
Kolesnikova, A. et al.

Working Paper

Can Deep Learning Predict Risky Retail Investors? A Case
Study in Financial Risk Behavior Forecasting

IRTG 1792 Discussion Paper, No. 2019-023

Provided in Cooperation with:
Humboldt University Berlin, International Research Training Group 1792 "High Dimensional
Nonstationary Time Series"

Suggested Citation: Kolesnikova, A. et al. (2019) : Can Deep Learning Predict Risky Retail Investors?
A Case Study in Financial Risk Behavior Forecasting, IRTG 1792 Discussion Paper, No. 2019-023,
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional
Nonstationary Time Series", Berlin

This Version is available at:
https://hdl.handle.net/10419/230799

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/230799
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

IRTG 1792 Discussion Paper 2019-023

Can Deep Learning Predict Risky
Retail Investors? A Case Study in
Financial Risk Behavior Forecasting

A. Kolesnikova *

Y. Yang *2

S. Lessmann *

T. Ma *3

M.-C. Sung *3

J.E.V. Johnson *3

* Humboldt-Universität zu Berlin, Germany
*2 University College London, United Kingdom
*3 University of Southampton, United Kingdom

This research was supported by the Deutsche
Forschungsgesellschaft through the

International Research Training Group 1792
”High Dimensional Nonstationary Time Series”.

http://irtg1792.hu-berlin.de
ISSN 2568-5619

In
te
rn
a
ti
o
n
a
l
R
es
ea

rc
h
T
ra
in
in
g
G
ro
u
p
1
7
9
2

http://irtg1792.hu-berlin.de

Can Deep Learning Predict Risky Retail Investors? A Case Study in
Financial Risk Behavior Forecasting

A. Kolesnikovaa, Y. Yangc, S. Lessmanna, T. Mab, M.-C. Sungb,∗, J.E.V. Johnsonb

aSchool of Business and Economics, Humboldt-University of Berlin
bSouthampton Business School, University of Southampton

cDepartment of Computer Science, University College London

Abstract

The paper examines the potential of deep learning to produce decision support models from structured,

tabular data. Considering the context of financial risk management, we develop a deep learning model

for predicting whether individual spread traders are likely to secure profits from future trades. This

embodies typical modeling challenges faced in risk and behavior forecasting. Conventional machine

learning requires data that is representative of the feature-target relationship and relies on the often

costly development, maintenance, and revision of handcrafted features. Consequently, modeling highly

variable, heterogeneous patterns such as the behavior of traders is challenging. Deep learning promises

a remedy. Learning hierarchical distributed representations of the raw data in an automatic manner

(e.g. risk taking behavior), it uncovers generative features that determine the target (e.g., trader’s

profitability), avoids manual feature engineering, and is more robust toward change (e.g. dynamic market

conditions). The results of employing a deep network for operational risk forecasting confirm the feature

learning capability of deep learning, provide guidance on designing a suitable network architecture and

demonstrate the superiority of deep learning over machine learning and rule-based benchmarks.

Keywords: risk management, retail finance, forecasting, deep learning

1. Introduction

The paper applies recently developed deep learning (DL) methods to forecast the behavior of retail

investors in the spread-trading market. Market makers depend on accurate forecasts of traders’ future

success to manage financial risks. Through developing a DL-based forecasting model and confirming the

profitability of a model-based hedging strategy, we provide evidence that characteristic features of DL

generalize to the structured data sets commonly employed in retail finance and decision support.

DL methods operate in a stage-wise manner. For example, in a deep neural network (DNN), each

layer receives an input from previous layers, learns a high-level representation of the input, and passes

the representation (i.e., output) to a subsequent layer.

A popular example of the stage-wise approach is that of face recognition. To detect faces in an

image, the first layers in a DNN learn low-level concepts such as lines and borders from raw pixels.

∗Corresponding author
Email addresses: kolesnikova.alisa.n@gmail.com (A. Kolesnikova), yaodong.yang@outlook.com (Y. Yang),

stefan.lessmann@hu-berlin.de (S. Lessmann), tiejun.ma@soton.ac.uk (T. Ma), M.SUNG@soton.ac.uk (M.-C. Sung),
J.E.Johnson@soton.ac.uk (J.E.V. Johnson)

Preprint submitted to Elsevier September 16, 2019

Deeper layers generalize lower layer outputs to more complex concepts such as squares and triangles

that eventually form a face [1]. An analogous example in decision support could be corporate credit

risk modeling. Bankruptcy prediction models estimate default probabilities on the basis of ratios of

accounting variables (e.g., total assets/total liabilities) [2]. In a DL framework, such ratios represent a

low level representation. Using the balance sheet as (raw) input, lower layers in a DNN can relate a

variety of statement variables and calculate informative ratios in a data-driven manner. A higher level

representation of the data could then include the trend in a financial ratio or inter-dependencies between

ratio variables. The specific representation is calculated autonomously.

A hierarchical composition of representations of different complexities enable a DNN to learn abstract

concepts such as that of a delinquent borrower. Representation learning also enhances the ability of a

model to extract patterns that are not well represented in the training data, which is a problem for other

data-driven models [3]. DL methods have delivered excellent results in applications such as computer

vision, language processing, and many others [4]. This success has established the effectiveness of DL-

based feature learning in applications that rely on unstructured data [5].

Applications of conventional - ’shallow’ - machine learning (ML) are manifold. Marketing decision

models, for example, support all stages of the customer life cycle including response modeling, cross-

/up-selling [6], and churn prediction [7]. Financial institutions use ML to anticipate financial market

developments [8], predict the solvency of corporate borrowers [9], or inform credit approval decisions

[10]. Such applications rely on structured data such as past customer transactions, price developments,

or loan repayments. It is not obvious that the success of DL in text mining, image recognition and other

tasks that involve unstructured data generalizes to decision support applications where structured data

prevails. Therefore, the objectives of the paper are to examine the effectiveness of DL in decision support,

to test whether its feature learning ability generalizes to the structured data sets typically encountered

in this field, and to offer guidance on how to setup a DL-based decision support model.

We pursue our objectives in a financial risk management context. Using data from the spread-trading

market, we predict the profitability of individual traders. The modeling goal is to identify traders that

pose a high risk to the market maker, and recommend a hedging policy that maximizes the marker maker’s

profits. Beyond the utility of such a policy for a spread-trading company, the trader risk prediction task

represents challenges that are commonly encountered in ML-based decision support.

A first challenge is class imbalance. Adverse events such as borrower default or customer churn

represent minorities in their populations, and this impedes ML [7]. A second challenge called concept

drift arises in dynamic environments. ML models infer (learn) a functional relationship between subject

characteristics (e.g., previous trades of a client) and a prediction target (e.g., trader profitability) from

past data. Changes in the environment render this relationship more volatile and harder to infer. The

curse-of-dimensionality is another modeling challenge. Corporate data warehouses provide a huge amount

of information about modeling subjects (e.g., traders) and it is difficult to learn generalizable patterns in

the presence of a large number of features [11]. Finally, the success of ML depends on the availability of

informative features. Feature engineering is carried out manually by domain experts. Given high labor

costs, a shortage of skilled analysts and the need to revise hand-crafted features in response to external

2

changes (e.g., in trader behavior), manual feature engineering decreases the efficiency of ML and becomes

an impediment to ML-based decision support.

The common denominator of the modeling challenges is that they reduce the representativeness of the

training data. Being a data-driven approach, ML suffers from reduced representativeness, which suggests

that the challenges diminish the effectiveness and efficiency of data-driven ML models. Considering our

application setting as an example, the representation learning ability of DL could help to identify a more

generic representation of the trading profile of high-risk traders than that embodied in hand-crafted

features. More generality in the inferred feature-target-relationship would offer higher robustness toward

external variations in trading behavior; for example, variations introduced by changes in business cycle,

market conditions, company operations, etc. Replacing the need for costly manual feature engineering

would also raise the efficiency of model-based decision support.

Examining the degree to which DL remedies common modeling challenges in decision support, the

paper makes the following contributions. First, it is one of the first studies to examine the effectiveness

of DL in conjunction with structured, individual-level behavioral customer data. Predicting individual

trader’s risk taking behavior, we focus on retail finance, which is a pivotal application area for operations

research [12] that, to our knowledge, no previous DL study has considered. Empirical results provide

evidence that DL predicts substantially more accurately than ML methods. Second, we demonstrate the

ability of DL to learn informative features from operational data in an automatic manner. Prior research

has confirmed this ability for unstructured data [1]. We expand previous results to transactional and

behavioral customer data. This finding is managerially meaningful because many enterprises employ

structured data for decision support. Third, the paper contributes to financial risk taking forecasting

practice in that it proposes a DNN-based approach to effectively manage risk and inform hedging decisions

in a speculative financial market.

The DL methodology that we employ in the paper is not new. However, DL and its constituent

concepts such as distributed representations are rarely explained in the language of business functions.

Business users can benefit from an understanding of DL concepts to enable them to engage with data

scientists and consultants on an informed basis. A better understanding might also lead to more appreci-

ation of formal, mathematical models and help to overcome organizational inertia, which is a well-known

impediment to fact-based decision support [13, 14]. Against this background, a final contribution of the

paper is that it increases awareness of DL in business through evidencing its potential and providing a

concrete recipe for how to set up, train, and implement a DNN-based decision support approach. To

achieve this, we elaborate on the methodological underpinnings of DL and the decision model we devise

for trader risk classification.

2. Related Work

The literature on DL is growing at high pace. A comprehensive overview of the state-of-the-art is

available in recent surveys [1, 4, 5]. We focus the review of related literature to DL applications in

finance. Table 1 analyzes corresponding studies along different dimensions related to the forecasting

setting, underlying data, and neural network topology.

3

To clarify the selection of papers, we acknowledge that DL has other applications in finance beyond

forecasting including index tracking [15] or modeling state dynamics in limit-order-book data [16]. Fur-

thermore, DL has been applied to generate financial forecasts from textual data [17]. Table 1 does not

include such studies as they do not concentrate on prediction or consider a different source of data.

Finally, one may argue that a recurrent neural network (RNN) is a DNN by definition, because

recurrent cells exhibit temporal depth. With the rise of DL, gated RNNs such as LSTM (long short-term

memory) gained popularity and are often characterized as DNNs [18]. This is not necessarily true for

their predecessors, some of which have been used in finance [19]. Table 1 analyzes studies that used

contemporary gated RNNs and omits those that use earlier types of RNNs.

Table 1 shows that the majority (roughly 60%) of previous studies forecast developments in financial

markets, such as price movements [20], volatility [21] or market crashes [22]. Applications in risk analytics

such as financial distress prediction [23] or credit scoring [24] are also popular. Considering the objectives

of forecasting, columns two and three reveal that previous studies have not considered forecasting human

behavior, which is the focus of this paper.

The type of input data represents a second difference between most previous studies and this paper.

DNNs that forecast financial market prices typically receive lagged prices as inputs. For example, [20]

and [18] use minute- and day-level price returns as inputs. By contrast, the risk modeling task we face

consists of a dynamic regression problem with different types of predictor variables (see Section 5.1).

The feature columns in Table 1 show that few prior studies mix numerical and discrete input variables.

A core feature of DNNs is the ability to automatically extract predictive features from the input

data [25]. One objective of this paper is to confirm the feature learning capability in a risk management

context. A substantial difference in the type of input data has implications for feature learning. It is

not obvious that results observed in a time series setting generalize to a dynamic regression setting with

diverse input variables. With respect to risk management, we observe from the column profit simulation

in Table 1 that most previous work has not examined the economic implications of a DL-based risk

management approach; [24] being an exception.

In addition to the application setting and input data, a third difference between most previous work

and this study concerns the architecture of the DNN. Table 1 sketches the topology of previous networks in

its three rightmost columns. Given our focus on forecasting studies, every network includes a supervised

learning mechanism, meaning that weights in the network are trained through minimizing the empirical

loss on the training data set [26]. This is typically implemented by means of a fully-connected output

layer. This layer requires only one unit with a linear or softmax activation function to solve regression

and classification problems, respectively. Table 1 shows that purely supervised learning networks prevail

in previous work. From this observation, we conclude that more research into networks with supervised

and unsupervised layers is desirable.

In total, nine studies consider unsupervised pre-training. The majority implement pre-training using

a deep belief network. Long before pre-training was popularized, a seminal study proposed self-organizing

maps for unsupervised time series pattern extraction [27]. Stacked denoising auto-encoders (SdA), the

approach we use for feature learning, have received little attention. Evidence of their effectiveness in risk

4

analytics is originally provided in this paper.

In summary, the contribution of our work to literature emerges through a combination of charac-

teristics concerning the forecasting setting, the data employed, and the way in which we devise and

assess the DL-based forecasting model through using state-of-the-art approaches for network training

and unsupervised pre-training and evaluation of the profitability of model-based hedging decisions.

The study closest related to our work is [24]. The authors estimate a DNN from a data set of

over 3.5 billion loan-month observations with 272 variables relating to loan characteristics and local

economic factors to support portfolio management. To that end, [24] model the transition probabilities of

individual loans between states ranging from current over different delayed payment states to delinquency

or foreclosure. Our study differs from [24] in terms of the application setting and DL methodology.

The DL models of [24] consists of feed-forward networks of up to 7 layers (and ensembles thereof).

Deep feed-forward networks are a generalization of the three-layer networks widely used in previous work

([28]). The DNN architecture proposed here is different. It uses multiple layers of different types of units

and relies on unsupervised pre-training to extract predictive features. Pre-training elements provide

distinctive advantages and have been found effective in financial applications [15]. Consequently, we

further advance the methodology of [24].

Concerning the application, the mortgage risk modeling setting of [24] as well as conventional credit

scoring settings [12] differs substantially from trader risk prediction. A credit product can be considered

a put option with the lender having the right to grant credit, but no obligation to do so. Credits may

also be secured by collateral and, most importantly, it is possible to hedge risks while still earning money

from commissions. However, we consider a spread-trading context where the market maker is obliged to

accept orders from its clients. These orders are similar to futures contracts with an arbitrary strike date.

In addition, unlike in the money lending business where a customer will be given a credit limit, in the

spread trading market, informed traders or insiders can make unlimited profits from the market marker.

Consequently, the market maker faces the risk of adverse selection. At the same time, the economics

of the spread-trading market require the market maker to hedge risks very selectively (because hedging

quickly reduces revenues to zero). Thus, our forecasting task is to identify those traders who pose a

substantial risk to the market maker.

5

Table 1: Summary of Related Work on DL in Finance

Area1 Subject2 Target Time

Series

Time Window Obser-

vations

Features3 Horizon Study Design Data part.4 Profit

sim.

Supervised

Layers5

Unsup.

Pretrain.5

Architecture6

[27] MM Exr Direction 5 9/1973 - 5/1987 3,645 2 con day rolling window 100 / 30 RNN SOM x-7-2-o

[29] Exr Return 3 1976 - 2004 < 1, 000 5 con week temporal split 0.7 / 0.3 FC DBM x-20-20-20-o

[21] Ind Volatility 1 10/2004 - 7/2015 2,682 25 (t3) con day temporal split 0.7 / 0.3 LSTM x-1-o

[30] Fut Direction 43 3/1991 - 9/2014 50 9895 con 5 min rolling window 25000 / 12500 yes FC x-1000-100-100-

100-o

[20] Fut Return 4 1/2014 - 9/2015 100 150 con minute rolling window 15000 / 5000 yes RLRNN x-128-128-128-

20-o

[31] Ind Return 6 7/2008 - 9/2016 2,079 19 (t4) con day rolling window 2y / 1q / 1q7 yes LSTM SdA x-10-10-10-10-

10-1-1-1-1-1-o

[32] Sto Better S&P500 ∼500 1/1992 - 10/2015 380 31 con day rolling window 750 / 250 yes FC x-31-10-5-o

[33] Co WTI crude oil

spot price

1 1/1986 - 5/2016 365 200 con month temporal split 0.80 / 0.20 FC SdA x-100-10-o

[18] Sto Better S&P500 ∼500 1/1992 - 10/2015 380 1 (t240) con day rolling window 750 / 250 yes LSTM x-25-o

[34] Ind Return 2 1/2000 - 7/2017 4,3 6 (t20) con day temporal split 0.45 / 0.55 yes LSTM+

LSTM+FC

x-(x1-5-3 —

x2-4-2)-2-o

[22] Ind Crash 2 1/1996 - 12/2017 5,4 131 con 1 | 5 days temporal split 0.66 / 0.33 FC x-64-32-8-2-o

[35] Ind Volatility 1 1/2001 - 1/2017 3,963 6 (t22) con day temporal split 0.68 / 0.32 LSTM+FC x-10-4-2-5-o

[36] Sto Better S&P 300 1/1993 - 5/2015 6300 ≤ 592 con day rolling window 504 / 126 yes FC DBN x-148-74-o

[37] RA Ent Insolvency N.A. 2002 - 2006 1,2 30 con Year random split 800 / 400 FC DBN x-500-500-1000-o

[38] Ent Insolvency N.A. 2001 - 2011 ∼ 83, 000 180 con Year rolling window 04.01.2001 FC DBN x-1000-1000-

1000-o

[39] Ent Firm perf. 22 2000 - 2015 286 15 con Year temporal split 10. Mrz FC DBN x-200-200-200-

200-o

[40] Ent Rating N.A. 1/2016 - 12/2016 661 11 mix N.A. cross-val. 10 fold FC DBN Not specified

[24] Mor Default N.A. 1/1995 - 6/2014 3.5 ∗ 109 272 mix month temporal split 214 / 19 yes FC x-200-140-140-

140-140-o

[23] Ent Insolvency 286 2016 - 2017 117,019 181 con N.A. random split 0.6/0.2/ 0.2 FC x-50-50-1

[41] FD CC Fraud 2 5/2015 - 5/2015 1.65 ∗ 107 30 (t10) mix N.A. temporal split 0.43/ 0.08/ 0.49 LSTM x-100-100-100-o

1 MM: financial market modeling, RA: risk analytics, FD: fraud detection

2 Exr: exchange rate of a pair of currencies, Ind: financial market index, Fut: future contract, Sto: individual stock, Co: commodity, Ent: enterprise, Mor: mortgage, CC: credit card.

3 Number of input features and their type using abbreviations con (continuous feature) and mix (continuous and categorical features). For studies that use LSTM networks we also report the length of a time-lagged input sequence using the notation (tl) where t

means time and l is the number of lags. For example, [3] consider 25 features and feed the last three observations (days) of each feature into their LSTM.

4 Partitioning of the data for model training, validation, and testing. Fractional numbers represent percentages with respect to the size of the data set while values greater zero depict absolute numbers of observations. The notation is training set size / validation

set size / test set size. Not all studies use separate validation data. Then, the two values given in the column represent training set size / test set size.

5 RNN: recurrent neural network, FC: fully-connected layer, LSTM: Long-short-term-memory, RLRNN: reinforcement learning RNN, SOM: self-organizing-map, SdA: stacked denoising auto-encoders, DBM: deep belief network.

6 Symbols x and o represent the multivariate input and scalar output of the network. Numbers give the size of hidden layers. For studies that use pre-training, hidden layer sizes refer to units of the unsupervised layers (e.g., DBM, SOM, or SdA). Exceptions and

special cases for complex topologies exists and we elaborate on these in the discussion of the table.

7 The notation is slightly different from other studies. The authors use a rolling window evaluation to train, validate, and test their models using daily prices from two years, one quarter, and one quarter, respectively.

3. Risk Taking and Behavior Forecasting in the Spread-Trading Market

Spread trading is becoming increasingly significant. Forty per cent of the 1.2 trillion traded annually

on the London Stock Exchange is equity derivative related and 25 per cent of this (120 billion) relates

to spread trading [42].

Spread trading often refers to pairs trading of stocks or to trading spreads in the futures market

[43]. However, our study focuses on the form of spread trading which relates to retail contracts for

difference (CFD). In this market, a retail investor and a market maker enter a contract related to a

specified financial instrument (e.g. a share, commodity or an index) and at the end of the contract they

exchange the difference between the closing and opening price of that financial instrument. Consequently,

investors trade on the direction and magnitude of movements of a financial instrument. For example,

a client might place a long order on the S&P500 with stake size $10 per point. If the S&P500 rises by

a particular increment, the client makes a profit of $10 ∗ increment; otherwise s/he loses this amount.

The market maker continuously quotes bid and ask prices for marketable instruments. Unlike brokers,

who help clients to trade with other investors, market makers buy or sell financial instruments from their

own inventory. Provided clients meet a margin requirement, they can open and close positions at any

time. The market maker is obliged to accept these orders and faces the risk of adverse selection.

Forecasting which traders pose the most risk (i.e. those who are likely to make the most profit)

and deciding which risks to hedge into the main market is crucial for market makers. Informed traders

might take advantage of inside information and leave the market maker with positions against a market

rally. In theory, the potential loss of the market maker from one trade is unbounded. For example, IG

Group, the largest retail financial services provider in UK, recently lost 30 million GBP due to deficient

risk control and inflexible hedging strategies. As a result of similar problems, FXCM, the largest market

maker on the global spot FX market, went bankrupt1.

The spread between quoted bid and ask prices is the main source of revenue of the market maker. For

liquid markets, such as those for the S&P500 or for the USD/GBP or EUR/GDP, the spread is greater in

the spread trading market than in the underlying market. However, for less liquid financial instruments

(e.g. the DAX or FTSE100 index) the spread is less than that offered in the underlying market. This

later situation is often faced by spread trading firms when they need to place large volume transactions

into the underlying market for less liquid financial instruments. If the market maker hedges a trade, they

lose the potential profit from the spread whether or not the hedging was necessary. The market maker

also faces transaction costs to hedge a position, including commission and the higher spreads in some

markets when they seek to hedge large volumes. Therefore, designing a predictive classification model

that distinguishes A-book clients (i.e. those who pose most risk to the market maker) from B-book

clients (those who pose less risk) is vital. The market maker will hedge positions from A-book clients

to protect against losses and will take the risk of the positions from B-book clients to increase profits.

Typically, 90% of the total revenues come from B-book clients [44].

1See https://www.forbes.com/sites/steveschaefer/2015/01/16/swiss-bank-stunner-claims-victims-currency-broker-

fxcm-bludgeoned/#7e94f5466de0

7

The decision task under study is whether to hedge an incoming trade. This task translates into

a classification problem, which we address through developing a DNN to predict high risk (A-book)

traders. Provided the DNN learns patterns from observed trading behavior that facilitate an accurate

prediction of a trader’s future successes, it can assist the market maker through recommending hedging

decisions and enhancing risk management in daily operations. Figure 1 illustrates the DNN-enabled

hedging strategy.

Figure 1: Workflow of how hedge strategy works for market makers

3.1. Trader Classification and Hedging Strategy

The definition of an A-book client is subjective and depends on the business strategy of the market

maker. The company which provided the data prefers to remain anonymous (we refer to them hereafter

as STX), but is a large player in the UK spread-trading market. From interviews with their front-desk

dealers, who engage in day-to-day risk management, we found that STX at the time of the study, defined

a client i to be a high risk trader if s/he secured a return greater than 5% from her previous 20 trades.

The strategy of STX was to hedge the trades of these clients.

The deployed hedging strategy is dynamic, since STX determines the status of a client (A- or B-book)

from the performance of their previous 20 trades. Therefore, client status can change due to a single

trade. Accordingly, we frequently observe a situation where STX takes the risk of trade j of client i while

hedging against trade j + k of client i. In a speculative market, the overall return of a set of past trades

can give misleading guidance to the future profitability of a trader. For example, a skilled trader, who

follows a consistent strategy, shows high trading discipline, routinely uses and updates stop-loss limits,

etc., can regularly lose money due to the randomness of the environment. Similarly, a poor trader,

who violates all the above principles, occasionally makes a profit. This suggests that a trader’s past

performance is not necessarily a reliable signal of their true ability. Consequently, the goal of developing

a client classification model is to generate a superior signal for hedging decisions by accounting for all

other characteristics available in the data.

We develop a DNN to learn the latent nature of a trader from past trading data. The target concept,

trader ability, is highly variable, corrupted by noise, and difficult to accommodate in a pre-defined, static

set of trader characteristics. Therefore, it will be important for the DNN to distill, from transactional

data, high-level distributed representations of the target concept, which capture the underlying generative

8

factors that explain variations in trading behavior. In this regard, success in trader classification will

evidence the ability of DL to automatically extract informative features.

3.2. Trader Behavior Prediction and Decision Support

It is not obvious that representation learning is effective in risk management. Applications such as,

credit scoring, churn prediction or trader classification involve the forecasting of human behavior. One

would expect the maximal attainable accuracy in a behavior forecasting model to be less than in, e.g., face

detection. For example, the prediction target is less clearly defined (e.g., STX used a 5% threshold but

this is subjective) and the feature-target relationship is typically weak. Our trader behavior forecasting

study aims to clarify the potential of representation learning and DL in decision support.

We argue that the prediction task is representative of a range of modeling challenges in decision

support because it exhibits several characteristics that often occur in corporate applications of data-

driven prediction models. More specifically, we face challenges that diminish the representativeness of

the training data. First, in response to previous gains and losses and changes in the macro-environment,

the behavior of individual traders can be variable, erratic and dynamic. Second, detailed, time-ordered

information about individual traders, asset prices and their underlying fundamentals and broader indica-

tors of market sentiment (e.g., economic growth) are readily available, which leads to high dimensionality.

Third, the specific way in which variables relate to each other and govern traders’ profits is complex,

nonlinear, and likely to evolve over time. Automatic feature extraction, if successful, is a promising way

to cope with these challenges. Fourth, the spread trading setting displays class imbalance in that only a

few traders succeed in securing systematic positive returns above 5%, while the vast majority of clients

lose money. Last, effective risk management requires accurate predictions at the level of an individual

trader. Accuracy is a general requirement in predictive decision support.

4. Methodology

In view of the scarcity of DL applications in the risk analytics literature, we revisit principles of DL

and detail how we configure the DNN to classify spread traders into A- or B-book clients. The online

Appendix elaborates on these concepts and DNN training.

4.1. Principles of Deep Learning

DL aims at learning multiple levels of representations from data, where higher levels represent more

abstract concepts. A deep architecture with multiple layers of abstraction and its ability to learn dis-

tributed representations provides several advantages over conventional shallow ML methods and we

discuss these below.

The deep architecture. ML methods learn a functional relationship between variables, which character-

ize the relationship between an observation and a prediction target. High variability of this function

complicates the ML approach and may lead to poor generalization. Sources of high variability include

external shocks to the environment in which a decision model operates. Learning theory suggests that

9

to represent a functional relationship, a learning machine with depth k needs exponentially more com-

putational units than a machine with depth k + 1 [25]. The depth of commonly-used machine learning

methods is as follows [3]: linear and logistics regression (depth 1); boosting and stacking ensembles:

depth of base learner (depth +1, one extra layer for combining the votes from base learners); decision

trees, one-hidden-layer artificial neural networks (ANNs), support vector machines (depth 2); the visual

system in the human brain (depth 5-10, [45]).

The concept of depth explains a large number of empirical findings related to, for example, ANNs or

support vector machines outperforming simple regression models or ensemble classifiers outperforming

individual learners [46]. Increased depth allows these methods to implicitly learn an extra level of repre-

sentation from data [3]. Additional levels facilitate generalization to new combinations of the features,

which are less represented in the training data. Enlarged capacity also allows the learning machine to

capture more variations in the target function, which discriminates classes accurately. Furthermore,

the number of computational units a model can afford is severely restricted by the number of training

examples. As a result, when there are variations of interest in the target function, shallow architectures

need extreme complexity (large amounts of computational units) to fit the function. Consequently, they

need exponentially more training examples than a model with greater depth [3].

Distributed Representations. DL methods learn distributed representations from data. An example of

a distributed representation is principal component analysis (PCA). PCA re-orients a data set in the

direction of the eigenvectors, which are ordered according to their contribution to explained variation.

This is a distributed representation where the raw variables collaborate to generate a principle component.

In predictive ML, principle components can replace the original variables. The functional relationship

to learn is then that between the target variable and the principle components. This can simplify the

learning task, increase predictive accuracy, and facilitate feature reduction [47]. However, ML methods

learn local, non-distributed representations. Using the raw variables in a data set, they partition the

input space into mutually exclusive regions. For example, support vector machines infer a decision

boundary from the local training examples of adjacent classes that are closest to each other.

The goal of ML is to classify novel examples, which are not part of the training set. However, the

training data may lack representativeness (e.g., because of a change in the environment). An advantage

of distributed representations is that they are better able to accommodate new observations that the

training data does not represent well. Consider our trader classification problem as an example: Traders

exhibit different trading styles; they use different strategies, follow different stop-loss rules, etc. Assume

traders are split into 5 different clusters, with traders in the same cluster sharing a trading style. Us-

ing a non-distributed representation, we need 5 different features to exclusively represent each cluster,

0 = 00000, 1 = 01000, ..., 4 = 00001. A distributed representation requires only dlog2 5e = 3 features to

model the clusters (as a binary code), 0 = 000, 1 = 001, ..., 4 = 100. Using three distributed features, this

representation can also accommodate a new type of trader (i.e., using trading strategies that have not

been employed in the training sample): 5 = 101. This exemplifies an advantage of distributed represen-

tations, namely that the number of patterns that the representation can distinguish grows exponentially

10

with the number of features. However, for non-distributed representations, this number grows, at best,

linearly.

4.2. Building the Deep Neural Network

DL methods consist of multiple components with levels of non-linear transformations. A typical

instance is a neural network with several hidden layers [32, 24]. Training a DNN requires solving a

non-convex optimization problem, which is difficult because of the vanishing gradient problem [48].

Gradient vanishing prohibits propagating error information from the upper layer back to lower layers

in the network, so that connection weights in lower layers cannot be adapted [49]. As a result, the

optimization will often terminate in poor local minima. Remedies to this problem include unsupervised

pre-training, parametric Rectifier Unit (ReLu), Xavier initialization, dropout, and batch normalization.

We take advantage of these techniques to develop a trader classification DNN for risk management.

Below, we introduce pre-training and dropout. Interested readers find a similar description of the other

concepts in the online Appendix.

4.2.1. Unsupervised Pre-Training

The goal of pre-training is to find invariant, generative factors (i.e., distributed representations),

which explain variations in the data and amplify those variations that are important for subsequent

discrimination. Through a sequence of non-linear transformations, pre-training creates layers of inherent

feature detectors without requiring data labels. This facilitates a local learning of connection weights.

Avoiding a propagation of error information through multiple layers of the network, pre-training helps to

overcome the vanishing gradient problem. Stacking multiple layers of progressively more sophisticated

feature detectors, the DNN can be initialized to sensible starting values. After discovering a structural

relationship in the data, one can then add a supervised learning technique (e.g., logistic regression)

on top of the pre-trained network and tune parameters using back-propagation. Unsupervised pre-

training, where the use of the target label is postponed until the fine-tuning stage, is especially useful in

management decision support where class imbalance is a common problem [10].

Two classical implementations of pre-training are deep belief networks (DBN), which are pre-trained

by restricted Boltzmann machine [50], and stacked denoising autoencoders (SdA), which are pre-trained

by the autoencoder [48]. Both strategies minimize an approximation of the log-likelihood of a generative

model and, accordingly, typically show similar performance [51, 52]. This, together with the fact that

deep belief networks have already received some attention in the risk analytics literature (see Table 1),

led us to use the framework of the stacked denoising autoencoder [52].

Denoising Autoencoder. The denoising autoencoder (dA) learns a distributed representation (namely

the ”code”) from input samples. Suppose we have N samples and each sample has p features. Receiving

an input x ∈ Rp, the learning process of a dA includes four steps:

Step 1: Corruption. The dA first corrupts the input x. By sampling from the Binomial distribution

(n = N, p = pq) , (where the corruption rate qp is a hyper parameter that needs tuning outside the

11

model), the dA randomly corrupts a subset of the observed samples and deliberately introduces noise.

For example, if the input features a binary, corruption corresponds to flipping bits.

Step 2: Encoder. The dA deterministically maps the corrupted input x̃ into a higher-level represen-

tation (the code) y ∈ Rk. The encoding process is conducted via an ordinary one-hidden-layer neural

network (the number of hidden units k is a hyper parameter that needs tuning outside the model). With

weight matrix W , biases b, and encoding function h(·), e.g., sigmoid function, y is given as:

y = h(W · x̃ + b) (1)

Step 3: Decoder. The code y is mapped back by a decoder into the reconstruction z that has the same

shape as the input x. Given the code y, z should be regarded as a prediction of x. Such reconstruction

represents a denoising process; it tries to reconstruct the input from a noisy (corrupted) version of it.

Similar to the encoder, the decoder has the weight matrix W̃ , biases b̃, and a decoding function g(·).

The reconstruction z is:

z = g(W̃ · y + b̃) (2)

Step 4: Training. Optimizing the parameters of dA (W , b, W̃ , b̃) involves minimizing the reconstruc-

tion error L(x,z); achieved by letting the code y learn a distributed representation that captures the main

factors of variation in x. Theoretically, if we use the mean squared error (LH(x,z) = ||x − z||2) as the

cost function and linear functions as both encoder h(·) and decoder functions g(·), the dA is equivalent

to PCA; the k hidden units in code y represent the first k principal components of the data. The choice

of cost function depends on the distributional assumptions of input x. In this paper, we measure the re-

construction error by the cross entropy loss function, as most of our features are probabilities x ∈ [0, 1]p.

In addition, we incorporate an L2 penalty (also called weight decay [53]). This is equivalent to assuming

a Gaussian prior over the weights and a common approach to encourage sparsity among weights and

improve generalization. The regularization parameter λ captures the trade-off between reconstruction

error and model complexity. The parameter needs tuning outside the model and offers a way to protect

against overfitting. Higher values of λ penalize model complexity more heavily and, ceteris paribus,

reduce the risk of overfitting. The final cost function is:

L(x, z) = − 1

N

N∑
i=1

p∑
k=1

[xik log zik + (1− xik) log(1− zik)] + λ ‖W‖2 (3)

Several solvers (e.g., stochastic gradient descent) are available to carry out the optimization.

arg min
w,w̃,b,̃b

L(x, z | Θ) (4)

Step 5: Stacking. Once a dA has been trained, one can stack another dA on top. Layers are organized

in a feed-forward manner. The second dA takes the encoded output of the previous dA (the code y)

as its new inputs x. Each layer of dA is trained locally, finding its own optimal weights regardless of

the other layers. Iteratively, a number of dAs can be stacked upon each other to construct a stacked

denoising autoencoder (SdA). The encoding weights of each dA can then be treated as initializations for

the network in the next step. Figure 2 illustrates the working flow of dA.

12

Figure 2: Architecture of denoising auto-encoder.

4.2.2. Supervised fine-tuning

The SdA can be trained in a feed-forward, layer-wise manner. To employ the network for prediction,

network training continues with supervised fine-tuning that teaches the DNN which types of trading

behaviors (in the form of distributed representations) identify A-book clients. To that end, we add

a softmax regression on top of the SdA. This way, we solve a supervised learning problem using the

distributed representation of the raw input as features (which the SdA output embodies), and a binary

indicator variable as target, which indicates whether a trade should be hedged. Formally, with parameter

weight W and bias b, the probability that a trade x belongs to class i is:

P (Y = i|x,W, b) = softmaxi(Wx+ b)

=
eWix+bi∑
j e
Wjx+bj

(5)

We employ the negative log-likelihood as cost function in supervised fine-tuning. Suppose y(i) is the true

class for the input x(i), the cost function then states:

L(W, b,x) = −
N∑
i=1

log(P (Y = y(i)|x(i),W, b)) (6)

4.2.3. Protecting Against Overfitting Using Dropout Regularization

Neural networks are vulnerable to overfitting. To prohibit the DNN emphasizing idiosyncratic pat-

terns of the training data and protect against overfitting, our DNN includes a dropout layer behind each

hidden layer. Figure 3 depicts the concept of dropout. During DNN training, hidden layer neurons and

their corresponding connection weights are removed from the network. This is done for each batch of

training samples in an iteration. The gradients contributed by that batch of samples also bypass the

dropped-out neurons during back-propagation (see the online Appendix for a detailed explanation of

DNN training). The probability of a hidden neuron being dropped out follows a Bernoulli distribution

with a given dropout rate.

A DNN trained with dropout mimics the behavior of an ensemble model. When calculating predic-

tions, the DNN considers all hidden layer neurons but multiplies the connecting weights of each hidden

13

neuron by the expectation of the Bernoulli distribution. This way, although training a single DNN with

N hidden neurons, the prediction of the DNN implicitly integrates predictions of 2N candidate networks

with different combinations of hidden neurons. More formally, dropout simulates a geometric model

averaging process; each possible combination of hidden neurons is considered, which is the extreme case

of bagging. Model combination is known to increase predictive accuracy [7, 46].

Dropout also acts as a regularizer in that it effectively removes random weights from training, which

prevents hidden neurons from co-adapting to each other. Moreover, model averaging reduces variance,

which, via the bias-variance decomposition, reduces forecast error. Controlling the complexity of a

DNN, dropout helps to protect against overfitting. Theoretical details on dropout and how it prevents

overfitting can be found in [54].

Figure 3: Principle of dropout in training and predicting.

Recall that we augment dropout through using an L2−penalty during SdA training to increase the

robustness of the DNN toward overfitting. For the same reason, we make use of early-stopping.

4.2.4. Network Training and Configuration

Our DNN involves unsupervised pre-training using SdA. We tune weights in a layer-wiser manner and

then fine-tune the DNN as a whole in a supervised way, with each hidden layer followed by a dropout

layer. In addition, we use several other DL concepts to protect against overfitting and simplify the

network training process including Xavier’s initialization, batch normalization layers and using ReLU as

the activation function. Previous work on DL has elaborated on these concepts and established their

utility [26], and we detail them in the online Appendix. Figure 4 summarizes the overall architecture of

the DNN employed for trader risk classification.

The parameters to determine in the pre-training stage are the weight matrix and bias in each dA

(both the encoder and the decoder). The parameters in the supervised fine-tuning stage are the weight

matrix and bias in each encoder of SdA and in the softmax regression. We use stochastic gradient

descent with momentum and a decaying learning rate for DNN training. The online Appendix provides

an explanation of these concepts and motivates our choices. In particular, Algorithm 1 in the online

Appendix provides a fully-comprehensive description of network training using pseudo-code. Section 2

of the online Appendix also elaborates on our approach to decide on DNN hyper-parameters such as the

14

number of hidden layers in SdA, and how we tune these using random search [55].

The techniques we employ are available in DL software packages, which facilitate defining the topology

of a DNN, provide routines for numerical optimization to train the DNN, and offer the functionality to

apply a trained model for forecasting. We use the Python library Theano, which is a GPU-based library

for scalable computing. The GPUs used for experiments were Nvidia Tesla K20m with 2496 cores and

5GB GDDR5 high bandwidth memory each. We observe this infrastructure to provide a 10-15 times

improvement in speed over training a DNN using traditional CPUs for DNN training (which equates

to reducing run-times from more than a week to 1-2 days). In appraising these figures it is important

to note that i) large run-times result from the size of the data set, and that ii) training complex ML

models may be as costly. For example, depending on the specific configuration, training a random forest

classifier on the spread trading data can easily require more than 3 days.

Figure 4: Topology of the deep network employed in this study. Stacked denoising auto-encoder with 4 hidden layers with

128, 1024, 1024, 128 hidden units each. The output layer predicts class membership probabilities based on the output of

the last dropout layer using the softmax function.

5. Experimental Design

The following sub-sections describe the spread-trading data set and elaborate on the definition of

A-book clients, and introduce model evaluation criteria and benchmark classifiers.

5.1. Dataset and Target Label Definition

STX provided 11 years of real-life trading data for the period November 2003 to July 2014. Overall,

the data includes the trades of 25, 000 active traders (over 30 million trades across 6064 different financial

15

instruments). To prepare the data for analysis, we replaced missing values using EM imputation and

Chebyshev ’s method for outlier treatment [11].

Supervised learning requires a labeled data set D = {yj , xj}j=1...n, where xj is a vector of features

that characterize trade j, n = 30 million is the total number of trades in the data, and yi denotes the

target variable. However, data characterizing an individual trade is limited. Relating trades to their

corresponding traders facilitates enriching the set of features by using information from previous trades

j − k to decide on trade j.

The decision task of STX is whether to hedge trade j. Therefore, we consider a binary target:

yij =

 +1→ hedge , iif Returni ≥ 5%

−1 , otherwise

(7)

with (8)

Returni =

∑
20<j≤100 P&Li,j∑

20<j≤100 Margini,j

where i, j index trader i and trade j, respectively, P&L is the profit and loss of trade j, and Margin

is the amount of money required by the market maker in order to place the order, which normally equals

the stake size times the margin requirement. To label trade j, we determine the status of trader i at

the time of issuing that trade. We define trader i to be an A-book client if s/he secures a return above

5% from her next hundred trades subsequent to j. Recall that the 5% threshold mimics the current

policy of STX. We also sustain the STX approach to hedge all trades from A-book clients. However, our

method to define the client status and label their trades is forward looking whereas STX considers the

past profits of trader i. Our target label definition is also dynamic in that the trader status can change

with every trade. According to that definition, 6.43% of the trades in the data set come from A-book

clients and should be hedged.

Of course, at the time when STX receives trade j, the future profits of trader i are unknown. There-

fore, we develop a prediction model to forecast yij from the information the company can observe at

the time when trade j is made. The feature vector xij includes demographic information of the client

making trade j and information concerning the client’s trading behavior for the 20 trades prior to trade

j. The decision to consider the past 20 trades is based on the hedging policy of STX, which uses a rolling

window of the 20 trades prior to trade j to decide on the status of the client.

5.2. Trader Characteristics and Feature Creation

We create variables for trader classification based on interviews with experienced members of the

dealing desk of STX. A first round of interviews was aimed at identifying risk factors that domain experts

deem indicative of good/bad traders. Based on corresponding results, we developed a semi-structured

survey that was presented to seven members of the dealing desk in a second round of interviews. The

survey asked participants to evaluate behavioral traits, which emerged from the first round, on a Likert

Scale from 1-7, where values of 1 and 7 represent a strong indication for bad and good trading behavior,

respectively. After completing the survey, we asked participants to suggest strategies they would apply

if trading the FTSE100 index and a single stock from the FTSE100, respectively. This was to gather

16

ideas for novel factors not yet covered in the survey. The results of the interviews guided the feature

engineering. A non-disclosure agreement with STX prohibits formally defining all features. However,

the following description provides a comprehensive overview of the type of features and how they have

been created. The features reflect the specific situation of STX. Risk analysts may find the following

description useful to inform feature engineering in related applications. However, since our study focuses

on the application of a DL methodology, it does not warrant claims related to generalizability of features.

In general, features split into five groups. The first group comprises trader demographics such as age,

country of origin, post code, employment status and salary group. Features of this group are nominal

and enter ML models in the form a dummy codes. STX employs a range of socio- and micro-geographic

data to cluster post codes. They follow a similar logic to cluster countries. 2

Features of the second group capture the past performance of traders. We use aggregations such as

the mean and standard deviation to calculate corresponding features over a rolling window of 20 previous

trades relative to the focal trade. The choice of a window size of 20 follows STX’s hedging policy at the

time of the study. In addition to profitability, we compute a set of related performance indicators such

as the average win rate, average number of points in profit, whether a client has been in profit, etc. We

also consider the risk adjusted return (i.e., Sharpe ratio [56] and features related to the number and sizes

of past withdrawals and deposits).

A third group of features describes traders’ preferences related to markets and channels. For exam-

ple, one feature simply counts the number of markets in which a trader invests while another encodes

whether traders showed a strong preference for a specific market in their previous 20 trades. Using this

information, we create features describing the most popular market cluster in a trader’s full history and

last 20 trades, respectively. The subgroup of channel preferences includes features that count the number

of opening and closing trades made through the STX web front-end and mobile app, respectively, as well

as ratios derived from these counts.

Results of the survey identified the disposition effect as a relevant factor to detect poor traders. The

disposition effect [57] describes the phenomenon that investors tend to quickly sell trades that are in

profit but are reluctant to sell trades in loss. Features of the fourth group strive to capture the disposition

effect. We determine per trader the average amount and time s/he leaves winning and loosing positions

open, and calculate their ratio. We also consider sums instead of averages and window lengths of the

previous 20 and all previous trades.

Another discriminating factor that emerged from the interviews concerns trading discipline. Members

of the dealing desk pointed out that good traders display a tendency to set manual limits (stop losses

and profit levels) and when making profits to move these with the market. The fifth group of features

captures signals concerning the consistency of a trader’s strategy. The variation index of stake sizes

exemplifies corresponding features. We also consider simpler features such as the standard deviation of

2 STX has not revealed details of their cluster mechanisms to us. However, they assured us that the clustering does not

employ any information of trader profits, which might otherwise introduce a look-ahead bias through leaking information

from the prediction target to the features.

17

stake sizes and features that capture the frequency of trades as well as their variation. Other features in

this group relate to the tendency of clients to trade within/outside of normal trading hours (e.g., number

and share of corresponding trades), which we consider an indicator of traders’ professionalism. The

degree to which traders partially close trades may also signal expertise and hence traders posing a higher

risk. Hence, we create a feature measuring the share of trades that have been closed in the previous 20

trades. The previous examples sketch the type of features we employ. Using operations such as varying

window sizes, aggregation functions, creating dummy features through comparing a feature to a threshold

(e.g., whether any of the last 20 trades has been closed using the mobile app), and considering bi-variate

interactions, we obtain a collection of close to 100 features. An objective of the paper is to test whether

the DNN can learn predictive higher-level features automatically. For example, the discussion on feature

engineering suggests multicollinearity among features, which feature selection could remedy. However, a

sub-goal following from our objective is to test how effectively the DNN automatically discards redundant

and irrelevant features. Therefore, we do not perform feature selection.

5.3. Exploratory Data Analysis and Feature Importance

To shed light on how A-book and B-book clients differ across the features, we report results of an

exploratory data analysis. Table 2 reports descriptive statistics for the ten most informative features

for A-book and B-book clients, respectively. We select these features according to the Fisher score [7].

Features with the suffix 20 are calculated over a window of 20 past trades relative to a focal trade. For

example, given a trade j (equivalent to one observation in the data set) from a trader i, we consider

the j − 1, j − 2, ...j − 20 trades of trader i and calculate their mean, standard deviation, etc. We use all

available trades of a trader if s/he has less than 20 trades. In interpreting the results of Table 2 it is

important to note that STX rescaled numeric features to the zero-one interval using min/max scaling.

Rescaling is a common data preprocessing approach and ensures comparability of feature values. In

addition, it helps to protect the confidentiality of the data.

Table 2 reveals that differences between the client groups in the means of variable values are small.

This indicates that good and bad traders cluster in the behavioral space spanned by these features

and that a classification of traders using these features will be challenging. To support this view, we

estimate a logistic regression model on the training set using the features of Table 2 and observe a

McFadden R2 close to zero. Considering standard deviations, Table 2 suggests that the trading behavior

of B-book clients is slightly more volatile compared to A-book clients, which supports findings from the

interviews that good traders follow a consistent strategy. Table 2 also emphasizes the disposition effect

as a potentially discriminating factor. Several of the top ten features aim at capturing the disposition

effect through contrasting the duration with which traders keep winning versus losing positions. Last,

the third and fourth moment of the feature distributions hint at some differences between good and bad

traders. However, as shown by the failure of the logistic regression, translating these differences into a

classification rule is difficult and may be impossible with a linear model.

To further inspect the origin of close to random performance of logistic regression (on all features)

and to gain more insight into the feature-response relationship, we also examine feature importance using

18

Table 2: Descriptive Statistics of Top-Ten Features

Feature
Mean Std.Dev. Skew

Description
A-book B-book A-book B-book A-book B-book

ProfitxDur20 0.325 0.332 0.172 0.178 0.994 0.962 Interaction of ProfitRate20 and

DurationRate20

SharpeRatio20 0.443 0.446 0.081 0.085 1.097 1.131 Mean/st.dev. of returns

ProfitRate20 0.496 0.504 0.241 0.248 0.346 0.328 Average profit rate of client

WinTradeRate20 0.621 0.626 0.203 0.207 -0.203 -0.210 Clients average winning rate

AvgOpen 0.534 0.539 0.218 0.228 -0.345 -0.311 Average of the P&L among

trader’s first 20 trades

DurationRate20 0.319 0.322 0.119 0.121 -0.148 -0.161 Average time client leaves win-

ning vs losing position open

PerFTSE20 0.251 0.244 0.357 0.353 1.151 1.197 Share of trades placed in the

FTSE100

DurationRatio20 0.127 0.128 0.067 0.070 3.398 3.812 Mean trade duration (mins) /

std.dev. trade duration

AvgShortSales20 0.487 0.482 0.269 0.274 -0.027 -0.018 Share of short positions

PassAvgReturn20 0.502 0.503 0.052 0.057 -0.295 0.065 Average return up to the last 20

trades

a random forest (RF) classifier. Feature importance scores extracted from tree-based ensemble classifiers

are a popular way to quantify the relative impact of features on the response variable [11]. Figure 5

depicts the distribution of RF-based normalized importance scores for the first fifty features (ordered in

terms of importance); the remainder being omitted to ensure readability. We highlight those features

that have previously been identified as important by the Fisher-score.

Figure 5 reveals differences between the variance adjusted comparison of group means, which the

Fisher-score embodies, and the RF-based ranking. For example, the strongest feature according to Table

2, ProfitxDur20, does not appear in Figure 5 and the highest rank that a feature of Table 2 achieves in

Figure 5 is ten as observed for the feature capturing a trader’s average over the last twenty trades prior

to the decision point. Interestingly, this feature, PassAvgReturn20, is the one that STX use in their

hedging policy.

RF generates importance scores through comparing (out-of-bag) classification performance on the

original data and that data after corrupting one feature through adding random noise. The magnitude

of the performance decrease captures the importance of the corrupted feature [11]. This implies that RF

assesses the importance of one feature vis-a-vis all other features, whereas the Fisher-score assesses one

feature at a time. Given the different mechanism to measure importance, some differences between the

RF and Fisher-score ranking are to be expected. It is still surprising that the most important features

of the latter receive relatively low ranks in Figure 5. An interpretation of this result is that it evidences

intricate dependencies between the binary response and features, which the Fisher-score does not capture.

This interpretation agrees with the poor performance of the logit model. As detailed in Section 6.1, the

19

Figure 5: Normalized variable importance scores based on RF-classifier for the top 50 features. Dark color identifies features

that also appear in the Fisher-score ranking (Table 2)

performance of the logit model improves but remains inferior to more expressive nonlinear classifiers

after accounting for multicollinearity.

With respect to the complexity of the feature-response relationship, the distribution of importance

scores in Figure 5 may be considered evidence of a set of three to four features being particularly strongly

related to the response. We caution against this interpretation. The distributional shape is a consequence

of the scaling of the y-axis, to ensure readability of the figure. The magnitude of importance scores is

small, even for the left-most features. Therefore, importance differences between features (e.g., feature

four and five) appear more substantial than they are. Recall that the scores capture the degree to which

RF performance decreases if we corrupt one feature. Given the magnitude of importance scores, we

interpret the results of Figure 5 as evidence of a low signal between the raw features and the future

success of a trader. This emphasizes the trader classification task to be challenging. Even a powerful

RF classifier, often observed to predict accurately [46, 7, 32], fails to identify strong dependencies among

the raw features and the target. Low importance scores also question representativeness of the training

data. This motivates our analysis whether a DNN, equipped with higher depth than RF, is able to learn

more abstract, latent, features that enable predicting traders’ future performance more accurately than

conventional ’shallow’ learners.

We complete the analysis of feature importance by aggregating importance scores across the main

feature groups in Figure 6. The analysis offers insight as to the relative importance of different types

of trader characteristics. The results displayed in Figure 6 agree with the views of STX dealing desk

members. We find trader demographics and features in the markets & channels category to carry least

weight, which reinforces the view that propensity for risk taking may be attributed to the competence

and trading style rather than particular country of origin or gender. Past performance and trading

discipline are most important for high risk trader identification, substantiating the claim that features

20

capturing the professional behavior of traders are of primary value for the task at hand.

Figure 6: Analysis of group-level feature importance. The aggregation is performed by adding up the RF-based importance

scores of all features belonging to the same group and normalizing group-level scores to sum to unity.

5.4. Data Organization, Evaluation Criteria and Benchmark Classifiers

Testing the predictive performance of ML models requires assessing the accuracy of their forecasts on

hold-out data not used during training. Several strategies for data organization exists. We employ n-fold

cross-validation, which involves randomly partitioning the data into n folds of approximately equal size,

training a model on the union of n − 1 of these folds, and assessing the performance of the resulting

model through comparing actual classes to model-based class probability predictions on the remaining

fold. Repeating model building and assessment n times increases the robustness of results compared to

a single partitioning of the data into one training and one test set. We consider settings of n = 10 and

n = 5 in subsequent comparisons. 3

The client classification problem exhibits class imbalance and asymmetric error costs. Hedging a

trade that eventually leaves the trader with a loss diminishes the profit margin of the market maker.

Failing to hedge a high risk trade is far more severe and may leave the market maker with a very large

loss. To reflect this asymmetry, we evaluate a classification model in terms of the profit or loss (P&L)

that results from hedging trades according to model predictions.

The P&L assesses classification performance in that it is based on discrete class predictions. Taking

cost asymmetry into account, it is a more suitable performance indicator than conventional metrics such

as classification error, the F-measure, or others. However, to augment the P&L-based evaluation, we also

assess classification models in terms of the area under a receiver-operating-characteristics curve (AUC).

The AUC is equivalent to the Mann-Whitney-Wilcoxon U statistic. Considering a randomly chosen A-

book client and a randomly chosen B-book client, the AUC approximates the probability that a classifier

3The computationally simpler train-test split setup was considered in preliminary experiments to identify suitable

benchmark classifiers and examining the impact of class imbalance on these classifiers and the DNN. Interested readers

find corresponding results in the online Appendix.

21

assigns a higher score to the A-book client [58]. In this interpretation, we use the term score to refer to

the classifier-estimated probability of a client being a high risk trader. A notable feature of the AUC is

that it captures the discriminatory ability of a classifier to rank order cases in the right order; for example,

assigning higher (lower) probabilities to A-book (B-book) clients. The evaluation is independent from a

classification threshold and the degree to which probabilistic predictions are well-calibrated [59]. Hence,

the AUC assesses the model from a different angle than the P&L.

To compare the performance of our DNN to benchmarks, we select four ML classifiers as benchmarks,

including logistic regression, ANNs, RF, and adaptive boosting. A comprehensive description of the

classifiers is available in, e.g., [11]. We report the hyper-parameter settings that we consider during

model selection in Section 2 of the online Appendix, where we also elaborate on hyper-parameter tuning.

6. Empirical Results

The empirical analysis compares the proposed DNN to benchmark classifiers and rule-based hedging

strategies that embody domain knowledge.

6.1. Predictive Accuracy of the DNN and ML-based Benchmark Classifiers

We first present results concerning the predictive performance of different classifiers in Table 3. The

AUC assesses models in terms of their ability to discriminate A- and B-book clients whereas P&L values

capture the profitability of a model-based hedging policy. To ensure comparability across folds, we

normalize the total P&L observed in one cross-validation fold by the number of traders in that fold. For

example, a value of 296 GBP in the first fold in the base scenario where STX does not hedge against

any trade indicates that the average client loses this amount of money from trading with STX, which is

equivalent to the profit of STX.

Table 3 reveals variations in model performance across different folds, which emphasizes the merit

of comparing models using cross-validation. Considering P&L, we observe the DNN to provide the

best performance in seven out of ten folds. Accordingly, the DNN also achieves the highest average

P&L and outperforms benchmarks by a sizeable margin. For example, the average P&L per trader

(across folds) of the DNN is 2,931 GBP compared to 2,079 GBP of a hypothetical base setting in

which STX would not hedge any trade. Compared to the second highest average P&L of 2,690, which

comes from the logit model, the DNN provides a nine percent improvement. The P&L is informative

for risk managers as it estimates the value of model-recommended hedging decisions. The AUC offers

an additional perspective on model performance. Unlike P&L, which depends on the specific trades

against which a model recommends hedging, the AUC emphasizes a model’s discriminatory ability, that

is whether it assigns higher risk scores to actual A-book clients. The AUC supports the appealing

performance of the DNN. It achieves the highest performance in each fold and performs substantially

better than the benchmarks in the comparison. For example, the second best benchmark in terms of the

AUC is the RF classifier, which produces an average AUC of 0.720 c.f. an average AUC of 0.814 for the

DNN).

22

Table 3: DNN Performance vs. Benchmarks in terms of P&L and the AUC

Cross-validation folds

1 2 3 4 5 6 7 8 9 10 mean

Average P&L per trader in GDP

no hedging 2268 2130 1601 2122 2230 2536 1785 1938 1870 2306 2079

DNN 2245 2906 3490 2863 2245 3536 2679 3536 3014 2792 2931

Logit 3021 2281 2901 2707 3413 2643 2443 2358 2452 2679 2690

ANN 2619 2624 2207 2614 3002 2515 2594 2503 2691 2920 2629

RF 2745 2539 2255 2559 2574 3198 2624 2295 2578 2451 2582

AdaBoost 2402 2756 1869 1857 2435 2956 2215 2482 2672 2741 2439

SVM 1511 2656 1382 1278 1140 1796 835 3149 312 2402 1646

Area Under Receiver-Operating Characteristics Curve (AUC)

DNN 0.816 0.806 0.809 0.802 0.826 0.804 0.842 0.816 0.782 0.832 0.814

ANN 0.633 0.643 0.645 0.638 0.625 0.645 0.640 0.645 0.618 0.616 0.635

Logit 0.708 0.698 0.716 0.699 0.690 0.704 0.735 0.692 0.708 0.701 0.705

RF 0.714 0.734 0.726 0.728 0.736 0.721 0.710 0.717 0.684 0.730 0.720

AdaBoost 0.647 0.631 0.637 0.618 0.648 0.656 0.635 0.650 0.625 0.632 0.638

SVM 0,688 0,887 0,692 0,691 0,794 0,664 0,695 0,586 0,625 0,592 0,690

6.2. Antecedents of DNN Forecast Accuracy

Table 3 evidences the superiority of the DNN over ML-benchmarks for the specific data set used

here. To examine the robustness of model performance, it is important to clarify the antecedents of DNN

success. One characteristic feature of the DNN is its multilayered - deep - architecture. Previous research

establishes a connection between the depth of a model and its expressive capacity [25], which suggests

depth to be a determinant of predictive accuracy. Another characteristic that distinguishes the proposed

DNN from ML benchmarks is its use of unsupervised pre-training. Aiding model training through

finding more abstract, generative features, we expect predictive accuracy to benefit from pre-training.

A third factor of interest is class imbalance. Skewed class distributions are a well-known impediment to

classification and only seven percent of the traders in the data are A-book clients. Therefore, the fact

that the DNN is more robust toward class imbalance than the ML benchmarks could also explain the

results of Table 3. In the following, we examine the influence and importance of these three factors.

6.2.1. The Deep Architecture

The DNN generates predictions in the last layer, where the last layer output neuron receives the

combined input from multiple previous layers of SdAs and translates these signals into class probability

predictions using the softmax function. This network configuration is equivalent to running logistic

regression on the output of the hidden layers. To shed light on the value of the deep architecture, we

compare DNN predictions to predictions from an ordinary logistic regression with the original features

23

as covariates. The logistic model represents an approach which takes away the deep hidden layers from

the DNN and only sustains the last layer. This is useful for appraising the merit of the distributed

representations, which the deep hidden layers extract from the raw features.

Figure 7 displays the receiver-operating-characteristics (ROC) and a Precision-Recall (PR) curve

for the DNN and a simple logit model. The plot emphasizes that the deep architecture substantially

improves the network’s discriminative ability. The performance of the logit model on raw features is

almost random. The AUC value of 0.812 for the DNN suggests that performing the same regression on

the high level representations, which the DNN learns from the raw features, facilitates a reliable detection

of the positive class. Consequently, the DNN succeeds in extracting predictive features from the input

data. In appraising Figure 7 it is important to note that the logit model is not meant to contribute a

strong benchmark. As shown in Table 3, a regularized logit model with feature selection performs better

than random. The purpose of Figure 7 is to evaluate the overall effect of the deep architecture compared

to using the raw features as is, which motivates using the ordinary logit model for this comparison.

The overall conclusion emerging from the analysis is that the deep architecture affects the predictive

performance of the DNN.

ROC / Precision−Recall Curve

Recall / False Positive Rate

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

Tr
ue

 P
os

iti
ve

 R
at

e

0.0

0.2

0.4

0.6

0.8

1.0

Logistic
[0.092, 0.481]

Deep Learning
[0.286, 0.812]

Figure 7: ROC (black), Precision-Recall Curve (grey) of deep learning and logistic regression. Results are based on a DNN

model estimated from the first 70% of the data and applied to predict risk scores for the remaining 30% of trades. Curves

depict model accuracy across these 30% trades.

6.2.2. Unsupervised Pre-Training

The proposed DNN uses unsupervised pre-training for representation learning and feature extraction.

To confirm the merit of pre-training, we examine the discriminative strength of each neuron in the unsu-

pervised pre-training stage. We aim to check whether DNN learns distributed representations that help

differentiate A- and B-book clients from unlabeled data. To that end, Figure 8 provides the histograms

of activation values for neurons in the first dA layer of the DNN. The histograms show that activation

values tend to be less than 0.4 when receiving a trade from a B-book client. Trades from A-book clients

24

Activation Value

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 8: Histogram of activation values of neurons in the

first dA layer for A-book (deep color) and B-Book (light

color) client trades. The test set is re-sampled such that the

ratio between high risk and normal traders is one.

−5000 0 5000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Profit & Loss

D
en

si
ty

Johnson Su
Mean: −97.35,
Skew: −88.02,
Kurtosis: 753381

Figure 9: Top 100 stimuli of the best neuron

from the test set

typically result in an activation value of 0.4 and above. While the magnitude of the activation values

is irrelevant, the discrepancy of activation values for trades from different types of clients illustrates

that - even with unlabeled data - the neurons in the first dA layer differentiate A- from B-book client

trades. The intricate non-linear transformation between layers prohibit a replication of this analysis for

higher layers because the relationship between activation values and input signals is no longer monotone.

However, Figure 8 provides preliminary evidence that the spread trading data facilitates the extraction

of higher-level generative features using pre-training.

To substantiate the analysis and gain more insight into the link between neuron activation values

and trades from different types of traders, we examine whether trades that trigger high activation values

in a neuron are indeed worth hedging. To that end, we first calculate the maximum and minimum

activation values for every neuron of the first layer, and 20 equally spaced threshold values between these

boundaries. Subsequent analysis is based on a single neuron. We chose the neuron and corresponding

threshold that give the purest separation between A- and B-book client trades (see Figure 8) upon

manual inspection. Using this neuron, we find the 100 trades in the test set that activate the neuron

the most. Figure 9 plots these trades on the overall P&L distribution. The results illustrate that, with

a few false negatives, 97% of the trades that maximally activate the neuron end in profit and leave the

market maker with a loss. Hedging against these trades, as indicated by the neuron’s activation levels,

is economically sensible. Although the eventual hedging decisions are based on the prediction of the

DNN as a whole, the single neuron analysis provides further evidence of unsupervised pre-training of

SdA layers to extract patterns that are indicative of a trade’s risk. This confirms that the DNN learns

distributed representations from the input data, which eventually help to distinguish high risk traders

from other clients.

25

6.2.3. Analysis of the Class Imbalance Effect

A growing body of literature on deep imbalanced learning indicates that DL models inherit vulner-

ability toward class imbalance from their ML ancestors [60]. However, it seems plausible that the DNN

is more robust toward the adverse effect of imbalance than the ML benchmarks due to pre-training.

Pre-training is carried out in an unsupervised manner. Therefore, class imbalance cannot occur. Figure

8 indicates that, without having access to class labels, pre-training has extracted patterns that help to

differentiate high risk traders and B-book clients. Only the DNN has access to this information, which

might give it an advantage over the ML benchmarks in the comparison of Table 3. To test this, we

repeat the comparison after addressing class imbalance using the SMOTE (synthetic minority class over-

sampling technique) algorithm. SMOTE remedies class skew through creating artificial minority class

examples in the neighborhood of actual minority class cases [61].

Table 3 in the online Appendix reports detailed results of classifiers after applying SMOTE. Given

that oversampling increases the number of observations and, in turn, the time to train different learning

algorithms, we reduce the number of cross-validation folds and estimate performance using 5-fold cross-

validation. More specifically, we configure the SMOTE algorithm such that it produces artificial A-book

clients until both classes are balanced. Figure 10 summarizes corresponding results through depicting

the average cross-validation performance for each learning algorithm before and after applying SMOTE

in terms of P&L and the AUC.

Figure 10 reveals that SMOTE consistently improves the predictive performance for all models. P&L

and AUC are substantially higher after addressing class imbalance, which reemphasizes the adverse

effect of the latter. We also observe that the margin with which the DNN outperforms ML benchmarks

decreases. For example, the strongest benchmarks after oversampling in terms of P&L and the AUC are

the logit and ANN benchmark, respectively. The DNN performs 6 (9) and 4 (13) percent better than these

competitors, where numbers in brackets denote the corresponding percent performance improvement in

the original (i.e., imbalanced) data. A first interpretation of this result is that Table 3 gives an optimistic

picture of DNN performance. The accuracy gap between the DNN and the ML benchmarks is less than

Table 3 suggests if ML benchmarks receive auxiliary tuning in the form of addressing class imbalance. In

addition, Figure 10 also confirms the DNN to be more robust toward class imbalance. While benefiting

from SMOTE, its ability to identify high risk traders accurately is less dependent on oversampling the

minority class compared to the ML benchmarks. This agrees with results of Figure 8 concerning the

merit of unsupervised pre-training.

6.3. Implications for Risk Management

A model-based hedging policy comprises hedging the trades of clients classified as A-book by the

model and taking the risk of all other trades. To clarify the managerial value of the proposed DNN, we

compare the P&L of a DNN-based hedging strategy against that of rule-based strategies. One rule-based

approach is the current policy of STX, which involves hedging trades of clients who secured a return

above five percent in their previous 20 trades. In addition, we develop three custom hedging heuristics.

Our first policy, Custom 1, relies on the Sharpe Ratio and singles out traders who achieve a higher

26

Figure 10: Cross-validation performance in terms of P&L before and after SMOTE.

27

than average Sharpe ratio in their past 20 trades. We suggest that securing risk-adjusted returns above

the average indicates trader expertise. Since professionalism is only one reason for a successful trading

history, Custom 2 heuristic addresses another group of traders, which we characterize as overconfident.

Such traders may display higher yields than other market participants and exhibit aggressive trading

behavior, manifesting itself through bigger lot sizes, higher frequency and shorter time interval trades

[62]. The Custom 2 heuristic thus considers the average trade duration and number of trades to deduce

traders who may pose a greater risk. The third strategy, Custom 3, hedges trades from clients with a

positive track record since trading with STX. The rationale is that traders who are unsuccessful in their

early experiences might quit. Traders with a longer track record are either truly successful (and should

be hedged against) or gamblers with a negative expected value (and should not be hedged against).

Following this line of thinking, the most important risk STX is facing comes from new A-book clients.

Comparisons to Custom 3 shed light on the ability of the DNN to identify such new A clients, as

improvement over Custom 3 signals the DNN recognizing high risk traders that the track record-based

logic of Custom 3 fails to capture.4 We also consider an ensemble of the custom rule-based heuristics,

constructed by means of majority voting.

Drawing on domain knowledge, the rule-based strategies adopt a deductive approach. To complement

the analysis, we also add one inductive rule-based approach in the form of a classification tree. Trees

are regarded as interpretable classifiers. However, the degree to which decision makers can understand

trees depends on their depth. In the interest of interpretability, we consider a classification tree (ctree)

with two levels.

Table 4: Average P&L per trader in GBP of the DNN-Based and Rule-Based Hedging Strategies

Cross-validation folds

1 2 3 4 5 6 7 8 9 10 mean

no hedge 2.268 2.130 1.601 2.122 2.230 2.536 1.785 1.938 1.870 2.306 2.079

DNN 2.245 2.906 3.490 2.863 2.245 3.536 2.679 3.536 3.014 2.792 2.931

STX 2.014 2.229 2.155 2.238 1.878 1.913 1.872 2.190 2.937 1.811 2.124

custom 1 1.534 1.549 1.236 1.550 1.417 1.488 1.392 1.618 1.986 1.341 1.511

custom 2 1.969 1.831 1.486 1.440 2.299 1.724 2.076 1.594 1.594 2.046 1.806

custom 3 1.736 1.825 1.579 1.965 1.865 1.937 2.000 1.785 2.402 1.750 1.884

ensemble 1.869 1.950 1.530 2.151 1.897 1.852 1.784 1.656 2.480 1.693 1.886

ctree 2.163 1.544 2.799 2.154 2.089 2.299 1.972 2.051 2.215 1.974 2.126

Table 4 reveals the current policy of STX to be the most suitable deductive hedging strategy. The

logic of Custom 1 - 3 draws on financial theory. However, each of the three approaches, as well as an

ensemble of them, performs worse than a hypothetical baseline setting in which STX would not hedge

any trade. Observing Custom 1 - 3 to perform worse than this baseline supports the view that the focal

4We are grateful to an anonymous reviewer who suggested the logic of the Custom 3 heuristic.

28

trader classification task represents a challenging problem. Following this line of reasoning, Table 4 also

emphasizes the soundness of the STX policy.

Unlike the deductive STX approach, the tree-based heuristic learns from past data. More specifically,

the tree uses three features for splitting the data: a trader’s average P&L in their initial 20 trades with

STX, the minimum number of minutes until closing a losing position in their last 20 trades, and the

average Sharpe ratio over their last 20 trades. These features display similarity with the custom heuristics.

For example, considering a trader’s initial performance follows the logic of Custom 3 while account for

risk-adjusted returns is similar to Custom 1. Finally, considering a trader’s reaction toward losses, the

tree uses one of the variables to capture the disposition effect. We observe the two-level tree to produce

slightly larger P&L than the STX heuristic. This suggest that a trader’s average past performance,

embodied in the STX approach, approximates the more complex rule set of the tree with some accuracy.

Although the criticality of accurate hedging in the spread trading market suggests a revision of the STX

approach with a tree-based approach, another finding from Table 4 is that implementing a DNN-based

hedging strategy enables STX to further improve P&L compared to its current policy and the other

rule-based hedging strategies we consider. Compared to the STX heuristic, the DNN raises per trader

profits by 2,931 - 2,124 = 807 GBP, which implies a substantial, managerially meaningful improvement

when considering the total number of clients of STX. For example, the data set used here comprises

roughly 25K active traders.

The STX heuristic represents an established business practice at the partner company and reflects

many years of industry experience. Moreover, the heuristic is extremely fast to execute and completely

transparent. The situation for the DNN is far different. Classifying incoming trades more accurately,

a DNN-based hedging policy is more profitable than rule-based approaches. The main cost of accuracy

and profitability improvements is the black-box character of the corresponding risk management system.

The client classification rules from the DNN originate from automatically extracted distributed repre-

sentations of high risk traders. The business logic encapsulated in these rules is not interpretable for

decision-makers, which also prohibits testing the agreement of these rules with domain knowledge.

Improved performance of the DNN leaves risk managers with the task to decide whether performance

improvements are large enough to compensate the opaqueness of DNN and associated disadvantages,

such as a lack of justifiability, higher computational requirements, etc. In the case of STX, we expect

the imperative to hedge trades accurately and the magnitude of the performance improvement observed

on their data to justify the adoption of a sophisticated DNN-based hedging strategy. The same might

be true for other the spread-trading companies, although these would first need to replicate the results

of this study to confirm the effectiveness of the DNN. A detailed description of the DNN configuration

in the paper and especially the online Appendix will hopefully simplify this task. A more strategic

consideration is that reluctance to adopt a new technology such as a sophisticated DNN-based hedging

policy might also harm the competitive position of STX if competitors deploy corresponding solutions

and use them to offer better prices to retail investors. At the same time, we caution against an overly

optimistic view toward advanced DL-based decision aids. The empirical results observed in this study

come from a single data source, which, although large in size, reflects the peculiarities of the market

29

position and client structure of STX, and require a replication with different data in future research to

raise confidence in the superiority of DL that we observe here.

Given that the main disadvantage that we associate with the DNN is opaqueness, we conclude this

chapter with acknowledging that DL and other complex ML models are not incomprehensible per se.

An approach called information fusion-based sensitivity analysis provides insight into the relationship

between model inputs (i.e. features) and outputs (i.e., forecasts) in any type of ML-based prediction

model, including DNNs [63]. Previous finance applications of this approach [64, 8] demonstrate how it

enables interpreting black-box ML models.

7. Discussion

The empirical results suggest that the DNN approach outperforms rule-based and ML benchmarks.

It identifies high risk traders more accurately than other classifiers and provides higher financial gains

when used for hedging decisions.

Predicting traders’ risk taking behavior and future profitability under dynamic market conditions is

challenging. Traders differ in their characteristics and trading behavior, and both are likely to change

over time. Identifying unskilled traders is especially difficult due to the high variation in both behavior

(input) and performance (output). Compared to genuine good traders, it is harder to identify uniform

trading patterns for poor traders. Interviews with STX’s staff hint at skilled traders sharing certain

characteristics such as the ability to capture market rallies, following a consistent strategy, setting and

adjusting limits, etc. On the other hand, there are countless ways in which poor traders lose money,

including ignoring any of the above rules. In the high dimensional behavioral space, the number of poten-

tial variations of poor traders is innumerable. This contradicts the prior assumption of ML methods that

the distribution P (label|features) is smooth and well represented in the training data. Consequently,

conventional ML faces difficulties in profiling trading patterns. The deep architecture equips DNN with

higher expressive capacity to store the large number of variations of trading behaviors. Complexity

theory shows a function that can compactly be represented by an architecture of depth k to require

an exponentially growing number of computational units to represent the same function with smaller

depth [3]. This suggests that increased depth enables the DNN to profile new combinations of behavioral

variations and generalize to new trading patterns less represented in the training data.

Furthermore, the chance of making profit in the spread-trading market is highly noisy. Even poor

traders can, by luck, win money. In fact, Figure 11 reveals that most of the clients who trade with STX

have a greater than 50% win/lose ratio. However, even though traders win money on more than 50% of

their trades, Figure 11 shows that average losses exceed average winnings by a large margin. Therefore,

it is often sensible to classify a trader as a B-client and refrain from hedging their trades, even if many

of their previous trades ended in profit.

Although based on an economic rationale, input features relating to past risk-adjusted return, trading

frequency, etc. do not facilitate an accurate discrimination of spurious from genuine good traders.

This arises because several feature values may coincide. The entanglement of spurious and genuine

good traders in the behavioral feature space of trader characteristics further complicates the trader

30

Figure 11: Retail traders’ average winning ratio and average P&L points (profit in dark, loss in grey) on different categories

of investments on the spread trading market.

classification problem and harms conventional ML methods. The DNN draws upon the raw features and

creates sensible abstractions from these features that exhibit a stronger connection with the target.

A specific DNN component we employ for trader classification is unsupervised pre-training. Observed

results confirm that pre-training enables the DNN to construct layers of feature detectors that capture

underlying generative factors, which explain variations across different trading behaviors. Stacking mul-

tiple layers of progressively more sophisticated feature detectors, the DNN learns to disentangle these

factors from the input distribution. Variations that are important for subsequent discrimination are

amplified, while irrelevant information within the input data is suppressed [65]. We examine this ability

in Figure 7, 8 and 9. After pre-training, the higher levels of the feature hierarchy store robust, infor-

mative, and generalizable representations that are less likely to be misled - and, thus, invariant to - the

entangling of trading patterns in the input-space.

8. Conclusions

We set out to examine the effectiveness of DL in management support. Corresponding applications

often involve developing normative decision models from structured data. We focus on financial risk

taking behavior prediction and develop a DNN-based risk management system.

The results obtained throughout several experiments confirm the ability of DL, and the specific

architecture of the DNN we propose, to extract informative features in an automatic manner. We also

observe DNN-based predictions of trader behavior based on these features to be substantially more

accurate than the forecasts of benchmark classifiers. Finally, our results demonstrate that improvements

in forecast accuracy translate into sizable increases in operating profit. This confirms the ability of the

proposed DNN to effectively support (hedging) decision making in this risk management case study.

Our findings pave a way to approach other behavior forecasting problems using DL. For example,

direct marketers can increase the likelihood of consumers’ responding to a promotion by studying clients’

buying behaviors. Banks can enhance their risk control and make sensible credit approval decisions by

analyzing clients’ credit repayment behavior. E-commerce companies can dynamically adjust website

layouts according to visitor preferences. These are only a few examples out of the vast space of tasks in

decision support which generate large amounts of structured data and are routinely supported by ML.

31

We provide evidence that the methodology reported here offers potentially significant gains in forecasting

accuracy. Reappraising these gains in the scope of other business applications is essential to confirm that

the appealing performance of the DNN that we observe is not specific to this case study.

Acknowledgement

We thank the editor, Prof. Teunter, for his efforts in handling our paper and are thankful to three

anonymous reviewers whose feedback has helped tremendously to improve earlier versions of the paper.

We are especially grateful to J.C. Moreno Paredes for his invaluable help with data preparation.

ONLINE APPENDIX

The online appendix complements the paper through i) further elaborating on the training of the

trader classification DNN, ii) documenting candidate hyper-parameter settings of the DNN and the ML

benchmark classifiers and how we have tuned these in a model selection, and iii) providing additional

empirical results. These results include empirical findings from pre-tests based on a static split sample

design. We also report the distributions of the performance indicators that we have used in the com-

parison of the proposed DNN to benchmark ML classifiers. Finally, we provide additional results of a

comparison of the DNN to alternative DL models.

1. Training the Proposed DNN

The DNN employed in the paper integrates multiple DL concepts. In summary, the DNN is first

pre-trained via SdA, with Xavier’s initialisation for weights and ReLU unit as the activation function,

in a greedy layer-wiser manner. This is the unsupervised pre-tuning stage after which we fine-tune

the DNN as a whole in a supervised way, with each hidden layer followed by batch normalisation and

dropout. In the following, we detail the optimisation of the cost function, , which we did not detail in

the main body of the paper for brevity; namely, the training of the parameters of the DNN in both the

pre-training and fine-tuning stage as well as other DL concepts such as Xavier’s initialization, ReLU,

and batch normalization.

The parameters to train in the pre-training stage are the weight matrix and bias in each dA (both the

encoder and the decoder), and the parameters to train in the supervised fine-tuning stage are the weight

matrix and bias in each encoder of SdA and in the softmax regression. The rest of the parameters (e.g.,

the number of hidden layers in SdA, the number of hidden neurons in each hidden layer), are hyper-

parameters that need adjusting on top of the training process. We elaborate on the treatment of such

hyper-parameters below in Section 2.

1.1. Xavier’s initialization

The solution to a non-convex optimization problem depends on the initial values of the weight pa-

rameters W . By default, SdA initialize weights randomly. If network weights are initialized too small

(large), the signal shrinks (expands) as it passes through each layer until it becomes too tiny (massive)

32

to be useful. Xavier’s initialization [66] guarantees that weights are sensibly initialized by ensuring that

the variance of the input and output signals passed through the network remain the same.

V ar(Wi) =
2

nin + nout
(9)

where Wi is the weight matrix in layer i and nin and nout are the number of neurons feeding in and out.

1.2. ReLU

Using non-linear coding functions h(·) and g(·) enables a dA to discover intricate non-linear structures

from the input data. It has become common practice to replace the sigomid function with a ReLu in

the encoding part. The activation functions in dA are then:

h(x) = ReLU(x) = max(0, x) (10)

ReLU outperforms other non-linear transformation functions on a majority of ML tasks [67]. Setting

half of the outputs to zero, it creates robust and sparse representations, which is beneficial for learning

algorithms [68]. In addition, ReLU does not require any exponential computation, which substantially

accelerates learning. Moreover, its derivative is a step function that provides the network with more non-

linearities. These become paramount if stacking a multitude of dAs to build a DNN [69]. For example,

ReLU does not suffer from the gradient explosion/vanishing problem [26].

1.3. Batch normalization

During DNN training, the distribution of each layer’s inputs changes with updates of the parameters

of the preceding layers. With greater depth, small changes to network parameters are amplified; thus,

the layers need to keep adapting to the new distribution. Enforcing lower learning rates, this problem

decelerates the training process. A batch normalization layer fixes the means and variances of layer

outputs according to 11 [70]. It whitens each feature independently after it passes through an activation

function in the hidden layer. Moreover, instead of using the whole training sample, the mean and variance

in the whitening process are estimated in a batch-wise manner so that the training of layer parameters

(γ,β) can be integrated into the original back-propagation algorithm

x̂ = γ · x− E[x]√
Var[x] + ε

+ β (11)

1.4. Stochastic gradient descent

SGD has been shown to be an effective tool to train the DNN. It is an extension of ordinary gradient

descent. In ordinary gradient descent, the model parameters θ are repeatedly updated by taking small

steps downward on an error surface that is defined by an objective function E(θ); here it is the cost

function L(θ,x) as Equation 3 or 6). At each iteration e, the step size is set by the learning rate ε, and

the direction of each step equals the back-propagated gradient of the objective function over the N entire

training set:

33

∇E(θ,x) =
∂L(θ,x)

∂θ
=

1

N

N∑
i=1

∂L(θ, xi)

∂θ
(12)

θe = θe−1 − ε∇E(θe−1,x)

= θe−1 −
ε

N

N∑
i=1

∂L(θe−1, xi)

∂θe−1
(13)

SGD works identically to ordinary gradient descent, except that in each iteration it only uses a ”batch”

(a subset m of N) of training samples in computing the gradient. The training samples are divided into

multiple batches in advance. SGD iterates through different batches and updates the parameters until

the value of the cost function stops decreasing (hitting the optimum).

∇E(θ,x) =
1

m

m∑
i=1

∂L(θ, xi)

∂θ
(14)

SGD speeds up the convergence because in every iteration when updating the values of the parameters,

it is not necessary to run through the complete training set in order to update the parameters. It is

”stochastic” because using batch approximations introduces noise in estimating the true gradient: the

gradient over all training samples. Although such estimation is biased, it leads the DNN to skip over

poor local minima that traditional GD would fall into. Meanwhile, it reduces variance of the gradients

[71], which helps prevent the DNN from overfitting [72]. Most importantly, SGD makes better use of the

memory allocation in computers since the training data in large scale ML task are usually too large to

be fitted into the local memory.

1.5. Momentum

Momentum [73] has become a common trick in achieving the state-of-the-art performance. If the

objective function has the pattern of a long shallow ravine leading to the optimum with steep walls on

the sides (a deep ”U” shape with optimum at the bottom), the SGD tends to oscillate across the optimum

since the gradient will point down to steep sides rather than along the way direct towards the optimum.

Deep architectures are shown to have similar patterns near the local minima [74], therefore, ordinary

SGD can lead to slow convergence; particularly after the initial steep gains. The momentum technique is

one way to pull the objective function along the shallow ravine. It speeds up the convergence, and reduces

the risk of oscillating by incorporating the gradient information from previous steps. Mathematically, the

momentum term µ ∈ (0, 1] determines to what extent previous gradients are combined into the current

update. As a rule of thumb, µ is set to 0.5 in first epochs. After the training stabilises, it is increased to

0.9 or higher in later iterations. In epoch e, the model parameters θ are updated as Equation (15).

θe =θe−1 −∆θe

∆θe =µe∆θe−1 + (1− µe)εe∇E(θe−1) (15)

34

1.6. Decaying learning rate

SGD is sensitive to the learning rate since it indicates how big a step should be taken in each

update. The intuition in choosing the learning rate is that we should decrease it as the number of

updates increases, otherwise the training process will just oscillate near the local minima. A naive

implementation is that we decay the learning rate by a certain percent after each epoch (an epoch is one

run that SGD iterates over all the batches of training data). There are other advanced methods, such

as Adagrad [75] and Adadelta [76], that can dynamically set a learning rate.

1.7. Early stopping

Improving the DNN’s fitness to the training data often comes at the cost of increased generalisation

error; i.e the overfitting problem. In order to prevent overfitting, we stop the SGD procedures earlier,

before the cost function converges to the true best minimum. Early stopping technique [77] offers

guidance as to how many updates are allowed before the learner starts to overfit. Such guidance is based

on measuring the model’s real-time performance on a pre-allocated validation set. If the performance

on the validation set stops improving for a long time and it exceeds the limit of patience (a self-defined

parameter), then the training process will be stopped because it has probably met the local minima.

1.8. Implementation Details

We have implemented the simple benchmark classifiers (i.e., logistic regression, Naive bayes, decision

tree) with the help of the scikit-learn library [78] in Python. The Scikit-learn library offers the option of

weighted class samples. To take the unbalanced class issue into account, we tried different weight values,

ranging from 1 to 15, and selected the one with the best performance for each algorithm. Other hyper-

parameters in the library API were set at default, other than those specifically mentioned in Section 2

in the online Appendix. For more advanced ML algorithms (i.e., SVM, ensemble methods), we have

employed a big data framework: Hadoop + Spark. ML algorithms with iterative calculations often

prohibit researchers from performing large scale data analysis. For example, in the work of comparing

ML algorithms in the problem of mortgage default prediction, even with 300, 000 training samples,

SVM is regarded as computationally infeasible due to its O(N3) complexity [79]. By using a special

data abstraction called Resilient Distributed Dataset (RDD) and caching the RDD into memory, Spark

offsets the weakness of low efficiency on running iterative jobs for a traditional Hadoop framework [80].

This makes machine learning on big data possible. We deployed the Hadoop + Spark architecture on

Amazon EC2. Nineteen m1.xlarge salves each with 4 cores and 12.6gb memory were used.

1.9. GPU Implementation

DNN has a massively parallel structure. Training DNNs heavily depends on matrix calculations

which can be computed simultaneously. This makes the training task perfectly suitable for speeding up

by graphics processing units (GPUs). A GPU has thousands of cores, and can thus support large scale

of parallelisations. In the task of training DNNs, it can offer 20 times faster speeds compared to the

CPUs [1]. With the aid of GPU, we were able to train huge DNNs (e.g. millions of parameters) in a

timely manner.

35

Algorithm 1 Pseudo code for training DNN

Input: Training data set (Xtrain,Ytrain), N samples with P features; Validation data set (Xvalid,Yvalid),

N ′ samples with P features. Xtrain and Xvalid are normalised before input.

Input: Number of hidden layers: I, the i-th hidden layer with hi neurons; Corruption rate in the i-th

layer of dA: qi; Activation functions in encoders or decoders: h(·), g(·); Cost function in layer-wise

pre-training or fine-tuning: Lp(·), Lf (·)

Input: Learning rate of pre-training or fine-tuning in the e-th epoch: εp e, εf e; Momentum in the e-th

epoch: ue; Batch size in SGD: B; Maximum number of epochs in pre-training or fine-tuning stage:

N,M ; Dropout rate in the i-th hidden layer: pi

Output: DNN for later inference, e.g., making predictions on out-of-sample dataset

1: Xavier’s Initialisation: i-th layer encoder / decoder bias and weights [bi, b̃i] = 0,

[Wi,W̃i] ∼ Gaussian(0,
2

hi−1 + hi
)

2: // Layer-wise unsupervised pre-training via denoising autoencoder:

3: x0 = Xtrain, e = 0 // setting the input and the epoch counter

4: for i ∈ (1, 2..., I) do

5: // encoder’s outputs from previous layer is used as the input for the subsquent layer

6: xi = h(Wi−1 · xi−1 + bi−1)

7: while e ≤ N do

8: for j ∈ (1, 2...,
N

B
) do

9: // Corrupting the j-th input batch of data xji by randomly knocking out samples

10: x̂ji ← xji ∗Binomial (n = B, p = qi)

11: // Computing the reconstruction of x̃ji through the encoder and decoder:

zji = g(W̃e
i · h(We

i · x̂
j
i + bei) + b̃ei)

12: // Computing the reconstruction error:

Lp(x̂
j
i, z

j
i | Θ) = Lp(x̂

j
i, z

j
i |We

i ,b
e
i ,W̃

e
i , b̃

e
i)

13: // Computing the average gradient among a batch and update the parameters:

We+1
i ←We

i −
εp e
B

B∑
k=1

∂Lp(x̂
j k
i , zj ki |Θ)

∂We
i

,be+1
i ← bei −

εp e
B

B∑
k=1

∂Lp(x̂
j k
i , zj ki |Θ)

∂bei

W̃e+1
i ← W̃e

i −
εp e
B

B∑
k=1

∂Lp(x̂
j k
i , zj ki |Θ)

∂W̃e
i

, b̃e+1
i ← b̃ei −

εp e
B

B∑
k=1

∂Lp(x̂
j k
i , zj ki |Θ)

∂b̃ei
14: end for

15: if Lp(Xvalid | Θ) meets the early stopping condition then

16: Save the weights and bias of the encoder in each layer

17: break

18: end if

19: e += 1

20: end while

21: end for

36

22: // Supervised fine-tunning the whole network:

23: Initialise parameters in the batch normalisation layer: γi ∼ Uniform(−hi, hi),βi = 0

24: Xavier’s Initialisation: softmax layer weight Ŵ ∼ Gaussian(0,
2

hi + 2
),bias b̂ = 0

25: x0 = Xtrain, e = 0 // resetting the input and the epoch counter

26: while e ≤M do

27: for j ∈ (1, 2...,
N

B
) do

28: // Feed forward to compute the outputs for each batch of training data:

29: for i ∈ (1, 2..., I) do

30: xji = h(We
i · x

j
i−1 + bei) // inherit the weights and bias from pretrained encoder

31: x̂ji = γei ·
xji − E[xji]√
Var[xji] + ε

+ βei // batch normalisation layer

32: // Drop out the neurons with their corresponding weights and outputs:

33: x̂ji ← x̂ji ∗Binomial (n = hi, p = pi)

34: end for

35: Yj
predict = softmax(Ŵe · x̂jI + b̂e) // softmax layer outputs the predictions

36: // Computing the cost function:

Lf (Yj
predict,Y

j
train | Θ) = Lf (Yj

predict,Y
j
train |We

1∼I ,b
e
1∼I ,Ŵ

e, b̂e,γe1∼I ,β
e
1∼I)

37: // Computing the gradient and update the parameters of the softmax layer

38: θ : {Ŵ, b̂} // parameters to update

39: ∆θe+1 = µe∆θ
e + (1− µe)

εf e
B

B∑
k=1

∂Lf (Yj k
predict,Y

j k
train|Θ)

∂θe
// with momentum

θe+1 ← θe −∆θe+1

40: // Propagating back gradients and update intermediate layers

41: for i′ ∈ (l, l − 1, ..., 1) do

42: θ : {Wi′ ,bi′ ,γi′ ,βi′} // parameters of hidden and batch normalisation layers

43: // Applying chain rules

44: ∆θe+1 = µe∆θ
e+(1−µe)

εf e
B

B∑
k=1

∂Lf (Yj k
predict,Y

j k
train|Θ)

∂x̂jl
·
i′+1∏
i∗=l

{
∂x̂ji∗

x̂ji∗−1

}
·
∂x̂ji′

∂θe

 θe+1 ←

θe −∆θe+1

45: end for

46: end for

47: if Lp(Y
j
predict,Y

j
train | Θ) meets the early stopping condition then

48: Save the DNN

49: break

50: end if

51: e += 1

52: end while

37

2. Hyper-Parameter Tuning for the DNN and Benchmark ML Classifiers

The (predictive) performance of a learning algorithm depends on the setting of algorithmic hyper-

parameters. Tuning hyper-parameters in a model selection stage is important to ensure that an algorithm

performs well on a given data set [46]. We tune the proposed DNN and ML benchmark classifiers in

such a way that we reserve a fraction of 20% of the training set as a validation data to assess candidate

models with different hyper-parameter settings. We then use the model with the best hyper-parameter

configuration in terms of validation set performance to generate risk predictions for the trades in the test

set. Given that we employ n-fold cross-validation, the model training and evaluation occurs n times. In

theory, this suggests that the selection of suitable hyper-parameters should also be undertaken n times;

once for each loop of cross-validation. Given the computational effort associated with training advanced

learning algorithms on a large data set and the number of alternative hyper-parameter settings, repeating

model selection n times is computationally infeasible. Therefore, we perform model selection only once in

the first iteration of cross-validation. In subsequent iterations, we retrain the learning algorithms using

the hyper-parameter specification identified as most suitable in the first cross-validation iteration.

We acknowledge that our model selection approach suffers the limitation that it uses only a rel-

atively small amount of data to tune hyper-parameters. More specifically, when setting n = 10 in

cross-validation, training sets comprise roughly 90% of the available data out of which 20% are used

as validation set. Therefore, the single validation partition on which we assess the predictive perfor-

mance of candidate hyper-parameter settings is roughly 18% of the full data set. While computational

considerations render model selection in every round of cross-validation infeasible, we suggest that our

approach is also suitable. Our motivation for this view is twofold. First, 18% of the full data set are

still a sizeable amount of data in absolute terms, as we work with a large data set including about 30

million trades. Second, the DNN classifier exhibits the largest number of different hyper-parameters and

hyper-parameter candidate settings in the comparison. DNNs are also considered sensitive with respect

to hyper-parameter choices, which suggest that model selection is particularly important for DNNs.

Consequently, reducing the amount of hyper-parameter tuning in our approach compared to a full model

selection in every cross-validation iteration provides a conservative evaluation of the ability of the DNN.

If the available resources facilitates a more comprehensive tuning of hyper-parameters, it is plausible to

expect the DNN to benefit the most from such additional tuning.

The range of candidate settings that we consider for each learning algorithm is based on previous

literature, while accounting for both the large size of the data set and computational feasibility. More

specifically, we draw inspiration from previous classifier comparisons [46, 81, 79, 7] to identify candidate

settings for the ML benchmarks. For the DNN, we follow the recommendations of [55] and consider the

candidate hyper-parameter settings he proposes. We also follow the advice of [55] to not tune DNN hyper-

parameters using grid-search, which would involve a full-enumerative search across all combinations of

hyper-parameter candidate settings that is computationally intractable, but to use random search. Other

than using random search, the tuning process for the DNN is the same as that for the ML benchmarks.

Table 5 and Table 6 report the candidate hyper-parameter settings that we consider during the tuning

of the DNN and the ML benchmarks, respectively.

38

Table 5: Candidate Hyper-Parameter Settings for the Proposed DNN

Attribution Hyper-parameter Range Selected

DNN Topology

Number of hidden layers (dAs) [2, 3, 4, 5, 6]

Number of hidden units in each hidden layera [32, 64, 128, 256, 512, 1024, 2048]

Weight decay regularizer λ in dA [10−2, 10−3, 10−4, 10−2, 10−3, 10−5]

Corruption rate in each hidden layerb [0.2, 0.3, 0.4, 0.5]

SGD Training

Learning rate in pre-training [1, 10−1, 10−2, 10−3, 10−4]

Learning rate in fine-tuning [1.5, 1, 0.5, 0.1, 0.05, 0.01]

Learning rate decayc [0.99, 0.995, 0.999]

Number of samples in minibatch [10, 20, 30, 50, 100, 150, 200]

Momentum intervald [200, 500, 800]

Momentum startd 0.5

Momentum endd [0.9, 0.99]

Number of epochs in pre-training [30, 50, 70]

Maximum number of epochs in fine-tuninge [500, 1000, 1500]

Dropout Dropout rate in each layerf 0.5

Notes: a) The number of neurons in the middle layers is selected larger than the the number of hidden units in the

first and top layers, e.g., 4 hidden layers: [64, 256, 512, 32]. b) The corruption rate is set in an increasing way, e.g.,

4 hidden layers: [0.2, 0.3, 0.4, 0.5]. c) In the pre-training stage, the learning rate is fixed. In the fine-tuning stage,

the learning rate decays by a given percent in each epoch. d) For epoch e ∈ [0, momentum interval], the momentum

µe increases linearly from momentum start to momentum end. After that, it stays at momentum end. e) In the

fine-tuning stage, we also use early stopping. Be aware that the training process can stop before the current epoch

reaches the maximum number. f) The dropout rate is the same for all dropout layers.

Table 6: Candidate Hyper-Parameter Settings for ML Benchmark Classifiers

Algorithm Hyper-Parameter Candidate Settings

Logistic Regression
form of regularization

regularizer

none, L2, L1, forward selection

{ 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103 }

Artificial Neural Network number of hidden units 2, 8, 31, 64, 128

Random Forest

number of trees

max. depth

random subspace

32, 64, 128, 256, 512, 1024, 2048

1, 2, 4, 8, 20

2, 5, 10, 15, 31

Adaptive boosting
number of trees

max. depth

32, 64, 128, 256, 512, 1024, 2048

1, 2, 4, 8

39

3. Comparison of DNN to Benchmark ML Classifiers After Addressing Class Imbalance

Using SMOTE

Table 7 reports empirical results concerning the comparison of the DNN to the ML-based benchmark

classifiers after addressing class imbalance using SMOTE. We estimate predictive performance in terms

of the P&L resulting from hedging trades according to model predictions, the AUC and the F1-measure.

The results indicate that all classifiers benefit from SMOTE. Compared to Table 3 in the main part of the

paper, values of P&L and predictive performance are consistently higher. This confirms that the skewed

distributions of A-book and B-book clients in the focal data set has adversely affected all classification

models.

Table 7: DNN Performance vs. Benchmarks After Addressing Class Skew Using SMOTE

folds 1 2 3 4 5 mean

Average P&L per trader in GBP

DNN 3.944,7 4.169,1 3.937,7 3.745,1 3.791,9 3.917,7

Logit 3.721,4 3.612,7 3.696,1 4.047,3 3.453,9 3.706,3

ANN 3.242,6 3.077,5 3.514,7 3.142,9 3.170,1 3.229,6

RF 3.363,6 2.911,5 3.578,1 3.110,7 3.264,0 3.245,6

AdaBoost 3.651,9 3.381,9 3.553,6 3.762,8 3.588,0 3.587,6

Area under the Receiver-Operating-Characteristics Curve (AUC)

DNN 0,902 0,903 0,875 0,879 0,882 0,889

Logit 0,799 0,811 0,811 0,802 0,805 0,806

ANN 0,858 0,861 0,859 0,843 0,869 0,858

RF 0,798 0,787 0,799 0,780 0,796 0,792

AdaBoost 0,809 0,798 0,807 0,794 0,808 0,803

4. Auxiliary Empirical Results from Preliminary Tests

The following subsections augment the empirical results presented in the main part of the paper.

While results in the main paper are based on cross-validation to ensure robustness, several preliminary

experiments were undertaken using a simpler, computationally less demanding split-sampling approach.

This approach involved partitioning the data sequentially into a training set (70%) for developing predic-

tive models and a test set (30%) for assessing their accuracy. Given reduced computational requirements,

the preliminary experiments could also involve a larger number of ML algorithms and considered sup-

port vector machines (SVMs), C5.0 decision trees, and the Naive Bayes classifier (NB) as additional

benchmarks to the DNN.

Trades from November 2003 to April 2013 entered the training set, whereas trades from May 2013

to July 2014 served as the hold-out test set. According to the definition of the prediction target, 6.1%

(7.2%) of the trades in the training (test) set came from A-book clients and should be hedged. To address

40

the class imbalance in preliminary experiments, we bootstrapped the test set with different ratios of class

’+1’ trades ranging from 0.05, 0.1, ... 0.5, and drew 1000 bootstrap samples for each ratio. This approach

enabled examining the performance of the DNN across different scenarios with varying degrees of class

skew and increased robustness because it implied repeating the out-of-sample evaluation 11000 times on

different (bootstrapped) test sets.

4.1. Pre-test results of DNN vs. ML Benchmarks

4.1.1. Aggregated Classifier Performance

Table 8 summarizes the performance of the DNN and benchmark ML classifiers across bootstrap

samples with different ratios of high risk traders. The percentage figures in the header of Table 8 give

the ratio of A-book clients per bootstrap. For example, if the ratio is 0.3, the bootstrap sample on which

we compare ML models includes 30% A-book clients. Their trades represent the positive class (with

yi = 1) against which the market maker should hedge. This implies that the ratios shown in Table 8 do

not represent the prior probability of the positive class in the data, which depends on the total number

of trades across all high risk traders.

The setting default represents the true ratio of high risk traders in the test set, which is 7.2%. For

each ratio, Table 8 reports the average performance of a model over 1000 bootstrapped test sets. An

underscore highlights the best model per performance indicator. We assess models in terms of the P&L

that emerges from STX taking hedging decisions according to model recommendations. In addition, we

consider the AUC and the F-measure. To check whether performance differences between classifiers are

significant, we apply the nonparametric Friedman test together with multiple pairwise comparisons [82].

The last column of Table 8 reports the p-values of the pairwise comparisons (after adjustment using

Holm’s procedure), where the DNN is the control classifier. A low p-value indicates that DNN performs

significantly better than the corresponding benchmark classifier [82].

41

Table 8: Performance Comparison of the DNN to Benchmark ML Classifiers

Metrics
Bootstrap with different percentage of high risk clients

Friedman χ2
7 Holm’s p-value

Classifiers 0.05 default 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P&L

(million)

Deep learning 22.50 18.30 14.92 7.43 -0.25 -7.84 -16.07 -23.28 -30.85 -38.70 -45.83

60.5 (.0000)

/
SVM 21.32 17.39 13.97 5.02 -3.52 -11.82 -20.93 -29.63 -38.37 -47.63 -56.67 (0.0208)

ANN 21.55 16.11 11.28 1.52 -8.17 -18.25 -28.58 -38.39 -47.95 -58.16 -68.2 (.0000)

Logistic 21.51 15.97 11.64 1.95 -7.89 -17.43 -28.02 -37.49 -47.42 -57.26 -67.28 (.0000)

C5.0 Tree 21.36 16 11.43 2.08 -7.45 -16.75 -27.01 −36.26 -45.72 -55.6 -64.61 (.0000)

RF 20.68 16.32 11.88 3.40 -5.22 -8.44 -19.53 -28.65 -37.44 -49.08 -57.44 (.0001)

AdaBoost 21.97 17.1 13.07 4.4 -4.21 -12.91 -22.36 -30.8 -39.55 -48.53 -56.95 (.0006)

Naive bayes 17.53 12.2 10.29 1.83 -9.69 -18.7 -28.47 -37.27 -46.04 -55.46 -64.08 (.0000)

AUC

Deep learning 0.813 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812

80.1 (.0000)

/
SVM 0.679 0.679 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.681 (.0000)

ANN 0.791 0.791 0.791 0.791 0.791 0.791 0.791 0.792 0.791 0.791 0.791 (.0000)

Logistic 0.489 0.489 0.489 0.489 0.489 0.489 0.489 0.489 0.489 0.489 0.489 (.0000)

C5.0 Tree 0.744 0.744 0.745 0.745 0.745 0.744 0.744 0.744 0.745 0.745 0.745 (.0000)

RF 0.762 0.762 0.762 0.762 0.762 0.761 0.762 0.762 0.762 0.762 0.762 (.0000)

AdaBoost 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 0.801 (.0000)

Naive bayes 0.483 0.482 0.482 0.482 0.482 0.482 0.482 0.482 0.482 0.482 0.482 (.0000)

F-measure

Deep learning 0.248 0.282 0.298 0.318 0.331 0.338 0.343 0.347 0.35 0.352 0.354

75.5 (.0000)

/
SVM 0.19 0.24 0.265 0.296 0.307 0.307 0.303 0.291 0.281 0.27 0.26 (.0000)

ANN 0.024 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 (.0000)

Logistic 0.016 0.016 0.017 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 (.0000)

C5.0 Tree 0.064 0.065 0.066 0.066 0.067 0.067 0.067 0.067 0.067 0.067 0.067 (.0000)

Random forest 0.169 0.239 0.204 0.258 0.310 0.322 0.320 0.307 0.309 0.304 0.341 (.0000)

Adaptive boosting 0.163 0.172 0.176 0.182 0.184 0.186 0.187 0.188 0.188 0.189 0.189 (.0000)

Naive bayes 0.045 0.061 0.071 0.088 0.1 0.108 0.115 0.121 0.125 0.129 0.132 (.0000)

Table 8 reveals that the DNN outperforms the benchmarks by a substantial margin. Its superiority

is consistent across different performance indicators and ratios of high risk traders. In each of the

4 ∗ 11 = 44 settings, the DNN gives the largest profit and the most accurate class predictions. Similarly,

in experimental settings where the market maker loses money due to a synthetically increased amount of

high risk traders through bootstrapping (e.g., 20% or more), the DNN helps to mitigate the loss to a large

extent. Formally, the observed results facilitate rejecting the null hypothesis of the Friedman test for

each performance measure. In the following post-hoc comparisons between the DNN and benchmarks,

we can also reject the null hypothesis of equal performance and conclude that DNN performs significantly

better than each benchmark.

4.1.2. Distribution of Classifier Performance

Previous results depict the average performance of different classification models across different

ratios of A-book clients and performance indicators. We compute these averages across 1,000 bootstrap

samples per A-book client ratio. The boxplots provided below further extend the results of Table 8

through reporting the distribution of model performance across the 1,000 bootstrap samples.

43

P&L
●● ●

●

●

●

●

●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

15
18

21
24

27

0.05
●

●

●

●

●
●

●

●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

9
12

16
19

22 Default

●

●

●

●

●●

●

●

●
●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

5
8

12
15

19

0.1

●

●

●

●

●
●
●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

−
5

−
1

3
7

11

0.15
●

●

●

●

●

●

●

●

●

●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

−
15

−
10

−
5

0
5

0.2

●

●

●

●

●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

−
25

−
19

−
14

−
9

−
4

0.25

●

●
●

●
●

●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

−
34

−
29

−
23

−
17

−
11

0.3

●

●

●

●
●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

−
45

−
38

−
32

−
25

−
18

0.35

●

●

●●
●

●

●

●●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

−
56

−
48

−
40

−
33

−
25

0.4
●

●●
●

●

●

●

●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

−
67

−
58

−
49

−
40

−
32

0.45

●
●

●

●
●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

−
77

−
68

−
59

−
49

−
40

0.5

Figure 12

44

AUC
●

●
●●
●
●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
82

0.05
●

●●

●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
82

Default

●
●

●
●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
82

0.1

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
81

0.15
●

●●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
82

0.2

●

●

●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
82

0.25

●

●

●

●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
81

0.3
●●

●

●

●

●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
82

0.35

●

●

●

●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
81

0.4
●

●

●●

●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
81

0.45
●●

●

●

●●●

●●●●●

●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
48

0.
56

0.
65

0.
73

0.
81

0.5

Figure 13

45

F−score
●

●

●

●

●

●
●
●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
07

0.
13

0.
19

0.
26

0.05 ●

●

●

●

●
●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
08

0.
15

0.
22

0.
29

Default

●

●

●●

●
●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
09

0.
16

0.
24

0.
31

0.1 ●

●●

●

●

●

●
●●●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
09

0.
17

0.
25

0.
33

0.15

●
●

●

●
●●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
09

0.
18

0.
26

0.
34

0.2

●

●
●●

●
●

●

●●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
1

0.
18

0.
26

0.
34

0.25

●●
●

●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
1

0.
18

0.
26

0.
35

0.3

●●

●●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
1

0.
18

0.
27

0.
35

0.35

●
●

●● ●●●

●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
1

0.
19

0.
27

0.
36

0.4

●●●

●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
01

0.
1

0.
19

0.
27

0.
36

0.45

●
●

D
L

S
V

M

A
N

N

LG Tr
e

R
F

A
B

N
B

0.
02

0.
1

0.
19

0.
27

0.
36

0.5

Figure 14

4.1.3. Comparison of the DNN to other DL Models

We explain in the main part of the paper that the ability to learn high level distributed representations

from input data is not specific to the DNN we propose here. Prior literature credits the whole family of

DL methods for this feature [1]. Therefore, we experiment with other popular DL methods and compare

their performance in trader risk behavior forecasting to that of the proposed DNN. Corresponding results

shed light on the effectiveness of the proposed DNN relative to other DL benchmarks and contribute

additional insight to what extent unsupervised pre-training as well as other architectural choices we have

made contribute to the performance of our DNN.

Considering encouraging results in the area of mortgage default prediction [24], the first DL bench-

mark we consider consists of a deep feed-forward network (DFNN) with more than one hidden layer.

46

We also consider a convolutional neural network (CNN). While prior work has, to our best knowledge,

not considered CNNs for risk analytics, CNNs have shown excellent results in other domains [5], which

indicates that they represent a useful benchmark. Finally, using the sequence of trades per trader as a

time-ordered input, we compare the proposed DNN to a recurrent neural network with long short-term

memory cells (LSTM) [18]. Using the same performance indicators and statistical tests as in the com-

parison to ML benchmarks (Table 3 in the main paper), we report the results of the three DL methods

together with those of our DNN in Table 9.

The overall conclusion from Table 9 is that the other DL benchmarks do not perform as well as the

proposed model. Our DNN consistently achieves the best performance across evaluation criteria and

class ratios. Therefore, Table 9 supports the proposed DNN and its underlying topological choices (see

Figure 3 in the main paper). In particular, none of the three DL benchmarks employs unsupervised

pre-training. Therefore, the superior performance of the proposed DNN may be taken as evidence for

the suitability of unsupervised pre-training.

However, we caution against over-emphasizing results of Table 9. DL methods are complex and

require careful tuning to unfold their full potential. This paper focuses on one particular type of DNN

and its potential to support decision-making in risk management. Performing a fully-comprehensive

benchmark of several alternative complex DL models is beyond the scope of the paper. Accordingly,

we do not claim superiority of the proposed DNN to deep, feed-forward networks, CNNs and other DL

methods in general, and acknowledge that more elaborate tuning of corresponding approaches may give

performance comparable to the DNN we employ.

47

Table 9: Comparison of Proposed DNN Against Other Deep Learning Benchmarks

Metrics
Bootstrap with different percentage of high risk clients

Friedman χ2
7 Holm’s p-value

Classifiers 0.05 default 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P&L

(million)

Proposed DNN 22.50 18.30 14.92 7.43 -0.25 -7.84 -16.07 -23.28 -30.85 -38.70 -45.83

56.5 (.0000)

/
DFNN 19.54 16.43 12.53 5.42 -2.34 -8.90 -18.43 -25.65 -32.54 -40.55 -52.21 (.0000)

CNN 20.53 14.43 12.43 5.01 -4.53 -9.42 -19.43 -30.43 -35.62 -47.33 -54.45 (.0000)

LSTM 21.09 15.01 14.2 3.54 -5.42 -9.21 -17.54 -26.75 -34.53 -45.76 -50.54 (.0000)

AUC

Proposed DNN 0.813 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812

78.3 (.0000)

/
FDNN 0.704 0.704 0.704 0.604 0.703 0.704 0.704 0.704 0.705 0.704 0.704 (.0000)

CNN 0.793 0.793 0.793 0.793 0.791 0.793 0.793 0.793 0.793 0.793 0.793 (.0000)

LSTM 0.745 0.745 0.745 0.745 0.746 0.745 0.743 0.744 0.745 0.745 0.745 (.0000)

F-Score

Proposed DNN 0.248 0.282 0.298 0.318 0.331 0.338 0.343 0.347 0.35 0.352 0.354

69.5 (.0000)

/
DFNN 0.11 0.204 0.242 0.284 0.302 0.303 0.305 0.340 0.335 0.301 0.330 (.0000)

CNN 0.094 0.032 0.199 0.242 0.303 0.306 0.312 0.302 0.329 0.339 0.302 (.0000)

LSTM 0.081 0.225 0.205 0.209 0.321 0.312 0.309 0.301 0.321 0.305 0.329 (.0000)

Notes: We tune the hyper-parameters of the three DL benchmarks using grid-search in the same manner as the ML

benchmarks. The hyper-parameters and search spaces we consider are as follows. DFNN : no. of hidden layers [2, 3, 4], no.

of neurons per hidden layer [50; 200]. CNN no. of convolutional layers [2, 3, 4], filter size 3, max. pooling size = 2. LSTM

no. of hidden layer [2, 3]. FDNN and CNNs use activation functions of type ReLu in the hidden layers.

5. Robustness of the DNN With Respect to Random Weight Initialization

We train the DNN using stochastic gradient descent. Starting the minimization of the loss function

from randomly initialized weights using Xavier initialization (see above), gradient descent will deliver

different solutions depending on the random initial weights. Therefore, the performance of the DNN

may vary with random initial weights. To examine the robustness of the DNN with respect to the initial

weights, we repeat the initialization ten times, develop a DNN model on the training set, and assess its

performance in terms of the AUC on the test set. Table 10 reports corresponding results and suggests

that the dependence of the DNN with respect to initial weights is not substantial.

Table 10: Robustness of DNN Performance With Respect to Initial Weights

Seed AUC

1 0.843

12 0.857

123 0.853

1234 0.845

12345 0.855

123456 0.846

1234567 0.852

12345678 0.850

123456789 0.831

1234567890 0.852

Mean 0.847

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436–444.

[2] R. Geng, I. Bose, X. Chen, Prediction of financial distress: An empirical study of listed chinese

companies using data mining, European Journal of Operational Research 241 (1) (2015) 236–247.

[3] Y. Bengio, Learning deep architectures for AI, Foundations and trends R© in Machine Learning 2 (1)

(2009) 1–127.

[4] J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61 (2015) 85–117.

[5] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F. E. Alsaadi, A survey of deep neural network architec-

tures and their applications, Neurocomputing 234 (2017) 11–26.

[6] Z.-Y. Chen, Z.-P. Fan, M. Sun, A multi-kernel support tensor machine for classification with mul-

titype multiway data and an application to cross-selling recommendations, European Journal of

Operational Research 255 (1) (2016) 110–120.

49

[7] W. Verbeke, K. Dejaeger, D. Martens, J. Hur, B. Baesens, New insights into churn prediction in the

telecommunication sector: A profit driven data mining approach, European Journal of Operational

Research 218 (1) (2012) 211–229.

[8] A. Oztekin, R. Kizilaslan, S. Freund, A. Iseri, A data analytic approach to forecasting daily stock

returns in an emerging market, European Journal of Operational Research 253 (3) (2016) 697–710.

[9] P. du Jardin, A two-stage classification technique for bankruptcy prediction, European Journal of

Operational Research 254 (1) (2016) 236–252.

[10] G. Paleologo, A. Elisseeff, G. Antonini, Subagging for credit scoring models, European Journal of

Operational Research 201 (2) (2010) 490–499.

[11] T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning, 2nd Edition,

Springer, New York, 2009.

[12] J. N. Crook, D. B. Edelman, L. C. Thomas, Recent developments in consumer credit risk assessment,

European Journal of Operational Research 183 (3) (2007) 1447–1465.

[13] G. L. Lilien, Bridging the academicpractitioner divide in marketing decision models, Journal of

Marketing 75 (4) (2011) 196–210.

[14] C. Hsinchun, R. H. L. Chiang, V. C. Storey, Business intelligence and analytics: From big data to

big impact, MIS Quarterly 36 (4) (2012) 1165–1188.

[15] J. B. Heaton, N. G. Polson, J. H. Witte, Deep learning for finance: deep portfolios, Applied Stochas-

tic Models in Business and Industry 33 (1) (2017) 3–12, asmb.2209.

[16] J. Sirignano, Deep learning for limit order books, CoRR abs/1601.01987.

URL https://arxiv.org/abs/1601.01987

[17] M. Kraus, S. Feuerriegel, Decision support from financial disclosures with deep neural networks and

transfer learning, Decision Support Systems 104 (2017) 38–48.

[18] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for financial market

predictions, European Journal of Operational Research 270 (2) (2018) 654–669.

[19] N. Huck, Pairs selection and outranking: An application to the S&P 100 index, European Journal

of Operational Research 196 (2) (2009) 819–825.

[20] Y. Deng, F. Bao, Y. Kong, Z. Ren, Q. Dai, Deep direct reinforcement learning for financial signal

representation and trading, IEEE Transactions on Neural Networks and Learning Systems 28 (3)

(2017) 653–664.

[21] R. Xiong, E. P. Nichols, Y. Shen, Deep learning stock volatility with google domestic trends, CoRR

arXiv:1512.04916v3.

50

https://arxiv.org/abs/1601.01987
https://arxiv.org/abs/1601.01987

[22] S. P. Chatzis, V. Siakoulis, A. Petropoulos, E. Stavroulakis, N. Vlachogiannakis, Forecasting stock

market crisis events using deep and statistical machine learning techniques, Expert Systems with

Applications 112 (2018) 353–371.

[23] P. M. Addo, D. Guegan, B. Hassani, Credit risk analysis using machine and deep learning, Risks

6 (2) (2018) 1–20.

[24] J. A. Sirignano, A. Sadhwani, K. Giesecke, Deep learning for mortgage risk (2016).

URL https://people.stanford.edu/giesecke/

[25] G. F. Montufar, R. Pascanu, K. Cho, Y. Bengio, On the number of linear regions of deep neural

networks, in: Advances in Neural Information Processing Systems, 2014, pp. 2924–2932.

[26] Y. Bengio, I. Goodfellow, A. Courville, Deep learning, MIT Press, 2016.

[27] C. L. Giles, S. Lawrence, A. C. Tsoi, Noisy time series prediction using recurrent neural networks

and grammatical inference, Machine Learning 44 (1) (2001) 161–183.

[28] A. Oztekin, R. Kizilaslan, S. Freund, A. Iseri, A data analytic approach to forecasting daily stock

returns in an emerging market, European Journal of Operational Research 253 (3) (2016) 697–710.

[29] F. Shen, J. Chao, J. Zhao, Forecasting exchange rate using deep belief networks and conjugate

gradient method, Neurocomputing 167 (2015) 243–253.

[30] M. Dixon, D. Klabjan, J. H. Bang, Classification-based financial markets prediction using deep

neural networks, Algorithmic Finance 6 (3-4) (2017) 67–77.

[31] W. Bao, J. Yue, Y. Rao, A deep learning framework for financial time series using stacked autoen-

coders and long-short term memory, PLOS ONE 12 (7).

[32] C. Krauss, X. A. Do, N. Huck, Deep neural networks, gradient-boosted trees, random forests:

Statistical arbitrage on the S&P 500, European Journal of Operational Research 259 (2) (2017)

689–702.

[33] Y. Zhao, J. Li, L. Yu, A deep learning ensemble approach for crude oil price forecasting, Energy

Economics 66 (2017) 9–16.

[34] Y. Baek, H. Y. Kim, Modaugnet: A new forecasting framework for stock market index value with an

overfitting prevention lstm module and a prediction lstm module, Expert Systems with Applications

113 (2018) 457–480.

[35] H. Y. Kim, C. H. Won, Forecasting the volatility of stock price index: A hybrid model integrating

lstm with multiple garch-type models, Expert Systems with Applications 103 (2018) 25–37.

[36] N. Huck, Large data sets and machine learning: Applications to statistical arbitrage, European

Journal of Operational Research 278 (1) (2019) 330–342.

51

https://people.stanford.edu/giesecke/
https://people.stanford.edu/giesecke/

[37] B. Ribeiro, N. Lopes, Deep belief networks for financial prediction, in: B.-L. Lu, L. Zhang,

J. Kwok (Eds.), Proccedings of the International Conference on Neural Information Processing

(ICONIP’2011), Neural Information Processing, Springer Berlin Heidelberg, Berlin, Heidelberg,

2011, pp. 766–773.

[38] S. H. Yeh, C. J. Wang, M. F. Tsai, Deep belief networks for predicting corporate defaults, in:

Proceedings of the 24th Wireless and Optical Communication Conference (WOCC), IEEE Computer

Society, 2015, pp. 159–163.

[39] J. Lee, D. Jang, S. Park, Deep learning-based corporate performance prediction model considering

technical capability, Sustainability 9 (6) (2017) 899–911.

[40] C. Luo, D. Wu, D. Wu, A deep learning approach for credit scoring using credit default swaps,

Engineering Applications of Artificial Intelligence 65 (2017) 465–470.

[41] J. Jurgovsky, M. Granitzer, K. Ziegler, S. Calabretto, P.-E. Portier, L. He-Guelton, O. Caelen,

Sequence classification for credit-card fraud detection, Expert Systems with Applications 100 (2018)

234–245.

[42] C. Brady, R. Ramyar, White paper on spread betting, Lond. Cass Bus. Sch.

[43] N. Huck, Pairs trading and outranking: The multi-step-ahead forecasting case, European Journal

of Operational Research 207 (3) (2010) 1702–1716.

[44] M. Pryor, The Financial Spread Betting Handbook 2e: A Guide to Making Money Trading Spread

Bets, Harriman House Limited, 2011.

[45] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, T. Poggio, A quantitative theory of

immediate visual recognition, Progress in brain research 165 (2007) 33–56.

[46] S. Lessmann, B. Baesens, H.-V. Seow, L. C. Thomas, Benchmarking state-of-the-art classification

algorithms for credit scoring: An update of research, European Journal of Operational Research

247 (1) (2015) 124–136.

[47] A. Ula, O. T. Yldz, E. Alpaydn, Eigenclassifiers for combining correlated classifiers, Information

Sciences 187 (0) (2012) 109–120.

[48] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, et al., Greedy layer-wise training of deep net-

works, Advances in neural information processing systems 19 (2007) 153.

[49] H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin, Exploring strategies for training deep neural

networks, The Journal of Machine Learning Research 10 (2009) 1–40.

[50] G. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural computa-

tion 18 (7) (2006) 1527–1554.

52

[51] Y. Bengio, O. Delalleau, Justifying and generalizing contrastive divergence, Neural Computation

21 (6) (2009) 1601–1621.

[52] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features

with denoising autoencoders, in: Proceedings of the 25th International Conference on Machine

learning, ACM, 2008, pp. 1096–1103.

[53] A. Krogh, J. A. Hertz, A Simple Weight Decay Can Improve Generalization, Morgan Kaufman,

1992, pp. 950–957.

[54] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple way to

prevent neural networks from overfitting, The Journal of Machine Learning Research 15 (1) (2014)

1929–1958.

[55] Y. Bengio, Practical recommendations for gradient-based training of deep architectures, in: Neural

Networks: Tricks of the Trade, Springer, 2012, pp. 437–478.

[56] K. Dowd, Adjusting for risk: An improved Sharpe ratio, International Review of Economics &

Finance 9 (3) (2000) 209 – 222.

[57] M. Weber, C. F. Camerer, The disposition effect in securities trading: An experimental analysis,

Journal of Economic Behavior & Organization 33 (2) (1998) 167–184.

[58] D. J. Hand, Measuring classifier performance: Acoherent alternative to the area under the roc curve,

Machine Learning 77 (1) (2009) 103–123.

[59] A. Beque, K. Coussement, R. Gayler, S. Lessmann, Approaches for credit scorecard calibration: An

empirical analysis, Knowledge-Based Systems 134 (15) (2017) 213–227.

[60] J. M. Johnson, T. M. Khoshgoftaar, Survey on deep learning with class imbalance, Journal of Big

Data 6 (1) (2019) 27. doi:10.1186/s40537-019-0192-5.

URL https://doi.org/10.1186/s40537-019-0192-5

[61] H. He, E. A. Garcia, Learning from imbalanced data, Knowledge and Data Engineering, IEEE

Transactions on 21 (9) (2009) 1263–1284.

[62] A. V. Benos, Aggressiveness and survival of overconfident traders, Journal of Financial Markets

1 (3) (1998) 353 – 383.

[63] A. Oztekin, D. Delen, A. Turkyilmaz, S. Zaim, A machine learning-based usability evaluation

method for elearning systems, Decision Support Systems 56 (2013) 63–73.

[64] C. Sevim, A. Oztekin, O. Bali, S. Gumus, E. Guresen, Developing an early warning system to predict

currency crises, European Journal of Operational Research 237 (3) (2014) 1095–1104.

[65] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, S. Bengio, Why does unsupervised

pre-training help deep learning?, The Journal of Machine Learning Research 11 (2010) 625–660.

53

https://doi.org/10.1186/s40537-019-0192-5
http://dx.doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1186/s40537-019-0192-5

[66] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in:

International Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.

[67] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings

of the 27th International Conference on Machine Learning (ICML-10), 2010, pp. 807–814.

[68] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier networks, in: Proceedings of the 14th Inter-

national Conference on Artificial Intelligence and Statistics. JMLR W&CP Volume, Vol. 15, 2011,

pp. 315–323.

[69] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks,

Science 313 (5786) (2006) 504–507.

[70] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal

covariate shift, arXiv preprint arXiv:1502.03167.

[71] W. A. Gardner, Learning characteristics of stochastic-gradient-descent algorithms: A general study,

analysis, and critique, Signal Processing 6 (2) (1984) 113–133.

[72] O. Bousquet, L. Bottou, The tradeoffs of large scale learning, in: Advances in neural information

processing systems, 2008, pp. 161–168.

[73] I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of initialization and momentum in

deep learning, in: Proceedings of the 30th International Conference on Machine Learning (ICML-

13), 2013, pp. 1139–1147.

[74] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult,

Neural Networks, IEEE Transactions on 5 (2) (1994) 157–166.

[75] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic

optimization, The Journal of Machine Learning Research 12 (2011) 2121–2159.

[76] M. D. Zeiler, Adadelta: An adaptive learning rate method, arXiv preprint arXiv:1212.5701.

[77] L. Prechelt, Automatic early stopping using cross validation: quantifying the criteria, Neural Net-

works 11 (4) (1998) 761–767.

[78] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12

(2011) 2825–2830.

[79] T. Fitzpatrick, C. Mues, An empirical comparison of classification algorithms for mortgage default

prediction: evidence from a distressed mortgage market, European Journal of Operational Research

249 (2) (2016) 427–439.

54

[80] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, I. Sto-

ica, Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing,

in: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation,

USENIX Association, 2012, pp. 2–2.

[81] S. Finlay, Multiple classifier architectures and their application to credit risk assessment, European

Journal of Operational Research 210 (2) (2011) 368–378.

[82] S. Garćıa, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple com-

parisons in the design of experiments in computational intelligence and data mining: Experimental

analysis of power, Information Sciences 180 (10) (2010) 2044–2064.

55

IRTG 1792 Discussion Paper Series 2019

For a complete list of Discussion Papers published, please visit
http://irtg1792.hu-berlin.de.

001 ”Cooling Measures and Housing Wealth: Evidence from Singapore” by Wolfgang
Karl Härdle, Rainer Schulz, Taojun Xie, January 2019.

002 ”Information Arrival, News Sentiment, Volatilities and Jumps of Intraday Returns”
by Ya Qian, Jun Tu, Wolfgang Karl Härdle, January 2019.

003 ”Estimating low sampling frequency risk measure by high-frequency data” by Niels
Wesselhöfft, Wolfgang K. Härdle, January 2019.

004 ”Constrained Kelly portfolios under alpha-stable laws” by Niels Wesselhöfft, Wolf-
gang K. Härdle, January 2019.

005 ”Usage Continuance in Software-as-a-Service” by Elias Baumann, Jana Kern, Stefan
Lessmann, February 2019.

006 ”Adaptive Nonparametric Community Detection” by Larisa Adamyan, Kirill Efimov,
Vladimir Spokoiny, February 2019.

007 ”Localizing Multivariate CAViaR” by Yegor Klochkov, Wolfgang K. Härdle, Xiu Xu,
March 2019.

008 ”Forex Exchange Rate Forecasting Using Deep Recurrent Neural Networks” by
Alexander J. Dautel, Wolfgang K. Härdle, Stefan Lessmann, Hsin-Vonn Seow, March
2019.

009 ”Dynamic Network Perspective of Cryptocurrencies” by Li Guo, Yubo Tao, Wolfgang
K. Härdle, April 2019.

010 ”Understanding the Role of Housing in Inequality and Social Mobility” by Yang
Tang, Xinwen Ni, April 2019.

011 ”The role of medical expenses in the saving decision of elderly: a life cycle model”
by Xinwen Ni, April 2019.

012 ”Voting for Health Insurance Policy: the U.S. versus Europe” by Xinwen Ni, April
2019.

013 ”Inference of Break-Points in High-Dimensional Time Series” by Likai Chen, Weining
Wang, Wei Biao Wu, May 2019.

014 ”Forecasting in Blockchain-based Local Energy Markets” by Michael Kostmann,
Wolfgang K. Härdle, June 2019.

015 ”Media-expressed tone, Option Characteristics, and Stock Return Predictability” by
Cathy Yi-Hsuan Chen, Matthias R. Fengler, Wolfgang K. Härdle, Yanchu Liu, June
2019.

016 ”What makes cryptocurrencies special? Investor sentiment and return predictability
during the bubble” by Cathy Yi-Hsuan Chen, Roméo Després, Li Guo, Thomas
Renault, June 2019.

017 ”Portmanteau Test and Simultaneous Inference for Serial Covariances” by Han Xiao,
Wei Biao Wu, July 2019.

018 ”Phenotypic convergence of cryptocurrencies” by Daniel Traian Pele, Niels Wes-
selhöfft, Wolfgang K. Härdle, Michalis Kolossiatis, Yannis Yatracos, July 2019.

019 ”Modelling Systemic Risk Using Neural Network Quantile Regression” by Georg
Keilbar, Weining Wang, July 2019.

IRTG 1792, Spandauer Strasse 1, D-10178 Berlin
http://irtg1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.

http://irtg1792.hu-berlin.de
http://irtg1792.hu-berlin.de

IRTG 1792 Discussion Paper Series 2019

For a complete list of Discussion Papers published, please visit
http://irtg1792.hu-berlin.de.

020 ”Rise of the Machines? Intraday High-Frequency Trading Patterns of Cryptocur-
rencies” by Alla A. Petukhina, Raphael C. G. Reule, Wolfgang Karl Härdle, July
2019.

021 ”FRM Financial Risk Meter” by Andrija Mihoci, Michael Althof, Cathy Yi-Hsuan
Chen, Wolfgang Karl Härdle, July 2019.

022 ”A Machine Learning Approach Towards Startup Success Prediction” by Cemre
Ünal, Ioana Ceasu, September 2019.

023 ”Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk
Behavior Forecasting” by A. Kolesnikova, Y. Yang, S. Lessmann, T. Ma, M.-C.
Sung, J.E.V. Johnson, September 2019.

IRTG 1792, Spandauer Strasse 1, D-10178 Berlin
http://irtg1792.hu-berlin.de

This research was supported by the Deutsche
Forschungsgemeinschaft through the IRTG 1792.

http://irtg1792.hu-berlin.de
http://irtg1792.hu-berlin.de

	Training the Proposed DNN
	Hyper-Parameter Tuning for the DNN and Benchmark ML Classifiers
	Comparison of DNN to Benchmark ML Classifiers After Addressing Class Imbalance Using SMOTE
	Trader Classification and Hedging Strategy
	Trader Behavior Prediction and Decision Support

	Auxiliary Empirical Results from Preliminary Tests
	Pre-test results of DNN vs. ML Benchmarks
	Building the Deep Neural Network
	Unsupervised Pre-Training
	Supervised fine-tuning
	Protecting Against Overfitting Using Dropout Regularization
	Network Training and Configuration

	Robustness of the DNN With Respect to Random Weight Initialization
	Dataset and Target Label Definition
	Trader Characteristics and Feature Creation
	Exploratory Data Analysis and Feature Importance
	Data Organization, Evaluation Criteria and Benchmark Classifiers

	Empirical Results
	Predictive Accuracy of the DNN and ML-based Benchmark Classifiers
	Antecedents of DNN Forecast Accuracy
	The Deep Architecture
	Unsupervised Pre-Training
	Analysis of the Class Imbalance Effect

	Implications for Risk Management

	Discussion
	Conclusions
	Xavier's initialization
	ReLU
	Batch normalization
	Stochastic gradient descent
	Momentum
	Decaying learning rate
	Early stopping
	Implementation Details
	GPU Implementation

	Aggregated Classifier Performance
	Distribution of Classifier Performance
	Comparison of the DNN to other DL Models

