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N. Packham∗
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Abstract

Recently, a number of structured funds have emerged as public-private partnerships with
the intent of promoting investment in renewable energy in emerging markets. These funds
seek to attract institutional investors by tranching the asset pool and issuing senior notes
with a high credit quality. Financing of renewable energy (RE) projects is achieved via two
channels: small RE projects are financed indirectly through local banks that draw loans
from the fund’s assets, whereas large RE projects are directly financed from the fund. In
a bottom-up Gaussian copula framework, we examine the diversification properties and RE
exposure of the senior tranche. To this end, we introduce the LH++ model, which combines
a homogeneous infinitely granular loan portfolio with a finite number of large loans. Using
expected tranche percentage notional (which takes a similar role as the default probability
of a loan), tranche prices and tranche sensitivities in RE loans, we analyse the risk profile
of the senior tranche. We show how the mix of indirect and direct RE investments in the
asset pool affects the sensitivity of the senior tranche to RE investments and how to balance
a desired sensitivity with a target credit quality and target tranche size.

Keywords: Renewable energy financing, structured finance, CDO pricing, LH++ model

JEL codes: C61, G13, G32

1 Introduction

We consider the problem of valuing and optimally designing structured finance instruments
when the underlying asset pool is inhomogeneous. The standard in credit portfolio modelling is
to assume a homogeneous credit portfolio, for example in the “Basel II”-formula (Gordy, 2003),
or in the valuation of collateralised debt obligations (CDOs) (e.g. Gregory and Laurent, 2004;
Andersen and Sidenius, 2004; Hull and White, 2007). In the context of structured renewable
energy financing, asset pools typically consist of sub-portfolios of different loan types. In this
paper, we develop the necessary tools for pricing and risk management of such structured prod-
ucts and we explore different aspects of optimally designing asset pools and related structured
products.

To finance sustainable growth in developing economies, governments and government agen-
cies from various countries, such as Germany, Denmark and the Netherlands, are seeking
to leverage available financing by attracting private investors in microfinance investments.1

∗Natalie Packham, Berlin School of Economics and Law, Badensche Str. 52, 10825 Berlin, Germany. Email:
packham@hwr-berlin.de

I would like to express my thanks to Jean-David Fermanian, Michael Kalkbrener, Ulf Moslener, Radu Tunaru,
Ursula Walther and Fabian Woebbeking for helpful discussions and comments.

1See e.g. the following quote from the website of the Federal Ministry for Economic Cooperation and Devel-
opment (BMZ): “Involving private investors in microfinance institutions and microinsurance funds offers a huge
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Paired with the aim to promote investment in Renewable Energy (RE), Energy Efficiency,
or more generally Green Finance projects, a number of structured climate funds have been
set up as public-private partnerships.2 Examples are the Global Climate Partnership Fund,
http://gcpf.lu, the Green for Growth Fund, http://www.ggf.lu and the European Energy Ef-
ficiency Fund, https://www.eeef.eu. The GCPF, initiated in 2010 by the German Federal
Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) and by KfW
Development Bank, issues a junior tranche (C-Shares, first loss, equity tranche), a mezzanine
tranche (B-Shares), a senior tranche (A-Shares) and a super-senior tranche (Notes). Notes and
Class A shares are targeted at private investors to leverage the amount invested in Class B
and C shares, which are typically held by public investors. In 2018, 91% of the fund’s asset
pool consisted of indirect financing of RE projects through financial institutions, while 9% were
direct investments in RE (a significant increase from 1.2% in Q1/2014).3

In such a fund, the equity tranche bears the first losses that occur in the asset pool. If the
equity tranche gets wiped out by defaults, the mezzanine tranche bears the next losses, etc. This
cash flow structure creates a buffer against credit losses for holders of the senior tranches, giving
the senior tranches a superior credit quality compared to the lower tranches.4 It is this risk
transfer that allows to attract private investors who are seeking high credit quality investments:
Institutional investors who are interested in investments in innovative asset classes, such as
Green Finance or emerging markets, for example to benefit from diversification effects (e.g.
Krauss and Walter, 2009; Dorfleitner et al., 2011), may be prevented from direct investments
due to credit risk constraints such as credit rating restrictions. Creating tranches of different
seniority is therefore a mechanism to attract public and private capital into climate financing.

As mentioned above, only a small proportion of loans in the asset pool are direct RE invest-
ments. To enable microfinancing of RE projects, structured funds typically engage with local
banks in developing countries (see Figure 1). These banks act as intermediaries by drawing
funds from the fund’s asset pool and lending them to local borrowers for RE projects. The
asset pool of such a structured fund consists therefore primarily of claims against local banks
in emerging market and developing countries. While it is ensured that all capital invested into
the structured fund is channeled into RE projects, the large proportion of indirect financing
creates exposure mainly to regional banks in developing and emerging countries, and to RE
projects only to a lesser extent. This may be unsatisfactory for an institutional investor seeking
exposure to the RE sector in order to diversify their existing portfolio. On the other hand, if
the asset pool consisted only of (large) direct exposures to RE projects, diversification could be
too low to provide a reasonably-sized senior tranche.

The objective of this paper is two-fold: First, extending the LH+-model by (Greenberg
et al., 2004), we develop a Merton-type model for asset pools that consists of a homogeneous
infinitely granular sub-portfolio and a finite number of individual homogeneous loans. We
provide closed pricing formulas for the fund’s tranches. Second, we develop a solution for
optimal structuring taking into account both the exposure towards RE and a desired size of the
senior tranche(s). More specifically, we derive the optimal portfolio mix of indirect and direct

potential. In future, the BMZ would like to encourage private-sector involvement to a greater extent, and thus
facilitate responsible and sustainable investment in the financial sector in developing countries. This will also
spawn numerous opportunities on which other sound development projects can build.”

2See e.g. the following quote from the website of the BMZ: “Green finance is an innovative approach of German
development cooperation. The financial sector in cooperation countries becomes part of the transition process to
a low carbon, resource efficient economy and to improved adjustment to climate change.”

3GCPF Annual Report 2018, GCPF Portfolio Report for the quarter ending on 31.3.2014
4For an introduction to structured credit, the reader is referred to (e.g. Duffie and Singleton, 2003; O’Kane,

2008).
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Figure 1: Operational setup of a structured climate fund. Adapted from: GCPF, Corporate
Brochure, 2018

investments maximising the sensitivity to the RE sector, given a desired size and credit quality
of the (super) senior tranche.

The structure of the paper is as follows: In Section 2 we develop the LH++ model. Section 3
provides closed formulas for the valuation loans and CDO tranches. In Section 4, we determine
the parameters (default probabilities and asset correlations) of banks’ when adding a (small) RE
loan to their balance sheet. In Section 5.1 we introduce CDO tranche sensitivities with respect
to the RE sector, solve for the optimal asset pool structure and senior tranche size and give
examples based on publicly available data on existing structured funds. Section 6 concludes.

2 Model setup

We consider a stylised model, which allows to derive a number of analytical results. The
asset pool consists of loans whose default probabilities can be determined from a Merton-type
asset value approach (Merton, 1974). Two types of loans are found in the asset pool: a sub-
portfolio of homogeneous small loans to banks, which in turn finance small RE projects; several
homogeneous large direct RE investments. To model these two types of different loans, we
extend the LH+ model developed by (Greenberg et al., 2004) to the LH++ model , which
couples an infinitely granular homogeneous portfolio with a finite number of large loans. Closed
valuation formulas for CDO tranches are derived in Section 3, which in turn allows to analyse the
credit riskiness of senior tranches and their dependence on the loan structure and correlations
in the asset pool.

2.1 Gaussian copula framework

Consider a portfolio of n loans (obligors) and denote their random times of default by (τ1, . . . , τn).
The loss associated with loan i is Li = Ni · (1−Ri), where Ni denotes the exposure-at-default
and Ri denotes the recovery rate of loan i. Exposure-at-default and recoveries are assumed to

3
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be constant, that is, neither random nor time-dependent, which is a reasonable assumption in

the context of loans. The overall portfolio loss at time t is given by Lt =
n∑
i=1

Li 1{τi≤t}.

The valuation of loans and CDO tranches requires as input term structures of default prob-
abilities, both as univariate and as multivariate distributions. The Gaussian copula framework
introduced by Li (2000) then provides a parsimonious way of modelling these quantities. Uni-
variate default probabilities, P(τi ≤ t), t ≥ 0, i = 1, . . . , n, are assumed to be given, for example,
implied from credit spreads observed in the market. If there is no term structure available in
the market, it is common to assume that the default time follows an exponential distribution
with constant hazard rate λi, so that

pi,t = P(τi ≤ t) = 1− e−λit, t ≥ 0. (1)

The hazard rate is calibrated to one given default probability or to one market credit spread si
via the relationship λi = si/(1−Ri).

Joint default probabilities are modelled by the Gaussian copula via

P(τi ≤ t, τj ≤ t) = N2(N(−1)(pi,t),N
(−1)(pj,t); ρij), (2)

where ρij is the so-called asset correlation and where N2(x, y; ρ) denotes the bivariate standard
normal distribution function with correlation parameter ρ. The terminology asset correlation
originates from the Merton model (Merton, 1974), where, for a fixed time horizon T , the right-
hand side of (2) describes the probability of two firms’ ability-to-pay variables, Yi,T and Yj,T
(standard normally distributed) jointly falling below their so-called default thresholds ci, cj :

P(Yi,T < ci, Yj,T < cj) = N(ci, cj ; ρij).

One can think of the ability-to-pay variables as a standardised version of a firm’s asset value,
and the default thresholds representing the level of debt, with default occuring if the asset value
falls below the debt level.

In a one-factor model approach, e.g. Vasicek (1987), the asset correlations enter via a sys-
tematic factor, that is, the normalised asset return can be decomposed as

Yi,t =
√
ρiVt +

√
1− ρiεi,t,

with Vt the systematic factor and ε1,t, . . . , εt,n the idiosyncratic factors, all of which are inde-
pendent standard normally distributed random variables. Conditioning on the joint aggregate
factor yields, for ρi < 1,

P(τi ≤ t|Vt) = P(Yi,t ≤ N(−1)(pi,t)|Vt) = N

(
N(−1)(pi,t)−

√
ρiVt√

1− ρi

)
. (3)

Moreover, conditional on V , the default times are independent, that is,

P(τ1 ≤ t, . . . , τn ≤ t|Vt) =

n∏
i=1

P(τi ≤ t|Vt).

2.2 Infinitely granular homogeneous portfolio

A common assumption in credit portfolio modelling is to assume that the portfolio is homo-
geneous and “infinitely granular”, which means that it consists of infinitely many infinitely
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small homogeneous components. This stylised portfolio assumption, sometimes called large
homogeneous portfolio (LHP) was first introduced by (Vasicek, 1991) and has many uses in
credit portfolio risk; for example, it provides the basis for the so-called “Basel II”-formula
Gordy (2003). In the LHP, idiosyncratic risk is diversified away, leaving only systematic risk.
Formally, by the law of large numbers, since the obligors are conditionally independent, the
percentage loss conditional on Vt is given by (we drop all indices because of the homogeneity
assumption)

Lt = lim
n→∞

(1−R)
1

n

n∑
i=1

1{τi≤t} = (1−R) N

(
N(−1)(pt)−

√
ρVt√

1− ρ

)
P–a.s. (4)

Solving for Vt, the time-t loss distribution can be written as

P(Lt ≤ x) = N

(
N(−1)(x/(1−R))

√
1− ρ−N(−1)(pt)√
ρ

)
, x ≥ 0.

2.3 LH++ model

As outlined above, a typical asset pool of a structured climate fund mixes small loans to financial
institutions with large direct financing of RE projects. Hence, the infinitely granular homoge-
neous portfolio assumption will be justified only for the part of the investment pool consisting
of loans issued to regional financial institutions. The LH+ model developed by Greenberg et al.
(2004) incorporates one loan with different characteristics into the asset pool, which otherwise
consists of an infinitely granular homogeneous portfolio (see also Section 17.3 of O’Kane (2008)).
Extending the model to allow for several homogeneous loans into the asset pool conveniently
allows to model the direct RE investments. This gives rise to the LH++ model, which we
introduce here.

Aside from the indirect RE investments through loans to financial institutions, the asset pool
consists of n RE loans that are modelled each by the Merton asset value model with recovery
rate R0, fractional notional N0, default probability p0,t and default times τ1, . . . , τn. The default
probabilities are linked to standard normally distributed ability-to-pay variables X1,t, . . . , Xn,t

and default threshold c0 via p0,t = P(τk ≤ t) = P(Xk,t ≤ c0). The asset correlation between RE
loans is ρ0, which in a model with a single factor Vt translates into a correlation

√
ρ0 between

an RE loan and the factor, and into a correlation
√
ρ ρ0 between the homogeneous portfolio and

an RE loan.5 The fractional notional of the homogeneous portfolio is denoted by N , so that
N + nN0 = 1. The portfolio loss variable conditional on Vt is then

Lt =

n∑
k=1

N0(1−R0) 1{τk≤t} +N(1−R)N

(
−√ρVt + ct√

1− ρ

)
, (5)

where ct = N(−1)(pt) denotes the default threshold associated with loans in the LHP.

Proposition 1. The time-t loss probabilities are given by

P(Lt > α) =

n∑
k=0

(
n

k

)
P(Vt ≤ At(α, k), X1,t ≤ c0, . . . , Xk,t ≤ c0, Xk+1,t > c0, . . . , Xn,t > c0),

5 The model can be extended to include inter-sector correlations as well, see e.g. (Düllmann et al., 2008). In
this setting, one would model two sector factors, VB and VRE , which are in turn correlated.
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where

At(α, k) =
1
√
ρ

(
ct −N(−1)

(
0 ∨

(
1 ∧ α− kN0(1−R0)

N(1−R)

)) √
1− ρ

)
, (6)

with ∨ and ∧ denoting the maximum and the minimum operator, respectively. The random
vector (Vt, X1,t, X2,t, . . . , Xn,t) follows a multivariate normal distribution with mean vector 0
and covariance matrix equal to the correlation matrix

Σ̃ =


1

√
ρ0
√
ρ0 · · · √ρ0√

ρ0 1 ρ0 · · · ρ0√
ρ0 ρ0 1 · · · ρ0
...

...
. . .

. . .
...√

ρ0 ρ0 · · · ρ0 1

 .

Proof. Because of the homogeneity of the portfolio of direct RE loans, we have

P(Lt > α) =
n∑
k=0

(
n

k

)
P(Lt > α, τ1 ≤ t, . . . , τk ≤ t, τk+1 > t, . . . , τn > t)

=

n∑
k=0

(
n

k

)
P(Lt > α,X1,t ≤ c0, . . . , Xk,t ≤ c0, Xk+1,t > c0, . . . , Xn,t > c0),

and the first claim follows by re-writing {Lt > α} using (5). That (Vt, X1,t, . . . , Xn,t) follows a
joint normal distribution follows from the single factor setting with Xk,t =

√
ρ0Vt+

√
1− ρ0ξk,t,

where ξk,tN(0, 1) independent of Vt.

The special case n = 1 corresponds to the LH+ model, and one can obtain the formula
given by (Greenberg et al., 2004):

P(Lt > α) = N(At(α, 0))−N2

(
At(α, 0), c0;

√
ρ0

)
+ N2

(
At(α, 1), c0;

√
ρ0

)
, (7)

where N2 denotes the bivariate standard normal distribution function.
For large n, a significant speed-up in the numerical calculation can be achieved by condi-

tioning on Vt and using the conditional independence of X1,t, . . . , Xn,t, which gives

P(Lt > α) =

n∑
k=0

(
n

k

)
E

[
1{Vt≤At(α,k)}N

(
c0 −

√
ρ0Vt√

1− ρ0

)k (
1−N

(
c0 −

√
ρ0Vt√

1− ρ0

))n−k]

=
n∑
k=0

(
n

k

)∫ At(α,k)

−∞
N

(
c0 −

√
ρ0v√

1− ρ0

)k (
1−N

(
c0 −

√
ρ0v√

1− ρ0

))n−k
n(v) dv,

where n denotes the standard normal density function.

3 Loan and CDO valuation

In this section we derive analytic formulas for valuing loans and CDO tranches in the LH++
framework.
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3.1 Loan valuation and credit spread

The relation between a loan’s credit spread and its survival probability is as follows: Assume a
loan with notional 1, maturing at T and continuously paying interest of (r + s), where r is the
risk-free interest rate and s is the credit spread. If the loan defaults prior to maturity, it pays
a recovery R. The discounted cash flows from the loan are therefore

(r + s)

∫ T∧τ

0
e−ru du+ e−rT1{τ>T} +Re−rτ1{τ≤T}.

At time 0, the risk-neutral price of the loan is given by

Vloan(s) = (r + s)

∫ T

0
e−ruq(u) du+ e−rT q(T ) +

∫ T

0
R e−ru · −q(du), (8)

where q(u) = P(τ > u) is the risk-neutral probability of survival until time u (conditional on
no default until time 0). As the no-arbitrage price at inception is Vloan(s) = 1, the no-arbitrage
spread can be backed out from survival probabilities as

sloan =
1−

∫ T
0 R e−ru · −q(du)− e−rT q(T )∫ T

0 e−ruq(u) du
− r.

In case the term structure of survival probabilities is determined by a constant hazard rate,
q(u) = e−λu, u > 0, the expressions simplify to

Vloan(s) = (r + s)
1− e−(r+λ)T

r + λ
+ e−(r+λ)T +R

λ(1− e−(r+λ)T )

r + λ
(9)

sloan = λ(1−R), (10)

where the last line is the so-called credit triangle.

3.2 CDO mechanics and valuation

A CDO can be thought of as a special purpose vehicle consisting of loans as assets and notes
of different seniority as liabilities. Proceeds from the asset pool, both coupon and redemption
payments, are paid to note holders according to their seniority: on a payment date, senior note
(tranche) holders are the first to receive their promised coupon and redemption payments. Next,
provided there are sufficient proceeds from the asset pool, mezzanine note (tranche) holders are
served, and so on. Last-in-line are equity tranche holders. As such, equity tranche holders are
exposed to the highest credit risk, bearing the first losses from the asset pool (the equity tranche
is sometimes called the “first-loss piece”), while the senior tranche enjoys a risk buffer as it is
unaffected by losses until the equity and mezzanine tranches are wiped out. For further details
on CDOs, the reader is referred to e.g. (Bluhm et al., 2003; O’Kane, 2008).

So far we have assumed a fixed default time horizon T . Valuation of credit derivatives
requires a term structure of default probabilities. so that we now assume that all quantities of
interest are time-dependent, e.g. default probabilities are given by pi,t = P(τi ≤ t) = N(ci,t),
with ci,t the time-dependent default threshold.

We continue to assume that the asset pool consists of an infinitely granular portfolio of
homogeneous obligors for the indirect RE investments and of n direct investments in homoge-
neous RE loans. The tranche structure of a CDO on a notional amount of 1 can be written as
a partition of [0, 1), where each tranche covers the loss in one interval of the partition. In other
words, there exist attachment, resp. detachment points 0 < α1 < · · · < αk = 1 such that the
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i-th tranche covers losses in the interval [αi−1, αi). The time-t loss of the i-th tranche can be
written as

Li,t = min(Lt, αi)−min(Lt, αi−1) = (Lt ∧ αi)− (Lt ∧ αi−1), (11)

where the time-t portfolio loss Lt is given by (5). The probability that the i-th tranche is hit
by a loss until time t, P(Lt > αi−1), is given by Proposition 1.

Pricing a CDO tranche with attachment point αi−1 and detachment point αi requires the
time-zero tranche survival curve, which expresses the expected percentage survival notional at
time t, and is given by

qi(t) = q(t, αi−1, αi) = 1− E[Li,t]

αi − αi−1
= 1− E [(Lt ∧ αi)− (Lt ∧ αi−1)]

αi − αi−1
. (12)

An explicit expression for Equation (12) is obtained from the following Proposition.

Proposition 2.

E[Lt ∧ α] = αP(Lt > α) +

n∑
k=0

(
n

k

)
kN0(1−R0)

P(Vt ≥ At(α, k), X1,t ≤ c0, . . . , Xk,t ≤ c0, Xk+1,t > c0, . . . , Xn,t > c0)

+
n∑
k=0

(
n

k

)
N(1−R)

P(Y1,t ≤ ct, Vt ≥ At(α, k), X1,t ≤ c0, . . . , Xk,t ≤ c0, Xk+1,t > c0, . . . , Xn,t > c0),

where At(α, k) is given by (6).
The random vector (Yt,1, Vt, X1,t, . . . , Xn,t) follows a joint normal distribution with mean

vector 0 and covariance matrix equal to the correlation matrix

Σ =



1
√
ρ
√
ρ ρ0

√
ρ ρ0 · · · √ρ ρ0√

ρ 1
√
ρ0

√
ρ0 · · · √

ρ0√
ρ ρ0

√
ρ0 1 ρ0 · · · ρ0

√
ρ ρ0

√
ρ0 ρ0 1

. . . ρ0
...

...
...

. . .
. . .

...√
ρ ρ0

√
ρ0 ρ0 · · · ρ0 1


. (13)

Proof. Write
E[Lt ∧ α] = E

[
Lt 1{Lt≤α}

]
+ αP(Lt > α).

The proof reduces to examining the expectation on the right-hand side, which can be written
as

E
[
Lt 1{Lt≤α}

]
=

n∑
k=0

(
n

k

)
E
[
Lt 1{Lt≤α,τ1≤t,...,τk≤t,τk+1>t ...,τn>t}

]
. (14)

The loss variable Lt, given by (5), can be decomposed into

Lt =

n∑
k=1

N0(1−R0) 1{τk≤t} +N(1−R)P(Y1,t ≤ ct|Vt). (15)
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It is easily checked that, conditional on k RE loan losses, {Lt ≤ α} = {Vt ≥ At(α, k)}. Using
that {τk ≤ t} = {Xk ≤ c0}, k = 1, . . . , n, each expectation on the right-hand side in (14) can
be written as

E
[
Lt 1{Lt≤α,τ1≤t,...,τk≤t,τk+1>t ...,τn>t}

]
= kN0(1−R0)P(At(α, k) ≤ Vt, X1,t ≤ c0, . . . , Xk,t ≤ c0, Xk+1,t > c0, . . . , Xn,t > c0)

+N(1−R)E
[
P(Yt ≤ c|Vt) 1{At(α,k)≤Vt,X1,t≤c0,...,Xk,t≤c0,Xk+1,t>c0,...,Xn,t>c0}

]
,

and the expectation in the last line simplifies to

E
[
P(Yt ≤ c|Vt) 1{At(α,k)≤Vt,X1,t≤c0,...,Xk,t≤c0,Xk+1,t>c0,...,Xn,t>c0}

]
= E

[
E
[
P(Yt ≤ c|Vt) 1{At(α,k)≤Vt,X1,t≤c0,...,Xk,t≤c0,Xk+1,t>c0,...,Xn,t>c0}|Vt

]]
= E [P(Yt ≤ c|Vt) P(At(α, k) ≤ Vt, X1,t ≤ c0, . . . , Xk,t ≤ c0, Xk+1,t > c0, . . . , Xn,t > c0|Vt)]
= P(Yt ≤ c, At(α, k) ≤ Vt, X1,t ≤ c0, . . . , Xk,t ≤ c0, Xk+1,t > c0, . . . , Xn,t > c0),

where the last line follows from the conditional independence of Yt and the other variables given
Vt.

If n = 1 (the LH+ model), we obtain:

E[Lt ∧ α] = αP(Lt > α) +N0(1−R0) [N(c0)−N2(A1(α, 1), c0;
√
ρ0)]

+N(1−R) [N(ct)−N2(ct, At(α, 0);
√
ρ) + N3(ct, At(α, 0), c0; Σ)−N3(ct, At(α, 1), c0; Σ)] ,

where Nk denotes the multivariate standard normal distribution function for a k-dimensional
vector. As noted for Proposition 1, the numerical computation of the multivariate probabilities
can be efficiently improved by exploiting the conditional independence of the terms conditional
on Vt.

To calculate the tranche survival curve (12) via Proposition 2 requires the time-t PD’s
and correlations of the loan portfolio as inputs. If available, the term structure of default
probabilities, p(t), t ≥ 0, can be derived from market data, for example CDS spreads.

The i-th tranche pays (continuously) a coupon of r + si on the remaining tranche notional,
where r denotes the (constant) risk-free interest rate. At maturity, the tranche pays the re-
maining notional.6 By risk-neutral valuation, the percentage value of the i-th tranche at time 0
is given by

V (αi−1, αi; s) = (r + s)

∫ T

0
e−ruqi(u) du+ e−rT qi(T ). (16)

6If the recovery rate is greater than zero, then the spread earned by the collateral pool does not suffice to pay
the required coupons to all tranche holders: the total notional is reduced by a fraction 1 −R for each defaulted
loan, but coupon payments are reduced by the entire notional of the loan as no coupon payments are made on
the recovery rate. There are essentially two ways to resolve this discrepancy: In the first case, the notional based
on which coupons are paid on the super senior tranche is reduced, therefore effectively reducing coupon payments
on the super senior tranche (but without affecting the redemption of notional at maturity), cf. Section 12.5.4
of (O’Kane, 2008). In the second case, coupon payments are paid according to the waterfall principle, that is,
first the promised coupon payment to the super senior tranche is made, then to the senior tranche, and so forth,
with the remainder paid to the equity tranche. This is the case treated in (Bluhm, 2003). We shall essentially
follow the second convention here, as it is natural to assume that the public institution (e.g. government) as the
equity tranche holder is willing to waive its coupon anyway. On top, we shall assume that the public institution
is prepared to ensure that all tranches (with the exception of the equity tranche) receive a fixed coupon payment
proportional to the remaining tranche notional in case the collateral pool fails to generate the promised coupons.
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At inception, the no-arbitrage7 percentage value of the tranche is 1, so that backing out the
spread yields

si =
1− e−rT qi(T )∫ T
0 e−ruqi(u) du

− r

Consequently, given PD’s and correlations, the valuation of CDO tranches can be done in an
analytic way.

4 Indirect renewable energy financing

In this section, we derive the model parameters of a bank that draws on the asset pool to lend
out an RE loan. This has an impact on the bank’s credit quality and exposure to RE. We
continue to work in a Gaussian copula framework, but in order to determine the parameters
from enlarging the bank’s balance sheet we now make the underlying Merton model explicit.

The key idea of the Merton model (Merton, 1974) is to model the balance sheet of a firm
that finances its assets by a single zero-coupon bond maturing at time T and equity. The firm
defaults at time T if the asset value is below the debt notional and survives otherwise. If the
asset value is modelled as a Geometric Brownian motion, then the bond value, probability of
default and credit spread can be determined from the Black-Scholes-Merton model.

More specifically, firm i defaults when its time-T asset value AiT is below its debt-value
Di
T = erTDi

0, where the initial debt value Di
0 is constant. If the asset value process (Ait)t≥0

follows a Geometric Brownian motion,

Ait = Ai0 e(r−1/2σ2
i )t+σiWt , t ≥ 0, (17)

withW a Brownian motion, then the time-T asset log-return is normally distributed ln(AiT /A
i
0) ∼

N((r − 1/2σ2
i )T, σ

2
i T ), and the time-T default probability of obligor i, conditional on {τi > 0},

can be expressed as

pi = P(τi ≤ T ) = P(AiT < Di
T ) = P(Yi < ci) = N(ci), (18)

where Yi is standard normally distributed and ci =
ln(erTDi

0/A
i
0)− rT + σ2

Ai
T/2

σAi
√
T

. Given the

time-T probability of default pi, we define ci := N(−1)(pi).
The dependence between two obligors i and j is expressed via their asset correlation, given

by
ρij = Corr(Yi, Yj) = Corr(lnAiT , lnA

j
T ),

and the probability of a joint default is given by

P(τi ≤ T, τj ≤ T ) = P(Yi ≤ ci, Yj ≤ cj) = N(ci, cj ; ρij) = N(N(−1)(pi),N
(−1)(pj); ρij). (19)

Equation (19) is just the Gaussian copula framework introduced in (2).
We now assume a bank with asset value A0 and debt value D0 at time 0. Adding an RE

loan with face value R0 to the balance sheet changes the asset value to A0 + R0 and the debt
value to D0 + R0. We assume that both the firms debt and the RE loan mature at time T .
Prior to adding the RE loan, the bank’s asset volatility is σB, the bank’s time-T probability of
default is pB and the correlation among any two bank’s is ρB := ρ. The firm receiving the RE

7If a CDO tranche can be hedged, for example with a synthetic CDO tranche valued 0 at inception or with
the reference portfolio, then the no-arbitrage price of 1 arises. If the tranche cannot be replicated, then we define
the price in this way.
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loan has an asset volatility of σR, PD of pR, and RE firms are correlated with asset correlation
ρR := ρ0. The bank’s asset value (prior to issuance of the RE loan) and the RE firm’s asset
value are correlated with ρRB :=

√
ρ ρ0.

We impose that after issuance of the RE loan, the assets’ log return is normally distributed,

ln

(
AT +RT
A0 +R0

)
∼ N

(
(r − 1/2σ2), σ2

)
.

Pricing CDO tranches requires the bank’s probability of default, which in turn requires the
bank’s asset volatility, and the banks’ asset correlations. Assuming that the RE loan is small
relative to the bank’s balance sheet, we approximate the annual log-return via a first-order
Taylor expansion around A1,

ln(A1 +R1) ≈ ln(A1) +
R1

A1
. (20)

Proposition 3. Using the approximation (20) gives

σ2 = Var

(
ln(A1) +

R1

A1

)
= σ2

B +
R2

0

A2
0

e2σB(σB−ρRBσR)(eσ
2
B+σ2

R−2ρRBσBσR − 1)− 2σB
R0

A0
(σB − ρRBσR)eσ

2
B−ρRBσRσB ,

ρij = Corr

(
ln(Ai1) +

Ri1
Ai1
, ln(Aj1) +

Rj1
Aj1

)

=
{
ρBσ

2
B − 2σB

R0

A0
eσ

2
B−ρRBσBσR(ρBσB − ρRBσR)

+
R2

0

A2
0

e2σ2
B−2ρRBσBσR

(
eρBσ

2
B+ρRσ

2
R−2ρRBσBσR − 1

)} (
σ2
)−1

ρRBB,RE = Corr

(
ln

(
Ai1 +Ri1
Ai0 +Ri0

)
, ln

(
R1

R0

))
≈ Corr

(
ln(Ai1) +

Ri1
Ai1
, ln(R1)

)
=

(
ρRBσB +

R0

A0
eσ

2
B−ρRBσBσR(ρRσR − ρRBσB)

)
(σ)−1.

Because the proof consists mainly of long calculations it is deferred to the appendix. Upon
issuance of the RE loan, the bank’s PD becomes

P(τ ≤ T ) = P(AT +RT ≤ erT (D0 +R0))

= P

(
ln

(
AT +RT
A0 +R0

)
≤ ln

(
erT (D0 +R0)

A0 +R0

))
= P(Ȳ ≤ c̄), (21)

where Y ∼ N(0, 1) and c̄ =
ln(erT (D0 +R0)/(A0 +R0))− rT + σ2T/2

σ
√
T

.

5 Structuring the asset pool

Two objectives for structuring the asset pool are important: First, the asset pool needs to
be appropriately diversified, as a concentrated (i.e., undiversified) asset pool is not capable of
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producing sufficient risk transfer between equity and senior tranches. More specifically, given a
target credit quality, the senior tranche size varies depending on the degree of diversification in
the asset pool. Second, it can be assumed that investors seek exposure to the RE sector as one
of their primary reasons to invest. A typical institutional investor will therefore find a senior
AAA-rated tranche with a high sensitivity to the RE sector most attractive. Based on these
considerations, we determine the optimal mix of (diversified) indirect RE loans via banks and
direct RE loans in the asset pool.

First, we introduce PV01 and tranche delta to measure the exposure of an tranche to RE
loans. Second, we specify and solve the optimisation problem to design a structure according
to the above-mentioned criteria.

5.1 CDO sensitivities

We measure the exposure to RE by the sensitivity of tranche values to changes in RE loan value
changes. A CDO tranche’s PV01 (present value of a basis point) is the change in tranche value
following a one basis point spread widening of the underlying portfolio. The (tranche) delta
of a CDO tranche is the PV01 relative to the PV01 of the reference portfolio (e.g. Chapter 17
O’Kane, 2008). The tranche delta expresses the proportion of the asset pool required to hedge
against changes in the tranche value.

As we are interested in sensitivities with respect to RE, we introduce the PV01RE as the
value change in a CDO tranche when the credit spreads of all RE loans (both direct loans and
indirect through bank loans) increase by one basis point. In Section 3.2, we denoted the value
of a CDO tranche by V (αi−1, αi, si). Since we are only considering the most senior tranche,
and need notation for the specific setting, we denote the tranche value by V (λ,w, α, s), where
λ denotes the RE loan hazard rate, w denotes the percentage weight of direct RE loans in the
asset pool, α is the senior tranche’s attachment point and s is the credit spread paid on the
tranche. The number of direct RE loans is assumed to be constant. Using (10), a 1 basis point

change in the RE loan spread translates into λ̃ =
sloan + 0.0001

1−R
, giving a sensitivity of

PV01RE = V (λ̃, w, α, s)− V (λ,w, α, s)

and a tranche delta of

∆RE =
PV01RE

PV01RE,loan
,

where PV01RE,loan is the PV01 of a single RE loan, determined from (9) with λ̃ and λ, respec-
tively.

The value of the direct RE loans in the LH++ model is calculated directly from (9). For
the RE loans on the banks’ balance sheets, the new PD is calibrated to the Merton model,
(18), from which the new asset volatility of an RE loan is backed out, which in turn is used
to calculate the new PD of the bank portfolio, (21). This is the input to calculating the value
of each loan to a bank, (8). For the PV01RE , the previously calculated quantities enter in
the calculation of the tranche survival curve, Equation (12), which in turn enters the tranche
valuation, (16).

5.2 Optimal senior tranche size and RE loan weight

From the structurer’s point of view, the objective is to generate a senior tranche with maximum
exposure to RE loans given a desired minimum size tranche size and a desired credit rating,
typically AAA. The credit rating constraint can be formulated in terms of the default probability
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or the expected loss of a AAA-rated loan, cf. (Hull and White, 2010). In the first case, one
would require P(L ≥ αi−1) ≤ πAAA, with πAAA the PD of AAA-rated loan. In the second case,
one would set 1− qi(T ) ≤ πAAA(1−R), where 1− qi(T ) is the expected loss as a percentage of
the senior tranche’s notional, and πAAA(1 − R) is the expected loss of a AAA-rated loan.8 In
the following, we take expected loss as the constraint.

Let w ∈ [0, 1] be the percentage weight of the direct RE loan sub-portfolio in the asset pool
(i.e., every RE loan has weight w/n). The number n of direct RE loans is assumed to be given
– obviously, at a fixed w, a higher n adds diversification, so an infinitely granular RE sub-
portfolio is optimal, but infeasible. Also, we take the size of RE loans on intermediate banks’
balance sheets as given, as this is a variable that is not controlled by the issuer. The objective
for structuring the asset pool is formulated as the weight of direct RE loans that maximises
exposure to RE, expressed as PV01RE , while allowing for sufficient diversification in the asset
pool, formulated via a minimum senior tranche size αmin:

max
w,α∈[0,1]

|PV01RE |, (22)

subject to

1− q(T, λ, w, α) ≤ πAAA(1−R), (23)

α ≤ αmax. (24)

Here, q(t, λ, w, α) denotes the expected percentage tranche notional at time t ∈ [0, T ], cf. (12).
The constraint (24) expresses that the optimal attachment point for α must obey a minimum
tranche size, expressed by the maximum attachment point αmax, specified by the issuer. A
solution may fail to exist, if αmax is chosen too small (just consider the case where αmax = 0,
which is incompatible with the requirement that the senior tranche attains a AAA rating unless
all loans in the asset pool are AAA-rated). The following proposition characterises the solution
if it exists.

Proposition 4.

(i) For w ∈ (0, 1), the PV01RE and the attachment point α ∈ [0, 1] satisfy

PV01RE < 0 (25)

∂

∂α
PV01RE > 0. (26)

As a consequence, if a solution exists (i.e., (23) and (24) are satisfied), then it (23) is
binding, giving α∗(w) = argminα q(T, λ, w, α) = 1− πAAA(1−R), for w ∈ [0, 1].

(ii) For w ∈ (0, 1),
∂

∂w
PV01RE < 0. (27)

If a solution exists and w∗ ∈ (0, 1), then
∂

∂w
α∗(w∗) > 0 and, as a consequence, (24) is

binding, i.e., α∗(w∗) = αmax. Otherwise, if a solution exists, then w∗ = 1.

The following Lemma contains some properties that are required for the proof.

8It should be noted that, since the model is defined under the risk-neutral measure, the hitting probability and
expected percentage loss notional are implied quantities and do not necessary coincide with real-world quantities.
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Lemma 5. Let V (λ,w, α, s) denote the value of the most senior CDO tranche with attachment
point α, spread s, RE loan weight w and RE loan intensity λ. Then, the following properties
hold:

∂

∂λ
V (λ,w, α, s) < 0 (28)

∂

∂w

∂

∂λ
V (λ,w, α, s) < 0 (29)

∂

∂s
V (λ,w, α, s) > 0,

∂

∂s

∂

∂λ
V (λ,w, α, s) < 0 (30)

∂

∂α
V (λ,w, α, s) > 0,

∂

∂α

∂

∂λ
V (λ,w, α, s) < 0 (31)

Proof. The properties all follow from no-arbitrage arguments. (28) and (29) are a direct con-
sequence of a senior CDO tranche being a long position in RE loans. For (30), inspection of the
tranche valuation formula shows that s enters only as a cash flow, while λ affects the expected
percentage tranche notional q, which is lower for higher λ, hence eliminating some of the posi-
tive effect of the spread change s. Finally, for (31), the tranche’s credit quality increases with
α, but the impact is smaller when λ increases.

Proof. (i) (25) follows directly from (28). For (26), observe first that

∂

∂α
V (λ,w, α, s(α)) = 0, (32)

with s(α) the fair spread for attachment point α. Because the credit quality increases with

a higher attachment point,
∂

∂α
s(α) < 0, it follows from (32) that

∂

∂α
q(u, λ,w, α) > 0, for all

u ∈ [0, T ] (that this holds for all u ∈ [0, T ] follows from the monotonicity of q in u). Because

q(u, λ,w, α) does not depend on s, this holds for λ̃ as well:
∂

∂α
q(u, λ̃, w, α) > 0. It follows that

∂

∂α
PV01RE =

∂

∂α
V (λ̃, w, α, s(α)) > 0.

This proves (25) and (26). It follows jointly from (25) and (26) that a lower attachment point
creates the greater exposure (sensitivity). Hence, for given w, the optimal attachment point is
as small as possible. By the rating constraint (23), a target credit quality requires a minimum
attachment point, which determines α∗(w), w ∈ [0, 1].

(ii) With the binding constraint (23), the optimisation problem is re-formulated as

max
w

PV01RE(λ,w, α∗(w), s(w, λ∗(w))),

such that λ∗(w) ≤ αmaxx.

Because V (λ,w, α∗(w), s(w,α∗)) = 1, for all w ∈ [0, 1], it holds that

∂

∂w
V (λ,w, α∗(w), s(w,α∗(w)) =

∂

∂w
V (λ,w, α, s) +

∂

∂s
V (λ,w, α, s)

(
∂s

∂w
+
∂s

∂α
· ∂α
∂w

)
(33)

+
∂

∂α
V (λ,w, α, s) · ∂α

∂w
= 0,

where s = s(w,α∗(w)) and α = α∗(w). It therefore suffices to consider

∂

∂w
V (λ̃, w, α∗(w), s(w,α∗(w)) =

∂

∂w
V (λ̃, w, α, s) +

∂

∂s
V (λ̃, w, α, s)

(
∂s

∂w
+
∂s

∂α
· ∂α
∂w

)
+

∂

∂α
V (λ̃, w, α, s) · ∂α

∂w
.
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Observing that
∂s

∂w
,
∂s

∂α
,
∂α

∂w
do not depend on λ, the properties (29), (30) and (31) from Lemma

5 imply
∂

∂w
V (λ̃, w, α∗(w), s(w,α∗(w)) < 0, which in turn establishes (27).

For the second part, because (23) is binding, it follows that q(T, λ, w, α∗(w)), is constant for
all w > 0, hence by the Implicit Function Theorem

∂α?(w)

∂w
= −

∂
∂wq(T, λ, w, α)
∂
∂αq(T, λ, w, α)

, (34)

at α = α∗(w). In part (i) it was established that
∂

∂α
q(T, λ, w, α) > 0. It remains to analyse

∂

∂w
q(T, λ, w, α). Increasing the weight w of RE loans in the asset pool can increase credit

quality e.g. by diversification or decrease credit quality, e.g. by concentration in the asset pool,
which in turn affects the expected percentage tranche notional q. If increasing w increases the
asset pool credit quality, either by diversification or because the RE loan PD is small compared
to the bank loan PD, then q increases. Vice versa, if increasing w decreases the asset pool credit
quality, either by concentration or because the RE loan PD is high compared to the bank loan
PD, then q decreases. Aside from q being monotone (increasing / decreasing) in w, the only
other possible case is that q is concave, i.e., small w diversifies, high w concentrates.

If q is monotone decreasing or concave,
∂

∂w
α∗(w) > 0 by (34), which implies that a higher

attachment point α creates a higher sensitivity (27) (in magnitude), and the attachment point
is constrained by the tranche size requirement (24), giving an inner solution w∗ ∈ (0, 1), or by

w∗ = 1. Similarly, If q is monotone increasing in w, then
∂

∂w
α∗(w) < 0, implying w∗ = 1 since

α∗(1) ≤ αmax.

5.3 Example

For a realistic analysis, the example considered uses publicly available market data as well as
size specifications of the GCPF. All data are specified in Table 1. The PV01 of a 10-year RE
loan priced at par is determined to be −8.7281 basis points by calculating a new hazard rate

λ̃ =
s+ 0.0001

1−R
from (10) and plugging this into (9).

Figure 2 shows the tranche attachment point α∗, tranche spread s, tranche delta ∆RE and
tranche sensitivity PV01RE , when (i) varying the number of RE loans, keeping the tranche
weight w = 10.61% fixed and (ii) varying the number of RE loans, keeping each loan’s weight
fixed. In case (i), the number of loans plays virtually no role, except for the attachment point,
which decreases as an increasing number of loans improves diversification in the asset pool. The
credit spread is constant, reflecting that variations in the cash flow structure compared to the
AAA-loan used in obtaining the optimal attachment point can be neglected.

Figure 3 shows the same properties when varying the weight w, while keeping number of RE
loans fixed at n = 5. Each graph shows three scenarios: (i) the base scenario with the observed
10-year PD of RE loans of 24.21%, (ii) a scenario with high credit quality RE loans (10-year PD
1%) and (iii) a scenario with low credit quality RE loans (10-year PD 40%). For comparison

purposes, the bank loan PD is 19.9%. The scenarios yield different shapes of
∂

∂w
α∗(w), cf. part

(ii) of Proposition 4. Depending on the choice of αmax, which determines the minimum required
senior tranche size, the optimal the optimal RE loan weight w∗ will be in (0, 1) in scenarios (i)
and (ii), whereas in scenario (iii), we always have w∗ = 1 if a solution exists, as the sensitivity
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Variable Value Comment

CDO maturity 10 years Average duration in GCPF around 10 years.

Median bank rating B+ Median of 30 banks in GCPF

Average RE loan rating B Median of 9 direct investments in GCPF

Bank PD (10 years) 19.9% Extrapolated to 10 years from 5 year default rate
of B-rated financials (10.5%)

RE loan PD (10 years) 24.21% Average cumulative default rate of B-rated global
corporates

Weight of RE loan in bank balance
sheet

1% Verification of several financial institutions in the
GCPF asset pool

Number of direct RE loans in asset pool 9 from GCPF

Percentage notional of all direct RE
loans

10.61% total percentage notional of direct investments in
GCPF

Senior tranche hitting probability
(AAA, 10 years)

0.70% Average cumulative default rate of AAA-rated
corporates, see Table 24 of S&P Global Ratings
(2019)

Asset correlation among RE loans 0.1170 Median of historical correlation among 1-day re-
turns of nine largest constituents in MSCI Global
Alternative Energy Index (USD), Dec 2018–Dec
2019, Source: finance.yahoo.com

Asset correlation among bank loans 0.1758 Median of historical correlation among 1-day re-
turns of nine largest constituents in MSCI Emerg-
ing Markets Financial Index (USD), Dec 2018–Dec
2019, Source: finance.yahoo.com

Asset correlation among bank and RE
loans

0.1434 Calculated in a one-factor model as√
0.1170 · 0.1758

Recovery rate 25% Corporate Asset recovery rates for senior secured
bonds in a AAA CDO tranche are estimated as
17% (Group 4 countries) and 32% (Group 3 coun-
tries), see Table 10 of S&P Global Ratings (2015),
where Group 3/4 countries are emerging market
countries

Equity / asset ratio (banks’ balance
sheets)

10% Approximation of several financial institutions in
the GCPF asset pool

Table 1: Parameters in example. Data sources: S&P Global Ratings (2019), S&P Global
Ratings (2015), Global Climate Partnership Fund (2019), finance.yahoo.com.

PV01RE (bottom right) increases with decreasing α∗(w). The base scenario with the data from
Table 1 is optimal if α∗(0.1061) = αmax, which translates into αmax = 0.3168 for n = 9 and
αmax = 0.3179 for n = 5.

An interesting observation from Figure 3 is that a low RE PD leads to a higher RE loan
sensitivity. Two effects contribute to this: first, a 1 bp change in the RE loan spread translates
differently into the credit quality change depending on the initial RE PD level; second, a low
RE PD implies a low attachment point α∗, which in turn increases the tranche’s sensitivity
to RE loans. The latter effect also implies that an increase in correlations between RE loans
and bank loans may fail to increase RE loan sensitivity, as the smaller diversification decreases
the senior tranche size. For example, for n = 5, α∗ shifts from 0.3179 in the base scenario to
0.6707 when correlations between bank loans and between RE loans are set to

√
0.5. In turn,

the PV01RE shifts from −0.1 basis points to −0.034 basis points.
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Figure 2: Tranche properties as a function of the number of loans. Solid: RE loan weight
w = 10.61% is fixed ( each loan has weight w/n); dashed: each loan has constant weight of
w/n = 3%. Top left: optimal attachment point α∗; top right: fair spread s; bottom left: tranche
delta ∆RE ; bottom right: tranche sensitivity PV01RE .

6 Conclusion and Outlook

We study public-private partnerships that have a CDO-like investment structure. Here, the
public sector invests in the equity tranche, while institutional investors would typically invest
in the senior tranches. The risk transfer from restructuring the asset pool’s cash flows makes
the investment attractive or accessible for risk-averse institutional investors. These types of
financial vehicles have been issued in a development finance context, with an explicit goal to
promote financing of RE projects in emerging and developing countries. The asset pool is
primarily composed of loans to regional banks, which in turn provide direct financing of RE
investments. Typically, only few direct investments in RE projects are contained in the asset
pool. As such, although the investment into the structured fund is channelled into RE projects,
this asset pool composition creates a sensitivity mainly to banks in developing and emerging
markets, and to the RE sector only to a lesser extent. Assuming that investors would also seek
exposure to RE, the paper provides an answer to questions revolving around the optimal asset
pool setup and structuring.

First, we develop a framework for studying this type of problem by introducing the LH++
model, a Merton-type model in which the asset pool consists of an infinitely granular homo-
geneous portfolio of bank exposures and one or several large direct RE investment. We derive
closed formulas for CDO tranche valuation, which in turn allow to calculate sensitivities such as
tranche deltas and PV01’s against RE loans. Increasing the proportion of the direct investment
increases the RE exposure. However, since direct investments are larger, this also decreases di-
versification in the asset pool, which potentially decreases the size of the senior tranche (which
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Figure 3: Tranche properties as a function of RE loan weight; number of loans is fixed at n = 5;
different PD’s for RE loans are assumed (see legend in top right graph). Top left: optimal
attachment point α∗; top right: fair spread s; bottom left: tranche delta ∆RE ; bottom right:
tranche sensitivity PV01RE .

is characterised by a target AAA rating).
In our stylised framework, we determine the optimal asset pool mix, which maximises RE

exposure given a minimum senior tranche size and a desired rating. We show that, in a typical
setting, where RE loans have a lower credit quality than bank loans, the optimal proportion of
RE loans has weight smaller than 1.

A Proof of Proposition 3

Lemma 6. Let X and Y be independent, standard normally distributed random variables. Then,

E
[
X eσXX

]
= σX eσ

2
X/2

E
[
X eσXX+σY Y

]
= σX eσ

2
X/2+σ2

Y /2.

Proof. The first identity is easily calculated to be

E
[
X eσX

]
=

1√
2π

∫
x eσXxe−x

2/2 dx =
1√
2π

∫
x eσ

2
X/2 e−

(x−σX )2

2 dx = σX eσ
2
X/2.
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Using this, the second identity is calculated as

E
[
X eσXX+σY Y

]
=

1√
2π

1√
2π

∫ ∫
x eσXX+σY ye−x

2/2e−y
2/2 dx dy

=
1√
2π

1√
2π

∫
eσY y e−y

2/2 dy

∫
x eσXx e−x

2/2 dx

= eσ
2
Y /2 σX eσ

2
X/2.

Proof of Proposition 3. Let WB and WR be the Brownian motions driving the respective asset

processes. In the calculations below, write WR = ρRBW
B
1 +

√
1− ρ2

RBZ, with Z ∼ N(0, 1)

independent of WB
1 . Recall that the variance of a log-normally distributed random variable eX

with X ∼ N(0, σ2) is eσ
2
(eσ

2 − 1). The variance of the right-hand side of (20) is given by

Var

(
ln(A1) +

R1

A1

)
= Var

(
(r − 1

2
σ2
B) + σBW

B
1 +

R0

A0
e(r−1/2σ2

R)+σRW
R
1 −(r−1/2σ2

B)−σBWB
1

)
= σ2

B +
R2

0

A2
0

e(σ2
B−σ

2
R) Var

(
e(ρRBσR−σB)WB

1 +
√

1−ρ2RBσRZ
)

+ 2σB
R0

A0
e(σ2

B−σ
2
R)/2 Cov

(
WB

1 , e
(ρRBσR−σB)WB

1 +
√

1−ρ2RBσRZ
)

= σ2
B +

R2
0

A2
0

e(σ2
B−σ

2
R)e(ρRBσR−σB)2+(1−ρ2RB)σ2

R(e(ρRBσR−σB)2+(1−ρ2RB)σ2
R − 1)

+ 2σB
R0

A0
e(σ2

B−σ
2
R)/2(ρRBσR − σB)e((ρRBσR−σB)2+σ2

R(1−ρ2RB))/2

= σ2
B +

R2
0

A2
0

e2σB(σB−ρRBσR)(eσ
2
B+σ2

R−2ρRBσBσR − 1) + 2σB
R0

A0
(ρRBσR − σB)eσ

2
B−ρRBσRσB .

For the correlation we calculate the required covariance. In the calculations we decompose
the (correlated) vector WT = (WB,i

1 ,WB,j
1 ,WR,i

1 ,WR,j
1 )T into a Cholesky factorisation C with

independent normals ZT = (Z1, . . . , Z4)T :

W = C · Z,

where

C =



1 0 0

ρB

√
1− ρ2

B 0 0

ρRB ρRB
1−ρB√
1−ρ2B

√
1+ρB−2ρ2RB

1+ρB
0

ρRB ρRB
1−ρB√
1−ρ2B

ρR+ρRρB−2ρ2RB√
(1+ρB)(1+ρB−2ρ2RB)

√
(1+ρB)(1−ρ2R)−4ρ2RB(1+ρR)

1+ρB−2ρ2RB


.
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The covariance is given by:

Cov

(
ln(Ai1) +

Ri1
Ai1
, ln(Aj1) +

Rj1
Aj1

)

= Cov
(
σBW

B,i
1 , σBW

B,j
1

)
+ 2Cov

(
σBW

B,i
1 ,

R0

A0
e(σ2

B−σ
2
R)/2+σRW

j,R
1 −σBW j,B

1

)
+ Cov

(
R0

A0
e(σ2

B−σ
2
R)/2+σRW

i,R
1 −σBW i,B

1 ,
R0

A0
e(σ2

B−σ
2
R)/2+σRW

j,R
1 −σBW j,B

1

)
= ρBσ

2
B + 2σB

R0

A0
e(σ2

B−σ
2
R)/2Cov

(
Z1, e

σR(c41Z1+c42Z2+c43Z3+c44Z4)−σB(c21Z1+c22Z2)
)

+
R2

0

A2
0

e(σ2
B−σ

2
R)Cov

(
eσR(c31Z1+c32Z2+c33Z3)−σBZ1 , eσR(c41Z1+c42Z2+c43Z3+c44Z4)−σB(c21Z1+c22Z2)

)
= ρBσ

2
B + 2σB

R0

A0
e(σ2

B−σ
2
R)/2(σRc41 − σBc21)e((σRc41−σBc21)2+(σRc42−σBc22)2+σ2

Rc
2
43+σ2

Rc
2
44)/2

+
R2

0

A2
0

e(σ2
B−σ

2
R)e((σRc31−σB+σRc41−σBc21)2+(σRc32+σRc42−σBc22)2+(σRc33+σRc43)2+σ2

Rc
2
44)/2

− R2
0

A2
0

e(σ2
B−σ

2
R)e((σRc31−σB)2+σ2

Rc
2
32+σ2

Rc
2
33+(σRc41−σBc21)2+(σRc42−σBc22)2+σ2

Rc
2
43+σ2

Rc
2
44)/2

= ρBσ
2
B + 2σB

R0

A0
eσ

2
B−ρRBσBσR(ρRBσR − ρBσB) +

R2
0

A2
0

e2σ2
B−2ρRBσBσR

(
eρBσ

2
B+ρRσ

2
R−2ρRBσBσR − 1

)
.

The correlation is obtained by dividing by the respective variance.
For the correlation of the modified bank’s balance sheet with a single RE loan, we obtain

Cov

(
ln(Ai1) +

Ri1
Ai1
, ln(R1)

)
= Cov

(
σBW

i,B
1 +

R0

A0
e(σ2

B−σ
2
R)/2+σRW

i,R
1 −σBW i,B

1 , σRW
j,R
1

)
= ρRBσBσR +

R0

A0
e(σ2

B−σ
2
R)/2σRCov

(
eσRW

i,R
1 −σBW i,B

1 ,W j,R
1

)
= ρRBσBσR + σR

R0

A0
e(σ2

B−σ
2
R)/2Cov

(
e(σRc31−σB)Z1+σRc32Z2+σRc33Z3 , c41Z1 + c42Z2 + c43Z3 + c44Z4

)
= ρRBσBσR + σR

R0

A0
e(σ2

B−σ
2
R)/2

{
(σRc31 − σB)c41e

((σRc31−σB)2+σ2
Rc

2
32+σ2

Rc
2
33)/2

+ σRc32c42e
(σ2
Rc

2
32+(σRc31−σB)2+σ2

Rc
2
33)/2 + σRc33c43e

(σ2
Rc

2
33+(σRc31−σB)2+σ2

Rc
2
32)/2

}
= ρRBσBσR + σR

R0

A0
e(σ2

B−σ
2
R)/2 ((σRc31 − σB)c41 + σRc32c42 + σRc33c43) e((σRc31−σB)2+σ2

Rc
2
32+σ2

Rc
2
33)/2

= ρRBσBσR + σR
R0

A0
eσ

2
B−ρRBσBσR(ρRσR − ρRBσB).

The correlation is obtained by dividing by the respective standard deviations.
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K. Düllmann, M. Scheicher, and C. Schmieder. Asset correlations and credit portfolio risk: an
empirical analysis. Journal of Credit Risk, 4(2):37–63, 2008.

Global Climate Partnership Fund. Quarterly Report Q3 2019. Report, 2019.

M. B. Gordy. A risk-factor model foundation for ratings-based bank capital rules. Journal of
Financial Intermediation, 12(3):199–232, 2003.

A. Greenberg, D. O’Kane, and L. Schloegl. LH+: a fast analytical model for CDO hedging and
risk management. Lehman Brothers Quantitative Credit Research Quarterly, Q2:19–31, 2004.

J. Gregory and J.-P. Laurent. In the core of correlation. RISK, 17(10):87–91, 2004.

J. Hull and A. White. Dynamic models of portfolio credit risk: A simplified approach. Working
Paper, May 2007.

J. Hull and A. White. The risk of tranches created from mortgages. Financial Analysts Journal,
66(5):54–67, 2010.

N. Krauss and I. Walter. Can microfinance reduce portfolio volatility? Economic Development
and Cultural Change, 58(1):85–110, 2009.

D. X. Li. On Default Correlation: A Copula Function Approach. The Journal of Fixed Income,
pages 43–54, March 2000.

R. C. Merton. On the pricing of corporate debt: The risk structure of interest rates. The
Journal of Finance, 29(2):449–470, May 1974.

D. O’Kane. Modelling Single-name and Multi-name Credit Derivatives. Wiley, 2008.

S&P Global Ratings. Global methodologies and assumptions for corporate cash flow and syn-
thetic CDOs. Report, September 2015.

S&P Global Ratings. 2018 annual global corporate default and rating transition study. Report,
April 2019.

O. Vasicek. Probability of loss on loan portfolio. KMV Corporation, 1987.

O. Vasicek. Limiting loan loss probability distribution. KMV Corporation, 1991.

21



IRTG 1792 Discussion Paper Series 2020

For a complete list of Discussion Papers published, please visit
http://irtg1792.hu-berlin.de.

001 ”Estimation and Determinants of Chinese Banks’ Total Factor Efficiency: A New
Vision Based on Unbalanced Development of Chinese Banks and Their Overall Risk”
by Shiyi Chen, Wolfgang K. Härdle, Li Wang, January 2020.
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