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ABSTRACT

ROC  curves from the signal detection literature are used in an evolutionary analysis of one-shot and repeated 

prisoners’ dilemmas: showing if there is any discounting of future payoffs, or any cost of searching for an additional
partner, then cooperative players who contingently participate  – in terms of who to play with or when to exit – 

cannot survive when most other players unconditionally defect; even when contingent participators only interact
with themselves by perfectly detecting their own type.

However, quite different results hold for players who act contingently, not in terms of whether to play or exit, but
rather in terms of how to act with any given partner.  There is a form of contingent cooperation in one-shot
prisoners’ dilemmas (called CD behavior) that will robustly evolve through any payoff monotonic process, such
as replicator dynamics.  That is, whenever CD–players can detect their own type better than pure chance, they are
guaranteed to evolve from any initial population  – eventually to a unique evolutionarily stable population composed
entirely of contingent cooperators  – provided the fear payoff difference is less than the sum of greed and
cooperation payoff differences.

The adaptive capabilities just described hold for pure one–shot prisoners’ dilemmas :  meaning no repeated 

interactions or pairings in any generation are involved; no information or third party reports about past behavior
are involved, all signal information arises only from symptoms detected after two strangers meet for the first time;
and no subjective preferences for altruism, fairness, equity, reciprocity, or morality affect the raw evolutionary
dynamics.

Testable predictions are also derived that agree with a large body of experimental data built up since the prisoners
dilemma was first introduced in 1950.  They describe how the CD–players’ equilibrium probability of cooperating
changes:  depending on the relative size of fear, greed, and cooperation payoff differences; and depending on the 

players’ history of communication, especially when face-to-face discussion is involved.

(JEL C60, C62, C72, C92, D80)

KEYWORDS: prisoners’ dilemma, cooperation, Nash equilibrium, evolutionary stability, replicator dynamics, signal
detection, ROC curves, experiment, testable predictions
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ROBUST   EVOLUTION   OF   CONTINGENT   COOPERATION
                            IN   PURE   ONE–SHOT   PRISONERS ’   DILEMMAS,   PART  I :          

                 Vulnerable  Contingent–Participators  Versus  Stable  Contingent–Cooperators          

             Center for the Study of Law and Economics Discussion Paper 2002-09

Ronald A. Heiner 1

Various models show  contingent participators can evolve in prisoners’ dilemmas :  by avoiding play         

with certain partners, or by exiting after starting play.   However, contingent participators are vulnerable to 
2

their share in the population.  For example, Axelrod (1984) avoids this problem by assuming tit-for-tat
players arrive in clusters; so they interact more often with themselves than otherwise implied by their
frequency of the population.

However, suppose individual players cannot last in isolation from others, but instead must eventually
search out partners and actually play with them in order to survive.  Suppose players also discount future
payoffs obtained from successive rounds of play, or there exists a cost of searching for new partners.  Part I
of this two part paper shows that contingent participators cannot succeed in a population composed mostly of
always defecting players; even if they only interact with themselves by perfectly detecting their own type.

On the other hand, quite different results hold if players act contingently; not in terms of whether to
participate, but rather in terms of how to act with any given partner :  there is a form of contingent 

cooperation in one-shot prisoners’ dilemmas that is always stable against invasion by other behavior,
including always defect behavior; and will robustly evolve from any initial population.  These results are
shown by using principles from the signal detection literature and ROC curves  to analyze the following 

situation :     
3

A Players from a larger population are randomly matched into pairs, called Adam and Eve, who are
strangers knowing nothing about each other’s past actions or reputations.  Their payoffs satisfy the
prisoners’ dilemma ordering,  T > R > P > S;  where (T – R), (R – P), (P – S) are called the  greed ,    

cooperation,  and  fear  payoff differences.  Once randomly matched, Adam and Eve interact in two      

stages.  In stage one, they meet for the first time, enabling them to detect an ‘x’ or ‘y’ signal from
each other.  These two signals result from each player dividing a continuous space of symptoms
received from its partner into two categories: one category defined as an x–signal, and the other
defined as a y–signal.

B Neither player can choose the specific symptoms that will be detected by the other player.  Instead,
the likelihood of each player detecting symptoms from each other is governed by a pair of
overlapping density functions whose shape and position are caused by the type of internal
motivations determining how each player will react to the symptoms categorized as either an x or y
signal by the receiving player.

C In stage two, all communication between Adam and Eve ends, and they play a one–shot simultaneous
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    So no subjective factors are involved as for example analyzed by, Trivers 1971; Geanakoplos, Pearce, & Stacchetti 1989; Rabin 1993;4

Falk & Fischbacker 1998; Fehr & Schmidt 1999; Bolton & Ockenfels 2000; and Gintis 2000.

  See footnote 3; plus Lusted 1968; Ben–Shakhar et. al. 1986; Getty et. al. 1988.5

prisoners’ dilemma while isolated from each other :  meaning they must each react to their detected 

signal by choosing to cooperate C or defect D without knowing each other’s chosen action.  Each
player can be programed to react according to one of four mappings from signal x or y into actions C
or D, denoted CC, CD, DC, DD.  Each player can also be programed to randomly choose action C
or D independent of signal x or y, denoted C8D;  where 8 versus 1 – 8 equals the probability of
choosing action C versus D.

D Players cannot engage in any kind of “assortative interaction” or “clustering” that would cause the
probability of interacting with another player to deviate from that generated by random matching
over the whole population.  Finally, Adam and Eves’ interaction ends after they each choose an
action and receive a payoff; and no information about their actions or payoffs becomes available to
anyone else.

Conditions A – D imply always defecting DD behavior remains dominant over CC and C8D behavior, as
expected from traditional theory.   However, DD behavior is not  dominant over both signal–contingent strategies
(CD, DC).  Instead, Section IV of Part I shows that contingently cooperating CD behavior is a strict Nash
equilibrium plus evolutionarily stable, whenever CD–players can detect their own type better than pure chance.

However, this does not rule out other stable equilibria, say with mostly DD–players.  So Part II of this
paper shows that no other stable equilibria exist :  because CD behavior has robust adaptive capabilities 

guaranteeing it will evolve from any initial population.  That is, in every case where CD–players can detect their
own type better than pure chance, and the fear payoff difference is less than the sum of greed and cooperation
payoff differences, any initial population will evolve  –  either directly through any payoff monotonic process (such
as replicator dynamics), or combined with arbitrarily small perturbations from unstable equilibria –  eventually to a
unique evolutionarily stable population composed entirely of CD–players.

The adaptive capabilities just described hold independent of any argument about whether CD behavior  is   

or  is  not ‘optimal’  according to a definition such as Bayesian rationality.  They also hold for pure one–shot      

prisoners’ dilemmas:  meaning no repeated interactions or pairings in any generation are involved; no information
or third party reports about past behavior are involved, all signal information arises only from symptoms detected
after two randomly matched strangers meet for the first time; and no subjective preferences for altruism, fairness,
reciprocity, or morality affect the raw evolutionary dynamics.4

Testable predictions are also derived in Part II that agree with experimental data built up since the
prisoners’ dilemma was first introduced in 1950.  They describe how the CD–players’ probability of cooperating
changes :  depending on the relative size of fear, greed, and cooperation payoff differences; and depending on the 

players’ history of communication, especially when face-to-face discussion is involved.

I. SIGNAL  DETECTION  PRINCIPLES   &   ROC  CURVES    

ROC curves from the signal detection literature are drawn in the unit square, as shown in Figure 1a.  The
vertical axis shows the probability of detecting a signal (denoted x) indicating certain events (denoted Q) have
happened instead of not happened (denoted ~Q); represented by the conditional probability,  r = p(x*Q).  

Alternatively, signal x may still arise when events ~Q have happened instead of Q; represented on the horizontal
axis by the conditional probability,  w = p(x*~Q).  So the letters (r, w) represent the probability of signal x ‘rightly’ 

versus ‘wrongly’ indicating that events Q instead of ~Q have happened.

Figures  1a  &  1b  About Here

A wide variety of ROC experiments have been conducted:  including tasks like detecting a signal masked
by background noise; detecting cancer tissue with x-ray or MRI pictures; or observing speech and body language to
detect another person’s preferences or beliefs, including lie detection.  Across these different tasks, experiments
during the last 40 years have shown that both human and animal detection behavior conforms to basic patterns
shown by the ROC curves in Figure 1a.   So let us describe how these curves are generated. 

5
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  Both human and animal subjects in experiments typically are not aware of the concepts and variables described above; such as the6

signal probabilities (r, w) and ROC curves in Figure 1a, or the density functions and boundary point b in Figure 1b.  Instead, they may
be only aware of the relative frequency of events Q versus ~Q, or the costs/benefits of correct versus mistaken detections.  So subjects
do not need to know the theoretical elements in Figures 1(a, b) to behave according to an ROC curve. 

  The cheap talk models just discussed ignore set up costs of meeting and talking to receive signals between two players.  If we similarly7

ignore set up costs of meeting and talking to detect symptoms described by an ROC curve, then such detection has no effect on the
mapping from  chosen actions into received payoffs.  Such detection is then likewise a form of cheap talk.  However, it is quite different
than the cheap talk assumed in the models just discussed.

  An example would be trying to detect another person’s internal motivations with an externally randomized signal, such as rolling a8

multi–sided die.  The (r, w) probabilities from such signals are necessarily equal, and thus on the diagonal line in Figure 1a.

A. Dividing Symptoms Into Signal Categories With Overlapping Density Functions

Figure 1b shows two density functions : one generated by events Q happening, and the other generated by 

complementary events ~Q happening.  The variable ‘z’ on the horizontal axis represents a continuous set of
detectable symptoms whose likelihood depends on the two density functions caused by events  Q  versus  ~Q.     

Notice particular z–symptoms can arise under either density function, and so cannot be uniquely associated
with events Q or ~Q happening.  But the z–symptoms can be partitioned into two disjoint subsets separated by a 
boundary in Figure 1b, denoted by the letter ‘b’.  These two subsets can then be categorized as two different
signals: where signal x versus y represents the subset to the left versus right of the boundary.  Signal x is the subset
whose area under the density function generated by Q is at least as great as the area generated by  ~Q.  In Figure
1b, this subset extends to the left of b.  The areas under the two density functions to the left of boundary b equal the
two signal probabilities along an ROC curve in Figure 1a :   r  =  p(x*Q)   $   w  =  p(x*~Q). 

In this paper, we are interested in ROC curves for a person detecting symptoms related to the internal
motivations of another person.  Such motivations include standard economic factors such as a player’s subjective
preferences, beliefs, and an evaluation criterion for combining preferences and beliefs, like expected utility. 
Appendix A describes an example involving ‘feedback questioning’ that generates both verbal and body–language
symptoms that are causally linked to the internal motivations of another person.6

B. Other Game Theory Models With Signaling Between Players

The above signal detection environment is quite different than that used to analyze “cheap talk”
communication between players; by Wärneryd (1993), Kim & Sobel (1995), Bhaskar (1998), and Banerjee &    

Weibull (2000).  For example, Banerjee & Weibull assume each player can choose a particular signal to be sent to
another player, who is also assumed to perfectly identify that signal from other signals that might be sent.

However, the above signaling environment implies it is impossible for a player to target particular
symptoms for sending to another player :  because a player’s internal motivations are causally linked to a density 

function spread over a range of detectable symptoms.  So there exist no specific symptoms  – such as a “green
beard”,  “secret handshake”, or particular spoken words –  that are uniquely associated with a given type of internal
motivations.  Moreover, particular symptoms can be categorized by the receiving player as either an x or y signal
depending on their location relative the boundary b in Figure 1b.

These properties imply Adam and Eve cannot choose the specific symptoms that will be sent to each other,
nor can they choose whether these symptoms will be categorized as an x or y signal by the receiving player.  Adam
and Eve thereby know the x or y signal received from each other, but not the signal each other receives from
themselves; nor how each other will react to their received signal.  As noted earlier, this type of signaling
environment is the typical case in experiments during the last 40 years over a wide variety of detection tasks.  So let
us further describe the ROC curves in Figure 1a.7

C. ROC Curves Ranging From Pure Chance To Perfect Detection Skill

The diagonal line in Figure 1a represents feasible signal probabilities resulting from pure chance detection. 
This happens when the two density functions in Figure 1b coincide exactly :  so the signal probabilities (r, w) 

always equal each other no matter where the boundary between the x and y signals is located.  8

If the two density functions in Figure 1b do not coincide, then shifting the boundary b to the right will raise
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  See footnote 5; plus Saxe 1985; Swets 1973, 1988; and Swets & Pickett 1982.9

  See for example Swets 1988 article in Science; plus references in footnote 9.10

the  r  probability initially faster than w.  But the area under the density function generating the r probability will at   

some point rise slower than the other area generating the w probability :  causing (r, w) to move along a convex path 

above the diagonal line in Figure 1a; called an ROC curve in the signal detection literature.
Perfect detection represents the limit where the ROC curve coincides with the left and top sides of the unit

square; when the two density functions in Figure 1b have no overlap at all.  So the probability of rightly detecting
another person’s internal motivations can be raised all the way to 1 without producing any positive probability of
wrongly doing so   – located at the top–left corner of the unit square where  (r, w)  =  (1, 0).

The ROC curves in Figure 1a are referred to as NN-ROC curves.  The letters ‘NN’ indicate detection
errors arise from two normal density functions in Figure 1b.  Numerous experiments have shown NN-ROC curves
can explain observed detection behavior across a wide range of tasks; including auditory & visual signals, body
language signals, pattern recognition in medical & psychological diagnosis, and so on.    So normally distributed9

errors are assumed in detecting symptoms related to the internal motivations of another player.
D. Properties of NN–ROC Curves Needed For Later Analysis

The signal categories x and y are hereafter referred to as simply signals x and y, in order to simplify
subsequent discussion.  This does not mean players are dealing with only two signals from each other.  Rather, each
player must divide a continuous space of detectable symptoms into two disjoint subsets in an attempt to determine
which of two overlapping density functions generated the specific symptoms received from another player.

Now consider another key principle:  that both human and animal subjects can vary the boundary between
the x and y signals in Figure 1b  –  thereby causing their signal probabilities (r, w) to shift betwenn (0, 0) and (1, 1) 

along an ROC curve.  This pattern has been observed across a variety of different detection tasks, whenever
experiments vary the benefits and costs of making false positive or false negative detection mistakes.10

Note also from the definitions of r and w, that shifting (r, w) closer to (0, 0) means signal x is less likely to
be detected regardless of whether it rightly or wrongly indicates another player’s type of internal motivations.  A
player is thus “more cautiously” detecting when its pair of signal probabilities (r, w) shifts closer to (0, 0).

Cautious detection implies another property for convex NN–ROC curves (beyond pure chance detection):
shifting (r, w) closer to (0, 0) will cause the odds favoring rightly instead of wrongly detecting another player’s
motivation type to rise arbitrarily high  – thereby causing the ratio of signal probabilities  r/w  to rise toward infinity   

 as  (r, w) drops to (0, 0).  So we have the following property :               

         6  4    as     (r, w)  6  (0, 0)  (1)
Note that even though the ratio of rightly to wrongly detecting rises arbitrarily high in statement (1), this

property does not involve any extreme or unusual situation, nor any special signal like a ‘secret handshake’. 
Instead, it is the ordinary result of cautious detection in numerous experiments with both human and animal
subjects; achievable with no unusual skill beyond pure chance detection  – by simply shifting (r, w) along a convex
NN-ROC curve that bows above the diagonal line in Figure 1a.

One reason for describing ROC curves and principles from the signal detection literature is to show
numerous experiments already demonstrate the signal detection properties used in later analysis are the typical
result of ordinary people in ordinary circumstances; thereby achievable without any special detection skills nor any
special signals like secret handshakes, and so on.

II. APPLICATION  TO  PRISONERS’  DILEMMAS  WITH  CONTINGENT  PARTICIPATION

Consider Axelrod’s (1984) analysis of prisoners’ dilemmas with repeated play.  Appendix B also analyzes
one-shot play; including Frank’s (1988) analysis.  To begin, assume the population includes two or more different
types of players :  AllD–players who defect in every successive round with their partners; and tit-for-tat (TFT) 

players who cooperate in the first round, and then do whatever their partner did in the previous round.
Axelrod wanted to show TFT players could evolve even within a hostile environment composed mostly of

AllD–players.  So he assumed a form of non-random interaction (1984, chapter 3) in which the TFT–players arrive
in “clusters”.  An example might be kin relationships, where parents propagate children whose local environment
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contains mostly near genetic relatives.
However, Axelrod did not model how clustering occurs.  Interpretations about kin selection also give no

basis for explaining how cooperation could evolve in prisoners’ dilemmas with partners not linked by a family
bond.  So let us apply signal detection analysis to the repeated play environment studied by Axelrod.

To do so, let H(AllD) and H(TFT) denote histories that will cause a player such as Eve to be programmed
by her internal motivations to behave according to AllD or TFT.  So events Q versus ~Q in Figures 1a and 1b are
now interpreted as histories H(TFT) versus H(AllD): where these two types of histories may also affect the
likelihood of a player such as Adam detecting a signal x instead of y from his partner Eve.  So the r and w signal
probabilities in Figure 1a now become:

r   =   p[x* Q = H(TFT) ]  &   w   =   p[x*~Q = H(AllD) ] (2)              

Assume TFT players contingently participate: meaning they will start playing only if they detect signal x
from their partner; otherwise, they will refuse to start playing.  Such players are denoted TFT ; where theCP 

subscript ‘CP’ means ‘contingently participating ’.  Alternatively, the AllD–players will always (non-contingently) 

start repeated play with whomever they are matched  –  provided the other player chooses to participate   –  called
AllD –players; where the subscript ‘NP’ means ‘non–contingently participating ’.NP         

Let ‘c’ denote the cost of engaging in each successive matchup in search of a partner from whom the x
signal is detected, where  c $ 0 holds.  Also let  0 # * # 1  denote the per period discount factor for valuing future
payoffs, including delays from refusing to play with one’s current partner.  So a delay of one period from not
playing one’s current partner results in one period discounted cost of engaging in the next matchup,  * c $ 0 

We can then study the limiting case most favorable to TFT –players against AllD –players, depending onCP   NP

their population frequencies, denoted > and 1 - > :  namely, when the TFT –players perfectly detect whether their      CP

current partner is another TFT –player versus an AllD –player.CP    NP

To analyze this case, we must calculate the difference between the two players’ expected payoffs from
playing against themselves and each other, denoted E(TFT ) and E(AllD ), when perfect detection holds, so thatCP   NP

(r, w) = (1, 0).  The details are shown in Part 2 of Appendix B; which yields the following results :

     (r, w) = (1, 0)   implies  E(AllD ) – E(TFT )  =     –   (3a)NP   CP 

So as > drops to 0, we obtain the following inequality : 

E(AllD )  –  E(TFT )    =      >   0 (3b)NP     CP 

The positive difference in the above inequality implies the evolutionary success of the TFT –playersCP

against AllD –players is not robust to beginning with a small frequency in the total population, regardless of howNP 

skillfully they might distinguish themselves from AllD –players.NP 

Next generalize this result by considering any player who will ‘sometimes cooperate’ at least once in a
prisoners’ dilemma, and who contingently participates by detecting an x or y signal from each partner; denoted
SC .  SC  thus includes TFT , plus a variety of other examples; such as “tit-for-two-tats”, “testor”, or,CP   CP   CP 

“retaliator” from Axelrod’s computer tournaments (1984, chapter 2) .
Alternatively, we can consider any player who will cooperate at least once with their partners, but who will

also exit after n rounds with an AllD –player.  These players are denoted  Ex –players; where n denotes the stageNP        n

at which repeated defection will cause such a ‘contingent–exitor’ to stop playing.  An example of Ex  for n = 1, isn

the ‘prudent moral’ strategy studied by Vanberg & Congleton 1992, 2001; that starts play by cooperating against
any partner, and then exits after the first defection by its partner. 

Parts  2 & 3 of Appendix B show a similar relationship holds as (3a, b) above; when either SC  or ExCP  n

competes in a population composed mostly of AllD .  That is, it doesn’t matter how SC –players behave onceNP         CP

they start playing, provided they will cooperate at least once against an AllD –player.  Likewise, it doesn’t matterNP

how the Ex –players’ decide to exit, provided they will cooperate a least once with an AllD –player before exiting. n              NP

All potential types of  SC  or Ex  players are vulnerable to their share in a population of mostly AllD –players.CP   n             NP

Notice the definitions of (AllD , SC , Ex ) players imply they will choose respectively (D, C, C) in one-NP  CP  n 

shot games, where n = 1.  So the above results hold for both one-shot and repeated games, as follows : 

THEOREM  1 (Vulnerability of SC  and Ex  Players To Their Share In The Population)CP  n
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Any discounting of future payoffs (* < 1) along with any nonnegative search cost (c $ 0) in one-shot or
repeated prisoners’ dilemmas implies any type of SC  or Ex  players are inherently vulnerable to theirCP  n

share in a population with mostly of AllD –players :  no matter how skillful SC  or Ex  players might be atNP        CP  n

avoiding or exiting participation with  AllD –players.  NP 

III. REPLACING  CONTINGENT–PARTICIPATION  WITH  CONTINGENT–COOPERATION 

Given the vulnerability of contingent participators to their share in the population, one might expect that
cooperative behavior would be even more vulnerable if no exit from playing with always defecting players was
possible.  However, there is a form of contingent cooperation in one-shot prisoners’ dilemmas  –  not in terms of
whether to participate, but rather in terms of how to play any given partner  –  whose survival does not depend on
its share in the population, nor on its ability to distinguish itself from other types of behavior.  The next objective is
to describe this type of contingently cooperative behavior, and show why the above statement holds.

A. Feasible  Strategies  &  Signal  Detection  Probabilities

Start by representing strategies as mappings from detected signals into feasible actions.  There are four
non–random mappings represented by 1  and 2  letters for the C or D action chosen in response to detecting signalst  nd

x versus y : CC, meaning to always cooperate regardless of signal x or y; CD, meaning to contingently-cooperate 

if and only if signal x instead of y is detected from the other player; DC, meaning the opposite strategy of
contingently-defecting if and only if signal x instead of y is detected; and DD, meaning to always defect regardless
of signal x or y.  Each player can also choose a mixed strategy, denoted C8D for 8 0 (0, 1); that randomly chooses
C or D independent of signal x or y, with probability  8 = p(C)  versus 1 - 8 = p(D).

So there are five types of signal response strategies, (CC, CD, DC, DD, C8D).  The four strategies besides
CD are denoted ~CD = {CC, DC, DD, C8D}.  The Greek letter > is used with a subscript to represent each type’s
frequency in the whole population; and the population frequency profile is denoted with no subscript, > = (> , > ,CC  CD

> , > , > ).  Let H(CD) and H(~CD) denote histories that will cause a player such as Eve to be programmedDC  DD  C8D 

either to contingently cooperate CD, to behave according to one of the other signal-response strategies  ~CD. 

Next analyze a player such as Adam detecting an x or y signal causally influenced by the type of histories 
H(CD) versus H(~CD) also influencing his partner Eve’s behavior.  Accordingly, the Q versus ~Q events in Figure
1b now represent histories H(CD) versus H(~CD), and the r and w signal probabilities in Figure 1a now become:

r   =   p[ x * Q = H(CD) ]   &      w   =   p[ x *~Q = H(~CD) ]      (4)                      

So  r  versus  w  indicates the probability of signal x rightly versus wrongly indicating that Adam’s partner       

Eve has been programmed by past events to contingently react to her signal from him according to strategy CD,
instead of being programmed to react differently by H(~CD).

Recall that neither player can choose the specific symptoms detected by the other player.  Instead, the
likelihood of each player detecting specific symptoms from each other is governed by a pair of overlapping density
functions whose shape and position relative to each other are caused by the type of internal motivations resulting
from histories H(CD) versus H(~CD).

Also recall CD–players cooperate if and only if they detect a signal positively correlated with their own
type (signal x instead of y); while DC–players follow the reverse strategy.  Since both players react contingently,
they both have independently chosen (r, w) signal probabilities; subscripted by ‘CD’ and ‘DC’ to distinguish them.

B. Linear Versus Quadratic Expected Payoffs

Table 1 shows the 5  = 25 expected payoff formulas resulting from each player competing against its own2

type, or one of the other four types.  Notice the cells in Table 1 may contain a 3  line representing a quadraticrd

payoff term; meaning an expression with a multiple of two signal or action probabilities,  such  as  (r ) ,  8 , or CD 
2   2

8w .  In all such cases, the probability multiples are themselves multiplied by the difference between the fear andCD

greed payoff differences, (P – S) – (T – R).  So quadratic payoff terms arise only when players’ fear and greed
payoff differences are not equal  – otherwise expected payoffs are linear instead of quadratic.

Table  1  &  Figure  2a  About  Here
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IV. DD BEHAVIOR IS NOT DOMINANT  &  CD BEHAVIOR IS EVOLUTIONARILY STABLE

Figure 2a shows an example with linear expected payoffs over the subpopulation with only CD and DD
players, called the CD/DD subpopulation.  Two expected payoff lines are shown, which depend on the frequency of
CD–players, denoted > .  These lines are weighted averages of expected payoff formulas in the CD and DDCD 

columns of Table 1.  Note that linear expected payoffs simplifies the quadratic expected payoff for two CD–players
against each other, to the formula  P + r (R – P);  shown on the right hand vertical scale where >  = 1.CD             CD

Notice also the interior crossover threshold where the CD and DD players’ expected payoff lines intersect, 
denoted  > .  CD–players will outperform DD–players if and only if their population frequency >  exceeds the0

CD/DD              CD

crossover threshold.  Such an interior crossover point implies CD–players do better against themselves than
DD–players do against them; as implied by the ranking of the two expected payoff formulas on the right–hand
vertical scale of Figure 2a,  P + r (R – P)  >  P + w (T – P).  This in turn implies DD behavior is not a dominantCD         CD 

strategy in the CD/DD subpopulation.
This same conclusion applies to the whole population.  To see this, compare the expected payoff formulas

in the (CC, DD, C8D) columns of Table 1.  Doing so implies the DD–players’ expected payoff always exceeds that
of CC players, and the C8D players for any 0 < 8  < 1.  Thus, DD behavior is dominant within the CC/DD/C8D
subpopultion; as expected from traditional analysis.

However, DD behavior is not dominant when players’ strategies also include the two signal contingent
strategies (CD, DC).  Instead, CD behavior can be a strict Nash equilibrium.  This follows from the CD column in
Table 1:  by noticing a CD–player’s expected payoff against its own type strictly exceeds the expected payoffs of the
other four types against CD–players, when their signal probabilities (r , w ) are near (1, 0).  This follows because atCD  CD 

(r , w ) = (1, 0), the expected payoffs for (CC, CD, DC, DD, C8D) against CD–players equal respectively :CD  CD                  

          [S;     R;     S + r (P – S) # P;     P;     P - 8(P – S) < P ] (5)DC                      

Since payoff R strictly exceeds payoffs P and S, the above profile of expected payoffs immediately implies an
exclusive population of only CD players is evolutionarily stable whenever the signal probabilities (r , w ) areCD  CD

sufficiently close to (1, 0).  However, these expected payoff comparisons might require the CD–players’ to have near
perfect detection skill in order for them to shift (r , w ) near (1, 0).CD  CD

But a much stronger result holds:  CD behavior is guaranteed to be evolutionarily stable whenever the
CD–players cautiously detect their own type by shifting their signal probabilities (r , w ) sufficiently close to (0,CD  CD

0) along a convex NN–ROC curve   – that may be arbitrarily close to the diagonal line in Figure 1a corresponding
to pure chance detection.  This result holds for linear expected payoffs, and for quadratic expected payoffs, provided
the fear payoff difference is less than the sum of greed and cooperation payoff differences.  It is formalized next, and
proved in Appendix C.

THEOREM   2   (Evolutionary Stability Of CD–Players With Any Detection Skill Beyond Pure Chance)

Let the CD–players detect according to a convex NN–ROC curve that bows above the diagonal line in
Figure 1a, and assume  (P – S) < (T – R) + (R – P).  Then there exists a positive interval extending from (0,
0), such that any signal probabilities (r , w ) along this interval imply: DD behavior is not dominant overCD  CD 

the remaining population with (CC, CD, DC, C8D) players; and a population with only CD–players is
evolutionarily stable against invasion by other players, including DD–players.

Consider Ken Binmore’s comment (1994, page 173) :  The game theoretic equivalent of squaring the circle 

consists of justifying the use of a strongly dominated strategy in the one–shot Prisoners’ Dilemma.  In other words,
suppose an analysis of one–shot prisoners’ dilemmas is offered that implies always defect behavior strictly dominates
other possible behavior, while also showing other possible behavior exists that can still invade always defect behavior. 
As Binmore suggests, such analysis would be just as impossible as successfully squaring the circle.

Notice Theorem 2 immediately bypasses such impossibility :  because it implies CD–players cautiously 

detecting their own type will prevent DD behavior from being dominant over all other types of signal–response
behavior.  And once a unique dominant strategy is no longer possible, then other Nash equilibria may exist.  Moreover,
if such a Nash equilibrium is strict, then it will also be evolutionarily stable; as implied for CD behavior.

Albert Tucker devised the original prisoners’ dilemma (in 1950) partly as a counter example to his graduate
student, John Nash’s equilibrium concept for non–zero sum games.  Yet the Nash equilibrium has subsequently come
to be almost universally used in strategic analysis despite mostly falsified predictions in one–shot prisoners’ dilemma
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experiments.  The stable Nash equilibrium shown in Theorem 2 thus vindicates the Nash equilibrium’s ability to
explain behavior even in one-shot prisoners’ dilemmas; especially if CD behavior implies testable predictions about
the frequency of cooperation that agree with a large body of data from one-shot and finitely-repeated prisoners’
dilemma experiments published since 1950.  Such predictions are developed in Part II of this paper.

V. CONCLUSION

Part I of this paper used ROC curves in an evolutionary analysis of prisoners’ dilemmas.  Doing so implies the
following :  if there is any discounting of future payoffs, or any cost of searching for an additional partner, then  

cooperative players who contingently participate  – in terms of who to play with or when to exit –  cannot survive in a 

population containing mostly players who always defect.  This vulnerability holds even when contingent participators
only interact with themselves by perfectly detecting their own type.

However, quite different results hold if players act contingently; not in terms of whether to participate, but
rather in terms of how to act with any given partner.  There is a form of cooperation in one–shot prisoners dilemmas
that reacts contingently to symptoms detected from its partner (called CD behavior) :  where such behavior is a strict 

Nash equilibrium plus evolutionarily stable against invasion by other types of signal–response behavior, including
always defect DD behavior; provided CD–players can detect their own type better than pure chance, and the fear
payoff difference is less than the sum of both greed and cooperation payoff differences.

These implications do not rule out other stable equilibria, say with mostly DD–players.  So Part II of this
paper shows no other stable equilibria exist :   because CD behavior has robust adaptive capabilities guaranteeing it 

will evolve in one–shot prisoners dilemmas from any initial population through any payoff monotonic process (such
as replicator dynamics).  The reader is invited to continue with Part II :  to see why robust evolution of CD behavior 

must happen, and why it implies certain testable predictions, as noted at the end of the last section.

APPENDIX  A   (Detection Through Feedback Questioning)

Suppose Adam and Eve are involved in the original prisoner’s dilemma story, and they talk with each other
about an upcoming crime.  Adam asks questions that might prompt Eve to respond in a way that generates symptoms
related to her type of internal motivations; as indicated by the z–axis in Figure 1b.  Since Adam asks Eve questions in
order to get Eve to respond to them as feedback, we can say Adam is involved in “feedback questioning”, and
similarly call the symptoms he receives, “feedback symptoms”.

Feedback symptoms might be “endogenous”, meaning they are causally related to the other player’s internal
motivations.  Such symptoms may thus be relevant for Adam and Eve to detect in a way that “exogenous” symptoms
are not; meaning symptoms obtained through an external process, such as signals generated from a bingo cage: 
because the latter signals have nothing to do with whatever might cause a player to respond to them in a particular way. 
Hence the reason for calling such signals exogenous or external  in the first place. 

Eve must determine which endogenous symptoms she will respond to by choosing action C instead of D. 
Statistical decision theory implies she must divide the range of possible symptoms (spread across the z–axis in Figure
1b) into two disjoint subsets.  One subset is categorized as a “favorable” signal ‘x’ and the other subset is categorized
as an “unfavorable” signal ‘y’   —  so that particular symptoms categorized as favorable instead of unfavorable can be
mapped into choosing action C instead of D respectively.

For example, suppose Adam intends to always defect DD but tries to fool Eve by saying he will cooperate if he
detects a favorable x signal of her willingness to respond in a similar contingent manner to feedback symptoms from
himself.  However, Eve is interested in the combined package of verbal and non-verbal symptoms resulting from
Adam responding to her questions:  because the likelihood of such combined feedback symptoms is causally related to
Adam’s type of internal motivations.

So the reason for feedback questioning is to strengthen causal links to Adam’s internal motivations through
detecting combined verbal-plus-body-language symptoms.  That is why close-range, “face-to-face” interaction is
required to have the greatest access to the causal links involved.  Other ways of communicating such as with
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  This is the formulation considered by Frank (1988, page 60).  However, he does not allow discounting of future payoffs; nor the11

possibility of a search cost resulting from C –players encountering new partners until they detect signal x instead of y from their currentCP

partner.  Frank eliminates such costs by assuming players can immediately switch to a “work alone” option (1988, page 261); allowing
them to survive with no search or delay costs from otherwise not playing until they encounter a partner from whom the x signal is
detected.  This assumption denies the possibility that players cannot survive indefinitely in isolation from others, but instead must search
out partners and actually play with them in order to survive.  

telephones, video conferencing, and email will be noticeably less effective :  because they restrict the ability to receive 

combined symptoms otherwise observable in Adam’s direct presence;  thereby degrading the causal links required to
receive endogenous symptoms that more reliably indicate Adam’s internal motivations.

It is also likely that both Adam and Eve will take for granted that feedback questioning is imperfect at eliciting
symptoms related to his or her future strategy decisions.  Such mistakes arise because the same symptoms can be
generated from different overlapping density functions caused by different types of internal motivations that might be
influencing how Adam reacts to Eve’s questions.

Nevertheless,  suppose Adam could train himself to maintain completely steady non-verbal symptoms of all
types.  For example, suppose Adam was involved in a game of poker, and trained himself to display a steady facial
expression (a  “poker face”) intended to prevent other players from detecting whether he will bluff or not if dealt a poor
hand, and so on.  So other players such as Eve may interpret Adam’s poker face as a detectable symptom that trying to
forecast his betting strategy is especially uncertain, and thereby fruitless to attempt in the first place.

Accordingly, otherwise “uninformative” (poker face) symptoms can themselves be interpreted by Eve as an
unfavorable signal (y instead of x) that may cause Eve to defect instead of cooperate with Adam.  So regardless of
whether Adam tries to control his verbal and non-verbal feedback or not, there always exists symptoms that are
relevant from Eve’s point of view, in order to justify defecting instead of cooperating with Adam.

APPENDIX  B  (Proofs for Contingent Participation With One-Shot Or Repeated Play)

PART   1    (Proofs For One–Shot Prisoners’ Dilemmas)

First consider one-shot prisoners’ dilemmas, and let g represent the probability that a Cooperator who
contingently participates, denoted C , is able to play its current partner; where a C  player will cooperate if and onlyCP           CP

if it detects the x signal instead of the y signal from its partner.  Let r = p[x*H(C)] and w = p[x*H(D)] denote the
probabilities of the x signal either ‘rightly’ or ‘wrongly’ indicating that one’s partner has been programmed by a history
of past events to choose C instead of D.

The other type of player is a Defector who non–contingently participates, denoted D .  The frequencies >NP

versus 1 – > determine the probability of being matched with a C –player versus D –player.  Finally recall that ‘*’CP   NP

denotes the factor used to discount future payoffs; and ‘c’ denotes the cost searching for an additional partner.11

Now let  " = p(x) denote the probability of a C –player detecting the x signal, either rightly or wrongly,CP

depending on whether its partner is a C –player or a D –player; so that,CP    NP

"   =   p(x)   =   >r  +  (1 - >)w (B1a)

Then let the posterior probability of one’s partner being a C –player, conditional on detecting the x signal from thatCP

partner, be denoted, $   =   p(C *x)  =      (B1b)CP 

The complementary chance that one’s partner is a D –player instead of C –player after having detected the xNP    CP

signal equals, 1 – $ = p(D *x).  There are three requirements for a C –player to end up actually playing its currentNP         CP

partner : first it must detect the x signal with probability " (otherwise it will refuse to play); and then its current partner 

must also be willing to play, either if it is a non-contingently participating D –player (encountered with probabilityNP

with probability 1 – $ after detecting the x signal), or if it is a C –player who has also detected an x signal. CP

Consequently, the probability g that a C –player is able to play its current partner satisfies,CP

g  =  "[(1 – $) + $ r]  =  "[1 – $(1 – r)]   =   p[C–player plays its current partner] (B2) 
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A C –player’s expected payoff conditional on being able to play its current partner is denoted E (C ), andCP                CP
0 

is computed as follows : 

         E (C )   =   (B3a)0 
CP    

           =       (B3b)

At the start of each matchup, a C –player has a probability g of actually playing its current partner: if itCP

detects the x signal from its partner, and its partner is also willing to play.  If so, then it will receive its expected
payoff contingent on actually playing, E (C ).  Alternatively, it has a probability (1 – g) of not playing its current0 

CP

partner, because it doesn’t detect the x signal and/or its partner is not willing to play.
If the latter happens during the current period, then the C –player must search for a new partner in the nextCP

period, and thereby pay a discounted cost of  * c  in order to restart the whole process with a new randomly matched 

partner in the next period  – where its total expected payoff at that point is the same as it was at the start of the last
matchup.  So a C –player’s expected payoff, denoted E(C ), satisfies the following relationship that recursivelyCP     CP 

determines its value depending on *, g, and E (C ).0 
CP

E(C )   =   g E (C )   +   (1 – g) [*E(C )  –  *c ] (B4a)CP         CP           CP      
0 

Then rearrange terms to solve for E(C ), obtaining :CP   

E(C )      =     (B4b)CP 

 Next use a similar procedure to determine a D –player’s expected payoff depending on its expected payoffNP

if it is able to actually play its current partner, and on the probability of playing or not playing with its current
partner.  The above definitions imply the probability of a D –player being able to actually play its current partner,NP

denoted q, depends on the chance of either being matched with another D –player (who will always non-contingentlyNP

play), or being matched with a C –player who also detects the x signal, as follows:CP

         q  =  p(D-player plays its current partner)  =   (1 –  >) + >w   =  1 –  >(1 - w) (B5a)

The expected payoff of a D –player conditional on it actually playing its current partner then becomes,NP

             E (D )   =   E(D *plays its current partner)   =  (B5b)0 
NP       NP 

    =   (B5c)

Similar to (B4b), a D –player’s expected payoff across all future possibilities where it may or may not be able to playNP

its current partner, then becomes : 

E(D )     =    (B6)NP 

By subtracting the formulas (B4b) and (B6) for E(C ) and E(D ), and using the formulas (B2) and (B5a) forCP   NP 

g and q,  the difference  E(C ) –  E(D )  becomes :CP    NP    

E(D )  –  E(C )   =  NP     CP 

–    (B7a)

Notice that as the C –players’ signal probabilities converge to perfect detection, (r, w) 6 (1, 0) , then E (C ) CP                CP
0 

=  R  and  E (D )  =  P.  And so, using the formulas (B1a–b) for " and $, (B7a) converges to the next difference0 
NP 
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formula, as the C –players’ signal probabilities converge to perfect detection, (r, w) = (1, 0) :CP             

E(D )   –   E(C )    =         –     (B7b)NP       CP 

Next take the limit of the above difference as > drops to 0, to obtain the following inequality : 

E(D )  –  E(C )    =    P   +      >   0 (B7c)NP     CP 

Inequality (B7c) is strictly positive for all nonnegative c $ 0, and for all nonnegative discount factors up to the
limit where the denominator in (B7c) is well defined (all 0 # * < 1).  This implies the evolutionary success of the
C –players against D –players is not robust to beginning with a small frequency in the total population, regardless ofCP   NP

how skillfully they might distinguish themselves from D –players, and regardless of how small the cost of beingNP

matched up with a new partner might be.
However, a contrary result follows if we consider a special case assumed by Frank (1988, page 60) :  in which 

the search cost for an additional partner c is set equal to 0, and no discounting of future payoffs takes place (so that * =
1) before allowing > to converge to 0 in (B7b).  If these limiting assumptions are imposed before > drops to 0, along
with assuming perfect detection,  (r, w) = (1, 0); then the difference formula (B7b) becomes,

E(D )  –  E(C )   =      –   for  all    0  <  >  #  1 (B7d)NP     CP 

Notice the reversal to a negative difference, E(D ) – E(C ) < 0.  This reversal implies C –players willNP   CP        CP

outperform D –players  regardless of their own population frequency > from 0 to 1.  However, this result is misleadingNP

because it only holds at the limit where both c = 0 and * = 1; but not near the limit :  because we just showed the reverse 

positive difference must hold for any values c $ 0 and/or * < 1, as > drops to 0.

PART  2  (Proofs for Repeated Play With TFT or Sometimes Cooperating, SC–Players)

The repeated play analysis involved TFT   and  AllD  players, as defined in Section II of the main text.  It isCP    NP

similar to the analysis just presented in Part 1, except for the formulas (B3a–b) and (B5c–d) used to calculate expected
payoffs from actually playing a current partner.  This is because choosing to play one’s current partner will start an
indefinitely repeated game with either TFT  or AllD  , instead of only one round of choosing C or D actions.  So,CP  NP

recalling the one-period discount parameter is denoted *, we have the following formulas.

E(TFT  * TFT  )   =   R/(1 – *)     E(TFT  *AllD  )   =   S  + *P/(1 – *) (B8a)CP  CP             CP NP

E(AllD  * TFT  )   =   T  + *P/(1 – *)     E(AllD  * AllD )   =    P/(1 – *) (B8b)NP  CP                NP  NP

Then substituting these formulas in place of the expected payoff formulas for C  and D  players in equationsCP   NP

(B3a–b) and (B5c–d), gives the following : 

   E (TFT )   =    E(TFT *plays its current partner)     0 
CP        CP 

           =   (B9a)

           =       (B9b)

   E (AllD )   =   E(AllD *plays its current partner)0 
NP       NP 

  =    (B9c)

  =   (B9d)
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Then substitute formulas (B9b) and (B9d) in place of the expected payoffs E (C ) and E (D ) used in0    0 
CP   NP 

equations (B4b) and (B6) above,  to calculate the TFT  and AllD  players’ expected payoffs, denoted E(TFT )  and CP  NP     CP

E(AllD ); and rearrange terms to obtain the following difference formula, similar to (B7a) above :NP 

      E(AllD )  –  E(TFT )    =     NP     CP 

   –    (B10a)

So assuming perfect detection, (r, w)  = (1, 0), gives the same difference as statement (3a) of the main text,

E(AllD )   –   E(TFT )   =        –     (B10b)NP       CP 

So as > drops to 0, we obtain the following inequality : 

E(AllD )  –  E(TFT )    =      >   0 (B10c)NP     CP 

So as described in the main text, AllD –players are guaranteed to outperform TFT –players as their population >NP      CP

frequency drops to 0, even in the limiting case where they can perfectly detect and thereby limit interaction to playing
only with themselves; and even when the cost of searching for another partner c also drops to 0.

Next generalize the last result by substituting any repeated play strategy in place of TFT ; that alsoCP 

contingently participates, and which ‘sometimes cooperates’ at least once against AllD  (denoted SC   in the mainNP  CP

text)  –  provided the SC –players’ expected payoff conditional on starting to play a current partner, denoted E (SC ),CP             CP
0

is finite as > drops to 0.  Again assuming (r, w) = (1, 0), the following statements are essentially the same as (B10b-c):

E(AllD )   –   E(SC )    =         –     (B11a)NP       CP 

where  (B11a)  converges   to :        >   0      as   >  6 0 (B11b) 

So we have the same conclusion; namely,
THEOREM   B1 

Any discounting of future payoffs (0 # * < 1) implies any type of SC  player in one-shot or repeatedCP

games is vulnerable to its share in a population composed mostly of AllD  players; where thisNP 

vulnerability holds no matter how skillful a SC  player might be at avoiding participation with AllDCP         NP 

players, and even when there is a zero cost of searching for another partner (c = 0).

PART   3    (Proofs For Contingently Exiting Players )

Next consider any ‘contingently exiting’ player : who always starts playing; but will also exit after n rounds of 

continual defection by its partner, and who will cooperate at least once before exiting  – denoted in the main text by 

Ex –players.  An example for n = 1 is the ‘prudent moral’ strategy (Vanberg & Congleton 1992) :  that always startsn                  

play by cooperating, and then exits after the first defection by its partner. 
A contingent exitor’s payoff during the periods of continued play with an AllD–player before exiting after the

n  round is denoted V , and satisfies the following inequality :th
n       

 (B12a)
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The strict equality just above follows because any type of strategy against an AllD –player will receive eitherNP

payoff P or S on each round of play.  So  P  >  S implies any player who cooperates at least once with an AllD –player               NP

will necessarily receive lower expected payoff over n $ 1 rounds of play.
Consider a population with an > versus 1 – > frequency of Ex –players versus AllD –players.  The then   NP

Ex –players will then have an > probability of being matched with their own type, receiving an expected payoff denotedn

by V  =  E(Ex *Ex ).  Otherwise, they have a 1 – > chance of playing against an AllD –player: receiving an expected0 
  n n               NP

payoff  V  defined above in (B12a), before exiting n–rounds of play later, and then paying a discounted search cost  n

equal to, * c  $  0, before starting play with a new partner encountered from the larger population.n 
   

So the expected payoff of a Ex  player over all cases of encountering either themselves or AllD –players in then          NP

future, denoted V  =  E(Ex ), satisfies the relationship :  E(Ex )   =   >V    +   (1 – >) [V   –  * c  + * E(Ex ) ]. n       n                 n         n  
0            n   n 

Rearranging the last formula obtains : 

E(Ex )    =   (B12b)n 

Let the AllD –players’ expected payoff be denoted by, U  =  E(AllD ).  Also let U  denote the expectedNP           NP     n

payoff received by an AllD –player when matched with a Ex –player, over the n–rounds of play before the latterNP      n 

player exits the relationship; causing the AllD –player to pay a discounted search cost that equals * c  $  0, beforeNP              
n 

starting play with a new partner.
The AllD –players’ expected payoff satisfies a similar relationship as E(Ex ) in statement (B12a), and so weNP         n 

also have: E(AllD )    =    > [U   –  * c  + * E(AllD ) ]    +    (1 – >) (B13a)NP          n         NP 
n   n 

(B13b)

                   (B13c)

Then take the limit of (B13c) as the Ex  players’ population frequency > drops to 0, to see how well theyn

will do in an almost exclusive population of AllD–players; thereby obtaining : 

   >   0             (B13d)
Next consider the following identity that follows from a standard proof by induction : 

            (B14a)
Then recalling the inequality for V  given in (B12a) above, the difference expression in the curved brackets ( ) on then 

right-hand side of (B13d) is necessarily positive, by the following sequence of inequalities implied by identity (B14a)
just above : 

                                (B14b)

The last result implies the strict inequality in (B13d) is guaranteed to hold for any type of contingently exiting
player Ex .  So we have the same qualitative results as before : n            

THEOREM   B2

Any discounting of future payoffs (0 # * < 1) along with any nonnegative search cost (c $ 0) implies any type
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of Ex  player is vulnerable to its share in a larger population composed mostly of AllD players. n 

APPENDIX   C   (Proof  of  Theorem 2 ) 

The (CD, DC, C8D) players’ signal and action probabilities are denoted by p = (r , w , r , w , 8); andCD  CD  DC  DC

payoffs are denoted Z = (T, R, P, S).  Players’ strategies are also indexed from 1 to 5, by (s , s , s , s , s ) = (CC,1  2  3  4  5

CD, DC, DD, C8D).  Let E(s *s , p, Z) denote an s –player’s expected payoff when it plays against an s –player;m k      m         k

depending on the signal and action probabilities p, and depending on payoffs Z. 
It is sufficient to prove that a CD–player’s expected payoff against its own type will strictly exceed each of

the other four players’ expected payoffs when matched against a CD–player;  provided  (r , w ) is shiftedCD  CD 

sufficiently close to (0, 0) along a convex NN–ROC curve.  To do so, look at the CD column in Table 1 of the main
text, and notice the first comparison between CD and CC is immediate; because their expected payoffs in this column
converge respectively to (P, S) as (r , w ) 6 (0, 0).CD  CD 

The other comparisons involve additional algebra, but are otherwise straight forward.  Let the next
expression denote the expected payoff difference between player s  versus s  when they both play against player s :m  n       k 

      )(s , s * s , p, Z)   =   E(s * s , p, Z)   –   E(s * s , p, Z)     for   m … n, k  =  1, ... , 5m  n  k         m  k 
          

n  k 
 

Now compare CD with DD, again using the expected payoffs in the CD column of Table 1.  Algebraic manipulation
yields the following inequality for strictly positive (r , w ) > (0, 0) :CD  CD     

     if and only if (C1a)

r [(P – S) – (T – R)]  +  (T – P)(1 – )  –  (P – S)   >   0 (C1b)CD 

Then recall r /w  6 4 as (r , w ) 6 (0, 0) along any convex NN–ROC curve that bows above theCD CD    CD  CD 

diagonal line in Figure 1a, by statement (1) in Section I.  So the expression (C1b) converges to, (T – P) – (P – S) as
(r , w ) 6 (0, 0); where (T – P) = (T – R) + (R – P).  Since the denominator  r  of (C1a) is positive as (r , w )CD  CD                      CD       CD  CD 

6 (0, 0) along a convex NN–ROC curve, then the ratio )(CD , DD*CD, p, Z)/r  must become positive as (r , w )CD      CD  CD 

6 (0, 0), because (T – P) =  (T – R) + (R – P) > (P – S) was already assumed.  This establishes )(CD , DD*CD, p, Z)
> 0 must hold as (r , w ) 6 (0, 0) along a convex NN ROC curve.CD  CD 

Next compare CD with DC.  Algebraic manipulation of expected payoffs in the CD column of Table 1 yields
the following inequality for strictly positive (r , w ) > (0, 0) :CD  CD     

)(CD , DC*CD, p, Z)/r    >   0      if and only if (C2a)CD

(P – S)  +  (T + R)  +  (1 – )(R – P)  –  (1 + )(P – S)

   +  (r  + )[(P – S) – (T – R)]     >     0 (C2b)CD

Since  r /w  6 4  as  (r , w ) 6 (0, 0),  expression (C2b) converges to,  CD CD      CD  CD 

(P – S)   +   (T – R)   +   (R – P)   –   (P – S) (C2c)

The left-most term just above implies (C2c) equals  4  if the DC–players’ signal probability r  is less than 1;DC

otherwise, r  = 1 implies (C2c) equals the same difference as before, (T – R) + (R – P) – (P – S) = (T – P) – (P – S). DC

So either case (r  < 1  or  r  = 1) implies (C2b) must become positive as (r , w ) 6 (0, 0); which in turn impliesDC      DC         CD  CD 

)(CD, DC*CD, p, Z) > 0 must also hold as (r , w ) 6 (0, 0), because (T – P) > (P – S) was already assumed.CD  CD 

Next consider the last comparison of CD against C8D.  Algebraic manipulation of expected payoffs in the CD
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column of Table 1 yields the following inequality for strictly positive (r , w ) > (0, 0) :CD  CD     

)(CD , C8D*CD, p, Z)/r    >   0      if and only if (C3a)CD

   (P – S)  +  (T – P)  –  (P – S)  –   +  (r  – )[(P – S) – (T – R)]     >    0 (C3b)CD

The left-most term of (C3b) will rise to 4 as (r , w ) 6 (0, 0) if 8 > 0; otherwise, 8 = 0 implies (C3b)CD  CD 

converges to the same difference as before, (T – P) – (P – S).  So either way (8 > 0 or 8 = 0), (C3b) must become
positive as (r , w ) 6 (0, 0); which in turn implies )(CD , C8D*CD, p, Z) > 0 must also hold as (r , w ) 6 (0, 0),CD  CD                    CD  CD 

since (T – P) > (P – S) was already assumed.  This completes the four cases :  showing CD against another CD always 

does better than (CC, DC, DD, C8D) against CD, whenever (r , w ) shifts close enough to (0, 0) along a convex NNCD  CD 

ROC curve;  thus proving Theorem 2.
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