

conditional density is defined to satisfy these general conditions for the uniform convergence rates

of the kernel estimators stated in Kristensen (2009). Moreover, under additional assumptions

including, e.g., stationarity, the results regarding the higher-order asymptotic properties together

with the expressions for the bias and variance components of the SML estimator due to kernel

estimation and numerical simulations are derived.
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Online Appendix B: Memory Parameter

(a) ρ = 0.3
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(b) ρ = 0.5
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(c) ρ = 0.7
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Figure 7: Densities of the pseudo-true parameter estimates for an alternative BR NKM with a non-zero memory
parameter ρ. The bold black curves depict the kernel density estimates of the sample densities, the bold red vertical
lines show the pseudo-true values, and the dashed red vertical lines depict the 95% confidence intervals of the sample
estimates. Based on 300 random runs, T = 500, the parametrization follows Table 1.
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Online Appendix C: Comparison to the Simulated Method of Moments

Table 4: Estimates for the BR NKM via the SMM

Par. BR forward-looking NKM

T=250 500 5000

τ .371 .38 .37 .38
〈0, 1〉 (.26-.50) (.29-.47) (.32-.44)
κ .213 .21 .22 .21

〈0, 1〉 (.14-.32) (.16-.30) (.17-.29)
φy .709 .70 .71 .71

〈0, 1〉 (.52-.94) (.56-.90) (.55-.87)
φπ 1.914 1.94 1.95 1.97

〈1, 3〉 (1.65-2.25) (1.73-2.17) (1.77-2.20)
η .65 .72 .77 .62

〈0, 1〉 (.02-.99) (.01-.99) (.07-.98)
ι .85 .69 .64 .70

〈0, 2〉 (.13-1.23) (.16-1.08) (.28-1.08)
µ .50 .54 .51 .54

〈0, 1〉 (.23-.79) (.27-.74) (.40-.68)
γ 1.00 1.96 2.05 2.13

〈0, 5〉 (.04-4.72) (.05-4.70) (.08-4.64)

The constraints for optimization and its starting point
are given in 〈〉 brackets. T denotes the length of the ex-
ecuted time series. The sample medians based on 300
random runs are reported, while the 95% confidence in-
tervals of the sample estimates are reported in () paren-
theses. The parametrization follows Table 1. The figures
are rounded to 2 or 3 decimal places. The SMM setup
follows Jang and Sacht (2016, 2019); Franke (2019). The
reported results are directly comparable to the left half
of Table 1.
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(a) T = 250
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(b) T = 500
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(c) T = 5000
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Figure 8: Densities of the pseudo-true parameter estimates for the BR NKM via the SMM following the setup by
Jang and Sacht (2016, 2019); Franke (2019). The bold black curves depict the kernel density estimates of the sample
densities, the bold red vertical lines show the pseudo-true values, and the dashed red vertical lines depict the 95%
confidence intervals of the sample estimates. Based on 300 random runs, the parametrization follows Table 1. The
reported results are directly comparable to the left half of Figure 1.
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