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ABSTRACT

Among nonparametric smoothers� there is a well	known correspondence

between kernel and Fourier series methods� pivoted by the Fourier transform

of the kernel� This suggests a similar relationship between kernel and spline

estimators� A known special case is the result of Silverman ������ on the

e�ective kernel for the classical Reinsch	Schoenberg smoothing spline in the

nonparametric regression model� We present an extension by showing that a

large class of kernel estimators have a spline equivalent� in the sense of identical

asymptotic local behaviour of the weighting coe�cients� This general class

of spline smoothers includes also the minimax linear estimator over Sobolev

ellipsoids� The analysis is carried out for piecewise linear splines and equidistant

design�

Keywords� Kernel estimator� spline smoothing� �ltering coe�cients� di�erential

operator� Green�s function approximation� asymptotic minimax spline�



�� Introduction

It is part of the basic knowledge about smoothing methods that there

is a correspondence between kernel and orthogonal series methods� Loosely

speaking� and supposing a circular setting on the unit interval� we can say

that a kernel estimator is equivalent to a tapered orthogonal series estimator�

where the tapering coe�cients are the Fourier coe�cients of the kernel scaled

with bandwidth parameter h� This is just a way of saying that convolution

�which is what a kernel smoother does� is equivalent to multiplication of Fourier

transforms� Such a relationship� which is elementary in the classical Fourier

series context� can also be established between kernel and spline estimators� It

is the purpose of the present paper to make this precise� and thus to contribute

to a better understanding of smoothing methods in nonparametric estimation�

Our starting point is the result of Silverman ������ who proved such a cor	

respondence for the classical Reinsch	Schoenberg smoothing spline� Consider

the nonparametric regression problem of estimating a curve m given observa	

tions

Yi 
 m�xi� � �i� i 
 �� � � � n�

Assume that the design points xi � �� �� are known and nonrandom� and the

�i are random errors� The standard cubic spline smoother is de�ned to be the

minimizer over functions g of

n��
nX
i��

�Yi � g�xi��
� � �

Z
�g���x��� dx �����

where � is a smoothing parameter� It was shown that this procedure is equiva	

lent to using a certain kernel estimator� where in addition the bandwidth varies

locally on �� �� in dependence on the design density� It should be stressed that�

although the theorem was proved in a statistical context� that result is of purely

analytic nature� Indeed the smoothing philosophy can be developed in a deter	

ministic framework� and the methods have been studied thoroughly� For other

�



approximation	theoretic results on splines connected speci�cally with statistics

see Utreras ������ and Cox �����a��

In our generalization we establish that� essentially� to each kernel estimator

based on a kernel K there corresponds a certain spline estimator with �e�ective

kernel� K� This correspondence is analogous to the one between kernel and

orthogonal series smoothers� and is based on the fact that there is a basis in

the space of splines which is some way close to the classical Fourier basis� The

Fourier transform of the Kernel K determines the shape of the spline smoother�

and Silverman�s ������ result appears as a special case�

Let us introduce the following notations� By ��� �� and k � k we denote the

scalar product and norm in L��� ��� respectively� For natural p� let Dp be the

derivative of f � L��� �� in the distributional sense� and let

W p
� �� �� 
 ff � L��� �� � Dpf � L��� ��g

be the Sobolev space of order p on the unit interval� For functions f and g we

de�ne the �design inner product�

hf� gin 
 n��
nX
i��

f�xi�g�xi�

and the di�erential bilinear form

�f� g�p 
 �Dpf�Dpg��

The spline basis we have in mind is the Demmler	Reinsch basis� i� e� the n	tuple

of functions �in� i 
 �� � � � � n in W p
� �� �� which simultaneously diagonalize the

bilinear forms h�� �in and ��� ��p�

h�in� �jnin 
 �ij � ��in� �jn�p 
 �in�ij � i� j 
 �� � � � � n

and where ��n � � � � � �nn are minimal for all such n	tuples� It is well known

that� for p 
 �� the minimizer of ������ �g say� is of the form

�g 


nX
i��

ci�in �Yi � �Yi 
 hY��inin� �����

�



see Craven and Wahba ������� To obtain the explicit form of the coe�cients

ci� we have to minimize

nX
i��

f�� � ci�
� �Y �

i � ��inc
�
i
�Y �
i g

which yields ci 
 �� � ��in���� For the spectral numbers �in asymptotic rela	

tions are known� see e�g� Speckman ������� Nussbaum ������� If the design is

equidistant then

�in 
 ��i��p �� � o����� i� n � �� �����

De�ne h 
 ����p� then from ����� we infer

ci � �� � ��ih��p���� �����

For p 
 � the function ��x� 
 �� � ���x����� is known as the �Butterworth

�lter�� we have thus

ci � ��ih	��� �����

It turns out that Silverman�s e�ective spline kernel function KS is the inverse

Fourier transform of the Butterworth �lter�

KS �t� 


Z �

��

exp ����itx� ��x�dx



�

�
exp ��juj	

p
�� sin �juj	

p
� � �	���

�����

From the form of the coe�cients ����� and the orthogonal expansion ����� we un	

derstand whyKS should be the �e�ective kernel� of the classical spline smoother�

we shall amplify on this below� Our recipe� to obtain an equivalent spline

smoother for a kernel estimator with kernel K� is now obvious� take � in �����

as the Fourier transform �K of K� The correspondence will be made rigorous by

a theorem on the local behaviour of the newly de�ned spline smoother� However

we have been able to carry out this program on the rigorous level as yet only for

�



piecewise linear splines� Hence Silverman�s result� which refers to cubic splines�

is not a special case� but rather its analog for the piecewise linear case� Still

we believe this result to be instructive and pointing to the validity for splines

of arbitrary degree�

A standard assumption in this context is that the nonrandom design points

x�� � � � � xn behave regularly as n��� in the sense that the associated empirical

distribution function Ln tends to a limit L which has a density 
� Then� ac	

cording to Silverman ������� the equivalent kernel estimator is one in which the

bandwidth varies locally on �� ��� in dependence on the limiting design density


� For our result on the general class of spline smoothers� we con�ne ourselves

to uniform 
� more speci�cally� an equidistant design will be assumed� It is

easy to see that the local variability of the bandwidth of the equivalent kernel

estimator in the case of nonuniform 
 is a phenomenon which is independent of

the kernel shape� and should hold in our general framework�

Using the terminology of time series analysis� the function � in ����� may

be termed a �lter� It has been established that the Pinsker �lter

��x� 
 �� � j��xjp��

�cf� Pinsker ������ is connected with the minimax	among	linear estimator over

Sobolev classes

W p
� �Q� 
 ff �W p

� �� �� � kDpfk� � Qg

when the loss is the squared norm deviation induced by the design inner product

h�� �in� see Speckman ������� Also it is known that� for independent identically

normally distributed �i� this spline estimator attains the best possible con	

stant in the L�	risk asymptotics� in a minimax sense over the Sobolev class�

cf� Nussbaum ������� In this setting the Butterworth �lter� i� e� the classi	

cal spline smoother is not optimal� and this is one of the motivations for our

extended class�

�



Dealing with the classical spline smoother� Cox ������� �����a� developed

an e�ective framework for approximating it by the continuous analog� i� e� by

a method	of	regularization operator� Our approach is inspired by these results�

however� due to the particular simplicity of the selected special case� we are able

to apply more direct methods� It should be noted that the conditions of Cox

������� �����a� exclude the piecewise linear case � a priori smoothness ��� thus

our result seems to indicate a possible weakening of those regularity conditions�

Messer ������ and Messer and Goldstein ������ elaborate the result on

the classical spline smoother� obtaining considerable analytic insight� but their

analysis is still limited to Silverman�s particular case� An important contri	

bution to the general equivalence problem has been made by Thomas	Agnan

������� we discuss this in the remarks at the end of the paper�

�� The Spline Kernel

To shed some more light on the equivalence which is the subject of this pa	

per� we will follow Cox �����a� in considering the associated continuous smooth�

ing problem� In ������ put aside the randomness of the data Yi for a moment�

and assume that Yi 
m�xi�� i 
 �� � � � � n� where m is a continuous function on

�� ��� Then as n��� the minimization criterion ����� will be close toZ �

�

�m�x� � g�x��� 
�x�dx � � kDpgk� �����

�for p 
 �� in the sequel p will be general�� Similarly� the Demmler	Reinsch

spline basis will tend to a limiting orthogonal system �i� i 
 �� �� � � � in L��� ��

which may be characterized as follows� We haveZ �

�

�i�j dL 
 �ij � ��i� �j �p 
 �i�ij � i� j 
 �� �� � � �

where �� � �� � � � � � and the basis f�ig is extremal in the sense that the spec	

tral values �i are minimal� The continuous analog of the smoothing operator

�



����� then is

�g 

�X
i��

cimi�i � mi 
 �m��i� �����

where ci 
 �����i�
��� For our general class of smoothers� we put ci 
 ��ih	��

for some �lter � �remind � 
 h�p�� Thus the analysis of spline smoothing

operators may be broken up into two parts�

� approximate the discrete problem by the continuous one� as n � ��

uniformly over a range of h

� study the continuous problem for smoothing parameter h� �

Let us further examine the continuous problem� to see why a relationship

like ����� should be expected between the �lter function � and the e�ective

kernel K� For simplicity let us �rst assume that the limiting design density is

uniform� 
 � �� It is well known that the basis functions �i are eigenfunctions

of the di�erential operator ��D��p de�ned on functions in W �p
� which satisfy

natural �Neumann� boundary conditions�

��D��p�j 
 �j�j ����a�

Dk�j�� 
 Dk�j��� 
 � k 
 p� � � � � �p� �� ����b�

The smoothing procedure ����� is an integral operator on �� �� with kernel

H�x� y� 

�X
j��

cj�j�x��j �y��

In the case cj 
 �����j��� which corresponds to the method of regularization

criterion ����� H is the Green�s function for the elliptic boundary value problem

��D��pg � �g 
 f �����

with boundary conditions ����b� on g� In our more general case cj 
 ��jh	��

the functionH 
 Hh may be seen as a generalized Green�s function� Silverman�s

�



result� if translated to the continuous smoothing case� says that the classical

Green�s function behaves locally like a kernel KS �

h Hh�y � ht� y� � KS�t� as h�  �����

for every y � �� ���

This relationship may be very easily derived when we consider the circular

smoothing problem� Suppose we seek the minimizer g of ����� subject to periodic

boundary conditions on Dkg � This will lead to the Green�s function of the

problem ����� with boundary conditions

Dkg�� 
 Dkg���� k 
 � � � � � �p� � �����

which can also be expressed in terms of eigenfunctions� In the periodic case

these are
���x� 
 �� �j �x� 


p
� cos ���jx�� j 
 �� �� � � �

�j �x� 

p
� sin ���jx�� j 
 ������ � � �

with corresponding eigenvalues ���j��p� Hence for the Green�s function we

have� with ��x� 
 �� � ���x��p���

Hh�x� y� 
 � � �
�X
j��

��jh�fcos ���jx� cos ���jy� � sin ���jx� sin ���jy�g


 � � �
�X
j��

��jh� cos ���j�x � y��

since � is symmetric about � Consequently we have

h Hh�y � ht� y� 
 h� �h
�X
j��

��jh� cos ���jth�

� �

Z �

�

��x� cos ���xt�dx 


Z �

��

exp ����ixt���x�dx 
 K�t� �����

if K is the inverse Fourier transform of �� This relationship will carry over

to general � provided the last set of displays remains true�which will be the

�



case under appropriate smoothness and integrability conditions on �� Thus in

the periodic case we readily obtain our result on the local behaviour of the

generalized Green�s function

Hh�x� y� 

�X
j��

��jh	�� �j �x��j �y�� �����

However� to deal with the original spline smoothing problem we have to consider

the nonperiodic case� Here the functions �i are eigenfunctions of ��D��p under

a di�erent set of boundary conditions� namely the Neumann set ����b�� The

heuristics then is clear� since we look at the local behaviour of the generalized

Green�s function in a neighborhood of a �xed point y in the interior of the

interval� we can expect that the boundary conditions matter less and less as

h� � and the behaviour will be as in the periodic case� This interpretation is

supported by the well known eigenvalue asymptotics in the Neumann case�

�j 
 ��j��p �� � o���� as j ��

�see Agmon ������� compare also the discrete analog ������� This means that

for large j the eigenvalues are close to those of the periodic problem �remind

that those were ���j��p� j 
 ������ � � �� with the same asymptotics under

rearrangement�� In ������ small values of j matter less as h � � so if the

eigenfunctions �j have a similar tendency to approach those of the periodic

problem we can expect the convergence ������ This is con�rmed for the classical

Green�s function ���x� 
 �� � ���x��p���� by Silverman�s result� we shall have

to deal with the case of general � ful�lling appropriate conditions�

We remark that Huber ������ considered the discrete periodic smoothing

problem in the case of an equidistant design fxig on the unit interval� and

obtained another approximation to the e�ective kernel of the procedure� It is

shown to be equivalent to Silverman�s result by H�ardle ������� chap� ����

�� The continuous smoothing problem

�



We now proceed to derive the asymptotic relation ����� for the generalized

Green�s function ����� for the limiting continuous smoothing problem� in the

nonperiodic case� Here the functions �j �guring in ����� are the eigenfunctions

in the problem ����� on the interval �� ��� We are able to obtain the desired

result as yet only in the case p 
 � and 
 � � �uniform design density�� The

eigenfunctions in this case are

���x� 
 �� �j �x� 

p
� cos ���j � ��x�� j 
 �� �� � � � �����

with corresponding eigenvalues ���j � ���� �see Triebel ������� theorem �����

p� ����

Let us now �x appropriate conditions on the �lter function � and the kernel

K� We shall use the following notations� By Lq�a� b�� q 
 �� � we denote the

Lq	space of complex	valued functions on an interval �a� b�� when �a� b� 
 IR

we write Lq� Furthermore consider the Sobolev spaces W �
� �a� b� as de�ned in

section �� we write W �
� if �a� b� 
 IR� Integrals without limits extend over IR�

Now let K be a real	valued function on IR with

K � L� �

Z
K�x�dx 
 � � K�x� 
 K��x�� �����

For any g � L� let �g be the Fourier transform of g�

�g�t� 


Z
exp���itx� g�x� dx�

De�ne the �lter function � as � 
 �K� Then we can state the following elemen	

tary result�

�



Proposition ���� Let K be a kernel satisfying conditions ������ Then � 
 �K

has properties

�i� � is real and symmetric about 

�ii� ��� 
 �� � is bounded and continuous�

Furthermore� assume that K � L� and understand the Fourier transform as

de�ned on L�� Then � is also in L�� and K is the inverse Fourier transform of

��

K�u� 
 ����u� 
 ���u��

At this point let us introduce tail and smoothness conditions on K� De�ne the

set V �
� of complex valued functions on IR as

V �
� 
 ff � L� �

Z
�� � jxj��jf�x�j� dx ��g�

It is well known that f � W �
� is equivalent to �f � V �

� � and dDK�t� 
 ��it �f �t��

Our additional condition on K is

K �W �
� � K � � V �

� � �����

De�ne the operator J by �Jf��x� 
 xf�x��

Proposition ���� Let K be a kernel satisfying conditions ������ Then

�iii� � � V �
�

�iv� J� �W �
� �

Lemma ���� Let K be a kernel satisfying conditions ������ ������ Then for

� 
 �K we have

sup
h��

h

�X
j��

�jh�� ���jh� � ��

Proof� De�ne an interval Ajh 
 ��j � ��h� jh�� By standard imbedding

theorems

�jh�����jh� 
 �J��jh��� � C
�
h��kJ�k��Ajh� � hk�J���k��Ajh�

�
�

�



Now sum over j and use property �iv� of � �

We are now in a position to de�ne our generalized Green�s function� for

any x� y � �� �� and functions �j from ����� we set

Hh�x� y� 
 � � �
�X
j��

��jh	�� cos ��jx� cos ��jy�� �����

Lemma ��� ensures convergence of the series uniformly over x� y� Putting

cos ��jx� 

�

�
�exp ��ijx� � exp ���ijx��

and x 
 y � th� we obtain� using the symmetry of ��

Hh�y � th� y� 
 � �
�

�

�X
j����j ���

��jh	��
�
exp��ijht� exp���ijy� � exp��ijh�

�



�

�

�X
��

��jh	�� exp��ijht�
�
� � exp���ijy�

�
�

Lemma ���� For any t we have as h� 

h

�

�X
j���

��jh	�� exp��ijht� �
Z

exp���iut� ��u� du�

Proof� De�ne

�t�x� 
 ��x� exp���ixt��

For simplicity we substitute h	� by h in the lemma� Consider intervals Ajh as

in lemma ���� The di�erence of the two sides in the present lemma is

�X
j���

Z
Ajh

��t�x� � �t�jh�� dx

�
�X

j���

Z
Ajh

j�t�x� � �t�jh�j dx� �����

��



Consider �rst intervals Ajh which do intersect with ���� ��� The corresponding

sum of terms in ����� is o���� since �t is continuous� For the other intervals�

the expression under the integral sign is bounded by

�Z
Ajh

�x��t�x��
� dx

���� �Z
Ajh

x��dx
����

�

The Cauchy	Schwartz inequality then gives an upper bound for �����

�Z
jxj��

x��dx
���� kJ���t�k h � o���� �����

Now we have

�J��� 
 �� J���

hence

kJ��k � k�k� k�J���k�

Furthermore

��t 
 ���it� � ��� exp���it��

Consequently

kJ��tk � ��tkJ�k� kJ��k � ��tkJ�k� k�k� k�J���k�

By proposition ����� all these terms are �nite� hence ����� is o����

Lemma ���� For any � � � we have as h� 

h

�

�X
j���

��jh	�� exp��ijht� exp���ijy� 
 o���

uniformly over y � ht � ��� � � ���

Proof� Let k be a natural� and observe that

h
X

jjj�k
��jh	�� exp���ij�y � ht	���

� �X
jjj�k

h��j��
���� �X

jjj�k
h�hj�����jh	��

����
�

��



According to lemma ��� the second factor is bounded� uniformly over h and k�

The �rst factor is �
h�� O�k���

����
�

Suppose that k 	 Mh��� then for su�ciently large M the above term can be

made less than �	�� The remaining sum over terms jhjj � M in the series

is estimated as follows� This sum can be construed as being a series as in

the assertion� with � having support on ��M�M � and being continuous there�

Take a �nite partition of ��M�M � into intervals of equal length� Since � can

be approximated by corresponding step functions� uniformly on ��M�M � if

the partition becomes �ner� it su�ces to prove the lemma for each such step

function� Each such step function is a linear combination of functions which

are indicators of symmetric intervals ��a� a�� a � M � Hence it su�ces to prove

the lemma for each � 
 ��a�a�� the indicator of some symmetric interval� In

this case� for r 
 �h��a� we have

h
X

jjj�h��a
exp���ij�y � ht�� 
 h Dr�y � ht�� �����

where Dr��� is the Dirichlet kernel

Dr�x� 

sin����r � ��x�

sin��x�
�

Now for x � ��� � � �� the numerator is bounded away from � hence Dr�x� is

uniformly bounded for r 
 �� x � ��� �� ��� As h� � ����� proves the lemma�

The �nal result on the generalized Green�s function Hn can now be stated

as follows� Observe beforehand that the convergence of lemma ��� holds uni	

formly over jtj � C� and also uniformly in h over any range h � h such that

h� � The convergence of lemma ��� holds uniformly over y � ht � ��� � � ��

and h � h�

��



Lemma ���� We have for any y � �� ��� t � IR

h Hh�y � ht� y� � K�t� as h� �

and the convergence is uniform over y � ��� ����� �� � �� jtj � C and h � �� h�

where h� �

�� The spline basis

Having treated the limiting continuous smoothing problem for degree of

di�erentiability p 
 � and uniform limiting design �
 � ��� we now look at the

discrete analog� i� e� the problem with data observed at points x�� � � � � xn� For

this we assume that the regression design is of a particular uniformly spaced

kind�

xi 
 �i� �	��	n � i 
 �� � � � � n�

It is well known that the natural interpolation and smoothing splines for p 
 �

are piecewise linear� For given fxig as above and a function f de�ned on �� ���

let f �n� 
 �f�x��� � � � � f�xn��� be the trace of f on fxig� Let S�f �n�� be the

piecewise linear interpolant of f � uniquely de�ned on �� �� by the requirement

to be constant on the marginal intervals �� �	�n�� ��� �	�n� ��� The following

fact is well known� see e�g� Laurent ������� theorem ������

Lemma ���� For f � W �
� �� ��� the function S�f �n�� is in W �

� �� ��� and is

the solution of

minf kDgk� � g�n� 
 f �n� � g �W �
� �� �� g�

Let Sn 
 S�IRn� be the n	dimensional linear space of such piecewise lin	

ear spline functions� It is clear that there is a basis �jn� j 
 �� � � � � n in Sn

��



which simultaneously diagonalizes the bilinear forms h�� �in and ��� ���� Lemma

��� implies that f�jng coincides with the Demmler	Reinsch basis �for p 
 ��

introduced in section �� Obviously the standard smoothing spline for p 
 �� i�

e� the minimizer over functions in W �
� �� �� of

n��
nX
i��

�Yi � g�xi��
� � �

Z
�Dg�x��� dx �����

is in Sn� and hence can be expressed in terms of the basis f�jng according to

������ Here the �ltering coe�cients cj are cj 
 �� � ��jn���� the interpolation

spline S�Y � is obtained for cj 
 � �no smoothing��

It turns out that in our particularly simple setting the functions �jn are

just the spline interpolants of the �j from the limiting continuous problem� i� e�

of the cosine functions given by ������

Lemma ���� The functions �jn de�ned by

�jn 
 S��
�n�
j � � j 
 �� � � � � n

�j being given by ������ satisfy

h�in� �jnin 
 �ij � ��in� �jn�� 
 �jn�ij � i� j 
 �� � � � � n

where

�jn 
 �n� sin����j � ��	�n� � j 
 �� � � � � n �

Proof� Consider a set of points� xk 
 �k� �	��	n� k 
 �� � � � � �n� Then for any

natural r� � � r � �n� �� the set of points exp��irxk �� k 
 �� � � � � �n is evenly

spaced on the unit circle in the complex plane� Hence

�nX
k��

exp��irxk � 
 � �����

��



Observe that each function cos��rx�� for � � r � �n � � is symmetric on the

interval �� �� with symmetry center �� Hence

nX
k��

cos��rxk� 

�

�

�nX
k��

cos��rxk� 
  �����

as a consequence of ������ Now we have for i� j 
 �

h�in� �jnin 
 n��
nX

k��

fcos���i � j�xk� � cos���i � j � ��xk�g�

This expression vanishes if i �
 j� according to ������ and equals � if i 
 j� The

case where one of the �jn is ��n� i� e� identically �� can be treated analogously�

Thus the �rst orthogonality relation is proved� For the second� suppose �rst that

either i or j is �� Then� as D��n �  and ��n 
 � the claim about ��� ��� is clear�
Suppose now that i� j 
 �� Consider a set of points zk 
 k	n� k 
 � � � � � �n�

Analogously to ����� it can be shown that for � � r � �n� �

�nX
k��

exp��irzk � 
 � �����

Observe that each function sin��rx�� for � � r � �n � � is antisymmetric on

the interval �� �� about � and vanishes in  and �� Hence for � � i� j � n

�

n

n��X
i��

sin��izk� sin��jzk� 
 n��
�nX
i��

sin��izk� sin��jzk�


 �ij �����

as a consequence of ������ Now

��in� �jn�� 
 n��
nX

k��

�
��in�xk� � �in�xk���

� �
��jn�xk�� �jn�xk���

�
n��

Furthermore� writing xk�� 
 xk � n��� we obtain

��in�xk� � �in�xk��� 

p
� sin���i � ���xk � �	�n�� � sin���i � ��	�n�


 �
p
� sin���i � ��zk��� sin���i � ��	�n��

��



This yields in view of �����

��in� �jn�� 


�

n

n��X
k��

sin���i � ��zk� sin���j � ��zk� �n
� sin���i � ��	�n� sin���j � ��	�n�


 �ij �n� sin����j � ��	�n�

which proves the lemma�

Remark� The lemma describes the eigenvalues and eigenvectors of the n � n

band matrix �
BBBBBBBB�

� ��
�� � ��

�� �
� � �

� ��
�� � ��

�� �

�
CCCCCCCCA

as �jn and �
�n�
j � j 
 �� � � � � n� Note that

�jn 
 ��j�� �� � o����

uniformly over k��n� � j � k��n�� for any k��n���� k��n� 
 o�n� as n���

which is a special case of ������

Let us now describe the approximation property of the �jn for the basis

f�jg�

Lemma ���� We have

supx�����	 j�jn�x� � �j �x�j � n���j � j 
 �� � � � � n�

��



Proof� Set x� 
 � We have for x � �xk��� xk�� k 
 �� � � � � n� �

j�jn�x� � �j�x�j � supx��xk���xk	 j��j �x�jn�� � n����j � ���

This result can be immediately applied to describe the closeness of the

generalized Green�s function Hh and its discrete �spline� analog� Observe that

given an observation vector Y � our spline estimator is the function of x � �� ��

nX
j��

���j � ��h	���jn�x�hY��jnin 
 n��
nX

k�j��

���j � ��h	���jn�x��jn�xk�Yk�

�����

De�ne for x � �� ��� k � f�� � � � � ng

Hhn�x� xk� 

nX

j��

���j � ��h	���jn�x��jn�xk�� �����

Clearly this is the analog of the generalized Green�s function ������

Lemma ���� Let hn� hn be sequences� hn � hn� hn � � hnn � � as

n��� Then we have

h jHh�x� xk� �Hhn�x� xk�j � 

uniformly over h � �hn� hn�� x � �� ��� k 
 �� � � � � n�

Proof� Since �j �x�� �jn�x� are uniformly bounded� we can use the method used

in the proof of lemma ����� to show that in both Hh and Hhn we need only

consider summation terms for j �Mh�� for some M � It then remains to show

that

h
X

j�Mh��
���j � ��h	�� j�j�x��j �xk� � �jn�x��jn�xk�j

tends to zero uniformly� According to lemma ������ for j �Mh��

��



supx�����	 j�jn�x� � �j�x�j � n���Mh�� � Ch��
n n�� 
 o����

This proves the lemma�

Collecting the results of lemmas ��� and ��� we obtain the following result�

Theorem � Suppose that in the regression model the design points xi are

xi 
 �i� �	��	n� i 
 �� � � � � n� Let K be a kernel function satisfying conditions

������ ������ and let � 
 �K be its Fourier transform� Let �jn� j 
 �� � � � � n be

the Demmler	Reinsch basis in the space Sn of piecewise linear splines with knots

at xi� Consider the spline estimator given by �
��� for smoothing parameter h�

and let Hhn be the corresponding weight function given by �
���� Let hn� hn

be sequences� hn � hn� hn � � nhn ��� Then

h Hhn�xk � th� xk� � K�t� � n��

uniformly over xk � ��� � � �� �� � �� h � �hn� hn� and jtj � C�

�� Remarks

Having carried out our analysis for smoothness p 
 � �piecewise linear

splines�� it remains to include the classical spline smoother for p 
 � into this

framework� Consider the minimizer of ������ as in �����	����� it can be seen that

it corresponds to a �lter function

��x� 
 �� � ���x������

��



This �lter function clearly satis�es conditions �i�	�iv� of section �� hence its

Fourier transform K 
 �� satis�es the condition of the theorem� We have

K�u� 
 ���u� 

�

�
exp��juj�

so the double exponential density is the analog of Silverman�s kernel KS for

p 
 �� We conjecture that our main result can be generalized to arbitrary

degree of smoothnes p and to a general limiting design density 
� provided the

design tends to its limit su�ciently quickly� This is of course suggested by

the results on the classical smoothing spline� We believe that more analytic

results on the spectrum of di�erential operators and their approximation e�

g� by Galerkin methods should be drawn upon for this� A useful reference is

Chatelin �������

Let us stress again that so far our results did not involve stochastics� though

they were obtained with a view to statistical smoothing� An interesting statis	

tical result related to the subject of this paper was obtained by Cox �����b��

It was shown that the spline smoother applied to pure noise �i� e� to data �i�

yields a random function on �� �� which� when appropriately scaled� is close to

a Gaussian process� This central limit theorem holds for general �nonnormal�

noise distribution� and was used to show that the method of generalized cross	

validation for choosing the smoothing parameter is asymptotically optimal� In

turn� this study was motivated by a result of Speckman ������ on the minimax

linear spline� who established optimality of the bandwidth selector under nor�

mality of the noise� The normality assumption was removed by Cox �����b��

but the classical smoothing spline was substituted for the minimax linear one�

Thus it appears a natural idea to generalize the limit theorem for spline esti	

mators to our class� As the corresponding class of �lters includes the Pinsker

one� one should be able to infer optimality of the adaptive bandwidth choice for

the minimax linear spline in the nongaussian case� This would complement a

recently established lower asymptotic risk bound �see Golubev and Nussbaum�

�



����� which showed that the minimax linear spline is a candidate for attain	

ment also under nonnormal noise� That appears to be one way to con�rm that

this bound� which involves optimal rate and constant� is attainable adaptively

by a spline estimator� without knowledge of the derivative bound Q and of the

noise variance ���

Thomas	Agnan ������ de�nes a general class of spline	type smoothers�

called �	splines� starting from the following observation� It is well known that

in ����� the integral may be extended over �� �� or over the whole real line�

in both cases the same spline minimizer results� If the whole line is used then

����� may be written in terms of the Fourier transform �g of g

n��
nX
i��

�Yi � g�xi��
� � �

Z
j ���t�p�g�t� j� dt

Let � be a complex	valued function function de�ned on IR ful�lling some

regularity conditions� consider the minimizer g of

n��
nX
i��

�Yi � g�xi��
� � �

Z
j ��t����t�p�g�t� j� dt

The solution is called an �	spline� For � � � and p 
 � one obtains

the classical smoothing spline� The �	splines represent a large class of linear

smoothers� in particular� they should be equivalent to kernel estimators� To see

this heuristically� consider the corresponding continuous smoothing problem on

the whole real line�

Z
�m�x� � g�x���dx � �

Z
j ��t����t�p�g�t� j� dt

Substituting the �rst integral by
R
� �m�t�� �g�t���dt and arguing similarly to

����� we obtain a minimizer

�g�t� 
 �� � ���t����t�p��� �m�t� ������

��



The Fourier transform expression for a general kernel smoother on the

whole real line would be� using a �lter function � and bandwidth parameter h

as before�

�g�t� 
 ��ht	�� �m�t�� �����

A choice ��t� 
 ���ht��p����ht	�� � �� � 
 hp yields equality of �����

and ������ Though in the original concept � was assumed �xed� we see that

a bandwidth	dependent choice of � makes the method su�ciently �exible to

yield a spline	type optimization problem corresponding to the general kernel

estimator� It is not essential in this connection that the �	splines are not

necessarily polynomial splines� Thomas	Agnan ������ discusses solution of the

optimization problem via reproducing kernel Hilbert space methods� A rigorous

proof of equivalence in the sense considered in this paper might be easier than

for our estimator since Fourier transform methods are more directly at hand�

�

��
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