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Abstract

Tail risk protection is in the focus of the financial industry and requires solid mathematical
and statistical tools, especially when a trading strategy is derived. Recent hype driven by
machine learning (ML) mechanisms has raised the necessity to display and understand the
functionality of ML tools. In this paper, we present a dynamic tail risk protection strategy
that targets a maximum predefined level of risk measured by Value-At-Risk while controlling
for participation in bull market regimes. We propose different weak classifiers, parametric and
non-parametric, that estimate the exceedance probability of the risk level from which we derive
trading signals in order to hedge tail events. We then compare the different approaches both
with statistical and trading strategy performance, finally we propose an ensemble classifier
that produces a meta tail risk protection strategy improving both generalization and trading
performance.

∗corresponding author, IRTG 1792, School of Business and Economics, Humboldt-Universität zu Berlin,
Dorotheenstr. 1, 10117 Berlin, Germany. Email: bruno.spilak@hu-berlin.de
†W.I.S.E. - Wang Yanan Institute for Studies in Economics, Xiamen University, Xiamen, 361005, Fujian, China

C.A.S.E. - Center for applied Statistics and Economics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099
Berlin, Germany
Singapore Management University, 50 Stamford Road, 178899 Singapore, Singapore
Department of Mathematics and Physics, Charles University Prague, Ke Karlovu 2027/3, 12116 Praha 2, Czech
Email: haerdle@wiwi.hu-berlin.de

1



1 Introduction

"Black swan events" are occurring from time to time. After 2008, investors in the DAX had to
wait 5 years before recovering their loss. The Nikkei stock index still has not yet recovered, even
25 years after the bubble burst. The cryptocurrency market has plunged drastically at the end of
2017. What choices are left to investors in these situations ?

Indeed, it is one of the main challenges of quantitative finance to build models and develop
tools able to protect investments from such extreme events (Bollerslev and Todorov; 2011). The
first risk management strategy addressing the latter is diversification but Longin and Solnik (2001)
show that when financial markets exhibit huge downturn periods, correlation significantly increase,
hence are counteracting the effect of portfolio diversification. Another strategy for tail risk pro-
tection is option based, where the risk manager is long in put options. Yet, loss aversion leads
to high prices of put options (Kozhan et al. (2013), Packham et al. (2017)). A solution to escape
this dilemma is to build a strategy with dynamic asset allocation. The risk manager creates an
asymmetric risk profile with participation in upside market and protection against severe loss. This
trading strategy is often called tail risk protection strategy by practitioners and is much more cost
efficient and flexible than the options strategy (Franke et al.; 2019). In order to pursue such a
strategy, one needs to predict distributional properties of the portfolio. This, of course, is obviously
impossible since not only distributions but also their parameters change in time. This motivates
our paper where we hint on comparing Econometrics tools, Machine learning (ML) and modern
Local Parametric Approach (LPA). We present a dynamic tail risk protection strategy that targets
a maximum predefined level of risk measured by Value-At-Risk while controlling for participation
in bull market regimes. We propose different weak classifiers, parametric, based on GARCH tool,
and non-parametric using ML, that estimate the exceedance probability of the risk level from which
we derive trading signals in order to hedge tail events.

The GARCH tool with normally distributed innovations allows us to catch volatility clusters
and yields good volatility forecasts. The application of Extreme Value Theory (EVT) to GARCH
residuals provides insight into the tail probabilities, that is, the likeliness of an extreme loss. Nev-
ertheless, econometric models rely on strong assumptions and cannot deal with structural breaks
that happen in financial time series.

ML has been successful in many applications during the last years thanks to its generalization
power on large datasets, but, in quantitative finance, in particular for financial returns forecast-
ing, ML did not prove its superiority in comparison with its application to text analysis or image
recognition, where Deep Learning (DL) tools became state-of-the-art. Moreover, the black box
effect of DL makes the industry reluctant to invest in such models. In theory, DL can extract
information from non-linear relations in high dimensional space, so for quantitative finance practi-
tioners, it should be natural to use the machine learning tool box. Nevertheless, DL models suffer
from overfitting and can be very difficult to train. If they offer similar prediction accuracy than
econometrics, it might be preferable to use the latter with regards to its interpretability, lower
complexity and cheaper computational costs.

The cryptocurrency market has experienced an exponential growth during 2017, where BTC
peaked at $19 783.06 on December 17th 2017 and dropped below $14 000 24 hours later, losing
one third of its value. One year later, on December 7th 2018, BTC price briefly dipped below
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$3 300, a 76% drop from the previous year and a 15-month low. At the time of writing, the
cryptocurrency market is experiencing a new large uptrend as swathes of institutional investors
are gaining new interest because of the launch of new futures contracts on both regulated and un-
regulated cryptocurrency exchanges. Central banks also reacted to private initiatives of launching
digital currencies, such as Facebook’s Libra, as they may have the potential to dilute the main
power of central banks - to control the supply of money to the economy. With high volatility and
new interest in the cryptocurrency market, the BTC ecosystem is a perfect environment to show
the effectiveness of tail risk strategy. Indeed, its high volatility promises high gains in upward
movement of the price. Our goal is then to protect investors from large downturns of the market
through an accurate prediction of tail risk.

Since Basel committee on Banking Supervision Amendment to incorporate market risk (1996),
regulators imposed the use of certain metrics to measure the risk of investments, such as Value-At-
Risk (VaR) and Expected-Shortfall (ES). In order to meet both investors’ and regulators’ will, we
build a risk protection strategy that controls the VaR of our portfolio by ensuring that it is below
a certain level, denoted as target VaR.

As high volatility segments often precede market swings, the GARCH model is a natural tool for
tail risk protection, since GARCH catches these volatility clusters. Nevertheless, a volatility based
risk management strategy forces us to divest in such period, reducing alpha possibilities in case of
positive movement. Since financial returns have heavy tails, the EVTGARCH (McNeil and Frey;
2000) allows us to improve our forecast of the tail event direction. Indeed, seeking alpha, excess
return over a benchmark, has become more challenging for banks and institutional investors which
follow strong regulations based on VaR estimates. We address this problem here by focusing on
dynamic risk management based on econometrics, explaining stylized facts of financial time series
with parametric approaches, and non- or local parametric methods, in particular the LPA from
Spokoiny (2009a), Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) neural
networks, which catches non-linear features with memory.

Our contribution is a rigorous comparison of GARCH and ML based tools in the context of
extreme loss prediction based on their forecast in a classification scheme. On top, we show how
to use standard Ensemble method as a meta classifier that produces a hybrid trail risk protection
strategy, improving both generalization and trading performance by taking advantage of each
approach. Finally, we evaluate our strategy with a realistic backtest including trading fees, by
comparing it with classical buy-and-hold benchmark and other recent machine learning oriented
tail risk protection strategies, such as the constant target VaR from Rickenberg (2019) and the
Varspread strategy from Packham et al. (2017).

The results showed here will certainly motivate practitioners to apply ML techniques in order
to improve GARCH performance. We provide comparison metrics such as forecast error, classifi-
cation metrics and backtest results of our tail risk strategies on the cryptocurrency market with
BTC investment. We also provide robustness checks through cross-validation.

This paper is structured as follows. First we review the current literature of our subject, then
we explain the trading strategy we aim to build. In the third and fourth part, we explain the
theoretical models used to build our strategy. In the final section, we present our results.
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2 Background & Literature review

Volatility as a risk measure ? A good risk measure must be tailored to the investor’s
preferences which are often unknown in practice. Starting from preferences, practitioners often
make assumptions in order to build an "optimal risk measure", corresponding to an imagined
investor’s goal. A large part of the financial literature studies volatility as a risk measure, since it
is nicely tied to Gaussian and LS techniques. For example, the VIX, referred to as the "investor fear
gauge", is often taken as a sentiment indicator since volatility reflects investors’ aversion to risk.
The mean-variance portfolio, developed by Markowitz, is built under such assumptions where the
weights of the risky assets included in the portfolio are derived from their volatility. Nevertheless,
financial returns often have fat-tails and are not normally distributed, which Markowitz theory
does not account for. Finally, volatility, being symmetric, is not realistic as a risk measure, since it
does not take into consideration investors’ loss aversion, weighting equally volatility associated with
gains and losses. Most investors are more concerned about downside risk, or losses, rather than
volatility (Bollerslev et al.; 2015). In this paper, our goal is to build a trading strategy avoiding
large losses or tail risk which is better suited for loss averse investors.

Packham et al. (2017) showed that a trading strategy accounting for tail risk can outper-
form simple buy-and-hold and traditional portfolio protection strategies. By using models such as
GARCH with normally distributed innovations and GARCH with innovations following a General-
ized Pareto Distribution (GPD), they built a new criterion for riskiness defined as the evolution of
the estimated Value-At-Risk (VaR) spread between the two models. Thus, in period of increasing
tail risk, this spread is significantly different from 0 which allows the trader to take adequate de-
cisions. We denote this strategy as the Varspread strategy. Rickenberg (2019) compares different
risk measure such as volatility, VaR and Conditional-Value-at-Risk (CVaR), also named Expected
Shortfall (ES), in order to build dynamic trading strategies and find that downside risk measures
outperform volatility in terms of a higher Sharpe Ratio, better drawdown protection and higher
utility gains for mean-variance and loss-averse investors. Happersberger et al. (2019) also focus ES
and VaR forecasts in order to manage dynamic tail risk protection strategies.

All the papers mentioned above and in general the literature of tail risk protection, focus on
predicting risk measures in a regression manner and study the total distribution of the returns
where the goal is to minimize Mean Squared Error (MSE) type measures of fit. Our argument
is that it is not necessary to predict the total distribution of the return, whether it is crucial to
correctly forecast the direction of the tail, in particular since in our case big profits or losses are
at stake (Jordà and Taylor; 2011).

Investors’ preferences Rickenberg (2019) developed a tail risk protection strategy, denoted
target VaR strategy, where the trading signals are calibrated so the VaR of the strategy is constant
over time for a predefined significance level α. The weights of the risky asset in the simple portfolio
consisting of two assets, one risky and one riskyless asset, is a function of a constant level of risk
defined as a VaR level denoted, target VaR, depending on investors’ risk aversion measured by α.
The weights are calibrated so the VaR of portfolio is constant, equals to the target VaR. The target
VaR strategy has the main advantage to be better interpretable for investors who can prescribe
their acceptable loss limit to the trader. Nevertheless, it is assumed that investors’ preferences
are static since the target VaR is fixed and does not depend on t. Such strategy is based on the
standard financial theory assumption that investors are rational and have invariant risk preferences.

However, with the development of Behavioral Finance, numerous studies draw attention on the
fact that investors are often irrational and their preferences change with different situations. The
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early paper of Kahneman and Tversky (1979) shows that investors are more risk averse with gains,
but less with losses. More recently, Wen et al. (2014) study the characteristics of investors’ risk
preferences with different states of gains and losses and show that investors’ risk preferences are
time-varying with them. Indeed, the degree of risk aversion rises with the increasing gains and
that of risk seeking improves with the increasing losses.

Taking into consideration investors’ time-varying preferences, a constant target VaR strategy
is inadequate. Indeed, we should decrease our target VaR in period of gains and increase it in
periods of losses to allow more conservative trades in period of gains and more aggressive ones in
case of losses.

Dynamic tail risk protection strategy Our goal is to build a dynamic tail risk protection with
an adaptive predefined level or risk, adapting to the benchmark’s performance which influences
investors’ preferences, Wen et al. (2014). At constant significance level α, when the benchmark is
experiencing a period of good performance where the gains are increasing, its VaR is decreasing,
thus the investors give more attention to smaller losses and tend to be more risk averse. As follows,
the trader should adapt its strategy and aim for a smaller target VaR. In the inverse situation,
during a period of losses, the tail risk of the benchmark is increasing and the investor only pay
attention to large losses, tending to seek more risk. For example, one could use a threshold as a
function of volatility in order to build a dynamic threshold labeling function as in de Prado (2018),
chapter 3.3. In the next section, we will explain how to build such strategy.

3 Trading strategy

3.1 Tail risk as a risk measure

Tail Risk Definition Throughout this paper, we consider a risky asset, for example one stock,
with price process pt, where t ∈ [0, ..., T ] with T the final period time step. As usual, we define
the one period log-return, where one period is here one hour, as rt = log Pt

Pt−1
and the loss series

−rt. As in Packham et al. (2017), we define the Value-At-Risk for a risk level α, denoted VaRα
t ,

as the α-quantile of the distribution of the loss −rt:

VaRα
t = inf {l ∈ R : P (−rt > l) ≤ 1− α} = inf {l ∈ R : P (−rt ≤ l) ≥ α}

If rt follows an absolutely continuous loss distribution, then the Value-At-Risk can be defined
as an unlikely and severe loss which satisfies:

P(−rt ≤ VaRα
t ) = 1− α

where α is small corresponding to investors’ risk aversion. In practice, the risk level often
takes the value of 0.01, 0.025 or 0.05. The Value-At-Risk characterizes the far right tail of the
distribution of the loss, thus we use it as a measure of tail risk. For example, a VaR = uαt = 0.05 for
α = 0.01 means that returns below -5% only happen 1% of the time. Moreover, for any threshold
u, P(−rt ≥ u) is called the exceedance probability over u.

3.1.1 Tail risk protection strategy

Now, let us consider a simple buy/sell trading strategy where the trader decides at time t either
to enter the market with a full position (he invests the totality of his available capital at time t
into BTC) or to stay out of the market (he sells all available BTC or does not invest capital at
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time t in order to have all his capital in a risk free asset) based on the information available at
time t denoted Ft. The trader’s decision can be represented as a binary variable, or trading signal,
st ∈ {0, 1} where 1 corresponds to the decision to stay out of the market and 0 to the decision to
fully invest the capital at time t. The return of such strategy is defined for all t ∈ [1, . . . , T ] as
Rt = (1− st−1)rt and the excess return Rt − rt.

Target VaR The goal of tail risk protection is to maximize the expected economic utility of a
risk averse investor which can be represented by the risk-adjusted return of the strategy, where
risk is characterized by the tail behavior of the portfolio. In other words, our goal is to lower
the probability of tail risk, that is, at constant level α, to have a lower portfolio VaR than the
buy-and-hold benchmark strategy which buys the asset at the beginning of the period and sell
it at time T , the end of the period of investment. In parallel, we have two choices to maximize
the return, either we maximize the expected return, following the portfolio selection criterion from
Markowitz (1952), or we can maximize the total return at T , as suggested by Kelly (1956). Since
in our setting, we are optimizing the strategy for multiple periods (Hakansson; 1971) we choose
the latter. We can write the following optimization program:

max

T∑
t=1

(Rt − rt)

s.t.VaRα
t ≤ TVaRα

t

(1)

where VaRα is the portfolio VaR and TVaRα
t is the target VaR for level α given by the investor.

We have the following equivalence, ∀t ∈ [1, . . . , T ]:

VaRα
t ≤ TVaRα

t

P(−Rt ≤ TVaRα
t ) ≥ 1− α (2)

Thus, one relaxes the constant constraint from Rickenberg (2019) and aims at constructing a
trading mechanism with signal s = {s1, . . . , sT } that has a maximum TVaRα. From now on, we
think of fixed α and we will write TVaRα

t as TVaRt for the benchmark Value-At-Risk and VaRα
t

as VaRt for the portfolio.

How to define the signals st ? We define for all t ∈ [0, T − 1]

st = I−rt+1≥TVaRt+1
(3)

and by construction Rt = (1 − I−rt≥TVaRt)rt. Since TVaRt is strictly positive for financial
assets loss series, we have P(−Rt ≤ TVaRt) = 1, thus (2) is verified.

Since we do not know the true distribution of rt and, obviously, at time t, we do not observe rt+1,
we do not know st and we must build estimates based on the observation available in order to make
a trading decision. We estimate the following conditional probability, P(−rt+1 ≥ TVaRt+1 |Ft),
which is the exceedance probability over the threshold TVaRt+1, and decide whether the trader
must close his position st = 1 or stay in the market st = 0.

How to define TVaRα The tail risk target is defined by the investors’ preferences. Here, our goal
is not to study investors’ preferences, but to show how to build trading signals based on estimates
of the exceedance probability over a given risk level. This problem has been well studied in the
literature, for various applications, such as seismic risk assessment (Honegger and Wijewickreme;
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2013), risk assessment for decision making with application to terrorism (Kunreuther; 2002) or
again floods, earthquakes, drought and hurricanes risk management (Lambert et al.; 1994), (Mason
et al.; 2007). For trading strategies, Christoffersen and Diebold (2006) and Linton and Whang
(2007) considered exceedances above 0, whereas (Chung and Hong; 2007) focused on non-zero
thresholds. In particular, Taylor and Yu (2016) studied thresholds that are not close to 0, as this
is of greater relevance for risk management. This is also our interest but we consider extreme
thresholds which are time varying and can be used as tail risk measure.

For illustration, we focus in this paper on different tail risk targets derived from the data itself.
That is we use sample quantiles for different level α computed on the historical losses in a rolling
window manner for different window size. In other words, to describe the investors’ preferences
for the next trading period t + 1, we use the historical VaR of the loss series as tail risk measure
defined for w ∈ [1, T ] as:

∀t ∈ [w, T ], ∀i ∈ [t− w + 1, t],TVaRt+1 = hist-VaRα,w
t = inf {l ∈ R : P (−ri > l) ≤ 1− α} (4)

The main advantage of this risk target is its computational simplicity allowing us to easily build
training labels for our classifiers that we will develop in the next sections. On top, it is adaptable
to investors’ preferences, since using a small rolling window would suit an investor with varying
preferences where the risk target quickly adapts itself to changes in the true return distribution,
while large rolling windows give more stable risk target, corresponding to an investor with static
preferences. In this paper, we will use three window sizes: 24 (one day), 2880 (four months) and
4320 (six months), since we are using hourly data, which are plotted on Figure 1 for α = 0.01. We
give more details about the dataset in the next section. Our choice is motivated by our goal to
study how the tools used here react to different levels of noise in the target variable.

Figure 1: Hourly btc losses and TV aR0.01,w
t for different window size, w = 24 (one day), w = 2880

(four months), w = 4320 (six months)

As we can see on Figure 1 the TVaR0.01,24
t is much more conservative than the TVaR0.01,w

t with
larger w, with much more losses exceeding the risk target. Indeed, we have respectively 0.045,
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0.012 and 0.011 exceedance for the TVaR0.01,w
t with w is 24, 2880 and 4320, where the exceedance

is defined as Ne = 1
T

∑T
t=1−rt ≥ TVaRα

t , that is the proportion of data exceeding the threshold.
A strategy with TVaR0.01,24

t as tail risk target should be much more conservative and hedges much
more losses than the two other risk targets. .

Trader decision How to decide whether we should hedge our position for the next trading
period ? We could build an estimation of the return at the next period, rt+1, in a regression
manner, nevertheless, we are only interested in the distribution of the tail. Thus, in this paper,
we directly approximate the conditional probability classes of the variable st, that is pt, defined
∀t ∈ [0, . . . , T − 1] as:

pt = P(st = 1|Ft) = P(−rt+1 ≥ TVaRα
t+1 |Ft) (5)

From pt, we can make the trading decision ŝt defined for a threshold u ∈ R:

ŝt =

1, if pt ≥ u

0, otherwise
(6)

We can now write the realized return of our strategy, for all t ∈ [1, T ]:

Rt = (1− ŝt−1)rt (7)

4 Machine learning trader

Let Xt ∈ Rp be some input feature vector of dimension p which summarize Ft. The aim is to
approximate the true unknown conditional probability P(st|Xt) with a learning algorithmM for
different risk targets. We consider four different α: 1%, 2.5%, 5% and 10%, and three rolling
windows to compute TVAR: 24, 2880, and 4320. In the next two sections, we present different
modelsM we use as estimator for each risk target. We first present the dataset we use and then
we explain the different models considered.

4.1 Data

We apply the proposed strategy on BTC. We collected 36193 close prices from Poloniex exchange,
using its API, from 2016-01-01 to 2020-02-16 on a hourly basis. We look at intraday frequency,
since it is not rare to observe severe loss at such frequency, due to a relatively higher volatility in
the cryptocurrency market compared to traditional assets.

We split the dataset into two sets, train, from 2016-01-01 to 2019-01-01 00:00:00, and test sets
from 2019-01-01 01:00:00 to 2020-02-16 22:00:00. We keep a relatively large test set in order to
produce a final robust estimation of the out-of-sample trading strategy performance with a large
backtesting period of 9486 observations.

4.2 Neural networks

We first use two different neural network architectures for the trading signals prediction, the Multi-
Layer Perceptron (MLP) and the Long short-term memory neural network (LSTM) architecture
from Hochreiter and Schmidhuber (1997). Neural networks are non-parametric, which allows us to
avoid making strong assumptions on the data that are not met in reality and that is often the case
for financial time series, for example with the normality assumption of financial returns. On top,
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neural networks are universal approximators (Leshno et al.; 1993) which means that, in theory,
neural networks can arbitrarily closely approximate the true process of rt. In particular, LSTM
neural networks are state-of-the-art for many applications such as speech recognition, text extrac-
tion, translation or handwriting recognition, since plain recurrent neural networks are not suited to
non-stationary time series modeling. In finance, Deep learning has been used in various research,
in particular by Franke (1999) and Zhang et al. (2020) for portfolio management or by (Kim and
Won; 2018) for volatility forecasting with LSTM in comparison with GARCH. Nevertheless, one
has yet to prove the superiority of neural networks compared to simpler parametric models in their
application.

4.2.1 Training

Output In order to train the neural networks, we need to build the training input-output pairs.
We could directly use the trading signal st from (3) as output labels, nevertheless, since TVaRα,w

t

belongs to the tail of the loss series, st suffers from sever class imbalance since
∑T
t=w+1 I−rt>TVaR

α,w
t

T �
0.5, which is difficult to handle for machine learning models (REFERENCE). On top, financial re-
turns follow an asymmetric distribution and suffers from the leverage effect (Black; 1976), (Christie;
1982), commonly defined as volatility rising more rapidly when returns are negative than positive.
To address that problem, we introduce a new category for rt, when rt belongs to the right tail of
the distribution, which allow us to control the misclassification cost of the final model. Indeed, let
us introduce the following output variable defined as:

Yt =


1, if − rt < TVaR1−α,w

t

2, if − rt > TVaRα,w
t

0, otherwise

(8)

We can define the predicted strategy signals as a function of the predicted output variable Ŷ as
follows :

ŝt =

1, if Ŷt = 2

0, otherwise
(9)

and we easily derive the unconditional misclassification costs matrix in terms of excess returns.

Prediction
0 1 2

Outcome
0 0 0 r̄0p̄0

1 0 0 r̄1p̄1

2 0 0 r̄2p̄2

where r̄i is the expected return on class i estimated with 1∑T
t=w+1 IYt=i

∑T
t=w+1 rt IYt=i and p̄i

is the weight of class i defined as
∑T
t=w+1 IYt=i
T−w which is the empirical estimate of the unconditional

probability P(Yt = i).
As expected, when using the risk target defined in (4), we can see on table 1 that one has

negative costs for the correct classification of class 2 since r̄2 ≤ 0 and by definition, the conditional
cost for predicting class 2 instead of 1 is much higher than the one for predicting class 2 instead
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Prediction
α w (hours) 0 1 2

0.01
24 0.01 0.15 -0.15
2880 0.01 0.14 -0.14
4320 0.01 0.13 -0.14

0.025
24 0.01 0.15 -0.15
2880 0.01 0.14 -0.14
4320 0.01 0.13 -0.14

0.05
24 0.01 0.15 -0.15
2880 0.01 0.14 -0.14
4320 0.01 0.13 -0.14

0.1
24 0.01 0.15 -0.15
2880 0.01 0.14 -0.14
4320 0.01 0.13 -0.14

Table 1: Class 2 misclassification costs for different TVaRα,w

of 0, since in the former, we miss the opportunity to invest during an extremely positive return
period. Thus, we clearly see that the classifier must correctly predict the sign of the tail events in
order to maximize the strategy return. In order to do so, we use a 3 neurons output layer with
softmax activation function corresponding to the output variable Yt defined in (8).

Input layer As we are interested in understanding whether neural networks can, by themselves,
learn valuable features to produce trading signals and feature selection is not our interest in this
work, we use simple transformations of the returns, which can be seen as momentum features.

In particular, since price time series are not stationary, we use multiple returns instead,
Xp
t = rt−p for different periods p, where rt−p = pt/pt−1−p − 1 and p ∈ {0, 1, 2, 4, 6, 13}. We

also use the normalized difference between the returns and the two class thresholds which should
help identifying a risk-buildup situation, when the returns either explodes toward the upper class
threshold TVaR1−α,w

t or severely drops toward the lower threshold TVaRα,w
t , which are defined

respectively as Uα,wt =
rt−TVaRα,wt
TVaRα,wt

and Dα,w
t =

rt−TVaR1−α,w
t

TVaR1−α,w
t

.
For the MLP, we then use the vector Xt ∈ R8 = (X0

t , X
1
t , X

2
t , X

4
t , X

6
t , X

13
t , D

α,w
t , Uα,wt ) as

input for each risk target. For the LSTM model, since it is a recurrent neural network, we take
advantage of its ability to directly modelize sequential data and we use the same features as above
on a certain historical window of length 24, using one historical day to make a prediction for
the next hour. Thus the features become: Xp

t = (rt−p−23, . . . , rt−p) for p ∈ {0, 1, 2, 4, 6, 13} and
Uα,wt = (

rt−23−TVaRα,wt
TVaRα,wt

, . . . ,
rt−TVaRα,wt
TVaRα,wt

) and Dα,w
t = (

rt−23−TVaR1−α,w
t

TVaR1−α
t

, . . . ,
rt−TVaR1−α,w

t

TVaR1−α
t

). We
use the same input vector as for the MLP, but now Xt is in R24,8. We explain the hidden layer
architecture in the next section.

Finally, we train our classifier, using Keras python library, on the training dataD = {(Xw+1, Yw+1), . . . , (XT , YT )}
with Adam algorithm, which is a stochastic gradient descent method based on adaptive estimation
of first-order and second-order moments of the gradient (Kingma and Ba; 2015) and 128 batch
size.
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4.3 Model selection

4.3.1 Hidden layers architecture

On the train set we performed 10 folds cross-validation for time series, described on figure 3, with
one fold corresponding to one month, in order to test different hidden layers architectures for the
MLP model. In this work, we keep the hidden layers relatively simple in order to show how a
single architecture can effectively extract features for different risk target output. Based on the
cross-validation performance evaluated with AUC score (area under the ROC curve), we choose
the model with highest AUC score between class 1 and 2, while still controlling for robustness.
That is we select the model with highest median AUC score between class 1 and class 2. After
a small tuning, we keep 3 hidden layers, three fully connected layers with 16, 4 and 2 neurons
respectively, as on the Figure 2

Figure 2: Final MLP architecture

As regularization technique, we use the state-of-the-art Dropout layer after the first and the
second hidden layers with a dropout rate of 0.2, in order to prevent overfitting (Srivastava et al.;
2014).

As for the LSTM architectures, we simply change the first two fully connected layers to LSTM
units in order to test whether LSTM can directly improve the performance of the MLP models.
We use the hyperbolic tangent as activation function for the hidden layers.

4.3.2 Strategy parameters and final decision

Any classifier M trained on the dataset D gives for output the probability class pt. Thus the
trading strategy based on M has one parameter, the probability threshold u from which we can
make a trading decision with respect to (6). The optimal parameter must solve the investor’s goal
define in (1) with respect to their risk target. We can now reformulate the optimization problem
as it follows:
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Figure 3: Time series cross-validation with four folds

max
u,w

T∑
t=w+1

(Rt − rt) =

T∑
t=w+1

{(1− ŝt)rt}

s.t.VaRα
t ≤ TVaRα

t

(10)

Probability threshold u Denote Uα the set of u which are tail loss optimal, that is the set of
u respecting the constraint formulated in (2). Let us define our strategy with the trading signals
{ŝw+1, . . . , ŝT } and corresponding return Sw,α = {Rw+1, . . . , RT } for a predefined risk target with
level α. We wish to define:

Uα = {u ∈ R, P(Rt ≤ TVaRα
t ) ≥ 1− α}

Let us introduce the conditional probability classes for an arbitrary threshold u ∈ R:

Prediction

0/Hold 1/Sell

Outcome
0/Hold TNR(u) = P(ŝt = 0|st = 0) FPR(u) = P(ŝt = 1|st = 0)

1/Sell FNR(u) = P(ŝt = 0|st = 1) TPR(u) = P(ŝt = 1|st = 1)

where TNR(u), FPR(u), FNR(u) and TPR(u) stand for True Negative, False Positive, False
Negative and True Positive Rates for the threshold u respectively. In statistical tests, FPR(u)

and FNR(u) are often called type I and type II errors respectively. The optimal threshold is
given by the optimal trade-off between FPR and FNR, but in order to respect the risk target, one
cannot choose any trade-off, since, as one can easily see, FNR(u) corresponds to the exceedance
probability of the portfolio over the risk limit. In practice, as it is pointed out in (Packham et al.;
2017), such a strategy cannot avoid tail events that occur "totally out of the blue" (type II error
in our formulation). Also, given the empirical stylized fact that return data feature little or no
autocorrelation implies that such a strategy may signal a sell order, when ex-post holding the
position would have been optimal (type I error).

We can easily see that any threshold u∗ ∈ Uα = {u ∈ R, TPR( u) ≥ P(−rt>TVaRαt )−α
P(−rt>TVaRαt )

} is tail
loss optimal (PROOF IN APPENDIX). Finally, to decide for the final probability class threshold
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u∗, we simply choose the threshold that maximize the cumulative excess return on the train set
and apply it on the corresponding test set.

For illustration, on Figure 4, we plotted the shape of the constraint on TPR with respect to
the risk limit of the investor for different risk level α. As we can see, as the target risk for a level α
diverge from the α-quantile of the true distribution of the returns, the constraint on the classifier
performance strengthens.

Figure 4: Expected exceedance and corresponding minimum TPR for significance levels 0.01, 0.025,
0.05, 0.1

As described in section 3, the risk targets are defined by Equation (4). In the Table 2, we show
the different constraints from equation (2) on the classifier in order to achieve the goal of the tail
loss strategy based on the hourly returns of btc on the train set.
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α w (hours) exceedance min TPR (%)

0.01
24 4.5 78
2880 1.2 18
4320 1.1 11

0.025
24 5.5 55
2880 2.7 7
4320 2.6 5

0.05
24 8.0 38
2880 5.2 4
4320 5.1 3

0.1
24 12.5 20
2880 9.7 0
4320 9.4 0

Table 2: Expected exceedance and corresponding minimum TPR for different VaR estimators with
parameters (α,w), w = 2880 and w = 4320 correspond to 4 months and 6 months respectively

As we can see, using a small rolling window to compute the risk target is more conservative
thus the classifier must have a large TPR in order to ensure a maximum risk target of the final
strategy.

5 Auto-regressive models

Since neural networks are complex non-linear multi-factor models, it is justified to ask if a simple
parametric model calibrated on the same training set can catch tail-events as good ML methods
or better. In order to compare both approaches, we used three different parametric and a LPA
technique from Spokoiny (2009a), that we present in this section.

5.1 ARMA-GARCH and ARMA-EVTGARCH

ARMA-GARCH As a benchmark, we first used an ARMA-GARCH model for BTC loss se-
ries. Indeed, GARCH, developed by Bollerslev (1986), catches well volatility clusters, which often
appears in returns time series and ARMA model allows for a time-varying mean of the returns.
The ARMA(P,Q)-GARCH(q,p) model is defined as:

rt = a1rt−1 + a2rt−2 + . . .+ aP rt−P

+ εt + b1εt−1 + b2εt−2 + . . .+ bQεt−Q

with
εt = Ztσt

Zt ∼ N(0, 1)

σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αjε
2
t−j

where ω > 0, αi ≥ 0, βi ≥ 0 and
∑p
i=1 βi +

∑q
j=1 αj < 1.

ARMA-EVTGARCH Assuming normally distributed innovations, Z, is often not justified
and, since in our case we are interested in modeling extreme events, we also fitted an ARMA-GARCH
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model with a Generalised Pareto distribution (GPD) for the innovations of the GARCH process.
This approach has been studied numerous time in the literature, in particular in Packham et al.
(2017) or Taylor and Yu (2016) for risk management in trading. We refer to that model as
ARMA-EVTGARCH.

The distribution function of the GPD is given by:

Gξ,β(x) =

1− (1 + ξx/β)−1/ξ, ξ 6= 0

1− exp−x/β , ξ = 0

where β > 0,x ≥ 0 when x ≥ 0 and 0 < x ≤ −β/ξ when ξ < 0.
The GPD describes the tail of the data since only the extremes outcomes are included in the

estimation with the method of threshold exceedances as we explain in the next paragraph.

Model selection, calibration and exceedance probability To find the proper lag orders,
P and Q, for the mean, and p and q, for the volatility processes, we use the classical Box-Jenkins
method and AIC criterion, see Chen et al. (2018) for a detailed explanation. We perform the model
selection on the last 2280 observations (four months) of the train set. The final model selected is
an ARMA(3, 1)-GARCH(1, 2), we use the same orders ARMA-EVTGARCH.

We calibrate the parameters of ARMA-GARCH and ARMA-EVTGARCH simultaneously via
quasi-maximum likelihood estimation (QMLE) (?) using a rolling window of fixed length of four
months (2880 observations). The size of the rolling window is relatively large for GARCH mod-
elling, nevertheless, in this paper, we are using intraday data which justifies that choice. As a
comparison Taylor and Yu (2016) used a rolling window of 2500 observations. The calibration of
the GPD is based on the upper 5% of the residuals of the ARMA-GARCH, we denote the upper
5% threshold as g. For illustration, residual QQ-plots based on hourly BTC loss data are given in
Figure 5.

Figure 5: QQ plots of GARCH residuals. Left: normal distribution; right: GPD distribution
(samples beyond upper 5% threshold, g).

The estimated probability class of for the category 2 of Yt, that is P(−rt > TVaRα
t ), is then

given by pt = 1−F ((TVaRα
t −µ̂t+1)/σ̂t+1) where µ̂t+1 and σ̂t+1 are the models’ mean and volatility

forecasts and F is the normal distribution function for the ARMA-GARCH and GPD for the
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ARMA-EVTGARCH model. For computing pt of ARMA-EVTGARCH, the GPD is defined only
for x ≥ g, so if (TVaRα

t −µ̂t+1)/σ̂t+1 < g, F is the normal distribution, since it is not necessary
to use a GPD distribution for observations that do not belong to the tail. We recalibrate the
parameters of the models every hour for each new observation in the test set.

5.2 CARL-vol model

The benefit of ARMA-GARCH type models is their effectiveness at catching stylized facts of
financial time series and their simplicity, nonetheless, they do not directly model the exceedance
probability pt, but the total distribution of the return rt. In order to use the advantages of GARCH

models and to directly modelize the exceedance probability, we also fit a CARL-vol model from
Taylor and Yu (2016) which specifies pt for a constant threshold Q ∈ R as:

pt =
0.5

1 + exp (−xt)
+ 0.5I(Q > 0)

where xt = φ0 +φ1σt and we assume a GARCH(1, 1) for the return that is, σ2
t = ω+ β1σ

2
t−1 +

α1(rt−1 − µ)2. φi, αi, βi and µ are constant parameters.

Model calibration We calibrate the parameters of CARL-vol with Maximum Likelihood Esti-
mation using a Bernoulli distribution with density specified as f(rt) = p

I(yt6Q)
t (1 − pt)1−I(yt<Q).

For the model calibration, we use the same rolling window as for the GARCH based models of
the previous section, where Q is set to TVaRt of the last observation of the rolling window. Since
CARL-vol assumes a fixed threshold Q and that, in our case, it is time-varying, we also recalibrate
the model every hour, estimating new parameters for each observation in an online manner.

5.3 Local Parametric Approach (LPA)

For the calibration of the three previous models, we use a fixed rolling window, assuming time
homogeneity on that interval, in the sense that the process rt follows the same structural equation
at each time point defined by ARMA-GARCH, ARMA-EVTGARCH and CARL-vol models. This
approach, of course, does not take into consideration structural breaks (Bouri et al.; 2019). Ignoring
breaks will increase the bias (Hillebrand; 2005). Though, in order to relax time homogeneity, we
can either use a non-parametric model which allows for time-varying parameters, as we do with the
neural network models presented in section 4, or we can use a Local Parametric Approach (LPA)
thanks to the Local Change Point detection method suggested by Spokoiny (1998) and developed
by Härdle et al. (2003), Mercurio and Spokoiny (2004) and Spokoiny (2009a) in the context of
volatility modelling.

As in Cizek et al. (2009), we assume GARCH(1, 1), characterized by parameters θ, is a good
candidate for the process rt on a local scale. For estimating θ, we apply the QMLE approach
using a Gaussian distribution for the innovations. The LPA allows us to find the largest interval
of homogeneity, I(t), i.e. the longest interval I with the right-end point t, where data do not
contradict the assumption that θ is constant. To find the change points, we use the test procedure
proposed by Klochkov et al. (2019) that uses the multiplier bootstrap method from Spokoiny and
Zhilova (2015) to find the critical values for the likelihood ratio test, generating 100 bootstrap
weights sequences for the test. The computational cost is high and our test set is quite large,
thus, in practice, we choose a fixed decreasing size of 5 observations for the successive intervals
tested and we only performed the LPA detection every 5 observations in the test set. This does
not come without cost and automatically increases the bias of θ̂, nevertheless, it decreases the bias
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in comparison of a fixed window size approach, as for the GARCH based models of the previous
sections. We denote the model calibrated with LPA method as LCP-GARCH.

6 Applications

6.1 Meta strategy: stacking

In the previous section we presented six different classifiers to build trading signals for tail events
hedging. Since the GARCH based approach is essentially linear, but MLP and LSTM are non-
linear classifiers, we expect them to extract different features from the data. A direct question
is then to know which model to use in which situation. To address that problem, we propose to
combine all models output from the test set into a meta model with a stacking classifier. Stacking
is an ensemble learning technique where the predictions of multiple classifiers (referred as level-0
classifiers) are used as new features to train a meta-classifier (level-1 classifier).

The meta-classifier is trained on the predictions made by level-0 classifiers on the out-of-sample
data. That is, data which has not been used to train the level-0 classifiers is fed to them in order
to get the predictions pt = (pjt ), where 1 ≤ j ≤ 6 corresponds to the level-0 models and t belongs
to the test set indices. We then use the predictions to build input features and the corresponding
labels Yt to build the training input-output pairs for the meta classifier.

Our meta-classifier should be explainable in order to directly interpret which level-one classifier
contributes the most to the final meta-prediction. For its simplicity and interpretability, we use
logistic regression. We have for all t ∈ [T − n− 1, T ] where n is the test set size:

st =

6∑
j=1

βjP jt

where P jt = log
pjt

1−pjt
and pjt is the output of each one-level classifier that is the estimated

probability of class 2 of Yt. Moreover, since we need to interpret the coefficients βj , we rescale pjt
to [0, 1] range.

When using stacking technique, the issue is the multicollinearity of the prediction of the level-
one classifiers. In particular, we can expect ARMA-GARCH and ARMA-EVTGARCH models to
present multicollinearity in their output. To address that problem, we use L2 regularization to
improve robustness, performing a Ridge type logistic regression (Hoerl and Kennard; 1970), where
the final estimator for the model coefficients is the solution of:

min
β1···β6

T∑
i=T−n−1

st − 6∑
j=1

βjpjt

2

+ λ

6∑
j=1

βj
2

where λ ∈ R+ is the regularization hyper-parameter. In practice, we must finetune this pa-
rameter by performing, for example, cross-validation. In our setup, we did not tune it since
cross-validation would be too computationally intensive and fixed it to λ = 1. We will denote that
model as Ensemble.

In the next sections, we present our results. They correspond to out-of-sample performance of
the different models on the test set from 2019-01-01 to 2020-02-16. The neural network models are
retrained every 824 observations corresponding to the size of the validation folds in order to reflect
the validation performance, whereas the ARMA-GARCH, ARMA-EVTGARCH, CARL-vol and
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Ensemble are recalibrated every new observation and LPA-GARCH every 5 observations as stated
in the previous section.

Every hour, each model generate the trading decision ŝt based on the data available until t,
then it is applied to the return, rt+1, on the next period [t, t + 1]. The current set-up does not
account for market frictions, such as bid-ask spreads, and other associated costs, but we included
the trading fees from Binance exchange, which are, at most, 0.1% on each trade. Nonetheless, the
cost associated to the fees should be very low since we only trade when a tail event is predicted.

6.2 Benchmarks

There are a few well documented tail risk protection strategies in the literature, such as the
constant proportion portfolio insurance (CPPI) strategy (Black and Jones; 1987), the Dynamic
Proportion Portfolio Insurance (DPPI) or Time-varying Proportion Portfolio Insurance (TPPI)
strategy (Hamidi et al.; 2009), (Happersberger et al.; 2019) or the protective put strategy using
options. In this paper, we compared our results with more recent and machine learning oriented
work, in particular the Varspread and target VaR strategies. Finally, the last benchmark used is
the simple buy-and-hold strategy, where an investor buys BTC at 2019-01-01 00:00:00 and sells it
at the end of the test set at 2020-02-16 22:00:00.

6.3 Out-of-sample performance

6.3.1 Model risk evaluation

In order to assess the performance of each strategy, we first look at the model risk which comes
from the statistical performance of the classifier. A familiar metric is the Area Under the ROC

Curve (AUC), nevertheless, the classical AUC, while taking into consideration class imbalance,
does not include the cost associated with each class. For our trading application, as we stated in
section 4.2.1, we have strong cost imbalance between the outcomes. Thus, for our evaluation, we
use the risk-adjusted or cost-adjusted AUC by Jordà and Taylor (2011).

The ROC curve is defined for all threshold u as:

ROC: [0, 1]→ [0, 1]

FPR(u) 7→ TPR(u)

We incorporate the average costs associated with false positives (cF = r̄0p0 + r̄1p1) and true
positives (cT = −r̄2p2) in order to get the risk-adjusted curve, denoted AROC and rescaled to
[0, 1], defined for all threshold u as:

AROC: [0, 1]→ [0, 1]

cF FPR(u) 7→ cT TPR(u)

The risk-adjusted AUC, denoted AAUC is then AAUC =
∫ 1

0
AROC(u)du.

In Table 3 we show the risk-adjusted AUC score on the whole test period. We can see that
the MLP and LSTM models have similar performance, we can make the same observation for
the ARMA-GARCH, ARMA-EVTGARCH and LPA-GARCH approach model. Nonetheless, we
observe that LPA-GARCH performs better than ARMA-GARCH and ARMA-EVTGARCH for
stable risk target where w = 2880 or w = 4320. This indicates that using a model with less
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complexity fitted on a time-homogeneous window generalized better than more complex models
fitted on large window. Finally, all parametric or local parametric models perform better than the
neural network based models in terms of risk-adjusted classification, which is a major drawback to
the deep learning approach in our setting.

On Table 4 we present the cross-validation performance on the test set. Indeed recall, that
the results from the MLP and the LSTM models are obtained by retraining the models every 824
observations in the same approach as depicted in Figure 3. For comparison, we also evaluate the
other classifiers with the same sampling method.

α (%) w (hours) MLP LSTM
ARMA-
GARCH

ARMA-
EVTGARCH

LPA-
GARCH

CARL-vol Ensemble

1.0
24 69 69 73 73 71 71 73
2880 62 67 69 72 72 69 74
4320 70 69 70 72 72 74 74

2.5
24 66 69 70 70 69 69 71
2880 72 71 74 74 76 72 77
4320 71 73 74 74 75 73 77

5.0
24 65 65 66 66 65 66 67
2880 71 70 74 74 75 73 76
4320 70 71 74 73 75 73 76

10
24 63 63 63 63 60 62 64
2880 67 66 70 70 71 71 72
4320 66 68 69 70 70 71 71

Table 3: Risk-adjusted AUC on the test set

We can clearly see that ARMA-GARCH and ARMA-EVTARCH outperforms MLP and LSTM
classifiers for small significance level and varying risk target (α = 0.01 or α = 0.025 and w = 24)
both on average and in terms of robustness. This shows that, in our setup, GARCH based models
still outperforms non-parametric models at catching volatility clusters. On the other hand, for
larger significance level and stable risk target (α = 0.05 or α = 0.1 and w = 2280 or w = 4320),
the non-parametric approaches do at least as good as the simple GARCH based models on average
and in terms of robustness which indicates a higher generalization power.

α (%) w (hours) MLP LSTM
ARMA-
GARCH

ARMA-
EVTGARCH

LPC-
GARCH

CARL-vol Ensemble

1.0
24 70 (0.3) 70 (0.4) 74 (0.1) 74 (0.1) 72 (0.2) 72 (0.2) 73 (0.2)
2880 58 (3.3) 64 (3.9) 60 (0.9) 61 (1.3) 61 (1.4) 55 (1.0) 62 (1.8)
4320 63 (3.7) 63 (3.1) 58 (1.2) 62 (1.0) 59 (1.3) 57 (0.8) 60 (1.6)

2.5
24 68 (0.4) 70 (0.1) 71 (0.1) 71 (0.1) 69 (0.1) 70 (0.2) 71 (0.1)
2880 66 (0.9) 65 (1.3) 62 (1.3) 62 (1.2) 64 (1.2) 57 (1.3) 66 (1.1)
4320 63 (0.6) 65 (2.0) 62 (1.4) 62 (1.6) 61 (1.2) 57 (1.3) 65 (1.6)

5.0
24 67 (0.4) 67 (0.2) 67 (0.1) 67 (0.1) 65 (0.2) 66 (0.2) 68 (0.2)
2880 65 (0.7) 64 (0.6) 62 (0.8) 62 (1.0) 63 (0.8) 61 (1.1) 64 (1.0)
4320 66 (0.5) 64 (0.7) 62 (0.9) 61 (1.0) 63 (0.9) 60 (0.8) 64 (1.0)

10
24 64 (0.2) 64 (0.2) 64 (0.1) 64 (0.1) 61 (0.1) 63 (0.2) 65 (0.2)
2880 61 (0.7) 63 (0.8) 61 (0.8) 61 (0.8) 61 (0.7) 60 (0.7) 62 (0.8)
4320 62 (0.7) 64 (0.7) 61 (0.7) 61 (0.7) 61 (0.8) 60 (0.6) 62 (0.9)

Table 4: Average risk-adjusted AUC and (variance risk-adjusted AUC) over the testing periods

From the two tables above, we can also conclude that we benefit from combining those classifiers
into a stacking classifier, since the AAUC of the Ensemble classifier is always higher or equal to
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the maximum AAUC of the weak classifiers on the whole test period. Moreover, in terms of
cross-validation performance, the Ensemble classifier always outperforms the average performance,
except for the strategy with TVAR0.01,4320 risk target. In particular, for larger risk level (α = 0.025,
α = 0.5 and α = 0.1) and small window (w = 24), the Ensemble classifier outperforms the
best performing weak classifier. This result is a clear indicator that each classifier can extract
information which is uncorrelated with some of the other classifiers for highly adaptive risk target.
This is a sign that each classifier might be more adapted to specific market regimes, but that the
Ensemble model is more general.

Overall, from those metrics, we can say that the non-parametric models present more risk than
the parametric ones or the Ensemble classifier. Now, in the next section, we will relate the model
risk to the economic risk via backtest performance of the associated trading strategies.

6.3.2 Backtest performance

Risk profile First, we must verify that the strategy associated with each classifier is verifying
the target risk constraint. For this we compare, in Table 5, the exceedance of each strategy with
the risk level α, if the exceedance is larger than α, then the strategy does not respect the investor’s
risk preferences.

α (%) w (hours) Buy&
Hold MLP LSTM

ARMA-
GARCH

ARMA-
EVTGARCH

LPC-
GARCH

CARL-vol Ensemble target
VaR norm

target
VaR evt Varspread

1.0
24 4.3 0.3 0.4 0.5 0.4 0.9 1.2 1.0 1.4 1.1 3.6

2880 1.0 0.6 0.7 0.8 0.6 0.9 0.4 0.7 0.5 0.5 0.7
4320 0.9 0.7 0.5 0.7 0.5 0.8 0.4 0.7 0.4 0.4 0.7

2.5
24 5.2 1.5 1.8 1.2 1.0 2.1 2.0 1.8 1.8 1.9 4.3

2880 2.5 2.1 1.6 1.6 1.3 1.2 1.2 1.7 1.2 1.3 2.1
4320 2.2 2.0 1.3 0.9 0.8 0.8 1.1 1.7 1.0 1.0 2.0

5.0
24 7.9 3.6 3.6 2.8 3.1 4.5 3.4 2.5 2.6 3.6 5.9

2880 4.9 4.0 3.2 2.3 2.4 2.3 2.5 3.5 2.3 2.8 3.4
4320 4.5 3.8 3.1 1.4 1.5 3.6 2.3 3.3 2.2 2.5 3.3

10
24 12.4 8.4 8.1 4.0 4.0 8.3 6.6 8.8 4.4 7.2 9.7

2880 9.6 7.9 7.2 5.6 5.6 5.1 5.7 7.5 4.4 6.1 7.2
4320 9.4 7.4 7.0 3.3 3.2 4.4 6.0 7.1 4.5 5.7 7.2

Table 5: Exceedances of tail risk protection strategies in %

All classifiers achieve the risk targets, but both benchmark target VaR strategies, where VaR

is estimated with ARMA-GARCH and ARMA-EVTGARCH, do not respect the constraint for
TVaR1%,24. The Varspread strategy is not a target VaR strategy, but we also look at its exceedance
and we see that it also fails for the same risk target, TVaR2.5%,24 and TVaR5%,24, indicating
difficulties for those strategies to adapt to varying risk preferences.

Now, on Table 6, we compare the average return of the strategies associated with each classifier
and the benchmarks on the whole test period. Achieving a larger average return, while having
lower exceedances indicates a better risk-profile for a tail risk averse investor. First, the Ensemble
strategy always have a larger average return than the average performance of the weak strategies,
that is the strategies associated with the weak classifiers, except for the TVaR1%,2880 risk target,
and has larger average return than the maximum of the weak strategies for the TVaR1%,24 and
TVaR1%,4320. In general, the Ensemble strategy also outperforms the benchmark strategies, except
for the target VaR strategies with TVaR1%,2880, TVaR2.5%,24, TVaR5%,24 and TVaR10%,24. Only
these strategies are better suited than our offered Ensemble strategy for their respective investor’s
profile, as they offer larger average return, while respecting the corresponding risk target. This
result shows that traders can benefit from combining classical econometrics and machine learning
oriented approaches in order to offer better tail risk protection strategies to their investors.
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α (%) w (hours) MLP LSTM
ARMA-
GARCH

ARMA-
EVTGARCH

LPC-
GARCH

CARL-vol Ensemble target
VaR norm

target
VaR evt Varspread

1.0
24 4.9 5.1 2.3 1.6 6.5 -15.0 8.9 6.5 6.3 4.0

2880 8.0 5.5 10.0 4.8 8.6 17.0 4.4 7.1 6.3 4.0
4320 8.1 11.0 8.8 7.0 9.5 12.0 14.0 8.2 7.1 4.0

2.5
24 7.3 7.1 3.4 6.3 8.9 -0.7 6.8 7.0 7.5 3.7

2880 6.9 9.9 3.6 1.4 2.2 12.0 8.5 6.4 6.3 3.7
4320 5.8 10.0 5.3 4.5 6.3 12.0 8.3 7.4 7.5 3.7

5.0
24 7.2 9.2 5.8 6.7 9.3 2.9 7.1 7.8 8.3 2.7

2880 6.8 13.0 0.8 1.4 2.7 13.0 8.7 5.9 6.2 2.7
4320 8.5 12.0 1.5 2.1 5.1 16.0 11.0 6.5 7.2 2.7

10
24 5.7 9.6 5.5 6.1 2.8 6.9 6.9 5.9 7.8 2.4

2880 10.0 7.5 1.6 1.8 5.5 14.0 6.8 5.5 6.3 2.4
4320 14.0 9.8 3.8 4.1 5.5 12.0 8.1 5.8 7.3 2.4

Table 6: Average return in % (e-3). Buy&Hold: 10e-3 %

Historical performance On Figure 6, we show the historical performance on the test period
and on Figure 7, the excess return over the BTC Buy&Hold benchmark in strong uptrend period.
We can clearly see how Varspread strategy is too conservative in period of uptrend which severely
affects its total return. While the Ensemble strategy significantly outperforms the other actively
managed tail risk protection strategies in terms of total return for TVAR1%,24, TVAR1%,4320,
TVAR2.5%,2880, TVAR2.5%,4320, TVAR5%,2880 and TVAR5%,4320. For the other risk targets, the
historical performance is similar. In the meantime, only two strategies outperforms the simple
Buy&Hold strategy on the whole test period, for TVAR2.5%,4320 and TVAR5%,4320 risk targets,
managed by our proposed Ensemble model. This shows that for BTC asset, it is very hard to
find the right trade-off between investment during strong uptrend and deinvestment in period of
downtrend and that strategies based on simpler models, as Varspread or target VaR strategies,
cannot beat the Buy&Hold benchmark in terms of total return, as they overshoots risk in strong
uptrend periods.

Indeed, as you can see on Figure 7, in strong uptrend period, all strategies underperforms the
Buy%Hold benchmark except for the Ensemble strategy with TVAR1%,4320 risk target.

Nevertheless, as we can see on Figure 8, that, in period of downtrend from 2019-06-26 to 2019-
11-25 where BTC suffered a 60% drawdown, the Varspread strategy is very efficient at catching tail
events achieving 50%, 48%, 64% and 64% excess return for α ∈ {1%, 2.5%, 5%, 10%} respectively
even generating a positive total return of 4% for α ∈ {5%, 10%}.

Switching strategy In order to benefit from the effective tail risk protection from the Varsrpead
strategy in bear market and the well calibrated risk protection of the Ensemble strategy in bull
market, we build a final switching strategy which either invest in the Varspread strategy or in the
Ensemble strategy depending on the market regime. In order to decide when to switch strategy,
we build a simple estimator of the trend by using a simple moving average of BTC price, defined
for n ∈ N as MAt−1,n = 1

n

∑n
i=1 Pt−1. We define the following trend indicator δt as in Rickenberg

(2019):

δt =

{
0, if Pt−1 6 MAt−1,n

1, if Pt−1 > MAt−1,n

Then we define the weights for each strategy as wEnst = δt and wV arspreadt = 1 − δt. The
historical performance of the final meta-strategy, denoted Switch strategy, is presented on Figure
9.

In Table 7, we present different backtest statistics for the benchmark, Ensemble and final Switch
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Figure 6: Ensemble strategy returns on test period for TVARα,w with α ∈ {1%, 2.5%, 5%, 10%}
from top to bottom and w ∈ {24, 2880, 4320} from left to right with BTC Buy&Hold, Varspread,
target VaR norm and target VaR evt benchmarks

strategies. First, we see that the Switch strategy has the highest total return on the testing period
for relatively high risk target, but also for TVAR1%,2880 and TVAR2.5%,2880. Moreover, we can
see that the Switch strategy provides an enhanced risk-return profile indicated by larger Sharpe
ratio for all risk targets, than the average between the Varspread and the Ensemble strategies. For
example, with TVaR5%,2880, the Switch strategy increased the Sharpe Ratio by 62% and 219%
for the Ensemble and Vaspread strategies respectively. On top, the switch strategy has the best
risk-return profile for all risk targets, clearly outperforming the Buy&Hold and other benchmarks,
except TVAR2.5%,24 where the Varspread strategy has the largest Sharpe ratio. This indicates
that the switch strategy is also better suited for Markowitz type optimisation where the objective
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Figure 7: Ensemble strategy excess returns on uptrend period for TVARα,w with α ∈
{1%, 2.5%, 5%, 10%} from top to bottom and w ∈ {24, 2880, 4320} from left to right with Var-
spread, target VaR norm and target VaR evt benchmarks

is the mean-variance performance. For the Ensemble strategy itself the results are mixed with
respect to mean-variance performance, since it has a relatively high volatility for all risk targets.
Indeed, finding the right trade-off between participation in bull market regimes and hedging tail
events comes with a cost in terms of volatility. Since in our case, we know that the Switch and
Ensemble strategies are respecting the tail risk constraint, we are interested in the Sortino ratio,
which penalizes only volatility associated with negative returns and is defined as S = R

σ− , where
R is the expected return and σ− is the portfolio downside standard deviation. We can see that
the Switch strategy clearly outperforms other benchmarks, except for conservative strategies with
TVAR1%,24, TVAR1%,2880, TVAR2.5%,24 and TVAR5%,24.
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Figure 8: Ensemble strategy excess returns on downtrend period for TVARα,w with α ∈
{1%, 2.5%, 5%, 10%} from top to bottom and w ∈ {24, 2880, 4320} from left to right with Var-
spread, target VaR norm and target VaR evt benchmarks

7 Conclusion

We build a dynamic trading strategy which goals is to protect against severe losses by targeting
a maximum Value-At-Risk defined for any significance level. For this, we model distributional
properties of BTC returns in time with non-parametric models such as MLP and LSTM neural
networks and compare their performance to local-parametric GARCH, parametric GARCH fitted
with various distribution for the innovation and CARL-Vol models. In our approach, we directly
take into account varying investor’s risk preferences and optimize the strategy accordingly, allowing
us to compare the models for multiple risk targets.
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Figure 9: Historical performance on the test period of Ensemble, Varspread, Switch and Buy&Hold
strategies

First, we can conclude that for relatively stable risk preferences, parametric and local parametric
approaches have a better generalization than non-parametric methods, but for unstable preferences
they work better, taking into account time varying risk targets and adapting to sudden changes in
the market. On top, we show that, for BTC returns, a general model performing well enough in all
market regimes is too hard to find. A tail loss protection strategy based on a single model, while
often outperforming a simple Buy&Hold strategy, is still not optimal, either overshooting the risk
target in periods of losses or being too conservative in bull market regimes. That is why, we show
the benefits of combining multiple models in an Ensemble classifier, which improves generalization
with a higher prediction accuracy and economic gains with an enhanced risk-return profile. Indeed,
the Ensemble based strategy combines advantages of classical GARCH tools, which catches better
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α (%) w (hours) Strategy Total return Sharpe ratio Sortino ratio MDD volatility
Buy&Hold 86 1.37 2.62 52 0.69

1.0

24

Ensemble 76 1.52 2.52 31 0.54
Switch 59 1.57 2.29 30 0.41
target VaR evt 54 1.28 2.13 33 0.46
target VaR norm 55 1.24 2.10 40 0.49
Varspread 34 1.14 1.53 17 0.33

2880

Ensemble 38 0.70 1.44 53 0.60
Switch 63 1.50 2.36 27 0.46
target VaR evt 54 1.16 2.15 45 0.50
target VaR norm 61 1.32 2.37 40 0.50
Varspread 34 1.14 1.53 17 0.33

4320

Ensemble 115 1.97 3.91 43 0.64
Switch 111 2.39 3.95 23 0.51
target VaR evt 60 1.31 2.37 43 0.50
target VaR norm 71 1.54 2.75 39 0.50
Varspread 34 1.14 1.53 17 0.33

2.5

24

Ensemble 58 1.14 1.71 36 0.55
Switch 47 1.27 1.90 27 0.41
target VaR evt 64 1.40 2.37 42 0.50
target VaR norm 60 1.32 2.21 42 0.50
Varspread 34 1.35 2.23 18 0.26

2880

Ensemble 73 1.34 2.71 55 0.59
Switch 85 2.05 4.15 32 0.46
target VaR evt 54 1.19 2.21 45 0.50
target VaR norm 55 1.23 2.30 45 0.49
Varspread 34 1.35 2.23 18 0.26

4320

Ensemble 71 1.26 2.54 45 0.62
Switch 65 1.50 2.91 30 0.47
target VaR evt 64 1.43 2.55 41 0.49
target VaR norm 63 1.42 2.55 41 0.49
Varspread 32 1.35 2.23 18 0.26

5.0

24

Ensemble 61 1.25 1.86 39 0.53
Switch 64 1.64 2.69 29 0.43
target VaR evt 71 1.58 2.82 39 0.49
target VaR norm 66 1.53 2.67 34 0.47
Varspread 23 0.70 1.33 27 0.36

2880

Ensemble 75 1.38 2.60 54 0.59
Switch 101 2.23 5.08 27 0.50
target VaR evt 54 1.18 2.19 45 0.49
target VaR norm 50 1.17 2.20 44 0.47
Varspread 23 0.70 1.33 27 0.36

4320

Ensemble 92 1.68 2.92 49 0.61
Switch 108 2.38 5.09 23 0.50
target VaR evt 61 1.38 2.48 42 0.49
target VaR norm 56 1.29 2.39 42 0.47
Varspread 23 0.70 1.33 27 0.36

10

24

Ensemble 59 1.07 1.94 55 0.61
Switch 73 1.70 3.03 26 0.47
target VaR evt 66 1.43 2.65 42 0.51
target VaR norm 51 1.22 2.01 39 0.45
Varspread 21 0.74 1.18 17 0.30

2880

Ensemble 58 1.07 1.95 52 0.60
Switch 71 1.69 3.33 27 0.46
target VaR evt 54 1.21 2.29 44 0.49
target VaR norm 47 1.18 2.16 40 0.44
Varspread 21 0.74 1.18 17 0.30

4320

Ensemble 70 1.32 2.33 53 0.58
Switch 97 2.27 4.50 23 0.47
target VaR evt 62 1.41 2.57 40 0.48
target VaR norm 50 1.25 2.28 44 0.43
Varspread 21 0.74 1.18 17 0.30

Table 7: Backtest performance of switch strategies: Total return (%), Sharpe ratio, Sortino ratio,
Max Drawdown (MDD), Valut-at-Risk and Volatility of different strategies on the test period. The
Total return, Sharpe and Sortino ratio are annualized. Legend: winner / loser

volatility clusters than more complex MLP or LSTM, and Deep learning tools which can adapt to
time-varying properties of the data distribution. Further, we show that tail loss protection strategy
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also suits Markowitz type investors when we combine conservative strategies, such as Varspread
and more aggressive ones, such as Ensemble strategy, into a switching strategy.

For the purpose of tail loss protection, our proposed Ensemble strategy can be improved. Here,
we measure risk with Value-At-Risk, nonetheless, other risk metrics can be considered for opti-
mization, in particular Expected Shortfall or Maximum Drawdown. On top, it would be interesting
to open the Ensemble learning tool box and to study how the different classifiers interacts which
other in time, to better understand when their corresponding tail loss protection strategy might
be suited for the respective market regime.
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