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Summary

In linear regression of Y on X(∈ Rp) with parameters β(∈ Rp+1),

statistical inference is unreliable when observations are obtained

from gross-error model, Fε,G = (1−ε)F +εG, instead of the assumed

probability F ;G is gross-error probability, 0 < ε < 1. When G is unit

mass at (x, y), Residual’s Influence Index, RINFIN(x, y; ε, β), mea-

sures the difference in small x-perturbations of L2-residual, r(x, y),

for model F and for Fε,G via r’s x-partial derivatives. Asymptotic

properties are presented for sample RINFIN that is successful in

extracting indications for influential and bad leverage cases in mi-

croarray data and simulated, high dimensional data. Its performance

improves as p increases and can also be used in multiple response

linear regression. RINFIN’s advantage is that, whereas in influence

functions of L2-regression coefficients each x-coordinate and r(x, y)

appear in a sum as product with moderate size when (x, y) is bad

leverage case and masking makes r(x, y) nearly vanish, RINFIN’s

x-partial derivatives convert the product in sum allowing for un-

masking.

Some key words: Big Data, Data Science, Influence Function, Leverage, Masking,

Residual’s Influence Index (RINFIN)

AMS 2010 subject classifications: 62-07, 62-09, 62J05, 62F35, 62G35
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1 Introduction

Tukey (1962, p.60) wrote: “Procedures of diagnosis, and procedures to extract indica-

tions rather than extract conclusions, will have to play a large part in the future of data

analyses and graphical techniques offer great possibilities in both areas.” This philosophy

is widely adopted nowadays in Data Science and motivates this work.

Cleaning high dimensional data is a crucial step before the statistical analysis. In linear

regression of Y on X and parameters β, it is often erroneously assumed that the data

follows probability F instead of the gross-error model Fε,G = (1− ε)F + εG (Huber, 1964);

G is gross-error probability, 0 < ε < 1, Y ∈ R,X ∈ Rp, β ∈ Rp+1. One or more cases from

G may influence the analysis and their identification and removal will improve statistical

inference for the F -population. When x is far away from the bulk of F ’s factor space,

(x, y) is called leverage case (Rousseeuw and Leroy, 1987). A “bad” leverage case from G

forces the regression hyperplane determined by F (the F -regression) and the associated

F -residuals to change drastically when x becomes more remote. The goal of this work is to

provide a simple and easy to implement procedure extracting indications for influential/bad

leverage cases (from G) in least squares (L2) regression.

The empirical influence function of a non-robustified estimator suffers from the masking

effect. For example, in simple, linear L2-regression with sample (x1, y1), . . . , (xn, yn), the

influence function of the slope at (x, y) is C · r · (x − x̄n); r is the residual of (x, y), C is

independent of x, y. If x is bad leverage and is masked due to few neighboring values in the

sample, the difference (x− x̄n) will have large absolute value whereas r may be near zero

due to masking and the absolute value of the influence, |r · (x − x̄n)|, may be moderate.

To the contrary, the x-derivative of the influence function measures local influence and

separates the factors of the influence function obtaining instead the sum of C · β̂(x − x̄n)

and C · r which has large absolute value even when x is masked and r is near 0; β̂ is the

L2-estimate of the slope. The influence index introduced herein inherits this advantage in

multiple, linear L2-regression being the sum of influence functions and their derivatives.

This holds also for L2-regression with diagonal matrix, W, of weights independent of x, r.

Changes in regression residuals for small x-perturbations under models F and Fε,x,y
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where the derivative of the influence function appears naturally, are used to detect lever-

age cases; Fε,x,y is gross-error model with G unit mass at (x, y). L2-Residual’s Influence

Index, RINFIN(x, y; ε, β), is the sum of squared differences for the x-partial derivatives

of the F -residual and the Fε,x,y-residual at (x, y). For gross-error model with a group

of remote x-neighboring cases (x, y) drawn with probability ε and group average (x̄, ȳ),

RINFIN(x̄, ȳ; ε, β) measures the group’s influence avoiding masking of influential cases from

the group’s members and with ε its factor. Asymptotic properties of RINFIN(x, y; ε, β̂n)

are presented; n is the sample size, β̂n is β’s L2-estimate.

Our goal is to look for indications of leverage cases from G in Fε,G. Every case (x, y)

in the sample is used to calculate its sample RINFIN-value. Since the percentage of G-

observations in Fε,x,y is expected to be 10% or less, potential bad leverage cases in the

sample are those (x, y) with the 10% larger sample RINFIN(x, y; 1/n, β̂n) values and es-

pecially those with the same ordering when the squared differences in the RINFIN sum

are replaced by absolute values obtaining RINFINABS values. RINFIN(x, y; 1/n, β̂n) is

successful with the microarray data used in Zhao et al. (2016, 2013) for which n = 120 and

p = 1500. In simulations with gross-error normal mixtures F,G and fixed sample size n,

the misclassification proportion of G-cases using RINFIN(x, y; 1/n, β̂n) decreases to zero

as p increases, p < n. The blessing of high dimensionality is due to the “separation” of the

mixtures’components measured, e.g., by their Hellinger’s distance, as p increases (Yatra-

cos 2017, 2013, Section 8, Proposition 8.1). When n is smaller than p, sample RINFIN

is calculated sequentially, for the y-response on subvectors of x-covariates with dimension

q < n. For each case, the total of its p
q

sample RINFIN values is its total residual influence

index. RINFIN can also be used with multiple response linear regression, adding for (x, y)

the sample RINFIN-values for each response.

With the recent flood of Big Data, there is need in regression problems for new influence

measures in outlier detection. She and Owen (2011) have as goals outlier identification and

robust coefficient estimation, both achieved using a nonconvex sparsity criterion. Zhao et

al. (2013) propose a high dimensional influence measure (HIM) based on marginal correla-

tions between the response and the individual covariates and the leave-one-out observation

idea (Weisberg, 1985). Zhao et al. (2016) propose a novel procedure, for multiple influential
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point detection (MIP).

In Genton and Ruiz-Gazen (2010), an observation is influential “whenever a change in

its value leads to a radical change in the estimate” and the hair-plot is used for visual

identification. Local and global influence measures are proposed using partial derivative of

the estimate. For a particular regression model, Flores (2015) introduced leverage constants

to determine bad leverage cases.

The Influence Function has been used in outlier detection by Campbell (1978) and

Boente et al. (2002). Rousseeuw and van Zomeren (1990) used standardized Least

Trimmed Squares residuals against robust distance to classify observations in regression.

Hubert, Rousseeuw and Van Aelst (2008) present a survey of High Breakdown Robust

methods to detect outlying observations. The influence of observations in estimates’ val-

ues has been also studied by several authors, among others by Cook (1977), Welsch and

Kuh (1977), Belsley et al. (1980), Cook and Weisberg (1980), Ruppert and Carroll (1980),

Huber (1981), Velleman and Welsch (1981), Welsch (1982), Hawkins et al. (1984), Carroll

and Ruppert (1985), Hampel (1985), Hampel et. al. (1986), Ronchetti (1987), Hadi and

Simonoff (1993) and Genton and Hall (2016).

Proofs follow in the Appendix where E-matrix is introduced to obtain in simple form

the influence functions of regression coefficients when the X-covariates are uncorrelated.

2 The Tools-The Derivative of the Influence Function

Hampel (1971) introduced the influence function, IF (x;T, F ), of a functional T with

real values,

IF (x;T, F ) = lim
ε→0

T [(1− ε)F + ε∆x]− T (F )

ε
, (1)

when this limit exists; x(∈ Rp), F is a probability, ∆x is probability with all its mass at

x, 0 < ε < 1.

IF (x;T, F ) determines the “bias” in the value of T at F due to an ε-perturbation of F
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with ∆x :

T [(1− ε)F + ε∆x]− T (F ) = εIF (x;T, F ) + o(ε) ≈ εIF (x;T, F ), (2)

“ ≈′′ is used since

lim
ε→0

T [(1− ε)F + ε∆x]− T (F )

εIF (x;T, F )
= 1.

Definition 2.1 (Hampel, 1971) The Breakdown Point is the upper bound on ε for which

linear approximation (2) can be used.

Discussing further concepts related to the influence function, Hampel (1974, p. 389)

introduced local-shift-sensitivity,

λ∗ = supx 6=y

|IF (x;T, F )− IF (y;T, F )|
||x− y||

, (3)

as “a measure for the worst (approximate) effect of wiggling the observations”; || · || is a

Euclidean distance in Rp.

Unlike the extensive use of Breakdown Point, local-shift-sensitivity was never fully ex-

ploited. One reason is that, in reality, it is a “global” measure as supremum over all x,y.

Thus, λ∗ cannot be used to study T ’s bias for x’s small perturbation in the ε-mixture, from

x to x + h, ||h|| small,

T [(1− ε)F + ε∆x+h]− T [(1− ε)F + ε∆x]. (4)

When F is defined on the real line, (4) is evaluated at neighboring points x, x+ h, x ∈

R, h ∈ R, |h| small.

Lemma 2.1

lim
h→0

lim
ε→0

T [(1− ε)F + ε∆x+h]− T [(1− ε)F + ε∆x]

εh
=
dIF (x;T, F )

dx
= IF ′(x;T, F ), (5)

when the limit exists.

Remark 2.1 Under mild conditions, e.g. for any function g for which the derivative g′

exists at x and for the functional

T (F ) =

∫
g(y)dF (y),

the limits in ε and h can be interchanged in (5) without affecting the limit.
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IF ′(x;T, F ) is used to approximate (4) for small ε, |h| :

T [(1− ε)F + ε∆x+h]− T [(1− ε)F + ε∆x] ≈ εhIF ′(x;T, F ); (6)

(6) is the Tool used to approximate L2 residuals of gross-error models and determine RIN-

FIN. When (6) is used, the Influence Function’s derivative is always evaluated at F.

Examples of IF ′ follow.

Example 2.1 Let F be a probability on the real line, T (F ) is the mean of F, its influence

function is

IF (x;T, F ) = x− T (F )

with derivative a constant.

Example 2.2 Consider a simple linear regression model, Y = β0 + β1X + e, with error e

having mean zero and finite second moment, F is the joint distribution of (X, Y ).

The influence functions for the L2 -parameters β0(F ), β1(F ), obtained at F are

IF (x, y; β0(F ), F ) = [y − β0(F )− β1(F )x]
EX2 − xEX
V ar(X)

= r(x, y;F )
EX2 − xEX
V ar(X)

, (7)

IF (x, y; β1(F ), F ) = [y − β0(F )− β1(F )x]
x− EX
V ar(X)

= r(x, y;F )
x− EX
V ar(X)

; (8)

EU and V ar(U) denote, respectively, U ’s mean and variance. The x-derivatives of (7), (8)

are

IF ′x,0 =
∂IF (x, y; β0(F ), F )

∂x
= −β1(F )

EX2 − xEX
V ar(X)

− r(x, y;F )
EX

V ar(X)
, (9)

IF ′x,1 =
∂IF (x, y; β1(F ), F )

∂x
= −β1(F )

x− EX
V ar(X)

− r(x, y;F )
1

V ar(X)
. (10)

Observe in (7), (8) the multiplicative effects of r with (x−EX) and EX2−xEX and their

conversions to additive effects in (9), (10).

Remark 2.2 The y-derivatives of L2-influence functions (7), (8) are, respectively, (EX2−

xEX)/V ar(X) and (x− EX)/V ar(X). Thus, y-derivatives of influence functions do not

provide information for r(x, y;F ) and their sample versions are maximized at the extreme

x-values in the sample.
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3 Residuals, Influence, Leverage Cases and RINFIN

3.1 Least Squares Regression and Influence Functions

Let (X, Y ) follow probability model F,

Y = β0 + β1X1 + . . .+ βpXp + e; (11)

X = (X1, ...Xp)
T is the covariates’ vector, Y is the response, β = (β0, .., βp)

T = (β0(F ), .., βp(F ))T .

The Model Assumptions:

(A1) The error, e, has mean zero and finite second moment.

(A2) Case (x, y) is mixed with cases from model F with probability ε (model Fε,x,y).

The L2-regression coefficients β are obtained minimizing Ee2;E denotes expected value.

RINFIN has a simple form when an additional assumption is used:

(A3) X1, . . . , Xp are uncorrelated random variables.

Notation

The j-th regression coefficient obtained by L2-minimization at model Fε,u,v is denoted

by βj(Fε,u,v), j = 0, 1, ..., p, and their vector by β(Fε,u,v).

Denote the L2- residuals for model Fε,u,v at (x, y) by

r(x, y;Fε,u,v) = y − β0(Fε,u,v)−
p∑
j=1

βj(Fε,u,v)xj; (12)

r is also used to denote r(x, y;F ).

For |h| small, let

xi,h = x + (0, . . . , h, . . . , 0), (13)

such that (xi,h, y), (x, y + h) are small perturbations of (x, y) making it more extreme.

The influence function of βj is evaluated at (x, y) for F, thus use

IFj = IF (x, y; βj, F ), IF ′v,j =
∂IF (x, y; βj, F )

∂v
, v = y, xi, i = 1, . . . , p, (14)

i.e., in words, IF ′v,j is the derivative of IFj with respect to v, j = 0, 1, . . . , p.
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Influence functions of L2 regression coefficients at F are solutions of the equations’

system:

IF0 + IF1EX1 + ...+ IFpEXp = r(x, y;F ), (15)

IF0EXi + ...+ IFjEXiXj + ...+ IFpEXiXp = xir(x, y;F ), i = 1, . . . , p. (16)

Equations (15) and (16) are obtained by interchanging in the normal equations,

∂EH(Y − β0 − β1X1 − . . .− βpXp)
2

∂βi
= 0, i = 0, 1, . . . , p, (17)

the expected value with the partial derivatives for i = 0, 1, . . . , p. The obtained equations

are evaluated at the models H = F and H = (1− ε)F + ε∆(x,y), the equations for the i-th

partial derivative for both models are subtracted, are divided by ε and when ε → 0 the

Influence Functions appear in the left side of equations (15) and (16) and in the right side

are the remaining terms.

The influence functions in (15) and (16) are now provided in closed form when, in

addition, (A3) holds. With an additional assumption on the error, e, influence functions

of L1-regression coefficients have also been obtained (Yatracos, 2018, Proposition 3.2).

Proposition 3.1 For regression model (11) with assumptions (A1)-(A3) and notation

(14), the influence functions of L2-regression coefficients at (x, y) for model F are:

IF0 = r[1− p+

p∑
j=1

EX2
j − xjEXj

σ2
j

], IFj = r
xj − EXj

σ2
j

, j = 1, . . . , p; (18)

r = r(x, y;F ), σ2
j is the variance of Xj, j = 1, . . . , p.

3.2 Perturbations of L2-Residuals for models F and Fε,x,y

The goal is to compare small (x, y)-residual changes in L2 regressions for Fε,x,y and F :

i) when (xi,h, y) replaces (x, y) in the ε-mixture, i.e., under Fε,x,y and Fε,xi,h,y :

r(xi,h, y;Fε,xi,h,y)− r(x, y;Fε,x,y) (in (20)) and

ii) when (x, y + h) replaces (x, y) in the ε-mixture, i.e., under Fε,x,y and Fε,x,y+h :

r(x, y + h;Fε,x,y+h)− r(x, y;Fε,x,y) (in (24)).

A Lemma used repeatedly to calculate residuals’differences i), ii) follows.
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Lemma 3.1 For regression model (11) with assumptions (A1), (A2) and ε, |h| both small

it holds for 0 ≤ j ≤ p :

βj(Fε,x,y) ≈ βj(F ) + εIFj, βj(Fε,xi,h,y) ≈ βj(Fε,x,y) + εh
∂IF (x, y; βj, F )

∂xi
. (19)

Proposition 3.2 For regression model (11) with (A1), (A2), xi,h the perturbation of x

(see 13) and for ε and |h| both small:

a) the difference of (x, y)-residuals at Fε,xi,h,y and Fε,x,y is:

r(xi,h, y;Fε,xi,h,y)−r(x, y;Fε,x,y)+βih ≈ −εh[IFi+
∂IF0

∂xi
+

p∑
j=1

xj
∂IFj
∂xi

], i = 1, . . . , p, (20)

b) the difference of (x, y)-residuals at Fε,x,y+h and Fε,x,y is:

r(x, y + h;Fε,x,y+h)− r(x, y;Fε,x,y)− h ≈ −εh[
∂IF0

∂y
+

p∑
j=1

xj
∂IFj
∂y

]. (21)

Remark 3.1 The right side in (20) involves influence functions and their derivatives. An

index using it to detect bad leverage is less affected by masking than diagnostics based solely

on Influence Functions, as explained in the Introduction.

The right sides of (20) and (21) are obtained below for uncorrelated covariates.

Corollary 3.1 Under the assumptions of Proposition 3.2 and (A3), with r = r(x, y;F ) :

a1)

r(xi,h, y;Fε,xi,h,y)− r(x, y;Fε,x,y) + βih ≈ −εh{2
r(xi − EXi)

σ2
i

− βi[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

]}.

(22)

a2) If, in addition, |xi| is large,

r(xi,h, y;Fε,xi,h,y)− r(x, y;Fε,x,y) ≈ εh · 3βi
(xi − EXi)

2

σ2
i

, (23)

b)

r(x, y + h;Fε,x,y+h)− r(x, y;Fε,x,y)− h ≈ −εh[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

]. (24)

10



3.3 x-Influence and Residual’s Influence Index RINFIN(x, y; ε, β)

Influence is determined using the distance of residuals’ partial derivatives at (x, y) for

model F and gross-error model Fε,x,y. The larger the distance is, the larger the influence

of (x, y) is.

x-Influence on L2-Residuals

For (xi,h, y) and (x, y) both under model F,

r(xi,h, y;F )− r(x, y;F )

h
+ βi = 0, i = 1, . . . , p. (25)

For gross-error models Fε,x,y, Fε,xi,h,y, the difference in partial derivatives of residuals is

obtained from (20) for small ε,

lim
h→0

r(xi,h, y;Fε,xi,h,y)− r(x, y;Fε,x,y)

h
+ βi ≈ −ε[IFi +

∂IF0

∂xi
+

p∑
j=1

xj
∂IFj
∂xi

], i = 1, . . . , p.

(26)

From (25) and (26), the right side of (26) measures influence of x’s i-th coordinate in

the residual’s derivative and provides the motivation for defining influence.

Definition 3.1 For gross-error model Fε,x,y,

a) the influence of x’s i-th coordinate in the L2-residual is

INF (i) = ε · |IFi +
∂IF0

∂xi
+

p∑
j=1

xj
∂IFj
∂xi
|, i = 1, . . . , p. (27)

b) The L2-Residual Influence Index (RINFIN) is

RINFIN(x, y; ε, β) = ε ·
p∑
i=1

(IFi +
∂IF0

∂xi
+

p∑
j=1

xj
∂IFj
∂xi

)2 (28)

Remark 3.2 When in (28) the squares are replaced by absolute values, RINFINABS(x, y; ε, β)

is obtained. It can be used to confirm RINFIN’s ordering as described in Section 4.2.

Assuming in addition (A3), (28) becomes (using (45) in the Appendix):

RINFIN(x, y; ε, β) = ε ·
p∑
i=1

{2r(x, y;F )(xi − EXi)

σ2
i

− βi[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

]}2. (29)

Remote x’s have large RINFIN(x, y; ε, β).
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Proposition 3.3 Under (A1)-(A3), with G unit mass at (x, y), ε = 1/n,

lim
|xi|→∞

RINFIN(x, y; ε, β) =∞. (30)

Remark 3.3 For the sample version of Proposition 3.3, with G in reality discrete prob-

ability on bad leverage cases and with masking occuring, with ε = 1/n because of the way

sample RINFIN is calculated, the lower bound used in the Proof will be roughly 1/9 of that

without masking. This can be used to provide more indications about masking and bad

leverage.

y-Influence on L2-Residuals

For (x, y + h) and (x, y) both under model F,

r(x, y + h;F )− r(x, y;F )

h
= 1, i = 1, . . . , p. (31)

Proposition 3.4 For models F, Fε,x,y, Fε,x,y+h, ε small and L2 regression under (A1) −

(A3) :

lim
h→0

r(x, y + h;Fε,x,y+h)− r(x, y;Fε,x,y)

h
− 1 ≈ −ε[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

]. (32)

Remark 3.4 From (32), the y-influence index is

p∑
j=1

(xj − EXj)
2

σ2
j

; (33)

it is maximized for cases in the extremes of the x-coordinates. Thus, RINFIN is restricted

to the influence of factor space cases.

3.4 Large Sample Properties of RINFIN(x, y; ε, β̂n)

The equations’ system (15) and (16) can be written in matrix notation

Ẽ · IF = q(x, y; β); (34)
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Ẽ is the symmetric matrix of EXi, EXiXj and 1, 1 ≤ i, j ≤ p, IF is the vector of

β-influence functions and

q = (r(x, y;F ), x1r(x, y;F ), . . . , xpr(x, y;F ))T .

Consistency of RINFIN(x, y; ε, β̂n) and its asymptotic distribution follow from the

properties of the least squares estimates β̂n of β. For the next proposition the notation is

changed: X(∈ Rp+1) will have as first coordinate 1, Ẽ is EXXT however x(∈ Rp) will still

denote a factor space vector.

Proposition 3.5 Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent, identically distributed

random vectors with form XT = (1, X1, . . . , Xp) ∈ Rp+1, Y ∈ R,

Y = XTβ + ε. (35)

Let β̂n be the least squares estimate of β.

a) Assume that i) Rank Ẽ = Rank EXXT = p+1, ii) EXε = 0, iii) Eε2 <∞. Then, for

every (x, y) ∈ Rp+1, RINFIN(x, y; ε, β̂n) is consistent estimate for RINFIN(x, y; ε, β),

ε > 0.

b) Assume in addition to i) and ii) in a):

iv) Eε4 <∞ and E||X||42 <∞; ||u||2 denotes the Euclidean L2 norm of vector u.

v) For at least one β-coordinate, e.g. the i-th:

gi =
∂RINFIN(x, y; ε, β)

∂βi
6= 0. (36)

Then, RINFIN(x, y; ε, β̂n) is asymptotically normal:

√
n[RINFIN(x, y; ε, β̂n)−RINFIN(x, y; ε, β)]

D→ N(0,gTV g); (37)

V = Ẽ−1E(XiX
T
i ε

2
i )Ẽ−1 is the Covariance matrix of the asymptotic normal distribution of

β̂n and g has coordinates gi in (36), i = 0, 1, . . . , p.

Remark 3.5 RINFIN’s advantage, i.e. making additive the effects of x and r, remains

for L2-regression with diagonal weight matrix, W, independent of x, r; Proposition 3.5 still
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holds with known V (W ) in (37). When W depends on x, r, the decomposition of the

influence function in Dollinger and Staudte (1991, Theorem 3, Equation (2)) indicates

that RINFIN’s advantage may not hold, depending on the form of the weights.

4 RINFIN in Action

4.1 RINFIN and Simulations, p < n

Data (X, Y ) from F follows linear model (11) with β = (1.5, .5, 0, 1, 0, 0, 1.5, 0, 0, 0, 1, 0, . . . , 0);

when p < 11, β’s first p coordinates are used. X is obtained from p-dimensional normal

distribution, N (0,Σ), with Σ’s entries Σi,j = .5|j−i|, 1 ≤ i, j ≤ p, as in Alfons et al.

(2013, p.11). For gross-error model, Fε,G, the proportion ε is 10%. For each contaminated

X (from G) the first γ · p coordinates are independent, normal with mean µ and variance

1, 0 < γ ≤ 1. Various values for γ, p and µ are used and p is smaller than the sample size

n. The regression errors are independent, standard normal random variables.

The simulations follow the spirit in Khan et al. (2007). Each of the N = 100 simulated

samples has size n = 100. Cases 1− 10 are contaminated and compared with those having

the 10 larger sample RINFIN-values for calculating the misclassification proportion.

COMPLETE CONTAMINATION (γ = 1)

p µ = .5 µ = 1 µ = 1.5 µ = 2

10 0.857 0.624 0.320 0.117

30 0.802 0.394 0.079 0.003

50 0.775 0.254 0.016 0.000

70 0.728 0.162 0.000 0.000

90 0.740 0.208 0.009 0.000

Table 1: Average misclassification proportion with RINFIN’s orderings

In Table 1, the misclassification proportion decreases as p increases except for an

anomaly when p = 90 due to its proximity to n = 100. By increasing n to 150 cases

this anomaly disappears, e.g., for µ = 1 the misclassification proportion is 0.105.
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PARTIALLY CONTAMINATED DATA IN THE FIRST γ · p X-COORDINATES

p µ = 1, γ = .2 µ = 1, γ = .4 µ = 1, γ = .6 µ = 1.5, γ = .2 µ = 1.5, γ = .4 µ = 1.5, γ = .6

10 0.859 0.834 0.747 0.811 0.695 0.550

30 0.822 0.753 0.599 0.719 0.516 0.296

50 0.804 0.676 0.506 0.663 0.364 0.164

70 0.787 0.612 0.416 0.598 0.250 0.089

90 0.784 0.605 0.435 0.611 0.294 0.116

Table 2: Average misclassification proportion with RINFIN’s ordering

In Table 2, for fixed contamination proportion in the first γ · p x-coordinates, γ(< 1),

the RINFIN misclassification proportion decreases as p increases. The anomaly is still

observed when p = 90. The blessing of high dimensionality is observed in both Tables 1, 2.

4.2 RINFIN and Real, High Dimensional Data, p > n

RINFIN is used for the microarray data in Zhao et al. (2016), obtained from Chiang et

al.(2006) and previously analyzed by Zhao et al. (2013): 120 twelve-week-old male offspring

were selected for tissue harvesting from the eyes; the data was kindly communicated to

us by Leng (2017). The microarray contains over 30,000 different probe sets. Probe gene

TR32 is used as the response and the covariates are 1500 genes mostly correlated with it.

Since n = 120 < p = 1500, RINFIN is calculated for the response TR32 and 100 x-

covariates selected sequentially, in blocks, with coordinates 100(j−1)+1, . . . , 100j, 1 ≤ j ≤

15. For each of the 120 cases, the total of its fifteen RINFIN values is its index, providing

ordering of all the cases. In Table 3, cases with the higher 16 RINFIN-values are provided,

more than 10% of the cases in order to get an idea of the differences in the values.

Indications for leverage cases from G in the gross-error model are given for cases 80, 95,

32, 120 and 59, after which the spacings are significantly reduced. In Table 4, the highest

16 RINFINABS-values are provided. Cases 80, 95, 32, 120 and 59 have still the same order

as in Table 3, but the order of the remaining cases changes.
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MICROARRAY DATA

CASE 80 95 32 120 59 64 85 112

TOTAL RINFIN 824,471 146,639 40,295 24,749 14,802 12,849 12,582 11,683

CASE 38 40 24 117 27 28 84 90

TOTAL RINFIN 11,680 10,973 10,476 8,478 7,516 6,214 5,689 5,536

Table 3: Cases with the higher RINFIN values

MICROARRAY DATA

CASE 80 95 32 120 59 85 38 112

TOTAL RINFIN 1744.5 797.4 488.1 379.4 319.3 285.6 282.1 273.6

CASE 64 24 40 27 117 6 84 28

TOTAL RINFIN 261.8 259.4 254.4 228.7 226 193.5 191.9 191.4

Table 4: Most inluential cases with RINFINABS

Cases 80, 95, 32, 120 and 59, are also supported by diagnostics HIM and MIP. According

to Leng (2017), diagnostic HIM (Zhao et al., 2013) finds 15 influential points with indices:

80, 95, 120, 32, 75, 70, 107, 28, 59, 38, 67, 27, 17, 51, 98;

diagnostic MIP (Zhao et al., 2016) finds 7 influential points with indices:

80, 95, 120, 32, 75, 28, 59.

5 Appendix- Proofs and E-matrix

Proof of Lemma 2.1: Equality (5) is obtained by adding and subtracting T (F ) in the

numerator of its left side and by taking first the limit with respect to ε. 2

To proceed with the proof of Proposition 3.1 the general form of a symmetric, (n+ 1)

by (n+1) matrix En is introduced. En’s entries are motivated by the expected values in the

equations’ system (15), (16) when the n covariates are uncorrelated. En’s main diagonal

and its method of construction make it different from existing categories of matrices. En’s

cofactors are obtained and used to determine in closed form the Influence Functions of
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L2-regression coefficients. A similar result for least absolute deviation (L1) regression

coefficients also holds (Yatracos, 2018).

E-MATRIX AND ITS COFACTORS

Under assumption (A3), the coefficients in the system of equations (15), (16) form En-

matrix; n is the covariates’ dimension. As an illustration, for real numbers a, b, c, A,B,C,

E3 =


1 a b c

a A ab ac

b ba B bc

c ca cb C

 .

For E3, the corresponding linear regression model with uncorrelated covariates X1, X2, X3

provides a = EX1, b = EX2, c = EX3 and A = EX2
1 , B = EX2

2 , C = EX2
3 .

Definition 5.1 En-matrix with real entries has form:

En =



1 a1 a2 . . . an

a1 A1 a1a2 . . . a1an

a2 a2a1 A2 . . . a2an

. . .

an ana1 ana2 . . . An


. (38)

Notation: En,−k denotes the matrix obtained from En by deleting its k-th column and

k-th row, 2 ≤ k ≤ n+ 1.

Property of En-matrix: Deleting the k-th row and the k-th column of En-matrix, the

obtained matrix En,−k is En−1 matrix formed by {1, a1, . . . , an} − {ak−1}, 2 ≤ k ≤ n+ 1.

The cofactors of En-matrix are needed to solve the system of equations (15), (16).

Proposition 5.1 a) The determinant of En-matrix (38) is

|En| = Πn
m=1(Am − a2m). (39)

b) Let Ci+1,j+1 be the cofactor of element (i+ 1, j + 1) in En, then:

Ci+1,j+1 = 0, if i > 0, j > 0, i 6= j, C1,j+1 = −ajΠk 6=j(Ak − a2k).
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Ci+1,1 = −aiΠj 6=i(Aj − a2j), if i > 0, C1,1 = |En|+
n∑
k=1

a2k|En,−k|.

Proof for Proposition 5.1: a) Induction is used.

For n = 1, the determinant is A1 − a21.

For n = 2, the determinant is

(A1A2 − a21a22)− a1 · (a1A2 − a1a22) + a2 · (a21a2 − A1a2) = A1A2 − a21A2 + a21a
2
2 − A1a

2
2

= A2(A1 − a21)− a22(A1 − a21) = (A1 − a21)(A2 − a22).

Assume that (39) holds also for En. It is enough to show (39) holds for

En+1 =



1 a1 a2 . . . an an+1

a1 A1 a1a2 . . . a1an a1an+1

a2 a2a1 A2 . . . a2an a2an+1

. . .

an ana1 ana2 . . . An anan+1

an+1 an+1a1 an+1a2 . . . an+1an An+1


.

|En+1| is obtained using line (n+ 1) and its cofactors Cn+1,1, . . . , Cn+1,n+1 :

|En+1| = an+1Cn+1,1 + an+1a1Cn+1,2 + . . .+ an+1anCn+1,n + An+1Cn+1,n+1. (40)

Observe that for 2 ≤ j ≤ n, cofactor Cn+1,j is obtained from a matrix where the last

column is a multiple of its first column by an+1, thus,

Cn+1,j = 0, j = 2, . . . , n. (41)

For the matrix in cofactor Cn+1,1, observe that in its last column an+1 is common factor

and if taken out of the determinant the remaining column is the vector generating En, i.e.

{1, a1, . . . , an}. With n − 1 successive interchanges to the left, this column becomes first

and En appears. Thus,

Cn+1,1 = (−1)n+2(−1)n−1 · an+1|En| = −an+1|En|. (42)

In cofactor Cn+1,n+1, the determinant is that of En,

Cn+1,n+1 = (−1)2(n+1)|En| = |En|. (43)
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From (40)-(43) it follows that

|En+1| = −a2n+1|En|+ An+1|En| = Πn+1
m=1(Am − a2m).

b) We now work with En. For i > 0, j > 0, i 6= j, after deleting row (j+ 1) the remaining

of column (j + 1) in the cofactor is a multiple of column 1, thus |Ci+1,j+1| vanishes.

For C1,j+1, using column j + 1 to calculate En, it holds:

ajC1,j+1+AjCj+1,j+1 = |En| → ajC1,j+1 = −a2jΠk 6=j(Ak−a2k)→ C1,j+1 = −ajΠk 6=j(Ak−a2k).

For Ci+1,1, i > 0, after deletion of row (i+ 1) in En the remaining of column (i+ 1) in the

cofactor’s matrix is multiple of ai and the basic vector creating En,−i. Column 1 of En is

also deleted and for column (i+ 1) in the cofactor’s matrix to become first column (i− 1)

exchanges of columns are needed. Thus,

Ci+1,1 = (−1)i+2 · ai · (−1)i−1Πk 6=i(Ak − a2k) = −ai · Πk 6=i(Ak − a2k).

For C1,1 we express |En| as sum of cofactors along the first row of En,

C1,1 + a1C1,2 + . . .+ anC1,n = |En|

→ C1,1 = Πn
k=1(Ak − a2k) + a21Πk 6=1(Ak − a2k) + . . .+ a2nΠk 6=n(Ak − a2k). 2

Proof of Proposition 3.1: For system of equations (15), (16) and matrix Ep with

aj = EXj, Aj = EX2
j , j = 1, . . . , p, from Proposition 5.1 with r = r(x, y;F ),

IFj =
C1,j+1r + Cj+1,j+1rxj

|Ep|
= r
−EXjΠk 6=jσ

2
k + xjΠk 6=jσ

2
k

Πp
k=1σ

2
k

= r
xj − EXj

σ2
j

, j = 1, . . . , p.

IF0 =
C1,1r +

∑p
j=1C1,j+1rxj

|Ep|
= r

Πp
k=1σ

2
j +

∑p
j=1(EXj)

2Πk 6=jσ
2
k −

∑p
j=1 xjEXjΠk 6=jσ

2
k

Πp
k=1σ

2
k

= r[1 +

p∑
j=1

EX2
j − σ2

j − xjEXj

σ2
j

= r[1− p+

p∑
j=1

EX2
j − xjEXj

σ2
j

]. 2
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Lemma 5.1 For the influence functions (18) with r = r(x, y;F ) it holds:

a)

IF0 +

p∑
j=1

xjIFj = r[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

], (44)

b)

IFi + IF ′xi,0 +

p∑
j=1

xjIF
′
xi,j

= 2
r · (xi − EXi)

σ2
i

− βi[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

] (45)

≈ −3βi
(xi − EXi)

2

σ2
i

, if |xi − EXi| is very large, (46)

c)

IF ′y,0 +

p∑
j=1

xjIF
′
y,j = 1 +

p∑
j=1

(xj − EXj)
2

σ2
j

. (47)

Proof of Lemma 5.1: a) From (18),

IF0 +

p∑
j=1

xjIFj = r[1− p+

p∑
j=1

EX2
j − xjEXj

σ2
j

] +

p∑
j=1

xj
r(xj − EXj)

σ2
j

= r[1− p+

p∑
j=1

EX2
j − 2xjEXj + x2j

σ2
j

] = r[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

].

b) Proof is provided for i = 1. Since

IF0 = r[1− p+

p∑
j=1

EX2
j − xjEXj

σ2
j

], IFj = r
xj − EXj

σ2
j

, j = 1, . . . , p,

IF ′x1,0 = −β1[1− p+

p∑
j=1

EX2
j − xjEXj

σ2
j

]− rEX1

σ2
1

IF ′x1,1 = −β1
x1 − EX1

σ2
1

+
r

σ2
1

→ x1IF
′
x1,1

= −β1
x21 − x1EX1

σ2
1

+ r
x1
σ2
1

IF ′x1,j = −β1
xj − EXj

σ2
j

→ xjIF
′
x1,j

= −β1
x2j − xjEXj

σ2
j

, j 6= 1.

Thus,

x1IF
′
x1,1

+ x2IF
′
x1,2

+ . . .+ xpIF
′
x1,p

= r
x1
σ2
1

− β1
p∑
j=1

x2j − xjEXj

σ2
j

→ IF1 + IF ′x1,0 + x1IF
′
x1,1

+ x2IF
′
x1,2

+ . . .+ xpIF
′
x1,p

= 2
r(x1 − EX1)

σ2
1

− β1[1− p+

p∑
j=1

x2j − 2xjEXj + EX2
j

σ2
j

]
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= 2
r(x1 − EX1)

σ2
1

− β1[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

].

Since

r(x1 − EX1) = y(x1 − EX1)− β1x1(x1 − EX1)− (x1 − EX1)

p∑
j=2

βjxj

= y(x1 − EX1)− β1(x1 − EX1)
2 − β1(x1 − EX1)EX1 − (x1 − EX1)

p∑
j=2

βjxj,

if |x1 − EX1| is very large dominating all the other terms, then

IF1 + IF ′x1,0 + x1IF
′
x1,1

+ x2IF
′
x1,2

+ . . .+ xpIF
′
x1,p
≈ −3β1

(x1 − EX1)
2

σ2
1

.

c) From (18),

IF ′y,0 = 1− p+

p∑
j=1

EX2
j − xjEXj

σ2
j

, IF ′y,j =
xj − EXj

σ2
j

, j = 1, . . . , p.

Thus,

IF ′y,0 +

p∑
j=1

xjIF
′
y,j = 1−p+

p∑
j=1

EX2
j − xjEXj + x2j − xjEXj

σ2
j

= 1+

p∑
j=1

(xj − EXj)
2

σ2
j

. 2

Proof of Lemma 3.1: Use approximations (2), (6). 2

Proof of Proposition 3.2: a) Is provided for i = 1 using repeatedly Lemma 3.1:

r(x1,h, y;Fε,x1,h,y) = y − β0(Fε,x1,h,y)− β1(Fε,x1,h,y)(x1 + h)− . . .− βp(Fε,x1,h,y)xp

≈ y−{β0(Fε,x,y)+εhIF ′x1,0}−{β1(Fε,x,y)+εhIF ′x1,1}(x1+h)− . . .−{βp(Fε,x,y)+εhIF ′x1,p}xp

= r(x, y;Fε,x,y)− β1(Fε,x,y)h− εh[IF ′x1,0 + x1IF
′
x1,1

+ x2IF
′
x1,2

+ . . .+ xpIF
′
x1,p

]− εh2IF ′x1,1

= r(x, y;Fε,x,y)− β1h− εh[IF1 + IF ′x1,0 + x1IF
′
x1,1

+ x2IF
′
x1,2

+ . . .+ xpIF
′
x1,p

]− εh2IF ′x1,1.

b) Lemma 3.1 is also used.

r(x, y + h;Fε,x,y+h) = y + h− β0(Fε,x,y+h)− β1(Fε,x,y+h)x1 − . . .− β0(Fε,x,y+h)xp

≈ y + h− {β0(Fε,x,y) + εhIF ′y,0} − {β1(Fε,x,y) + εhIF ′y,1}x1 − . . .− {βp(Fε,x,y) + εhIF ′y,p}xp

= r(x, y;Fε,x,y) + h− εh[IF ′y,0 +

p∑
j=1

xjIF
′
y,j]. 2
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Proof of Corollary 3.1: a1) The right side of (22) follows from (45).

a2) If |xi| is large and |h| is small, βih and εh2IF ′xi,i are of smaller order than the remaining

terms and (46) implies (23).

b) The right side of 24) follows from (47). 2

Proof of Proposition 3.3:

lim
|xi|→∞

RINFIN(x, y; ε, L2) ≥ ε · lim
|xi|→∞

{ 2
r(x, y)(xi − EXi)

σ2
i

− βi[1 +

p∑
j=1

(xj − EXj)
2

σ2
j

] }2

≈ lim
|xi|→∞

32β2
i

(xi − EXi)
4

σ4
i

=∞;

the last approximation follows from (46). 2.

Proof of Proposition 3.4: Follows from (24) dividing both its sides by h and taking

the limit with h converging to zero. 2

Lemma 5.2 For regression model (11) under (A1), (A2), (x, y) ∈ Rp+1,

INF [i] = ε · {2r[e∗i0 +

p∑
k=1

e∗ikxk]− βi(e∗00 + 2

p∑
j=1

xje
∗
j0 + xTE∗x)}, i = 1, . . . , p. (48)

Proof of Lemma 5.2: From (34),

IF = E∗ · q, E∗ = (e∗ij) = Ẽ−1, 0 ≤ i, j ≤ p. (49)

The Influence Function of βj has form

IFj =

p∑
k=0

e∗jkqk(x, y; β) = re∗j0 + r

p∑
k=1

e∗jkxk, j = 0, 1, . . . , p. (50)

For j = 0, 1, . . . , p, i = 1, . . . , p

∂IFj
∂xi

= e∗j0
∂r

∂xi
+

p∑
k=1

e∗jk
∂ (xk · r)
∂xi

= −βi(e∗j0 +

p∑
k=1

e∗jkxk) + re∗ji

p∑
j=1

xj
∂IFj
∂xi

= −βi
p∑
j=1

xje
∗
j0 − βi

p∑
j=1

xj

p∑
k=1

e∗jkxk + r

p∑
j=1

xje
∗
ji

INF (i) = ε · [IFi +
∂IF0

∂xi
+

p∑
j=1

xj
∂IFj
∂xi

]
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= ε·[re∗i0+r
p∑

k=1

e∗ikxk−βi(e∗00+
p∑

k=1

e∗0kxk)+re
∗
0i−βi

p∑
j=1

xje
∗
j0−βi

p∑
j=1

xj

p∑
k=1

e∗jkxk+r

p∑
j=1

xje
∗
ji]

= ε · {2r[e∗i0 +

p∑
k=1

e∗ikxk]− βi(e∗00 + 2

p∑
j=1

xje
∗
j0 +

p∑
j=1

p∑
k=1

xje
∗
jkxk)}. 2

Proof of Proposition 3.5: a) Conditions i)-iii) imply that the least squares estimate

β̂n is consistent estimate of β. From (28) and (48), RINFIN(x, y; ε, β) is continuous func-

tion of β and therefore RINFIN(x, y; ε, β̂n) is consistent estimate of RINFIN(x, y; ε, β).

b) Conditions i), ii), iv) imply that β̂n has asymptotically multivariate normal distribution

with covariance matrix Ẽ−1E(XiX
T
i ε

2
i )Ẽ−1. From (28) and (48), RINFIN(x, y; ε, β) has

continuous first partial derivatives at β which are not all zero from v). Thus, RINFIN(x, y; ε, β)

has non-zero diferential at β. The result follows from Serfling (1980, Corollary in section

3.3, p. 124). 2
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