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Abstract

A multivariate quantile regression model with a factor structure is proposed to
study data with many responses of interest. The factor structure is allowed to vary
with the quantile levels, which makes our framework more flexible than the classical
factor models. The model is estimated with the nuclear norm regularization in order to
accommodate the high dimensionality of data, but the incurred optimization problem
can only be efficiently solved in an approximate manner by off-the-shelf optimization
methods. Such a scenario is often seen when the empirical risk is non-smooth or the
numerical procedure involves expensive subroutines such as singular value decompo-
sition. To ensure that the approximate estimator accurately estimates the model,
non-asymptotic bounds on error of the the approximate estimator is established. For
implementation, a numerical procedure that provably marginalizes the approximate
error is proposed. The merits of our model and the proposed numerical procedures are
demonstrated through Monte Carlo experiments and an application to finance involving
a large pool of asset returns.
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1. Introduction

In a variety of applications in economics, the interest is in the conditional quantiles

of response variable (Koenker and Hallock; 2001). Quantile regression (Koenker and Bas-

sett; 1978) is arguably one of the most popular methods for estimating the quantile of a

response variable. However, in the situation of multivariate responses with common predic-

tors, equation-by-equation quantile regression fails to capture the latent common structure.

In econometrics literature, factor models are used for quantile regression with multiple re-

sponses (Ando and Tsay; 2011; Chen et al.; 2015), but the factors are usually invariant to

the quantile level, or do not include the information of exogenous predictors. This seems

to contradict with the reality that the upper and lower quantiles are usually interpreted

differently.

To fill this gap, we consider quantile level dependent factors f τk (X) formed by covariates

X ∈ Rp, where τ ∈ (0, 1) is the quantile level. We assume that the conditional quantile

qj(τ |X) of Yj, the jth component in the response vector Y , satisfies

qj(τ |X) =
rτ∑
k=1

Ψτ,kjf
τ
k (X), j = 1, ...,m = dim(Y ), (1.1)

where Ψτ,kj ∈ R is the factor loading, and rτ ∈ N is assumed small and quantile level

dependent. At first glance, Model (1.1) appears to be a factor-augmented regression model

(FAR) of Stock and Watson (2002), but in fact they are drastically different. The predictors

and the response variables are both generated by factors in the FAR model, but (1.1) assumes

that the factors are functions of predictors, where the functions are unknown but non-

random. Besides the factor models, Fan et al. (2015) consider transnormal models to allow

for ultrahigh dimensional covariates.

From a practical perspective, the factors f τk (X) in (1.1) are unobservable, so computing

the parameters Ψτ,kj can be challenging. To tackle this challenge, instead of pre-estimating
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the factors, we adopt a one-shot approach that simultaneously estimates the factors and

the loadings. In particular, assume additionally that f τk (Xi) is linear in X ∈ Rp, that is,

f τk (Xi)
def
= Φ>τ,∗kXi, where Φτ,∗k ∈ Rp. The model (1.1) can be written as

qj(τ |Xi) = Γ>τ,∗jXi, i = 1, ..., n, j = 1, ...,m = dim(Y ), (1.2)

where Γτ,∗j = ΦτΨτ,∗j is the jth column of Γτ , which is a p × m coefficient matrix. Note

that this implies Γτ = ΦτΨτ , where Φτ ∈ Rp×rτ linearly transforms X to factors Φ>τ Xi =

(f τ1 (Xi), f
τ
2 (Xi), ..., f

τ
rτ (Xi))

>, and Ψτ ∈ Rrτ×m are the loadings defined in (1.1), with jth

column Ψτ,∗j corresponding to output Yj. Here, we normalize ‖Ψτ,k∗‖2 = 1 so that the model

is identifiable. If the matrix Γτ in (1.2) is available, a factorization of Γτ gives factors and

loadings simultaneously; see Section 2.2.

We observe that the rank of Γτ is the number of factors rτ , so the rank of Γτ is small

when rτ is small. Therefore, estimation of Γτ should exploit this low rankness property, so

that the estimation can be stable even when both m and p are large relative to n. Recall that

the rank corresponds to the number of nonzero singular values. Therefore, with a tuning

parameter λ > 0, an estimation with singular values regularization is considered

Γ̂τ
def
= arg min

S∈Rp×m

{
Lτ (S)

def
= Q̂τ (S) + λ‖S‖∗

}
, (1.3)

where ‖S‖∗ denotes the nuclear norm, which is the sum of singular values, and

Q̂τ (S)
def
= (mn)−1

n∑
i=1

m∑
j=1

ρτ
(
Yij −X>

i S∗j
)
, (1.4)

in which ρτ (u) = u(τ − 1{u ≤ 0}) is the ”check function” (Koenker and Bassett; 1978).

Note that Q̂τ is similar to the loss function used in Koenker and Portnoy (1990) for the

low dimensional case, i.e. m and p do not diverge with n. For mean regression, the nuclear
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norm penalty has been considered by many authors (Yuan et al.; 2007; Bunea et al.; 2011;

Negahban and Wainwright; 2011; Koltchinskii et al.; 2011; Maurer and Pontil; 2013; Maurer

et al.; 2016).

In (1.3), Γ̂τ is the minimizer of a convex empirical risk. Its theoretical guarantee has

been well studied (Koltchinskii; 2011) and its convergence rate is the best of all admissible

estimators. Unfortunately, in reality, many off-the-shelf optimization methods only solves

the optimization problem (1.3) approximately with an error δ > 0. The optimization error

δ may be nonzero for various reasons. For example, Γ̂τ,δ may be computed with a surrogate

loss function of Lτ that is easier to optimize, or Γ̂τ,δ is the outcome of an iterative procedure,

in which each iteration involves costly subroutines such as singular value decomposition.

A question arises naturally: can Γ̂τ,δ estimates Γτ , as accurately as Γ̂τ in some statistical

sense?

The main goal of this paper is to provide an affirmative answer to the above question.

In particular, we prove a non-asymptotic bound for Γ̂τ,δ − Γτ , that has similar convergence

rate as that of Γ̂τ − Γτ , under the condition that δ is smaller than an explicit upper bound

depending on n, m and p. This result is then be applied to prove that the estimator from

a simple algorithm has the same convergence rate as Γ̂τ , because its optimization error can

be marginalized if parameters of the algorithm are well-chosen. Theoretical tools developed

in this paper may be potentially useful for other convex problems where finding an exact

optimizer is expensive and unrealistic.

In addition to the theoretical guarantees, we experiment the numerical procedure us-

ing Monte Carlo simulations with i.i.d. and dependent design. The outputs variables are

generated from a two-piece normal distribution (Wallis; 2014), which has been used for the

inference of inflation rate by central banks (Wallis; 1999). The results show that our numer-

ical procedure can correctly identify the number of factors. For an empirical illustration of

our method, we estimate the market systemic risk from a large pool of assets, and compute
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the exposure of each asset to the systemic risk. As our method is scalable to high dimensional

data, we are able to overcome the computational barriers inherent in the existing studies

(Adrian and Brunnermeier; 2016; White et al.; 2015).

Lastly, we remark that multitask linear models have been considered in applications where

the tails of distribution are the focus of interest. A recent paper Chao et al. (2018) explores

the functional magnetic resonance imaging (fMRI) data with multitask expectile regression.

They propose an iterative shrinkage algorithm, and show finite-sample convergence rate of

the estimator while taking the optimization risk into account. The task undertaken in the

current paper is much more challenging than Chao et al. (2018) from both computational and

theoretical aspects, because of the non-smoothness of the quantile regression loss function.

The model in this paper is more appropriate when response variables are heavy-tailed as

moment conditions are not required here.

The rest of this paper is organized as follows. Section 2 discusses the numerical procedure

for estimating the coefficient matrix Γτ and the factors and loadings. The selection of λ

is also presented. Section 3 provides non-asymptotic analysis for Γ̂τ,δ and characterizes the

sufficient condition on δ. The estimator for factors and loadings are also investigated. Results

on Monte Carlo experiments are presented in Section 4, and an application on financial

systemic risk is shown in Section 5. Section 6 concludes this paper. Appendix contains the

detailed development of the algorithm in Section 2 and the proof of key theoretical results.

Other proofs and technical details are shifted to the supplementary materials.

Notations. Notations associated with matrices will be used extensively in this paper. For a

matrix A = (Aij) ∈ Rp×m, denote the singular values of A: σ1(A) ≥ σ2(A) ≥ ... ≥ σp∧m(A).

σmax(A) and σmin(A) for the largest and smallest singular values of A. Let ‖A‖ = σmax(A)

be the spectral norm, ‖A‖∗ be the nuclear norm and ‖A‖F be the Frobenius norm. Denote

A∗j and Ai∗ as the jth column vector and the ith row vector of A. Ip denotes the p × p

identity matrix. For vectors a1, ...,am in Rp, denote [a1 a2 ... am] ∈ Rp×m a matrix with aj
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being its jth column. 1(S) is the indicator function, which is one when the statement S is

true.

2. Approximate Estimator and Estimation

In this paper, the approximate estimator Γ̂τ,δ is assumed to satisfy

0 ≤ Lτ (Γ̂τ,δ)− Lτ (Γ̂τ ) ≤ δ. (2.1)

for some δ ≥ 0, where Lτ is the empirical risk in (1.3).

Section 2.1 presents an algorithm that computes an Γ̂τ,δ, and its optimization error δ will

be characterized. Given Γ̂τ,δ, Section 2.2 describe the ways to estimate factors and loadings

from Γ̂τ,δ. Section 2.3 discusses the choice of tuning parameter λ.

2.1. Coefficient Matrix

The proposed estimation procedure combines the Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA) of Beck and Teboulle (2009) and the smoothing technique of Nesterov

(2005). Similar approach is previously applied to estimate regression models with penal-

ties that induce complex structural sparsity (Chen et al.; 2012). Comparing with other

existing methods, this approach is more scalable to higher dimension than the semidefinite

programming (SDP, Fazel et al. (2001); Srebro et al. (2005)), and is more stable than the

non-convex reformulations (Rennie and Srebro; 2005; Weimer, Karatzoglou, Le and Smola;

2008; Weimer, Karatzoglou and Smola; 2008). See Ciliberto et al. (2017) for a recent account

on the latter issue.

Specifically, the first step is to smooth Q̂τ in (1.4) with a surrogate function Q̂τ,κ parame-

terized by a smoothing parameter κ (Nesterov; 2005). The surrogate loss function converges

to the original loss function as κ → 0. Q̂τ,κ has a good property that ∇Q̂τ,κ is globally
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Lipschitz with constant Lip = (κm2n2)−1‖X‖2, where X = [X1 ...Xn]> ∈ Rn×p is the design

matrix. Next, FISTA (Beck and Teboulle; 2009) is applied on the modified loss function

with step size Lip−1. The procedure is summarized below, and the details are shifted to

Section A.1.

Step 1: Given κ > 0, Q̂τ,κ = SMOOTH(Q̂τ );

Step 2: Given λ > 0 and an initial estimator Γτ,0, for each t = 1, 2, .., T , apply FISTA step

on the minimization problem minS∈Rp×m{L̃τ (S)
def
= Q̂τ,κ(S) + λ‖S‖∗} with step size

κm2n2‖X‖−2. Return the last iterate Γτ,T .

The quantity κ is the key that controls both the smoothing quality and the step size of FISTA.

Small κ leads to smaller smoothing error, but slows down the convergence. Therefore, there

exists a tradeoff between smoothing error and the speed of convergence. In our simulation

and data application, we typically set κ between 10−4 and 10−7, and 3000 to 4000 iterations

are usually sufficient for convergence.

The next theorem shows that Γτ,T is an approximate estimator in the sense of (2.1).

Theorem 2.1. Recall that Γ̂τ is the optimal solution for minimizing (1.3) and let Γτ,∞
def
=

limT→∞ Γτ,T = arg minS{L̃τ (S) = Q̂τ,κ(S) + λ‖S‖∗}. Then for any T , Γ̂τ,δ = Γτ,T satisfies

(2.1) with

δ = δ(T, n, κ, τ,X) =
3κmn(τ ∨ {1− τ})2

2
+

2‖Γτ,0 − Γτ,∞‖2
F

(T + 1)2

‖X‖2

κm2n2
. (2.2)

See Section S.1.2 in the supplementary material for a proof for Theorem 2.1. This theorem

shows that the proposed numerical procedure provides an approximate optimizer in the sense

of (2.1). The first term on the right-hand side of (2.2) is related to the smoothing error Q̂τ,κ

(Step 1), while the second term is related to the FISTA algorithm (Step 2). The quantile
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level τ enters (2.2) by the term τ∨{1−τ}, which increases when τ approaches the boundaries

of the interval [0, 1].

2.2. Factors number, factors and Loadings

Factorizing the true coefficient matrix Γτ = ΦτΨτ allows to compute the factors f τk (X) =

Φ>τ,∗kXi and loadings Ψτ,kj for j = 1, ...,m and k = 1, ..., rτ at one shot. However, a potential

problem here is that the decomposition Γτ = ΦτΨτ is not unique. In particular, for any

invertible matrix P ∈ Rr×r, we have ΦτΨτ = ΦτPP−1Ψτ . Therefore, to fix such a matrix

P, we apply the constraint in equation (2.14) on page 28 of Reinsel and Velu (1998): let the

singular value decomposition Γτ = UτDτV
>
τ , where the singular vectors associated with the

zero singular values are not included in the expression, and U>τ Uτ = V>τ Vτ = Irτ . We set

Ψτ = Vτ and Φτ = D>τ U>τ . (2.3)

In practice, using singular value decomposition Γ̂τ,δ = ŨτD̃τṼ
>
τ , the factors and loadings

can be estimated similarly as (2.3):

f̂ τk (Xi) = σ̃kŨ
>
τ,∗kXi,

Ψ̂τ = Ṽτ ,

(2.4)

where σ̃k is the kth largest singular value of Γ̂τ,δ.

The nuclear norm penalty in our loss function (1.3) shrinks most singular values to 0,

so typically r̃τ = max{k : σ̃k > 0} is small relatively to n, p and m. Note that when rτ is

not small, the proposed method can still provably work, if the importance (measured by the

singular values) of latter factors is small; see Remark 3.5 for details. In practice, the number

of factors rτ is estimated by r̂τ = max{k : σ̃k > ε} for, e.g. ε = 10−10, as adopted in this

paper.
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2.3. Tuning

It is crucial to appropriately select λ for the problem (1.3). We propose two ways to

select λ. The first method is based on simulation. In particular, define the random variable

Λτ
def
= (nm)−1‖X>W̃τ‖, (2.5)

where (W̃τ )ij = 1(Uij ≤ τ) − τ , and {Uij} are i.i.d. uniform (0,1) random variables for

i = 1, ..., n and j = 1, ...,m, independent from X1, ...,Xn. The random variable Λτ is

pivotal conditioning on design X, as it does not depend on the unknown Γτ . The formula

in (2.5) arises from the subgradient ∇Q̂τ (Γτ ) = (nm)−1X>W̃τ . Set

λ = λτ = 2 · Λτ (1− η|X), (2.6)

where Λτ (1 − η|X)
def
= (1 − η)-quantile of Λτ conditional on X, for 0 < η < 1 close to 0,

for instance η = 0.1. The constant 2 in (2.6) is mainly for the convenience of theoretical

development, and it can be replaced by any constant greater than 1. In practice, when n

is large enough, the constant has little effect on the estimated number of factors, which is

shown in our empirical study; see the left panel of Figure 5.1.

For estimating the number of factors, simulation study in Section 4 suggests that the

tuning parameter given by (2.6) sometimes leads to too small rτ . Alternatively, we propose

to choose λ by minimizing the penalized testing error:

min
λ

E
[
Q̂τ (Γ̂

λ
τ,δ)
]

+ λ‖Γ̂λ
τ,δ‖∗, (2.7)

where we include the superscript λ to Γ̂τ,δ to emphasize its dependence on the tuning pa-

rameter λ, and Q̂(·) is defined in (1.4). The expectation in (2.7) can be approximated by
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an empirical average with a testing data set, in which the estimator Γ̂λ
τ,δ is computed with a

training data set that has no overlap with the testing data, and the minimizer can be found

by grid search. To select the grid points, the value in (2.6) can be used as the upper bound

of the grid points. The performance of (2.7) will be evaluated by simulation in Section 4.2.

3. Theory

Section 3.1 develops high probability error bound for the approximate optimizer Γ̂τ,δ. The

bound can be applied with Theorem 2.1 to derive a bound for the estimator Γτ,T proposed

in Section 2.1. Section 3.2 characterizes the risk of the factors and loadings estimator.

3.1. Stochastic Risk of the Approximate Estimator Γ̂τ,δ

The following assumptions are introduced.

(A1) (Sampling setting) Samples (X1,Y1), ..., (Xn,Yn) are i.i.d. copies of (X,Y ) random

vectors in Rp+m with p,m ≥ 3. F−1
Y |X(τ |x) = x>Γτ,∗j, where Yj is the jth variable in

Y . Moreover, for each i, Wτ,i∗
def
= {(1(Yij −X>

i Γτ,∗j ≤ 0)− τ)}1≤j≤m are i.i.d.

(A2) (Covariates) X is centered with covariance matrix ΣX . Assume the density function of

X exists. Suppose 0 < σmin(ΣX) < σmax(ΣX) <∞, and there exist constants Bp ≥ 1,

c1, c2 > 0 such that ‖Xi‖ and the sample covariance matrix Σ̂X = 1
n
X>X satisfies

P
{
σmin(Σ̂X) ≥ c1σmin(ΣX), σmax(Σ̂X) ≤ c2σmax(ΣX), ‖Xi‖ ≤ Bp

}
≥ 1− γn, (3.1)

for a sequence γn → 0.

(A3) (Conditional densities) There exist constants f̄ > 0, f τ > 0 and f̄ ′ <∞ such that

max
j≤m

sup
x,y

∣∣fYj |X(y|x)
∣∣ ≤ f̄ , max

j≤m
sup
x,y

∣∣∣∣ ∂∂yj fYj |X(y|x)

∣∣∣∣ ≤ f̄ ′, min
j≤m

inf
x
fYj |X(x>Γτ,∗j|x) ≥ f τ ,
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where fYj |X is the conditional density function of Yj on X.

The i.i.d. condition in Assumption (A1) allows to bound some tail probability with

sharp random matrix theory (see Remark S.2.6). This may be replaced by m-dependent or

weak dependent conditions, but the theory will be more complicated, which is left for future

research. In Assumption (A2), X is centered. Bp can be assumed bounded by a constant

(for example, p.2 of Maurer and Pontil (2013) and Theorem 1 of Yousefi et al. (2018)), but

generally Bp �
√
p if each component of X is bounded almost surely. Eigenvalue bounds in

(3.1) hold when the components in X have light tail; see, for example, Vershynin (2012b).

(A3) is standard in quantile regression literature (Belloni and Chernozhukov; 2011). Note

that f τ decreases when τ approaches 0 or 1.

The next lemma gives the bound for n−1‖X>Wτ‖, where Wτ = {Wτ,ij}ij = {(1(Yij −

X>
i Γτ,∗j ≤ 0)− τ)}1≤i≤n,1≤j≤m is an n×m matrix. The detailed proof can be found in the

supplementary material.

Lemma 3.1. Assume (A1) and (A2) hold.

1. For arbitrary u > 1, with probability greater than 1− 3e−(u−1)(p+m) log 8 − γn,

1

n
‖X>Wτ‖ ≤ C∗

√
uσmax(ΣX)K(τ)

√
p+m

n
, (3.2)

where C∗ = 4
√

c2
C′

log 8 ∨ 1, C ′ and c2 are absolute constants given by Lemma S.4.3 in

the supplementary material and Assumption (A2), and

K(τ)
def
=


0, τ = 0, 1;

2τ−1
2{log τ−log(1−τ)} , τ ∈ (0, 1)\{1/2};

1/4, τ = 1/2,

(3.3)
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2. With probability 1, for any 0 < η < 1,

Λτ (1− η|X) ≤ λ̄ :=
C∗

m

√(
1− η − γn

3(p+m) log 8

)
σmax(ΣX)K(τ)

√
p+m

n
(3.4)

where γn → 0 is defined in Assumption (A2).

See Section S.2.1 for a proof of Lemma 3.1. The constant K(τ) is the sub-Gaussian

norm of the binary random variable Wτ,ij (Buldygin and Moskvichova; 2013, Theorem 3.1).

Particularly, K(τ) is a concave function of τ ∈ [0, 1] and is symmetric about τ = 1/2. The

maximum of K(τ) is 1/4 at τ = 1/2. In addition, K(τ) ≥ τ(1 − τ) [Eqn. (9) on p.36 of

Buldygin and Moskvichova (2013)]. See Lemma 2.1 of Buldygin and Moskvichova (2013) for

more on K(τ).

The next result presents a non-asymptotic risk bound of the approximate optimizer Γ̂τ,δ,

when the optimization δ is well controlled. The key ingredient in its proof is the convexity

arguments and a new tail probability bound for the empirical process Gn{Q̂τ (Γτ + ∆) −

Q̂τ (Γτ )}, which builds on a sharp bound for the spectral norm of a partial sum of random

matrices (Maurer and Pontil; 2013; Tropp; 2011). Define

ντ (δ)
def
=

3

8

f τ

f̄ ′
inf

∆∈K(Γτ ;δ)
∆6=0

(∑m
j=1 E[|X>

i ∆∗j|2]
)3/2∑m

j=1 E[|X>
i ∆∗j|3]

, (3.5)

where K(Γτ ; δ) is a ”star-shaped” set of matrices defined in (S.2.5) [see more details there].

Note that K(Γτ ; δ1) ⊂ K(Γτ ; δ2) for all 0 ≤ δ1 ≤ δ2.

Theorem 3.2. Assume that (A1)-(A3) hold, and λ satisfies

2Λτ (1− η|X) ≤ λ ≤ 2λ̄, (3.6)

where λ̄ is defined in (3.4). Let δ ≤ Cλm1/2n−1/2 for some constant C > 0, where δ is the

upper bound of the optimization error in (2.1). For some u > 1, assume that r = rank(Γτ )
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satisfies

uεn,τ,r
def
= u

(384
√

2 + 96C∗)

f τ ∧ 1

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

√
r(m+ p ∨Bp)(log p+ logm)

mn
< ντ (2Cm1/2n−1/2),

(3.7)

where C∗ is a large constant defined in (3.2). Then,

‖Γ̂τ,δ − Γτ‖L2(PX) ≤ uεn,τ,r (3.8)

with probability at least 1− η− γn− 16(pm)1−u2 − 3 exp{−(p+m) log 8}, where ‖ · ‖2
L2(PX)

def
=

m−1EPX‖ ·>Xi‖2
2 is the prediction error; in addition,

‖Γ̂τ,δ − Γτ‖F ≤ u

(
m

σmin(ΣX)

)1/2

εn,τ,r. (3.9)

See Section S.2.2 for a proof of Theorem 3.2. A sufficient condition for the bounds (3.8)

and (3.9) of Theorem 3.2 is δ ≤ Cλm1/2n−1/2. We note that the conclusion of Theorem

3.2 holds regardless of the algorithm that computes Γ̂τ,δ, as long as the optimization error δ

satisfies the bound. Corollary 3.4 provides an application of Theorem 3.2 on the estimator

Γτ,T proposed in Section 2.1.

The error bound εn,τ,r defined in (3.7) can be regarded as the stochastic error, which is not

related to the optimization error δ. If p and m are fixed with respect to n (low dimensional

setting), εn,τ,r = O(n−1/2). The quantity r(p + m) can be viewed as the actual number of

unknown parameters, which has to be much smaller than n. The covariates can influence

εn,τ,r through the condition number σmax(ΣX)/σmin(ΣX) of the covariance matrix ΣX and

Bp. The estimation at τ close to 0 or 1 is challenging as f τ in the denominator decreases

when τ approaches 0 or 1.
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The rate in (3.9) achieves the same (up to a constant) convergence rate in p,m and

n to the multivariate regression for mean (Negahban and Wainwright; 2011; Koltchinskii

et al.; 2011)1, which is shown to be unimprovable up to a logarithmic factor in the minimax

sense (Koltchinskii et al.; 2011). Hence, we conjecture that εn,τ,r is unimprovable up to a

logarithmic factor under the multivariate quantile regression setting, as the convergence rate

of quantile regression is typically the same (except for some constants) as the mean regression.

If it were true, then Γ̂τ,δ is as good as Γ̂τ , because the rate of both are unimprovable.

Remark 3.3 (Comment on the growth condition (3.7)). In Theorem 3.2, the growth condi-

tion (3.7) guarantees the difference of population quantile loss Qτ (S+∆)−Qτ (S) is minorized

by a quadratic function for ∆ inside a well-behaved set. Moreover, it can be easily seen that

ντ (δ1) < ντ (δ2) for all δ1 > δ2 from the definition of ντ (δ) in (3.5). Section S.3.1 discusses

the details of the growth condition (3.7).

The selection of smoothing parameter κ > 0 has a significant impact on the algorithm in

Section 2.1. Indeed, Corollary 3.4 below proves that estimator Γτ,T in Section 2.1 achieves

the bound in Theorem 3.2, provided that the smoothing parameter κ and the number of

iterations T satisfy certain conditions.

Corollary 3.4. Assume the conditions of Theorem 3.2 and C = 1 in (3.7). Suppose in

addition that the true coefficient matrix Γτ satisfies ‖Γτ‖2
F ≤ Cτpm for some constant Cτ >

0, Bpr(p+m)(log p+ logm) = o(n). Let the initial estimator be Γτ,t=0 = 0 in the algorithm

in Section 2.1, and that

κ ≤ λ

3m1/2n3/2{τ ∨ (1− τ)}2
, (smoothing parameter) (3.10)

T = T (κ) ≥ 4C
1/2
τ p1/2m1/2‖X‖

λ1/2κ1/2m5/4n3/2
− 1, (number of iterations) (3.11)

1Their regression problem (in mean) is analogous to our multivariate quantile regression setting by ad-
justing their n to mn. See Example 1 on page 1075 of Negahban and Wainwright (2011). Note also that
‖∆‖F ≤ (m/σmin(ΣX))1/2‖∆‖L2(PX) for a well-behaved ∆ in our setting.

14

Electronic copy available at: https://ssrn.com/abstract=3521887



then for u > 1, (3.8) and (3.9) hold with Γ̂τ,δ = Γτ,T with probability at least 1− 2(η + γn +

16(pm)1−u2 + 3 exp{−(p+m) log 8}), where the last bound in (3.11) uses (3.10).

See Section A.2 for a proof of Corollary 3.4. The key component of the proof is to verify

that the optimization error of Γτ,T is less than λm1/2n−1/2. The constants in both (3.10)

and (3.11) can be improved, and we adopt the current form for transparent exposition. In

practice, the κ based on (3.10) may be too small, and larger κ usually performs better, as

observed in the simulation analysis in Section 4.2.

Remark 3.5 (Many factors). When Γτ is not exactly small in rank, i.e. when rτ is not a

fixed number and possibly rτ = min{p,m}. In this case, we may characterize the recovery

performance of Γ̂τ,δ using the mathod of Negahban et al. (2012). See Section S.3.2 for more

details.

3.2. Realistic Bounds for Factors and Loadings

The estimation error for the estimators for factors and loadings, defined in (2.4), will be

stated in terms of the Frobenius error ‖Γ̂τ,δ −Γτ‖F. Theorem 3.2 can be applied to find the

explicit rate for the factors and loadings.

First we observe that by Mirsky’s theorem (see, for example, Theorem 4.11 on page 204

of Stewart and Sun (1990)), the singular values can be consistently estimated.

Lemma 3.6. Let Γ̂τ,δ satisfy (2.1), then

p∧m∑
j=1

{
σj(Γ̂τ,δ)− σj(Γτ )

}2 ≤ ‖Γ̂τ,δ − Γτ‖2
F. (3.12)

Next, the error bounds for the factors and loadings are presented.

Theorem 3.7. If the nonzero singular values of matrix Γτ are distinct, then with the choice
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of Ψ̂τ and f̂ τk (Xi) in (2.4),

1− |(Ψ̂τ )
>
∗j(Ψτ )∗j| ≤

2(2‖Γτ‖+ ‖Γ̂τ,δ − Γτ‖F)‖Γ̂τ,δ − Γτ‖F

min{σ2
j−1(Γτ )− σ2

j (Γτ ), σ2
j (Γτ )− σ2

j+1(Γτ )}
(3.13)

If, in addition, let the SVDs Γτ = UτDτV
>
τ and Γ̂τ,δ = ŨτD̃τṼ

>
τ , suppose (Ũτ )

>
∗j(Uτ )∗j ≥ 0,

then

∣∣f̂ τk (Xi)− f τk (Xi)
∣∣

≤ ‖Xi‖
(
‖Γ̂τ,δ − Γτ‖F + 2σk(Γτ )

√
(2‖Γτ‖+ ‖Γ̂τ,δ − Γτ‖F)‖Γ̂τ,δ − Γτ‖F

min{σ2
k−1(Γτ )− σ2

k(Γτ ), σ2
k(Γτ )− σ2

k+1(Γτ )}

)
(3.14)

See Section S.2.4 for a proof for Theorem 3.7. The proof is based on a new Davis-Kahan

type inequality of Yu et al. (2015). The inequalities in Theorem 3.2 can be applied to find

the exact rate for the loadings and factors.

Remark 3.8 (Repeated singular values). Theorem 3.7 is under the condition that the sin-

gular values for Γτ are distinct. If there are repeated singular values, then the corresponding

singular vectors are not uniquely defined, and we can only obtain a bound for the ”canonical

angle” (see, for example, Yu et al. (2015)) of the subspaces generated by the singular vectors

associated with the repeated singular values.

4. Simulation

The performance of the numerical procedure in Section 2 on the factor quantile models

will be checked via Monte Carlo experiments in this section. Section 4.1 presents the results

on the Frobenius error. Section 4.2 presents the performance on estimating rτ with i.i.d.

data, while Section 4.3 focuses on time series data.
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4.1. Estimation Error

Given two distinct matrices S1,S2 with nonnegative entries, rank(S1) = r1 and rank(S2) =

r2, the ouputs are simulated from the two-piece normal model (Wallis; 2014):

Yij = G−1
σ (Uij)X

>
i

(
(S1)∗j1{Uij ≤ 0.5}+ (S2)∗j1{Uij > 0.5}

)
, (4.1)

i = 1, ..., n = 500; j = 1, ...,m = 300,

where Uij are i.i.d. U(0, 1) independent of Xi; Gσ is the cdf of N (0, σ2). Xi ∈ Rp follows a

multivariate U([0, 1]) distribution with covariance matrix Σ in which Σij = 0.1 ∗ 0.8|i−j| for

j = 1, ..., p = 300. Simulation of Xi follows by the method of Falk (1999). The number of

simulation repetitions is 500.

Because the elements in Xi are non-negative, the conditional quantile function qj(τ |x)

of Yij on x for the distribution of Yij is

qlj(τ |x) = x>G−1
σ (τ)

(
S11{τ ≤ 0.5}+ S21{τ > 0.5}

) def
= x>Γτ,∗j, (4.2)

It follows that Γτ = G−1
σ (τ)S1 for τ ≤ 1/2 and Γτ = G−1

σ (τ)S2 for τ > 1/2. In particular,

Γ1/2 = 0 and the 1/2-quantile of all responses are equal to 0, because G−1
σ (1/2) = 0 for all

σ > 0. Hence, τ = 0.5 is the least interesting case, so it is not investigated.

To select S1 and S2, we first fix s1 = rank(S1) = 2 and for S2:

I. Symmetric model: SSym2 with rSym2 = rank(SSym2 ) = 2;

II. Asymmetrical model: SAsym2 with rAsym2 = rank(SAsym2 ) = 6.

The entries of S1, SSym2 and SAsym2 are selected randomly and fixed for all simulations, and

their singular values are distinct. We shift the details on selecting these matrices to Section

S.3.3.
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The algorithm in Section 2.1 (specifics in Algorithm A.1) is applied with τ=5%, 10%,

20%, 80%, 90% and 95% to compute the estimator Γ̂l
τ,δ for Γl

τ , where l ∈ {Sym,Asym}.

We set κ = 10−4 and stop the algorithm when the change in the loss function is less than

10−6. The tuning parameter λ is selected by the simulation procedure (2.6). We compare

Γ̂l
τ,δ with an oracle estimator, which is computed under the knowledge of the true rτ . The

performance of Γ̂l
τ,δ and the oracle estimator is measured by the Frobenius error to the true

coefficient Γτ .

The results are reported in Table 4.1. The oracle estimator errors are generally smaller

for all τ , and their standard deviation is also lower. When the model variance is larger

(σ = 1), the estimation of Γ̂l
τ,δ has greater error. The error of Γ̂l

τ,δ varies with τ : the error

for τ = 0.05 or 0.95 is almost twice as large as those for τ = 0.2 and 0.8. For the two models,

the errors of Γ̂l
τ,δ are similar when τ is less than 0.5. However, when τ is greater than 0.5,

the errors of the asymmetric model is around
√
rAsym2 /rSym2 =

√
6/2 ≈ 1.732 times of that

of the symmetric model. The oracle estimator also shows a similar pattern. The outcomes

here are consistent with our theoretical analysis in Theorem 3.2, which predicts that the

models with a larger rank and with τ closer to 0 or 1 have greater estimation errors. The

prediction errors have similar pattern as the Frobenius error and are omitted for brevity.

4.2. Estimating the Number of Factors for i.i.d. Data

Using the same data generating process (4.1), this section shows the performance of

estimating the number of factors. We will focus on the asymmetric case, as it is more

challenging. Estimation performance for two representative quantile levels τ = 0.2 and 0.8

are shown. Note the the number of factors are rτ=0.2 = 2 and rτ=0.8 = 6.

The tuning parameter λ is selected by minimizing the penalized testing error in (2.7)

through grid search. The value in (2.6) is used as the upper bound of the grid points. To

compute the penalized testing error (2.7) at a given λ, we independently generate data 150
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τ 0.05 0.1 0.2 0.8 0.9 0.95
σ = 0.5

Symmetric 60.995 48.746 34.302 33.973 48.375 60.604
(0.253) (0.227) (0.209) (0.202) (0.217) (0.247)

Symmetric Or. 57.261 44.926 30.006 29.853 44.735 57.007
(0.191) (0.152) (0.116) (0.118) (0.152) (0.184)

Asymmetric 60.978 48.724 34.289 60.487 85.997 108.310
(0.263) (0.220) (0.207) (0.539) (0.567) (0.820)

Asymmetric Or. 57.239 44.911 30.002 54.922 80.583 102.663
(0.202) (0.164) (0.120) (0.744) (0.464) (0.572)

σ = 1

Symmetric 118.245 93.419 64.289 63.634 92.519 117.365
(0.570) (0.420) (0.387) (0.382) (0.372) (0.438)

Symmetric Or. 113.636 88.781 58.913 58.593 88.365 113.099
(0.427) (0.338) (0.238) (0.221) (0.301) (0.378)

Asymmetric 118.259 93.434 64.291 120.338 170.904 217.185
(0.530) (0.412) (0.380) (1.151) (1.273) (1.547)

Asymmetric Or. 113.647 88.788 58.911 108.754 161.303 205.371
(0.387) (0.308) (0.224) (0.711) (0.929) (1.188)

Table 4.1: Averaged Frobenius errors with standard deviations. ”Or.” denotes the oracle
estimator, which is estimated under the knowledge of true rank. The numbers in parentheses
are standard deviations of the errors.

times and compute 150 Γ̂τ,δ. For each Γ̂τ,δ, a testing error is computed with a testing data set

of size 3000 independent of the training data. Finally, we take an average of the 150 testing

errors. The algorithm in Section 2.1 (Algorithm A.1) is applied with T = 4000 iterations.

The estimated number of factor is the number of singular values greater than 10−10.

Figure 4.1 shows the relative frequency of the estimated number of factors and the es-

timated penalized testing error. The penalized testing error shows a quadratic shape, and

there exists a minimum of the penalized testing error as a function of λ for both τ = 0.2 and

0.8. The λ that reaches the minimum for the two quantiles are essentially the same because

they are symmetric about 0.5. For τ = 0.2 with the number of factor rτ=0.2 = 2, the number

of factors is correctly estimated over 50% of the time, and in the worst case scenario, the

number of factors is misestimated by one. For τ = 0.8 with rτ=0.8 = 6, which is greater than

rτ=0.2 = 2 of τ = 0.2. In this case, to ensure accurate estimation, the optimization error
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δ > 0 has to be small. For this purpose, (2.2) in Theorem 2.1 implies that one should select

smaller κ and greater T . Therefore, a slightly smaller κ = 4 × 10−7 is selected for τ = 0.8,

but T = 4000 appears to still be sufficient here. The bottom left panel of Figure 4.1 shows

that the correct number of factors is identified almost 60% of the time, and at worst it is

misestimated by two. We note that the λ tuned by (2.6) is 0.0189 which leads to a models

with only one factor as observed by unpublished simulations.
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Figure 4.1: Relative frequency of the estimated number of factors with 150 Monte Carlo
repetitions, and the plot for the penalized testing error, τ = 0.2 and 0.8. Data are generated
as (4.1) where Xi is i.i.d. multivariate U([0, 1]) with positive correlations. rτ=0.2 = 2 and
rτ=0.8 = 6. κ = 6.66× 10−7 for τ = 0.2 and κ = 4× 10−7 for τ = 0.8. T = 4000.

20

Electronic copy available at: https://ssrn.com/abstract=3521887



4.3. Estimating the Number of Factors for Dependent Data

In this section, we consider a time dependent design

Xi = BXi−1 + εi, (4.3)

where εi is a multivariate Gaussian vector with mean zero and covariance Σε. The matrices

B and Σε are both p × p, which are selected to imitate the temporal and cross-sectional

dependent structure of the vector in (5.1) in the empirical analysis Section 5, where p =

dim(X) = 460 as in (5.1). B is set to be a sparse coefficient matrix, which is estimated

by a vector autoregressive model with `1 norm penalty (Davis et al.; 2016; Nicholson et al.;

2017). Note that (4.3) is unstable, as four singular values of B are greater than one. The

details for selecting B and Σε are in Section S.5.

The output Y is generated as (4.1) with Xi in (4.3). Here, we fix rank(S2) = 2, while

rank(S1) = 2 or 3. Under this design, the number of quantile factors rτ = rank(S1) for

all τ ∈ (0, 1) because the distribution of X in (4.3) is symmetric about the origin. Similar

to the situation in Section 5, we set n = 2765 and m = 230. To selection λ, we adopt

the simulation method in (2.6), which yields λ∗ = 4.38 × 10−3. Selecting λ by minimizing

penalized testing error in (2.7) is feasible, but it is more computationally demanding. As

will be shown, λ selected by (2.6) can yield accurate estimation in our setting. For all the

numerical experiments in this section, κ = 1.5×10−4 and the number of iterations T = 3500

for the algorithm.

Figure 4.2 shows the performance of factor number estimation at τ = 0.01. In 150 Monte

Carlo simulations, our method can identify the correct number of factors in over 60% of

the simulations. In the worst case scenario, the number of factors is misestimated by one.

Note that the quantile level τ = 0.01 is more extreme than the that in Section 4.2 and is

more relevant for the empirical analysis in Section 5. The results in Figure 4.2 show that

21

Electronic copy available at: https://ssrn.com/abstract=3521887



our method still has a good performance even for extreme quantile level and time series

data. We remark that additional numerical experiments with a simpler AR(1) structure is

in Section S.6.

As a remark, although numerical results suggest our method is useful even for complex

time series data, our theory does not apply to this case. Extension of the theory in this

direction is nontrivial, so it is left for future research.
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Figure 4.2: The distribution of the estimated number of factors for r = 2 (left) and r = 3
(right) with τ = 0.01, with covariates simulated from (4.3). The distribution is obtained
from 150 Monte Carlo repetitions. (κ, T ) = (1.5× 10−4, 3500). The λ is computed with the
simulation method in (2.6).

5. Empirical Analysis: Estimating the Systemic Risk

In the aftermath of the financial crisis that started in 2007, governments and supervisory

authorities have come to realize the need to quantify the impact of systemic risk on financial

institutions. Numerous studies have been made in this direction; see Bisias et al. (2012)

or Brunnermeier and Oehmke (2013) for a survey. Quantifying the impact of systemic risk

is inherently a high dimensional problem, as hundreds or sometimes thousands of financial

institutions have to be included in the model in order to make it realistic. Unfortunately,
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due to excessive computational cost, the models in the existing studies are low dimensional

in nature. For example, Adrian and Brunnermeier (2016) estimate pairwise spillover effect

between two institutions by conditioning on a set of variables; White et al. (2015) estimate

the impact of market shock by performing bivariate vector autoregression (VAR) between an

institution and a pre-calculated proxy of the market shock. The proposed multitask quantile

regression can fill this gap, as our method can easily scale up to hundreds of response variables

and covariates. In addition, no proxy of the market shock needs to be pre-calculated, because

the quantile factors obtained by our method summarize the market information that is most

relevant to the downside risk.

We analyze the same set of daily stock closing prices as White et al. (2015), with the same

time frame from January 1, 2000 to August 6, 2010. The dataset is downloaded from Dr.

Manganelli’s personal website. See Table 1 of White et al. (2015) for a detailed breakdown

of the stocks by sector and country, as well as their averaged market value and leverage (the

ratio of short and long term debt over common equity) over the data period. There are

m = 230 financial institutions. The daily log-returns of the stock closing prices are used,

and this results in n = 2765.

Let Yi,j be the asset return for institution j at time i, where j = 1, ...,m and i = 1, ..., n.

For τ ∈ (0, 1), consider the quantile qj(τ |Xi) = X>
i Γτ,∗j for Yj, where

Xi = (|Yi−1,1|, ..., |Yi−1,m|, Y −i−1,1, ..., Y
−
i−1,m)> ∈ R2m, (5.1)

and Y −
def
= max{−Y, 0}. The covariate Xi captures the fact that the positive or negative

lag stock returns have different influence to the return today, which is motivated by Engle

and Manganelli (2004).

We estimate Γτ using the algorithm in Section 2.1 (equivalently, Algorithm A.1) with

two quantile levels τ = 0.01 and 0.99. The algorithm is performed with κ = 1.5× 10−4 and

we stop the algorithm when the change in the loss function is less than 10−6. The factors
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and loadings are estimated as (2.4) in Section 2.2. The tuning procedure in (2.6) yields

λ∗ = 8.53× 10−3 for τ = 0.01. Left panel in Figure 5.1 shows the estimated singular values

for λ ≤ λ∗. Even when λ is smaller than λ∗ by ten folds, which corresponds to the case of

increasing n or m by ten folds, the estimated number of factor for τ = 0.01 is still one, which

shows the robustness of the estimated rτ . This result is similar for τ = 0.99. This suggests

that the number of factor is one for both τ = 0.01 and 0.99. For later discussion, we set λ∗

for both τ = 0.01 and τ = 0.99 by symmetry.

Figure 5.1 presents the estimated first factors at τ = 0.01 and 0.99. Both first factors

f 0.01
1 (Xi) and f 0.99

1 (Xi) are volatile and moving away from 0 at the end of 2008 and in the

first quarter of 2009, which corresponds to the periods of financial crisis.
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Figure 5.1: Left panel plots singular values versus λ. The right end point of x-axis is
λ∗ = 8.53 × 10−3 selected by the simulation method (2.6). Right panel: time series plot of
the first factor of τ = 0.01 (red) and τ = 0.99 (blue).

The left panel of Figure 5.2 is the ”tail to tail” plot with τ = 0.01 and 0.99, on which each

point is a pair of loadings ((Ψ̂0.01)1j, (Ψ̂0.99)1j) defined in (2.4) for jth financial institution,

j = 1, ..., 230. The values ((Ψ̂0.01)1j, (Ψ̂0.99)1j) are all positive. The fact that they distribute

around the 45 degree line suggests that the log-returns of these stocks are roughly equally

associated to the two tail quantile factors, but the magnitude of their association to the

factors varies dramatically. The points become more disperse and deviate from the 45 degree
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line in the northeast corner.

The right panel of Figure 5.2 plots the institutions based on their averaged market value

(x-axis) and leverage (y-axis), and the color represents the magnitude of the τ = 0.01 factor

loading of the corresponding financial institution. It shows that financial institutions with

large market value and high leverage tend to have high loadings of the first left tail factor

f 0.01
1 (X), as most red and yellow color points are concentrating in the northeastern part

of the figure. This shows that they are more vulnerable to the market shock, and this is

in line with the conclusion of White et al. (2015). Interestingly, the institutions that are

more vulnerable to market shock seem to form clusters. It is an interesting future research

to study the geographical and financial properties of the financial institutions in the same

cluster.
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Figure 5.2: Left panel: tail to tail plot. Each point is a pair ((Ψ̂0.01)1j, (Ψ̂0.99)1j) for stocks
j = 1, ..., 230; Right panel: the plot of firms based on their averaged market value and
leverage over the data period. The color scale corresponds to the magnitude of their τ = 0.01
factor loading, and the firms with loading greater than 0.1 are labeled by name.

Remark 5.1 (Extreme quantiles). As τ is close to zero or one, the non-asymptotic bounds

(3.8) and (3.9) in Theorem 3.2 become loose as 1/f τ increases, so the estimation may not be

accurate. In the literature, extreme quantile is often characterized through the low extremal
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order or extremal rank τn (Chernozhukov; 1999, 2005; Chernozhukov et al.; 2017). In

particular, letting τ → 0 as n→∞ and nτ → c for some c ≥ 0 (respectively, n(1− τ)→ c

for the right extreme quantile, by symmetry we only discuss left quantile in the following),

classical asymptotic analysis breaks down if c is small or equal to 0, and such scenario is

regarded as ”extreme” quantile. Simulation study of asymptotic distribution in Chernozhukov

(1999) suggests that nτ ≥ 15 might be large enough to regard the quantile as ”non-extreme”.

In our application, extreme quantile issue may be mild as nτ = 27.65 with τ = 1%. However,

complete analysis for the extreme quantiles under multitask regression scenario is left for

future research.

6. Conclusions and Future Works

In this paper, we consider a factor based multitask quantile regression model which allows

the factors to vary with quantile levels, and the estimation of such model can be done with

the nuclear penalization. Because the typical empirical risk minimizer cannot be efficiently

computed due to non-smoothness of the loss function and the expensive subroutines such

as singular value decomposition in the algorithm, a numerical procedure that approximately

solves the empirical optimization problem is proposed and its theoretical guarantee is proved.

Recommendations on how to tune the algorithm for provably accurate estimation are pro-

vided. Monte Carlo experiments show the performance of the numerical procedure and the

ability to recover the number of factors, even for time series data and extreme quantiles.

Potential application of our method is illustrated with a joint analysis on the financial risk

of a large pool of stock returns of institutions with large market capitalization.

For future research, the readers may be aware that the model (1.2) could be misspecified

for some applications. To remedy this, nonparametric models may be applied to function

f τk (x) by regarding it as an element of a sieve space, and use the basis functions of the sieve

space to represent f τk (x) as a series. Methods for estimating this nonparametric model can be
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derived from adapting our algorithm in Section 2. Illustrations of this idea using temperature

data are presented in an earlier version of this paper (Chao et al.; 2015, Section 7). Its

theoretical analysis is left for future research. Other interesting research directions include

showing that our bounds in Theorem 3.2 are unimprovable, and extending our framework

to extreme quantiles.

APPENDIX

Details on the algorithm in Section 2.1 are provided in Section A.1. Section A.2 provides

a proof of Corollary 3.4.

A.1. Details for the Numerical Procedure in Section 2.1

The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) of Beck and Teboulle

(2009) is a popular method for optimizing the loss function consisted of two convex functions.

However, one of the major challenge here is that the subgradient of Q̂τ (S) is not Lipschitz,

so the FISTA algorithm may not be stable. To resolve this problem, we apply the method

of Nesterov (2005) to find a ”nice” surrogate for Q̂τ (S), as will be shown below.

Recall from (1.3) that the objective function to be minimized is

Lτ (S) = (mn)−1

n∑
i=1

m∑
j=1

ρτ
(
Yij −X>

i S∗j
)

+ λ‖S‖∗ = Q̂τ (S) + λ‖S‖∗, (A.1)

We introduce the dual variables Θij:

Q̂τ (S) = max
Θij∈[τ−1,τ ]

(mn)−1

n∑
i=1

m∑
j=1

Θij

(
Yij −X>

i S∗j
)
. (A.2)

See Section S.1.1 in the supplementary material for a proof of (A.2). To smooth this func-

tion, denote the matrix Θ = (Θij) for i = 1, ..., n, j = 1, ...,m, we consider a smooth
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approximation to Q̂τ (S) as in equation (2.5) of Nesterov (2005):

Q̂τ,κ(S)
def
= max

Θij∈[τ−1,τ ]

{
(mn)−1Q̃τ (S,Θ)− κ

2
‖Θ‖2

F

}
, (A.3)

where Q̃τ (S,Θ)
def
=
∑n

i=1

∑m
j=1 Θij

(
Yij −X>

i S∗j
)
, and κ > 0 is a smoothing regularization

constant depending on m,n and the desired accuracy. When κ → 0, Q̂τ,κ(S) converges to

Q̂τ (S). Q̂τ,κ(S) defined in (A.3) has Lipschitz gradient

∇Q̂τ,κ(S)
def
= −(mn)−1X>[[(κmn)−1(Y −XS)]]τ , (A.4)

where X = [X1 X2 ... Xn]>, [[A]]τ = ([[Aij]]τ ) performs component-wise truncation on a

real matrix A to the interval [τ − 1, τ ]; in particular,

[[Aij]]τ =


τ, if Aij ≥ τ ;

Aij, if τ − 1 < Aij < τ ;

τ − 1, if Aij ≤ τ − 1.

Observe that (A.4) is similar to the subgradient −X{τ−1(Y−XS ≤ 0)} of Q̂τ (S), where the

operator τ − 1(· ≤ 0) applies component-wise to the matrix Y −XS. The major difference

lies in the fact that (A.4) replaces the discrete non-Lipschitz τ − 1(Y − XS ≤ 0) with a

Lipschitz function [[κ−1(Y −XS)]]τ .

Now, we replace the optimization problem involving Lτ (S) in (A.1) by the one involving

L̃τ (S)
def
= Q̂τ,κ(S) + λ‖S‖∗, (A.5)

where we recall the definition of Q̂τ,κ(S) in (A.3). Since the gradient of Q̂τ,κ(S) is Lipschitz,

we may apply FISTA of Beck and Teboulle (2009) for minimizing (A.5). Define Sλ(·) to be
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the proximity operator on Rp×m:

Sλ(S)
def
= U(D− λIp×m)+V>, (A.6)

where Ip×m is the p×m rectangular identity matrix with the main diagonal elements equal

to 1, and the SVD S = UDV>. See Theorem S.4.2 in the supplementary material for more

detail for the proximity operator.

Specific steps are summarized in Algorithm A.1.

Algorithm A.1:

1 Input: Y, X, 0 < τ < 1, λ > 0, κ > 0;
2 Initialization: Γτ,0 = 0,Ωτ,1 = 0, step size δ1 = 1, M = 1

κm2n2‖X‖2;
3 for t = 1, 2, ..., T do

4 Γτ,t = Sλ/M
(
Ωτ,t − 1

M
∇Q̂τ,κ(Ωτ,t)

)
;

5 δt+1 =
1+
√

1+4δ2t
2

;

6 Ωτ,t+1 = Γτ,t + δt−1
δt+1

(Γτ,t − Γτ,t−1);

7 end
8 Output: Γτ,T

A.2. Proof of Corollary 3.4

To apply Theorem 3.2, it is enough to find a bound for the optimization error δ of Γτ,T

that holds with high probability. Suppose the initial estimator is Γτ,t=0 = 0. The bound in

(2.2) suggests that

Lτ (Γτ,T )− Lτ (Γ̂τ ) ≤
3κmn(τ ∨ {1− τ})2

2︸ ︷︷ ︸
(I)

+
4(‖Γτ‖2

F + ‖Γτ,∞ − Γτ‖2
F)

(T + 1)2

‖X‖2

κm2n2︸ ︷︷ ︸
(II)

, (A.7)

where we apply the bound ‖Γτ,∞‖2
F ≤ 2‖Γτ,∞ −Γτ‖2

F + 2‖Γτ‖2
F. It is sufficient to show that

(I)+(II)≤ λ(m/n)1/2, and the desired conclusion will follow from Theorem 3.2. Using the

bound on κ in (3.10), elementary calculation verifies that (I) in (A.7) is less than λ(m/n)1/2/2.
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Under the event that ‖Γτ,∞ − Γτ‖2
F = o(1), it follows by elementary calculation that (II)≤

λ(m/n)1/2/2, and the corollary is proved.

It is left to show that ‖Γτ,∞ − Γτ‖2
F = o(1) with high probability. Recall that Γτ,∞ =

limT→∞ Γτ,T = arg minS{L̃τ (S) = Q̂τ,κ(S) + λ‖S‖∗}. The optimization error Lτ (Γτ,∞) −

Lτ (Γ̂τ ) of Γτ,∞ can be estimated by

Lτ (Γτ,∞)− Lτ (Γ̂τ ) ≤ (Lτ (Γτ,∞)− L̃τ (Γτ,∞)) + (L̃τ (Γτ,∞)− L̃τ (Γ̂τ )︸ ︷︷ ︸
≤ 0

) + (L̃τ (Γ̂τ )− Lτ (Γ̂τ )︸ ︷︷ ︸
≤ 0 by (S.1.1)

)

≤ Lτ (Γτ,∞)− L̃τ (Γτ,∞)

(S.1.1)

≤ κ(τ ∨ {1− τ})2nm

2

≤ λ(m/n)1/2/6. (A.8)

Therefore, Γτ,∞ is an approximate optimizer. The growth condition (3.7) with C = 1 in the

hypothesis of this corollary ensures (3.7) holds with C = 1/6. Hence, (3.9) in Theorem 3.2

yields

‖Γτ,∞ − Γτ‖F ≤ u

(
m

σmin(ΣX)

)1/2

εn,τ,r, (A.9)

with probability at least 1− η − γn − 16(pm)1−u2 − 3 exp{−(p+m) log 8}.
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SUPPLEMENTARY MATERIAL: FACTORISABLE

MUITITASK QUANTILE REGRESSION

Section S.1 presents the convergence analysis for the algorithm. Section S.2 provides

details on the non-asymptotic risk analysis of Γ̂τ,δ. Section S.3 discusses technical detail and

remarks. Section S.4 lists some auxiliary results.

Additional notations. For any two matrices A,B ∈ Rp×m, 〈·, ·〉 : Rn×m × Rn×m → R

denotes the trace inner product given by 〈A,B〉 = tr(AB>). Define the empirical measure

of (Yi,Xi) by Pn. For a function f : Rp → R, and Zi ∈ Rp, define the empirical process

Gn(f) = n−1/2
∑n

i=1{f(Zi)− E[f(Zi)]}. The subgradient for Q̂τ (S) is the matrix

∇Q̂τ (S)
def
= (nm)−1

n∑
i=1

XiWτ,i∗(S)>
def
= (nm)−1X>Wτ (S) ∈ Rp×m, (A.10)

where

Wτ,i∗(S)
def
=
(
1(Yij −X>

i S∗j ≤ 0)− τ
)

1≤j≤m , Wτ (S) = [Wτ,1(S) ... Wτ,n(S)]> ∈ Rn×m.

For the true coefficient matrix Γτ , Wτ,i∗(Γτ )
def
= Wτ,i∗ and Wτ

def
= Wτ (Γτ ).

S.1: Proofs for Algorithmic Convergence Analysis

S.1.1. Proof of (A.2)

To see that this equation holds, note that for each pair of i, j, when Yij −X>
i S∗j > 0,

Θij = τ , since τ is the largest ”positive” value in the interval [τ−1, τ ]. When Yij−X>
i S∗j ≤ 0,

Θij = τ − 1 since τ is the smallest ”negative” value in the interval [τ − 1, τ ]. This verifies

the equation.

1
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Remark S.1.1. It is necessary to choose [τ − 1, τ ] rather than {τ − 1, τ} for the support

of Θij in (A.2) (though both choices fulfill the equation). The previous choice is an interval

and is therefore a convex set, and the conditions given in Nesterov (2005) is fulfilled.

S.1.2. Proof of Theorem 2.1

Recall the definition of Lτ (S) and Q̂τ (S) in (A.1), L̃τ (S) and Q̂τ,κ(S) in (A.5) and (A.3).

We note a comparison property in (2.7) of Nesterov (2005), for an arbitrary S ∈ Rp×m,

Q̂τ,κ(S) ≤ Q̂τ (S) ≤ Q̂τ,κ(S) + κ max
Θ∈[τ−1,τ ]n×m

‖Θ‖2
F

2
(S.1.1)

where

max
Θ∈[τ−1,τ ]n×m

‖Θ‖2
F = max

Θ∈[τ−1,τ ]n×m

∑
i≤n,j≤m

Θ2
ij ≤ (τ ∨ {1− τ})2nm.

Recall that Γ̂τ is a minimizer of Lτ (S) defined in (A.1). It follows by (S.1.1) that for an

arbitrary S ∈ Rp×m,

L̃τ (Γ̂τ ) ≤ Lτ (Γ̂τ ) ≤ Lτ (S) ≤ L̃τ (S) + κ(τ ∨ {1− τ})2nm

2
, (S.1.2)

where the first inequality is from the first inequality of (S.1.1), the second is the definition

of the minimizer Γ̂τ , and the third inequality is from the second inequality of (S.1.1). Recall

that Γτ,∞ = limt→∞ Γτ,t is a minimizer of L̃τ (S), then (S.1.2) gives

L̃τ (Γτ,∞) ≤ L̃τ (Γ̂τ ) ≤ L̃τ (Γτ,∞) + κ(τ ∨ {1− τ})2nm

2
, (S.1.3)

where the first inequality is from the definition of Γτ,∞ as a minimizer of L̃τ (S) and the

second inequality is from (S.1.2), which holds for an arbitrary matrix S ∈ Rp×m.
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Now from triangle inequality,

∣∣Lτ (Γτ,T )− Lτ (Γ̂τ )
∣∣ ≤∣∣Lτ (Γτ,T )− L̃τ (Γτ,T )

∣∣+
∣∣L̃τ (Γτ,T )− L̃τ (Γτ,∞)

∣∣+
∣∣L̃τ (Γτ,∞)− L̃τ (Γ̂τ )

∣∣
+
∣∣Lτ (Γ̂τ )− L̃τ (Γ̂τ )

∣∣. (S.1.4)

The third term on the right-hand side of (S.1.4) is bounded by (S.1.3). For any matrix S,

we have from (S.1.1) that

∣∣Lτ (S)− L̃τ (S)
∣∣ ≤ κ

nm(τ ∨ {1− τ})2

2
. (S.1.5)

Hence, both
∣∣Lτ (Γτ,T )− L̃τ (Γτ,T )

∣∣ and
∣∣Lτ (Γ̂τ )− L̃τ (Γ̂τ )

∣∣ satisfy (S.1.5).

Lemma S.1.3 implies that the gradient of Q̂τ,κ(S) is Lipschitz continuous with Lipschitz

constant M . By Theorem 4.1 of Ji and Ye (2009) or Theorem 4.4 of Beck and Teboulle

(2009) (applied in general real Hilbert space, see their Remark 2.1), we have

∣∣L̃τ (Γτ,T )− L̃τ (Γτ,∞)
∣∣ ≤ 2M‖Γτ,0 − Γτ,∞‖2

F

(t+ 1)2
, (S.1.6)

where M = (κm2n2)−1‖X‖2 as given in Lemma S.1.3.

S.1.3. Technical Details for Theorem 2.1

Lemma S.1.2. For any S,Θ ∈ Rp×m, Q̃τ (S,Θ) can be expressed as Q̃τ (S,Θ) = 〈−XS,Θ〉+

〈Y,Θ〉.

Proof of Lemma S.1.2. One can show by elementary matrix algebra that

Q̃τ (S,Θ) =
n∑
i=1

m∑
j=1

Θij

(
Yij −X>

i S∗j
)

=
n∑
i=1

m∑
j=1

ΘijYij −
n∑
i=1

m∑
j=1

ΘijX
>
i S∗j

= 〈Y,Θ〉+ 〈−XS,Θ〉.
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The proof is therefore completed.

Lemma S.1.3. For any κ > 0, Q̂τ,κ(S) is a well-defined, convex and continuously differen-

tiable function in S with the gradient ∇Q̂τ,κ(S) = −(mn)−1X>Θ∗(S) ∈ Rp×m, where Θ∗(S)

is the optimal solution to (A.3), namely

Θ∗(S) = [[(κmn)−1(Y −XS)]]τ . (S.1.7)

The gradient ∇Q̂τ,κ(S) is Lipschitz continuous with the Lipschitz constant M = (κm2n2)−1‖X‖2.

Proof of Lemma S.1.3. In view of Lemma S.1.2, we have from (A.3) that

Q̂τ,κ(S) = max
Θij∈[τ−1,τ ]

{
(mn)−1〈Y,Θ〉+ (mn)−1〈−XS,Θ〉 − κ

2
‖Θ‖2

F

}
. (S.1.8)

Q̂τ,κ(S) matches the form in (2.5) on page 131 of Nesterov (2005), with their φ̂(Θ) =

(mn)−1〈Y,Θ〉 which is a continuous convex function, and their A = −(mn)−1X which

maps from the vector space Rp×m to the space Rn×m (the model setting described below

(2.2) on page 129 of Nesterov (2005)), and their d2(Θ) = κ
2
‖Θ‖2

F. Therefore, applying

Theorem 1 of Nesterov (2005), with σ2 = 1, d(Θ) = ‖Θ‖2
F/2, the gradient ∇Q̂τ,κ(S) =

−(mn)−1X>Θ∗(S) ∈ Rp×m, where Θ∗(S) is the optimal solution to (A.3):

Θ∗(S) = [[(κmn)−1(Y −XS)]]τ ,

and the Lipschitz constant of ∇Q̂τ,κ(S) is ‖X‖/(κn2m2), where ‖X‖ is the spectral norm of

X (see line 8 on page 129 of Nesterov (2005)). Hence, the proof is completed.

S.2: Proofs for Non-Asymptotic Bounds

4
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Remark S.2.1. For any ∆ ∈ Rp×m, from (A2),

‖∆‖2
L2(PX) = m−1E

[
‖∆>Xi‖2

2

]
= m−1

m∑
j=1

∆>∗jE[XiX
>
i ]∆∗j ≥ m−1σmin(ΣX)‖∆‖2

F. (S.2.1)

Moreover, by ‖PΓτ (∆)‖F ≤ ‖∆‖F, we have a bound

‖∆‖L2(PX) ≥
(σmin(ΣX)

m

)1/2

‖∆‖F ≥
(σmin(ΣX)

m

)1/2

‖PΓτ (∆)‖F. (S.2.2)

S.2.1. Proof for Lemma 3.1

To prove the first statement, applying the same E-net argument on the unit Euclidean

sphere Sm−1 = {u ∈ Rm : ‖u‖2 = 1} as in the first part of the proof of Lemma 3 in Negahban

and Wainwright (2011) (page 6 to the beginning of page 7 in their supplemental materials),

we obtain

P

(
1

n
‖X>Wτ‖ ≥ 4s

)
= P

(
sup

v∈Sp−1

u∈Sm−1

1

n

∣∣v>X>Wτu
∣∣ ≥ 4s

)
≤ 8p+m sup

v∈Sp−1,u∈Sm−1

‖u‖=‖v‖=1

P

(
|〈Xv,Wτu〉|

n
≥ s

)
.

(S.2.3)

To bound n−1〈Xv,Wτu〉 = n−1
∑n

i=1〈v,Xi〉〈u,Wτ,i∗〉, first we show the sub-Gaussianity of

〈u,Wτ,i∗〉. Theorem 3.1 of Buldygin and Moskvichova (2013) suggests that the sub-Gaussian

norm of the jth component of Wτ,i∗ is

‖Wτ,ij‖ψ2 =


0, τ = 0, 1;

2τ−1
2{log τ−log(1−τ)} , τ ∈ (0, 1)− {1/2};

1/4, τ = 1/2,
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where ‖ · ‖ψ2 denotes the sub-Gaussian norm. It follows by Lemma S.4.3 (Hoeffding’s in-

equality) that

P
(
〈u,Wτ,i∗〉 ≥ s

)
≤ exp

(
1− C ′s2

K(τ)‖u‖2
2

)
= exp

(
1− C ′s2

K(τ)

)
.

We apply Lemma S.4.3 again to bound n−1
∑n

i=1〈v,Xi〉〈u,Wτ,i∗〉. Conditioning on Xi,

we have

P

(∣∣∣∣n−1

n∑
i=1

〈v,Xi〉〈u,Wτ,i∗〉
∣∣∣∣ ≥ s

)
≤ exp

(
1− C ′ns2

K(τ)n−1
∑n

i=1〈v,Xi〉2

)
≤ exp

(
1− C ′ns2

K(τ)c2‖ΣX‖

)
.

where the second inequality follows from the fact that ‖v‖2 = 1 and n−1
∑n

i=1〈v,Xi〉2 ≤

‖X>X/n‖ ≤ c2‖ΣX‖ on the event that (A2) holds.

To summarize, on the event that (A2) holds,

P

(
1

n
‖X>Wτ‖ ≥ 4s

)
≤ 8p+m exp

(
1− C ′ns2

K(τ)c2‖ΣX‖

)
≤ exp

(
1− C ′ns2

K(τ)c2‖ΣX‖
+ (p+m) log 8

)
.

Therefore, for arbitrary u > 1, the event

1

n
‖X>Wτ‖ ≥ 4 ·

√
u(log 8)

K(τ)c2‖ΣX‖
C ′

√
p+m

n
, (S.2.4)

has probability smaller than 3e−(u−1)(p+m) log 8 + γn, as e < 3.

To prove the second statement, we note that the event in (S.2.4) has probability less than

η by setting k = 1− (η − γn)/(3(p+m) log 8).

6
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S.2.2. Proof for Theorem 3.2

Before we prove Theorem 3.2, we first define the ”support” of matrices by projections.

Definition S.2.2. For A ∈ Rp×m with rank r, the singular value decomposition of A is

A =
∑r

j=1 σ(A)ujv
>
j . The support of A is defined by (S1, S2) in which S1 = span{u1, ...,ur}

and S2 = span{v1, ...,vr}. Define the projection matrix on S1: P1
def
= U[1:r]U

>
[1:r], in which

U[1:r] = [u1 ...ur] ∈ Rp×r; P2
def
= V[1:r]V

>
[1:r], where V[1:r] = [v1 ...vr] ∈ Rm×r. Denote

P⊥1 = Ip×r −P1 and P⊥2 = Im×r −P2. For any matrix S ∈ Rp×m, define

PA(S)
def
= P1SP2; P⊥A(S)

def
= P⊥1 SP⊥2 .

Define for any a ≥ 0,

K(Γτ ; a)
def
=
{
S ∈ Rp×m : ‖P⊥Γτ (S)‖∗ ≤ 3‖PΓτ (S)‖∗ + a

}
. (S.2.5)

We note that nuclear norm is decomposable under the projection: for any S,A ∈ Rp×m,

‖S‖∗ = ‖PA(S)‖∗ + ‖P⊥A(S)‖∗. This is analogous to the `1 norm for vectors: for any vector

v and support S, ‖v‖1 = ‖vS‖1 + ‖vSc‖1; see Definition 1 on page 541 of Negahban et al.

(2012). Moreover, the rank of PA(S) is at most rank(A).

The shape of K(Γτ ; a) is not a cone when a > 0, but is still a star-shaped set. This set

has a similar shape as the set defined in equation (17) on page 544 in Negahban et al. (2012).

See also their Figure 1 on page 544.
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To simplify the notations in this proof, let

∆̂ = Γ̂τ,δ − Γτ , (S.2.6)

αr = 4
√
r/σmin(ΣX), (S.2.7)

αr,m = m1/2αr, (S.2.8)

cn = 16
√

2m−1/2δλ−1
√
c2σmax(ΣX) +Bp

√
logm+ log p, (S.2.9)

dn = 8
√

2αr

√
c2σmax(ΣX) +Bp

√
logm+ log p, (S.2.10)

Let the events

Ω1 : Assumption (A2) holds;

Ω2 : A(t) ≤ u(tdn + cn) for u > 1, where

A(t)
def
= sup
‖∆‖L2(PX )≤t,∆∈K(Γτ ;2δ/λ)

∣∣∣∣Gn

[
m−1

m∑
j=1

(
ρτ{Yij −X>

i (Γτ,∗j + ∆∗j)} − ρτ{Yij −X>
i Γτ,∗j}

)]∣∣∣∣.
(S.2.11)

Ω3 :
1

n
‖X>W‖ ≤ C∗

√
σmax(ΣX)K(τ)

√
p+m

n
,

where C∗ = 4
√

2 c2
C′

log 8,

The probability of event P(Ω1 ∩ Ω2 ∩ Ω3) ≥ 1 − γn − 16(pm)1−u2 − 3e−(p+m) log 8 by

Assumption (A2), Lemma 3.1 and Lemma S.2.5.

Recall that αr,m, cn and dn are defined in (S.2.8), (S.2.9) and (S.2.10). Set

t =

√
n−1/2ucn

4

f τ
+

8

f τ
δ +

4

f τ
(n−1/2udn + λαr,m). (S.2.12)

We will prove by contradiction. Suppose to the contrary that ‖∆̂‖L2(PX) ≥ t. Since Γ̂τ

8
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minimizes Lτ (S) = Q̂τ (S) + λ‖S‖∗ (defined in (1.3)) and Lτ (Γ̂τ )− Lτ (Γτ ) < 0, we have

Q̂τ (Γτ + ∆̂)− Q̂τ (Γτ ) + λ(‖Γτ + ∆̂‖∗ − ‖Γτ‖∗)

= Lτ (Γ̂τ )− Lτ (Γτ ) + Lτ (Γτ + ∆̂)− Lτ (Γ̂τ )

≤ δ, (S.2.13)

where we recall (2.1).

Observe that ∆̂ = Γ̂τ,δ−Γτ ∈ K(Γτ ; 0) ⊂ K(Γτ ; 2δ/λ) with probability 1−η by applying

(3.6) and Lemma S.2.3. Hence, from (2.1),

δ > inf
‖∆‖L2(PX )≥t,∆∈K(Γτ ;2δ/λ)

Q̂τ (Γτ + ∆)− Q̂τ (Γτ ) + λ(‖Γτ + ∆‖∗ − ‖Γτ‖∗). (S.2.14)

Note the facts that

1. Q̂τ (·) + λ‖ · ‖∗ is convex (unique optimum);

2. K(Γτ ; 2δ/λ) is star-shaped (see Figure 1 of Negahban et al. (2012)).

Hence, ‖∆̂‖L2(PX) ≥ t can be replaced by ‖∆̂‖L2(PX) = t and the strict inequality in (S.2.14)

is maintained

δ ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

Q̂τ (Γτ + ∆)− Q̂τ (Γτ ) + λ(‖Γτ + ∆‖∗ − ‖Γτ‖∗).

It can be deducted from the last display that

δ ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

Qτ (Γτ + ∆)−Qτ (Γτ )− n−1/2A(t) + λ(‖Γτ + ∆‖∗ − ‖Γτ‖∗),

By triangle inequality,
∣∣‖Γτ +∆‖∗−‖Γτ‖∗

∣∣ ≤ ‖∆‖∗ ≤ αr,mt+2δ/λ on the set {‖∆‖L2(PX) =

9
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t,∆ ∈ K(Γτ ; 2δ/λ)} by Lemma S.2.4(ii). Applying the bound in Ω2 obtains

δ ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

Qτ (Γτ + ∆)−Qτ (Γτ )− n−1/2u(dnt+ cn)− λ(αr,mt+ 2δ/λ).

Since δ ≤ Cλ
√
m/n, by Remark 3.3,

ντ (2δ/λ) ≥ ντ (2C
√
m/n) > uεn,τ,r ≥ t/4

(where the second inequality is from (3.7); the last inequality will be shown in (S.2.18)

below), invoking Lemma S.2.4 (i) to get the minorization

δ ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

1

4
f τ t2 − n−1/2u(dnt+ cn)− λ(αr,mt+ 2δ/λ). (S.2.15)

Rearranging terms to get

0 ≥ inf
‖∆‖L2(PX )=t,∆∈K(Γτ ;2δ/λ)

1

4
f τ t2 − n−1/2u(dnt+ cn)− λαr,mt− 3δ. (S.2.16)

However, the right-hand side of (S.2.16) is strictly greater than 0 whenever

t >
2

f τ
(n−1/2udn + λαr,m) +

2

f τ

√
(n−1/2udn + λαr,m)2 + f τ (n−1/2ucn + 3δ). (S.2.17)

The right hand side of the last display is upper bounded by (by
√
a+ b <

√
a +
√
b for all

a, b > 0)

t =
2

f τ
(n−1/2udn + λαr,m) +

2

f τ
(n−1/2udn + λαr,m) +

√
4

f τ
n−1/2ucn +

12

f τ
δ,

which leads to the t in (S.2.12). We get a contradiction, so ‖∆̂‖L2(PX) ≥ t does not hold.

Namely, ‖∆̂‖L2(PX) < t.
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To show (3.8), we will prove

t ≤ uεn,τ,r, (S.2.18)

where εn,τ,r is defined in (3.7). To see this, first note that,

λ
(3.6)

≤ 2λ̄
(3.4)

≤ 2
C∗

m

√(
1− η − γn

3(p+m) log 8

)
σmax(ΣX)K(τ)

√
p+m

n

≤ 2C∗

m

√
σmax(ΣX)K(τ)

√
p+m

n
(S.2.19)

since 0 < η < 1 and γn → 0.

Elementary calculation shows that for u ≥ 1,

max
{

2λαr,m/f
τ , 2n−1/2udn/f

τ
}

≤ 2(32
√

2 + 8C∗)u

f τ ∧ 1

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

√
r(m+ p ∨Bp)(log p+ logm)

mn
. (S.2.20)

Under the condition that δ < λm1/2n−1/2, r ≥ 1,

√
1

f τ
n−1/2ucn ≤

√
u

f τ
dn
αrn
≤ α−1/2

r

udn
(f τ ∧ 1)

√
n
≤ (σmin(ΣX)1/2 ∨ 1)udn

(f τ ∧ 1)
√
n

≤ (32
√

2 + 8C∗)u

f τ ∧ 1

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

√
r(m+ p ∨Bp)(log p+ logm)

mn
(S.2.21)

since u ≥ 1, dn ≥ 1 (as m, p→∞).

Lastly, again from δ < λm1/2n−1/2 and (S.2.19),

δ ≤ λm1/2n−1/2 ≤ 2C∗
√
σmax(ΣX)K(τ)

p+m

n2m
≤ C∗n−1

√
σmax(ΣX)

p+m

m

≤ C∗
p+m

nm

√
σmax(ΣX), (S.2.22)
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where in the third inequality the fact supτ |K(τ)| ≤ 1/4 (noted below Lemma 3.1, or in

(K4) of Lemma 2.1 on p.35 of Buldygin and Moskvichova (2013)) is applied, where K(τ) is

defined in (3.3); in the last inequality, the fact
√

1 + p/m ≤ 1 + p/m is applied. Hence,

√
1

f τ
δ ≤ 1

f τ ∧ 1

√
C∗
p+m

nm
σmax(ΣX)1/4

≤ (32
√

2 + 8C∗)u

f τ ∧ 1

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

√
r(m+ p ∨Bp)(log p+ logm)

mn
(S.2.23)

where the inequality follows by the facts:

•
√
C∗

f τ ∧ 1
≤ C∗

f τ ∧ 1
≤ (32

√
2 + 8C∗)u

f τ ∧ 1
, (u > 1 from the hypothesis of the Theorem,

and C∗ ≥ 1 from Lemma 3.1)

• σmax(ΣX)1/4 ≤ (σmax(ΣX) ∨ 1)1/4 ≤ (σmax(ΣX) ∨ 1)1/2 ≤

√
σmax(ΣX) ∨ 1

σmin(ΣX) ∧ 1

•
√
p+m

nm
≤
√
r(m+ p ∨Bp)(log p+ logm)

mn
, Bp ≥ 1 by (A2), r ≥ 1, p,m ≥ 3 in 3.1.

Note that if r = rank(Γτ ) = 0, then the matrix Γτ = 0 and this case is excluded.

Combining (S.2.20), (S.2.21) and (S.2.23) gives (S.2.18).

S.2.3. Technical Details for Theorem 3.2

The following lemma asserts that the empirical error Γ̂τ,δ−Γτ lies in the cone K(Γτ ; 2δ/λ).

Lemma S.2.3. Suppose λ ≥ 2‖∇Q̂(Γτ )‖ and ∆̂ = Γ̂τ,δ − Γτ , where ∇Q̂(Γτ ) is the subgra-

dient of Q̂(Γτ ) defined in (A.10). Then ‖P⊥Γτ (∆̂)‖∗ ≤ 3‖PΓτ (∆̂)‖∗ + 2δ′/λ for all δ′ ≥ δ.

That is, ∆̂ ∈ K(Γτ ; 2δ′/λ) for all δ′ ≥ δ.
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Proof for Lemma S.2.3.

0 ≤ Q̂τ (Γτ )− Q̂τ (Γ̂τ ) + λ(‖Γτ‖∗ − ‖Γ̂τ‖∗) (Γ̂τ is the minimizer of Q̂τ (S) + λ‖S‖∗)

≤ Q̂τ (Γτ )− Q̂τ (Γ̂τ,δ) + λ(‖Γτ‖∗ − ‖Γ̂τ,δ‖∗) + δ (by (2.1))

≤ ‖∇Q̂τ (Γτ )‖‖∆̂‖∗ + λ(‖Γτ‖∗ − ‖Γ̂τ,δ‖∗) + δ

≤ ‖∇Q̂τ (Γτ )‖
(
‖PΓτ (∆̂)‖∗ + ‖P⊥Γτ (∆̂)‖∗

)
+ λ(‖PΓτ (Γτ )‖∗ − ‖P⊥Γτ (Γ̂τ,δ)‖∗ − ‖PΓτ (Γ̂τ,δ)‖∗) + δ

≤ ‖∇Q̂τ (Γτ )‖
(
‖PΓτ (∆̂)‖∗ + ‖P⊥Γτ (∆̂)‖∗

)
+ λ(‖PΓτ (∆̂)‖∗ − ‖P⊥Γτ (∆̂)‖∗) + δ, (S.2.24)

where the second inequality follows from the definition of subgradient:

Q̂τ (Γ̂τ )− Q̂τ (Γτ ) ≥ 〈∇Q̂τ (Γτ ), Γ̂τ − Γτ 〉,

and Hölder’s inequality; the third inequality is from the fact that P⊥Γτ (Γτ ) = 0 and for any S,

‖S‖∗ = ‖PΓτ (S)‖∗+ ‖P⊥Γτ (S)‖∗ (the discussion after Definition S.2.2) ; the fourth inequality

is from the triangle inequality.

Rearrange expression (S.2.24) to get,

(λ− ‖∇Q̂τ (Γτ )‖)‖P⊥Γτ (∆̂)‖∗ ≤ (λ+ ‖∇Q̂τ (Γτ )‖)‖PΓτ (∆̂)‖∗ + δ.

Choose λ ≥ 2‖∇Q̂τ (Γτ )‖,

1

2
λ‖P⊥Γτ (∆̂)‖∗ ≤

3

2
λ‖PΓτ (∆̂)‖∗ + δ.

Hence, ‖P⊥Γτ (∆̂)‖∗ ≤ 3‖PΓτ (∆̂)‖∗ + 2δ/λ ≤ 3‖PΓτ (∆̂)‖∗ + 2δ′/λ for all δ′ ≥ δ.

Lemma S.2.4. Under assumptions (A2), (A3), we have for all δ > 0,

(i) If ‖∆‖L2(PX) ≤ 4ντ (δ), and ∆ ∈ K(Γτ ; 2δ/λ), then Qτ (Γτ+∆)−Qτ (Γτ ) ≥ 1
4
f τ‖∆‖2

L2(PX);
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(ii) If ∆ ∈ K(Γτ ; 2δ/λ), ‖∆‖∗ ≤ 4
√

rm
σmin(ΣX)

‖∆‖L2(PX) + 2δ/λ, where r = rank(Γτ ).

Proof for Lemma S.2.4.

1. Let Qτ,j(Γτ,∗j) = E[ρτ (Yij −X>
i Γτ,∗j)]. From Knight’s identity (Knight; 1998), for any

v, u ∈ R,

ρτ (u− v)− ρτ (u) = −vψτ (u) +

∫ v

0

(
1{u ≤ z} − 1{u ≤ 0}

)
dz. (S.2.25)

where ψτ (u)
def
= τ − 1(u ≤ 0). Putting u = Yij −X>

i Γτ,∗j in (S.2.25), and v = X>
i ∆∗j,

E[−vψτ (u)] = 0 for all j and i, by the definition of Γτ = arg minS E[Q̂τ (S)]. Therefore,

using law of iterative expectation and mean value theorem, we have by (A3) that

Qτ,j(Γτ,∗j + ∆∗j)−Qτ,j(Γτ,∗j)

= E

[ ∫ X>i ∆∗j

0

FYj |Xi
(X>

i Γτ,∗j + z|Xi)− FYj |Xi
(X>

i Γτ,∗j|Xi)dz

]
= E

[ ∫ X>i ∆∗j

0

zfYj |Xi
(X>

i Γτ,∗j|Xi) +
z2

2
f ′Yj |Xi

(X>
i Γτ,∗j + z†|Xi)dz

]
≥ f τ

E
[
(X>

i ∆∗j)
2
]

4
+ f τ

E
[
(X>

i ∆∗j)
2
]

4
− 1

6
f̄ ′E[|X>

i ∆∗j|3] (S.2.26)

for z† ∈ [0, z]. Now, for ∆ ∈ K(Γτ ; 2δ/λ), the condition

‖∆‖L2(PX) ≤ 4ντ (δ) =
3

2

f τ

f̄ ′
inf

∆∈K(Γτ ;2δ/λ)
∆6=0

(∑m
j=1 E[|X>

i ∆∗j|2]
)3/2∑m

j=1 E[|X>
i ∆∗j|3]

implies

f τm−1

m∑
j=1

E
[
(X>

i ∆∗j)
2
]

4
≥ 1

6
f̄ ′m−1

m∑
j=1

E[|X>
i ∆∗j|3]

14

Electronic copy available at: https://ssrn.com/abstract=3521887



Therefore,

Qτ (Γτ + ∆)−Qτ (Γτ ) ≥ f τm−1

m∑
j=1

E(X>
i ∆∗j)

2

4
=

1

4
f τ‖∆‖2

L2(PX).

2. By the decomposability of nuclear norm, ∆ ∈ K(Γτ ; 2δ/λ) and (S.2.2) in Remark S.2.1,

we can estimate

‖∆‖∗ = ‖PΓτ (∆)‖∗ + ‖P⊥Γτ (∆)‖∗ ≤ 4‖PΓτ (∆)‖∗ + 2δ/λ ≤ 4
√
r‖PΓτ (∆)‖F + 2δ/λ

≤ 4

√
rm

σmin(ΣX)
‖∆‖L2(PX) + 2δ/λ.

Lemma S.2.5. Under Assumptions (A1)-(A3), recall that A(t) is defined in (S.2.11), then

for an arbitrary u > 1,

P
{
A(t) ≤ 8

√
2u(αrt+2m−1/2δ/λ)

√
(c2σmax(ΣX) +Bp)

√
logm+ log p

}
≥ 1−16(pm)1−u2−γn,

where αr = 4
√
r/σmin(ΣX) and r = rank(Γτ ).

Proof for Lemma S.2.5. To simplify notations, let

αr
def
= 4

√
r/σmin(ΣX) (S.2.27)

Let {εij}i≤n,j≤m be independent Rademacher random variables independent from Yij and Xi

for all i, j. Denote Pε and Eε as the conditional probability and the conditional expectation

with respect to {εij}i≤n,j≤m, given Yij and Xi. Denote

χτij(·)
def
= ρτ{Yij −X>

i Γτ,∗j − ·} − ρτ{Yij −X>
i Γτ,∗j}. (S.2.28)
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χτij(·) is a contraction in the sense that χτij(0) = 0, and for all a, b ∈ R,

∣∣χτij(a)− χτij(b)
∣∣ ≤ |a− b|. ∀i = 1, ..., n, j = 1, ...,m. (S.2.29)

First, we note that for any ∆ satisfying ∆ ∈ K(Γτ ; 2δ/λ) and ‖∆‖L2(PX) ≤ t,

Var

(
Gn

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

))

= Var

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

)
≤ m−1

m∑
j=1

E
[
(χτij(X

>
i ∆∗j))

2
]

≤ m−1

m∑
j=1

E
[
(X>

i ∆∗j)
2
]
≤ t2, (S.2.30)

where the first equality and the second inequality follows from elementary computations and

i.i.d. assumption (A1), the third inequality is a result of (S.2.29), and the last inequality

applies (S.2.1) in Remark S.2.1.

To apply Lemma 2.3.7 of van der Vaart and Wellner (1996), we observe from Chebyshev’s

inequality that for any s > 0,

inf
‖∆‖L2(PX )≤t,∆∈K(Γτ ;2δ/λ)

P

(∣∣∣∣Gn

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

)∣∣∣∣ < s

2

)

= 1− sup
‖∆‖L2(PX )≤t,∆∈K(Γτ ;2δ/λ)

P

(∣∣∣∣Gn

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

)∣∣∣∣ ≥ s

2

)
≥ 1− 4

t2

s2
.

Taking s ≥
√

8t, we have

1

2
≤ inf
‖∆‖L2(PX )≤t,∆∈K(Γτ ;2δ/λ)

P

(∣∣∣∣Gn

(
m−1

m∑
j=1

χτij(X
>
i ∆∗j)

)∣∣∣∣ < s

2

)
.
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Thus, applying Lemma 2.3.7 of van der Vaart and Wellner (1996), we have

P{A(t) > s} ≤ 4P

(
sup

‖∆‖L2(PX )≤t
∆∈K(Γτ ;2δ/λ)

∣∣∣∣n−1/2m−1

n∑
i=1

m∑
j=1

εijχ
τ
ij(X

>
i ∆∗j)

∣∣∣∣ > s

4

)
. (S.2.31)

Now we restrict the A(t) on the event Ω on which (3.1) in (A2) holds, with P(Ω) ≥ 1− γn.

Applying Markov’s inequality, for an arbitrary constant µ > 0, the right-hand side of (S.2.31)

can be bounded by

P{A(t) > s|Ω}

≤ 4 exp

(
−µs

4

)
E

[
Eε

[
exp

{
µ sup
‖∆‖L2(PX )≤t
∆∈K(Γτ ;2δ/λ)

∣∣∣∣n−1/2m−1

n∑
i=1

m∑
j=1

εijχ
τ
ij(X

>
i ∆∗j)

∣∣∣∣}]∣∣∣∣Ω].
(S.2.32)

Now recall (S.2.29), the comparison theorem for Rademacher processes (Lemma 4.12 in

Ledoux and Talagrand (1991)) implies the right-hand side of (S.2.32) is bounded by

P{A(t) > s|Ω}

≤ 4 exp

(
−µs

4

)
E

[
Eε

[
exp

{
2µ sup

‖∆‖L2(PX )≤t
∆∈K(Γτ ;2δ/λ)

∣∣∣∣n−1/2m−1

n∑
i=1

m∑
j=1

εijX
>
i ∆∗j

∣∣∣∣}]∣∣∣∣Ω]. (S.2.33)

To obtain a bound for the right-hand side of (S.2.33), we note that

∣∣∣∣ n∑
i=1

m∑
j=1

εijX
>
i ∆∗j

∣∣∣∣ =

∣∣∣∣tr([ n∑
i=1

εi1Xi

n∑
i=1

εi2Xi ...
n∑
i=1

εimXi

]>
∆
)∣∣∣∣

≤ ‖∆‖∗ sup
a∈Sp−1

∣∣∣∣ m∑
j=1

( n∑
i=1

εijX
>
i a
)2
∣∣∣∣1/2

≤ m1/2‖∆‖∗max
j≤m

∥∥∥∥ n∑
i=1

εijXi

∥∥∥∥, (S.2.34)

where the first inequality is from Hölder’s inequality, and the second inequality is elementary.
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Now we apply random matrix theory to bound the right-hand side of (S.2.33). Using

matrix dilations (see, for example Section 2.6 of Tropp (2011)), we have

∥∥∥∥ n∑
i=1

εijXi

∥∥∥∥ =

∥∥∥∥ n∑
i=1

εij

 0p Xi

X>
i 0

∥∥∥∥. (S.2.35)

Notice that the random matrix εij

 0p Xi

X>
i 0

 is self adjoint and symmetrically distributed

conditional on Xi. We now obtain

Eε

[
exp

{
2µ sup

‖∆‖L2(PX )≤t
∆∈K(Γτ ;2δ/λ)

∣∣∣∣n−1/2m−1

n∑
i=1

m∑
j=1

εijX
>
i ∆∗j

∣∣∣∣}]

≤ Eε

[
exp

{
2µ(αrt+m−1/22δ/λ) max

j≤m

∥∥∥∥n−1/2

n∑
i=1

εijX
>
i

∥∥∥∥}]

≤ mmax
j≤m

Eε

[
exp

{
2µ(αrt+m−1/22δ/λ)

∥∥∥∥n−1/2

n∑
i=1

εij

 0p Xi

X>
i 0

∥∥∥∥}]

≤ m2(p+ 1) max
j≤m

exp

{
σmax

( n∑
i=1

log Eε

[
exp

{
2µ(αrt+m−1/22δ/λ)n−1/2εij

 0p Xi

X>
i 0

}])}
(S.2.36)

where the first inequality is from Lemma S.2.4(ii) and (S.2.34) and recall αr in (S.2.27), the

second inequality follows from (S.2.35), Lemma S.2.4 (ii) (∆ ∈ K(Γτ ; 2δ/λ)), and the fact

that

E[max
j≤m

exp(|Zj|)] ≤ mmax
j≤m

E[exp(|Zj|)], for any random variable Zj ∈ R.

The third inequality is by Theorem 3(ii) of Maurer and Pontil (2013) by the symmetric
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distribution of εij, where for a self adjoint matrix A,

exp(A)
def
= I +

∞∑
j=1

Aj

j!

log(exp(A))
def
= A.

From equation (2.4) on page 399 of Tropp (2011), for any j and c > 0,

Eε

[
exp

{
c εij

 0p Xi

X>
i 0

}] =
1

2

(
exp

{
c

 0p Xi

X>
i 0

}+ exp

{
− c

 0p Xi

X>
i 0

})

4 exp

{
c2

2

XiX
>
i 0p

0 X>
i Xi

},
where ”A 4 B” means the B − A is positive semidefinite for two matrices A,B. From

equation (2.8) on page 399 of Tropp (2011), the logarithm defined above preserves the order

4. Hence, (S.2.36) is bounded by

2m(p+ 1) exp

{
2µ2(αrt+m−1/22δ/λ)2σmax

(
n−1

n∑
i=1

XiX
>
i 0p

0 X>
i Xi

)}

≤ 2m(p+ 1) exp
{

2µ2(αrt+m−1/22δ/λ)2(σmax(Σ̂X) +Bp)
}
, (S.2.37)

where the last inequality follows from a bound for the spectral norm for block matrices

in equation (2) of Theorem 1 in Bhatia and Kittaneh (1990) (with Shatten-∞ norm), and

Assumption (A2).
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Putting (S.2.37) into (S.2.32), we obtain

P{A(t) > s|Ω} ≤ 8m(p+ 1) exp

(
−µs

4

)
E
[

exp
{

2µ2(αrt+m−1/22δ/λ)2(σmax(Σ̂X) +Bp)
}∣∣Ω]

≤ 8m(p+ 1) exp

(
−µs

4

)
exp

{
2µ2(αrt+m−1/22δ/λ)2(c2σmax(ΣX) +Bp)

}
.

(S.2.38)

Minimizing the expression (S.2.38) with respect to µ gives

P{A(t) > s|Ω} ≤ 8m(p+ 1) exp

{
− s2

128(αrt+m−1/22δ/λ)2(c2σmax(ΣX) +Bp)

}
. (S.2.39)

Taking

s = 8
√

2u(αrt+m−1/22δ/λ)
√

(c2σmax(ΣX) +Bp)
√

logm+ log p (S.2.40)

Notice that s ≥
√

8t for large enough p,m, so the symmetrization (S.2.31) is valid. Recall

that P(Ω) ≥ 1− γn. The proof is then completed.

Remark S.2.6. The Lemma 2.3.7 of van der Vaart and Wellner (1996) and Lemma 4.12 of

Ledoux and Talagrand (1991) applied in the proof of Lemma S.2.5 require only independence

in the random variables (Yij,Xi), without needing identical distribution. The random matrix

theory applied in the proof may also be generalized to matrix martingales; see Section 7 of

Tropp (2011) for more details.

Remark S.2.7. It can be observed that Lemma S.2.5 is valid uniformly for any 0 < τ < 1.

S.2.4. Proof of Theorem 3.7

In this proof, we abbreviate σk(Γτ ), σk(Γ̂τ,δ), (Ṽτ )∗k and (Vτ )∗k, (Ũτ )∗k and (Uτ )∗k by

σk, σ̃k, Ṽ∗k and V∗k, Ũ∗k and U∗k.
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To prove (3.13), since Ψτ = Vτ and Ψ̂τ = Ṽτ , by Theorem 3 of Yu et al. (2015),

sin cos−1(|Ṽ>∗jV∗j|) ≤
2(2‖Γτ‖+ ‖Γ̂τ,δ − Γτ‖F)‖Γ̂τ,δ − Γτ‖F

min{σ2
j−1(Γτ )− σ2

j (Γτ ), σ2
j (Γτ )− σ2

j+1(Γτ )}
(S.2.41)

where by the fact that |Ṽ>∗jV∗j| ≤ 1,

sin cos−1(|Ṽ>∗jV∗j|) =
√

1− (Ṽ>∗jV∗j)
2 =

√
(1− Ṽ>∗jV∗j)(1 + Ṽ>∗jV∗j)

≥
√

(1− |Ṽ>∗jV∗j|)2 = 1−
∣∣Ṽ>∗jV∗j∣∣.

Similar bound like (3.13) also holds for Ũ∗j, by the discussion below Theorem 3 of Yu et al.

(2015).

For a proof for inequality (3.14), by direct calculation,

∣∣f̂ τk (Xi)− f τk (Xi)
∣∣ =

∣∣σ̃kŨ>∗kXi − σkU>∗kXi

∣∣
≤
∥∥σ̃kŨ>∗k − σkU>∗k∥∥‖Xi‖

≤
(∣∣σ̃k − σk∣∣∥∥Ũ∗k∥∥+ σk

∥∥Ũ∗k −U∗k
∥∥)‖Xi‖

≤
(∣∣σ̃k − σk∣∣+ σk

√
(Ũ∗k −U∗k)>(Ũ∗k −U∗k)

)
‖Xi‖

≤
(∣∣σ̃k − σk∣∣+ σk

√
2(1− Ũ>∗kU∗k)

)
‖Xi‖ (S.2.42)

where we apply the fact that ‖Ũ∗k
∥∥ = 1. By assumption Ũ>∗kU∗k ≥ 0, Ũ>∗kU∗k = |Ũ>∗kU∗k|.

Apply Lemma 3.6 and the bound (S.2.41) with V being replaced by U to (S.2.42), then

(3.14) is proved. Thus, the proof for this theorem is completed.

S.3: Miscellaneous Technical Details
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S.3.1. Detail on Remark 3.3

For (3.7) to hold, it is enough to have E[|X>
i ∆∗j|3] ≤ CE[|X>

i ∆∗j|2]3/2 for all j =

1, 2, ...,m, where C > 0 is a constant independent of j, because

( m∑
j=1

E[|X>
i ∆∗j|2]3/2

)2/3

≤
m∑
j=1

E[|X>
i ∆∗j|2] (S.3.1)

by the inequality ‖a‖3/2 ≤ ‖a‖1 for an arbitrary a = (a1, a2, ..., am) with aj ≥ 0, ∀j. If

Xi is i.i.d. sampled from a log-concave density, then Theorem 5.22 of Lovász and Vempala

(2007) implies E[|X>
i ∆∗j|3] ≤ 33/2E[|X>

i ∆∗j|2]3/2 for any ∆. See also Design 1 on p.2 of the

supplemental materials of Belloni and Chernozhukov (2011). This implies (3.7) as εn,τ,r is

small as n & Bpr(p+m)(log p+ logm).

S.3.2. Detail on Remark 3.5

We need some extra notations. Let V ⊂ Rm and U ⊂ Rp be two subspaces with dimension

r, let M = {∆ ∈ Rp×m : row space of ∆ ⊂ V , column space of ∆ ⊂ U}; M⊥
= {∆ ∈

Rp×m : row space of ∆ ⊂ V⊥, column space of ∆ ⊂ U⊥} (defined similarly as in Example 3

on page 542 of Negahban et al. (2012)). For any matrix S ∈ Rp×m,

PM(S) = PUSPV , P⊥M(S) = P>USP>V ,

where PV = VV>, P⊥V = Im×r − PV , V = [v1 ...vr], and {vj}rj=1 is a set of orthonormal

basis for V ; analogously, PU = UU>, P⊥U = Ip×r − PU , U = [u1 ...ur], and {uj}rj=1 is a set

of orthonormal basis for U . Moreover, for any S ∈ Rp×m, ‖S‖∗ = ‖PM(S)‖∗ + ‖P>M(S)‖∗.
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It can be shown that when λ ≥ 2‖∇Q̂(Γτ )‖, the difference ∆̂ = Γ̂τ,δ − Γτ lies in the set

K(M, 4‖P⊥M(Γτ )‖+ 2δ′/λ)

def
=

{
∆ ∈ Rp×m : ‖P⊥M(∆)‖ ≤ 3‖PM(∆)‖+ 4‖P⊥M(Γτ )‖+

2δ′

λ

}
, (S.3.2)

where δ′ ≥ δ. Under this situation, the recovery property of Γ̂τ,δ can be shown via similar

argument as for Theorem 3.2 (possibly under more restrictive conditions), and we leave out

the details.

To show (S.3.2), we first note an inequality

‖Γ̂τ,δ‖∗ − ‖Γτ‖∗ ≤ 2‖P⊥M(Γτ )‖∗ + ‖PM(∆̂)‖∗ − ‖P⊥M(∆̂)‖∗, (S.3.3)

which can be shown by exactly the same argument for showing inequality (52) in Lemma

3 on page 27 in the supplementary material of Negahban et al. (2012), because the nuclear

norm is decomposable with respect to (M,M⊥
).

It can be seen that from similar argument as (S.2.24),

0 ≤ Q̂τ (Γτ )− Q̂τ (Γτ,T ) + λ‖Γτ‖∗ − λ‖Γτ,T‖∗ + δ

≤ ‖∇Q̂τ (Γτ )‖
(
‖PM(∆̂)‖∗ + ‖P⊥M(∆̂)‖∗

)
+ λ(2‖P⊥M(Γτ )‖∗ + ‖PM(∆̂)‖∗ − ‖P⊥M(∆̂)‖∗) + δ, (S.3.4)

where the second inequality is from (S.3.3). Rearrange expression (S.3.4) to get,

(λ− ‖∇Q̂τ (Γτ )‖)‖P⊥M(∆̂)‖∗ ≤ (λ+ ‖∇Q̂τ (Γτ )‖)‖PM(∆̂)‖∗ + 2λ‖P⊥M(Γτ )‖∗ + δ.
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By λ ≥ 2‖∇Q̂τ (Γτ )‖,

1

2
λ‖P⊥M(∆̂)‖∗ ≤

3

2
λ‖PM(∆̂)‖∗ + 2λ‖P⊥M(Γτ )‖∗ + δ.

S.3.3. Details for Generating matrices S1 and S2 in Section 4

Given (r1, r2), S1 and S2 are selected with the following procedure:

1. Generate vectors {a1, ...,ar1} and {b1, ..., br2}, where aj1 , bj2 ∈ Rp, and aj1k1 , bj2k2 ∼

U(0, 1) i.i.d. for j1 = 1, ..., r1, j2 = 1, ..., r2, k1, k2 = 1, ..., p;

2. Set the columns of S1 and S2 by (S1)∗j =
∑r1

k=1 αk,jak and (S2)∗j =
∑r2

k=1 βk,jbk for

j = 1, ...,m, where αk,j, βk,j are independent random variables in U [0, 1] for k = 1, ..., p

and j = 1, ...,m.

In our simulation, the first two nonzero singular values for S1 are (σ1(S1), σ2(S1)) =

(179.91, 26.51) and the rest singular value is 0. For SSym2 , the first two nonzero singular values

are (σ1(SSym2 ), σ2(SSym2 )) = (175.48, 25.74) and the rest is 0. For SSym2 , the first six nonzero

singular values are (σ1(SAsym2 ), ..., σ6(SAsym2 )) = (473.40, 29.87, 25.66, 23.89, 23.58, 22.16) and

the rest is 0.

S.4: Auxiliary Lemmas

Definition S.4.1. Let X = Rp×n with inner product 〈A,B〉 = tr(A>B) and ‖ · ‖ be the

induced norm. f : X → R a lower semicontinuous convex function. The proximity operator

of f , Sf : X → X :

Sf (Y)
def
= arg min

X∈X

{
f(X) +

1

2
‖X−Y‖2

}
,∀Y ∈ X .
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Theorem S.4.2 (Theorem 2.1 of Cai et al. (2010)). Suppose the singular decomposition of

Y = UDV> ∈ Rp×m, where D is a p × m rectangular diagonal matrix and U and V are

unitary matrices. The proximity operator Sλ(·) associated with λ‖ · ‖∗ is

Sλ(Y)
def
= U(D− λIpm)+V>, (S.4.1)

where Ipm is the p×m rectangular identity matrix with diagonal elements equal to 1.

Lemma S.4.3 (Hoeffding’s Inequality, Proposition 5.10 of Vershynin (2012a)). Let X1, ..., Xn

be independent centered sub-gaussian random variables, and let K = maxi ‖Xi‖ψ2. Then for

every a = (a1, ..., an)> ∈ Rn and every t ≥ 0, we have

P

(∣∣∣∣ n∑
i=1

aiXi

∣∣∣∣ ≥ t

)
≤ e · exp

(
− C ′t2

K2‖a‖2
2

)
,

where C ′ > 0 is a universal constant.

Lemma S.4.4 (Hoeffding’s Inequality: classical form). Let X1, ..., Xn be independent random

variables such that Xi ∈ [ai, bi] almost surely, then

P

(∣∣∣∣ n∑
i=1

Xi

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

S.5: Selecting the Matrix B in Section 4.3

The B in (4.3) is the coefficient estimator obtained by fitting a VAR(1) model (Lütkepohl;

2005) to the Xi in (5.1), and Σε is the sample covariance matrix from the residuals. Due to

the high dimensionality (460), the VAR model may be over-parameterized especially when

the order is high, and straightforwardly estimating the VAR may yield unreliable estimates.

Therefore, as suggested by multiple authors (e.g. Davis et al. (2016); Nicholson et al. (2017)

and the references therein), we estimate the VAR model with the `1 norm penalty, or Lasso
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(Tibshirani; 1996), to alleviate the problem of over-parameterization. Henceforth, the VAR

model estimated with the Lasso penalty will be called Lasso-VAR. The computation can be

carried out with the R package BigVAR (Nicholson et al.; 2017). The Lasso tuning parameter

is selected optimally by the cross-validation procedure provided in the package.

To evaluate the adequacy of the VAR(1) model for the real data in (5.1), Table S.5.1

provides the 1-step-ahead mean square forecasting error (MSFE) of Lasso-VAR (see Eq. (12)

of Nicholson et al. (2017)) with different lags. As it requires excessive computational time and

resource for model estimation and cross-validation, the maximal order under consideration

here is three. Lasso-VAR(3) has the smallest MSFE, but the difference between the models

seems small, so we take Lasso-VAR(1). The MSFE of VAR with order selected by AIC or

BIC (Lütkepohl; 2005; Nicholson et al.; 2017) is 2805 with optimal order of the both being

0, which is higher than that of Lasso-VAR as shown in Table S.5.1.

For a simple diagnosis of Lasso-VAR(1), we check the autocorrelation and partial auto-

correlation function of each individual residual series. Autocorrelation and partial autocor-

relation functions of some series are significant. However, increasing the order of the VAR

model does not improve the situation. To our best knowledge, we are not aware of any

literature on vector ARIMA models for high dimensional time series, which might provide

a better fit of our data. Fitting a very high dimensional VAR like ours is very subtle. As

the Lasso-VAR(1) has demonstrated competent forecasting performance as shown in Table

S.5.1, we adopt Lasso-VAR(1). A full exploration of the time series structure of the data is

left for future research.

S.6: Additional Numerical Results: AR(1) Model
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Order 1 2 3
Lasso-VAR MSFE 2364.82 2353.075 2341.046
% of active coef. 3.9 2.836 2.381
MSFE of VAR-AIC/BIC (optimal order = 0): 2805

Table S.5.1: The mean square forecasting error (MSFE) and the percentage of active coef-
ficients (total number of coefficients = 460× (1 + 460× order)) with different orders, where
“1” is from the intercept. For the matrix B, we do not include the intercept.

In this section, we consider the same data generating model as (4.1) in Section 4.1, but

now the regressor Xi follows an AR(1) model

Xi = 0.5Xi−1 + ui, (S.6.1)

where ui follows the multivariate U([0, 1]) distribution with covariance matrix Σ in which

Σij = 0.1 ∗ 0.8|i−j|. Because Yi is generated as (4.1), the true number of factors is 2 for

τ = 0.2 and 6 for τ = 0.8 as in the i.i.d. case. The computational setting is the same as the

i.i.d. case.

Figure S.6.1 shows the relative frequency of the estimated number of factors and the

estimated penalized testing error when the regressors follow (S.6.1). It appears that the

presense of time dependency slightly decreases the recovery accuracy, but the pattern of

the penalized testing error and the estimation performance of the number of factors remain

similar to the i.i.d. case in Section 4.2. However, for τ = 0.8, smaller κ and greater T than

than those for τ = 0.2 are selected to ensure estimation accuracy, which is due to the fact

that the true number of factors for τ = 0.8 is greater than that of τ = 0.2.
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Figure S.6.1: The histogram of the estimated number of factors and the plot for the penalized
testing error computed by the average of 150 Monte Carlo repetitions, τ = 0.2 and 0.8. Data
are generated as (4.1), with AR(1) regressor Xi generated as (S.6.1). The true number of
factors is 2 for τ = 0.2 and 6 for τ = 0.8. (κ, T ) = (6.66 ∗ 10−6, 3500) for τ = 0.2 and
(κ, T ) = (8 ∗ 10−7, 4000) for τ = 0.8.
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