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Abstract Deep learning has substantially advanced the state-of-the-art in
computer vision, natural language processing and other fields. The paper ex-
amines the potential of contemporary recurrent deep learning architectures
for financial time series forecasting. Considering the foreign exchange market
as testbed, we systematically compare long short-term memory networks and
gated recurrent units to traditional recurrent architectures as well as feedfor-
ward networks in terms of their directional forecasting accuracy and the prof-
itability of trading model predictions. Empirical results indicate the suitability
of deep networks for exchange rate forecasting in general but also evidence the
difficulty of implementing and tuning corresponding architectures. Especially
with regard to trading profit, a simpler neural network may perform as well
as if not better than a more complex deep neural network.
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1 Introduction

Deep learning has revitalized research into artificial neural networks, a ma-
chine learning method invented in the 1950s and 1960s, in the past decade.
Substantial methodological advancements associated with the optimization
and regularization of large neural networks, the availability of large data sets
together with the computational power to train large networks, and last but
not least the advent of powerful, easy to use software libraries, deep neural net-
works (DNNs) have achieved breakthrough performance in computer vision,
natural language processing and other domains (LeCun et al., 2015). A feature
that sets deep learning apart from conventional machine learning is the ability
automatically extract discriminative features from raw data (Nielsen, 2015).
Reducing the need for manual feature engineering, this feature decreases the
costs of applying a learning algorithm in industry and broadens the scope of
deep learning applications.

Two specific neural network structures have been particularly successful:
convolutional neural networks and recurrent neural networks (RNNs). While
CNNs are the model of choice for computer vision tasks, RNNs are helpful
whenever sequential data need to be analyzed including natural language,
written text, audio, and generally, any type of time series. The paper is con-
cerned with recurrent neural networks and their potential for financial time
series forecasting.

Given the rarity of deep learning applications in financial forecasting, the
paper provides a thorough explanation of the operating principles of RNNs
and how it differs from conventional feedforward neural networks (FNN). To
that end, we focus on two powerful types of RNNs, Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Units (GRUs) that overcome the vanishing
gradient problem, which rendered previous attempts to train deep RNNs in-
feasible. To further expand the body of knowledge in the scope of RNN-based
financial forecasting, the core contribution of the paper consists of an em-
pirical analysis of the directional accuracy and trading profitability of LSTM
and GRU compared to benchmark forecasting models. We chose the foreign
exchange market. In addition to the academic and practical relevance of accu-
rate price forecasts in the foreign exchange rate market, exchange rates have
been shown to be particularly difficult to predict (Wu and Chen, 1998; Czech
and Waszkowski, 2012). These factors make exchange rate prediction a suitable
testbed for the focal study.

The paper is organized as follows: the next section elaborates on neural
network-based forecasting and introduces LSTM and GRU. Thereafter, we
review related work and show how the paper contributes to closing gaps in
research. Subsequently, we describe the experimental design of the forecasting
comparison and report empirical results. We then conclude the paper with a
summary and discussion of findings and an outlook to future research.
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2 Neural Network Architectures
2.1 Feedforward Neural Networks

Neural networks consist of multiple connected layers of computational units
called neurons. The network receives input signals and computes an output
through a concatenation of matrix operations and nonlinear transformations.
In this paper, the input represents time series data and the output a (price)
forecast. Every neural network consists of one input and one output layer,
and one or multiple hidden layers, whereby each layer consists of several neu-
rons. The connections between the neurons of different layers carry a weight.
Network training refers to the of tuning these weights in such a way that net-
work output (i.e., forecast) matches the target variable as accurately as possi-
ble. The training of a neural network through adjusting connection weights is
equivalent to the task of estimating a statistical model through empirical risk
minimization (Héardle and Leopold, 2015).

The layer of a FNN comprise fully connected neurons without shortcuts or
feedback loops. When processing sequential data, the activation of a hidden
layer unit in an FNN at time ¢ can be described as:

hy = gh(WhTft +bn),

where the hidden activation function g; is a function of the hidden weight
matrix Wy, an input vector z;, and a bias b,. It produces the hidden activa-
tion hs. A prediction g; is the result of applying a suitable output activation
function to the weighted sum of the activations received in the output layer.
As such, the prediction is again only a function of inputs, weights, and biases.

9t = gy (W, by +by)

The weights and biases determine the mapping from x; to §; and will be
learned during training. A FNN will treat input sequences as time-invariant
data and thus be agnostic of inherent features of time series. At any given point
in time, ¢, a FNN takes an input z; and maps it to a hidden activation h;. This
is repeated at the time of the next observation, ¢ + 1, while the two mappings
are not interconnected.

2.2 Recurrent Neural Networks

RNNs are designed for sequential data processing. To this end, they include
feedback loops and fed the output signal of a neuron back into the neuron.
This way, information from previous time steps is preserved as hidden state
h: and can be discounted in network predictions. When viewed over time,
RNN s resemble a chain-like sequence of copies of neural networks, each passing
on information to its successor. More formally, a RNN takes as additional
argument the previous time step’s hidden state h;_1:

he = gn(Whlhe—1, 2] + bp)
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The objective of training a neural network is to minimize the value of a
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Fig. 1 A recurrent neural network architecture Olah (2015): The RNN feeds learned infor-
mation back into the network via the output h;.

loss function, which represents the cumulative difference between the model’s
outputs and the true labels. Since the output of a neural network is a function
of the weights and biases of all its connections, the loss function value can be
changed by modifying the network’s weights and biases. Therefore, computing
the gradient of the loss function with respect to the network’s weights obtains
the information needed to train the network. The backpropagation algorithm
uses the insight that the gradient with respect to each weight can be found by
starting at the gradient with respect to the output and then propagating the
derivatives backwards through the network using the chain rule (Rumelhart
et al., 1986). In RNNs, the gradient descent-based training of the network
is called backpropagation through time, as the error derivatives are not only
backpropagated through the network itself but also back through time via the
recurrent connections (Werbos, 1990).

RNNs often use activation functions such as the hyperbolic tangent (tanh)
or the logistic sigmoid (o). The derivative of both lies in the interval [0, 1] and
thus any gradient with respect to a weight that feeds into such an activation
function is bound to be squeezed smaller (Hochreiter, 1998b). Considering that
we are successively computing the derivative of an activation function by use
of the chain rule, the gradient gets smaller and smaller the further away—and
in RNNs, the further back in time—-from the current output layer a weight is
located. That also implies that the magnitude of weight adjustments during
training decreases for those weights. Effectively, weights in early layers learn
much slower than those in late hidden layers (closer to the output) (Nielsen,
2015). For large networks or many time steps, this can keep a neural network
from learning and prevent it from storing information—to a point where ”the
vanishing error problem casts doubt on whether standard RNNs can indeed
exhibit significant practical advantages over time window-based feedforward
networks.” (Gers et al., 1999)
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2.3 Long Short-Term Memory

One solution to the vanishing gradient problem was proposed by Hochreiter
and Schmidhuber (1997) in the form of LSTM. T'wenty years after its invention,
LSTM and its variants have turned out to become a state-of-the-art neural
network architecture for sequential data. The following discussion of the LSTM
cell follows Graves (2013) as it seems to be one of the most popular LSTM
architectures in recent research and is also available in the widely used Python
library Keras (Chollet et al., 2018b).

2.3.1 The Cell State

The central feature that allows LSTM to overcome the vanishing gradient
problem is an additional pathway called the cell state. The cell state is a stream
of information that is passed on through time. Its gradient does not vanish
and enforces a constant error flow through time (Hochreiter, 1998a). The cell
state allows the LSTM to remember dependencies through time and facilitates
bridging long time lags (Hochreiter and Schmidhuber, 1997). Figure 2 depicts

)
©)
v

Fig. 2 A single LSTM unit (a memory block) according to (Olah, 2015) with all but the
cell state pathway grayed out

a single LSTM cell with all but the cell state pathway grayed out. Note that
the cell state contains no activation functions but only linear operations. In
that way, it is immune” to the vanishing gradient. The following discussion
details how the cell state is maintained, updated or read.

2.3.2 Gate Units

The LSTM cell contains a number of gate structures that allow accessing the
cell. A typical LSTM cell receives two inputs: the current input x; and the
recurrent input, which is the previous time step’s hidden state h;_;. Gating
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units control how these inputs change the cell state in order to produce an
updated cell state, Cy, or read from it to make use of the information that the
cell state embodies.

The logistic sigmoid function, defined as o(x) = ﬁ, plays an important
role in the gating mechanisms of the LSTM cell. It takes the weighted current
and recurrent inputs and maps them to the interval [0,1]. This enables the
network to control the information flow through the gates, which also explains
the term ”gate”. The values of 0 and 1 can be interpreted as allowing no
information and all information to pass through a specific gate, respectively.
In addition to the ”gatekeeper” sigmoid, two of the three LSTM gates make
use of the hyperbolic tangent function, defined as tanh(z) = Z:;Z:z . The tanh
is the usual activation function for input and output gates in the LSTM (Greff
et al., 2017) and pushes its inputs into the interval [—1,1].

The logistic sigmoid and the hyperbolic tangent have relatively simple
derivatives, ﬁo(x) =o(z)(1—o(z)) and ﬁ tanh(z) = 1 — tanh?(x), which
makes them a suitable choice for network training (e.g., backpropagation).

2.3.3 The Forget Gate

The forget gate f; determines the parts of Cy_1, which the cell state passed on
from the previous time step, that are worth remembering. As shown in Figure
3, this is achieved by means of a sigmoid gatekeeper function:

fo=o(Wylhi—1, 2] + by)

ft is then multiplied with C;_; to selectively allow information to remain in
memory. Values of f; =1 and f; = 0 imply that all information from C;_; is
kept and erased, respectively.

fi

Tt

Fig. 3 The forget gate ft is multiplied with the previous cell state C;_1 to selectively forget
information Olah (2015).
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2.8.4 The Input Gate

The input gate i;, highlighted in Figure 4, employs a sigmoid to control infor-
mation flow:
ir = o (Wilhi—1, 4] + b;)

The objective of this gate is to protect the information of the cell state, which
has accumulated over previous time steps, from irrelevant updates. Therefore,
the input gate selectively updates the cell state with new information (Hochre-
iter and Schmidhuber, 1997). To this end, a new set of candidate values C~‘t is
generated by an activation function; typically a hyperbolic tangent:

Cy = tanh(Welhi—1, 2] + be)

Fig. 4 The input gate i¢ directs where to update the cell state with new candidate values
Ct (Olah, 2015).

2.83.5 The Updated Cell State

Based on the mechanisms of the input and forget gate, the new cell state C} is
obtained in two ways: a part of the old cell state C;_; has been remembered
(via f;) and has been updated with the new candidate values from C, where
needed (via ;). This updated cell state will be relayed to the next time step,
t+ 1: _

Ci=froCi_1+itoCy

Note that i; = f; does not necessarily hold, and neither does iy =1 — f;. It is
not exactly the parts that got remembered that get updated, and not exactly
the ones that were forgotten either. While both the forget gate and the input
gate make use of a sigmoid as their activation function and take the same
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arguments (h:—1 and ), in general their weights and biases will differ (Olah,
2015).

2.3.6 The Output Gate

The output gate steers the actual prediction of the LSTM, which is determined
by both, the current input x; and the cell state Cy. A hyperbolic tangent is
applied to the values of the current cell state to produce a version of the cell
state that is scaled to the interval [—1,1]:

T = tanh(C})

The output gate o; consists of a sigmoid with arguments h;_; and z;, and
determines which information to pass on to the output layer and subsequent
time steps in the new hidden state h;.

As shown in Figure 5,

or = o(Wolhe—1, 2] + bo)

o and C} are then multiplied to construct the hidden output, h;, of the current
time step:

*
hiy = o, 0 C}

This output represents the recurrent input at time ¢ + 1 and the basis for the
prediction at time ¢. As in a FNN, predictions are computed from the hidden
state by applying an output activation in the final layer.

he A

Ot 6

A

Fig. 5 The output gate o; controls the network’s predictions (Olah, 2015)
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Fig. 6 A sequence of LSTM units through time (Olah, 2015)

2.3.7 The LSTM Cell

A typical LSTM cell with forget gate, input gate, and output gate is depicted
in Figure 6. The different gates and activations work together to save, keep,
and produce information for the task at hand. When considering the gates and
cell state together as hy = o; o tanh(f; o C;_1 + iy 0 Cy), it can be seen that h;
is essentially a sophisticated activation function:

ht :J(Wo[ht,h .Tt] + bo) o tanh(a(Wf [htfl, (Et] + bf) . Ct,1+
+o(Wilhi—1,x¢] + b;) o tanh(Welhi—1, 2] + be)) =
=gn(Wh, ht—1,2¢)

This architecture is an augmented version of the original LSTM architecture
and the setup most common in the current literature (Greff et al., 2017).
Figure 7, which depicts a sequence of LSTM cells through time, conveys how
information can be transported through time via the cell state. The three gates
f+ to the left of i; under and o; above the hidden layer unit ("—" for closed
and ”O” for open) control which parts of the cell state are forgotten, updated,
and output at each time step.

There exist a few variants of the LSTM cell with fewer or additional compo-
nents. For example, one modification concerns the use of peephole connections,
which allow the cell state to control the gates and have been shown to increase
LSTM resilience toward spikes in time series (Gers and Schmidhuber, 2000).
Greff et al. (2017) perform a comprehensive evaluation of the LSTM and the
marginal efficacy of individual components including several recent adapta-
tions such as peephole connection. They start from an LSTM cell with all
gates and all possible peephole connections and selectively remove one compo-
nent, always testing the resulting architecture on data from several domains.
The empirical results suggest that the forget gate and the output activation
function seem particularly important while none out of the investigated mod-
ifications of the above LSTM cell significantly improves performance Greff
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Fig. 7 Preservation of gradient information by LSTM (Graves, 2012)

et al. (2017). In view of these findings, we focus on the LSTM as described
above.

2.4 Gated Recurrent Units

A second approach to overcome the vanishing gradient problem in RNNs are
GRUs (Cho et al., 2014). They also use gates but simplify the handling of the
cell state. The hidden state in a GRU is controlled by two sigmoid gates: an
update gate couples the tasks of LSTM’s forget and input gates. It decides
how much of the recurrent information is kept:

2 = 0 (W.[hi—1, 4] + b2)

A reset gate controls to which extent the recurrent hidden state is allowed to
feed into the current activation:

Ty = U(Wr[ht—la r¢] + br)

A closed reset gate (r; = 0) allows the memory cell to disregard the recurrent
state and act as if it were reading the first observation in a sequence (Chung
et al., 2014). The new activation can be computed as

h; = tanh (WE [re o hi—1,xe] + bﬁ)
and the new hidden state is
hiy=(1—2z)ohi_1+ 2z o0 hy.
Again, the GRU cell can be seen as a sophisticated activation function:

hy =(1 — o (W [hi—1, @) +b.)) 0 hy_1+
+O'(Wz [htfl, iCt] + bz) o tanh (WE[J(Wr[htflv l't] + br) ] htfl, fﬂt] + bﬁ) =
:gh(Whaht—lazt)
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Fig. 8 A GRU cell in detail with the recurrent hidden state h:—1, update gate z:, reset
gate r¢, a hidden state candidate vector h¢, and the new hidden state h; (Olah, 2015).

There is no output activation function like in the LSTM, but the hidden
cell state is bounded because of the coupling of input and forget gate in the
GRU’s update gate (Greff et al., 2017). Figure 8 illustrates that GRUs have
less parameters than LSTMs, which should make them computationally more
efficient. In terms of forecasting performance, previous results on GRUs ver-
sus LSTMs are inconclusive (see, e.g., Chung et al. (2014) versus Jozefowicz
et al. (2015)). Therefore, we consider both types of RNNs in our empirical
evaluation.

3 Related Work

Forecasting developments in financial markets is a well-studied research area.
Starting with seminal work of Fama (1970), a large body of literature has ex-
amined the informational efficiency of financial markets. Empirical findings do
not offer a clear result. Considering the foreign exchange market, for example,
Wu and Chen (1998) investigate seven currency pairs and find the efficient
market hypothesis (EMH) to hold, while Hakkio and Rush (1989) and Czech
and Waszkowski (2012) reject the EMH for at least some of the exchange rates
tested by Wu and Chen (1998). It might be because of such contradictions that
a statistical modeling of market prices, volatility, and other characteristics con-
tinues to be a popular topic in the forecasting and machine learning literature.
Neural networks are a particularly popular instrument for financial forecast-
ing. For example, several studies have used FNNs to predict price movements
(see, e.g, Hsu et al. (2016)). From a methodological point of view, RNNs are
better suited to process sequential data (e.g., temporal financial data) than
other network architectures. Therefore, we focus the review of previous liter-
ature to studies that employed RNNs for financial forecasting and summarize
corresponding studies in Table 1. To depict the state-of-the-art in the field, we
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consider the type of RNN as well as benchmark methods, the type of features
used for forecasting, the target variable and whether a study employed a trad-
ing strategy. In addition to reporting statistical measures of forecast accuracy
such as the mean-squared error, a trading strategy facilitates examining the
monetary implications of trading model forecasts. The last column of Table 1
sketches the main focus of a paper such as testing the EMH or the merit of a
specific modeling approach such as ensemble forecasting.

Table 1 suggests that there is no unified experimental framework. Notable
differences across the financial time series considered in previous work exem-
plify this variation. About half of the studies adopt a univariate approach
and use either historic prices, returns or transformations of these as feature.
Other studies derive additional features from the time series, for example in
the form of a technical indicator, or consider external sources such as prices
from other financial instruments. Evaluation practices display a similar vari-
ance with roughly 50 percent of papers performing a trading evaluation and
the rest focusing exclusively on forecast accuracy.

In terms of neural network architectures, studies examining RNNs in the
1990s can be seen as forerunners, with comparatively little research on the ap-
plications of RNNs available at that time. One of the earliest studies includes
Kamijo and Tanigawa (1990) who use an RNN in the scope of technical stock
analysis. Interestingly, Table 1 also identifies some earlier studies that exam-
ine the foreign exchange market. For example, Tenti (1996) constructs three
different RNNs to predict the returns of exchange rate futures with encourag-
ing results, while Kuan and Liu (1995) assess RNNs compared to FNNs and
an ARMA model to obtain mixed results as to the superiority of the former.
Giles et al. (2001) further expands these studies through examining directional
currency movement forecasts in a RNN framework.

These studies predate the publication of the seminal LSTM paper by
Hochreiter and Schmidhuber (1997) and use relatively short input sequences
(of length smaller than 10) as features. More recent studies consider longer in-
put sequences using memory-networks like LSTM and GRU.Xiong et al. (2015)
predict the volatility of the S&P 500 and find that LSTM outperforms econo-
metric benchmarks in the form of L1- and L2-regression as well as GARCH.
Fischer and Krauss (2018) compare the performance of a single-layer LSTM
against several benchmark algorithms, namely random forests, a FNN, and a
logistic regression, and find that LSTM ”beat[s] the standard deep networks
and the logistic regression by a very clear margin” and outperforms a random
forest in most periods. Shen et al. (2018) test GRUs against a FNN and a
support vector machine on three financial indices, with the GRUs producing
the best results.

An interesting finding of Table 1 concerns the foreign exchange market.
While many earlier studies consider this market, we find no study that exam-
ines the ability of recent RNN architectures in the form of LSTM and GRU to
forecast exchange rates. To the best of our knowledge, the 2008 studies of Kiani
and Kastens (2008) and Hussain et al. (2008) represent the latest attempts to
model foreign exchange markets using a RNN framework. This observation
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inspires the focal paper. We contribute original empirical evidence through
comparing different types of RNNs —a simple RNN, a LSTM, and a GRU—
in terms of their ability to forecast exchange rate returns. To set observed
results into context, we contrast the performance of RNNs with that of a FNN
and a nave benchmark model.



Table 1 Selected studies employing recurring neural networks for financial forecasting.

Authors Year Data Recurrent Neural Benchmarks Features Target Trading Discussion
Networks Strategy
Kamijo and Tanigawa (1990) 1990  Stocks: TSE (chart signals) RNN - weekly prices detection of patterns No -
Kuan and Liu (1995) 1995 Forex: GBP, CAD, DM, JPY, RNN FNN, ARMA daily prices (1-6 days) log returns No univariate >multivari-
CHF vs. USD ate
Tenti (1996) 1996  Forex: DM/USD Futures RNN - log returns, SD, technical indicators (8 out  log returns Yes EMH, practical appli-
of last 34 days) cation
Saad et al. (1998) 1998  Stocks: various RNN TDNN, PNN daily prices detection of profit opportunities No -
Giles et al. (2001) 2001  Forex: DM, JPY, CHF, GBP, RNN FNN symbolic encodings of differenced daily directional change No EMH, extraction of
CAD vs. USD prices (3 days) heuristics
Kiani and Kastens (2008) 2008 Forex: GBP, CAD, JPY vs. RNN FNN, ARMA, GSS  prices prices Yes -
USD
Hussain et al. (2008) 2008  Forex: EUR/DM, JPY, GBP FNN/RNN combi- FNNs (i) prices, (ii) returns (6 days) (i) prices, (ii) returns Yes EMH, inputs: prices
vs. USD nation >returns
Huck (2009) 2009  Stocks: S&P 100 RNN - pairs of weekly returns (3) returns spread direction Yes -
Chen et al. (2015) 2015  Stocks: SSE & SZSE LSTM Random  Predic-  up to 10 features from daily prices and vol- ~ 3-day earning rate (classification)  Yes -
tion ume of stock & index (30 days)
Rather et al. (2015) 2015  Stocks: NSE RNN FNN, ARMA, Exp.  weekly returns (3 weeks) weekly returns No Ensembling
Smooth.
Xiong et al. (2015) 2015  Index: S&P 500 (volatility) LSTM L1-Reg., L2-Reg., returns, volatility & Google search trend  volatility No -
GARCH (10 days)
Di Persio and Honchar (2017) 2017  Stock: GOOGL RNN, LSTM, GRU - daily price and volume (30 days) directional change No -
Fischer and Krauss (2018) 2018  Stocks: S&P 500 constituents ~LSTM FNN, Random For-  daily returns (240 days) above-median return (binary) Yes EMH, heuristics,
est, Log. Reg. time-variance of per-
formance
Shen et al. (2018) 2018 Indices: HSI, DAX, S&P 500 GRU FNN, SVM daily returns (240 days) directional change Yes -
Zhao et al. (2018) 2018  Indices: SSE, CSI, SZSE LSTM SVM, Random  time-weighted returns (4 days) trend labeling No -

Forest, AdaBoost

14
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4 Experimental Design
4.1 Data

The empirical evaluation grounds on data of four major foreign exchange rates:
the Euro (EUR), the British Pound (GBP), the Japanese Yen (JPY), and the
Swiss Franc (CHF), each of which we measure against the U.S. Dollar (USD).
The selection of data follows previous work in the field (Kuan and Liu, 1995;
Tenti, 1996; Giles et al., 2001; Kiani and Kastens, 2008; Hussain et al., 2008).
The data set consists of 12,710 rows representing daily bilateral exchange rates
from January 4, 1971 until August 25, 2017. However, the time series are not of
the same length. For example, the EUR was first reported in 1999 so that the
EUR/USD exchange rate time series only contains 4,688 non-null observations
compared to the 11,715 observations for the longest time series in the data set.

Table 2 provides a overview of the characteristics of the time series’ one-day
percentage returns. The exchange rates and the corresponding daily returns
are also plotted in Figure 9, together with a combination of a histogram (grey
bars), a kernel density estimation (black line) and a rug plot (black bars along
the x-axis). From the return plots in the middle column, we observe that the
transformation from returns to prices removes trends, but the return series
still exhibit non-stationarity. In particular, the histograms, kernel density esti-
mators, and rug plots indicate leptokurtic distributions, and the large kurtosis
values in Table 2 support this observation.
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Fig. 9 Prices, one-day returns, and a combination of histograms, KDE, and rug plots of
the one-day percentage returns for the four foreign exchange rate time series.
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Table 2 Statistical properties of the one-day percentage returns of selected currencies.

EUR/USD GBP/USD USD/JPY USD/CHF

Observations 4687 11708 11702 11708
Mean 0.0000 -0.0000 -0.0001 -0.0001
Standard Deviation 0.0063 0.0060 0.0065 0.0073
Minimum -0.0296 -0.0784 -0.0907 -0.1221
25 % Quantile -0.0034 -0.0029 -0.0030 -0.0038
Median 0.0000 0.0001 0.0000 0.0000
75 % Quantile 0.0035 0.0029 0.0031 0.0036
Maximum 0.0473 0.0470 0.0646 0.0930
Skewness 0.1511 -0.3216 -0.5540 -0.2305
Kurtosis 2.2591 6.9514 8.6128 12.3697

4.2 Data preprocessing

In order to prepare the data for analysis, we divide each time series into study
periods, scale the training data, and create input sequences and target variable
values.

4.2.1 Features

Exchange rates represent the price of one unit of currency denominated in
another currency, whereby we consider the USD as denominator.

Let Pf denote the price of a currency c¢ at time ¢ in USD. The one-day
percentage return can then be calculated as the percentage change of the
price from time ¢ to the following trading day:

Py

c
t—1

Ty = -1

Before model training, we scale the returns to the interval [/, ] using min-
max-scaling. To avoid data leakage, we perform the scaling for each study
period individually, which ensures that the scaler is fitted to the training data
and has no access to the trading (or test) data.

We use the time series of scaled returns as the sole feature, with the input
at time ¢ consisting of the sequence of returns of the previous 7 trading days:

c __ [=c ~c ~c ~c
Xi={r_. Tt Te—r2s - T
4.2.2 Targets

We formulate the prediction task as a binary classification problem. The focus
on directional forecasts is motivated by recent literature (Takeuchi, 2013; Fis-
cher and Krauss, 2018). We then define the target variable Y, such that values
of one and zero indicate non-negative and negative returns, respectively.

1 ifre>0

0 otherwise

C
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4.2.8 Length of the Input Sequences

Previous studies found foreign exchange rates to exhibit long-term memory
(van de Gucht et al., 1996). This suggests the suitability of GRUs and LSTMs
with their ability to store long-term information, provided they receive input
sequences of sufficient length. We chose an input sequence length of 7 =240,
which follows from two of the most recent studies (Fischer and Krauss, 2018;
Shen et al., 2018). The LSTM, GRU, and simple RNN (SRNN) that we con-
sider as benchmark model regard each sequence of 240 observations as one sin-
gle feature and make use of the relative order of data points. On the contrary,
a FNN, which we also consider as benchmark, regards the 240 observations as
distinct features.

4.2.4 Training and Trading Window

To test the predictive performance of different forecasting models, we employ
a sliding-window evaluation, which is commonly used in previous literature
(Krauss et al., 2017; Tomasini and Jaekle, 2011; Dixon et al., 2016). This
approach forms several overlapping study periods, each of which contains a
training and a test window. In each study period, models are estimated on the
training data and generate predictions for the test data, which facilitate model
assessment. Subsequently, the study period is shifted by the length of one test
period as depicted in Figure 10. Such evaluation is efficient in the sense that
much data is used for model training while at the same time predictions can
be generated for nearly the whole time series. Only the observations in the
first training window cannot be used for prediction.

| Training sct 4 Test sel 4 ele,
| Truining set 3 _L Test set 3
| Training set 2 Test set 2 _|

| Training set 1 J_ Test st | ‘

Fig. 10 Sliding window evaluation: Models are trained in isolation inside each study period,
which consists of a training set and a trading (test) set. The models are trained only on
the training set, predictions are made on the test set, which is out-of-sample for each study
period. Then, all windows are shifted by the length of the test set to create a new study
period with training set and out-of-sample test set. (From Giles et al. (2001).)
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4.2.5 Loss function

The models are trained to minimize the cross-entropy between predictions and
actual target values. In the binary case, the cross-entropy for an individual
prediction and the corresponding target value is given by —(y; log(g:) + (1 —
ye) log(1l — ¢4)), and the overall training loss is the average of the individual
cross-entropy values. That way, the training process can be interpreted as a
maximum likelihood optimization, since the binary cross-entropy is equal to
the negative log-likelihood of the targets given the data. The loss function for
study period S including trading set T (with cardinality |Ts|) is represented
by Lg

1

T > (yelog (i) + (1 — ) log(1 — 5))

teTs

Ls(yrs.9rs) =

4.2.6 Activation Functions

We train the FNN using a rectified linear unit (relu) activation function:
relu(x) = max(0, z)Using relu activations improves gradient flow, reduces the
training time (Glorot et al., 2011) and has become the state-of-the art in deep
learning (LeCun et al., 2015; Clevert et al., 2016; Ramachandran et al., 2017).

For the recurrent neural networks, activation functions in the recurrent
layers are applied as described in chapter 2: The SRNN uses hyperbolic tangent
activations, while the LSTM and the GRU use sigmoid gates and hyperbolic
tangent activations as input and output activations. More precisely, we follow
Chollet et al. (2018a) and use a segment-wise linear approximation of the
sigmoid function to enhance computational efficiency.

All networks use a sigmoid function as their output activation to model
the conditional probability of non-negative returns given the training data,
P(Y = 1X{ ={ri_,,...,ri_1}) Goodfellow et al. (2016).

4.2.7 Regularization

One drawback of neural networks is their vulnerability to overfitting (Srivas-
tava et al., 2014). Regularization is a way to protect against overfitting, and
can be implemented in several ways including penalizing model complexity or
monitoring the model’s performance on unseen data. We employ two regular-
ization techniques:

Dropout: helps the network’s neurons to generalize and avoid large co-dependence
between different neurons (Hinton et al., 2012). To that end, a dropout
layer randomly masks the connections between some neurons during model
training. We use dropout on the non-recurrent connections after all hidden

L Lg simplifies to Lg(yrg, I1s) = 7ﬁ > terg log(yt) in the binary classification task
with labels (0,1).
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layers as in Zaremba et al. (2014) with various dropout rates. For exam-
ple, a dropout rate of 25 percent implies that each neuron in the previous
layer is dropped with probability 25 percent; on average, a quarter of the
neurons of that layer are masked.

Early stopping: refers to holding back a certain part of the training data to
trace the forecasting error of a network during training (e.g., after each
epoch). The validation set error enables us to stop network training con-
ditional on the validation loss.

4.3 Hyperparameter Tuning

Neural networks and their underlying training algorithms exhibit several hy-
perparameters that affect model quality and forecast accuracy. Examples in-
clude the number of hidden layers and their number of neurons, the dropout
rate or other regularization parameters, as well as algorithmic hyperparame-
ters such as the learning rate, the number of epochs, the size of mini-batches,
etc. (Goodfellow et al., 2016). Hyperparameter tuning is typically performed
by means of empirical experimentation, which incurs a high computational
cost because of the large space of candidate hyperparameter settings. We em-
ploy random search (Bengio, 2012) for hyperparameter tuning considering the
following search space:

— Number of hidden layers: 1, 2, 3, 4

— Number of neurons per hidden layer; 25, 50, 100, 200, 400, 800, 1600

— Dropout: 0 to 60 percent, in steps of 10 percent ) ) )

— Optimizer and learning rate: Adam and RMSprop with various learning

rates
— Batch size: 16, 32, 64, 128, 256

5 Evaluation

We consider three measures of forecast accuracy: logarithmic loss (Log loss)
as this loss function is minimized during network training; predictive accuracy
(Acc.) as the most intuitive interpretation of classification performance; and
the area under the receiver operator characteristic curve (AUC).

In addition to assessing classification performance, we employ a basic trad-
ing model to shed light on the economic implications of trading on model
forecasts. The trading strategy is as follows: for each observation ¢ in the
test period, buy the currency in the numerator of the currency pair if a non-
negative return is predicted with probability of at least 50 percent (and realize
that day’s net profit); sell that currency otherwise (and realize that day’s net
profit multiplied by —1). The position is held for one day. This would yield
the following realized daily return 7{ of the basic trading model:

~c
Ty =

e if §; > 0.5
—r¢ otherwise
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Acc. AUC  Returns SD SR
EUR/USD 0.4744 0.4718  -0.0202 0.0060 -0.0188
GBP/USD 0.5010 0.4971 0.0481  0.0059 0.0310
USD/JPY 0.4940 0.4888 0.0488  0.0063 0.0280
USD/CHF 0.4873  0.4839 0.0131  0.0071 0.0014

Weighted Avg. 0.4921  0.4880 0.0307  0.0064 0.0161

Table 3 Results from a nave forecast by time series and aggregated (average weighted by
length of time series).

As each test set consist of 240 trading days (roughly one year), the annualized
net returns of this strategy in study period S are approximated by:

Re= ] (a+7%) -1

teTs

As a measure of risk, the standard deviation (SD) of the series of realized
trading strategy returns is considered, and the Sharpe ratio (SR) is computed
as a measure of risk-adjusted returns. These three metrics are used to compare
the different models’ predictions economically.

6 Empirical Results

In order to set results of different neural networks models into context, we
compute a nave benchmark forecast the prediction of which at time ¢ simply
equals the true target at time t — 1:

e = Ys—1

The results of this benchmark can be found in table 3, both per time-series
as well as aggregated across time series. Note that we cannot compute the
log loss for this benchmark since log(0) is undefined and the nave benchmark
predicts 0 whenever the previous day’s true returns are negative.

The nave forecast gets the predictions right a bit under half the time and
if the trading strategy defined in section ?? were applied, it would result in
small positive net returns.

Results from training the FNN, SRNN, LSTM, and GRU on the four se-
lected foreign exchange rate time series are displayed in Table 4 and visualized
in Figure 11 by means of violin plots.

Table 4 suggests three conclusions. First, in terms of the training loss (Log
Loss), the gated recurrent networks LSTM and GRUs perform slightly bet-
ter than the FNN and SRNN for each time series. This general observation
also holds roughly true for the accuracy for three of the four time series, but
not for the EUR/USD exchange rate. Second, economic measures of forecast
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Fig. 11 Accuracy and trading strategy returns of the nave benchmark and the four deep

learning models.

Time Series Model  Log Loss Acc. AUC  Returns SD SR

FNN 0.6953 0.5155  0.5202 0.0218  0.0060 0.0186

EUR/USD SRNN 0.7114 0.5019  0.5003 0.0406  0.0060 0.0240

LSTM 0.6948  0.4928  0.5005 -0.0138  0.0060 -0.0073

GRU 0.6948 0.4944 0.5103 -0.0216  0.0060 -0.0131

FNN 0.6964  0.5068  0.5035 -0.0094 0.0059 -0.0034

GBP/USD SRNN 0.7064 0.5110 0.5116 0.0166  0.0059 0.0098

LSTM 0.6943 0.5066  0.5021 -0.0088 0.0059 -0.0041

GRU 0.6945 0.5064  0.4930 -0.0056  0.0059 -0.0021

FNN 0.7001  0.4966  0.4995 -0.0340 0.0063 -0.0255

USD/JPY SRNN 0.7100  0.5030 0.4955 -0.0019 0.0063 -0.0081

LSTM 0.6956  0.5019  0.5077 -0.0157 0.0063 -0.0143

GRU 0.6945 0.5091  0.5089 0.0075  0.0038 0.0092

FNN 0.6977 0.4999  0.4982 -0.0068 0.0071 -0.0019

USD/CHF SRNN 0.7016  0.5081  0.5057 0.0356  0.0071 0.0196

LSTM 0.6936 0.5079  0.5080 0.0056  0.0071 0.0044

GRU 0.6941 0.5108 0.5109 0.0108  0.0071 0.0057

FNN 0.7026 0.5062 0.5061  -0.0126 0.0064 -0.0071

Weighted A SRNN 0.7115 0.5103 0.5073 0.0195  0.0064 0.0090

g ve: LSTM 0.6993 0.5076  0.5088 -0.0072  0.0064 -0.0050

GRU 0.6992 0.5107 0.5085 0.0014  0.0057 0.0024

Table 4 Results for the four neural networks by currency pair and model type.

performance paint a different picture. None of the models is able to produce
a large positive return. Both in terms of returns and risk-adjusted returns,
the SRNN performs competitive and not inferior to more advanced network

architectures in form of GRU and LSTM. This is an interesting result in that
several previous forecast comparisons observe a different result. We discuss
the ramifications of our results in Section 5. Third, the deep learning models
all perform better than the benchmark in terms of accuracy and area under
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the ROC curve. However, the net returns resulting from applying the selected
trading strategy are smaller in most cases.

7 Conclusion

The paper reported results from an empirical comparison of employing differ-
ent deep learning frameworks for financial time series prediction. One insight of
the analysis was that exchange rates are highly non-stationary. Even training
in a rolling window setting cannot always ensure that training and trading set
follow the same distribution. Another characteristic of the studied exchange
rate was their leptokurtic distribution of returns. For example, the average
kurtosis of the chosen exchange rate returns in this study is 8.60 compared to
2.01 for the stock returns in Fischer and Krauss (2018). This resulted in many
instances of returns close to zero and few, but relatively large deviations and
could have lead to the models exhibiting low confidence in their predictions.

The results, in term of predictive accuracy, are in line with other studies
Fischer and Krauss (2018). However, they exhibit a large discrepancy between
the training loss performance and economic performance of the models. This
becomes especially apparent in Figure 11. When the models were trained,
the assumption was that there existed a strong correlation between training
loss and accuracy as well as profits. The detected gap between statistical and
economic results suggests that this assumption is not true. Leitch and Tan-
ner (1991) find that only a weak relationship exists between statistical and
economic measures of forecasting performance for predictions (regression) of
interest rates. A similar problem might exist between the log loss minimized
during training and the trading strategy returns in this study.

Hyperparameter tuning in the chosen experimental setting turned out to
be cumbersome. The dynamic training approach described in Section 4 and
depicted in Figure 10 has one huge drawback: 576 individual models are trained
on very limited training data each. Applying the same hyperparameters to
whole time series that last over 46 years (18 in the EUR/USD case) constrains
the models’ capacity. Isolated hyperparameter tuning for each study period
would be desirable but is not feasible in this setting as it included 144 such
study periods (15 study periods for the EUR/USD series and 43 each for the
GBP/EUR, USD/JPY, and USD/CHF series.)

As any empirical study, the paper exhibits limitations and these could be
addressed in future research. One way of addressing the issue of low confidence
predictions could be to use scaled prices as inputs, either with the same tar-
gets as in this experiment or to predict price levels in a regression and then
transform the outputs to binary predictions by comparing them to the pre-
vious day’s price. Hussain et al. (2008) find scaled prices as inputs slightly
outperform scaled returns, but the majority of the literature uses returns.

From the discrepancy between statistical and economic results it becomes
clear that a more advanced trading strategy needs to be developed if the goal
is the model’s application for maximization of (risk-adjusted) profits. One
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example of such a trading strategy is the work of Fischer and Krauss (2018)
who construct a strategy only trading a number of top and bottom pairs from
a large set of 500 binary predictions on stock performance. This particular
strategy would, of course, require training on many more time series. A possible
solution for better interaction between model and economic performance is
furthermore to develop a combination of a custom loss function and suitable
output activation function instead of using binary cross-entropy with a sigmoid
output activation function. That way, the model could directly optimize for
either returns or risk-adjusted returns. A rough idea would be to use a weighted
tanh output activation to simultaneously predict the relative size and direction
of the trade? in combination with using the negative of either trading strategy
returns or Sharpe ratio as loss function.

For better hyperparameter tuning, the obvious solution is to focus on a
single (or very few) model(s) and time series. This is often the case in practical
applications but might have lower scientific value. Efforts to automate large
deep learning processes are under way Feurer et al. (2015), but tuning a large
number of individual models remains computationally costly.

Lastly, an often applied technique to improve forecasting is ensembling.
Here, many different models are trained and their individual predictions are
combined either by (weighted) averaging or using a so-called meta-learner on
top of the first level predictions, which determines the share of each individual
models in the ensemble. Since the goal of this study was to explore recur-
rent neural networks in particular, ensembling was not pursued, but it should
certainly be part of any practical application.

LSTM and GRUs have become the state-of-the-art in many fields Vaswani
et al. (2017) and are still developed further to improve certain aspects or apply
them to very specific problems. A number of recent proposals for prediction of
sequential data augments or even aims to supplant recurrent neural networks.

Such expansions of recurrent neural network methods include combining
RNNs with convolutional neural networks when the data is both spatial and
temporal Karpathy and Li (2014) or even applying image classification to plots
of time series data; giving models access to an external memory bank (Neural
Turing Machine(s) Graves et al. (2014)); employing recurrent encoder-decoder
structures, or modeling time dependencies in a non-recurrent way Vaswani
et al. (2017).

Machine learning research is moving increasingly fast and new ideas for
improvements or augmentations of algorithms keep appearing. On the other
hand, some technologies become practical only many years after their emer-
gence. The best example o this is LSTM, an algorithm that was little appre-
ciated in the first decade of its life but is one of the cornerstones of machine
learning another ten years later. It is intriguing to imagine what might be
possible in another decade.

2 The values in [-1,1] would imply trades between going short with 100 percent of the
portfolio and going long with the whole portfolio in the other extreme.
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