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Abstract

The market capitalization of cryptocurrencies has risen rapidly during the

last few years. Despite their high volatility, this fact has spurred growing

interest in cryptocurrencies as an alternative investment asset for portfolio and

risk management. We characterise the effects of adding cryptocurrencies in ad-

dition to traditional assets to the set of eligible assets in portfolio management.

Out-of-sample performance and diversification benefits are studied for the most

popular portfolio-construction rules, including mean-variance optimization,

risk-parity, and maximum-diversification strategies, as well as combined strate-
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gies. To account for the frequently low liquidity of cryptocurrency markets

we incorporate the LIBRO method, which gives suitable liquidity constraints.

Our results show that cryptocurrencies can improve the risk-return profile of

portfolios. In particular, cryptocurrencies are more useful for portfolio strate-

gies with higher target returns; they do not play a role in minimum-variance

portfolios. However, a maximum-diversification strategy (maximising the Port-

folio Diversification Index, PDI) draws appreciably on cryptocurrencies, and

spanning tests clearly indicate that cryptocurrency returns are non-redundant

additions to the investment universe.

Keywords: cryptocurrency, CRIX, investments, portfolio management, asset

classes, blockchain, Bitcoin, altcoins, DLT

JEL Classification: C01, C58, G11
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1 Introduction

Cryptocurrencies (CCs) exhibited remarkable performance in the past years. Driven by

huge inflows of capital into the market, CCs gained strongly in market value. Recently,

Initial Coin Offerings (ICOs) brought even more capital into the market by offering an easy

way to bring Venture Capital into projects. Simultaneously indices like CRIX, developed

by Trimborn and Härdle (2018), were introduced to capture the market evolution and

provide a basis for ETFs. Driven by these developments, cryptocurrency markets became

increasingly attractive for investors, who are beginning to consider CCs as a new class of

alternative investments. Prior research investigated investment in Bitcoin (BTC): Brière

et al. (2015) and Eisl et al. (2015) studied the performance of traditional portfolios, when

BTC is added to them. They documented enhanced portfolios in terms of risk-return

profiles. Klein et al. (2018) found BTC not to be the New Gold based on its time dependent

behaviour. Hafner (2018) studied the time series of BTC in terms of the appearance of

bubbles, while Scaillet et al. (2018) reported frequent price jumps in BTC trading. These

properties imply high risk on BTC positions, requiring risk-optimized portfolios when

investing into them. Due to the huge capital inflow and consequently high realised returns

over the last years, altcoins (CCs other than BTC) became interesting for investors, too.

Moreover, they are of interest for investors due to the diversification effect. The effect was

observed by Elendner et al. (2017), who found CCs to have a low linear dependency with

each other. They also found the top 10 CCs by market capitalization to have a low linear

dependency with traditional assets.

Further investigating this effect, first studies focused on the effect of CCs being added

to a portfolio of traditional assets. Chuen et al. (2017) investigated the performance of

such a portfolio when adding CRIX, Trimborn and Härdle (2018), into them, which is

equal to consider an ETF on CRIX, as so a sentiment optimized portfolio when utilizing

the top CCs in CRIX. Trimborn et al. (2017) introduced LIquidity Bounded Risk-return

Optimization (LIBRO) and considered including a large sample of CCs as alternative

investment into a portfolio consisting of S&P100, US Bonds and Commodities. They

considered Markowitz and Conditional Value-at-Risk optimized portfolios. Due to the low
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liquidity in the CC market compared to traditional markets, LIBRO performs overall well

in this market and protects an investor from the risk of an inability to trade a CC in the

necessary amounts due to low trading volume. Alessandretti et al. (2018) investigated

LSTMs and decision trees as portfolio optimization methods for portfolios only consisting

of CCs, finding enhanced return performance.

Several studies covered specific aspects and strategies of investing with CCs. To the

best of our knowledge, it remains an open question which objective function leads to which

kind of investment strategy. We intend to fill this gap by comparing a broad variety of

investment strategies on portfolios including different kind of traditional assets and CCs.

We consider risk-oriented, return-oriented, risk-return-oriented and combined strategies,

see Table 1 for a full list of all strategies under consideration. We provide a broad study

considering extending window and rolling window as approaches for the optimization of

target function for the portfolio weights. We test the robustness of the results under 3

different kinds of re-allocation frequencies, daily, weekly and monthly. Furthermore, we

test the performance of the strategies when using the method LIBRO of Trimborn et al.

(2017) on them. To the best of our knowledge, this is the broadest study on investing with

CCs conducted so far.

The paper is organized as follows. Section 2 gives an overview of the asset allocation

models under consideration with the focus on interconnections between them. In Section

2.2 we explain the idea of model averaging for various investment strategies. Section

3 reviews the LIBRO strategy of Trimborn et al. (2017). In section 4 we explain the

methodology for comparing the performance of models considered. Section 5 describes the

dataset of portfolio components and Section 6 analyses an out-of-sample performance of

all portfolio strategies with CCs and traditional assets. The results are summarized in

Section 7.

The codes used to obtain the results in this paper are available via www.quantlet.de

.

4

www.quantlet.de
www.quantlet.de


2 Description of the Asset-Allocation Models

Consider a matrix X ∈ RP×N of P - days-long dataset of N asset log-returns. In our

comparative study we rely on a "moving-window" approach. Specifically, we choose an

estimation window of lengthK = 252 days (i.e. one year). We investigated the performance

of strategies for three rebalancing period lengths k: monthly – with k = 21 days, weekly –

with k = 5 days and daily with k = 1 day.6 In each rebalancing period t (t = 1, . . . , T ,

where T is a number of moving windows, defined as T = P−K
k

), starting on date K + 1,

we use the data in the previous K days to estimate the parameters required to implement

a particular strategy. These estimated parameters are then used to determine the relative

portfolio weights w in the portfolio of only-risky assets. We then use these weights to

compute the return in rebalancing period t+ 1. This process is continued by adding the k

daily-returns for the next period in the dataset and dropping the earliest returns, until

the end of the dataset is reached. The outcome of this rolling-window approach is a series

of P −K daily out-of-sample returns generated by each of the portfolio strategies listed in

Table 1. For simplification we omit the index t for moving window or rebalancing period.

Traditional evaluation literature (e.g. DeMiguel et al. (2009), Schanbacher (2014))

considers an investor whose preferences are specified in terms of utility functions and fully

described by the portfolio mean µP and variance σP . Merton (1980) demonstrated that

a very long time series is required in order to receive the accurate estimates of expected

returns. Taking into account the high potential for the error of expected returns’ estimates,

some authors, e.g. Haugen and Baker (1991), Chopra and Ziemba (1993) and Chow

et al. (2011), suggested to utilize only estimates of covariance matrix as inputs for the

optimization procedure. Thus, investors assume that all stocks have the same expected

returns and under this strong assumption the optimal portfolio is the global minimum-

variance portfolio. Minimum-variance portfolio strategy represents one of the so-called

risk-based portfolios, i.e. the only input used is the estimate of the variance-covariance

matrix. In this paper we consider the most popular ones: Maximum Diversification,

6We also tested strategies on extending window as in Trimborn et al. (2017), but as the insights are
similar these results are not reported.
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Risk-Parity, Minimum Variance and Minimum CVaR portfolio. In section 2.1 we describe

the individual strategies from the portfolio-choice literature that we consider. Along

with traditional approaches we consider a decision maker with risk preferences, specified

directly in percentile terms, and portfolio construction based on higher portfolio returns

distribution moments such as skewness and kurtosis. Therefore, in our comparative study

we distinguish three groups of analysed individual strategies: return-oriented, risk-oriented

(or risk-based, as in Clarke et al. (2013)), as well as a Maximum Sharpe ration (MV-S) -

tangent portfolio rule, which can be recognised in our dimensions as risk-return oriented

strategy.

Taking into account that ranking of models changes over time and motivated by fact

that in many fields combination of models performs well (see e.g. Clemen (1989), Avramov

(2002)) we also include to our analysis the combination of portfolio models based on

bootstrap approach inspired by Schanbacher (2014) and Schanbacher (2015). The detailed

methodology of combined portfolio models is discussed in section 2.2.

2.1 Asset allocation models

In this section we overview a set of models that are considered later in the empirical

analysis. We discuss links between the strategies and give conditions under which they are

equivalent. In general we use the "plug-in" approach, i.e. we replace moments of returns’

distributions by their sample counterparts.

2.1.1 Equal weighted portfolio

The most naïve portfolio is equal weighting (EW). Investors allocate capital evenly and

every asset has weight w = 1/N . EW is easy to implement: the portfolio manager is not

required to make assumptions on the distribution of the assets’ returns, DeMiguel et al.

(2009). The EW portfolio is indeed a mean-variance optimal portfolio if the constituents

have the same expected returns and covariances.
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2.1.2 Mean-variance portfolio

Many portfolio managers rely on the Markowitz risk-return or mean-variance (MV) rule,

which combines assets into an "efficient" portfolio offering risk-adjusted target returns,

Härdle and Simar (2015). Essential weaknesses of MV portfolio are the normal distribution

assumption of financial returns and risk measured by multiple of volatility. The drawbacks

of Markowitz portfolio in terms of composition, widely discovered in the literature, are

portfolio concentration, i.e. high portfolio weights are assigned to a limited subset of

the full set of assets or securities, and high sensitivity to small changes in estimates of

inputs - parameters µ and σ, see Jorion (1985), Simaan (1997), Kan and Zhou (2007).

In the Gaussian World portfolio weights w are obtained by the solution of the following

optimization problem:

min
w∈Rp

σ2
P (w) def= w>Σw

s.t. µP (w) = rT ,

w>1N = 1, wi ≥ 0

(1)

where Σ def= Et−1{(X − µ)(X − µ)>} and µ def= Et−1(X) are the sample covariance matrix

and vector of mean returns respctively, µP (w) def= w>µ, is the portfolio mean and rT –

"target" return, ranging from minimum return to maximum return to trace out an efficient

frontier. Et−1 is the expectation operator conditional on the information set available at

t− 1.

We compare three benchmark Mean-Variance portfolio: global minimum variance

portfolio ("MinVar" in Table 1), tangency portfolio ( "MV-S") and portfolio with the

highest in-sample return (Risk–return–max ret - "RR–max ret"). In our classification

approach a risk-based decision is MinVar, which is the most averse to risk and has the

lowest target portfolio return. In opposite a return-orientated RR–max ret portfolio is

located on a high risk end of Markowitz efficient frontier. MV-S portfolio occupies a

middle-ground between these two: it maximizes a Sharpe ratio (18), involving in this way

both risk and return estimation for portfolio weights construction. We characterise MV -

S as a risk-return based strategy.
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2.1.3 Conditional Value-at-Risk Portfolio Optimization

A strong limitation of Markowitz based portfolio strategies is the assumption of Gaussian

distributions of assets’ log-returns. Well known stylized facts indicate that variance or

volatility is an insufficient risk measure, leading to non-optimal portfolio composition.

Chuen et al. (2017) and Elendner et al. (2017) as well as descriptive statistics of our

investment universe, shown in Figure 6 and Table 8 in the Appendix 8.2, provide strong

evidence of this heavy-tailed distributions of cryptocurrencies. In order to react to this fact

we therefore include higher moments. More precisely we construct Mean - Conditional Value

at Risk (CVaR) optimization portfolio as in Rockafellar and Uryasev (2000), Krokhmal

et al. (2002). Given α < 0.05 risk level, the CVaR optimized portfolio weights w are

calculated as:

min
w∈RN

CVaRα(w), s.t. µP (w) = rT , w
>1p = 1, wi ≥ 0, (2)

CVaRα(w) = − 1
1− α

∫
w>X≤−VaRα(w)

w>Xf(w>X|w)dw>X, (3)

with ∂
∂w>X

F (w>X|w) = f(w>X|w) the probability density function of the portfolio

returns with weights w. VaRα(w) is the corresponding α-quantile of the cdf, defining the

loss to be expected in (α · 100)% of the times.

As for Mean-variance portfolio we construct an efficient frontier and compare two

portfolios, one in terms of risk-orientation, one return-orientated. Since we employ a

plug-in method to calculate return-orientated MinVar and MinCVaR portfolios, they

exhibit an identical composition and are only invested in the riskiest asset with the highest

expected return. Due to this reason we do not separate them and name this portfolio

Risk-return – max return portfolio ("RR – Max ret" in Table 1).

2.1.4 Risk Parity (Equal risk contribution - ERC) portfolio

One of traditional risk-based portfolio concepts is the Risk Parity approach. The underlying

idea is an adjustment of weights such that each asset has the same contribution to portfolio
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risk, see Qian (2006). Maillard et al. (2010) derived properties of such portfolio and

renamed them to "equal-risk contributions" (ERC) instruments. The Euler decomposition

of the portfolio volatility σP (w) =
√
w>Σw, Härdle and Simar (2015), allows to present it

in the following form:

σP (w) def=
N∑
i=1

σi(w) =
N∑
i=1

wi
∂σP (w)
∂wi

(4)

where ∂σP (w)
∂wi

is the marginal risk contribution and σi(w) = wi
∂σP (w)
∂wi

the risk contribution

of i-th asset. Finally to construct ERC portfolio one calibrates:

σi(w) = 1
N
∀i (5)

ERC portfolio can be compared to EW portfolio where instead of allocating capital equally

across all the assets, ERC portfolio allocates the total risk equally across the assets.

Consequently, under the condition of equality of log-returns distributions variances ERC

portfolio is identical to EW portfolio. ERC portfolio are comparable to MinVar portfolio,

which focus on parity of marginal contributions of all assets.

2.1.5 Maximum diversification portfolio with Portfolio diversification index (PDI)

Originally Maximum diversification portfolio (MD) uses an objective function introduced

in Choueifaty and Coignard (2008) that maximizes the ratio of weighted average asset

volatilities to portfolio volatility or diversification ratio, see (21). In our study instead of

the diversification ratio we maximize a Portfolio diversification index (PDI) proposed by

Rudin and Morgan (2006). It consists in assessing a Principal Component Analysis (PCA)

on weighted asset returns’ covariance matrix, i.e. identifying possibly independent sources

of variation. In its original form PDI does not account for the actual portfolio weights,

here we incorporate weighted returns. One optimizes:

max
w∈RN

PDIP (w), s.t. w>1p = 1, wi ≥ 0 (6)
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PDIP (w)=2
N∑
i=1

iWi − 1, (7)

where Wi = λi∑N

i=1 λi
are the normalised covariance eigenvalues λi in decreasing order, i.e.

the relative strengths. Thus, an "ideally diversified" portfolio, i.e. in situations when

all assets are perfectly uncorrelated and Wi = 1/N for all i, then PDI = N . On the

contrary a PDI ≈ 1 indicates diversification is effectively impossible. Thus, in case of

perfectly uncorrelated assets the MD portfolio will be exactly the EW portfolio. The PDI

summarises the diversification of large number of securities using a single statistic, and

can compare the diversification across different portfolio or time periods.

2.2 Averaging of portfolio models

Along with individual allocation models we also consider combinations of models. Every

individual model experiences an estimation risk, to reduce such risk the idea of models’

combination or diversification got a high attention in different areas. Model-averaging

is used in forecasting, Avramov (2002). The traditional model averaging methods use

information criteria - like AIC or BIC - to identify shares of models. In case of allocation

models the likelihood is unknown, therefore to calculate models shares we use the loss l,

which is defined as follows:

l(w) = w>µ̂− γ

2w
>Σ̂w. (8)

Parameter γ reflects the investor’s risk aversion with γ being large (small) for a risk-

averse (risk-seeking) investor. We use two approaches to combine: Naïve averaging of

the portfolio weights as well as the combination method based on a bootstrap procedure,

described in Schanbacher (2014). However, to account for possible time series dependencies

at a daily frequency, we apply the stationary bootstrap algorithm Politis and Romano

(1994) with automatic block-length selection proposed by Politis and White (2004).

Consider a set of m asset allocation models. The corresponding portfolio weights are

given by W = (w1, . . . , wm). Shares of individual models are π = (π1, . . . , πm), such that
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π>1m = 1. The element i represents the share of the i-th model in the combination. Then

the combined portfolio weight is given by:

wcomb =
m∑
i=1

πiwi (9)

The Naïve combination over all asset allocation models just assigns equal shares, i.e.

πit = 1
m

for all i = 1, . . . ,m.

Alternative approach is to set share πit equal to the probability that model i outperforms

all other models. We apply a bootstrap method to estimate the probabilities. For

every period t we generate a random sample with replacement of k returns using returns

Xk(t−1)+1 . . . Xk(t−1)+1+K , i.e. K-long returns vectors of the t−1 rolling-window. We apply

all m asset allocation models to these bootstrapped returns. The procedure is repeated B

times. Let si,b = 1 if model i outperforms in terms of the loss function other models in the

b-th bootstrapped sample, otherwise si,b = 0. The probability of model i being best, is

estimated by

π̂it = 1
B

B∑
b=1

si,b (10)

where B = 100 is a number of independent bootstrap samples, si,b = 1 if model i is the

best model in the b-th sample.

3 LIBRO framework

In this section, we review the LIBRO framework for portfolio formation, introduced by

Trimborn et al. (2017) . LIBRO avoids low liquidity assets to take on a too high portfolio

weight by introducing weight constraints depending on liquidity.

Since liquidity does not have a unique definition, one has to decide which measure to

employ. Wyss (2004) surveys a variety of liquidity measures, from which the Trading

Volume (TV) was chosen as a proxy for liquidity for the CC market. Measures like bid-ask

spread would be applicable too but reliable order book data for all CCs are not available

since the market lacks a dominant or central exchange trading all assets. A huge advantage

of TV is, that this data are available for all markets. Thus we follow Trimborn et al. (2017)
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Model Reference Abbreviation
Equally weighted DeMiguel et al. (2009) EW
Risk-oriented strategies
Mean – Var – min var Merton (1980) MinVar
Mean – CVaR – Rockafellar and Uryasev (2000) MinCVaR
min risk
Equal Risk Contribution Maillard et al. (2010) ERC
(Risk-parity)
Maximum Diversification Rudin and Morgan (2006) MD
Return-oriented strategies
Risk – Return– max return Markowitz (1952) RR – Max ret
Risk-Return-oriented strategies
Mean – Var – max Sharpe Jagannathan and Ma (2003) MV – S
Combination of models
Naïve Combination Schanbacher (2015) Comb Naïve
Weight Combination Schanbacher (2014) Comb

Table 1: List of asset allocation models

and use TV as the liquidity measure.

TV is defined as:

TVij = pij · qij (11)

where pij is the closing price of asset i at date j, and qij is the volume traded at date j of

asset i. The liquidity of asset i in period t can be measured using the sample median of

trading volume:

TVi = 1
2(TVi,up + TVi,lo) (12)

where TVi,up = TVi,d l+1
2 e

and TVi,lo = TVi,b l+1
2 c

.

Define M as the total amount invested on all N assets, thus Mwi is the market value

held in asset i. Trimborn et al. (2017) formulate the constraint on the weight of asset i by:

Mwi ≤ TVi · fi, (13)

where fi controls the speed an investor intends to clear the current position on asset i. For

example, a fi = 0.5 means the position on asset i can not be larger than the 50% median
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trading volume. It results the boundary for the weight on asset i:

wi ≤
TVi · fi
M

= âi. (14)

The beauty of this approach lies in its ease to include it into any kind of portfolio

optimization method.

4 Evaluation of Portfolios’ Performance

4.1 Performance measures

In order to assess performance of investment strategies over time we consider five common

performance criteria widely used in literature as well as by practitioners. Performance

measures were computed based on the time series of daily out-of-sample returns generated

by each strategy. First, we measure the out-of-sample cumulative wealth of every strategy

i.

Wi,t+1 = Wt + ŵ>t Xt+1 (15)

The initial portfolio wealth is W0 = $1. Cumulative wealth, while naturally of high

interest to measure the performance that can be achieved over the period considered, is

not sufficient to rank our allocation approaches. That is why we compute two traditional

quantities to measure risk-adjusted returns: Sharpe ratio and Certainty-equivalent, as well

as Adjusted Sharpe ratio to address the necessity to evaluate MinCVaR strategy and issue

of non-Gaussian nature of returns’ distribution.

The Sharpe ratio of strategy i is defined as the sample mean of out-of-sample excess

returns (over the risk-free asset), divided by their sample standard deviation :

ŜRi = µ̂i

σ̂i
2 (16)

The Certainty Equivalent (CEQ) covers a large range of potential investors. For the

case γ = 1 it is also equivalent to the close form solution of Markowitz (1952) portfolio
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optimization problem defined in (1).

ĈEQi,γ = µ̂i −
γ

2 σ̂i
2 (17)

As can be noted CEQ is equivalent to the loss function l defined in (8). Both CEQ and

SR are more suitable for assessment of strategies with normally distributed returns. To

address this drawback, Pezier and White (2008) proposed Adjusted Sharpe Ratio (ASR).

ASR explicitly incorporates skewness and kurtosis:

ÂSRi = ŜRi

[
1 +

(S
6
)
ŜRi −

(K
24
)
ŜRi

2
]

(18)

where SR is the Sharpe Ratio, S - skewness and K - excess kurtosis. Thus, the ASR

accounts for the fact that investors prefer positive skewness and negative excess kurtosis,

as it contains a penalty factor for negative skewness and positive excess kurtosis.

To assess potential transaction costs associated with asset rebalancing we use the

turnover measure. We compute the average turnover between two consecutive rebalancing

dates with the following formula:

Turnoveri = 1
T −K

T−K∑
t=1

N∑
j=1
|ŵi,j,t+1 − ŵi,j,t+| (19)

where wi,j,t and wi,j,t+1 are weights assigned to the asset j for periods t and t + 1 and

wi,j,t+ is its weight right before rebalancing at t+ 1. Thus, we account for price change

over time and assume that one needs to execute trades in order to rebalance the portfolio

towards the wt target. Higher turnover leads investors to significant transaction costs,

consequently the lower the Turnover of the strategy, the better it performs.

4.2 Test for the difference of performance measures for two

allocation strategies

To test if strategies are significantly different from each other, we derive the p-values. The

common approach by Jobson and Korkie (1981) with corrections derived in Memmel (2003)
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is widely used in the performance evaluation literature (e.g. in DeMiguel et al. (2009)).

This test is not appropriate when returns have tails heavier than the normal distribution

or are of time series nature. Instead, in our empirical study as a testing procedure we

chose the Ledoit and Wolf (2008) test with the use of robust inference methods. We tested

difference for both CEQ and SR. We report results for its HAC (heteroskedasticity and

autocorrelation) inference version. The procedure is described in Appendix 8.1.

4.3 Measures of diversification effects

To measure allocation concentration and portfolio diversification effects we calculated

three measures: Portfolio Diversification Index (PDI) as in the equation (7), Effective N

and Diversification ratio. Effective N has been introduced by Strongin et al. (2000). For

every asset j = 1 . . . N :

NEff (wt) = 1∑N
j=1 w

2
j,t

(20)

NEff varies from 1 in the case of highest concentration, i.e. portfolio entirely invested in a

single asset, to N - its maximum for equally weighted portfolio. The design of effective N

is related to other traditional concentration measures, e.g., the Herfindahl Index is also

the sum of squared market shares to measure the amount of competition. Effective N

can be interpreted as the number of equally-weighted stocks that would provide the same

diversification benefits as the portfolio under consideration.

Choueifaty et al. (2011) suggested the diversification ratio, it measures the proportion

of the portfolio’s weighted average volatility to its overall volatility:

DR(wt) = w>t σt√
w>t Σtwt

= w>t σt
σP,t(wt) (21)

Thus, the diversification ratio has the form of Sharpe ratio (18), where the sum of weighted

asset volatilities replaces the expected excess return. In case of perfectly correlated assets

DR equals 1, contrary to the situation of "ideal diversification", i.e. perfectly uncorrelated

assets, DR =
√
N . Thus, in our empirical study we will report results on DR2 for two
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reasons. First to make it comparable to the other two used metrics and second, Choueifaty

and Coignard (2008) demonstrate that for a universe of N independent risk factors, the

portfolio that weighted each factor by its inverse volatility would have a DR2 equal to N.

Hence DR2 can be viewed as a measure of the effective degrees of freedom within a given

investment universe.

5 Data

5.1 Data Sample

Our empirical analysis uses daily returns on a sample of CCs and traditional assets over

the period January 2015 to December 2017 (781 daily log-returns). CC prices are taken

from the publicly available CRIX cryptocurrencies database (thecrix.de). We require CCs

to have continuous return time-series over the chosen testing time period. Thus, our final

data sample for portfolios construction includes 55 CCs.

To test the performance of each of the strategies considered in a meaningful context, our

research question studies the effects of including CCs as an addition to classical portfolio

management. Therefore, we start our investment universe with 16 traditional assets,

including 5 asset classes: equity, fixed-income, fiat currencies, commodities, and real

estate. Since CCs are global in nature, our traditional assets cover the 5 main geographic

and economic areas. In this way, the asset space is sufficiently broad and diversified to

measure the relevance of each approach over a test period, and at the same time is narrow

enough to not lead to a high-dimensionality issue for covariance estimation. The full list

of traditional constituents of the investment universe is provided in Table 2. Tables 8 and

7 in Appendix 8.2 report summary statistics of all portfolios’ constituents considered in

the empirical study.

The main characteristics of our data corresponds to the findings of the prior literature,

e.g., Elendner et al. (2017), Chuen et al. (2017): CCs outperform traditional asset classes

in terms of average daily realised return, have higher return volatility, means are mostly

positive while the medians are mostly negative, positive movements occur less frequently
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Name Asset class
EURO STOXX 50 Equity
S&P100 Equity
NIKKEI225 Equity
FTSE100 Equity
SSE (Shanghai Stock Exchange) index Equity
MSCI ACWI COMMODITY PRODUCERS Commodities
GOLD Commodities
FTSE EPRA/NAREIT DEV REITS Real Estate
EUR/USD Fiat currency
GBP/USD Fiat currency
CNY/USD Fiat currency
YEN/USD Fiat currency
Eurozone 10Y Gov Bonds Fixed income
UK 10Y Gov Bonds Fixed income
USA 10Y Treasuries Fixed income
Japan 10Y Gov Bonds Fixed income

Table 2: List of traditional constituents of the investment universe. Source: Bloomberg

than negative ones, but with higher absolute values (minimal and lower deciles’ absolute

values are less than maximal and higher deciles’ for the majority of CCs). Correlation

analysis of the top 5 CCs by market capitalisation with traditional asset classes shows a

high potential of CCs to improve diversification: all correlation coefficients do not exceed

0.1.

6 Empirical results
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Figure 1: Efficient frontiers surfaces:
CCPEfficient_surface

6.1 Portfolios’ performance analysis

In this section we discuss performance of portfolio allocation strategies in two dimensions:

first, we are interested in risk-adjusted performance and second, diversification benefits

generated by every method considered. In the beginning of our performance comparison we

examine effects of CCs on efficient frontiers. Figure 1 plots Mean-variance and Mean-CVaR

efficient frontiers of traditional assets’ portfolios with and without CCs, as well as with and

without liquidity constrains, built on daily basis. For both optimisation rules incorporation

of CCs leads to the noticeable moves of frontiers up as well as stretching in both dimensions,

i.e. under the same level of risk portfolios with CCs give the same level of returns as well

as much higher returns can be reached with CCs included. Second important observation

is Mean-Variance frontiers in most cases are shorter than Mean-CVaR frontiers (the same

level of returns has lower variance than CVaR) what could be viewed as an evidence of

underestimation of risk, measured by variance and predicted by theory. LIBRO-approach

shortens frontiers in the beginning of the investment period, eliminating influence of
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turbulent growing CCs with insignificant trading volume. At the same time it is visible

that, roughly starting from January 2017, there is almost no difference between frontiers

with (LIBRO) and without constraints, which can be explained by the growth of both

trading volumes and capitalisation of the entire market. To justify this visual effect we

conduct two mean-variance spanning tests on each of the 55 CCs: the corrected test

Huberman-Kandel (HK) ( Huberman and Kandel (1987)) and the step-down test by Kan

and Zhou (2012).

Table 9 in Appendix 8.3 lists only CCs with at least one test rejecting the spanning at

the 10% level. The corrected HK test rejects spanning for 16 CCs including coins with the

highest market capitalisation Bitcoin(BTC), Ripple (XRP), Dash (DASH) and Litecoin

(LTC). The step-down test provides the information on the source for spanning rejection:

F1 tests for spanning of tangency portfolios of whereas F2 tests for global minimum

portfolios’ spanning. From Table 9, F1 test rejects spanning for 27 CCs, pointing out that

tangency portfolios with CCs included are significantly different from benchmark tangency

portfolio and F2 rejects spanning only for two CCs. Thus, we can conclude that there is

an evidence that MV-S portfolio can be improved by 27 from 55 CCs, but there is much

weaker evidence that MinVar portfolio can be improved. This result can be supported by

the dynamics of portfolios’ composition presented in Figures 4 and 5 for unconstrained

and LIBRO portfolios respectively. It can be noticed, that MinVar portfolios in both cases

are entirely constructed from traditional assets, whereas MV-S portfolios have a CCs’

component through the whole investment period.

First we examine cumulative wealth, produced by different allocation strategies. Figures

2 and 3 display dynamics of cumulative wealth with and without liquidity constraints for all

nine strategies considered. As benchmarks we also plot S&P100, EW, MV-S and MinVar

portfolios built only from traditional investment constituents (Traditional Assets - "TrA").

Following conclusions can be drawn: in terms of Cumulative wealth portfolios with CCs

outperform or perform equally compared to all portfolios with conventional constituents,

the most promising results exhibit MD with accumulated wealth 515%, RR-max ret with

470% and COMB with 354% portfolios. EW portfolio also exhibits high performance and

19



reached 364 % of cumulative wealth. All risk-based portfolios, except MD, underperform

EW portfolio. These results are relevant for both LIBRO and unconstrained approaches.

LIBRO portfolios have slightly lower performance measured in accumulated wealth, yet

they account for a further risk source, low liquidity. Table 3 summarises all performance

indicators. The conducted t-test to compare difference between means of returns of all

strategies and EW portfolio did not justify the statistical significance for COMB and

RR-Max ret portfolios and confirmed it for the rest of models.
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Figure 2: Performance of portfolio strategies without liquidity constraints (l = 21). Daily
cumulative returns of portfolio strategies over the period from 2016-01-01 to
2017-12-31 with the following colour code: S&P100, EW, EW–TrA, RR-Max
ret–TrA and corresponding Allocation strategy from Table 1

CCPPerformance

Further we analyse risk-adjusted performance for all portfolios. MD demonstrates not

only the superior absolute but also the highest risk-adjusted performance. Thus, SR

for MD portfolio is 0.158, ASR – 0.158 and CEQ is 0.007. Results also demonstrate

that LIBRO approach improves risk-adjusted measures in most cases. This tendency
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Figure 3: Performance of portfolio strategies without liquidity constraints (l = 21). Daily
cumulative returns of portfolio strategies over the period from 2016-01-01 to
2017-12-31 with the following colour code: S&P100, EW, EW–TrA, RR-Max
ret–TrA and corresponding Allocation strategy from Table 1

CCPPerformance

remains consistent for constrained portfolios as well. Table 4 analyses the significance of

difference between CEQ and SR as it is described in section 4.2. Although MD, COMB

and COMB NAÏVE have SR and CEQ returns higher or comparable with EW, tests

do not support significance of this result. Whereas ERC portfolio has higher SR and

this difference is significant. The comparison of risk-adjusted metrics for MV-S, MinVar

and MinCVaR confirms the conclusions from the analysis of cumulative wealth: there

is no significant difference with traditional assets’ portfolios. As a robustness check we

also conduct analysis for weekly and daily rebalanced portfolios, results are provided in

Appendix 8.4, confirming the fairness of conclusions made. The last two columns of Table

3 compare results for portfolio Turnover. RR-Max ret has the lowest Turnovers 0.23 and

0.76 for unconstrained and LIBRO rules respectively. This outcome is not surprising,
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Allocation
Portfolio performance measures: monthly rebalancing

Strategy
CW SR ASR CEQ TURNOVER

No const 10 mln No const 10 mln No const 10 mln No const 10 mln No const 10 mln
Benchmark strategies

S&P100 1.261 1.261 0.080 0.080 0.079 0.079 0.000 0.000 0.000 0.000
EW TrA 1.069 1.069 0.048 0.048 0.047 0.047 0.004 0.004 4.824 4.824
MV-S TrA 1.052 1.052 0.068 0.068 0.068 0.068 0.000 0.000 1.359 1.359
EW 3.644 3.644 0.132 0.132 0.132 0.132 0.004 0.004 1.102 1.102
Risk-oriented strategies

MinVar 1.001 1.001 0.065 0.071 0.065 0.072 0.001 0.002 3.924 3.710
(3.03)*** (3.03)***

MinCVaR 1.024 1.020 0.048 0.040 0.048 0.040 0.000 0.000 5.987 4.490
(3.02)*** (3.02)***

ERC 1.558 1.373 0.158 0.145 0.157 0.145 0.001 0.001 1.167 1.245
(2.85)*** (2.94)***

MD 5.147 4.964 0.158 0.177 0.158 0.179 0.007 0.007 4.408 5.748
(–1.85)* (–1.71)*

Return-oriented strategies
RR-Max ret 4.703 4.455 0.003 0.003 0.003 0.003 0.000 0.000 0.229 0.761

(–0.49) (–0.45)
Risk-Return-oriented strategies

MV-S 1.214 1.211 0.119 0.125 0.120 0.125 0.000 0.000 3.211 2.395
(2.96)*** (2.96)***

Combination of models
COMB NAÏVE 2.613 2.524 0.126 0.134 0.127 0.135 0.003 0.003 2.281 1.202

(1.98)** (2.05)**
COMB 3.542 3.254 0.126 0.117 0.125 0.117 0.004 0.004 0.881 1.201

(0.16) (0.62)

Table 3: Performance measures for monthly rebalancing frequency (l = 21): the superior
results are highlighted in red. t-statistics of the difference between returns series
of each strategy from EW portfolio are shown in parentheses. * - 0.1 , ** - 0.05
and *** - 0.01 levels of significance.

taking into account that RR-Max ret portfolio is the most concentrated one and consists

from the one asset with the highest return, see Figures 4 and 5. Both minimum risk

portfolios as well as MD have higher turnovers what prompts higher transactional trading

costs. Other important findings from analysis of portfolios’ compositions of allocation are

following: LIBRO approach as it was expected affects significantly the portfolio weights,

the most visible effect is for models with high share of CCs, namely MD and RR-Max ret,

as well as in MV-S and ERC where the share of CCs decreased for the first half of the

investment period. The weights distribution of COMB portfolios is not robust and changes

over the investment period dramatically: from high concentration of traditional assets to

high concentration of CCs, confirming the idea that no individual model outperforms its

competitors permanently.

22



Allocation strategy 1 2 3 4 5 6 7 8 9 10 11
1 S&P100
2 EW-TrA
3 EW
4 RR Max Ret
5 MV - S
6 MinVar
7 ERC
8 MinCVaR
9 MD
10 COMB NAÏVE
11 COMB

Table 4: p-value of the difference between the SR (lower triangle) and CEQ (upper triangle)
of all strategies with each other with significance codes 0.01, 0.05 and 0.1
(without liquidity constraints)

CCPTests

To shed light on the source of behaviour of portfolios’ design we also compare the risk

structures for all strategies, see Figures 7 and 8. Volatility structure of CCs leads to the

disproportionate risk contribution relative to their capital weights: traditional assets have

visibly less share in risk architecture.

6.2 Diversification analysis

In this section we investigate the diversification characteristics of allocation rules. Table 5

reports results on three chosen diversification metrics. The RR-Max ret as it was expected

does not produce any diversification benefits, as it mainly consists of only one asset.

Different range of values for various diversification metrics in Table 5 emphasises the

fact that diversification has many aspects and its quantification depends significantly on

the specified definition, consequently different measures do not always provide consistent

conclusions about diversification effects of portfolios. Thus, MinCVaR characterised by

best diversification benefits measured by DR2 – 15.22 (14.90)7, and diversification in this

case defined as the lowest possible correlation across assets. Relatively similar outcomes

have MinVar and ERC portfolios 13.65 (13.51) and 11.42 (12.36) respectively. MD portfolio

7Here and further on in parentheses we will give values of performance metric for LIBRO portfolios
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Figure 4: Change in the composition of the portfolios allocation over the period without
liquidity constraints over the period from 2016-01-01 to 2017-12-31: the black
line separates conventional assets - TrA (upper yellow part of the spectrum)
from cryptocurrencies - CCs (lower green-blue part of the spectrum)

CCPWeights

is a special case in this type of diversification with values 2.99 (2.41), at the same time PDI

25.93 (25.90) of MD portfolio is the highest based on its objective function, emphasising

outstanding diversification capabilities defined as the number of independent sources of

variation in the portfolio.

The ERC portfolio is characterised by the highest Effective N 17.63, what is also a

typical result (see e.g. Clarke et al. (2013)) due to ERC nature: it has all assets in solution

by definition. The lowest Effective N 3.37 has MV-S portfolio from traditional assets,

showing 3.37 equally-weighted stocks would provide the same diversification benefits . All

other individual strategies also have Effective N ranged from 3 to 4. One more remarkable
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Figure 5: Change in the composition of the portfolios’ allocation over the period from 2016-
01-01 to 2017-12-31 with 10 mln US$ invested (LIBRO approach): the black line
separates conventional assets - TrA (upper yellow part of the spectrum) from
cryptocurrencies - CCs (lower green-blue part of the spectrum)

CCPWeights

result concerns combined portfolios concentration: COMB portfolio Effective N equal 8.58

for unconstrained case and 14.84 for LIBRO portfolio, COMB Naïve is over 12 for both

cases. For two other metrics combined portfolios demonstrate performance, measured by

DR2 similar with MD – 3.95(4.58) for COMB Naïve and 4.09(4.26) for COMB; measured

by PDI - similar to other risk-based portfolios: MinVar, MinCVaR and ERC.

Also we would like to highlight the difference of diversification effects for MV-S portfolios

with and without CCs: diversification measured by DR2 increased with incorporation of

CCs from 5.7 to 9.05 (9.36), but PDI scales up more greatly, from 5.19 to 25.41 (25.45). So

we can conclude that incorporation of CCs improves portfolios’ diversification capabilities,
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especially determined as the distribution of principal portfolio variances. As it can be

noticed from results liquidity constraints do not have a strong effect on diversification

features of portfolios, all metrics change just slightly.

Allocation
Portfolio diversification effects: monthly rebalancing

Strategy
DR2 Effective N PDI

No const 10 mln No const 10 mln No const 10 mln

Benchmark strategies
MV - S TrA 5.70 5.70 3.37 3.37 5.19 5.19
Return oriented strategies

RR - Max ret 1.00 1.00 1.00 1.90 1.00 1.00
Risk-oriented strategies

MinVar 13.65 13.51 3.48 3.47 25.40 25.40
MinCVaR 15.22 14.90 4.07 4.07 25.40 25.40
ERC 11.42 12.36 17.63 14.97 25.42 25.42
MD 2.99 2.41 4.08 3.01 25.93 25.90
Risk-Return-oriented strategies

MV -S 9.05 9.36 3.70 3.76 25.41 25.41
Combination of models

COMB NAÏVE 3.95 4.58 12.55 12.72 25.46 25.45
COMB 4.09 4.26 8.58 14.84 24.80 25.36
* All diversification measures are calculated based on in-sample data and averaged over the period 20150101-
20171130

Table 5: Measures of diversification for monthly rebalancing (l = 21). The superior results
are highlighted in red.

7 Conclusion

This study investigates cryptocurrencies as new assets available to portfolio management.

We analyze the performance of commonly used statistical asset-allocation models with a

unique dataset on historical prices and trading volumes of 55 cryptocurrencies, combined

with 16 traditional assets. The rules-based investment methods cover a broad spectrum of

investors’ objectives, from the classical Markowitz model to recent strategies, aiming to

maximize portfolio diversification. Along with individual portfolio allocation strategies,

in the spirit of model averaging, we also include combined strategies. The performance

of portfolios is evaluated with different measures: raw investment gains in the form of
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cumulative raw return, risk-adjusted performance and diversification effects produced by

portfolios.

We find that due to the volatility structure of cryptocurrencies, the application of

traditional risk-based portfolios, such as equal-risk contribution, minimum-variance and

minimum-CVaR portfolios, does not boost the performance of investments significantly. In

contrast, approaches such as the maximum-return strategy (or strategies with high target

returns) but also the maximum-diversification portfolio (with PDI) prompt higher expected

returns via higher cryptocurrency exposure for investors. As for diversification benefits,

we demonstrate an enhanced diversification in comparison with only conventional assets’

portfolios. We document that various rules have different effect on portfolio diversification

and result highly depends on the concept of diversification and consequently chosen

measure of its quantification.

Furthermore, following the idea of model averaging and diversification across models

we show that both naive and bootstrap-based combined portfolios exhibit robust high

risk-adjusted returns. Portfolios with model-averaged weights achieve significantly higher

performance than purely risk-oriented strategies and not significantly lower than the best

performing strategies.

As robustness checks we apply the allocation rules with different rebalancing frequencies

as well as with and without constraints addressing the liquidity risk of cryptocurrencies,

namely the LIBRO strategy proposed by Trimborn et al. (2017). The results remain

coherent across all frameworks. Further extensions can be made along three main lines:

first, more involved estimators of expected returns and the covariance matrix could be

employed; second, more performance measures could be used to evaluate the investment

strategies’ results; and third, additional portfolio-allocation strategies could be included in

the comparison. In particular, factor-based APT (arbitrage price theory) models would

constitute the complementary approach to statistical-optimisation techniques studied in

this paper.
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8 Appendix

8.1 Test for the difference of the SR and CEQ

Ledoit and Wolf (2008)

Let ν = (µi, µj, σi, σj) -vector of moments of strategies i and j

• Difference of CEQ and SR

fCEQ(ν) = µi −
γ

2σ
2
i − µj + γ

2σ
2
j (22)

fSR(ν) = µi
σi
− µj
σj

(23)

• Delta method: if
√
T −M(ν̂ − ν) d−→ N(0,Ψ), then

√
T −M(f̂ − f) d−→ N(0,∇′f(ν)Ψ∇f(ν)), (24)

where ∇f is a derivative of f .

• Standard Error for f̂ :

SE(f̂) =
√
∇′f(ν)Ψ∇f(ν)

T −M
(25)

• Solutions for consistent estimator for Ψ̂: HAR and Bootstrap inference

• HAR inference

ΨT−M = T −M
T −M − 4

T−M−1∑
j=−T+M+1

Ker

(
j

ST−M

)
Γ̂T−M(j) (26)

where Ker(·) is a kernel, ST−M - bandwidth

• A two-sided p-value for H0: f = 0

p̂ = 2Φ |f̂ |
SE(f̂)

(27)
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8.2 Descriptive statistics of portfolio components

BTC XRP LTC DASH XMR
SSE –0.03 –0.07 –0.03 0.02 0.06
NIKKEI225 –0.05 0.03 –0.04 0.01 0.01
FTSE100 0.02 0.03 0.02 0.07 0.08
SP100 0.00 0.03 0.00 0.10 0.03
SX5E 0.03 –0.01 0.01 0.06 0.06
MSCI CP 0.03 0.04 0.02 0.08 0.05
REIT 0.00 –0.01 0.00 0.00 0.04
EUR –0.05 0.03 –0.03 0.04 –0.08
JPY 0.00 –0.02 0.01 0.07 0.07
CNY 0.00 –0.05 0.02 0.01 –0.03
GBP –0.02 0.02 –0.05 0.00 –0.02
GOLD 0.01 0.02 0.00 0.00 –0.03
UK10Y 0.04 0.05 0.04 –0.09 0.04
JP10Y 0.01 0.04 0.02 –0.05 –0.03
US10Y 0.03 0.06 0.02 –0.05 –0.01
EU10Y 0.03 0.07 0.04 –0.10 0.05

Table 6: Correlations between CCs and conventional financial assets

Asset name Max P90 Med Mean P10 Min SD
SSE 5.60 1.69 0.06 0.00 -1.36 -8.87 1.64
NIKKEI 225 7.43 1.36 0.01 0.03 -1.31 -8.25 1.28
FTSE 100 3.51 1.02 0.02 0.02 -1.01 -4.78 0.92
SP 100 - PRICE INDEX 4.19 0.95 0.00 0.03 -0.80 -4.01 0.77
SX5E 4.60 1.37 0.01 0.01 -1.29 -9.01 1.20
MSCI CP 4.66 1.27 0.00 0.01 -1.20 -5.87 1.05
REIT 3.34 1.06 0.03 0.00 -1.13 -6.71 0.93
EUR 3.02 0.69 0.00 -0.00 -0.70 -2.38 0.59
JPY 2.22 0.66 0.00 -0.01 -0.68 -3.78 0.62
CNY 1.83 0.19 0.00 0.01 -0.18 -1.20 0.20
GBP 3.00 0.71 -0.02 -0.02 -0.70 -8.40 0.67
GOLD 4.56 0.98 0.01 0.01 -0.93 -3.43 0.83
UK10Y 1.99 0.37 0.00 0.00 -0.39 -1.10 0.32
JP10Y 0.74 0.12 0.00 -0.00 -0.12 -0.54 0.12
US10Y 1.28 0.36 0.00 -0.00 -0.36 -1.11 0.30
EU10Y 0.85 0.27 0.00 -0.00 -0.26 -1.42 0.24

Table 7: Summary statistics for returns of traditional assets (in %)
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Figure 6: Density of Top-10 CCs against normal distribution (time span is 2015-01-01 to
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CC Max P90 Med Mean P10 Min SD
ABY 33.78 15.23 –0.20 0.53 –13.66 –23.83 11.72
AUR 21.62 11.02 0.13 0.46 –9.72 –17.81 8.14
BCN 24.77 12.49 0.21 0.43 –10.71 –21.09 9.42
BLK 19.01 8.69 –0.17 0.28 –8.26 –16.28 7.11
BTC 9.27 5.12 0.39 0.49 –3.65 –9.06 3.57
BTCD 22.33 11.46 0.37 0.64 –9.47 –18.34 8.22
BTM 60.20 22.15 –0.04 0.73 –19.97 –43.88 18.63
BTS 21.87 9.90 –0.13 0.42 –7.48 –16.93 7.41
BURST 23.71 12.45 0.29 0.44 –10.45 –21.68 9.35
BYC 28.99 13.11 –0.05 0.29 –11.86 –23.29 10.67
CANN 28.25 12.25 0.00 0.43 –11.01 –22.99 10.12
CURE 32.11 13.32 0.00 0.42 –11.30 –23.89 10.79
DASH 17.58 7.90 0.00 0.80 –5.67 –12.29 5.95
DGB 32.28 11.74 –0.56 0.67 –9.51 –20.52 9.85
DGC 28.94 12.14 –0.20 0.20 –10.99 –24.62 10.39
DMD 20.16 10.88 0.09 0.50 –9.06 –20.38 8.15
DOGE 15.43 7.20 –0.12 0.31 –4.63 –12.58 5.32
EAC 41.30 13.87 –0.27 –0.21 –13.61 –42.72 14.22
EMC2 29.14 14.10 –0.13 0.53 –12.03 –23.80 10.76
FTC 32.69 12.89 –0.61 0.20 –11.15 –24.71 10.89
GRS 45.36 18.65 –0.27 0.87 –15.79 –28.97 14.58
HUC 32.26 16.77 –0.27 0.55 –15.21 –25.12 12.68
IOC 27.87 15.70 0.47 0.94 –12.61 –24.92 11.22
LTC 17.41 6.69 0.15 0.53 –5.28 –11.47 5.33
MAX 62.91 17.42 –0.16 0.28 –18.87 –50.89 19.16
NAV 35.63 14.88 –0.08 0.68 –12.99 –26.06 11.86
NEOS 36.55 15.20 –0.14 0.46 –13.54 –26.56 12.34
NLG 21.72 11.44 0.01 0.56 –9.41 –16.17 7.89
NMC 19.13 7.85 –0.22 0.19 –6.60 –14.09 6.34
NOTE 26.25 11.35 –0.17 0.01 –11.19 –21.40 9.60
NVC 21.69 6.62 –0.25 0.16 –7.38 –13.51 6.57
NXT 24.15 9.38 –0.43 0.32 –7.83 –15.68 7.51
POT 25.89 11.68 0.24 0.56 –10.55 –20.63 9.23
PPC 17.40 7.15 –0.14 0.23 –6.37 –14.24 6.14
QRK 40.29 12.02 –0.22 0.20 –12.20 –31.78 12.75
RBY 21.26 11.74 0.62 0.77 –9.94 –20.01 8.61
RDD 39.91 18.47 0.33 0.63 –17.28 –30.68 14.57
SLR 26.67 12.94 0.18 0.56 –12.13 –22.71 10.22
SPR 36.57 18.52 0.00 0.28 –17.22 –32.18 14.53
START 29.32 14.44 –0.64 0.20 –11.89 –21.96 10.61
SYS 30.83 13.17 –0.11 0.97 –9.74 –19.56 10.07
UNO 19.81 11.38 0.26 0.39 –9.48 –23.53 8.75
VIA 33.43 14.26 0.01 0.64 –12.86 –22.12 11.31
VRC 35.03 15.13 –0.17 0.59 –12.93 –28.39 12.16
VTC 32.14 13.26 –0.21 0.56 –11.41 –23.14 10.84
WDC 28.44 12.01 –0.53 0.17 –11.56 –23.09 10.11
XCN 48.36 18.58 –0.84 0.02 –19.74 –37.13 16.65
XCP 22.92 11.71 –0.37 0.18 –10.57 –19.65 9.11
XDN 27.28 13.07 –0.08 0.29 –11.24 –23.15 10.23
XMG 25.01 12.37 0.02 0.44 –10.58 –19.05 9.20
XMR 17.80 9.64 0.19 0.66 –7.17 –14.71 6.87
XPM 23.29 9.85 –0.17 0.21 –8.67 –19.59 8.51
XRP 18.09 6.81 –0.37 0.25 –5.39 –12.01 5.62
XST 36.42 16.23 –0.14 0.49 –14.61 –29.09 13.13
ZET 27.10 14.59 –0.31 0.04 –13.88 –25.11 11.38

Table 8: Summary statistics for returns of CCs (in %)
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Figure 7: Change of risk contributions for portfolio strategies without liquidity constraints
over the period from 2016-01-01 to 2017-12-31: the black line separates conven-
tional assets - TrA (upper yellow part of the spectrum) from cryptocurrencies -
CCs (lower green-blue part of the spectrum)

CCPRisk_contribution
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Figure 8: Change of risk contributions for portfolio strategies over the period from 2016-
01-01 to 2017-12-31 with 10 mln US$ invested (LIBRO approach): the black line
separates conventional assets - TrA (upper yellow part of the spectrum) from
cryptocurrencies - CCs (lower green-blue part of the spectrum)

CCPRisk_contribution

38

https://github.com/QuantLet/CCP/tree/master/CCPRisk_contribution


8.3 Results of spanning tests of cryptocurrencies inclusion into the

investment universe

Cryptocurrency F-Test F-Test1 F-Test2 Cryptocurrency F-Test F-Test1 F-Test2
aur 1.66 2.96 0.36 nav 1.69 2.88 0.49

(0.19) (0.09) (0.55) (0.19) (0.09) (0.48)
btc 4.97 9.41 0.52 neos 2.54 4.87 0.20

(0.01) (0.00) (0.47) (0.08) (0.03) (0.66)
btcd 3.77 4.74 2.75 nxt 2.43 4.70 0.16

(0.02) (0.03) (0.10) (0.09) (0.03) (0.69)
btm 2.04 3.21 0.87 pot 1.96 3.37 0.55

(0.13) (0.07) (0.35) (0.14) (0.07) (0.46)
bts 5.44 9.75 1.10 ppc 2.00 2.86 1.13

(0.00) (0.00) (0.30) (0.14) (0.09) (0.29)
burst 1.95 3.86 0.04 spr 3.18 2.16 4.19

(0.14) (0.05) (0.84) (0.04) (0.14) (0.04)
cann 3.18 3.80 2.54 sys 3.23 6.45 0.02

(0.04) (0.05) (0.11) (0.04) (0.01) (0.90)
dash 5.92 11.12 0.70 uno 1.50 2.86 0.14

(0.00) (0.00) (0.40) (0.23) (0.09) (0.71)
dgb 1.87 3.71 0.04 via 3.04 5.33 0.75

(0.16) (0.06) (0.85) (0.05) (0.02) (0.39)
dmd 1.80 3.59 0.00 vtc 4.81 9.06 0.54

(0.17) (0.06) (0.95) (0.01) (0.00) (0.46)
doge 1.76 3.28 0.23 xmg 1.92 3.70 0.15

(0.17) (0.07) (0.63) (0.15) (0.06) (0.70)
emc2 3.84 7.48 0.20 xmr 1.53 3.04 0.03

(0.02) (0.01) (0.66) (0.22) (0.08) (0.85)
ftc 2.35 3.03 1.66 xrp 3.50 6.45 0.54

(0.10) (0.08) (0.20) (0.03) (0.01) (0.46)
ltc 3.48 6.66 0.29 xst 3.07 3.54 2.58

(0.03) (0.01) (0.59) (0.05) (0.06) (0.11)

Table 9: Spanning Test for Cryptocurrencies Effect on Portfolios Constructed from Tradi-
tional Investment (p-value is given in brackets)
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8.4 Results for daily and weekly rebalanced portfolios

Allocation
Portfolio performance measures: weekly rebalancing

Strategy
CW SR ASR CEQ TURNOVER

No const 10 mln No const 10 mln No const 10 mln No const 10 mln No const 10 mln
Benchmark strategies

S&P100 1.261 1.261 0.080 0.080 0.079 0.079 0.000 0.000 0.000 0.000
EW TrA 1.069 1.069 0.048 0.048 0.047 0.047 0.004 0.004 16.892 16.892
MV-S TrA 1.064 1.064 0.082 0.082 0.082 0.082 0.000 0.000 6.889 6.889
EW 3.644 3.644 0.132 0.132 0.132 0.132 0.004 0.004 5.375 5.375
Risk-oriented strategies

MinVar 1.010 1.010 0.024 0.069 0.024 0.070 −0.001 0.002 15.841 16.510
MinCVAR 1.031 1.028 0.062 0.057 0.062 0.057 0.000 0.000 11.338 7.010
ERC 1.557 1.379 0.160 0.148 0.160 0.147 0.001 0.001 6.091 11.034
MD 4.785 4.743 0.147 0.167 0.147 0.168 0.006 0.006 21.831 52.368
Return-oriented strategies

RR-max ret 2.011 3.331 0.025 0.025 0.025 0.025 0.000 0.000 1.081 2.930
Risk-Return-oriented strategies

MV- S 1.282 1.267 0.162 0.162 0.162 0.162 0.001 0.001 21.121 39.072

Table 10: Performance measures for weekly rebalancing frequency (k = 5). The superior
results are highlighted in red.

Allocation
Portfolio diversification effects: weekly rebalancing

Strategy
DR2 Effective N PDI

No const 10 mln No const 10 mln No const 10 mln

Benchmark strategies
MV - S TrA 5.63 5.63 3.38 3.38 5.15 5.15
Risk-oriented strategies

RR - Max ret 1.00 1.00 1.84 2.74 1.00 1.00
Return-oriented strategies

MinVar 13.70 13.62 3.47 3.47 25.29 25.29
MinCVaR 15.60 15.44 4.19 4.19 25.29 25.29
ERC 11.33 12.29 17.51 15.06 25.31 25.31
MD 2.91 2.44 3.98 3.05 25.79 25.82
Risk-Return-oriented strategies

MV -S 9.28 9.56 3.70 3.69 25.30 25.30
* All performance measures are averages over the test out-of-sample period 20160101-20171231

Table 11: Measures of diversification for weekly rebalancing (k = 5). The superior results
are highlighted in red.
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Allocation
Portfolio performance measures: daily rebalancing

Strategy
CW SR ASR CEQ TURNOVER

No const 10 mln No const 10 mln No const 10 mln No const 10 mln No const 10 mln
Benchmark strategies

S&P100 1.070 1.261 0.080 0.080 0.079 0.079 0.000 0.000 0.000 0.000
EW Trad Assets 1.069 1.069 0.048 0.048 0.047 0.047 0.004 0.004 10.543 10.543
MV-S Trad assets 1.060 1.060 0.077 0.077 0.077 0.077 0.000 0.000 NA NA
EW 3.644 3.644 0.132 0.132 0.132 0.132 0.004 0.004 13.781 13.781
Risk-oriented strategies

MinVar 1.002 1.001 −0.016 0.039 −0.016 0.039 −0.008 0.000 24.544 12.537
MinCVAR 1.007 1.012 0.013 0.025 0.013 0.025 0.000 0.000 17.805 15.623
MD 4.185 4.578 0.125 0.161 0.125 0.163 0.005 0.006 53.686 53.687
ERC 1.546 1.369 0.158 0.146 0.158 0.146 0.001 0.001 15.221 12.096
Return-oriented strategies

RR-max ret 0.069 2.408 0.005 0.002 0.005 0.002 0.000 0.000 0.244 9.943
Risk-Return-oriented strategies

MV- S 1.235 1.231 0.134 0.139 0.134 0.139 0.000 0.000 17.484 44.729

Table 12: Performance measures for daily rebalancing frequency (k = 1). The superior
results are highlighted in red.

Benchmark
Portfolio diversification effects: daily rebalancing

Strategy
DR2 Effective N PDI

No const 10 mln No const 10 mln No const 10 mln

Benchmark strategies

MV - S Trad Assets 5.64 5.64 3.40 3.40 5.15 5.15

Risk-oriented strategies

RR - Max ret 1.00 1.00 1.83 2.74 18.32 24.39

Return-oriented strategies

MinVar 13.80 13.72 3.47 3.47 25.26 25.26

ERC 11.32 12.30 17.48 15.03 25.29 25.28

MinCVaR 15.55 15.39 1.77 2.84 17.63 24.06

MD 2.91 2.43 3.99 3.04 25.77 25.79

Risk-Return-oriented strategies

MV -S 9.29 9.57 3.74 3.75 25.28 25.28
* All performance measures are averages over the test out-of-sample period 20160101-20171231

Table 13: Measures of diversification for daily rebalancing (k = 1). The superior results
are highlighted in red.
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