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Dynamic Spatial Network Quantile Autoregression ∗

Xiu Xu †Weining Wang ‡ Yongcheol Shin §

Abstract

This paper proposes a dynamic spatial autoregressive quantile model. Using

predetermined network information, we study dynamic tail event driven risk us-

ing a system of conditional quantile equations. Extending Zhu, Wang, Wang and

Härdle (2019), we allow the contemporaneous dependency of nodal responses by

incorporating a spatial lag in our model. For example, this is to allow a firm’s tail

behavior to be connected with a weighted aggregation of the simultaneous returns

of the other firms. In addition, we control for the common factor effects. The

instrumental variable quantile regressive method is used for our model estimation,

and the associated asymptotic theory for estimation is also provided. Simulation

results show that our model performs well at various quantile levels with different

network structures, especially when the node size increases. Finally, we illustrate

our method with an empirical study. We uncover significant network effects in the

spatial lag among financial institutions.
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1 Introduction

Quantifying network effect and tail dependence is important for studying financial conta-

gion and systemic risk, see (Acemoglu et al., 2015; Fafchamps and Gubert, 2007; Härdle

et al., 2016; Betz et al., 2016; Hautsch et al., 2015). Quantile regression is a powerful tool

for characterizing the heterogeneous impact in policy analysis and measuring dynamic tail

risk. However, in most complex financial systems, multiple entities are often intertwined

and interact with each other, which is represented as networks (Hautsch et al., 2015; Här-

dle et al., 2016; Chen et al., 2019). On the other hand, in practice, the endogeneity issue

commonly leads to inconsistent estimates in conventional quantile regression (Wüthrich,

2019). Our interest lies in studying the complex tail dependency structure in the context

of endogeneity and dynamic networks with a large number of nodes.

In this paper we propose a dynamic spatial quantile regression model to study fi-

nancial markets. By extending the instrumental variable quantile regression (IVQR)

model (Chernozhukov and Hansen, 2006), we focus on capturing simultaneous effects

for network nodes, along with lagged network effects and exogenous common shocks.

Specifically, in order to cope with the endogeneity problem arising from incorporating

simultaneous network effects, we extend IVQR estimation for modeling dynamic spatial

data. Our empirical application concerning the financial contagions in the US stock mar-

ket finds that stock returns are overwhelmingly affected by its "peers" (returns of other

stocks in the same period) controlling for a few other factors. Meanwhile, the effects of

common factors on all response variables in a network structure are non-negligible.

Quantile regression in time series has been of particular interest in the existing liter-

ature since a seminal work by Bassett and Koenker (1978). Engle and Manganelli (2004)

propose a conditional autoregressive value at risk (CAViaR) model, which specifies the

evolution of value-at-risk (VaR) over time using an autoregressive process. Koenker and

Xiao (2006) consider a quantile autoregressive method to model the conditional quan-

tile function, which allows an examination of asymptotic properties of the underlying

process. Galvao Jr et al. (2013) study quantile regression in an autoregressive dynamic

framework with exogenous stationary covariates. Our methodology features a dynamic

tail dependency graph within a network framework, which is important in modeling fi-
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nancial networks, see e.g. Diebold and Yilmaz (2014).

Furthermore, in the network and spatial literature, Zhu et al. (2017) develop a net-

work autoregression modeling framework at the mean level. There are many extensions

of network models in this direction. For example, Zhu et al. (2018) consider a mul-

tivariate spatial autoregression model; Zhu, Chang, Li and Wang (2019) investigate a

screening method to select influential nodes; and Zhu et al. (2020) study nonconvex pe-

nalized estimation methods in high-dimensional vector autoregression models. Zhu and

Pan (2018) extend the network vector autoregression model to allow for group-specific

parameters and enhance the model’s flexibility. Zhu, Wang, Wang and Härdle (2019) pro-

pose a network quantile autoregression (NQAR) model to study conditional quantiles. In

this research we extend the NQAR model to characterize the simultaneous effects and

cross-sectional financial tail risk dependence in complex financial networks. We utilize

the IVQR approach by Chernozhukov and Hansen (2006) to cope with the endogeneity

issue due to simultaneous spatial items, motivated by Su and Yang (2011), who extend

the IVQR model to non-iid data with a correctly specified linear spatial autoregressive

model and nonstochastic regressors. Our work can be seen as an extension of Su and

Yang (2011) to a dynamic model framework. However, the technical assumptions are

substantially different as we assume near epoch dependence of the underlying processes.

There are also many studies that cope with the endogeneity issue by using IVQR

estimation, see e.g. Wüthrich (2019, 2020); Machado and Silva (2019). Frölich and

Melly (2013) use an instrumental variable (IV) to solve for the endogeneity of the binary

treatment variable. Su and Hoshino (2016) consider sieve instrumental variable quantile

regression estimation of functional coefficient models. On the other hand, our paper is

also closely related to literature on tail dependence in a complex financial system, see

e.g. Hautsch et al. (2014); Härdle et al. (2016). In a multivariate quantile context, White

et al. (2015) propose an innovative vector autoregressive model for quantile dynamics.

Compared with the existing literature, our approach is different mainly in the following

three aspects: First, the proposed model admits cross-section dependence in quantile

dynamics, which facilitates investigating the simultaneous effects. Second, it embeds an

observed network structure, which provides a parametric estimation framework for mod-

eling a large number of nodes along with controlling for the observed nodal heterogeneity.
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Third, the model allows for exogenous common covariates to affect the tail dependence

of the process, which accounts for the effects under various economic environments.

Finally, our main contributions are summarized as follows: First, we propose a dy-

namic network quantile model to characterize the cross-sectional and temporal tail de-

pendence, which incorporates valuable predetermined network information. Second, we

study the asymptotic properties for both the underlying process and the estimated IVQR

parameters. Moreover, detailed conditions on the network structures are derived to ensure

the consistency and the asymptotic normality of the estimator. Lastly, when applying

our model in the US financial market to investigate financial risk contagion, we find that

the simultaneous network effects are dominated for different network structures. This

implies that one cannot neglect the contemporaneous effects in tail dependence.

This paper is structured as follows: In Section 2 we introduce the model and discuss

the stationarity of the data- generating processes as well as the asymptotic stationary

distribution of the average. Section 3 introduces the IVQR estimation and the corre-

sponding asymptotic properties are presented in Section 3.2. Simulation results with

different network scenarios are illustrated in Section 4. Finally, we implement our model

in a US financial market risk contagion application in Section 5. Section 6 concludes our

paper. All the related proofs can be found in Appendix 7.

Notations: For a constant k > 0 and a vector v = (v1, . . . , vd)> ∈ Rd, we denote |v|k =

(∑d
i=1 |vi|k)1/k, |v| = |v|2 and |v|∞ = maxi≤d |vi|. For a matrix A = (aij)1≤i≤m,1≤j≤n, we

define the spectral norm |A|2 = max|v|=1 |Av| and the max norm |A|max = maxi,j |ai,j|. We

write an = O(bn) or an . bn if there exists a positive constant C such that an/bn 6 C for

all large n, and we denote an = o(bn) (resp. an ∼ bn), if an/bn → 0 (resp. an/bn → 1). For

two sequences of random variables (Xn) and (Yn), we write Xn = op(Yn), if Xn/Yn → 0

in probability. Let IN or I be the N ×N identity matrix. I(·) is the indicator function.

Denote |.|2 or ||.|| as the L2 norm of a matrix or vector. 1N denotes a N × 1 vector with

each element as one. N represents the integer set. For any n×mmatrixA with element aij,

define the column- and the row-sum by ‖A‖1 = max
16j6m

n∑
i=1
|aij| and ‖A‖∞ = max

16i6n

m∑
j=1
|aij|.

For any random vector X, denote ‖X‖p = (E |X|p)1/p as its Lp-norm if the absolute pth

moment exists.

4
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2 The model

Consider the network quantile autoregressive distributed lag model (NQADL):

Yit = γ0(Uit) +
q∑
l=1

Zilαl(Uit) + γ1(Uit)n−1
i

N∑
j=1

aijYjt (1)

+ γ2(Uit)n−1
i

N∑
j=1

aijYj,t−1 + γ3(Uit)Yi,t−1 +
p∑

k=0
F>t−kβk(Uit)

for i = 1, · · · , N and t = 1, · · · , T , where {Uit}i,t is a sequence of i.i.d. uniform ran-

dom variables on the set [0, 1] such that γj(.)s(j = 0, 1, 2, 3), αl(.)s(l = 1, 2, · · · , q), and

βk(.)s(k = 0, 1, · · · , p) are unknown parameter functions from [0, 1] to R. In particular,

γ1(.) measures the contemporaneous network effect, and γ1(.) measures the lagged net-

work effect. Zi = (Zi1, · · · , Ziq)> ∈ Rq is a q × 1 vector of time-invariant node-specific

covariates, and Ft ∈ Rm is an m× 1 vector of common covariates that captures the sys-

temic influences on response variables. aij is the (i, j) element of the adjacency matrix

W ∈ RN×N with aii = 0 (not self-connection), where aij = 1 if there is an edge from node

i to j while aij = 0 otherwise, and ni = ∑
j aij is the out-degree for the ith node.

Assuming that the right hand side of (1) is monotonically increasing in Uit, we

can write the τ -th conditional quantile function of Yit given the information set Ft =

{Zi,Yt−1,Yt, Ft} as

QYit(τ |Ft) = γ0(τ) +
q∑
l=1

Zilαl(τ) + γ1(τ)n−1
i

N∑
j=1

aijYjt (2)

+ γ2(τ)n−1
i

N∑
j=1

aijYj,t−1 + γ3(τ)Yi,t−1 +
p∑

k=0
F>t−kβk(τ).

First, γ0(τ) +∑q
l=1 Zilαl(τ) is the (time-invariant) nodal impact of node i, where γ0(τ) is

the baseline function and Zils is assumed to be independent of Uits. Next, network inter-

actions between nodes (e.g., firms with common shareholders), both contemporaneously

and with lag, are captured via the network variables, n−1
i

N∑
j=1

aijYjt and n−1
i

N∑
j=1

aijYj,t−1.

Then, γ1(τ) captures the (simultaneous) structural network effects while γ2(τ) measures

the lagged network function. If the momentum function γ3(τ) is statistically significant,

this points to the usual temporal dynamics for the same node. Furthermore, we control

5
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for the impacts of the observed common factors, i.e. Ft with lags which can mitigate any

remaining common shock effect in the data. For instance, if Yit denotes stock returns for

a large number of firms, we accommodate common macroeconomic and financial vari-

ables such as interest rate, inflation rate, the market index return, book-to-market ratio,

price-earnings ratio, market volatility and so on, see e.g. Zhu, Wang, Wang and Härdle

(2019); Galvao Jr et al. (2013).

To facilitate further developments we introduce convenient notations. Let Yt =

(Y1t, · · · , YNt)> ∈ RN , Z = (Z1, · · · , ZN)> ∈ RN×q, Ft = (F>t , · · · , F>t−p)> ∈ R(p+1)m.

Define A0t = (γ0(Uit) + ∑q
l=1 Zilαl(Uit), 1 6 i 6 N)> ∈ RN , A1t = diag{γ1(Uit), 1 6

i 6 N}> ∈ RN×N , A2t = diag{γ2(Uit), 1 6 i 6 N}> ∈ RN×N , A3t = diag{γ3(Uit), 1 6

i 6 N}> ∈ RN×N , Bt = (β>0 (Uit), · · · , β>p (Uit)) ∈ RN×(p+1)m, and Γ = (1Nγ0(τ) +∑q
l=1 Zilαl(τ), 1 6 i 6 N)> ∈ RN .

Then, the NQADL model (1) can be written in the matrix form as

Yt = Γ + A1tWYt + HtYt−1 + BtFt + Vt (3)

where Γ = E (A0t), W = (wij) = (n−1
i aij) ∈ RN×N is the row-normalized adjacency

matrix, Ht = A2tW + A3t ∈ RN×N , and Vt = A0t − Γ ∈ RN is independent identically

distributed (iid) over t with mean 0 and covariance ΣV = σ2
V IN ∈ RN×N .

The nontrivial issue for the estimation is that the endogeneity caused by contem-

poraneous network spillovers across nodes renders the standard ordinary least squares

(OLS) quantile estimator to be inconsistent. In the conditional mean regression, Quasi-

Maximum Likelihood (QML) techniques, based upon a data transformation removing the

endogeneity, have been developed by Cliff and Ord (1981), and the asymptotic properties

are studied rigorously in Lee (2004). The evaluation of the QML requires calculation

of a Jacobian matrix which grows with the cross-section dimension. For applications in

which the number of network nodes is large, however, the computational cost can be pro-

hibitive. This problem is exacerbated by heterogeneity across quantiles. In this regard

Chernozhukov and Hansen (2005) propose the instrumental variable (IV) approach to

estimating quantile treatment effects in the presence of endogeneity. Chernozhukov and

Hansen (2006) and Chernozhukov and Hansen (2008) develop the robust inference. Here,

6
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we follow the IV approach to cope with the endogeneity.

2.1 Stationarity

In this section we derive the stationarity conditions for the dependent variable in (3),

and present the asymptotic distribution of Yt. Recall that |A|2 = sup{v∈Rd,v 6=0} |Av|2/|v|2,

where |.|2 is the two norm of a vector or matrix. Then, we make the following assumptions:

Assumption 2.1. (1) Let |W |2 6 1 and Υ = sup
u
|γ1(u)| 6 c1 < 1, where W is a

row normalized network matrix. Assume that Uits are iid over i and t, and Fts are iid.

c23(2)maxi |γ2(Uit)|+ maxi |γ3(Uit)| 6 c23 < 1, and c1 + c23 < 1, where c1, c23 are positive

constants.

(3) maxi |γ0(Uit)| + maxi
∑q
l=1 |Zil||αl(Uit)| 6 dz. |Bt|∞|Ft|1 6 df , where dz and df

are assumed to be random variables with bounded moments. Let St = I − A1tW and

Dt = S−1
t (BtFt + A0t) with D = EDt and the elementwise maximum value Dmax < ∞.

Then, |E{vec(Dt−l1D>t−l1)}|∞ 6 σdmax <∞, where l1 = (0, 1, · · · , t− 1).

(4) The right hand side of the model (1) is monotonically increasing in Uit.

Assumption 2.1(1) assures the invertibility of the random matrix St = I − A1tW .

Then, the model (3) has a unique solution if and only if every principal minor of I −

γ1(Uit)W is positive, which is met by Assumption 2.1(1). But, it is a sufficient but

not necessary condition for the existence of a unique solution. Assumption 2.1(2) is

necessary to obtain the strict stationarity of {Yt}t. Under Assumptions 2.1(2) and (3),

the covariance stationarity can be achieved. We can relax the factor process to be weakly

dependent, however, studying factor processes is not our main theoretical focus. Then

we have the following lemma concerning the stationarity.

Lemma 2.1. (i) Under Assumption 2.1, the process {Yt}t is strictly stationary.

(ii)Under Assumption 2.1, {Yt}t is also covariance stationary.

The detailed discussions of strict stationarity are found in Appendix 7.1. Once Yt

is strictly stationary, additionally if Var(Yt) and Γl = Cov(Yt,Yt−l) exist, then Yt is

7
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covariance stationary. The model (3) can also be written as

Yt = S−1
t (HtYt−1 +BtFt + A0t) (4)

= S−1
t HtYt−1 + S−1

t BtFt + S−1
t A0t

where St = I −A1tW . Then, we have the following covariance stationary solution:

Yt =
∞∑
l=0

ΠlDt−l =
∞∑
l=0

ΠlS
−1
t−lBt−lFt−l +

∞∑
l=0

ΠlS
−1
t−lA0t, (5)

where Dt = S−1
t (BtFt + A0t), Mt = S−1

t Ht and Πl = Mt × · · · ×Mt−l+1 for l > 1 with

Π0 = I and Π1 = Mt. In Appendix 7.1 we prove that the variance and covariance of Yt

exist under Assumption 2.1.

2.2 Asymptotic stationary distribution

We define a as any vector a ∈ RN with |a|2 = 1 and fixed d number of non zero elements.

We then show that the averaged response is asymptotically normal distributed. Let

Ỹt = Yt − µY, LT = ∑T
t=1 a

>Ỹt, and Lt = Lbtc + (t − btc)a>Ybtc+1, t > 1, where btc =

max{k ∈ Z : k > t} is the floor function. Then, we have the following thoerem.

Theorem 1. Consider any vector a ∈ RN with |a|2 = 1 and fixed d < N number of non

zero elements. Under Assumption 2.1, then

LTu√
T
⇒ σaYB(u), 0 6 u 6 1 (6)

where σ2
aY

def= ∑
l>0 a

>Γla is the long run variance of a>Ỹt and B(u) (0 6 u 6 1) is a

Brownian motion.

Remark For u = 1, Theorem 1 also implies:

√
T (a>(Y− µY)) L−→ N(0, σ2

aY), as T →∞. (7)

where Y = T−1∑T
t=1 Yt. Thus, the mean of Yt converges in law to a normal distribution.

8
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3 The IVQR estimation

In this section, we briefly discuss our estimator and the associated assumptions. We also

show the estimation steps adopted for simulations and applications.

3.1 IVQR estimator

Suppose that there exists an N × ` instrumental variable matrix, which is denoted as

Rt = (R1t, · · · , RNt)> ∈ RN×`. We have the following quantile conditions:

P
(
Yit 6 γ1(τ)Y it +X>it φ(τ)|Xit, Rit

)
= τ a.s. (8)

We denote Y it = n−1
i

∑N
j=1 aijYjt and Xit =

(
1, Z>i , Y i,t−1, Yi,t−1, F

>
t , ..., F

>
t−k

)>
with

φ(τ) = [γ0(τ), α>(τ), γ2(τ), γ3(τ), β>0 (τ), ..., β>k (τ)]> ∈ Rq+3+(p+1)m.

In order to solve (8) we need to find (γ1(τ), φ(τ)) such that 0 is a solution to the

standard quantile regression (QR) of Yit − γ1(τ)Y it −X>it φ(τ) on (Xit, Rit):

0 ∈ arg min
g∈G

E
[
ρτ
{
Yit − γ1(τ)Y it −X>it φ(τ)− g (Xit, Rit)

}]
, (9)

where ρτ (u) = u{τ−I(u < 0)} is the check function with I(·) as the indicator function, and

G is the class of measurable functions of (Xit, Rit). This is referred to as the instrumental

variable quantile regression estimator. Following Chernozhukov and Hansen (2005) and

Su and Yang (2011), we restrict G to the class of linear functions, say

G = {g (Xit, Rit) = R>itλ(τ) : λ ∈ Λ}, (10)

where Λ is a compact set in R`. Here, we consider some transformed instrumental vari-

ables Φit, which are obtained by the least squares projection of Y it on (Xit, Rit). Then,

we obtain the finite sample analogue of the quantile regression objective function as

Q(γ1(τ), φ(τ), λ(τ)) =
N∑
i=1

T∑
t=1

[
ρτ
{
Yit − γ1(τ)Y it −X>it φ(τ)− Φ>itλ(τ)

}]
. (11)

9
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To simplify the presentation, we define θ(τ) = (γ1(τ), φ(τ)) and η(τ) = (φ(τ), λ(τ)).

The main idea behind the IVQR estimation lies in that the estimator (γ̂1(τ), φ̂(τ), λ̂(τ))

based on (11) can approximate the target true parameter set (γ1(τ), φ(τ), 0). For a given

value of endogenous parameter γ1(τ) over a fine grid of a compact subset of the interval

(−1, 1), we first run the ordinary QR of Yit− γ1(τ)Y it on (Xit,Φit) and obtain the corre-

sponding estimator. The estimator is denoted as η̂(γ1(τ), τ) =
[
φ̂(γ1(τ), τ), λ̂(γ1(τ), τ)

]
.

Next, we select γ1(τ) which minimizes λ̂(γ1(τ), τ) over the interval (−1, 1). The IVQR

estimator of θ(τ) = (γ1(τ), φ(τ)) is then obtained by (γ̂1(τ), φ̂(γ̂1(τ), τ)).

For a given quantile index τ , the IVQR estimation can proceed as follows:

(i) For a given value of γ1(τ), run the quantile regression of Yit − γ1(τ)Y it against

(Xit,Φit) to obtain

η̂(γ1(τ), τ) = arg min
(φ,λ)

Q(γ1(τ), φ(τ), λ(τ)). (12)

(ii) Minimize a weighted norm of λ̂(γ1(τ), τ) over γ1(τ) to obtain the IVQR estimator

of γ1(τ):

γ̂1(τ) = arg min
γ1∈(−1,1)

λ̂>(γ1(τ), τ) A λ̂(γ1(τ), τ), (13)

where A is some positive definite matrix. Without loss of generality we shall set A = I

throughout the paper.

(iii) Run the quantile regression of Yit − γ̂1(τ)Y it on Xit to obtain the estimator of

φ(τ). The estimator is denoted as φ̂(τ) = φ̂(γ̂1(τ), τ). Then, we finally obtain the IVQR

estimator by

θ̂(τ) = (γ̂1(τ), φ̂(τ)) = (γ̂1(τ), φ̂(γ̂1(τ), τ)). (14)

3.2 Asymptotic theory

In order to develop the relevant asymptotic theory for the IVQR estimator, we need to

carefully deal with some topological properties of the dependent variable Yt that are

spatially and temporally dependent. We utilize NED to address the spatial dependence

of the statistics involved. The derivation of the asymptotic property follows from the
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standard M-estimation with quantile loss function as a special case. The complication

is the detailed assumptions imposed on the adjacency matrix and we study how this

translates to the dependence of the statistics involved. First, conditioning on the common

factor process, we show that the elements of {Yt}t follows a near-epoch dependent (NED)

process after introducing the basic definitions as in 3.2.1. Then, we derive the asymptotic

distribution of the IVQR estimator under certain regularity assumptions in subsection

3.2.2.

3.2.1 Definition and notations

Jenish and Prucha (2009, 2012) extend the notion of near-epoch dependent (NED) pro-

cesses used in the time series literature to random fields. This class of NED processes can

accommodate a wide range of models with spatial dependence. They derive the central

limit theorem and the law of large numbers for NED random fields. Accordingly, we con-

sider Rd, d > 1. The space Rd is endowed with the metric ρ(i, j) = max16l6d |jl− il| with

the corresponding norm |i| = max16l6d |il|, where il is the l-th element of i. The distance

between any subsets U, V ⊆ D is defined as ρ(U, V ) = inf{ρ(i, j) : i ∈ U and j ∈ V }.

Let |U | denote the cardinality of a finite subset U . We set in our two dimensional data

set t as a special dimensional in space, therefore ρ((i, t), (i′, t′)) = max(|i− i′|, |t− t′|).

Assumption 3.1. Let the lattice D ⊆ Rd, d > 1, be countably infinite. Then, ρ(i, j) >

ρ0,∀i, j ∈ D. We set ρ0 > 1 w.l.o.g.

Let Z = {Xit, Uit, (i, t) ∈ DNT , NT > 1} be triangular arrays of random fields defined

on a probability space (Ω,F , P ) with DNT ⊆ D. The cardinality of DNT satisfying

lim
N→∞,T→∞

|DNT | → ∞. Let C def= {Ft}t, and define Fit(s) = σ(Xi′t′ , Ui′t′ , C : (i′, t′) ∈

DNT , ρ((i′, t′), (i, t)) 6 s) as the σ- field generated by random vectors Xi′t′ , Ui′t′ located

within distance s from (i, t).

Definition 3.1. Let Z = {Zit, (i, t) ∈ DNT , NT > 1} and ε = {εit, (i, t) ∈ DNT , NT > 1}

be random fields with ‖Zit‖p <∞ for p > 1, where DNT ⊆ D and its cardinality is given

by |DNT | = NT . Let {dit, (i, t) ∈ DNT , NT > 1} be an array of positive constants. Then,
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the random field Z is Lp-near-epoch dependent on the random field ε if

‖Zit − E(Zit|Fit(s))‖p < ditϕ(s)

for some sequence ϕ(s) > 0 with lim
s→∞

ϕ(s) = 0. {ϕ(s)} are the NED coefficients and dits

are the NED scaling factors. If sup
NT

sup
(i,t)∈DNT

dit <∞, then Z is uniformly Lp-NED on ε.

Next, we present the L2-NED properties of random field Z on some α-mixing random

field ε. The definition of the α-mixing coefficient is stated as follows:

Definition 3.2. Let A and B be two σ-algebras of F , and define

α(A ,B) = sup(|P (AB)− P (A)P (B)|, A ∈ A , B ∈ B),

For U ⊆ DNT and V ⊆ DNT , let σNT (U) = σ(εit, (i, t) ∈ U) and αNT (U, V ) =

α(σNT (U), σNT (V )). Then, the α-mixing coefficients for the random field ε is defined

as:

α(u, v, h) = sup
N,T

sup
U,V

(αNT (U, V ), |U | 6 u, |V | 6 v, ρ(U, V ) > h)

with u, v, h ∈ N.

Unlike the standard mixing time-series processes, the mixing coefficients for random

fields depend not only on the distance between two sets but also on their sizes. We

further assume that α(u, v, h) 6 ϕ(u, v)α̂(h), where the function ϕ(u, v) is nondecreasing

with u and v, and α̂(h) → 0 as h → ∞ (see Assumption 3.4(ii) below). This suggests

that we explicate the two different sources of dependence, separately: (i) the decay of

dependence with the distance, and (ii) the accumulation of dependence as the sample

region expands. In the random field literature, ϕ(u, v) can be commonly selected such

that ϕ(u, v) = (u+ v)a, a > 0 or ϕ(u, v) = min(u, v), see Jenish and Prucha (2012).

Following Xu and Lee (2015), we outline some conditions for NED properties for the

dependent variable Yt in Assumptions 3.2 and 3.3.

Assumption 3.2. The network matrix W is non-stochastic one with zero diagonals and

uniformly bounded for all N with absolute row and column sums such that the matrix

St = I−A1tW is nonsingular. We consider two cases for wij > 0 for any i, j.
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(1) Case 1: |wij| 6 π0ρ(i, j)−cw with constants π0 > 0 and cw > d. In addition, there

exists at most the K(> 1) number of columns in W , with minu |γ1(u)|∑n
i=1 |wij| > Υ.

(2) Case 2: Two nodes influence each other only if they are located sufficiently close;

namely, wij 6= 0 if ρ(i, j) 6 ρ̄0 and wij = 0 otherwise. We set ρ̄0 > 1 w.l.o.g.

Assumption 3.2 (1) allows two individuals to have direct interaction even though

their locations are far away from each other, with the requirement that the strength of

interaction wij declines with the distance ρ(i, j) in the power of cw. The assumption is in

line with Xu and Lee (2015). Moreover, by excluding a limited number of nodes K(> 1),

the total effects on other units from each node should be bounded, i.e., we assume that

sup|γ1(u)| supj
∑n
i=1 |wij| < Υ or sup|γ1(u)| supj

∑N
i=1 |wij| < 1 w.l.o.g. This corresponds

to the existence of a narrow number of units with large aggregate effects on others even

as the total number of nodes rises. Assumption 3.2 (2) allows two individuals to have

direct interaction only if they are located within a specific distance. Assumption 3.2 is

mainly used to restrict the NED coefficients ϕ(s) → 0 as s → ∞. We will discuss the

NED properties of {Yit}i,t in Proposition 1 under these two scenarios.

Assumption 3.3. (1) {Xit, Uit}i,t is an α-mixing random field with an α-mixing co-

efficient, α(u, v, h) 6 (u + v)ς α̂(h), ς > 0, where
∞∑
h=1

h2(ς0+1)−1α̂δ/(4+2δ)(h) < ∞ with

ς0 = δς/(4 + 2δ) and some constants δ, ξ > 0.

(2) sup
i,t
‖(Xit, Uit)‖2+δ <∞ for some δ > 0.

The α-mixing coefficient of {Xit, Uit}i,t in Assumption 3.3(1) is related to the prop-

erties of NED process {Yit}i,t. Assumption 3.3(2) is required to constrain the bound

property of the NED scaling factors dit in {Yit}i,t.

Define uit = uit(γ1, φ, λ, τ) = Yit − γ1(τ)Y it −X>it φ(τ)− Φ>itλ(τ) with its transforma-

tions, the check function ρτ (u) = (τ − 1(u 6 0))u and ψτ (u) = τ − 1(u 6 0) which is the

(directional) derivative of ρτ (u). Proposition 3.1 provides the NED properties of {Yit}i,t,

{ρτ (uit)}i,t and {ψτ (uit)}i,t on the base {Xit, Uit}i,t.

Proposition 3.1. (1) Under Assumptions 3.1-3.2(1) and 3.3(ii), {Yit}i,t is geometrically

L2-NED on {Xit, Uit}i,t such that ‖Yit − E(Yit|Fit(s))‖2 < Cs−(cw−d) (cw > d) for some
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C > 0 that does not depend on i and t. Similarly, {uit}i,t hold the same conclusions. The

transformations {ψτ (uit)}i,t and {ρτ (uit)}i,t are also L2-NED on {Xit, Uit}i,t.

(2) Under Assumptions 3.1-3.2(2) and 3.3(ii), {Yit}ni=1 is geometrically L2-NED on

{Xit, Uit}it such that ‖Yit − E(Yit|Fit(s))‖2 < CΥs/ρ̄0 (Υ < 1) for some C > 0 that does

not depend on i and t. Similarly, {uit}i,t hold the same conclusions. The transformations

{ψτ (uit)}i,t and {ρτ (uit)}i,t are also L2-NED on {Xit, Uit}i,t.

Define sit(γ0
1 , η

0(γ0
1 , τ), τ) = ψτ

{
Yit − γ0

1(τ)Y it −Ψ>itη0(γ0
1 , τ)

}
Ψit with Ψit = (X>it ,Φ>it)>

and šit = šit(γ0
1 , η

0(γ0
1 , τ), τ) = sit(γ0

1 , η
0(γ0

1 , τ), τ). Then, conditioning on C, it is straight-

forward to show that the process {šit}i,t is NED. To derive the central limit theorem of

G0
NT = 1√

NT

∑N
i=1

∑T
t=1[sit(γ0

1 , η
0(γ0

1 , τ), τ) − E sit(γ0
1 , η

0(γ0
1 , τ), τ)] = 1√

NT

∑N
i=1

∑T
t=1 šit,

where the variance of G0
NT is given by Ω0 = τ(1 − τ) lim

N→∞,T→∞
E(ΨitΨ>it), we make the

following assumptions:

Assumption 3.4. (i) There exist nonrandom positive constants {cit, (i, t) ∈ DNT , NT >

1} such that ρτ (uit)/cit is uniformly Lp-bounded for p > 1, i.e.,

supN,T sup(i,t)∈DNT E |ρτ (uit)/cit|p <∞.

(ii) The α-mixing coefficient of the random field {Xit, Uit}i,t satisfies: α(u, v, h) 6

ϕ(u, v)α̂(h) where the function ϕ(u, v) is non-decreasing with u and v, and∑∞h=1 h
d−1α̂(h) <

∞.

Assumption 3.5. (Uniform L2+δ Integrability)

(i) There exists an array of positive constants {cit, (i, t) ∈ DNT , NT > 1} such that

lim
k→∞

sup
N,T

sup
(i,t)∈DNT

E{|šit/cit|2+δ1(|šit/cit| > k)} = 0 for δ > 0.

(ii) inf
N,T
|DNT |−1M−2

NTΩ0 > 0, where MNT = max
(i,t)∈DNT

cit.

(iii) NED coefficients satisfy: ∑∞h=1 h
d−1ϕ(h) <∞, and NED scaling factors satisfy:

sup
NT

sup
(i,t)∈DNT

c−1
it dit 6 C <∞.

3.2.2 Asymptotic distribution of the IVQR estimator

In this subsection, we show the asymptotic normality of our estimator.
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Assumption 3.6 (Conditions for identification and estimation). R1. (Compactness and

Convexity) For all τ , (γ1(τ), φ(τ)) ∈ A× B, A× B is compact and convex.

R2. (Full Rank and Continuity) Yt has bounded conditional density, a.s. supYt∈RN fYt|Ft(y) <

K, where Ft = {Zi,Yt−1,Yt, Ft} is the information set. Define

SNT (π, τ) = 1
NT

N∑
i=1

T∑
t=1

[
ψτ
{
Yit − γ1(τ)Y it −X>it φ(τ)− Φ>itλ(τ)

}
Ψit

]
, (15)

S∞(π, τ) = lim
N→∞,T→∞

E [SNT (π, τ)|C] , S∗∞(π, τ) = lim
N→∞,T→∞

E [SNT (π, τ)] , (16)

SNT (θ, τ) = 1
NT

N∑
i=1

T∑
t=1

[
ψτ
{
Yit − γ1(τ)Y it −X>it φ(τ)

}
Ψit

]
, (17)

S∞(θ, τ) = lim
N→∞,T→∞

E [SNT (θ, τ)|C] , S∗∞(θ, τ) = lim
N→∞,T→∞

E [SNT (θ, τ)] . (18)

where π ≡ (γ1, φ
>, λ>)>, θ ≡ (γ1, φ

>)>, ψτ (u) = τ − I(u < 0), and Ψit = (X>it ,Φ>it)>.

Then, Jacobian matrices ∂S∞(θ, τ)
∂(γ1, φ) and ∂S∞(π, τ)

∂(φ, λ) are continuous and have full rank,

uniformly over A× B × G × T , where G is a compact set with λ(τ) ∈ G, and the image

of A× B under the mapping (γ1, φ) 7→ S∞(θ, τ) is simply connected.

R3. For a given fixed τ ∈ T , the unknown true parameter θ0(τ) = (γ0
1(τ), φ0(τ))

uniquely solves S∞(θ, τ) = 0 over A× B.

Remark: Condition R1 assumes compactness of the parameter space, which is needed

for γ1(τ) due to the non-convex objective function with respect to γ1. The condition R2

implies the global identification, and the continuity condition is required for deriving

the asymptotic normality. R3 requires that (γ0
1(τ), φ0(τ)) be the unique solution to

S∞(θ, τ) = 0, which is necessary for the consistency of the estimator.

Denote θ̂(τ) = (γ̂1(τ), φ̂(τ)) as the IVQR estimator of θ(τ) = (γ1(τ), φ(τ)), where

φ̂(τ) = φ̂(γ̂1(τ), τ). Denote the unknown true parameter as θ0(τ) = (γ0
1(τ), φ0(τ)). Define

the (q + 4 + (p+ 1)m)× (q + 4 + (p+ 1)m) matrices:

J(τ) = ∂S∞(π, τ)
∂(γ1, φ)

∣∣∣∣
γ1=γ0

1 ,φ=φ0,λ=0
, J∗(τ) = ∂S∗∞(π, τ)

∂(γ1, φ)

∣∣∣∣
γ1=γ0

1 ,φ=φ0,λ=0
. (19)

Theorem 2 (Linearization). Under Assumption 3.1 - 3.4, 3.6, as min{N, T} → ∞,

√
NT

{
θ̂(τ)− θ0(τ))

}
=− J−1(τ)G0

NT (θ0, τ) + op(1). (20)
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Further, under Assumption 3.5, the NED process {šit}i,t satisfies the central limit

theorem such that G0
NT (θ0, τ) = 1√

NT

∑N
i=1

∑T
t=1 šit follows a mean zero Gaussian process

with covariance function Ω0 = τ(1− τ) E(ΨitΨ>it |C). Define Ω∗0 = τ(1− τ) E(ΨitΨ>it), one

can prove that Ω−1
0 Ω∗0 →p I. Then, we establish the asymptotic normality of θ̂(τ) in the

theorem below.

Theorem 3 (Estimation). Under Assumption 3.1 - 3.6, we have Ω−1
0 Ω∗0 →p I, and

J−1(τ)J∗(τ)→p I, then

√
NT

{
θ̂(τ)− θ(τ)

}
d→ N(0,Σθ), (21)

where Σθ = J∗(τ)−1Ω∗0J∗(τ)−1, and Ω∗0 = τ(1− τ) E(ΨitΨ>it).

Remark: We estimate the variance covariance matrix Ω̂∗0 as (NT )−1τ(1−τ)
N∑
i=1

T∑
t=1

ΨitΨ>it .

Moreover, to estimate J∗(τ), define ξ̃it = (Y it,Φ>it)>, then

Ĵ∗(τ) = (2NTh)−1
N∑
i=1

T∑
t=1

I(ûit 6 h)Ψitξ̃
>
it . (22)

4 Monte Carlo simulations

We examine the finite sample properties of the IVQR estimator via a Monte Carlo simu-

lation using a data generating process based on the model in equation (1) using the three

different network structures.

4.1 The setup

We construct the DGP from the model (1) as follows: First, we generate the five nodal

covariates, Zi = (Zi1, · · · , Zi5)> ∈ R5 from a multivariate normal distribution N(0,Σz),

where Σz = (σj1j2) and σj1j2 = 0.5|j1−j2|. Then, we construct the two common covariates,

Ft = (F1t, F2t)> ∈ R2 from the iid standard normal distribution. Let γj,it = γj(Uit) for

j = 0, 1, 2, 3, αj,it = αj(Uit) for j = 1, ..., 5, and βmj,it = βmj(Uit) for m = 1, 2 and

j = 0, 1, where we set the lag of 2 common covariates to 1 (p = 1). We then generate the
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random coefficients as follows:

γ0,it =uit, γ1,it = 0.1Φ(uit), γ2,it = 0.4{1 + exp(uit)}−1 exp(uit), γ3,it = 0.4Φ(uit),

α1,it =0.5Φ(uit), α2,it = 0.3G(uit, 1, 2), α3,it = 0.2G(uit, 2, 2),

α4,it =0.25G(uit, 3, 2), α5,it = 0.2G(uit, 2, 1),

β10,it = 0.1Φ(uit), β11,it = 0.3G(uit, 2, 2), β20,it = 0.2G(uit, 1, 2), β21,it = 0.3G(uit, 2, 1),

where Φ(·) is the standard normal distribution function, G(·, a, b) is the Gamma distri-

bution function with shape parameter a and scale parameter b, and uits are iid random

variables, generated either from (a) the standard normal distribution or from (b) the

t-distribution with 5 degrees of freedom. Finally, Yts are generated by (1).

To check the robustness of the finite sample performance of the IVQR estimator, we

consider the three different adjacency matrices that have been popular in the literature.

The adjacency matrix setup follows for example from Zhu, Wang, Wang and Härdle

(2019).

Type 1. (Stochastic Block Model) We first consider the Stochastic Block Model

(Wang and Wong, 1987; Nowicki and Snijders, 2001) with an important application in

community detection (Zhao et al., 2012). We follow Nowicki and Snijders (2001) and

randomly assign each node a block label indexed from 1 to K, where K ∈ {5, 10, 20}. We

then set P (aij = 1) = 0.3N−0.3 if i and j are in the same block, and P (aij = 1) = 0.3N−1

otherwise. This indicates that the nodes within the same block have higher probability

of connecting with each other than the nodes between blocks.

Type 2. (Dyad Independence Model) Holland and Leinhardt (1981) introduce a

Dyad Independence Model with a Dyad Dij = (aij, aji) for 1 6 i < j 6 N , where

Dijs are assumed to be independent. We set the probability of dyads being mutually

connected to P (Dij = (1, 1)) = 20N−1 to ensure the network sparsity. Then, we set

P (Dij = (1, 0)) = P (Dij = (0, 1)) = 0.5N−0.8, which implies that the expected degree for

each node is O(N0.2). Accordingly, we have P (Dij = (0, 0)) = 1− 20N−1 −N−0.8, which

tends to 1 as N →∞.

Type 3. (Power-law Distribution Network) It is a common observation that the
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majority of nodes in the network have small links while a small number of nodes have a

large number of links, see Barabási and Albert (1999). In this case the degrees of nodes

can be characterized by the power-law distribution. We simulate the adjacency matrix

as follows: For each node, we generate the in-degree such that di = ∑
j aji according to

the discrete power-law distribution such as P (di = k) = ck−β, where c is a normalizing

constant and the exponent parameter β is set at 2.5 as in Clauset et al. (2009). Finally,

for the ith node, we randomly select di nodes as its followers.

In order to perform the IVQR estimation, we should obtain the valid IVs internally,

which is denoted Dt = (D1t, · · · , DNt)> ∈ RN×`. Here we suggest constructing the IVs

by the higher network orders of lagged dependent variables, say1

IV = [W 2Yt−1,W
3Yt−1] (23)

where W is the row-sum normalized network matrix selected.

4.2 Simulation Results

We first consider the case where N is larger than T (= N/10), and set the size of nodes

to N = 100, 500, 1000. Using R = 100 replications, we evaluate the finite sample per-

formance of the IVQR estimator at τ = 0.1, 0.5, 0.9, respectively. In Tables 1, 2 and 3

we report the simulation results in terms of bias and RMSE. Overall, we find that the

RMSEs of all the parameters are monotonically decreasing as the sample size increases

for the three different network structures, across the different quantiles (τ = 0.1, 0.5, 0.9)

and disregarding the distributions of uits. In particular, the RMSEs of γ1 are somewhat

larger, especially in a small sample (N = 100), which may reflect uncertainty associated

with the selection of the IV variables. But, when the sample size grows, i.e. N = 1000,

all the RMSEs decline sharply, implying that the parameters converge at a proper rate

as the sample size grows sufficiently.

Next, we consider the cases with N = T and T > N . Setting N = 100, we examine
1In principle, we can also select the higher network orders such as IV =

[W 2Yt−1,W
3Yt−1,W

2Yt−2,W
3Yt−2, ...]. But, we find that two instruments in (23) were often

the best choice.
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Table 1: RMSE with W as Type 1 network (Dyad independence model)

Dist. τ γ0 γ1 γ2 γ3 α1 α2 α3 α4 α5 β1 β2 β3 β4
N = 100

Z 0.1 0.072 0.250 0.083 0.057 0.225 0.079 0.071 0.071 0.057 0.091 0.139 0.074 0.078
0.5 0.061 0.287 0.055 0.042 0.100 0.077 0.047 0.045 0.050 0.053 0.077 0.051 0.053
0.9 0.078 0.352 0.078 0.049 0.072 0.074 0.071 0.070 0.064 0.080 0.074 0.073 0.079

T 0.1 0.099 0.097 0.086 0.054 0.088 0.098 0.095 0.107 0.071 0.103 0.106 0.102 0.111
0.5 0.056 0.214 0.046 0.030 0.049 0.056 0.045 0.049 0.042 0.054 0.062 0.061 0.057
0.9 0.101 0.402 0.080 0.055 0.084 0.100 0.101 0.104 0.086 0.106 0.099 0.099 0.106

N = 500
Z 0.1 0.012 0.037 0.014 0.010 0.221 0.020 0.014 0.013 0.010 0.047 0.132 0.011 0.011

0.5 0.009 0.130 0.022 0.008 0.094 0.062 0.012 0.009 0.017 0.024 0.066 0.009 0.011
0.9 0.014 0.249 0.035 0.010 0.041 0.032 0.017 0.015 0.027 0.011 0.011 0.013 0.019

T 0.1 0.016 0.026 0.014 0.011 0.017 0.021 0.018 0.020 0.017 0.015 0.013 0.015 0.012
0.5 0.009 0.140 0.017 0.005 0.009 0.011 0.009 0.008 0.008 0.007 0.011 0.008 0.008
0.9 0.018 0.272 0.030 0.012 0.017 0.018 0.017 0.018 0.017 0.015 0.022 0.016 0.015

N = 1000
Z 0.1 0.003 0.088 0.005 0.003 0.097 0.007 0.003 0.003 0.003 0.020 0.061 0.002 0.002

0.5 0.002 0.088 0.012 0.002 0.042 0.027 0.003 0.002 0.008 0.010 0.030 0.003 0.004
0.9 0.005 0.088 0.019 0.003 0.018 0.013 0.007 0.003 0.012 0.003 0.003 0.005 0.007

T 0.1 0.003 0.009 0.002 0.004 0.004 0.005 0.005 0.004 0.005 0.004 0.003 0.002 0.003
0.5 0.002 0.058 0.010 0.001 0.002 0.004 0.003 0.002 0.001 0.002 0.004 0.001 0.001
0.9 0.006 0.117 0.015 0.005 0.006 0.005 0.005 0.003 0.004 0.005 0.010 0.004 0.004

Note: The size of the time period is T = N/10. uit are generated from a standard normal distribution
(i.e. Z) and t-distribution with 5 degrees of freedom (i.e., T ). The simulation results are reported with
100 replications.

Table 2: RMSE with W as Type 2 network (stochastic block model)

Dist. τ γ0 γ1 γ2 γ3 α1 α2 α3 α4 α5 β1 β2 β3 β4
N = 100

Z 0.1 0.077 0.579 0.231 0.049 0.221 0.072 0.078 0.075 0.070 0.090 0.110 0.094 0.100
0.5 0.072 0.589 0.187 0.046 0.097 0.070 0.056 0.050 0.050 0.059 0.089 0.069 0.064
0.9 0.092 1.014 0.277 0.057 0.068 0.078 0.064 0.068 0.067 0.089 0.131 0.104 0.097

T 0.1 0.147 0.881 0.307 0.050 0.078 0.089 0.087 0.089 0.078 0.154 0.162 0.130 0.133
0.5 0.070 0.628 0.170 0.033 0.046 0.055 0.057 0.053 0.047 0.068 0.078 0.066 0.063
0.9 0.173 1.118 0.298 0.064 0.085 0.095 0.091 0.101 0.069 0.156 0.174 0.137 0.128

N = 500
Z 0.1 0.012 0.331 0.066 0.011 0.219 0.021 0.015 0.013 0.012 0.039 0.118 0.012 0.011

0.5 0.009 0.290 0.166 0.008 0.093 0.060 0.011 0.009 0.021 0.046 0.137 0.010 0.015
0.9 0.017 0.625 0.192 0.012 0.038 0.032 0.017 0.014 0.029 0.041 0.118 0.010 0.012

T 0.1 0.019 0.457 0.131 0.012 0.016 0.018 0.019 0.020 0.016 0.027 0.063 0.018 0.019
0.5 0.009 0.237 0.129 0.005 0.009 0.011 0.010 0.009 0.007 0.022 0.061 0.007 0.007
0.9 0.018 0.341 0.186 0.014 0.019 0.018 0.016 0.018 0.016 0.035 0.100 0.014 0.017

N = 1000
Z 0.1 0.003 0.050 0.024 0.002 0.097 0.007 0.002 0.004 0.003 0.023 0.066 0.002 0.003

0.5 0.003 0.063 0.015 0.001 0.041 0.027 0.003 0.002 0.008 0.028 0.082 0.005 0.008
0.9 0.007 0.112 0.022 0.002 0.017 0.014 0.005 0.003 0.012 0.029 0.085 0.002 0.002

T 0.1 0.004 0.030 0.017 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.005 0.003 0.003
0.5 0.003 0.062 0.108 0.001 0.002 0.004 0.002 0.002 0.002 0.018 0.052 0.004 0.006
0.9 0.008 0.123 0.180 0.003 0.005 0.006 0.004 0.004 0.004 0.031 0.089 0.007 0.009

Note: The size of the time period is T = N/10. uit are generated from a standard normal distribution
(i.e., Z) and t-distribution with 5 degrees of freedom (i.e., T ). The simulation results are reported with
100 replications.
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Table 3: RMSE with W as Type 3 network (power-law distribution network)

Dist. τ γ0 γ1 γ2 γ3 α1 α2 α3 α4 α5 β1 β2 β3 β4
N = 100

Z 0.1 0.095 0.359 0.337 0.056 0.227 0.068 0.066 0.069 0.068 0.102 0.189 0.083 0.082
0.5 0.072 0.475 0.255 0.039 0.104 0.072 0.053 0.052 0.048 0.073 0.157 0.064 0.059
0.9 0.108 0.721 0.424 0.056 0.074 0.065 0.069 0.075 0.062 0.093 0.167 0.110 0.093

T 0.1 0.121 0.392 0.419 0.070 0.087 0.102 0.103 0.100 0.085 0.092 0.101 0.097 0.099
0.5 0.063 0.394 0.247 0.030 0.052 0.056 0.049 0.046 0.047 0.069 0.101 0.057 0.058
0.9 0.137 0.762 0.504 0.058 0.075 0.086 0.080 0.089 0.086 0.130 0.218 0.125 0.117

N = 500
Z 0.1 0.014 0.125 0.034 0.011 0.219 0.019 0.014 0.014 0.013 0.049 0.147 0.011 0.010

0.5 0.013 0.159 0.140 0.009 0.094 0.048 0.011 0.010 0.017 0.041 0.122 0.010 0.013
0.9 0.264 0.387 0.204 0.028 0.021 0.023 0.017 0.021 0.019 0.034 0.087 0.017 0.019

T 0.1 0.017 0.066 0.025 0.011 0.015 0.021 0.019 0.019 0.016 0.013 0.017 0.016 0.016
0.5 0.010 0.187 0.116 0.006 0.010 0.024 0.011 0.010 0.013 0.020 0.059 0.008 0.008
0.9 0.356 0.310 0.175 0.036 0.055 0.039 0.022 0.022 0.022 0.043 0.112 0.025 0.021

N = 1000
Z 0.1 0.004 0.050 0.016 0.001 0.097 0.007 0.003 0.004 0.004 0.022 0.066 0.002 0.003

0.5 0.002 0.067 0.064 0.002 0.043 0.022 0.003 0.003 0.006 0.018 0.054 0.004 0.004
0.9 0.099 0.165 0.083 0.010 0.006 0.006 0.005 0.004 0.008 0.012 0.034 0.003 0.004

T 0.1 0.004 0.018 0.010 0.004 0.004 0.004 0.004 0.005 0.003 0.003 0.004 0.003 0.003
0.5 0.003 0.073 0.049 0.001 0.003 0.010 0.001 0.002 0.003 0.008 0.025 0.001 0.002
0.9 0.122 0.118 0.070 0.013 0.020 0.010 0.005 0.006 0.007 0.013 0.043 0.005 0.005

Note: The size of the time period is T = N/10. uits are generated from a standard normal distribution
(i.e., Z) and t-distribution with 5 degrees of freedom (i.e., T ). The simulation results are reported with
100 replications.

the two scenarios with T = N = 100 and T = 10, N = 1000. Overall, we find that the

simulation results reported in Table 4 are qualitatively similar to the previous ones with

N > T . Again, the RMSEs for γ1 seem to be somewhat higher than those of other para-

meters, especially for small T . But the RMSEs of all the parameters decline sufficiently

fast as the sizes of the time period increase for the three different network structures and

across different quantiles (τ = 0.1, 0.5, 0.9)
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Table 4: RMSE with T = N and T > N

Dist. τ γ0 γ1 γ2 γ3 α1 α2 α3 α4 α5 β1 β2 β3 β4
W1, T = 100

Z 0.1 0.019 0.323 0.021 0.017 0.229 0.027 0.021 0.029 0.012 0.053 0.139 0.019 0.022
0.5 0.020 0.325 0.026 0.008 0.107 0.057 0.014 0.011 0.023 0.022 0.061 0.017 0.014
0.9 0.013 0.364 0.031 0.015 0.046 0.038 0.026 0.032 0.029 0.017 0.024 0.023 0.030

T 0.1 0.023 0.042 0.017 0.017 0.014 0.035 0.034 0.024 0.018 0.032 0.027 0.025 0.018
0.5 0.010 0.275 0.020 0.008 0.015 0.017 0.015 0.011 0.009 0.014 0.012 0.009 0.007
0.9 0.031 0.447 0.018 0.011 0.017 0.038 0.038 0.036 0.029 0.027 0.020 0.008 0.015

W1, T = 1000
Z 0.1 0.004 0.209 0.006 0.006 0.216 0.017 0.008 0.007 0.005 0.044 0.134 0.004 0.004

0.5 0.003 0.203 0.027 0.005 0.093 0.061 0.008 0.005 0.018 0.023 0.068 0.006 0.009
0.9 0.011 0.211 0.039 0.004 0.041 0.031 0.013 0.008 0.029 0.005 0.007 0.010 0.016

T 0.1 0.009 0.047 0.009 0.008 0.014 0.011 0.010 0.012 0.008 0.010 0.009 0.005 0.008
0.5 0.006 0.155 0.012 0.003 0.004 0.005 0.003 0.005 0.003 0.004 0.007 0.005 0.003
0.9 0.012 0.302 0.025 0.007 0.011 0.010 0.009 0.007 0.012 0.008 0.011 0.007 0.007

W2, T = 100
Z 0.1 0.020 0.524 0.114 0.021 0.223 0.028 0.023 0.025 0.014 0.036 0.093 0.020 0.023

0.5 0.014 0.202 0.064 0.007 0.094 0.065 0.019 0.013 0.019 0.027 0.076 0.014 0.014
0.9 0.027 0.262 0.088 0.010 0.043 0.031 0.023 0.023 0.029 0.029 0.038 0.016 0.017

T 0.1 0.050 0.529 0.177 0.022 0.028 0.027 0.021 0.025 0.027 0.039 0.072 0.026 0.040
0.5 0.013 0.218 0.045 0.011 0.011 0.013 0.019 0.021 0.012 0.010 0.016 0.012 0.012
0.9 0.018 0.514 0.100 0.013 0.029 0.030 0.021 0.029 0.032 0.017 0.031 0.023 0.027

W2, T = 1000
Z 0.1 0.008 0.132 0.070 0.005 0.220 0.017 0.007 0.007 0.006 0.033 0.100 0.006 0.006

0.5 0.007 0.134 0.060 0.004 0.094 0.062 0.008 0.006 0.018 0.028 0.084 0.007 0.010
0.9 0.013 0.137 0.104 0.006 0.038 0.033 0.015 0.009 0.028 0.010 0.029 0.011 0.015

T 0.1 0.018 0.144 0.028 0.009 0.010 0.010 0.010 0.010 0.009 0.023 0.063 0.010 0.010
0.5 0.006 0.145 0.034 0.003 0.005 0.006 0.005 0.005 0.005 0.006 0.017 0.003 0.003
0.9 0.009 0.374 0.047 0.010 0.008 0.011 0.010 0.009 0.009 0.011 0.023 0.007 0.008

W3, T = 100
Z 0.1 0.016 0.065 0.135 0.020 0.212 0.024 0.020 0.021 0.020 0.049 0.171 0.014 0.008

0.5 0.032 0.397 0.209 0.010 0.092 0.066 0.012 0.013 0.023 0.056 0.155 0.010 0.020
0.9 0.051 0.784 0.337 0.018 0.038 0.039 0.024 0.027 0.037 0.049 0.133 0.027 0.018

T 0.1 0.028 0.229 0.114 0.013 0.017 0.024 0.016 0.033 0.024 0.026 0.043 0.019 0.019
0.5 0.030 0.401 0.163 0.011 0.018 0.017 0.011 0.013 0.019 0.030 0.092 0.009 0.015
0.9 0.063 0.724 0.371 0.017 0.023 0.034 0.021 0.034 0.032 0.064 0.149 0.018 0.035

W3, T = 1000
Z 0.1 0.021 0.072 0.087 0.005 0.218 0.018 0.008 0.005 0.005 0.056 0.175 0.006 0.006

0.5 0.044 0.114 0.110 0.005 0.095 0.055 0.005 0.006 0.017 0.054 0.161 0.009 0.017
0.9 0.069 0.278 0.128 0.005 0.036 0.030 0.014 0.011 0.024 0.052 0.140 0.006 0.012

T 0.1 0.016 0.127 0.106 0.007 0.010 0.008 0.009 0.009 0.005 0.017 0.056 0.007 0.009
0.5 0.023 0.192 0.105 0.003 0.006 0.011 0.004 0.004 0.005 0.035 0.102 0.005 0.010
0.9 0.058 0.207 0.042 0.014 0.010 0.012 0.013 0.011 0.006 0.057 0.183 0.013 0.025

Note: RMSE with the size of sample agent N = 100, at the time period T = N = 100 and T =
10 ∗N = 1000 for the three network structures, respectively. uits are generated from a standard normal
distribution (i.e., Z) and t-distribution with 5 degrees of freedom (i.e., T ). The simulation results are
reported with 100 replications.
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5 Application

We now explore the financial quantile network effects by analyzing the quantile connect-

edness among the stock returns. Anton and Polk (2014) find that stock returns tend

to display significant comovements due to common active mutual fund owners. In addi-

tion, Pirinsky and Wang (2006) document strong comovements in the stock returns of

firms headquartered in the same geographic area. Further, Garcia and Norli (2012) point

out that the firms headquartered in the same geographic area have uniformly excessive

returns compared to geographically dispersed firms, a phenomenon which is called the

return local bias.

In this study, we investigate the two different financial network structures. First, we

construct the common shareholder network (W1), using information from the common

mutual fund ownership. In particular, we let the stocks be connected if they are invested

in by at least five common mutual fund owners. In addition, we construct the uniform

headquarter location network (W2) by checking whether the headquarters of companies

are located in the same state or city. In particular, we treat the companies with head-

quarters located in the same state or city as connected.

We examine all the stocks traded in NYSE and NASDAQ in 2016. We collect the

addresses associated with firms’ headquarters from COMPUSTAT. The dataset on mutual

fund holdings is downloaded from Thomson Reuters. After merging these data from the

databases according to the unique trading code and moving the stocks with missing values,

we finally obtain 928 stocks. These stock return data are downloaded from Datastream.

We also select market capitalization, book value per share, cash flow and price-earning

ratio as the individual firm-specific variables, which are then standardized. Finally, we

consider VIX, Fama French three factors (excess market return, SMB, HML) as the

common covariates to analyze the performance of stock returns under various market

environments (different quantile levels).

We display the topology of two networks for the top 100 market-value stocks in Figure

1, where the two panels present the same stocks with the different network structures.

The larger nodes imply the higher market capitalization while the darker nodes present

the higher connectedness especially for the network structure with W1. There is a large
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connected group in the left panel, presenting the stocks that are more centralized con-

nected by common investors, while the right panel reveals more small groups, implying

that the stocks are more locally connected when measuring by uniform headquarter lo-

cation. This is consistent with our expectation and the literature. Crucially, Figure 1

depicts totally different network structures for the same stocks.

Network W1 by common investors Network W2 by uniform headquarter location

Network W1 by common investors Network W2 by uniform headquarter location

Figure 1: We depict the top 100 market value stocks in the selected 928 firms. The
left panel: the common shareholder network W1 of the top 100 market value stocks,
constructed by checking whether the stocks are invested in by at least five common
mutual fund owners. The right panel: the uniform headquarter location network W2
for the same stocks, constructed by checking whether the headquarters of companies are
located in the same state and city. The larger nodes imply higher market capitalization.
The darker nodes present higher connectedness in network W1.

For comparison we present the estimation results for the proposed NQADL model

together with the NQAD model without the common covariates, and the NQAR model

without contemporaneous effects in Y it. To compare the performance of our proposed

model relative to the alternative models, we evaluate the goodness of fit across the dif-

ferent quantiles, following for example Koenker and Machado (1999). Consider a linear
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model for the conditional quantile function,

QYit(τ |Xit) =X>1itθ1(τ) +X>2itθ2(τ) (24)

and let θ̂(τ) denote the estimator of the unrestricted model, which is the minimizer of

V̂ (τ) = min
N∑
i=1

T∑
t=1

ρτ
{
Yit −X>it b

}
. (25)

θ̃(τ) = (θ̃>1 (τ), 0)> denote the minimizer for the constrained model

Ṽ (τ) = min
N∑
i=1

T∑
t=1

ρτ
{
Yit −X>1itb1

}
. (26)

θ̂(τ) and θ̃(τ) denote the unrestricted and restricted quantile regression estimates. Define

the goodness-of-fit criterion as

R(τ) =1− V̂ (τ)
Ṽ (τ)

, (27)

which represents the overall decreased percentage of loss function in quantile regression

of the unrestricted model compared with the restricted model.

First, we report the estimation results for the network with W1 in Table 5. For

convenience we present the coefficients and the standard errors multiplied by 102 at the

different quantiles (τ = 0.1, 0.5, 0.9). The goodness of fit value R(τ) is reported in the

last row of Table 5 (Goodn.fit.). Table 5 reveals that the contemporaneous effects in Y it

are significant and non-negligible across different quantile levels. The overall loss function

of the proposed NQADL model falls off around 4% in comparison with the NQAR model

without contemporaneous effects. The NQAD model without common factors performs

similarly to the NQADL model. Further, the effects of common factors are significant

for extreme values or economic environments, i.e. τ = 0.1, 0.9 in comparison with the

central circumstance, i.e. τ = 0.5.

Meanwhile, we display the estimated quantile regression effects across the different

quantiles in Figure 2. The dashed line is the quantile regression coefficients on these

variables, and the grey areas indicate a rank test-based confidence band across different
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NQADL NQAR NQAD
τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9

γ̂0 −2.09∗∗∗ 0.02∗∗∗ 2.10∗∗∗ −2.16∗∗∗ 0.07∗∗∗ 2.31∗∗∗ −2.09∗∗∗ 0.02∗∗∗ 2.10∗∗∗
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

γ̂1 95.54∗∗∗ 79.32∗∗∗ 86.36∗∗∗ - - - 94.92∗∗∗ 79.47∗∗∗ 86.93∗∗∗
(0.66) (0.44) (0.67) (0.65) (0.43) (0.66)

γ̂2 1.72∗∗∗ 0.81∗∗ 1.39∗∗ −0.47 −1.40∗∗∗ 2.52∗∗∗ 1.48∗∗∗ 0.84∗∗ 1.91∗∗∗
(0.56) (0.35) (0.57) (0.71) (0.18) (0.51) (0.56) (0.35) (0.51)

γ̂3 −1.18∗∗∗ −2.19∗∗∗ −1.10∗∗∗ −0.27 −1.88∗∗∗ −0.75∗∗ −1.18∗∗∗ −2.23∗∗∗ −1.08∗∗∗
(0.31) (0.24) (0.33) (0.38) (0.13) (0.35) (0.32) (0.24) (0.33)

SIZE 0.06∗∗∗ 0.00 −0.05∗∗∗ 0.08∗∗∗ 0.00 −0.08∗∗∗ 0.06∗∗∗ 0.00 −0.05∗∗∗
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

BM 0.10∗∗∗ 0.00 −0.10∗∗∗ 0.10∗∗∗ 0.01∗∗∗ −0.10∗∗∗ 0.10∗∗∗ 0.00 −0.10∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

Cash 0.01 0.00 −0.02∗∗∗ 0.02∗∗∗ 0.00 −0.03∗∗∗ 0.01 0.00 −0.02∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

PE 0.05∗∗∗ 0.00 −0.02∗∗∗ 0.02∗∗∗ 0.01∗∗∗ −0.02∗∗∗ 0.05∗∗∗ 0.00 −0.02∗∗∗
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

VIX 0.01 −0.01 −0.03∗∗ 0.10∗∗∗ −0.08∗∗∗ −0.10∗∗∗ - - -
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

Rm - Rf 0.05∗∗∗ −0.01∗ −0.04∗∗∗ −0.12∗∗∗ 0.03∗∗∗ −0.03∗∗∗ - - -
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

SMB −0.01 0.00 −0.02∗∗ −0.09∗∗∗ −0.05∗∗∗ −0.02 - - -
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

HML 0.03∗∗∗ −0.01∗∗ −0.05∗∗∗ −0.12∗∗∗ −0.09∗∗∗ −0.11∗∗∗ - - -
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

Goodn.fit. - - - 4.40 5.49 2.76 0.04 0.02 0.12

Table 5: Estimation with network W1 for a US stock dataset of 928 stocks. The net-
work W1 is constructed by checking whether the stocks are invested in by at least five
common mutual fund owners. The parameter estimates (×102) are reported for quantile
levels τ = 0.1, 0.5, 0.9, and the value below in parentheses is the corresponding standard
error (×102). Structure NQAR (SNQAR) denotes our model, NQAR denotes the model
without simultaneous connectedness effects, and SNQAR without common factors model
denotes the model excluding the common economic factors. Goodn.fit. (×102) represents
the goodness of fit of our model with the others. The significance levels of 1%, 5% and
10% are noted by ***, **, * respectively.
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quantile levels, i.e. τ = 0.1, 0.2, .., 0.9. The band clearly excludes the null effect indi-

cated by the solid horizontal line. Figure 2 shows that all the dynamics of parameters

γ1(.), γ2(.), γ3(.) at various quantile levels are nearly featured with a "U" shape and the

confidence bands consistently exclude the zero line, which implies that both the contem-

poraneous and lagged network effects are distinctly important at various quantile levels,

and the effects are relatively stronger at the tail levels. Additionally, the contemporane-

ous network effects (γ1) are comparatively more significant and larger than the others.

Besides, most of the common factors affect the stock returns in a decreasing trend as

quantile levels increase.

Finally, in order to do the robustness check, when using network W2 to implement

the application, we obtain similar results, see Table 6 and Figure 3. The formats follow

Table 5 and Figure 2. In Table 6, although the contemporaneous effects of the NQADL

model are slightly smaller than the counterparts in Table 5, the patterns in comparison

with the NQAR model and NQAD model almost mimic the ones in Table 5. The overall

loss function of the proposed NQADL model decreases around 6% for the three selected

quantile levels τ = 0.1, 0.5, 0.9 compared with NQAR model without the synchronous

network effects. Meanwhile, the scheme of Figure 3 is analogous to that in Figure 2.

6 Conclusion

We propose a dynamic spatial autoregressive quantile network model that allows for

temporal and cross-sectional dependence. Using the predetermined network information,

we study the dynamic tail event driven risk under various quantile levels within a net-

work topology. The model’s distinguishing characteristic is that a given nodal response’s

behavior is not only influenced by its previous information, but also connected with a

weighted aggregation of simultaneous and lagged responses from others. Moreover, com-

mon covariates representing macroeconomic environments are also incorporated.

The main challenge of our proposed NQADL model is the potential endogeneity prob-

lem due to the simultaneous network effects. We extend the IVQR method in the model

estimation, and provide the associated asymptotic theory for the IVQR estimator. Sim-
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Figure 2: Estimated coefficients associated with some selected variables with the network
W1. The dashed line is the estimated coefficients for these variables, and the grey region
indicates a rank test-based confidence band for the estimators. The quantile levels τ =
0.1, 0.2, 0.3..., 0.9 are used for calculation. The solid horizontal line is zero. The network
W1 is constructed by checking whether the stocks are invested in by at least five common
mutual fund owners.
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NQADL NQAR NQAD
τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9 τ = 0.1 τ = 0.5 τ = 0.9

γ̂0 −2.04∗∗∗ 0.02∗∗∗ 2.06∗∗∗ −2.16∗∗∗ 0.07∗∗∗ 2.31∗∗∗ −2.04∗∗∗ 0.02∗∗∗ 2.07∗∗∗
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

γ̂1 86.73∗∗∗ 73.06∗∗∗ 79.47∗∗∗ - - - 86.34∗∗∗ 73.24∗∗∗ 79.71∗∗∗
(0.59) (0.42) (0.58) (0.58) (0.42) (0.58)

γ̂2 1.09∗ 0.45 1.47∗∗ 0.26 −1.57∗∗∗ 2.14∗∗∗ 1.06∗ 0.54 1.95∗∗∗
(0.58) (0.34) (0.57) (0.74) (0.25) (0.68) (0.59) (0.35) (0.57)

γ̂3 −1.05∗∗∗ −1.80∗∗∗ −0.91∗∗∗ −0.34 −1.86∗∗∗ −0.73∗∗∗ −1.16∗∗∗ −1.79∗∗∗ −0.81∗∗∗
(0.32) (0.25) (0.26) (0.38) (0.13) (0.19) (0.32) (0.25) (0.28)

SIZE 0.06∗∗∗ 0.00 −0.06∗∗∗ 0.08∗∗∗ 0.00 −0.08∗∗∗ 0.06∗∗∗ 0.00 −0.06∗∗∗
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

BM 0.10∗∗∗ 0.00 −0.09∗∗∗ 0.10∗∗∗ 0.01∗∗∗ −0.10∗∗∗ 0.10∗∗∗ 0.00 −0.09∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

Cash 0.02∗∗∗ 0.00 −0.02∗∗∗ 0.02∗∗∗ 0.00 −0.03∗∗∗ 0.02∗∗∗ 0.00 −0.02∗∗∗
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

PE 0.03∗∗∗ 0.01∗∗∗ 0.00 0.02∗∗∗ 0.01∗∗∗ −0.02∗∗∗ 0.02∗∗∗ 0.01∗∗∗ 0.00
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

VIX 0.02∗ −0.01∗∗∗ −0.03∗∗ 0.10∗∗∗ −0.08∗∗∗ −0.11∗∗∗ - - -
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

Rm - Rf 0.03∗∗∗ −0.01 −0.05∗∗∗ −0.11∗∗∗ 0.03∗∗∗ −0.03∗∗ - - -
(0.01) (0.01) (0.01) (0.01) (0.00) (0.01)

SMB −0.01 −0.01∗∗ −0.02∗∗ −0.09∗∗∗ −0.05∗∗∗ −0.01 - - -
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

HML 0.01 −0.01∗∗∗ −0.06∗∗∗ −0.12∗∗∗ −0.09∗∗∗ −0.11∗∗∗ - - -
(0.01) (0.00) (0.01) (0.01) (0.00) (0.01)

Goodn.fit. - - - 6.17 6.66 4.54 0.00 0.02 0.09

Table 6: Estimation with the network W2 for a US stock dataset consisting of 928 stocks.
The network W2 is constructed by checking whether the headquarters of companies are
located in the same state and city. The parameter estimates (×102) are reported for
quantile levels τ = 0.1, 0.5, 0.9, and the value in parentheses below is the corresponding
standard error (×102). Structure NQAR (SNQAR) denotes our model, NQAR denotes
the model without simultaneous connectedness effects, and SNQAR without common
factors model denotes the model excluding the common economic factors. Goodn.fit.
(×102) represents the goodness of fit of our model with the others. The significance
levels of 1%, 5% and 10% are noted by ***, **, * respectively.
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Figure 3: Estimated coefficients of some selected variables with the network W2. The
dashed line is the estimated value for these coefficients, and the grey region indi-
cates a rank test-based confidence interval for the estimators. The quantile levels
τ = 0.1, 0.2, 0.3..., 0.9 are used for the calculation. The solid horizontal line is zero.
The network W2 is constructed by checking whether the headquarters of companies are
located in the same state and city.

29

Electronic copy available at: https://ssrn.com/abstract=3690631



ulation results under various scenarios show that our model performs well with different

network structures and at various quantile levels, especially when the node sizes increase.

In addition, an empirical study for US stock markets finds that the contemporary net-

work effects are distinct and significant across different quantile levels while the common

covariates affect relatively more significantly when considering extreme tail dependence.

Overall, our proposed NQADL model favorably outperforms the NQAR model without

synchronous network effects.
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7 Appendix

7.1 Proof of Lemma 2.1

(i) Strict Stationarity

We first discuss the strict stationarity of {Yt}t. Under Assumption 2.1(1), we have

(I −A1tW )−1 = ∑∞
k=0(A1tW )k. Then, we obtain the reduced form of the model (3) by

Yt = (I −A1tW )−1HtYt−1 + (I −A1tW )−1(Γ +BtFt + Vt)

= MtYt−1 + Ct,

whereMt = (I−A1tW )−1Ht, and Ct = (I−A1tW )−1(Γ+BtFt+Vt). Hence, this process

falls into the class of a general autoregressive process with {Mt,Ct, t ∈ Z}. According

to Theorem 1.3 and Lemma 2.1 of Bougerol and Picard (1992), Yt has a strictly station-

ary solution, if the sequence of random matrices {Mt, t ∈ Z} satisfy the following two

conditions:

a) E log |M0|+2 <∞, with log |M0|+2 = max(log |M0|2, 0),

b) limt→∞ |M0M−1 · · ·M−t|2 = 0 almost surely.

Recall that |A|2 = sup{v∈Rd,v 6=0} |Av|2/|v|2, where we recall that |.|2 is the two norm
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of a vector or matrix. We now prove the two conditions. First, consider:

|Mt|2 = |(I −A1tW )−1Ht|2

6 |
∑
k>0

(A1tW )kHt|2 under (Assumption 2.1 A.1)

6
∑
k>0
|(A1tW )kHt|2 under (Minkowski inequality)

6
∑
k>0
|(A1t)|k2|W |k2|Ht|2 under (A.1)

6
∑
k>0
|(A1t)|k2(|(A2t)|2 + |(A3t)|2) under (A.1)

=
∑
k>0
{max

i
|γ1(Uit)|}k(max

i
|γ2(Uit)|+ max

i
|γ3(Uit)|)

6
∑
k>0

ck1(max
i
|γ2(Uit)|+ max

i
|γ3(Uit)|)

6
∑
k>0

ck1c23 under (A.2)

6 c23/(1− c1).

Then, E log |M0|+2 6 log E |M0|+2 6 max{log(c23/(1 − c1)), 0} < ∞, such that the

conditions a) holds.

Next, consider the second condition b), which can be written as,

E |M0M−1 ·M−t|2 6 E Π0
l=−t{(

∑
k>0

ck1)(max
i
|γ2(Uil)|+ max

i
|γ3(Uil)|)}

6 (1− c1)−t−1[E{max
i
|γ2(Uil)|+ max

i
|γ3(Uil)|}]t+1

6 (1− c1)−t−1ct+1
23 .

For a small constant ε > 0, we now have:

∞∑
t=1

P(|M0M−1 ·M−t|2 > ε)

6
∞∑
t=1

E |M0M−1 ·M−t|2
ε

under (Markov’s inequality)

6
∞∑
t=1

(1− c1)−t−1ct+1
23 /ε

= (c23)2

(1− c1)(1− c1 − c23)ε <∞.
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Then, by Borel-Cantelli lemma, the condition b) holds. Therefore any projection of

the process in (3) has a strictly stationary solution. If in addition Var(Yt) and Γl =

Cov(Yt,Yt−l) exits, then we can conclude the covariance stationarity of the process.

(ii) Covariance Stationarity

Recall that the model (3) admits the following covariance stationary solution

Yt =
∞∑
l=0

ΠlDt−l =
∞∑
l=0

ΠlS
−1
t−lBt−lFt−l +

∞∑
l=0

ΠlS
−1
t−lA0t,

where Dt = S−1
t (BtFt + A0t), Mt = S−1

t Ht and Πl = Mt × · · · ×Mt−l+1 for l > 1 with

Π0 = I and Π1 = Mt. Let EMt = M and EDt = D. Moreover, |Dt|∞ 6 (1−c1)−1(df +dz)

by Assumption 2.1(3). Thus, the expected value of Yt is given by µY = (I −M)−1D.

Further, we have: |MtIN | 6a c23/(1− c1)IN for every t, where 6a denotes ’element-wise

smaller’. The variance and covariance of Yt are then given by

Γ0 = Var(Yt) = E


( ∞∑
l=0

ΠlDt−l

)( ∞∑
l=0

ΠlDt−l

)>− µYµ
>
Y ,

Γl = Cov(Yt,Yt−l) = E


( ∞∑
l=0

ΠlDt−l

)( ∞∑
l=0

ΠlDt−2l

)>− µYµ
>
Y .

Consider Var(Yt). Let c′ = (1− c1)−1c23, then we have:

e>i E{(∑l>0 ΠlDt−l)((
∑
l>0 ΠlDt−l))>}ej = Il + I2 + I3.

First, we show that I1 = ∑
l1>l2 e

>
i ⊗e>j M l2⊗M l2 E{I⊗Mt−l2 · · · I⊗Mt−l1−1vec(DtD>t−l2)} 6∑

l1>l2 |D|max E(dz + df ){c′}l1−l2c′2l2 = ∑
l1>l2 |D|max E(dz + df )c′l1+l2 < ∞. Similarly,

I2 = ∑
l1 e
>
i ⊗ e>j M

l1 ⊗ M l1 E{vec(Dt−l1D>t−l1)} 6 σdmax
∑
l1 c
′2l1 and I3 = ∑

l2>l1 e
>
i ⊗

e>j M
l1 ⊗ M l1 E{Mt−l1 ⊗ I · · ·Mt−l1−1 ⊗ Ivec(Dt−l1D>t ) 6 ∑

l1<l2 |D|max E(dz + df )c′l1+l2 .

Thus, we have I1, I2, I3 < ∞ under Assumption 2.1. Similarly, we can show that

Γl = Cov(Yt,Yt−l) exists. Thus, a>Yt is covariance stationary.
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7.2 Proof of Theorem 1

7.2.1 Invariance Principle

In order to to prove Theorem 1, We shall apply Theorem 3 in Wu (2011). We introduce

the functional dependence measure.

Definition 7.1. Define Xt = g(Ft) with the shift process Ft = (..., ξt−1, ξt). Let ξ0 be

replaced by an i.i.d. copy of ξ∗0, and X∗t = g(F∗t ) with F∗t = (. . . , ξ−1, ξ
∗
0 , ξ1, . . . , ξt−1, ξt).

For q > 1, define the functional dependence measure δq,t(Xt) def= ‖Xt − X∗t ‖q, which

measures the dependency of ξ0 on Xt. Also, define ∆m,q(Xt) def= ∑∞
t=m δq,t, which measures

the cumulative effect of ξ0 on Xt>m. Finally, define the predictive dependence measure

by PjXt = E(Xt|Fj)− E(Xt|Fj−1).

According to Theorem 3 in Wu (2011), if the condition ∑∞t=0 ‖P0(a>Ỹt)‖q <∞ holds,

then we can obtain the main result (7) in Theorem 1. We now prove that ∆0,q(a>Yt) <∞.

(We note that ∆0,q(a>Yt) <∞ and ‖P0(a>Ỹt)‖q are equivalent measures.) Notice that

P0(a>Ỹt) = a>(E(Ỹt|F0)− E(Ỹt|F−1))

= a>(M t(D0 − D) +
∑
l>t

M t−1(M0 −M)M−1 · · ·Mt−l+1Dt−l)

6 a>(M tIN2(dz + df ) +
∑
l>t

M t−1(M0 −M)M−1 · · ·Mt−l+1IN(dz + df ))

6 a>(c′t +
∑
l>t

2c′l)IN2(dz + df )

6 4(dz + df )c′t/(1− c′)

where c′ = (1−c1)−1c23. Thus, ∆0,q(a>Yt) .
∑
t>0(‖dz‖q+‖df‖q)c′t/(1−c′) <∞. Hence,

the conditions are satisfied.

7.3 Proof of Theorem 2 and Theorem 3

As we handle the statistic object involved with weak spatial temporal dependence, we

shall condition on C def= {Ft}t thoughout the proof. The E in the proof are conditioning

on C without special notice.
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7.3.1 Lemmas for near-epoch dependent (NED) Processes

Let (Xit, Uit) be the basis of NED processes. Then, we provide a number of Lemmas on

the basic properties of NED in random fields. The derivation follows largely Xu and Lee

(2015) with substantial modifications to fit to our model setup.

Lemma A.1. If {Yit} and {Zit} are both uniformly L2+δ bounded, and uniformly and

geometrically L2-NED, then {YitZit} is uniformly and geometrically L2-NED.

Lemma A.2. For h > 1, there exists some π1 <∞, such that the number of all elements

in DNT located within a distance [h, h+1) satisfying ∑j∈DNT :h6ρ(i,j)<h+1 6 π1h
d−1 for any

i ∈ DNT . This is from Lemma A.1 in Jenish and Prucha (2009).

Lemma A.3. Suppose W is an N ×N square matrix which can be decomposed into the

sum of two N×N matrices, i.e.,W = A+B. Denote |A|max = maxij |aij|, i, j = 1, · · · , N .

Then for any positive integer l, we have (W l −Bl)ij 6 |A|max
l−1∑
k=0
‖B‖k∞‖W‖l−1−k

1 .

Proof. Let ek = (0, · · · , 0, 1, 0, · · · , 0)> is the unit column vector with one in its

kth entry and zeros in its other entries. By expansion, W l − Bl =
l−1∑
k=0

BkAW l−1−k.

Then (W l − Bl)ij =
l−1∑
k=0

e>i B
kAW l−1−kej. For any matrix M and a vector e of dimen-

sion n, ‖Me‖∞ 6 |M |max‖e‖1. Hence, e>i BkAW l−1−kej 6 ‖e>i Bk‖∞‖AW l−1−kej‖∞ 6

‖Bk‖∞|A|max‖W l−1−kej‖1 6 |A|max‖Bk‖∞‖W‖l−1−k
1 , for any integer k = 0, · · · , l−1.

Lemma A.4. For any α > 0 and s > 2, ∑∞h=[s] h
−α−1 < 2α+1

α
s−α. [s] denotes the largest

integer less than or equal to s.

Proof. For h > 2, h > h+1
2 . When α > 0, ∑∞h=[s] h

−α−1 6
∑∞
h=[s](h+1

2 )−α−1 6

2α+1 ∫∞
s x−α−1dx = 2α+1

α
s−α. Therefore, ∑∞h=[s] h

−α−1 < 2α+1

α
s−α.

Lemma A.5. If {Yit} and {Zit} are both uniformly L2+δ bounded, and uniformly and ge-

ometrically Lp-NED, then {Yit−Zit} and {Yit+Zit} are both uniformly and geometrically

Lp-NED.

Proof. Define ‖Zit − E(Zit|Fit(s))‖p < dZitϕ(s)Z and ‖Yit − E(Yit|Fit(s))‖p < dYitϕ(s)Y .

By Minkowski’s inequality, ‖(Yit −Zit)− E(Yit −Zit|Fit(s))‖p 6 ‖Yit − E(Yit|Fit(s))‖p +
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‖Zit − E(Zit|Fit(s))‖p < dYitϕ(s)Y + dZitϕ(s)Z < ditϕ(s), with dit = max(dYit , dZit) and

ϕ(s) = ϕ(s)Y + ϕ(s)Z . Similar results for {Yit + Zit}.

Lemma A.6. (Ibragimov and Linnik (1971)) Let Lp(F1) and Lp(F2) denote the class

of F1−measurable and F2−measurable random variables x with ‖x‖p < ∞. Let X ∈

Lp(F1) and Y ∈ Lp(F2). Then, for any 1 6 p, q, r <∞ such that p−1 + q−1 + r−1 = 1,

|Cov(X, Y )| < 4α1/r(F1,F2)‖X‖p‖Y ‖q,

where α(F1,F2) = supA∈F1,B∈F2(|P (AB)− P (A)P (B)|).

Lemma A.7. Under assumptions 2.1 (A.1), 3.1 - 3.2(1),

(1) Γu = ‖W‖1 <∞, and Γw = ‖W‖∞ = 1.

(2) For any N and positive integer h, ‖W h‖1 < hKΓu.

Proof. (1) Using Lemma A.2, ‖W‖1 = supj
∑N
i=1 |ωij| = supj

∑∞
h=1

∑
i:h6ρ(i,j)<h+1 |ωij| 6

supj
∑∞
h=1

∑
i:h6ρ(i,j)<h+1 π0h

−cw 6
∑∞
h=1 π1h

d−1π0h
−cw < ∞, due to cw > d (Assumption

3.2 (1)). As W is row-normalized in our model, thus Γw = ‖W‖∞ = 1.

(2) Denote an index set VN with ∑N
i=1 |ωij| > Γw if j ∈ VN and ∑N

i=1 |ωij| 6 Γw if

j /∈ VN . By assumption 3.2(1), |VN | 6 K for any N . Denote ek = (0, · · · , 0, 1, 0, · · · , 0)>

as a unit column vector with kth entry one and other entries zeros. e = (1, · · · , 1)> =∑N
k=1 ek. Note that IN = ∑N

j=1 eje
>
j . The kth column sum of W h, i.e., e>W hek can be

transformed as,

e>W hek =
N∑
j=1

e>Weje
>
j W

h−1ek

=
∑
j∈VN

e>Weje
>
j W

h−1ek +
∑
j /∈VN

e>Weje
>
j W

h−1ek

6 K
(

max
j∈VN

e>Wej

)(
max
j∈VN

e>j W
h−1ek

)
+
(

max
j /∈VN

e>Wej

) ∑
j /∈VN

e>j W
h−1ek

6 KΓu‖W h−1‖∞ + Γw‖W h−1‖1

6 KΓu + ‖W h−1‖1, ∀k = 1, · · · , N.
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Hence, we have ‖W h‖1 6 KΓu + ‖W h−1‖1. By deduction, it can be achieved that

‖W h‖1 6 (h− 1)KΓu + Γu 6 hKΓu.

7.3.2 Proof of Proposition 3.1

Proof. (1) We first discuss the NED properties of {Yit}i,t. Following Jenish and Prucha

(2012), the NED property is satisfied if random fields are generated from nonlinear Lips-

chitz type functions on random field {Xit, Uit}. Notice that
∫ 1

0 γ1(u)du 6 maxu γ1(u).

Define {Fit(s) = σ(Xi′,t′ , Ui′,t′ , C) : |i − i′| 6 s, |t − t′| 6 s}, Πs
l,i,t

def= E(Πl|Fit(s)),

Ds
t−l,i,t = E(Dt−l|Fit(s)), and Π̃l−s+1 = Mt−s−1 · · ·Mt−l+1. Πs+1,i,t Conditioning on C,

||Yit − E{Yit|Fit(s)}||2

6 ||e>i (
∑
l>0

ΠlDt−l −
∑
l>0

E(ΠlDt−l|Fit(s)))||2

6 ||e>i
∑
l6s

(|Πl|a + |Πs
l,i,t|a)|Dt−l − Ds

t−l,i,t|a||2

+ ||e>i
∑
l>s

(|Πs+1|a + |Πs
s+1,i,t|a)|Π̃l−s+1Dt−l −M l−s+1µD|a||2

6 T1 + T2,

Then, we hand the the first via spatial dependency and the second term via temporal

dependency.

Let A = (∑k>0 c
k
1|W |ka)(c2|W |a+c3I), and notice that |Πl|a+ |Πs

l,i,t|a 6 2Al, where |.|a
is element wise absolute value. Because of the row normalization, we have (E |T2|q)1/q .

|µq,D|∞(c23/(1−c1))s+1, where |µq,D|∞ is the maximum element of maxi(E ||Dt−l−µD|a,i|q)1/q.

Define Bit(s) = {(i′, t′) : |i′ − i| 6 s, |t′ − t| 6 s}, then we have:

T1 6 ||
∑

j 6∈Bit(s)
e>i
∑
l6s

Al
.j|(Dt−l − Ds

t−l,i,t)|j||2, (28)

as the term inside Bit(s) cancels for (Dt−l−Ds
t−l,i,t). Note that ||e>i Al−1||2 6 (c23)l−1/(1−
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c1)l−1 by Assumption 2.1. For l > 1, we have

∑
j 6∈Bit(s)

∑
l6s

||e>i Al(Dt−l − Ds
t−l,i,t)||2 6

∑
j 6∈Bit(s)

∑
l6s

||(|e>i Al−1|1|A(Dt−l − Ds
t−l,i,t)|∞)||2

6
∑
l6s

(c2 + c3)(l−1)/(1− c1)(l−1)({|Dt−l|∞ ∨ |µD|∞}
∑

j 6∈Bit(s)
c23gij)

6
∑
l6s

(c23)l/(1− c1)(l−1)(1− c)−1{(df + dz) ∨ |µD|∞}(
∑

j 6∈Bit(s)
gij)

6 C(
∑

j 6∈Bit(s)
gij),

where C is a constant value and gij = |(I − |c1W |)−1
ij |. We obtain the last step using

Assumption 2.1 A.1, A.2 and A.3.

Hence, under the condition sup
i

∑
j 6∈Bit(s)

gij → 0 as s → ∞, then T1 → 0. It is

straightforward to prove it from the following results: either T1 . c−s|µq,D|∞ or T1 .

s−cw−2|µq,D|∞ depending on the assumption. Therefore,

‖Yit − E(Yit|Fit(s))‖2 . ψ(s), (29)

where ψ(s) → 0 as s → 0. Next, we discuss condition sup
i

∑
j 6∈Bit(s)

gij → 0, s → ∞, under

Assumption 3.2 (i) and (ii), respectively.

(i) Under Assumption 3.2(1), we decompose matrix W using the properties of nilpo-

tent matrix. For any positive integer h, we construct two N × N matrices A and B

as follows: aij = wijI{ρ(i, j) < N − h + 1}, bij = wijI{ρ(i, j) > N − h + 1}. Then

W = A+B and aijbij = 0. We then check whether B is a nilpotent matrix, i.e., Bh = 0.

Under assumption 3.2(1), |wij| 6 π0ρ(i, j)−cw , and by Lemma A.3, we have:

(|W |h)ij =(W h −Bh)ij 6 |A|max
h−1∑
k=0
‖B‖k∞‖W h−1−k‖1 by Lemma A.3

6π0ρ(i, j)−cw
h−1∑
k=0
‖W‖k∞(h− k − 1)KΓu by Assumption 3.2(1); Lemma A.7(2)

6π0ρ(i, j)−cw
h−1∑
k=0

(h− k − 1)KΓu

6π0ρ(i, j)−cwKΓuh2.
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Hence, for any i 6= j, using Υ = sup
τ
|γ1(τ)| (Assumption 2.1 (A.1)), then

gij =|(I − |γ1W |)−1
ij | =

∞∑
h=0
|γ1W |hij =

∞∑
h=0
|γ1|h|W |hij

6
∞∑
h=0

Υhπ0ρ(i, j)−cwKΓuh2 by Assumption 2.1 (A.1)

=π0KΥ2Γuρ(i, j)−cw
∞∑
h=0

Υh−2h2

6π2ρ(i, j)−cw , for some constant π2 > 0.

For sufficiently large s, we have:

sup
i

∑
j:ρ(i,j)>s

gij 6 sup
i

∞∑
h=[s]

∑
j:h6ρ(i,j)<h+1

π2ρ(i, j)−cw

6
∞∑

h=[s]
π1h

d−1π2h
−cw =

∞∑
h=[s]

π1π2h
−(cw−d)−1 by Lemma A.2

6 π1π2
2cw−d+1

cw − d
s−(cw−d) by Lemma A.4

6 πs−(cw−d), for some constant π > 0.

Under Assumption 3.2(1), cw > d, as s→∞, sup
i

∑
j:ρ(i,j)>s

gij 6 πs−(cw−d) → 0.

(ii) Next, under Assumption 3.2(2), sup
i

∑
j:ρ(i,j)>s

gij = sup
i

∑
j:ρ(i,j)>s

∞∑
h=0
|γ1|h|W |hij

6 sup
i

∑
j:ρ(i,j)>s

∑
h=[s/ρ̄0]+1

|γ1|h|W |hij = sup
i

∑
h=[s/ρ̄0]+1

∑
j:ρ(i,j)>s

|γ1|h|W |hij

6 sup
i

∑
h=[s/ρ̄0]+1

Υh 6 (1−Υ)−1Υs/ρ̄0 .

Under Assumption 2.1 (A.1), Υ < 1. Hence, as s → ∞, we have: sup
i

∑
j:ρ(i,j)>s

gij 6

(1−Υ)−1Υs/ρ̄0 → 0.

(2) Next, we discuss the NED properties of {uit}i,t. Denote ȳit def= e>i WYt. We first

prove that {ȳit}it is NED. Note that ‖ȳit−E(ȳit|Fit(s))‖2 6
N∑
j=0
|Wij|‖Yj,t−E(Yj,t|Fit(s))‖2.

Under Assumption 3.2(1), using the result ‖Yit − E(Yit|Fit(s))‖2 < Cs−(cw−2) in Propo-

sition 3.1(1), we have: ‖Ȳit − E(Ȳit|Fit(s))‖2 6
N∑
j=0
|Wij|Cs−(cw−d) 6 ‖W‖∞Csd−cw 6

π3s
d−cw for some positive constant π3. Hence, {Ȳit} is NED process. Similar results can
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be obtained under Assumption 3.2(2) and using Proposition 3.1(2). By Lemma A.5, it is

easily seen that {uit(γ1, φ, λ, τ)}i,t follow the same NED process.

We now prove that this NED property can be transformed. Let ũit be a middle point

between uit and 0, then for sufficient small ε, we have:

‖ψτ (uit)− E[ψτ (uit)|Fit(s)]‖2 = ‖I(uit > 0)− E[I(uit > 0)|Fit(s)]‖2

6 ‖I(uit > 0)− I{E[uit|Fit(s)] > 0}‖2 =
{
E |I(uit > 0)− I{E[uit|Fit(s)] > 0}|2

} 1
2

6 P(uit > 0,E[uit|Fit(s)] < 0)

6 P(uit > ε,E[uit|Fit(s)] < 0) + P(0 < uit < ε)

6 P(|uit − E[uit|Fit(s)]| > ε) + εf(ũit)

6 E(|uit − E[uit|Fit(s)]|2)/ε2 + εf(ũit), ũit is a point between 0 and ũit.

6 ψ(s)/ε2 + εcu.

Taking ε = ψ(s)1/3 to be sufficiently small, then we achieve the desired result. Hence,

conditioning on C, the transformations {ψτ (uit)}i,t and {ρτ (uit)}i,t are also L2-NED on

{Xit, Uit}i,t.

7.3.3 Proof of Theorem 2 and Theorem 3

For convenience we collect some important notations. Define η(τ) ≡ (φ(τ)′, λ(τ)′)′,

π(τ) ≡ (γ1(τ), φ(τ), λ(τ)) = (γ1(τ), η(τ)). For simplicity, we denote η ≡ (φ′, λ′)′,

π ≡ (γ1, φ, λ) = (γ1, η), θ ≡ (γ′1, φ′)′. Recall that the true parameter η0(τ) = (φ0(τ)′, 0′)′,

and ρτ (u) = (τ − 1(u 6 0))u. Define

QNT (γ1, η, τ) ≡ 1
NT

N∑
i=1

T∑
t=1

[
ρτ
{
Yit − γ1(τ)Y it −X>it φ(τ)− Φ>itλ(τ)

}]
, (30)

Q∞(γ1, η, τ) ≡ lim
N→∞,T→∞

E[QNT (γ1, η, τ)], (31)

η̂(γ1, τ) ≡ (φ̂(γ1, τ)′, λ̂(γ1, τ)′)′ ≡ arg min
(φ,λ)∈B×G

QNT (γ1, η, τ), (32)

η0(γ1, τ) ≡ (φ(γ1, τ)′, λ(γ1, τ)′)′ = arg min
(φ,λ)∈B×G

Q∞(γ1, η, τ). (33)
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sit(γ1, η(γ1, τ), τ) = ψτ
{
Yit − γ1(τ)Y it −Ψ>itη(γ1, τ)

}
Ψit, Ψit = (X>it ,Φ>it)>, (34)

šit(γ1, η(γ1, τ), τ) = sit(γ1, η(γ1, τ), τ)− E sit(γ1, η(γ1, τ), τ), (35)

GNT = 1√
NT

N∑
i=1

T∑
t=1

šit(γ1, η(γ1, τ), τ), (36)

= 1√
NT

N∑
i=1

T∑
t=1

[sit(γ1, η(γ1, τ), τ)− E sit(γ1, η(γ1, τ), τ)],

G0
NT = 1√

NT

N∑
i=1

T∑
t=1

šit(γ0
1 , η

0(γ0
1 , τ), τ), (37)

= 1√
NT

N∑
i=1

T∑
t=1

[sit(γ0
1 , η

0(γ0
1 , τ), τ)].

and

γ̂1(τ) ≡ arg min
γ1∈A

||λ̂(γ1, τ)||, γ∗1(τ) ≡ arg min
γ1∈A

||λ(γ1, τ)||, (38)

η̂(τ) ≡ (φ̂(τ)′, λ̂(τ)′)′ ≡ η̂(γ̂1(τ), τ), (39)

η0(τ) ≡ (φ0(τ)′, 0′)′ ≡ η(γ0
1(τ), τ). (40)

Proof of Theorem 2

Let τ be fixed. We mainly follow Chernozhukov and Hansen (2006) and prove the

theorem in three steps:

Step (i) [Identification]: By Assumption 3.6 (R3), θ0(τ) = (γ0
1(τ), φ0(τ)) is the

unique solution to S∞(θ, τ) = 0, which implies that it uniquely solves the equation

lim
N→∞,T→∞

1
NT

N∑
i=1

T∑
t=1

E
[
ψτ
{
Yit − γ1(τ)Y it −X>it φ(τ)− Φ>it0

}
Ψit

]
. (41)

In view of the global convexity of Q∞(γ1, η, τ) in η for each γ1 and τ , there is a fact

that if η0(γ1, τ) = (φ0(γ1, τ), λ0(γ1, τ)) is in the interior of B×G, then η0(γ1, τ) uniquely

solves the first order condition of minimizing Q∞(γ1, η, τ) over η:

lim
N→∞,T→∞

1
NT

N∑
i=1

T∑
t=1

E
[
ψτ
{
Yit − γ1(τ)Y it −X>it φ(γ1, τ)− Φ>itλ(γ1, τ)

}
Ψit

]
= 0. (42)

We need to find γ∗1(τ) by minimizing ||λ(γ1, τ)|| over γ1 subject to the constraint in
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(42). By (41), it is clear that γ∗1(τ) = γ0
1(τ) makes ||λ(γ1(τ), τ)|| = 0 and γ0

1(τ) satisfies

(42). That is, γ∗1(τ) = γ0
1(τ) ∈ arg min γ1∈A||λ(γ1, τ)|| subject to the constraint in (42).

It is also the unique solution by (41). Hence, φ(γ∗1(τ), τ) = φ(γ0
1(τ), τ) = φ0(τ) by (42).

Step (ii) [Consistency]:

In Proposition 3.1, we established that the process {ρτ (uit)}i,t is L2-NED on {Xit, Uit}i,t.

According to Theorem 1 in Jenish and Prucha (2012), under Assumption 3.4, we have

the uniform consistency supγ1,φ,λ,τ |QNT (γ1, φ, λ, τ)− EQNT (γ1, φ, λ, τ)| = Op(1).

By the bounded density condition in 3.6 (R2), Q∞(γ1, η, τ) is continuous over A×(B×

G)×T . And by Lemma B2, sup(γ1,η,τ)∈A×(B×G)×T ||QNT (γ1, η, τ)−Q∞(γ1, η, τ)|| = Op(1).

This implies the uniform convergence by Lemma B.1 in Chernozhukov and Hansen (2006)

sup(γ1,τ)∈A×T ||η̂(γ1, τ) − η0(γ1, τ)|| = op(1) (*). It follows that sup(γ1,τ)∈A×T ||λ̂(γ1, τ) −

λ0(γ1, τ)|| = op(1), which by Lemma B.1 in Chernozhukov and Hansen (2006) again

implies supτ∈T ||γ̂1(τ) − γ0
1(τ)|| = op(1), which by (*) implies supτ∈T ||φ̂(τ) − φ0(τ)|| =

op(1) and supτ∈T ||λ̂(γ̂1(τ), τ)− 0|| = op(1).

Step (iii)[Asymptotics]: Consider a small ball BεNT (γ0
1(τ)) of radius εNT centered

at γ0
1 ≡ γ0

1(τ) for each τ , while balls’ radius εNT is independent of τ and εNT → 0 slowly

enough. Let any value γ̃1 ≡ γ̃1(τ) ∈ BεNT (γ0
1(τ)). By the computational properties of

the ordinary quantile regression estimator η̂(γ̃1, τ), Theorem 3.3 in Koenker and Bassett

(1978),

O(n−1/2) = 1√
NT

N∑
i=1

T∑
t=1

ψτ
{
Yit − γ̃1(τ)Y it −Ψ>it η̂(γ̃1, τ)

}
Ψit. (43)

Let sit(γ̃1, η̂(γ̃1, τ), τ) = ψτ
{
Yit − γ̃1(τ)Y it −Ψ>it η̂(γ̃1, τ)

}
Ψit,

GNT = 1√
NT

∑N
i=1

∑T
t=1[sit(γ̃1, η̂(γ̃1, τ), τ)− E sit(γ̃1, η̂(γ̃1, τ), τ)], and

G0
NT = 1√

NT

∑N
i=1

∑T
t=1 sit(γ0

1 , η
0(γ0

1 , τ), τ). Using Lemma B.1, which implies that for any

supτ∈T ||γ̃1(τ)− γ0
1(τ)|| = op(1), it is the case that
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supτ∈T ||GNT −G0
NT || = op(1). Then the above equation (43) can be transformed as,

O(n−1/2) = 1√
NT

N∑
i=1

T∑
t=1

sit(γ̃1, η̂(γ̃1, τ), τ),

= 1√
NT

N∑
i=1

T∑
t=1

[sit(γ̃1, η̂(γ̃1, τ), τ)− E sit(γ̃1, η̂(γ̃1, τ), τ)] (44)

+ 1√
NT

N∑
i=1

T∑
t=1

E sit(γ̃1, η̂(γ̃1, τ), τ),

=G0
NT + op(1) + 1√

NT

N∑
i=1

T∑
t=1

E sit(γ̃1, η̂(γ̃1, τ)). (45)

By mean value theorem and dominated convergence arguments, we have

1√
NT

N∑
i=1

T∑
t=1

E sit(γ̃1, η̂(γ̃1, τ))

= 1√
NT

N∑
i=1

T∑
t=1

Eψτ
{
Yit − γ̃1(τ)Y it −Ψ>it η̂(γ̃1, τ)

}
Ψit

=(Jγ1(τ) + op(1))
√
NT (γ̃1(τ)− γ0

1(τ)) + (Jη(τ) + op(1))
√
NT (η̂(γ̃1, τ)− η0(τ)), (46)

where

Jγ1(τ) = ∂S∞(θ, τ)
∂γ1

∣∣∣∣
γ1=γ0

1

, (47)

Jη(τ) = ∂S∞(π, τ)
∂(φ, λ)

∣∣∣∣
φ=φ0,λ=0

, (48)

J(τ) = ∂S∞(π, τ)
∂(γ1, φ)

∣∣∣∣
γ1=γ0

1 ,φ=φ0,λ=0
, (49)

with dimensions (q + 4 + (p + 1)m) × 1, (q + 4 + (p + 1)m) × (q + 4 + (p + 1)m) and

(q + 4 + (p+ 1)m)× (q + 4 + (p+ 1)m). Putting (45) and (46) together, we have

O(n−1/2) =G0
NT + op(1) + (Jγ1(τ) + op(1))

√
NT (γ̃1(τ)− γ0

1(τ)) (50)

+ (Jη(τ) + op(1))
√
NT (η̂(γ̃1, τ)− η0(τ)),

which implies that for any supτ∈T ||γ̃1(τ)− γ0
1(τ)|| = op(1),

√
NT (η̂(γ̃1, τ)−η0(τ)) = −J−1

η (τ)G0
NT−J−1

η (τ)Jγ1(τ)[1+op(1)]
√
NT (γ̃1(τ)−γ0

1(τ))+op(1).

(51)
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Then

√
NT (φ̂(γ̃1, τ)− φ0(τ)) = J̄φ(τ)G0

NT − J̄φ(τ)Jγ1(τ)[1 + op(1)]
√
NT (γ̃1(τ)− γ0

1(τ)) + op(1),

(52)
√
NT (λ̂(γ̃1, τ)− 0) = J̄λ(τ)G0

NT − J̄λ(τ)Jγ1(τ)[1 + op(1)]
√
NT (γ̃1(τ)− γ0

1(τ)) + op(1),

(53)

where partition conformably J−1
η (τ) = [J̄ ′φ(τ), J̄ ′λ(τ)]′.

By Step (ii), with probability approaching one,

γ̂1(τ) = arg min
γ̃1∈BεNT (γ0

1)
||λ̂(γ̃1, τ)||, for all τ ∈ T . (54)

As we discussed in part 3.2.1, the process {šit}i,t is NED process, where

šit ≡ šit(γ0
1 , η

0(γ0
1 , τ), τ) = sit(γ0

1 , η
0(γ0

1 , τ), τ) − E sit(γ0
1 , η

0(γ0
1 , τ), τ). By Theorem 2 in

Jenish and Prucha (2012), under Assumption 3.3(ii) and 3.5, we have G0
NT

d→ N(0,Ω0),

where Ω0 = τ(1− τ) lim
N→∞,T→∞

E(ΨitΨ′it). Hence G0
NT is Op(1), then we have

√
NT ||λ̂(γ̃1, τ)|| = ||Op(1)− J̄λ(τ)Jγ1(τ)[1 + op(1)]

√
NT (γ̃1(τ)− γ0

1(τ))||. (55)

It follows from (54) and (55) that
√
NT (γ̂1(τ)−γ0

1(τ)) = Op(1) by the full rank properties

of J̄λ(τ)Jγ1(τ). Consequently, following Lemma B.1 in Chernozhukov and Hansen (2006),

combing (53) and (55),

√
NT (γ̂1(τ)− γ0

1(τ)) = arg min
s∈R

|| − J̄λ(τ)G0
NT − J̄λ(τ)Jγ1(τ)s||+ op(1)

=[J ′γ1(τ)J̄ ′λ(τ)J̄λ(τ)Jγ1(τ)]−1[J ′γ1(τ)J̄ ′λ(τ)J̄λ(τ)]G0
NT + op(1). (56)

Plugging into (51), simple algebra shows that

√
NT (η̂(γ̂1(τ), τ)− η0(τ)) (57)

= J−1
η (τ)

[
I − Jγ1(τ)[J ′γ1(τ)J̄ ′λ(τ)J̄λ(τ)Jγ1(τ)]−1J ′γ1(τ)J̄ ′λ(τ)J̄λ(τ)

]
G0
NT + op(1).
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Due to invertibility of Jγ1(τ)J̄λ(τ), we can have,

√
NT (λ̂(γ̂1(τ), τ)− 0) =− J̄λ(τ)

[
I − Jγ1(τ)[J ′γ1(τ)J̄ ′λ(τ)]−1J̄λ(τ)

]
G0
NT + op(1)

=0×Op(1) + op(1).

Using the fact that (γ̃1(τ), η̂(γ̃1(τ), τ)) = (γ̂1(τ), η̂(τ)) = (γ̂1(τ), φ̂(τ), 0 + op( 1√
(NT )

)),

as min{N, T} → ∞, we have

√
NT

{
θ̂(τ)− θ0(τ))

}
=− J−1(τ)G0

NT (θ0, τ) + op(1). (58)

Recall Ω0 = τ(1 − τ) E(ΨitΨ>it). As mentioned before, using the properties of NED

process {šit}i,t, where

šit ≡ šit(γ0
1 , η

0(γ0
1 , τ), τ) = sit(γ0

1 , η
0(γ0

1 , τ), τ) − E sit(γ0
1 , η

0(γ0
1 , τ), τ), by Theorem 2 in

Jenish and Prucha (2012), under Assumption 3.3(ii) and 3.5, conditioning on C, we have

Ω−1/2
0F G0

NT
d→ N(0, I).


√
NT (γ̂1(τ)− γ0

1(τ))
√
NT (φ̂(τ)− φ0(τ))


=

 [J ′γ1(τ)J̄ ′λ(τ)J̄λ(τ)Jγ1(τ)]−1[J ′γ1(τ)J̄ ′λ(τ)J̄λ(τ)]

J̄φ(τ)
[
I − Jγ1(τ)[J ′γ1(τ)J̄ ′λ(τ)J̄λ(τ)Jγ1(τ)]−1J ′γ1(τ)J̄ ′λ(τ)J̄λ(τ)

]
G0

NT + op(1). (59)

Then conditioning on C, we have G0
NT

d→ N(0,Ω0). Recall the conditional version

of J(τ) as J(τ)∗. Recall that the unconditional version of Ω0 is defined by Ω∗0 = τ(1 −

τ) E(ΨitΨ>it)(not conditioning on C). As we assume Ω−1
0 Ω∗0 →p I and J(τ)−1J(τ)∗ →p I

where I is an identity matrix. Then the conclusion follows.

�
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7.3.4 Lemma B.1

For convenience we collect some important notations. Note that the parameter set π(τ) ≡

(γ1(τ), φ(τ), λ(τ)) = (θ(τ), λ(τ)) = (γ1(τ), η(τ)), with θ(τ) ≡ (γ1(τ), φ(τ)) and η(τ) ≡

(φ(τ), λ(τ)). For simplicity, we denote π ≡ (γ1, φ, λ) = (θ, λ) = (γ1, η), with θ ≡ (γ′1, φ′)′

and η ≡ (φ′, λ′)′. The true parameter set π0 ≡ (γ0
1 , φ

0, λ0) = (θ0, 0), with θ0 ≡ θ0(τ) ≡

(γ0
1(τ), φ0(τ)) and λ0 = 0. Recall that

uit =Yit − γ1(τ)Y it −Ψ>itη(γ1, τ), Ψit = (X>it ,Φ>it)>,

u∗it =Yit − γ0
1(τ)Y it −Ψ>itη0(γ0

1 , τ),

sit(θ, λ, τ) =sit(γ1, η(γ1, τ), τ) = ψτ
{
Yit − γ1(τ)Y it −Ψ>itη(γ1, τ)

}
Ψit,

šit(θ, λ, τ) =šit(γ1, η(γ1, τ), τ) = sit(γ1, η(γ1, τ), τ)− E sit(γ1, η(γ1, τ), τ),

GNT = 1√
NT

N∑
i=1

T∑
t=1

šit(γ1, η(γ1, τ), τ),

= 1√
NT

N∑
i=1

T∑
t=1

[sit(γ1, η(γ1, τ), τ)− E sit(γ1, η(γ1, τ), τ)],

G0
NT = 1√

NT

N∑
i=1

T∑
t=1

šit(γ0
1 , η

0(γ0
1 , τ), τ),

= 1√
NT

N∑
i=1

T∑
t=1

[sit(γ0
1 , η

0(γ0
1 , τ), τ)− E sit(γ0

1 , η
0(γ0

1 , τ), τ)].

We need to prove that for any supτ∈T ||π̂(τ) − π0(τ)|| = op(1), it is the case that

supτ∈T ||GNT−G0
NT || = op(1). First for any estimator π̂(τ) = (θ̂(τ), λ̂(τ)) = (γ̂1(τ), φ̂(τ), λ̂(τ))

which satisfying |θ̂(τ) − θ0(τ)|a 6 δ1 and |λ̂(τ) − 0|a 6 δ2 with a constant vector

δ = (δ>1 , δ>2 )>, we define

ψ̃it(τ, δ) = šit(θ̂, λ̂, τ)− šit(θ0, 0, τ). (60)

Lemma B.1. We denote c1, c2 as two constants, Bτ ∈ (0, 1) is a compact set

sup
τ∈Bτ

sup
|δ1|16c1/

√
NT

sup
|δ2|16c2/

√
NT

∣∣∣∣∣
∣∣∣∣∣ 1√
NT

N∑
i=1

T∑
t=1

ψ̃it(τ, δ)
∣∣∣∣∣
∣∣∣∣∣ = Op(1). (61)

Proof.
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We denote |.|a as the element wise absolute value. Let d = q+ 4 + (p+ 1)m, we define

the function class, with m1,m2 as two constants,

V(m1,m2, Bτ )
def= {(θ, τ, λ) 7→ {[τ − I(y − γ1y − x>φ− Φ>λ 6 0)]Ψ

−{[τ − I(y − γ0
1y − x>φ0 − Φ>λ0 6 0)]Ψ}, |θ − θ0|1 6 m1, |λ− λ0|1 6 m2, τ ∈ Bτ}.

V is VC subgraph with index v > d + 2 in view of Lemma 9.12 i) in Kosorok (2007)

and A.7 in Andrews et al. (1993). V has the envelop function V (.). With probability

measure Q and L2 norm ‖V ‖Q,2 = (
∫
|V |22dQ)1/2. Then we assume that covering numbers

of VC-classes of functions N (ε‖V ‖Q,2,V , L2(Q)) . (ε)−(v−1) by Theorem 9.3 of Kosorok

(2007).

Denote TNT (f) = GNT (f) − G0
NT (f) = (

√
NT )−1∑

i

∑
t ψ̃it(τ, δ), and JNT (f) =

(NT )−1∑
i

∑
t(sit(θ0+δ1, λ+δ2, τ)−sit(θ0, 0, τ)). We define Ṽ = V(δ1

√
NT

−1
, δ2
√
NT

−1
, Bτ ),

and the rate of the cover of the envelope for Ṽ is ‖Ṽ ‖2 . {NT}−1/4.

Then we define the Aε as the ε‖Ṽ ‖Q,2 cover of the functional class V , where for each

f in v we shall define the the closest element to it as π(f) and |π(f)− f |Q,2 6 ε. It is not

hard to see that |Aε| . (ε)−(v−1). Also we denote PNT (f, g) = (NT )−1∑
i,t |fi,t−gi,t|. We

shall assume that for our choice of ε, N (ε‖V ‖Q,2,V , L1,n(Q)) .p N (ε‖V ‖Q,2,V , L2(Q)).

The one step chaining gives us,

sup
τ∈Bτ

sup
|δ1|16c11/

√
NT

sup
|δ2|16c21/

√
NT

|(
√
NT )−1∑

i

∑
t

ψ̃it(τ, δ)| (62)

6 sup
f∈Ṽ
|TNT (f)|

=
√
NT sup

f∈Ṽ

∣∣∣ [JNT (f)− JNT{π(f)} − E JNT (f) + E JNT{π(f)}] (63)

+ [JNT{π(f)} − E JNT{π(f)}]
∣∣∣

.p 2
√
NTε(NT )−1/4 +

√
NT max

f∈Aε
|JNT (f)− E JNT (f)|

= 2(NT )1/4ε+KNT , (64)

where (NT )−1/4 corresponds to the rate of the envelope.
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We let Θε corresponds to the discretized function set Aε. Here, KNT involves partial

sums, which is handled via the NED property and the continuity of the function with

respect to the parameter, see more details in Lemma B.2.

By Lemma B.2, we have the following rate,

P( sup
τ,θ∈Θε

1√
NT

∑
i

∑
t

ψ̃it(τ, δ) > c)

6 E
{

sup
τ,θ∈Θε

1√
NT

∑
i

∑
t

ψ̃it(τ, δ)
}2

/c2

6 (NT )−1/4/c2.

We can pick for example (NT )−1/8/c = O(1), and thenKNT = O(1). Also ε/(NT )−1/4 =

O(1).

Lemma B.2. Denote ηit(τ, δ) def= supτ,θ∈Θε{šit(θ, λ, τ) − šit(θ0, 0, τ)}, where Θε corre-

sponds to the discretized function set Aε. For each τ and ‖δ‖ 6 M < ∞, if cw >

(1 + 1
1−q )d, we have

Var
[

1√
NT

N∑
i=1

T∑
t=1

ηit(τ, δ)
]

= O({NT}− 1
4 ).

Proof.

For simplicity, we denote supθ∈Θε(ψτ (uit(γ1, φ, λ, τ))− ψ̃τ (u∗it))Ψit as ηit. It is not hard

to see that ηit is NED. For any i ∈ 1, · · · , N , t ∈ 1, · · · , T and any s > 0, let

Rs
it = E(ηit|Fit(s)), T sit = ηit −Rs

it.

By the Jenson and Lyapunov inequalities, we have for all i ∈ 1, · · · , N , t ∈ 1, · · · , T and

any 1 6 q 6 2 + δ,

E |Rs
it|q = E{|E(ηit|Fit(s))|q} 6 E{E(|ηit|q|Fit(s))} = E |ηit|q,
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and thus

‖Rs
it‖q 6 ‖ηit‖q 6 ‖ηit‖2+δ

‖T sit‖q 6 ‖ηit‖q + ‖Rs
it‖q 6 2‖ηit‖q 6 2‖ηit‖2+δ.

Therefore, both Rs
it and T sit are uniformly L2+δ bounded. Since the process {ψ̃τ}i,t is

uniformly L2-NED on {Xit, Uit}i,t and w.l.g. the NED-scaling factors can be chosen as

one, then

sup
i,t
‖T sit‖2 6 ϕ(s),

Furthermore, let σ(Rs
it) denote the σ−field generated by Rs

it. Since σ(Rs
it) ⊆ Fit(s), the

mixing coefficients of Rs
it satisfy

αR(1, 1, h) 6

 1, h 6 2s,

α(Msd,Msd, h− 2s), h > 2s,

where α(u, v, h) are the mixing coefficients of the input process {Xit, Uit}, since the

s−neighborhood of any point on D contains at most Ms2 points of D for some M that

does not depend on s, see Lemma A.1 of Jenish and Prucha (2009).

We decompose ηit and ηi′,t′ as

ηit = R
[s/3]
it + T

[s/3]
it , ηi′,t′ = R

[s/3]
i′,t′ + T

[s/3]
i′,t′ .

where s = ρ((i, t), (i′, t′)). Then,

|Cov(ηit, ηi′,t′)| =|Cov(R[s/3]
it + T

[s/3]
it , R

[s/3]
i′,t′ + T

[s/3]
i′,t′ )|

6|Cov(R[s/3]
it , R

[s/3]
i′,t′ )|+ |Cov(R[s/3]

it , T
[s/3]
i′,t′ )|

+ |Cov(T [s/3]
it , R

[s/3]
i′,t′ )|+ |Cov(T [s/3]

it , T
[s/3]
i′,t′ )|.

We then bound each item on the right side of the last inequality.

First, using Lemma A.6 with p = 2 + δ, q = 2, and h = 2(2 + δ)/δ yields the following
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bound on the first term:

|Cov(R[s/3]
it , R

[s/3]
i′,t′ )| 6 4‖R[s/3]

it ‖2+δ‖R[s/3]
i′,t′ ‖2α

δ/(4+2δ)
R (1, 1, [s/3])

6 4‖ηit‖2+δ‖ηit‖2α
δ/(4+2δ)(M [s/3]d,M [s/3]d, s− 2[s/3])

6 C1‖ηit‖2+δ‖ηit‖2[s/3]dς0α̂δ/(4+2δ)([s/3]),

where ς0 = δς/(4 + 2δ).

Second, by the Cauchy-Schwartz inequality, the second and third terms are bounded

by:

|Cov(R[s/3]
it , T

[s/3]
i′,t′ )| 6 4‖R[s/3]

it ‖2‖T [s/3]
i′,t′ ‖2 6 4‖ηit‖2ϕ([s/3]).

Similarly, the fourth term can be bounded as:

|Cov(T [s/3]
it , T

[s/3]
i′,t′ )| 6 4‖T [s/3]

it ‖2‖T [s/3]
i′,t′ ‖2 6 8‖ηit‖2ϕ([s/3]).

Collecting the above inequalities, we have

|Cov(R[s/3]
it , R

[s/3]
i′,t′ )| 6 ‖ηit‖2

{
C1‖ηit‖2+δ[s/3]dτ0α̂δ/(4+2δ)([s/3]) + C2ϕ([s/3])

}
. (65)

Using the above inequality as well as the bound and definition of random fields, we
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have

Var
[

1√
NT

N∑
i=1

T∑
t=1

ηit

]

6
1
NT


N∑
i=1

T∑
t=1

Var(ηit) +
N∑
i=1

T∑
t=1

∑
(i′,t′)6=(i,t)

|Cov(R[s/3]
it , R

[s/3]
i′,t′ )|


64‖ηit‖2

2 + C1
1
NT

N∑
i=1

T∑
t=1

∑
(i′,t′)6=(i,t)

‖ηit‖2‖ηit‖2+δ[s/3]dς0α̂δ/(4+2δ)([s/3])

+ C2
1
NT

N∑
i=1

T∑
t=1

∑
(i′,t′)6=(i,t)

‖ηit‖2ϕ([s/3])

64‖ηit‖2
2 + C1

1
NT

N∑
i=1

T∑
t=1

∞∑
h=1

∑
(i′,t′):h6ρ((i,t),(i′,t′))/3<h+1

‖ηit‖2‖ηit‖2+δ[ρ((i, t), (i′, t′))/3]dς0α̂δ/(4+2δ)([ρ((i, t), (i′, t′))/3])

+ C2
1
NT

N∑
i=1

T∑
t=1

∞∑
h=1

∑
(i′,t′):h6ρ((i,t),(i′,t′))/3<h+1

‖ηit‖2ϕ([ρ((i, t), (i′, t′))/3])

64‖ηit‖2
2 + C3‖ηit‖2

{ ∞∑
h=1

hd(ς0+1)−1α̂δ/(4+2δ)(h) +
∞∑
h=1

hd−1ϕ(h)
}
,

where the second inequality is by substituting equation (65), the third inequality is by

using the properties of random field, and the last inequality is by Lemma A.2 and the

L2+δ-bound property of {ηit}.

We discuss
∞∑
h=1

hd−1ϕ(h) under the aforementioned two cases of the NED coefficients

of {ηit}ni=1, ϕ(s): (1) Under assumptions 3.1-3.2(1) and 3.3(ii), the NED coefficients

ϕ(s) = s−(1−q)(cw−d), then
∞∑
h=1

hd−1ϕ(h) =
∞∑
h=1

hd−(1−q)(cw−d)−1 <∞, when cw > (1+ 1
1−q )d.

(2) Under assumptions 3.1-3.2(2) and 3.3(ii), the NED coefficients ϕ(s) = Υ(1−q)s/ρ̄0 , then
∞∑
h=1

hd−1ϕ(h) =
∞∑
h=1

hd−1Υ(1−q)h/ρ̄0 <∞, due to Υ < 1. Therefore,
∞∑
h=1

hd−1ϕ(h) <∞.

Further, under assumption 3.3(i),
∞∑
h=1

hd(ς0+1)−1α̂δ/(4+2δ)(h) <∞, combined with L2+δ-

bound of {ηit}, we obtain that

Var
[

1√
NT

N∑
i=1

T∑
t=1

ηit

]
6 C max

i,t
‖ηit‖2

for some C <∞.
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Next, we analyze ‖ηit‖2. Note that

∣∣∣E (η>itηit)∣∣∣ 62
∣∣∣E{[I(−(NT )−

1
2 δ>|ξit|a 6 u∗it < (NT )−

1
2 δ>|ξit|a)

]
{Ψ>itΨit ∨ E |Ψit|>a E |Ψit|a}

}∣∣∣
62

∣∣∣∣∣∣E
∫ NT−

1
2 δ>|ξit|a

−NT−
1
2 δ>|ξit|a

{Ψ>itΨit ∨ E |Ψit|>a E |Ψit|a}f(u)du

∣∣∣∣∣∣
=4

∣∣∣E{NT}− 1
2 δ>|ξit|af(u){Ψ>itΨit ∨ E |Ψit|>a E |Ψit|a}

∣∣∣
with u ∈ (0, {NT}− 1

2 δ>|ξit|a) and f(u) 6 π5 (by Assumption 3.6 (R2) ) is the density

function of u∗it conditioning on C and ξit. Therefore,

‖ηit‖2 =
[
E
(
η>itηit

)]1/2
6
∣∣∣{NT}− 1

2 E
{
δ>ξitf(u){Ψ>itΨit ∨ E |Ψit|>a E |Ψit|a}

}∣∣∣1/2
6π5{NT}−

1
4 E

{∣∣∣δ>ξit{Ψ>itΨit ∨ E |Ψit|>a E |Ψit|a}
∣∣∣}1/2

.

By Assumption 3.3 (ii), the last term E
{∣∣∣δ>ξit{Ψ>itΨit ∨ E |Ψit|>a E |Ψit|a}

∣∣∣}1/2
is bounded.

Hence, we obtain that

Var
[

1√
NT

N∑
i=1

T∑
t=1

ηit

]
6 Cmaxi‖ηit‖2 = Op({NT}−

1
4 )

for some C <∞.
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