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Tail Event Driven Factor Augmented
Dynamic Model∗

Weining Wang† Lining Yu‡ Bingling Wang §

Abstract

A factor augmented dynamic model for analysing tail behaviour
of high dimensional time series is proposed. As a first step, the tail
event driven latent factors are extracted. In the second step, a VAR
(Vectorautoregression model) is carried out to analyse the interaction
between these factors and the macroeconomic variables. Furthermore,
this methodology also provides the possibility for central banks to
examine the sensitivity between macroeconomic variables and financial
shocks via impulse response analysis. Then the predictability of our
estimator is illustrated. Finally, forecast error variance decomposition
is carried out to investigate the network effect of these variables. The
interesting findings are: firstly, GDP and Unemployment rate are very
much sensitive to the shock of financial tail event driven factors, while
these factors are more affected by inflation and short term interest rate.
Secondly, financial tail event driven factors play important roles in the
network constructed by the extracted factors and the macroeconomic
variables. Thirdly, there is more connectedness during financial crisis
than in the stable periods. Compared with median case, the network
is more dense in lower quantile level.
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1 Introduction
Quantile and expectile method are known as important tools for analysing
tail behaviour, see Koenker and Bassett (1978) and Newey and Powell (1987).
One very important application of quantile regression in finance is to calcu-
late Value at Risk, for instance, Duffie and Pan (1997), Schaumburg (2012)
and Xiao et al. (2015). Compared with quantile, the advantage of expectile
is its coherency property. Gschöpf et al. (2015) introduced a flexible trans-
formation framework, which provides a simple way to transfer from quantile
to expectile, vice versa. However, when the dimensionality of the time series
becomes too high, it will be difficult to analyse the tail dependency. One of
the most effective solution for this is to use factor models.

Factor models are known to be important tools to reduce the dimensional-
ity, see Cattell (1952), Fruchter (1954), McDonald (1985), Bai and Ng (2006)
and Markus (2015). For instance, to analyse common behaviour in financial
markets, the major factors could be extracted from the financial data. More-
over, the extracted factors are easily to connect with macro variables via
a vector auto regression (VAR) model, which facilitates people to perform
forecasting and study the interactions among them. This type of model is
known as Factor-Augmented Vector Autoregressive (FAVAR) model. Favero
and Marcellino (2005) used FAVAR model to analyse monetary policy in Eu-
rope. Bernanke et al. (2005) applied it to detect the policy shock on macro
variables. Stock and Watson (2005) used this model to examine the under-
ling shocks from macro economy. Moench (2008) forecasted the yield via
FAVAR model.

However, the extracted factors of aforementioned literature are only pro-
vided in the median level, the tail event case has not been investigated. In
the context of studying systemic risk, it is of interest to have tail risk driven
factors isolated. A tail event driven factor augmented dynamic model is ex-
actly a model to serve this purpose. In general, people use the Kalman filter
and maximum likelihood to estimate the FAVAR model. But when the num-
ber of variables is large, this approach becomes computationally infeasible.
Two alternative estimation methods are proposed by Bernanke et al. (2005):
a single-step approach using Markov Chain Monte Carlo (MCMC) methods,
and a two-step approach, that is principal components techniques are used to
estimate the common factors first, then a VAR model could be constructed
and estimated. Bernanke et al. (2005) found that the two-step approach out-
performed the single-step one and was simpler to implement. In this paper
instead of normal principal component, the principal component based on
asymmetric norm is applied. Tran et al. (2019) developed an analogue of
PCA in an asymmetric norm, these norms covered both quantiles and expec-
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tiles. However, they proposed a pure static setting for functional data, which
is not suitable for the goal to study financial systems. In terms of systemic
risk modelling their idea could be extended to a dynamic factor model con-
text. Another paper related is De Rossi and Harvey (2009), who considered
a state space quantile model in one dimensional setting. The approach was
well developed but was too simple (one dimensional) for the needs of high
dimensional data. Our approach can be considered as a multidimensional ex-
tension to their methodology. Namely, an expectile state space model with
multivariate state variables is considered. The underlying state variables
(factors) will be filtered by principal expectile component algorithm. Chen
et al. (2005) proposed a quantile factor model, they applied an iterative pro-
cedure to estimate the common factors and the factor loadings at a given
quantile. Chao et al. (2015) and Härdle et al. (2016) introduced quantile
and expectile factor model combined with lasso technique. But their models
do not have dynamic structure in terms of forecasting, their idea could be
extended with dynamic framework.

It is very important to detect the dominant factors in the financial mar-
ket, therefore, the tail event driven factor model will first be applied to the
financial variables (e.g. stock returns). To make the systemic risk study more
realistic, we would like to incorporate hedge funds data into our models and
investigate further on the role of the hedge fund industry, and the impact of
it on the overall financial stability of the system.

After the financial tail event driven factors are extracted, it is of interest
to detect the interaction between these factors and macro economy. The
macroeconomic variables applied in the Comprehensive Capital Analysis and
Review (CCAR) for supervision stress testing are considered. We would like
to examine the sensitivity between macro variables and the financial tail
event driven factors. Furthermore, the connectedness of financial factors and
macro variables are detected.

The contribution of this study is then three folds: First of all, the ex-
tracted factors are very important indicators of stock market risk levels.
Secondly, the fitted dynamic model would serve as a good tool to detect
the sensitivity between macroeconomic variables and financial factors. Fi-
nally, this methods could also detect the interaction between macroeconomic
variables and financial market under different risk level.

This study is organised as follows: Section 2 introduce the setup of the tail
event driven factor augmented dynamic model; Section 4 shows the empirical
application by using financial data and macro economy variables; Section 6
concludes; Supplementary materials could be found in Appendix.
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2 Model setup
In this section the structure of the factor augmented dynamic model is in-
troduced, then the estimation method will be stated. Let Xit (i = 1, · · · , N ,
t = 1, · · · , T .) be the response variable,

Xit =
L∑
l=1

γτilf
τ
lt + εit, t = 1, · · · , T, i = 1, · · · , N, (1)

γτils are factor loadings, f τlts are the latent factors, and εits are noise compo-
nents. εits are assumed to be i.i.d and F−1εit|fτlt

(τ) = 0. In the vector form, the
model in (1) can be rewritten as

Xt
(N×1)

= Γτ>
(N×L)

F τ
t

(L×1)
+ εt

(N×1)
, (2)

where Xt = [Xit]i≤N , Γτ = [γτil]
>
N×L = [γτi ]i≤N and F τ

t = [f τlt]
>
l≤L (a vector of

f τlt).
Then the augmented VAR model is assumed to be:

Gτ
t = α +B1G

τ
t−1 +B2G

τ
t−2 + · · ·+BqG

τ
t−q + ut, (3)

where Gτ
t

def
= [F τ>

t ,M>
t ]>, and Mt is a vector of macroeconomic variables,

ut is a K dimensional process with nonsingular covariance matrix Σu. The
impulse response function analysis and forecast error variance decomposi-
tion will be carried out, see Appendix. The detailed analysis can be found in
Lütkepohl (2005). We estimate factors and loadings according to an iterative
approach.

2.1 Iteration between F̂ τ
t and Γ̂τ .

We start with initial value of (R × N) loading matrix Γ̂τ(0) estimated from
the iterative approach, then the estimated factors can be found using the
following iterative procedure:

1. Given Γ̂τ(a) = [γ̂
τ(a)
1 , . . . , γ̂

τ(a)
L ], using quantile or expectile regression of

Xt on Γ̂τ(a) to estimate F̂t
τ(a+1)

for t = 1, . . . , T .

2. Given F̂ τ(a+1) = [F̂
τ(a+1)
1 , . . . , F̂

τ(a+1)
T ], using quantile or expectile re-

gression of Xt on F̂ τ(a+1) to estimate Γ̂τ(a+1) for i = 1, . . . , N .

3. Repeat Steps 1 and 2 until Γ̂τ(R) and Γ̂τ(R+1) are close enough.
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3 Simulation
We also perform a simulation to study the finite sample properties of our
proposed algorithms. Assume we have two factors, F1t follows AR(1) pro-
cess with F1t = 0.5F1,t−1 + ε1t, and F2t follows AR(2) process with F2t =
0.3F2,t−1 + 0.2F2,t−2 + ε2t. And the corresponding loadings follows normal
distribution N(0, 9) and N(0, 4), the error term follows 1. standard Gaus-
sian: iid N(0, 0.01), 2. "fat tailed": iid t(5). To identify the factors and
loadings, we have fixed the sign of loadings and their corresponding factors.
Then the simulated observations and the estimators are shown in Figure 26,
Figure 27, Figure 28 and Figure 29.

We compare the simulated factors and loadings with the estimated fac-
tors and the loadings by using R2 from the regression, see Table 13, Table
14, Table 15 and Table 16. The performance of the estimator are examined
under three scenarios: (i) the sample size T goes larger while the dimension
of time series N is fixed; (ii) the dimension of time serious N goes larger
while the sample size T is fixed; (iii) the sample size and the dimension of
time series goes larger simultaneously.

In τ = 0.5 cases, under each of the three scenarios and two settings of error
terms, the estimators of both the loadings and factors converge, meanwhile
their explanatory power of the variation goes higher. In τ = 0.05 or τ = 0.95
cases, under the three scenarios and both assumption of the errors, none of
the estimators converge. Besides, in each cases, the estimator of factor 1 and
its loading can explain the variation very well while the estimator of factor 2
and its loading tends not to have a constantly good performance. In addition
the estimators with τ = 0.5 has a higher explanatory power on the variation
than the ones in τ = 0.05 or τ = 0.95 cases.

4 Application
Now the methodology on financial data is illustrated. A sample of monthly
log returns of 100 US financial companies in four sectors are taken: Deposi-
tories (25), Insurance (25), Broker-Dealers (25) and Hedge Funds (25). The
time period considered is from February 30, 1991 to December 31, 2014 on
a monthly frequency, T = 287. Since there are not enough Broker-Dealers
available during this time period, several financial service firms in this group
are included.

The data of Depositories, Insurance and Broker-Dealers come from Datas-
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tream. And the Hedge funds data are from Lipper Hedge Funds Database.
We would like to include the data from the hedge funds sector to analyze
their impact on the financial system. The motivation for this is the following.
In 2014, the transaction volumes of global hedge funds are about 3.1 USD
billions. Pure hedge fund assets were the third largest type of alternative
investment (behind real estate and private equity). Although this suggests
that the hedge fund industry should play a major active role when analyz-
ing systemic risk in financial system, in the analysis of financial systems
the shadow banking sector has been largely overlooked. Chan et al. (2005)
quantify the potential impact of hedge funds on systemic risk by developing
a number of new risk measures for hedge funds. Billio et al. (2012) apply
several econometric measures of connectedness by using the monthly returns
of hedge funds, banks, broker/dealers, and insurance companies. We also
would like to investigate on the role of the hedge fund industry in our study.

4.1 Descriptive Statistics

Firstly, the difference between four industry groups is compared. Table 1
shows the descriptive statistics of the asset returns of four groups. The
hedge funds group has highest mean and lowest standard deviation, which
indicates that it is a highest return and lowest risk sector. From Figure 1
and Figure 2 it can be found that in 1998 there are lower mean of banks
and broker-dealers, and higher standard deviation of hedge funds (see the
last graph of Figure 2), the collapse of Long-Term Capital Management L.P.
(LTCM) happened at that time, it had severe impact on the US financial
market. During the financial crisis 2008 the mean of hedge funds is very
stable, and the standard deviation is lowest than other groups. In this sense
one could say that hedge funds applied a lot of strategies and played positive
roles on reducing effects of the financial crisis.

4.2 Factor estimation and interpretation

Now the different τ level factors are extracted from the 100 selected US
financial firms. A sequence of τ level from 0.05 to 0.95 is estimated, the
explained variance for models with one to eight factors is shown in the left
plot of Figure 3 and Table 2. Big proportion of variance of the data are
explained at tail levels, e.g. a two factors model (orange line, i.e. the second
line from bottom in the left panel of Figure 3), 70% for τ = 0.05 and 71%
for τ = 0.95. But when τ approaches 0.50 the explained variance becomes
smaller, as when τ = 0.50 the value is 34%. This means that the model has
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more explanatory power at tail levels. The data in tail level are more risky
and are more interesting in terms of risk controlling, τ = 0.05 is therefore
fixed in the following analysis. The right plot of Figure 3 is the scree plot
for τ = 0.05, while the first two factor explains 70%, the additional factors
explain less variance of the data, two factors are selected in this analysis
afterwards.

The left part of Figure 4 shows that most firms have positive loadings
with factor 1 (F1). The exceptions are some hedge funds firms which have
slightly negative loadings. The estimated F1 is presented, see the grey line on
the right panel of Figure 4. It is found that the pattern of the first estimated
factor is similar to average returns of all firms, see Figure 5. The correlation
of F1 and average return sequence is 0.96, and both of them are station-
ary. F1 can be named as a Market Level Factor. As the hedge funds sector
is not regulated by authorities, this could also be confirmed by the highest
mean and lowest standard deviation in Table 1. Factor two’s highest nega-
tive loadings are with AIG (American International Group), FNMA (Federal
National Mortgage Association) and FDMC (Federal Home Mortgage Cor-
poration), and are with slight positive loadings with other firms. One can
track the historical event that AIG accepted the terms of the federal reserve
board rescue package on September 16, 2008. This makes it to be the largest
government bailout of a private company in US history. Federal Housing
Finance Agency took over of FNMA and FDMC in September 2008. These
firms were all severely affected by 2008 financial crisis, therefore factor 2 (F2)
is called as a Crisis Sensitive Factor. This result can be confirmed by right
panel of Figure 4, as the F2 (black line) is more volatile during the crisis time
than in normal times. Until here the two factors are extracted from the tail
level of the financial data, therefore they will be called as financial tail event
driven factors in the following analysis.

4.3 Macroeconomic variables description

Stress testing became nowadays one of the most important supervision strat-
egy after 2007-2008 financial crisis. In US, the Federal Reserve System has
conducted CCAR since 2009, which is the annual stress test on the US bank-
ing system. Normally, the Federal Reserve releases the stress supervisory
scenarios (baseline, adverse, and severely adverse), then the banks will ac-
cess their minimum capital requirements under these three scenarios by us-
ing different methodologies. These macro variables are given and assumed
to have important impact to financial firms. In this study, we would like to
examine the sensitivity between macro variables and the financial tail event
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driven factors, the impulse response analysis facilitates us to reach this goal
by using 8 macro economic variables involved in 2011 CCAR.

There are nine macroeconomic variables are: real GDP (GDP), Consumer
Price Index (CPI), real disposable personal income (INC), unemployment
rate (UNE), three-month Treasury bill rate (THR), 10-year Treasury bond
rate (TEN), BBB corporate rate (BBB), Dow Jones S&P 500 Index (SP)
and National House Price Index (HPI). Honwever, BBB corporate rate is not
available before 1997, for consistency with the financial markets data, only
eight macroeconomic variables (without BBB corporate rate) are adopted in
this application. These eight variables are obtained from Federal Reserve
Bank of St. Louis. The time horizon and frequency of these macroeconomic
variables are the same as the previous dataset of financial institutions.

4.4 VAR model setup

Before a VAR estimation is performed, one have to ensure the stationarity
of the data. The Augmented Dickey Fuller Test (ADF test) is conducted to
test the stationarity of the time series. Table 3 shows that F1, F2, GDP,
TEN are tested to be stationary. Then the first difference of HPI is taken,
the CPI, INC are transformed as percent change, and SP is transformed into
log returns, whose unit root behavior is suggested by the ADF test.

As for the order of this VAR model, we have kept it to be 15 based
on different information criteria and autoregression tests, see Table 4 and
Table 5. Figure 30 and Figure 31 in Appendix shows the autocorrelation
function (acf) of the residuals, the acf of these variables are insignificant,
which indicates the suitability of the VAR model. Stationary test is also
conducted on the data to ensure the appropriateness of this model. Table
6 shows that the constructed VAR (15) model is stationary. As there is no
roots in or on the complex circle, which is equivalent to the condition that all
eigenvalues of reverse characteristic polynomial of the VAR(p) process have
modulus less than 1 (see Lütkepohl (2005)).

4.5 Impulse Response Analysis

In this section an impulse response analysis is performed. As a structural
VAR with correlated shocks is considered, the Choleski decomposition of the
covariance matrices is applied in this study.

Firstly the impulse response from the two extracted financial tail event
driven factors to macro economy is conducted. Left panel of Figure 6 shows
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the estimated impulse functions with bootstrap confidence intervals. For ex-
ample, it is noticed that one standard deviation shock of F1 (market level
factor) will have a significant positive impact on itself and F2 immediately.
Also it will have a significant positive impact on GDP (in six period and from
14 to 17 period), SP and HPI immediately under 95% confidence bounds. It
will decrease the CPI immediately and decrease UNE from 9th period on.
From the magnitude of the response, it suggests that the positive shocks of
the market level factor have large significant impact on GDP and unemploy-
ment rate.

As for the impulse effect of F2 (crisis sensitive factor) in right panel
of Figure 6, it can be found that one standard deviation shock of crisis
sensitive factor decreases the market level factor significantly in the first and
fourth period under 95% confidence bounds. There is a significant positive
impact on itself, it will decrease the GDP in the fourth period significantly.
The employment will be increased from period 2 to period 11. There is no
significant impact from F2 to other variables. It can be seen that GDP and
unemployment rate are severely affected by crisis sensitive factor.

Next, the impulse response from macro economy to the financial market
will be detected, which could be useful for central bank to check the sensitiv-
ity of the financial market shocked by the macroeconomic variables used in
CCAR. One standard deviation shock of GDP (Left panel of Figure 7) will
increase the F1 in the third period significantly, and decrease F2 from period
1 to period 3. It has immediate positive impact on itself, inflation will be
decreased and personal income will be increased immediately, unemployment
will be decreased from period 6 to period 20, which means that more people
could find a job. However, house price will be increased significantly from
period 2 on.

If there is one positive shock of CPI (Right panel of Figure 7), the mar-
ket level factor F1 will be decreased significantly from 4th to 5th period. F2
will be increased in the third and tenth period significantly. GDP will be
decreased from period 15 to period 18 significantly, there will be an imme-
diate positive impact on CPI itself. The unemployment will be increased
significantly from period 10 on.

One standard deviation shock of unemployment (Right panel of Figure
8) could increase F2 in the first period significantly, and increase itself im-
mediately.

One standard positive shock of short term interest rate (Left panel of
Figure 9) could increase market level factor in the third, seven and tenth
period significantly, increase F2 from 3th to 4th periods, then decrease F2
from the 5th to 6th periods significantly, increase itself immediately and
increases long term interest rate immediately until third period, and from
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period 10 to period 14 significantly, decrease house price from 16th period to
22th period significantly.

One standard positive shock of the long term interest rate (Right panel
of Figure 9) could increase the short term interest rate at the beginning to
16th period and increase itself immediately. From here it can be concluded
that the short term and long term interest rate reinforce each other.

Now the findings from impulse response analysis are summarized as fol-
lows: 1. GDP and unemployment rate are relative sensitive to the shocks
from financial tail event driven factors. 2. Market level factor (F1) is more
sensitive to the impact of GDP, CPI, THR, whereas crisis sensitive factor
(F2) is more sensitive to CPI, UNE, THR. So the financial tail event driven
factors are both sensitive to CPI and THR. 3. Shock of GDP decreases
unemployment rate significantly, however, the unemployment rate does not
have severe impact on GDP. 4. The short term and long term interest rate
reinforce each other for long term.

4.6 Forecasting

Now the out-of-sample forecast result of this model is presented. Since the
behavior of two financial tail event driven factors are more useful to indicate
the possible risk levels in the financial market, the forecasting of them will
be shown in the following, while the forecasting of macro variables is less
interesting for us.

Figure 11 shows the 9 quarters forecasting of financial factors by using
VAR model. Compared with higher values during 2008 financial crisis, the
values in forecasting are not very high for both factors. The possible risk level
in the financial market could be therefore predicted, which is very helpful in
terms of risk controlling and supervision.

4.7 Network Analysis

In this section the network effects of financial factors and the macroeconomic
variables are studied. Namely we would like to detect the connectedness
between financial sector and macro economy. There is a lot of literature
regarding network based connectedness. For instance, Hautsch et al. (2015)
proposed realized systemic risk beta based on linear LASSO regression, which
measures financial companies’ contribution to systemic risk given network in-
terdependence between firms’ tail risk exposures. Härdle et al. (2016) iden-
tified Systemically Important Financial Institutions based on the network
constructed by the components from Single-Index Model with LASSO tech-
nique. Diebold and Yilmaz (2014) apply generalized variance decomposition
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(GVD) to measure the connectedness for financial firms. Since the VAR
model is applied, the variance decomposition (VD) is the direct and simplest
approach to build a network. However, using GVD (see Pesaran and Shin
(1998)) or VD ( Sims (1980)) is a trade-off. This is related to the issue about
ordering of variables. While VD is sensitive to ordering, GVD is invariant
to ordering. In Diebold and Yilmaz (2014), they detected the connectedness
of the financial firms, each firm should be equally treated, GVD is good for
them. But in this study, based on the result of Granger causality test from
Table 7, it shows that two financial tail event driven factors Granger cause
other variables, while some of the macroeconomic variables do not Granger
cause others. So the financial factors should be placed first in the constructed
VAR model, and then would be the macroeconomic variables, respectively.
Another reason is that it is of interest to detect the network effect of macro
economy changed by financial shocks. The ordering is an important feature
in this analysis and can not be neglected, therefore VD is applied in this
application.

Forecast error variance decomposition is carried out to construct the net-
work, and the predictive horizon for variance decomposition is 12 months, as
one year is normal economy circle, moreover, it can be found out there is no
much difference of the estimation results between 6 months and 12 months.
Window size n is chosen as 48 months, i.e. 4 years, since it could cover the
longest duration of the recession in the history. Then the adjacency matrix
in each time point is constructed and the diagonal element is set as zeros
(since the impact from one variable to the others are more interesting than
to itself), see Table 8. There are two levels connectedness, the aggregated
level and the individual level. For the definition of them we reference Härdle
et al. (2016). First of all, the direct connection from variable j to variable i is
defined as Cw

i,j for window w. The total direct connectedness matrix is sim-
ply the sum of each direct connection over all moving windows:

∑T−n
w=1 C

w
i,j.

Where the column direction stands for the OUT-going (emit) link, i.e. how
one variable affect the others. And the row connection means the IN-coming
(receive) link, i.e. how one variable is affected by others. The total Incoming
links is defined as

∑K
j=1

∑T−n
w=1 C

w
i,j, while the total Outgoing links is defined

as
∑K

i=1

∑T−n
w=1 C

w
i,j. Table 9 shows the total IN and OUT links, it can be

seen that the major impact emitter is market level factor with the value
314, the crisis sensitive factor and GDP follow it with 187 and 155 respec-
tively. It indicates that the two financial tail event driven factors dominate
the network.

Figure 12 shows the aggregated total direct connections, the highest direct
connection is from F1 to SP with 129. The second direct connection is from
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F1 to F2 with the value 80. The total connectedness is simply the sum of each
adjacency matrix over time

∑K
i=1

∑K
j=1

∑T−n
w=1 C

w
i,j. Figure 13 shows the result

of total connectedness: the connectedness in financial crisis period (from
2008 to 2010) is higher than the other periods. Incoming link (

∑K
j=1C

w
i,j)

and Outgoing link (
∑K

i=1C
w
i,j) over time are shown in Figure 14 and Figure

15. Comparing these two graphs it can be found that the outgoing links is
more volatile than incoming links. Very interesting phenomenon is that in
the peak of the financial crisis the crisis sensitive factor dominates the whole
network, which can be seen as a crisis indicator in this network.

Next the individual level connectedness (i.e. the direct connection) is
detected. The direct connection among these variables is shown from Figure
16 to Figure 18. There are plots of direct connections on different dates:
11.28.1997 which is during the asian financial crisis, 30.11.2009 which is dur-
ing global financial crisis, and 31.12.2015 which is during financial stable
period. It is clear that during the crises the network is denser than the
stable period.

5 τ = 0.5 case
In τ = 0.5 case the factor loadings are obtained, see left plot of Figure 19.
The major difference of the first factor with τ = 0.05 case can be found in
Figure 20, in τ = 0.5 case, the first factor have higher correlation (0.97) with
the averaged mean, while in τ = 0.05 case, the correlation of factor 1 and
the averaged mean is 0.96. For the second factor, from the plot of the factor
loadings in right plot of Figure 4 and right plot of Figure 19, it can be found
that in τ = 0.05 case the defaulted firms are more sensitive to factor two
(AIG, FNMA, FDMC), while only AIG and FNMA are sensitive to factor
two in τ = 0.5 case. In Figure 21, we found that the second factors in the
τ = 0.05 and τ = 0.5 cases is larger than the first factors, see also Table
12, especially the skewness and kurtosis of second factor in τ = 0.05 case is
much different from τ = 0.5 case. After the comparison, it can be conclude
that in median case, the first factor could be identified precisely, while in
τ = 0.05, i.e. high risk case, the second factor could be better identified to
indicate the possible risk. In terms of systemic risk study, the second factor
is more important to play a role of risk indicator, while the first factor which
represents the average return is not so interesting for us.
In the VAR model, same order 15 is selected, see from Table 6 to Table 9.
From the forecasting in Figure 22 it can be seen that the pattern of second
factor is flatter than the predicted second factor in τ = 0.05 case.
In the network analysis, we find out that total connectedness in τ = 0.05

12



case is higher than in τ = 0.5 case, see Table 9 and Table 11. Especially, for
two financial factors, there is also clearly more connection between them in
τ = 0.05 case compared with τ = 0.5, either total received impacts or total
emit impacts, see Figure 12 and Figure 23. Also the macro variables emit
more impact to the system in τ = 0.05 case with the value 757 larger than 753
in τ = 0.5 case. We also find out that macro variables play more important
role in τ = 0.05 case than in τ = 0.5 case, while in τ = 0.05 case the macro
variables received the total impact from financial factors with value 406 less
than in τ = 0.5 case with value 408. They emit to the financial factors 81
impact in τ = 0.05 case which is larger than 80 in τ = 0.5 case. Also for
the macro variables themselves they mutually received 1082 in τ = 0.05 case
impact larger than 1081 in τ = 0.5 case, and emit 757 to macro system larger
than 753 in τ = 0.5 case. The total connection of macro variables is 676 in
τ = 0.05 case larger than 673 in τ = 0.5 case.
We conclude that if the financial market is under higher risk then not only
financial system itself will have more connectedness, but also the macro eco-
nomic will be affected and will have more connectedness than in the financial
stable case. Figure 12 and Figure 23 shows the aggregated total direct con-
nections for τ = 0.5 and τ = 0.05 case. In Figure 12 i.e. τ = 0.05 case, the
highest direct connection is from F1 to SP with 129, it is similar as in τ = 0.5
case (see Figure 23), while the direct connection from F1 to SP is 133, even
higher than high risk case, this effect also confirms that the first factor in
τ = 0.5 case could be better identified as market level factor. The second
direct connection τ = 0.05 is from F1 to F2 with the value 80, whereas in
τ = 0.5 case, is from unemployment to house price index with the value 42.
In Figure 25 we find out that the total connectedness in τ = 0.5 (black line)
and τ = 0.05 (red line) case. The τ = 0.05 case is always higher than τ = 0.5
case. But they have the similar trends, the connectedness in financial crisis
period (from 2008 to 2010) is higher than the other periods.

6 Conclusion
Tail event driven factor augmented dynamic model with financial market
data in τ = 0.05 case is applied in this study. In the first step, two tail event
driven factors in the financial market are filtered by using PEC algorithm. In
the second step a VAR model is constructed, includes extracted factors and
macroeconomic variables. Then, the impulse response analysis is conducted
and the sensitivity between the macro economy and the financial shocks are
detected. After the forecast error variance decomposition, the network of
these variables is built.
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It can be concluded: 1. Hedge funds played positive roles on reducing
effects of the financial crisis; 2. GDP, Unemployment rate are relative sensi-
tive to the shock of financial tail event driven factors, whereas the financial
tail event driven factors are more sensitive to the impulse of inflation and
short term interest rate; 3. Short term and long term interest rates reinforce
each other; 4. During 2008 crisis, the total connection among these vari-
ables became higher than normal periods, the crisis sensitive factor plays the
most important role which could be a risk indicator; 5. The financial tail
event driven factors are major impact emitters in the constructed network
for the overall period; 6. The outgoing impacts of these variables are more
volatile than the received impacts over time. 7. After the comparison, the
second factor could be better identified in τ = 0.05 case than in τ = 0.5 case.
Moreover, the network is denser in τ = 0.05 case, and also the connections
among macro variables are denser in tail case than in median case. 8. If the
financial market is under higher risk then not only financial system itself will
have more connectedness, but also the macro economic will be affected and
will have more connectedness than in the financial stable case.
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7 Appendix

7.1 Tables

Depositories Insurance Broker-Dealers Hedge Funds
Mean 0.18 0.17 0.20 0.21
SD 2.35 2.09 2.75 1.29

Table 1: Descriptive Statistics of four industry groups.

τ level 1 Factor 2 Factors 3 Factors
0.05 0.66 0.70 0.73
0.10 0.54 0.59 0.63
0.15 0.47 0.52 0.56
0.20 0.41 0.47 0.52
0.25 0.37 0.42 0.48
0.30 0.33 0.39 0.45
0.35 0.31 0.37 0.43
0.40 0.29 0.35 0.41
0.45 0.29 0.35 0.40
0.50 0.28 0.34 0.40
0.55 0.29 0.35 0.40
0.60 0.30 0.36 0.41
0.65 0.32 0.37 0.43
0.70 0.34 0.40 0.45
0.75 0.38 0.43 0.48
0.80 0.42 0.47 0.52
0.85 0.48 0.52 0.57
0.90 0.56 0.60 0.63
0.95 0.67 0.71 0.74

Table 2: Explained τ - variance with different number of factors, where τ
from 0.05 to 0.95.
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Original variables p-values Original variables p-values
τ = 0.05 case F1 0.01 F2 0.01

τ = 0.50 case F1 0.01 F2 0.01

both cases

GDP 0.01 CPI 0.36

INC 0.85 UNE 0.32
THR 0.09 TEN 0.01
SP 0.70 HPI 0.20

Table 3: ADF test statistics for all variables.

Criteria AIC HQ SC FPE

Selected order τ = 0.05 20 4 2 7
τ = 0.50 20 4 1 7

Table 4: Model specification: different criteria for both τ = 0.05 and τ = 0.5.

Four tests PT (asymptotic) PT (adjusted) BG ES

τ = 0.05

Order 2 2.2× 10−16 2.2× 10−16 2.2× 10−16 2.2× 10−16

Order 4 1.77× 10−11 2.4× 10−14 2.2× 10−16 2.2× 10−16

Order 7 8.4× 10−08 5.7× 10−10 5.9× 10−15 2.4× 10−04

Order 15 2.2× 10−16 2.2× 10−16 2.2× 10−16 1.8× 10−01∗

Order 20 2.2× 10−16 2.2× 10−16 2.2× 10−16 2.2× 10−03

τ = 0.50

Order 1 2.2× 10−16 2.2× 10−16 2.2× 10−16 2.2× 10−16

Order 4 2.3× 10−10 4.6× 10−13 2.2× 10−16 2.2× 10−16

Order 7 5.7× 10−07 5.4× 10−09 2.2× 10−16 1.2× 10−05

Order 15 2.2× 10−16 2.2× 10−16 2.2× 10−16 4.5× 10−01∗

Order 20 2.2× 10−16 2.2× 10−16 2.2× 10−16 1.7× 10−02

Table 5: Model Selection: different tests for both τ = 0.05 and τ = 0.5.
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Minimum 1st Quantile Median Mean 3rd Quantile Maximum

τ = 0.05 0.16 0.89 0.94 0.90 0.96 0.99

τ = 0.50 0.40 0.89 0.93 0.91 0.96 0.98

Table 6: Eigenvalues of the companion coefficient matrix for VAR models.

Cause F1 F2 GDP CPI INC

p value 7.4× 10−03 3.8× 10−05 4.6× 10−05 2.6× 10−01 3.2× 10−01

Cause UNE THR TEN SP HPI

p value 3.2× 10−01 8.7× 10−04 1.2× 10−01 2.2× 10−01 7.8× 10−03

Table 7: p vlaues of Granger causality test of each variable, while the effect
variables are other variables except for the cause variable, where τ = 0.05.

Aw =



V1 V2 V3 · · · VK
V1 0 Ĉw

12 Ĉw
13 · · · Ĉw

1K

V2 Ĉw
21 0 Ĉw

23 · · · Ĉw
2K

V3 Ĉw
31 Ĉw

32 0 · · · Ĉw
3K

...
...

...
... . . . ...

VK Ĉw
K1 Ĉw

K2 Ĉw
K3 · · · 0


Table 8: K × K adjacency matrix for the constructed network at the wth
window, Vk stands for the name of variables.

F1 F2 GDP CPI INC UNE THR TEN SP HPI Total SUM

Total IN 56 120 118 80 67 136 175 162 194 150 1258

Total OUT 314 187 155 89 68 136 73 96 45 94 1258

Table 9: Total IN and OUT links over all periods by using forecast error
variance decomposition, where τ = 0.05, window size is 48 months, the
predictive horizon for the underlying variance decomposition is 12 months,
T − n = 239.
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Cause F1 F2 GDP CPI INC

p value 3.7× 10−02 3.4× 10−04 2.2× 10−05 2.7× 10−01 3.4× 10−01

Cause UNE THR TEN SP HPI

p value 8.7× 10−02 1.3× 10−05 8.9× 10−02 5.2× 10−02 6.3× 10−02

Table 10: p vlaues of Granger causality test of each variable, while the effect
variables are other variables except for the cause variable, where τ = 0.5.

F1 F2 GDP CPI INC UNE THR TEN SP HPI Total SUM

Total IN 54 74 113 78 65 135 174 169 198 148 1209

Total OUT 283 173 167 90 63 142 72 93 34 92 1209

Table 11: Total IN and OUT links over all periods by using forecast er-
ror variance decomposition, where τ = 0.5, window size is 24 months, the
predictive horizon for the underlying variance decomposition is 12 months,
T − n = 239.

Mean Standard Deviation Skewness Kurtosis

F1
τ = 0.05 0.05 0.48 -1.08 8.08

τ = 0.5 0.06 0.49 -1.26 7.85

F2
τ = 0.05 0.02 0.22 3.92 45.95

τ = 0.5 0.01 0.23 1.38 25.53

Table 12: The moments for factors in both τ = 0.05 and τ = 0.5 cases.

18



Error term τ N T Factor 1 Factor 2 Loading 1 Loading 2 MSE

N(0,0.1)

0.05

100 100 0.97 0.77 0.93 0.51 3.00

100 1000 0.98 0.82 0.98 0.43 2.91

1000 100 0.97 0.78 0.93 0.51 2.94

1000 1000 1.00 0.83 0.99 0.27 3.36

0.5

100 100 0.97 0.94 0.97 0.95 1.03

100 1000 0.98 0.98 0.99 0.97 0.75

1000 100 0.99 0.95 0.98 0.98 0.94

1000 1000 1.00 0.99 1.00 1.00 0.34

0.95

100 100 0.96 0.77 0.92 0.51 2.97

100 1000 0.98 0.82 0.98 0.45 2.95

1000 100 0.98 0.78 0.94 0.49 3.05

1000 1000 1.00 0.82 0.99 0.30 3.35

t(5)

0.05

100 100 0.96 0.75 0.92 0.53 3.77

100 1000 0.98 0.81 0.98 0.50 3.58

1000 100 0.98 0.80 0.93 0.54 3.67

1000 1000 1.00 0.86 0.99 0.35 3.76

0.5

100 100 0.97 0.94 0.97 0.95 2.11

100 1000 0.99 0.98 0.99 0.97 1.64

1000 100 0.99 0.95 0.98 0.97 1.91

1000 1000 1.00 0.99 1.00 0.99 1.55

0.95

100 100 0.96 0.73 0.92 0.48 3.78

100 1000 0.98 0.80 0.98 0.48 3.68

1000 100 0.98 0.78 0.93 0.50 3.70

1000 1000 1.00 0.86 0.99 0.37 3.71

Table 13: The average R2 of the regression of simulated factors (or loadings)
on the estimated factors (or loadings), and the average mean squared error
of simulated observations and the estimators in different error assumptions
under different expectile levels in 500 simulations.
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Error term τ N T Factor 1 Factor 2 Loading 1 Loading 2 MSE

N(0,0.1)

0.05

100 100 0.97 0.92 0.95 0.94 1.04

100 1000 0.99 0.98 0.99 0.97 0.71

1000 100 0.97 0.78 0.93 0.51 2.94

1000 1000 1.00 0.83 0.99 0.27 3.36

0.5

100 100 0.98 0.94 0.97 0.95 0.98

100 1000 0.99 0.99 0.99 0.97 0.69

1000 100 0.99 0.95 0.98 0.98 0.94

1000 1000 1.00 0.99 1.00 1.00 0.34

0.95

100 100 0.96 0.91 0.95 0.93 1.13

100 1000 0.99 0.98 0.99 0.97 0.70

1000 100 0.98 0.78 0.94 0.49 3.05

1000 1000 1.00 0.82 0.99 0.30 3.35

t(5)

0.05

100 100 0.96 0.75 0.92 0.53 3.77

100 1000 0.98 0.81 0.98 0.50 3.58

1000 100 0.98 0.80 0.93 0.54 3.67

1000 1000 1.00 0.86 0.99 0.35 3.76

0.5

100 100 0.97 0.94 0.97 0.95 2.11

100 1000 0.99 0.98 0.99 0.97 1.64

1000 100 0.99 0.95 0.98 0.97 1.91

1000 1000 1.00 0.99 1.00 0.99 1.55

0.95

100 100 0.96 0.73 0.92 0.48 3.78

100 1000 0.98 0.80 0.98 0.48 3.68

1000 100 0.98 0.78 0.93 0.50 3.70

1000 1000 1.00 0.86 0.99 0.37 3.71

Table 14: The average R2 of the regression of simulated factors (or loadings)
on the estimated factors (or loadings), and the average mean squared error
of simulated observations and the estimators in different error assumptions
under different expectile levels in 500 simulations, use PEC algorithm.
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Error term τ N T MSE of Loadings MSE of Factors Total MSE

N(0,0.1)

0.05

100 100 0.20 0.10 2.97

100 1000 0.22 0.08 3.12

1000 100 0.19 0.11 3.23

1000 1000 0.21 0.07 3.38

0.5

100 100 0.06 0.07 1.12

100 1000 0.04 0.03 0.68

1000 100 0.03 0.05 0.87

1000 1000 0.01 0.02 0.43

0.95

100 100 0.21 0.13 3.57

100 1000 0.20 0.08 2.93

1000 100 0.19 0.11 2.90

1000 1000 0.20 0.08 3.23

t(5)

0.05

100 100 0.20 0.11 3.72

100 1000 0.18 0.08 3.61

1000 100 0.18 0.10 3.70

1000 1000 0.20 0.08 3.75

0.5

100 100 0.07 0.06 1.87

100 1000 0.05 0.04 2.00

1000 100 0.05 0.06 2.03

1000 1000 0.02 0.02 1.74

0.95

100 100 0.17 0.11 3.54

100 1000 0.20 0.09 3.83

1000 100 0.18 0.11 3.61

1000 1000 0.18 0.07 3.57

Table 15: The average MSE of simulated factors (or loadings) and the esti-
mated factors (or loadings), and the average mean squared error of simulated
observations and the estimators in different error assumptions under different
expectile levels in 100 simulations.
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Error term τ N T MSE of Loadings MSE of Factors Total MSE

N(0,0.1)

0.05

100 100 0.08 0.09 0.18

100 1000 0.07 0.07 0.20

1000 100 0.07 0.10 0.18

1000 1000 0.03 0.04 0.18

0.5

100 100 0.05 0.05 0.10

100 1000 0.04 0.03 0.10

1000 100 0.03 0.04 0.10

1000 1000 0.01 0.01 0.10

0.95

100 100 0.09 0.10 0.19

100 1000 0.07 0.06 0.20

1000 100 0.07 0.09 0.20

1000 1000 0.06 0.05 0.29

t(5)

0.05

100 100 0.09 0.11 1.96

100 1000 0.07 0.05 1.97

1000 100 0.06 0.10 1.97

1000 1000 0.04 0.04 1.97

0.5

100 100 0.08 0.06 1.25

100 1000 0.04 0.05 1.28

1000 100 0.03 0.05 1.27

1000 1000 0.01 0.02 1.29

0.95

100 100 0.09 0.09 1.96

100 1000 0.07 0.06 1.97

1000 100 0.07 0.07 1.97

1000 1000 0.04 0.05 1.99

Table 16: The average MSE of simulated factors (or loadings) and the esti-
mated factors (or loadings), and the average mean squared error of simulated
observations and the estimators in different error assumptions under different
expectile levels in 100 simulations, using iteration.
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7.2 Figures
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Figure 1: Average mean of each industry groups. From left to right: Deposi-
tories (red), Insurance (blue), Broker-Dealers (green), Hedge Funds (violet).
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Figure 2: Average standard deviation of each industry groups. From left to
right: Depositories (red), Insurance (blue), Broker-Dealers (green), Hedge
Funds (violet).
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Figure 3: Left graph: x-axis represents the different τ levels, y-axis is the
explained variance. Colors from red to violet (bottom to top) stand for the
models with 1 to 8 factors. Right graph: the scree plot with τ = 0.05.
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Figure 4: Left: The estimated factor loadings, Depositories (red), Insur-
ance (blue), Broker-Dealers and Real Estates (green), Hedge Funds (violet).
Right: The estimated factors with τ = 0.05, F1 (thicker grey) and F2 (thin-
ner black).

24



●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

1995 2000 2005 2010 2015

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5: The estimated factor 1 (grey line) and average returns of all firms
(black points) with τ = 0.05. For comparison, both of them are scaled into
zero and one.
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Figure 6: Impulse Response analysis of F1 and F2 for τ = 0.05.
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Figure 7: Impulse Response analysis of GDP and CPI for τ = 0.05.
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Figure 8: Impulse Response analysis of INC and UNE for τ = 0.05.
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Figure 9: Impulse Response analysis of THR and TEN for τ = 0.05.
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Figure 10: Impulse Response analysis of SP and HPI for τ = 0.05.
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Figure 11: Forecasting of two financial factors with τ = 0.05 in 27 months
(9 quarters from 31-01-2015 to 31-03-2017).
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Figure 12: Stacked total direct connectedness over all periods by using fore-
cast error variance decomposition, window size n is 48 months, the predictive
horizon for the underlying variance decomposition is 12 months, T −n = 239
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Figure 13: Total connectedness by using forecast error variance decompo-
sition, window size is 48 months, the predictive horizon for the underlying
variance decomposition is 12 months.

Figure 14: Total Incoming connectedness over all periods by using forecast
error variance decomposition, window size n is 48 months, the predictive
horizon for the underlying variance decomposition is 12 months, T−n = 239.
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Figure 15: Total Outgoing connectedness over all periods by using forecast
error variance decomposition, window size n is 48 months, the predictive
horizon for the underlying variance decomposition is 12 months, T −n = 239
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Figure 16: Network by using forecast error variance decomposition on
30.11.2009, window size is 48 months, the predictive horizon for the un-
derlying variance decomposition is 12 months.
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Figure 17: Network by using forecast error variance decomposition on
30.11.2009, window size is 48 months, the predictive horizon for the un-
derlying variance decomposition is 12 months.
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Figure 18: Network by using forecast error variance decomposition on
31.12.2015, window size is 48 months, the predictive horizon for the un-
derlying variance decomposition is 12 months.
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Right: The estimated factors with τ = 0.5, F1 (thicker grey) and F2 (thinner
black).
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Figure 20: The estimated factor 1 (grey line) and average returns of all firms
(black points) with τ = 0.5. For comparison, both of them are scaled into
zero and one.
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Figure 21: Left: the estimated factor 1 with τ = 0.05 (red line) and τ = 0.5
(blue line). Right: the estimated factor 2 with τ = 0.05 (red line) with
τ = 0.5 (blue line).

Figure 22: Forecasting of two financial factors with τ = 0.5 in 27 months (9
quarters from 31-01-2015 to 31-03-2017).
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Figure 23: Stacked total direct connectedness over all periods by using fore-
cast error variance decomposition with τ = 0.05 and τ = 0.5, window size is
48 months, the predictive horizon for the underlying variance decomposition
is 12 months, T − n = 239
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Figure 24: Total connectedness by using forecast error variance decompo-
sition for τ = 0.05 (red line) and τ = 0.5 (black line), window size is 48
months, the predictive horizon for the underlying variance decomposition is
12 months.
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Figure 25: Number of factors over time, window size is 36, τ = 0.05.
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Figure 26: The simulated observations (black) and the estimators (blue) by
using expectile regression, τ = 0.05, t = 1, with iid N(0, 0.01) error.

Figure 27: The simulated observations (black) and the estimators (blue) by
using expectile regression, τ = 0.05, i = 1, with iid N(0, 0.01) error.
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Figure 28: The simulated observations (black) and the estimators (blue) by
using expectile regression, τ = 0.5, t = 1, with iid N(0, 0.01) error.

Figure 29: The simulated observations (black) and the estimators (blue) by
using expectile regression, τ = 0.5, i = 1, with iid N(0, 0.01) error.
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7.3 VAR model

For the VARmodel in (3), Lütkepohl (2005) is referenced. Gt
def
= (g1t, ..., gKt)

>

is a (K × 1) random vector , α def
= (α1, · · · , αK)>, ut

def
= (u1t, · · · , uKt)>, and

the coefficient matrix

Bi
def
=


β11,i · · · β1K,i
... . . . ...

βK1,i · · · βKK,i

 (4)

The moving average (MA) representation of VAR model can be used to
conduct the impulse response analyisis, which could be derive as follows:

Gt = α +B1Gt−1 +B2Gt−2 + · · ·+BqGt−q + ut

= α + (B1L+ . . .+BqL
q)Gt + ut

B(L)Gt = α + ut (5)

with B(L) = IK −B1− . . .−BqL
q. Let Φ(L) =

∑∞
i=0 ΦiL

i, s.t. Φ(L)B(L) =
IK . Premultiplying (5) by Φ(L):

Gt = Φ(L)α + Φ(L)ut

=
( ∞∑
i=0

Φi

)
α +

∞∑
i=0

Φiut−i

= µ+
∞∑
i=0

Φiut−i

where Φ0 = IK Then impulse response function is:

Gt+n =
∞∑
i=0

Φiut+n−i

(Φn)jk =
∂gt+n
∂ukt

where the element (Φn)jk represents the effect of unit shock from variable k
to variable j at period n. Note that the mean term µ is dropped here because
it is of no interest in the impulse response analysis.

Until here the variance covariance of ut might still be correlated. To
obtain the orthogonal innovation, the Choleskey variance decomposition is
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applied, the positive definite symmetric matrix Σu can be decomposed as
Σu = PP>, where P is a lower triangular nonsingular matrix with positive
diagonal elements:

Gt = µ+
∞∑
i=0

Φiut−i

= µ+
∞∑
i=0

ΦiPP
−1ut−i

= µ+
∞∑
i=0

Θiωt−i

where Θi = ΦiP , and ωt = P−1ut, note that ωt = (ω1t, . . . , ωKt) are uncorre-
lated and have unit variance Σω = P−1Σu(P

−1)> = IK .

The MA representation of H step predictor Gt(H) is as follows:

Gt(H) = µ+
∞∑
i=H

Φiut+H−i = µ+
∞∑
i=0

Φi+Hut−i

The components from Forecast Error Variance Decomposition are applied
to construct the network:

Cjk,H =
H−1∑
i=0

(e>j Θiek)
2/MSEj(H)

=
H−1∑
i=0

(e>j Θiek)
2/

H−1∑
i=1

e>j ΦiΣuΦ
>
i ej

where ek is the ith element of IK . Cjk,H represents the amount of forecast
error variance of variable j accounted for by exogenous shocks to variable k.
In application, if H is fixed, I write Cjk for simplicity, and Ĉjk represents the
estimator of it. More details can be found in Lütkepohl (2005).
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7.4 ACF plots
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Figure 30: ACF of the constructed VAR(15) model, part 1.
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Figure 31: ACF of the constructed VAR(15) model, part 2.
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Firms RS1 RS2
1 WFC 0.53 0.20
2 JPM 0.43 0.16
3 BOA 0.60 0.13
4 C 0.69 0.07
5 USB 0.38 0.19
6 BK 0.43 0.05
7 STT 0.49 0.05
8 BBT 0.46 0.24
9 STI 0.48 0.18
10 FITB 0.49 0.08
11 MTB 0.40 0.25
12 NTRS 0.34 0.04
13 RF 0.41 0.09
14 KEY 0.37 0.11
15 CMA 0.52 0.20
16 ZION 0.38 0.16
17 SIVB 0.22 0.03
18 CFR 0.32 0.16
19 PBCT 0.11 0.08
20 CBSH 0.10 0.06
21 SNV 0.37 0.18
22 BPOP 0.41 0.08
23 FHN 0.33 0.10
24 WBS 0.45 0.20
25 TCB 0.30 0.20
26 AIG 0.42 0.18
27 TRV 0.28 0.04
28 MMC 0.32 0.06
29 AFL 0.43 0.07
30 AON 0.19 0.04
31 L 0.33 0.01
32 PGR 0.29 0.04
33 LNC 0.49 0.03
34 CNA 0.54 0.04
35 MKL 0.20 0.02
36 UNM 0.42 0.06
37 CINF 0.26 0.05
38 AJG 0.19 0.01
39 Y 0.17 0.06
40 TMK 0.51 0.07
41 WRB 0.15 0.03
42 AFG 0.38 0.11
43 BRO 0.16 0.05
44 WTM 0.20 0.02
45 ORI 0.30 0.05
46 ANAT 0.37 0.00
47 MCY 0.24 0.07
48 RLI 0.17 0.07
49 MBI 0.41 0.03
50 KMPR 0.45 0.01
51 AXP 0.51 0.03
52 SCHW 0.32 0.06
53 BEN 0.45 0.03
54 MHFI 0.27 0.00
55 TROW 0.46 0.04
56 EFX 0.28 0.02
57 RJF 0.34 0.05
58 SEIC 0.25 0.04
59 LM 0.45 0.02
60 EV 0.32 0.01
61 AB 0.42 0.00
62 ITG 0.17 0.02
63 TRC 0.11 0.03
64 SFE 0.18 0.01
65 ATAX 0.03 0.00
66 OPY 0.20 0.01
67 CTO 0.14 0.03
68 REXI 0.21 0.01
69 SNFCA 0.00 0.02
70 SIEB 0.02 0.00
71 GROW 0.05 0.02
72 CSWC 0.22 0.08
73 FNMA 0.31 0.29
74 FCE.A 0.30 0.03
75 FDMC 0.01 0.08
76 DUNN 0.02 0.02
77 RED 0.05 0.01
78 HGDP 0.02 0.00
79 ELP 0.00 0.01
80 SGO 0.01 0.01
81 CMF 0.00 0.01
82 ATC 0.01 0.01
83 LF 0.02 0.00
84 SP 0.03 0.05
85 SDP 0.00 0.01
86 FPLS 0.13 0.00
87 APF 0.35 0.00
88 SCFV 0.02 0.01
89 CT 0.00 0.01
90 KSCP 0.19 0.00
91 PG 0.07 0.00
92 PP 0.15 0.00
93 LMA 0.17 0.00
94 MRDP 0.01 0.01
95 CDP 0.01 0.04
96 EGMP 0.00 0.00
97 RDP 0.00 0.02
98 MLP 0.05 0.00
99 NP 0.01 0.01
100 GPP 0.34 0.01
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