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ABSTRACT

ROC  curves from the signal detection literature are used in an evolutionary analysis of one-shot and repeated 

prisoners’ dilemmas: showing if there is any discounting of future payoffs, or any cost of searching for an additional
partner, then cooperative players who contingently participate  – in terms of who to play with or when to exit – 

cannot survive when most other players unconditionally defect; even when contingent participators only interact
with themselves by perfectly detecting their own type.

However, quite different results hold for players who act contingently, not in terms of whether to play or exit, but
rather in terms of how to act with any given partner.  There is a form of contingent cooperation in one-shot
prisoners’ dilemmas (called CD behavior) that will robustly evolve through any payoff monotonic process, such
as replicator dynamics.  That is, whenever CD–players can detect their own type better than pure chance, they are
guaranteed to evolve from any initial population  – eventually to a unique evolutionarily stable population composed
entirely of contingent cooperators  – provided the fear payoff difference is less than the sum of greed and
cooperation payoff differences.

The adaptive capabilities just described hold for pure one–shot prisoners’ dilemmas :  meaning no repeated 

interactions or pairings in any generation are involved; no information or third party reports about past behavior
are involved, all signal information arises only from symptoms detected after two strangers meet for the first time;
and no subjective preferences for altruism, fairness, equity, reciprocity, or morality affect the raw evolutionary
dynamics.

Testable predictions are also derived that agree with a large body of experimental data built up since the prisoners
dilemma was first introduced in 1950.  They describe how the CD–players’ equilibrium probability of cooperating
changes:  depending on the relative size of fear, greed, and cooperation payoff differences; and depending on the 

players’ history of communication, especially when face-to-face discussion is involved.

(JEL C60, C62, C72, C92, D80)

KEYWORDS: prisoners’ dilemma, cooperation, Nash equilibrium, evolutionary stability, replicator dynamics, signal
detection, ROC curves, experiment, testable predictions
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Part I modified traditional analysis in three ways.  The first change was allowing players to detect
symptoms from each other : governed by overlapping density functions that are caused by histories 

determining how each player is programmed to react to symptoms categorized as an x or y signal by the
receiving player.  The resulting signal probabilities of rightly versus wrongly detecting  a  player’s own type   

also become weights multiplying the fear, greed, and cooperation payoff differences;  producing linear and
quadratic expected payoffs shown in Table 1.

The second change was the transformation in players’ strategies implied by signal detection:  from
action strategies C and D into four signal response strategies (CC, CD, DC, DD), plus a randomized action
strategy C8D.  The always defect strategy DD dominates CC and C8D, as expected from traditional
analysis; but is not dominant over both signal contingent strategies CD and DC.  Instead, Theorem 2 of Part I
implies contingently cooperative CD behavior can be evolutionarily stable plus a strict Nash equilibrium for
one–shot prisoners dilemmas.

The third change was using ROC curves to restrict the relationship between CD–players’ signal
probabilities (r , w ) :  requiring these probabilities be contained on an ROC curve that describes theCD  CD  

CD–players’ detection skill, and showing through numerous experiments that CD–players can more or less
cautiously detect their own type by shifting  (r , w )  toward (0, 0) or (1, 1) along an ROC curve.  CD  CD  

The last property about cautious detection along an ROC curve implies a further dynamic result for
one–shot prisoners dilemmas:  CD–players will robustly evolve through any payoff monotonic process and 

from  any  initial population,  eventually to a unique evolutionarily stable population composed entirely of   

CD–players.   The upcoming Sections  I  &  II  of Part II show why this must happen.         

Sections III and IV then derive testable predictions for the CD–players’ probability of cooperating. 
These predictions agree with a large body of experimental data built up over the years since the prisoners
dilemma was first introduced in 1950.  They  involve  normalized  greed  and  fear  payoff  differences,             

meaning relative to the cooperation payoff difference; as measured  by  the  ratios (T – R)/(R – P) and (P –     

S)/(R – P).  Provided the fear payoff difference is less than the sum of greed and cooperation payoff
differences, the following predictions for example hold:  (1) The cooperation probability will rise or fall if
normalized greed and fear payoff differences both fall or rise at the same rate, but not necessarily all the way
up to 1 nor all the way down to 0.  (2) The normalized greed payoff difference will have a greater effect than
the normalized fear payoff difference, whenever the cooperation probability exceeds a threshold above 2. 
This threshold will be exceeded as normalized greed and fear payoff differences decrease sufficiently, and
vice versa if these normalized differences increase sufficiently.

Further predictions result from holding normalized payoff differences constant while detection skill
changes.  For example, doing so implies the probability of cooperation is more sensitive to signals detected
through face–to–face discussion; compared to other means of communicating by telephone, email, or video
conferencing :  because telecommunication degrades access to causal mechanisms involved in eliciting 
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  Appendix E describes qualified results when players’ fear payoff difference exceeds the sum of greed and cooperation differences.2

Part II also continues with the indexing used in Part I; which ended with Equation 5, Figure 2a, Table 1, and Theorem 2.

verbal/body-language symptoms; thereby shifting the CD–players’ NN–ROC curve closer to pure chance
detection.  This prediction agrees with experiments described by Ostrom (2000) and with experiments back to
1958 analyzed by Sally (1995).2

I. ROBUST  EVOLUTION  OF  CD  BEHAVIOR AGAINST  DD  BEHAVIOR        

Consider first the subpopulation with only CD and DD players, called the CD/DD subpopulation. 
To do so, look at the linear expected payoff example (so that T – R = P – S) shown Figure 2a in Part I, and
recall the crossover frequency >  above which CD players will outperform DD players.  Recall also from0

CD/CD

Part I that shifting (r , w ) closer to (0, 0) means a CD–player is more cautiously detecting whether it hasCD  CD 

been matched with its own type instead of another type.  To see what this implies, set the formulas for the CD
and DD players’ expected payoff lines in Figure 2a equal to each other and solve for the crossover frequency
> ; yielding the formula :0

CD/DD     

  (6)

Formula (6) enables a quick answer to what happens to the crossover frequency >  as the CD0
CD/DD

players more cautiously detect their own type.  Recall from statement (1) in Part I, that the ratio r /w  risesCD CD 

to infinity as the CD players more cautiously detect :  by shifting the signal probabilities (r , w ) closer to (0,        CD  CD 

0) along a convex NN-ROC curve that bows above the diagonal dashed-line in Figure 1a of Part I.  This 
corresponds to detecting with any degree of skill beyond the lower limit of pure chance detection.

Formula (6) immediately implies from the above property [ r /w  6 4  as (r , w ) 6 (0, 0) ] that CD CD     CD  CD 

the crossover frequency >  shifts to 0 as CD–players detect more cautiously, provided they can detect0
CD/DD

beyond pure chance.  This result in turn implies the CD–players can always shift  >  below  their frequency  CD/CD   
0

in the population > , no matter how small as long as >  is positive :  thereby guaranteeing CD–players willCD         CD    

outperform DD–players as their population frequency >  grows from any positive level all the way to 1.CD

Figure 2b shows an example of this implication.  The three pairs of solid versus dashed  thin   

straight–lines represent the CD versus DD players’ expected payoffs implied by holding the CD–players’ pair
of signal probabilities constant at three different points on their ROC curve given by (r , w )  for  K = 1, 2,K  K

CD  CD 

3.  The solid versus dashed bold curves represent the CD versus DD players’ expected payoffs for population
frequencies >  ranging continuously from 0 to 1, including   0  <  >   <  >   <  >   <  1; but now with theCD              CD    CD    CD

1     2     3

CD–players more cautiously detecting, by shifting (r , w ) closer to (0, 0) as their population frequency >CD  CD          CD 

drops.  Notice how doing so causes their expected payoff curve to exceed the DD–players’ expected payoff
curve for any positive frequency,   >   >  0.  Consequently, the only stable equilibrium within the CD/DDCD 

subpopulation is,  >  = 1.CD 

Figure  2b  &  Table  1  About  Here

Recall from the end of Section I in Part I, that ROC curves from the signal detection literature show
numerous experiments demonstrate the signal detection properties used in the above analysis are the typical
result of ordinary people in ordinary circumstances; thereby achievable without any special detection skill nor
any special signals like ‘secret handshakes’, and so on. 

So the properties just described mean the following for one-shot interaction in the CD/DD
subpopulation:  ordinary players under ordinary conditions with no special detection skill can follow a simple
strategy of more cautiously interpreting symptoms from their partners (whenever needed if their own frequency
in the subpopulation drops); that will guarantee at least a small statistical bias in their favor over DD–players;
and likewise guarantee the subpopulation will evolve toward only contingently cooperating CD–players. 
CD–players thus have the flexibility to shift their behavior at will, closer statistically to pure DD or pure CC
behavior; but with a guaranteed statistical bias that will likewise guarantee they will always take over the
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subpopulation.  Yet CD players need no unusual detection skills or special signals in order to guarantee their
dominance against DD–players.

II. EVOLUTIONARY  DYNAMICS  WITHIN  AN  ARBITRARY  POPULATION

The analysis so far has been limited to the CD/DD subpopulation.  So we need to see whether the same
conclusions hold within a full population containing arbitrary frequencies of all five types of players, > = (> ,CC

> , > , > , > ).  This is shown by using any payoff monotonic process, such as replicator dynamics, toCD  DC  DD  C8D 

analyze the interactions of all five types of players.

A. Comparing  DD–Players  Versus  DC,  CC,  &  C8D  Players

 To analyze payoff monotonic dynamics, we must compare the expected payoff formulas resulting from
each of the five player types against their own type, or the other four types.  These were shown in Table 1 of
Part I, also shown here for convenience.  Recall that quadratic terms (with probability multiples  such  as  (rCD

) ,  8 , or 8w ) are eliminated if the fear and greed payoff differences are equal.  So cases where (P – S) … (T –2   2
DC

R) imply quadratic expected payoffs; and cases where (P – S) = (T – R) imply  linear expected payoffs. 

Next use Table 1 to compare expected payoffs of DD vs DC players when they play each of the five
player types.  To do so, subtract the formulas in the DC row from the DD row in Table 1.  These comparisons
reveal a simple result :   DD–players always outperform DC–players against all player types, except at the limit 

were the DC players act just like DD–players by shifting their signal probabilities to the upper limit (r , w )DC  DC 

= (1, 1).
By comparing formulas in the DD row with those in the CC and C8D rows in Table 1, similar results

hold: DD–players always outperform CC–players against all player types, and likewise outperform
C8D–players against all player types, for any positive 8 = p(C) > 0.  When combined with Section II  –  about
CD–players always outperforming DD players by more cautiously detecting when their frequency >   drops – CD

this is sufficient to prove any payoff monotonic process will only converge to an exclusive population of
CD–players;  starting from any interior population with positive frequencies of all player types.   

The main text focuses on this result; leaving derivations about ‘boundary’ cases to Appendix D.  For
now we note that such cases with a zero frequency of DD–players sometimes allow the CD/DC subpopulation
to contain interior equilibria that are unstable within any larger population containing a positive frequency of
DD–players.

Recall from experiments discussed in Part I, that besides more cautious detection as their population
frequency drops, CD–players will also more cautiously detect as the costs of mistaken detections rises: for
example, if the fear and greed payoff differences rise compared to the cooperation payoff difference.  So the
CD–players’ signal probabilities represent  “frequency and payoff dependent signal detection”. 

Such frequency and payoff dependent signal detection will determine the dynamics from any payoff
monotonic process, as defined in Part 1 of Appendix D.  For player types with positive population frequencies,
such dynamics imply the following:  one player type’s frequency will grow relative to another type’s
frequency if and only if the first type’s expected payoff across the five player types exceeds that of the
second type.  The next section describes an example with one unstable equilibrium in the CD/DC
subpopulation.

B. Evolutionary Dynamics With One Unstable Interior CD/DC Equilibrium

Figure 3a shows dynamic paths between (CC, CD, DC, DD).  The randomizing C8D–players are not
shown because their behavior is a statistical combination of both CC and DD; and because Part 3 of Appendix
D shows that C8D–players do not affect the qualitative dynamics involving themselves plus the other players.

Dynamic paths are shown by unfolding a four-sided tetrahedron whose sides are similar triangles. 
Each vertex represents a degenerate population composed of only one player type.  The CC vertex is shown
three times (at the extreme bottom, left and right) because it represents a single vertex that would result from
re–folding the three ‘outer’ triangles upward toward a single CC vertex located vertically above the page on
which Figure 3a is printed.

Notice the curved boundary indicated by the three B–points, called the B–boundary.  It shows
frequency profiles where the CD and DC players’ expected payoffs are equal; producing an unstable
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  The (CC, DD, C8D) players behave independently of signals x or y; so they don’t need to meet or talk with their partners to detect3

such signals.  However, all five types of players must meet and talk with their partners, or they will be immediately identified by
CD–players as someone who will not react contingently to symptoms that cannot be detected without meeting and talking with them,
and thus a ~CD–player.  So all five types of players have the same communication set up costs of meeting and talking with their partners,
even though (CC, DD, C8D) players will ignore any symptoms detected while meeting and talking with them.

equilibrium at point B on the edge strictly between the CD and DC vertices.  So as dynamic paths cross the
B–boundary, the expected payoff of the CD–players changes from 3  place to alone in 2  place (still belowrd     nd

DD but now above DC and CC).
The other boundary formed by the lines from the DD vertex to the two points labeled ‘A’ near the CD

vertex, is called the ‘A–boundary’.  This boundary represents the threshold at which the expected payoffs of the
DD and CD players become tied for 1  place above the CC and DC players.  Once the A–boundary is crossedst

along any dynamic path, the CD–players are alone in 1  place   – outperforming the other types of players,st

including DD.

Figures  3a  &  3b  About  Here

Notice how some paths from the unstable equilibrium between the CD and DC vertices shift mostly
toward the DD vertex, and then turn mostly toward plus converge to the CD vertex.  Likewise, other paths
arising from the DC and CC vertices initially raise the frequency of DD–players relative to the other three
players besides DD:  either converging all the way to the DD vertex, or crossing the A–boundary as the
frequency of DD–players rises.

If the DD vertex is reached, then arbitrarily small perturbations toward any positive frequency of
CD–players inside the A–boundary will trigger payoff monotonic dynamics away from the DD vertex and
toward the CD vertex.  Alternatively, if the A–boundary is crossed before reaching the DD vertex, then the
dynamic path will quickly “turn–the–corner” away from the DD vertex and again toward the CD vertex.

So ultimately, all dynamic paths from any initial population will converge   – either directly through
any payoff monotonic process, or combined with arbitrarily small perturbations from unstable equilibria  –  
to a unique evolutionarily stable equilibrium composed entirely of  CD–players, >  = 1.   CD

Concerning this basic result, notice how always defect DD behavior   – traditionally thought to be the
top performer in one-shot prisoners’ dilemmas  –   does initially attract most dynamic paths toward the DD
vertex.  Yet this very attraction shifts the population toward the DD/CD subpopulation; where
frequency–dependent signal detection will at some point cause payoff monotonic dynamics to shift away from
the DD vertex that initially attracted these dynamic paths.  For comparison, Figure 3b shows similar dynamic
properties when no unstable equilibrium exists between the CD and DC vertices.

C. Evolutionary  Dynamics  In  One–Shot  Prisoners’  Dilemmas :  General  Results              

Given the dynamics shown in Figures 3(a, b), we can now describe the basic properties that must hold
in an evolutionary contest between the five types of players.  The assumptions under which these properties
hold were listed at the start of Part I.    They are proved for both linear and quadratic expected payoffs in Parts 

3

2 – 4 of Appendix D.

THEOREM  3  (Robust Evolution Of Contingent Cooperation In Pure One-Shot Prisoners’ Dilemmas)

PART  A Let > (r , w , Z) equal the crossover threshold in Figure 2a implied from the0
CD/DD 

 
CD  CD

signal detection probabilities (r , w ) and payoffs Z such that (P – S) < (T – R) + ®CD  CD

– P).  Then Theorem D1 in Appendix D shows there exist frequency and payoff
dependent signal probability functions, denoted  [ r (> , Z), w (> , Z) ], such that   CD   CD   CD   CD
for any >  > 0 :CD   

     0   <   > [r (> , Z), w (> , Z), Z]   <   >0
CD/DD CD   CD

 
CD   CD         CD

CD–players will therefore always outperform DD–players within the CD/DD
subpopulation, for any  >  > 0, as shown in Figure 2b.  Part 3 of Appendix D shows  CD

a similar result holds about CD–players always outperforming C8D–players within
the CD/C8D subpopulation.
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  Another paper (Heiner 2002) extends the results of Theorem 3, so that individual CD–players can shift their signal probabilities (r ,4
CD

w ) independently of each other; allowing their individual signal probabilities to differ from each other.  Similar results hold in whichCD 

the CD–players have a dominant strategy to shift their signal probabilities toward (1,1) along their ROC curve; up to the point where
shifting any further would allow invasion by DD–players.  This corresponds to the same minimum degree of cautious detection implied
by Theorem 3 to likewise maintain stability against DD–players. 

PART B Likewise, the formulas in Table 1 imply DD–players always outperform (CC, DC,
C8D) players, for any (r , w ) < (1, 1) and 8 > 0 :  so any positive frequency ofDC  DC 

these players is unstable against any positive frequency of DD–players in the
population.  One or more unstable equilibria may also arise in the interior of the
CD/DC subpopulation; as illustrated in Figure 3a, and further described in Theorem
D3 of Appendix D.

PART C Parts A and B imply the following general result whenever CD–players can detect
their own type with any degree of skill beyond pure chance :  

4

The population profile  >  will evolve from any initial population  – either directly through   

any payoff monotonic process, or combined with arbitrarily small perturbations from
unstable equilibria –  eventually to a unique evolutionarily stable population composed
entirely of CD–players,  >  = 1.CD

Recall from Part I, that the signal detection literature shows numerous experiments demonstrate the
signal detection properties used in Theorem 3 are the typical result of ordinary people in ordinary circumstances;
thereby achievable without any special detection skills nor any special signals like ‘secret handshakes’, and so on. 

So the dynamic properties of Theorem 3 mean the following for one-shot competition between the five
player types :  ordinary players under ordinary conditions with no special detection skills can follow a simple 

strategy of more cautiously interpreting symptoms from their partners (whenever needed if their own frequency in
the population drops); that will guarantee at least a small statistical bias in their favor over other types of players,
including always defecting players; and thereby also guarantee the population will ultimately shift away from
other types of behavior toward an exclusive population of contingently cooperating CD players.  CD players thus
have the flexibility to shift their behavior at will, closer statistically to either pure DD or pure CC behavior;  but
with a guaranteed statistical bias that will likewise guarantee they will always take over the population.

III. PREDICTING  THE  EQUILIBRIUM  COOPERATION  PROBABILITY

Part A of Theorem 3 focuses on CD–players cautiously detecting whether they are matched with other
CD–players.  However, doing so may not be required once the evolutionary success from cautious detection
causes their population frequency >  to rise toward the stable equilibrium, >  = 1:  thereby allowing CD–playersCD       CD

to shift their signal probabilities (r , w ) closer to (1, 1) along an NN-ROC curve.CD  CD

Since CD–players cooperate if and only if they detect signal x, their probability of cooperating equals the
signal probability of rightly detecting (r ), whenever their partners are other CD–players; which must happen at CD 

>  = 1.   So the next objective is to determine how the cooperation probability varies between  0  and  1;  asCD 

implied by the signal probability function evaluated at the  >  = 1 equilibrium,  r (>  = 1, Z).  CD      CDCD

To do so, note that random mutations may produce perturbations that cause >  to fluctuate below 1, andCD

thus potentially below the crossover threshold > .  To guard against this happening, the CD–players must0
CD/DD 

maintain sufficient caution in detecting their own type; in order to maintain a gap (1 – > ) larger than these0
CD/DD 

perturbations.  Otherwise, the >  = 1  equilibrium might not remain stable.CD   

The CD–players’ cooperation probability has the same qualitative properties for any size of the above
gap (1 – > ) resulting from cautious detection.  That is, any degree of cautious detection  except  total caution  0

CD/DD                

– so that >  > 0 holds because (r , w ) > (0, 0) –   implies the CD–players’ cooperation probability has the0
CD/DD     CD  CD 

same qualitative properties; provided there also is sufficient caution to ensure >  < 1 still holds by shifting0
CD/DD

(r , w ) sufficiently below (1, 1) along an ROC curve.  To see this, let ( denote a positive frequency boundingCD  CD

>   strictly between 1 and 0;  so the inequality  (0  < (  #  >   # 1 – (  <  1) holds.0                    0
CD/DD                   CD/DD 

Then look at Figure 4 which shows how these lower and upper bounds on >  correspond to different0
CD/DD

signal probability ratios  r /w .  The slope of the steeper line, from (0, 0) in unit square, equals the signalCD CD 

probability ratio r /w  corresponding to >  equaling the lower bound, ( > 0.  The slope of the flatter lineCD CD   CD/DD
0



Page 7

likewise equals the signal probability ratio r /w  corresponding to >  equaling the upper bound,  1 – ( < 1.CD CD   CD/DD
0

 Figure  4  About  Here

Notice the dashed intervals along each of the NN-ROC curves shown in Figure 4, between two points
labeled with capital letters ‘A’ and ‘B’.  These show, for a given NN-ROC curve, the signal probabilities (r ,CD

w ) permitted by the lower and upper bounds ( and 1 – (.  For example, the dashed interval from AO to BOCD

shows this range of signal probabilities resulting from near pure chance detection skill; while the dashed interval
from A to B shows this range of signal probabilities resulting from near perfect detection skill.  And dashed
interval from A  to B  shows this range of signal probabilities resulting from perfect detection skill.‘  ‘‘

Notice what happens to the dashed interval for given payoffs Z = (T, R, P, S)  – as the CD–players’
detection skill shifts between the limits of pure chance versus perfect detection : the dashed interval converges to 

the origin (0, 0) as detection skill drops to pure chance detection; while at the other extreme, the dashed interval
converges to a horizontal interval from A  to B  as detection skill becomes perfect, where r  = 1 along this‘‘  ‘‘

CD

entire horizontal interval.
So consider the range of r  probabilities between the A and B points along each dashed interval inCD

Figure 4.  The relationships just described imply any r  probability along a corresponding dashed interval willCD

shift toward  0–% versus 100–% as detection skill shifts between pure chance versus perfect detection.  Since
CD–players’ equilibrium cooperation probability equals r (>  = 1, Z), the last conclusion likewise implies theCD CD

following : 

COROLLARY  A
Any crossover frequency within the bounds (0 < ( # > # 1 – ( < 1) implies the equilibrium probability of0   

CD/DD 

cooperation  r (>  = 1, Z), anywhere along the corresponding dashed interval in Figure 4,  will shift towardCD CD             

0–% versus 100–% as the CD–players’ detection skill shifts between pure chance versus perfect detection.

Alternatively, consider what happens to the probability of CD–players cooperating with each other, for
any given detection skill corresponding to a given NN-ROC curve, as players’ greed and fear payoff differences
change relative to the cooperation payoff difference.  Part 5 of Appendix D shows that, if the fear and greed
payoff differences are not exactly equal, then the two lines in Figure 4 will both become steeper, but still have
positive slope as the cooperation payoff difference drops to 0; provided the fear difference in less than the sum of
greed and cooperation differences.  So we have the following implication : 
COROLLARY  B

The CD–players’ probability of cooperating r (>  = 1, Z) will drop but not necessarily all the way to 0, as theCD CD

cooperation payoff difference drops to 0 relative to positive but unequal fear and greed payoff differences;
provided their payoff differences satisfy  (P – S) < (T – R) +(R – P).

On the other hand, suppose the fear and greed payoff differences drop to 0 relative to a positive
cooperation payoff difference; as measured by the normalized ratios (T – R)/(R – P) and (P – S)/(R – P)
dropping toward 0.  Part 5 of Appendix D shows both sloped lines in Figure 4 will rotate downward to the
diagonal line in Figure 4, with a slope of 1; corresponding to the ratio inequality  r /w  > 1.  This implies theCD CD

crossover frequency >  will drop to zero for any signal probabilities (r , w ) strictly between (0, 0) and (1,0
CD/DD         CD  CD

1); which in turn implies the CD–players will outperform DD–players for any  r (>  = 1, Z) strictly between 0CD CD

and 1.
The last inequality allows r (>  = 1, Z) to rise near 1, and still allow CD–players to outperformCD CD

DD–players.  However, it does not require this must happen.  For example, CD–players may want to guard
against payoff perturbations by following a more risk averse strategy of holding (r , w ) some distance belowCD  CD

(1, 1) on their NN-ROC curve.   So we have the following implication:

COROLLARY  C
If normalized fear and greed payoff differences (P – S)/(R – P) and  (T – R)/(R – P) both drop toward 0, then 

CD–players can raise their equilibrium probability of cooperating r (>  = 1, Z) near 1, and remainCD CD

evolutionarily stable for fixed payoffs Z.  But CD–players can also hold r (>  = 1, Z) noticeably below 1, ifCD CD

they want to ensure stability against payoff perturbations.
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IV. RELATIVE  IMPACT  OF  NORMALIZED  GREED  &  FEAR  PAYOFF  DIFFERENCES

Consider the next formula giving the minimum signal probability ratio r /w  that must be exceeded inCD CD

order for the CD–players to outperform DD–players at the >  = 1 equilibrium, denoted  .  ItCD     

is obtained by setting >  = 1 in statement (D5a) of Appendix D, yielding the following condition :CD             

(7a)

where           (7b
)

Then partially differentiate (7b) with respect to both fear and greed payoff differences to compare their
relative impact on the minimum signal probability ratio required for CD–players to outperform DD–players at the
>  = 1 equilibrium.  Doing so and rearranging terms yields the following:CD

        if  and  only  if              (8a)     

r (>  = 1, Z)    >               (8b)CD CD

The relationships characterized in statements (8a, b) imply the following predictions : 

COROLLARY  D
If the cooperation probability r (>  = 1, Z) exceeds a threshold above 2 , the normalized greed payoffCD CD         

difference will have a greater impact on this probability than the normalized fear payoff difference.  This
threshold drops toward 2 as both normalized greed and fear payoff differences drop toward 0.  By Corollary 

C, such reductions also allow r (>  = 1, Z) to rise well above 2 ; and thus above the threshold where theCD CD         

normalized greed payoff difference has a greater impact than the normalized fear payoff difference.
Conversely, if normalized fear and greed payoff differences both rise sufficiently, then  r (>  = 1, Z) will shift   CDCD 

below  2, thereby causing the normalized greed payoff difference to have a smaller impact on this probability 

than the normalized fear payoff difference.
Next partially differentiate (7b) with respect to the cooperation payoff difference instead of the fear or

greed payoff differences separately; to obtain : 

(9)
Statement (9) implies the following result : 

COROLLARY  E

If the cooperation payoff difference changes relative to given fear and greed payoff differences, then
the CD–players’ probability of cooperating r (>  = 1, Z) will rise if the cooperation payoff differenceCD CD

also rises, and vice versa.  Similarly, if both fear and greed payoff differences change at the same
rate relative to a given cooperation payoff difference, then the CD–players’ probability of cooperating
will again rise if these payoff differences both fall at the same rate, and vice versa.

V. COMPARING  PREDICTIONS  WITH  EXPERIMENTAL  DATA

Corollaries A – E require no ad hoc parameter adjustments in order to derive them from Theorem 3.  So
they illustrate another objective of this paper :  to derive general results like Theorem 3 from experimentally well 

verified signal detection principles that also lead directly to testable implications without ad hoc parameter
adjustments needed to successfully predict experimental data.  Accordingly, let us compare the implications of
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  On switching to assurance games, see Kiyonari, Tanida, & Yamagishi (2000); and on switching to coordination games, see Fehr5

& Schmidt (1999), Fehr & Fischbacher (2002), and Güth & Kliemt (1994).

Theorem 3 described in Corollaries A – E, with data from one–shot prisoners’ dilemma experiments.

A. Sensitivity  of  CD  Behavior  To  Normalized  Fear  &  Greed  Payoff  Differences 

Corollaries B – D imply a number of interrelated predictions about how the CD–players’ equilibrium
probability of cooperating, r (>  = 1, Z), is affected by greed, fear, and cooperation payoff differences.  ForCD CD

example, these include the following two predictions; provided the fear payoff difference is less than the sum of
greed and cooperation payoff differences:

(1)   r (>  = 1, Z) will rise or fall if the normalized greed and fear payoff differences both fall or rise atCD CD

the same rate relative to the cooperation payoff difference, but not necessarily all the way up to 1 nor
all the way down to zero (from Corollaries B, C, & E)

(2)  The normalized greed payoff difference will have a greater effect than the normalized fear payoff
difference, whenever  r (>  = 1, Z) exceeds a threshold above 2 ; where this threshold is likely to be  CD         CD
exceeded as the normalized greed and fear payoff differences both decrease sufficiently, and vice
versa if these normalized differences both increase sufficiently (from Corollary D).

Predictions (1) and (2) agree with observed patterns in recent experiments by
Ahn–Ostrom–Shmidt–Shupp–Walker (2001).  See for example their regression equation (5) discussed on page 151. 
It measures behavioral sensitivity to normalized fear and greed payoff differences; including incomplete adjustment
up to 1 or down to 0, as also permitted by prediction (1).

Predictions (1) and (2) also agree with data accumulated from experiments published since the prisoners’
dilemma was introduced 1950 :  including Minas, et. al. 1960; Lave 1962, 1965; Rapoport & Chammah 1965; 

Rapoport 1967; Rapoport, Guyer, & Gordon 1976; Coleman 1983; Liebrand et. al. 1992; Frey 1995; Ledyard 1995;
Sajio & Nakamura 1995; Palfrey & Prisbrey 1997; and Bolton & Ockenfels 2000.  Such data was not predicted from
traditional game theory models.  Instead, subjective preferences for altruism, fairness, equity, reciprocity, and so on
have been assumed: as for example analyzed by Robert Trivers (1971); Geanakoplos, Pearce, & Stacchetti (1989);
Rabin (1993); Falk & Fischbacker (1998); Fehr & Schmidt (1999); and Bolton & Ockenfels 2000.

On the other hand, Corollaries B – E follow directly from payoff monotonic dynamic principles used to
derive Theorem 3.  So additional subjective factors are no longer required to organize the data.  Furthermore,
Theorem 3 does not involve ‘clustering’ or ‘assortative’ interaction.  So it implies CD behavior can evolve in one-
shot prisoners’ dilemmas without limitation to kin selection in family or ethnic groups, and without assuming
subjective preferences favoring ‘reciprocal altruism’; as for example analyzed by Hamilton (1963), Greenberg
&Frisch (1972), Axelrod & Hamilton (1981), Sethi & Somanathan (1999), and Gintis (2000).

B. Incremental Benefits From Psychological, Cultural,  &  Institutional  Factors 

Prediction (1) implies CD–players are more likely to cooperate as the greed and fear payoff differences both
get smaller relative to the cooperation difference.  The relative size of these payoff differences may also be affected by
subjective factors involving cultural norms, fairness, equity, or reciprocal altruism.  So the last two paragraphs of the
preceding section do not necessarily imply CD players will prevent these subjective factors from impacting their
behavior.  Rather, prediction (1) can be combined with these subjective factors to produce a synergistic effect that
magnifies their impact.  That is, prediction (1) implies these factors can now incrementally stimulate more observed
cooperation,  without  necessarily reversing the fear and greed payoff differences in order to do so.   

So a whole variety of psychological and institutional factors can now incrementally stimulate observed
cooperation in one-shot prisoners’ dilemmas.  This implication strengthens work by Fehr, Güth, Schmidt, Yamagishi,
and others who assume preferences  exist  for  fairness  and  reciprocity that are strong enough to actually reverse either         

(T – R) or  both  (P – S) and (T – R) into negative differences, and thereby switch the evolutionary arena from
prisoners’ dilemmas into assurance games or coordination games.  However, prediction (1) implies such strong
subjective preferences are not necessary.  Instead, subjective preferences that only narrow the fear and greed payoff
differences will incrementally stimulate more observed cooperation;  provided the CD–players can detect their own
type (now also including these subjective preferences) better than pure chance.   5
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  Other factors may enhance the reliability of face-to-face communication.  For example, players with a common educational,6

cultural, or ethnic experience (including fluency in a common language) may communicate more reliably.

So the payoff monotonic dynamics in Figures 3(a, b) imply the  co–evolution of contingently cooperating 

CD–players who also subjectively prefer fairness, reciprocity, and so on   –  yet the raw evolutionary dynamics
enabling both CD behavior and these subjective preferences to evolve in the first place, depend only on objective
material consequences devoid of any subjective component.

C. Investing In More Reliable Signal Detection Through Face-to-Face Communication

Suppose different types of communication can affect players’ skill at detecting signals from each other, such
as whether face-to-face communication is possible or not.  Corollary  A  then implies there will be a correlation   

between observed cooperation in one-shot prisoners’ dilemmas being preceded by possibly costly resources devoted
to enhancing opportunities for face-to-face interviewing between the persons involved.

For example, corporate executives may orchestrate costly “summit meetings” before starting a new
cooperative venture.  These meetings will not necessarily be relinquished in favor of cheaper means of long range
“tele-communication”, such as with telephone conference calls, live video hookups, email and internet messaging, and
so on.  Why ?  Because tele-communication degrades the kind of combined (verbal-plus-body-language) signals that
are more readily observable through the give and take face-to-face discussion.

The general principle is that types of ‘preplay’ communication that strengthen causal links to another player’s
internal motivations will thereby strengthen their ability to detect signals correlated with CD versus non-CD behavior. 
So Corollary A implies the frequency of observed cooperation will vary systematically with the type of
communication involved.  This principle agrees with the pattern reported by Ostrom (2000): that the frequency of
cooperation versus defection in prisoners’ dilemma experiments is quite sensitive to the history of communication
when face-to-face discussion is involved, but not to other types of pre-play communication.    It also agrees with6

experiments back to 1958 analyzed by Sally (1995).

VI. CONCLUSION

Parts I and II used signal detection principles and ROC curves in an evolutionary analysis of prisoners’
dilemmas.  Doing so implies the following :  if there is any discounting of future payoffs, or any cost of searching for  

an additional partner, then cooperative players who contingently participate (in terms of who to play with or when to
exit) cannot survive in a population containing mostly players who always defect.  This vulnerability holds even when
contingent participators only interact with themselves by perfectly detecting their own type.

However, quite different results hold for players who act contingently, not in terms of whether to play or exit,
but rather in terms of how to act with a any given partner :  there is a form of contingent cooperation in one-shot 

prisoners’ dilemmas (called CD behavior) that will evolve from any initial population through any payoff monotonic
process, and remains stable thereafter to attempted invasion by other players, including always defecting players. 
Such behavior follows a simple contingent rule for two players ‘Adam’ and ‘Eve’ : 

Adam cooperates instead of defects if and only if he detects a signal (x instead of y in Figure 1b of Part I)
that is positively correlated with his partner Eve behaving in a similar contingent manner to a signal she
detects from Adam, that is likewise positively correlated with his reacting contingently to his signal
detected from her.  Since Adam and Eve are randomly matched strangers, such correlation does not arise
from any information about each other’s past behavior other than symptoms elicited while communicating
with each other for the first time.

The CD behavior just described is not accidently successful.  Rather, the properties described in Theorem 3
imply CD–players can adapt to a wide range of different circumstances : for example, arbitrary shifts in the initial 

population mix don’t matter, including arbitrary perturbations from any current population mix; nor do arbitrary
changes in payoffs so long as their ordinal ranking is preserved and the fear payoff difference remains below the sum
of greed and cooperation payoff differences; nor do any potential changes in the DC and C8D players’ signal and
action probabilities, nor do arbitrary changes in the CD or DC players’ detection skill so long as the CD–players can
still detect their own type better than pure chance; and so on.

The robust adaptive capabilities just described are strict mathematical implications not dependent on
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  The adaptive ability of CD behavior raises the question of whether it can “rational” according to a player’s “self–interest”.7

Traditional game theory implies that only always defect behavior can be rational in one-shot prisoners’ dilemmas.  However, the
signal correlations in the above description of CD behavior arise from causal relationships; and traditional game theory was
developed without incorporating causal principles.  This question is analyzed in Heiner, Schmidtchen, & Albert (2002) : showing 

how to combine rationality with causal principles into a theory of “rationally caused” behavior ;  and showing CD behavior is 

rationally caused in one-shot prisoners’ dilemmas from pure self–interest alone.

computer simulations.   They also apply to pure one–shot prisoners’ dilemmas: meaning no repeated interactions nor 

repeated pairings in any generation are involved; no memory from past encounters nor reports from third parties are
involved; all signal correlations arise only from symptoms detected after two randomly matched strangers meet for the
first time; and no subjective preferences for fairness, altruism, reciprocity, equity, morality, and so on affect the raw
evolutionary dynamics. 

7

Recall also from Section I in Part I, that ROC curves from the signal detection literature show that numerous
experiments demonstrate the signal detection properties used in the analysis are the typical result of ordinary people in
ordinary circumstances; thereby achievable without any special detection skills nor any special signals like ‘secret
handshakes’, and so on. 

So the dynamic properties of Theorem 3, along with testable predictions implied by Corollaries A – E, mean
the following for one-shot prisoners’ dilemmas :  ordinary players under ordinary conditions with no special detection 

skills can follow a simple strategy of more cautiously interpreting symptoms from their partners (whenever needed if
their own frequency in the population drops, or normalized fear and greed payoff differences rise); that will guarantee
at least a small statistical bias in their favor over other types of players, including always defecting players; and
thereby also guarantee the population will ultimately shift away from other types of behavior toward an exclusive
population of contingently cooperating CD players.  CD players thus have the flexibility to shift their behavior at will,
closer statistically to either pure DD or pure CC behavior;  but with a guaranteed statistical bias that will likewise
guarantee they will always take over the population.  Yet CD players need no unusual detection skills or special
signals in order to guarantee their eventual dominance in the population.

APPENDIX  D  ( Proofs  To  Establish  Theorem  3  &  Corollaries  A – E ) 

Players’ strategies are indexed from 1 to 5 by (s , s , s , s , s ) = (CC, CD, DC, DD, C8D).  The five player1  2  3  4  5

types’ population frequencies are given by the profile > = (> , > , > , > , > ).  So >  is the frequency of s –players in the1  2  3  4  5    m
m

population; where  >  $ 0 for each m, and  >  + >  + >  + >  + >   =  1.  Payoffs are denoted by Z = (T, R, P, S).m        1  2  3  4  5

Recall that (r , w ) denotes a pair of signal probabilities for the s  = CD players along an NN–ROC curveCD  CD 
2

in Figure 1a.  The other type of contingent DC–players also detect an x versus y signal from their partners, with signal
probabilities, denoted (r , w ).  The signal probabilities for the CD and DC players, plus the action probability 8 ofDC  DC 

the C8D players are denoted,   p  =  (r , w ;  r , w ;  8).CD  CD   DC  DC  

Let E(s *s , p, Z) denote an s –player’s expected payoff when it plays against an s  player; depending on them k      m         k

signal and action probabilities p, and depending on payoffs Z.  Player s ’s  “total”  expected payoff across the fivem 
   

types of players is denoted,  E(s *>, p, Z) =   for  m = 1, ... , 5.m 

Part   1         Payoff Monotonic Dynamics Plus Frequency  & Payoff Dependent Signal  & Action Probabilities         

Payoff monotonic dynamics are described by differential equations showing the time rate of change of the
ratio of each player type’s population frequency relative another type’s frequency (see Weibull 1997, page 73) : 

       for any   m, k = 1, ... , 5   such that  >  > 0    (D1)k

where M  denotes any monotonic strictly increasing function + 
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  Subjects in experiments also do not need to know the frequency of events they are trying to detect, such as the CD–players’8

frequency > ; because their own detections, though imperfect, provide enough information to produce shifts toward greater or lesserCD

caution as the actual frequency of events shifts down or up respectively.  For example, animal subjects cannot be told about changing
event frequencies or payoffs.  Yet as they experience new conditions with different event frequencies or payoffs, their  (r, w)
probabilities systematically shift along an ROC curve.

The above equation implies one player type’s population frequency will rise relative to another type’s frequency if and
only if its total expected payoff exceeds that of the other type, provided their two frequencies are positive, >  > 0 andm 

>  > 0.  Replicator dynamics is the special case where the function M  is the identity function.k 
 + 

 Next recall that more cautious detection requires CD–players to reduce their signal probabilities as their
frequency drops, or the costs of mistaken detections rise.  So the CD–players’ signal probabilities represent
‘frequency & payoff dependent signal detection ’.  The signal probabilities (r , w ) are thus functions of the      CD  CD 

CD–players’ frequency >  and the set of payoffs Z, denoted :CD        

                  [ r (> , Z), w (> , Z) ]      for any    0 # >  # 1   and    Z = (T, R, P, S)        (D2a)  CD    CD                CDCD   CD

Note the CD–players’ signal probabilities in (D2a) are only functions of their own population frequency >CD 

relative to the sum of other players’ frequencies, 1 – >   =  >  + >  + >  +  > .  This is assumed to make explicitCD    CC  DC  DD   C8D 

that CD–players can cautiously detect their own type without any information about the sub–composition of the
remaining population besides themselves. 

8

 The signal probabilities of the DC–players may also be frequency and payoff dependent; represented by,
[r (>, Z), w (>, Z) ].  These can be arbitrary functions of the full profile of population frequencies > and payoffs Z. DC   DC  

Likewise, the randomizing C8D–players might vary their action probability 8 toward choosing C, also as an arbitrary
function of > and Z; represented by the function  88(>, Z).  Such arbitrary signal and action probability functions are
assumed in order to develop results about the evolution of CD–players that are robust to any type of detection
behavior or randomizing behavior of the (DC, C8D) players.

Using the above definitions, the full profile of frequency and payoff dependent signal and action probabilities
across the (CD, DC,  C8D) players is represented by,

p(>, Z)  =  [ r (> , Z),  w (> , Z);  r (>, Z),  w (>, Z);   88(>, Z) ]    (D2b) CD    CD             CD    CD    DC    DC

The objective is to analyze payoff monotonic dynamics with frequency and payoff dependent signal and
action probabilities; by substituting functions (D2b) into (D1) to obtain :

   =  M ( E[s * >, p(>, Z), Z]  –  E[s * >, p(>, Z), Z] )    for any  m, k = 1, ... , 5 such that >  > 0      (D2c) +  m         k 
                             k

PART  2 Proving CD–Players Always Outperform DD–Players

Recall the crossover threshold in Figure 2a of Part I, > : where the CD–players’ expected payoff will0
CD/DD 

exceed the DD–players’ expected payoff within the CD/DD subpopulation if and only if their frequency exceeds this
threshold.  To represent this more generally, let an s –player’s expected payoff when playing against players of onlym

the s  and s  subpopulations be denoted,k  R

    E (s *>, p, Z)   =   { > E(s *s , p, Z) + > E(s *s , p, Z) }/(>  + > )    for   m, (k … R) = 1, ... , 5                (D3a)k/ R           k      R     k  R 
m         m k     m R

Then define the difference in these expected payoffs, of s –players compared to s –players when they both playm    n

against players from only the s  and s  subpopulations :k  R
 

   ) (s , s *>, p, Z)   =   E (s *>, p, Z)   –   E (s *>, p, Z)     for   (m … n), (k … R) = 1, ... , 5                (D3b)k/R           k/ R          k/ R
m  n         m         n 

Next consider the expected payoff formulas at the endpoints of the two expected payoff lines in Figure 2a of
Part I, and substitute the quadratic formula from Table 1 (in the CD row and CD column) for the linear formula
shown on the right-hand vertical scale.  Then use these four expected payoff formulas to solve for the crossover
threshold > ; but now calculated with quadratic expected payoffs for a CD–player against another CD–player. 0

CD/DD

The resulting formula is given by the function : 
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>  (r , w , Z)     =                 (D4a)0
CD/DD CD  CD

Then for any positive frequency of CD–players in the CD/DD subpopulation (>  > 0) , > (r , w , Z) has theCD    CD  CD
0

CD/DD

following property : 

) (CD, DD*>, p, Z)   >   0   if and only if    >    >  > (r , w , Z)               (D4b)CD/DD                    CD/DD     CD  CD
0

CD/DD

Next rearrange inequality (D4b) into an equivalent inequality involving the signal probability ratio  r /w :  CD CD 

              (D5a)

where     L   =   (P – S)  –  (T – R)               (D5b)

The crossover threshold > (r , w , Z) will lie strictly below the CD–players’ current population frequency  > ,0
CD/DD CD  CD             CD

if and only if the signal probability ratio  r /w  exceeds the ratio formula in (D5a) by some positive amount,CD CD

denoted µ > 0.  That is, the following relationship must hold : 

> (r , w , Z)  <  >       if and only if              (D5c)0
CD/DD CD  CD      CD

          for some   µ  >  0              (D5d)
Figure 5 shows how the above equation geometrically determines the signal probability ratio r /w : byCD CD  

0 0

drawing a line from the (0, 0) origin in the unit square with a slope equaling the sum of the ratio formula (D5a) plus
µ, also shown on the right–hand side of (D5d).  The ratio r /w  is determined by the intersection of this line withCD  CD

0 0

the CD–players’ NN-ROC curve.
Notice as the frequency >  gets smaller, (D5d) implies the slope of the line in Figure 5 rises, while alsoCD

causing (r ,w ) to shift closer to (0, 0) along an ROC curve.  Note also the ratio formula in (D5a) is positive andCD CD
0 0

finite for any positive > ; provided the bracketed-expression [(R – P) – L(1 – r )] remains positive as r  convergesCD           CD     CD

to 0.  The latter must hold if the inequality (T – P) > (P – S) holds; because it implies L < (R – P) must hold, which in
turn implies the preceding bracketed-expression is positive for all r  , [0, 1].CD

So it doesn’t matter how large the finite and positive ratio formula in (D5a) might become as >  drops closerCD

to 0; because the signal probability ratio r /w  rises to infinity along a convex NN-ROC curve [from statement (1)CD CD

of Part I ] and so can always be shifted to satisfy statement (D5d) no matter how close >  gets to 0.                CD

   Figure   5  About  Here 

These relationships imply the variables in (D5d) uniquely determine a pair of signal probabilities along the
CD–players’ ROC curve, that will in turn cause  0  <  >   <  >   to hold for any positive µ > 0 and positive >   > 0

CD/DD    CD            CD

0; provided the payoff inequality (T – P) > (P – S) also holds.  So there exists a unique pair of signal probabilities
denoted by the functions,

          r   =  r (µ, > , Z)   and   w   =  w (µ, > , Z);               (D6a)CD      CD        CD      CD
0            0

CD             CD

such that when substituted into statement (D4a), will cause the crossover threshold function >  (r , w , Z)0
CD/DD CD  CD

resulting from those these signal probabilities to fall below the CD–players’ frequency in the population > .  So theCD 

following theorem holds : 

Theorem  D1   (Signal Probabilities Enabling CD–Players To Outperform DD-Players)

For any 0 < µ,  any  0 < >   # 1, and any payoffs Z such that  P – S < T – P; there exists a unique pair ofCD

signal probabilities along a convex NN-ROC curve, denoted  r (µ, > , Z) and  w (µ, > , Z), such that   CD      CDCD      CD

the formula for > (r , w , Z) in statement (D4a) implies :0
CD/DD CD  CD       

0   <  > [r (µ, > , Z), w (µ, > , Z), Z]   <   >               (D6b)0
CD/DD CD    CD

 
CD    CD         CD

PART 3    Instability  of   CC  and  C8D  Players  Against  CD  and  DD  Players                   
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Next analyze payoff monotonic dynamics with CC and C8D players also in the population.  First compare
CC– players against DD–players.  To do so, compare the expected payoff formulas across the CC and DD rows of
Table 1; and notice that DD–players outperform CC–players no matter what type of player they play against.  So the
DD–players’ total expected payoff always exceeds that of the CC–players; which in turn implies any positive
frequency of CC–players is unstable within a larger population containing a positive frequency of DD–players.

Also let the next expression denote the expected payoff difference between player s  versus s  when they bothm  n

play against player s :k 

            )(s , s * s , p, Z)  =  E(s * s , p, Z)  –  E(s * s , p, Z)     for  m … n, k  =  1, ... , 5      (D7a)m  n  k       m  k       n  k 
               

Using the above notation, CD–players are also guaranteed to outperform CC–players in the CD/CC subpopulation, 
as implied by the following difference formulas obtained from the expected payoffs in Table 1; because both formulas
are strictly positive for any (0, 0) # (r , w ) < (1, 1) along an NN ROC curve :CD  CD          

)(CD, CC *CC, p, Z)   =   (T – R)(1 – w )     (D7b)              CD 

      )(CD, CC *CD, p, Z)  =  (P – S)[1 – w  – r (1 – r ) ] + (T – R)r (1 – r ) + (R – P)(r  – w )   (D7c)            CD   CD   CD      CD   CD     CD  CD 
 

These two formulas combined with payoff monotonic dynamics (D2c) imply any positive frequency of
CC–players is unstable when there is also a positive frequency of CD–players in the population, provided CD–players
don’t act just like CC–players by shifting (r , w ) up to (1, 1).  This in turn implies there do not exist any unstableCD  CD 

equilibria in the interior of the CD/CC subpopulation.
Next compare the remaining case of C8D–players who randomize according to an external signal; where 8

versus 1 – 8 represent the probability of choosing C versus D.  As above with the CC–players, compare the expected
payoff formulas across the C8D and DD rows of Table 1; and notice that DD–players outperform C8D–players no
matter what type of player they might play against, provided 8 > 0.  So 8 > 0 implies the DD–players’ total expected
payoff always exceeds that of the C8D–players; which in turn implies any positive frequency of C8D–players is
unstable within a larger population containing a positive frequency of DD–players.

Recall the probability 8 may depend on the profile of population frequencies, >, as well as on the payoffs Z;
represented by the function,  8   =   8(>, Z).  Now compare CD and C8D players to see whether there might be any
unstable equilibria within the CD/C8D subpopulation.  To do so, use Table 1 to compare the four expected payoff
formulas: E(CD|CD, p, Z), E(C8D|CD, p, Z),E(CD|C8D, p, Z), E(C8D|C8D, p, Z); and then use definition (D3b) to
calculate the average of these differences within the CD/C8D subpopulation,  ) (CD, C8D*>, p, Z).  ThenCD/C8D 

rearrange the resulting formula to obtain the following population threshold for CD–players outperforming
C8D–players within the CD/C8D subpopulation : 

) (CD, C8D*>, p, Z)   >   0 if and only if (D8a)CD/C8D 

  >    > (D8b)CD

where e(p , 8)   =   8(1 – w )  –  r (1 – r )          p    =   (r , w )              (D9a)CD          CD     CD   CD          CD      CD  CD 

f(p , 8)   =   r (1 – r )  –  w (1 – 8)              (D9b)CD        CD   CD     CD 

k(8, Z)     =   8(T – R) + (1 – 8)(P – S)              (D9c)

Then rearrange inequality (D8b) to derive an equivalent formula for a lower bound on the CD–players’ signal
probability ratio r /w ; in order to determine how close they must shift (r , w ) to (0, 0) –   to outperformCD CD           CD  CD      

C8D–players (so that ) (CD, C8D*>, p, Z) > 0 ) for population frequencies >  0 [0, 1].  Doing so obtains, CD/C8D           CD

          (D10a)

–               (D10b)



ρ λ ξ
ξ λ λ ξ λ λ

ξλCD C D CD CD
CD CD

CD CD

r Z
R P P S T R T R P S

R P r
/ ( , , , )

[( ) ( ) ( )( )] ( )[ ( ) ( )( )]

[( ) ( )]
0 1 1 1

1
=

− + − + − − + − − + − −
− − ∇ −
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  Appendix  F  is available on request from the author.9
   

where

      (D10c)

Notice the limit where C8D–players become equivalent to DD–players;  by holding their action probability
constant at 8 =  8(>, Z) / 0 as > shifts over time.  The last identity implies the ratio formula in (D10b) drops to zero, and
the formula in (D10c) reduces to the same formula derived in equation (D5a), for the lower bound on the CD–players’
signal probability ratio within the CD/DD subpopulation :  so  D (8 = 0, > , r , Z)  =  D (> , r , Z).     CD/C8D    CD  CD      CD/DD CD  CD

0          0

Notice also that the formula for D (8, > , r , Z) remains finite for any given >  > 0; and so can always be0
CD/C8D  CD  CD        CD

exceeded by shifting (r , w ) close enough to (0, 0) as >  shifts closer to 0 :  because r / w  rises to infinity as (r ,CD  CD        CD        CD  CD     CD 

w ) shifts to (0, 0), by statement (1) of Part I, and shown above in Figure 5.  Plus notice that (D10b) subtracts a ratioCD 

formula that is always non-negative for any >  0 (0, 1].CD

Hence, keeping r / w  above D (8, > , r , Z) is always sufficient to guarantee CD–players outperformCD  CD  CD/C8D  CD  CD
0

C8D–players for any positive frequency, 0 < >  # 1.  This in turn guarantees by sufficient caution in detecting their ownCD

type, CD–players can also guarantee there never exist equilibria in the interior of the CD/C8D subpopulation  –  no matter
how the C8D–players might vary their action probabilities as the population frequency profile > evolves over time. 
Summarizing these implications yields : 

Theorem D2   (Instability & No Interior Equilibria In The  CD/CC  &  CD/C8D  Subpopulations )         

(1) Any positive frequency of CC or C8D players is unstable whenever the whole population contains a positive
frequency of DD–players, provided 8 > 0.  (2) Sufficiently cautious detection according to (D10a–c) guarantees
there never exist equilibria in the interior of the CD/CC or CD/C8D subpopulations; for arbitrary variation in the
C8D–players’ action probability 8 as the population frequency profile > changes over time.

PART 4   Main  Theorem  About  CD  Behavior Robustly Evolving From Any Initial Population       

Given Theorems D1 and D2 compare (DD, CD, CC, C8D) players, the remaining comparison involves DC
players.  Recall that subtracting the DC row from the DD row in Table 1 implies the DD–players always outperform DC
players against any type of player, provided DC–players don’t act just like DD players by holding (r , w ) constant atDC  DC 

(1, 1).  This implies for payoff monotonic dynamics (D2c), that any CD/DC subpopulation with a positive frequency of
DC–players is unstable for any positive frequency of DD players in the whole population; which will thereby always shift
the whole population toward the CD/DD subpopulation.  For boundary cases where >  =  0, Appendix F gives a fullDD   

characterization of any unstable equilibria that might arise in the interior of the CD/DC subpopulation. 
9

So we can now state the following theorem; whose Part B describes unstable CD/DC equilibria noted in Theorem
3 in Part II.

THEOREM  D3   (Robust Evolution Of CD Behavior In Pure One–Shot Prisoners’ Dilemmas)

Assume the fear payoff difference is less than the sum of greed & cooperation payoff differences, (P – S)  < 
(T – R) + (R – P); and let the frequency profile > evolve according to the frequency & payoff dependent plus
payoff monotonic dynamic equations given in (D2c).  Then the following results hold:

PART  A Theorem D1 implies CD–players will outperform DD–players within the CD/DD subpopulation
for any positive frequency, >  >  0.  Theorem D2 implies any positive frequency ofCD   

CC–players or C8D–players with 8 > 0, is unstable whenever there exists a positive frequency
of DD players in the whole population; plus no unstable equilibria exist in the interior of the
CD/CC or CD/C8D subpopulations.

PART  B The formulas in Table 1 also imply any positive frequency of DC–players with (r , w ) < (1,DC  DC 

1) is unstable for any positive frequency of DD–players in the population.  However, > = 0DD

may allow one or more unstable equilibria in the interior of the CD/DC subpopulation, as
described in Part 3 of Appendix F ; which implies the following properties hold relative to a 

threshold pair of signal probabilities along the DC–players’ ROC curve, denoted (r , w ):0  0
DC  DC

(1) If [ r (>, Z), w (>, Z) ] stays below the (r , w ) threshold; then zero unstable equilibria         DC  DC DC   DC
0  0
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  Figure 8 in Appendix F shows the resulting dynamics with two unstable equilibria in the interior of the CD/DC subpopulation.10

exist in the interior of the CD/DC subpopulation, and the resulting payoff monotonic dynamics
evolve according to Figure 3b in Part II.

(2) If  [ r (>, Z), w (>, Z) ] is held constant above (r , w ) as > changes over time; then one          DC  DC DC   DC
0  0

unstable equilibrium exists in the interior of the CD/DC subpopulation, and the resulting
payoff monotonic dynamics evolve according to Figure 3a in Part II.

(3) If  [ r (>, Z), w (>, Z) ] fluctuates as > changes over time (as shown in Figures 7c–d, and     DC   DC
described in Statement C in Appendix F), then multiple unstable equilibria may exist in the
interior of the CD/DC subpopulation. 

10

PART  C Parts A and B imply the following whenever the CD–players can detect their own type with
any degree of skill beyond pure chance : 
The population profile  > will evolve from any initial population  – either directly through any 

payoff monotonic process according to (D2c), or combined with arbitrarily small perturbations
from unstable equilibria –  eventually to a unique evolutionarily stable population composed
entirely of CD–players,  >  = 1.  CD

PART  5   (Behavior Of The Two Sloped Lines In Figure 4 Of Part II)

The slopes the two lines in Figure 4 can be obtained from the formula for the minimum signal probability ratio
r /w  given in statement (D5a) above; by substituting ( and 1 – ( for >  into this formula.  Doing so gives theCD CD               CD 

following formulas for the slopes of these two lines : 

           (D11a)

           (D11b)

where     D (>  = (, Z)   >   D (>  = 1 – (, Z)   >   1     for   0 < ( < 2            (D11c)0            0
CD/DD CD          CD/DD CD 

Then assume the fear and greed payoff differences are not equal (so that  L … 0),  and notice the condition (P –
S) < (T – P) = (T – R) + (R – P) implies (T – R) – (P – S) > 0 must hold as (R – P) drops to 0 for given (T – R) and (P
– S).  This inequality implies the ratio formulas in (D11a–b) must remain positive and finite as (R – P) drops to 0 for
given (T – R) and (P – S); plus at the limit (R – P) = 0, the same ranking of slope formulas as in (D11c) must hold for 

0 < ( < 2 , namely :   

        4   >      >     >   1           (D11d)

The two finite slope formulas in (D11d) imply the CD–players need not shift to total caution in detecting their
own type  –  so (r , w ) can remain above (0, 0)  –   as the cooperation payoff difference drops to 0 relative toCD  CD 

unequal fear and greed payoff differences; thereby establishing Corollary B in Section III.
Finally notice that, as both the fear and greed payoff differences drop to 0 relative to a given positive

cooperation payoff difference, both ratio formulas in (D11a–b) converge to a common limit,

   =   1            (D12)

This result corresponds to the two lines in Figure 4 likewise having a common slope of 1; which thus establishes the
result needed to derive Corollary C, also in Section III.
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