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Abstract

An extensive empirical literature documents a generally negative relation, named the “lever-

age effect,” between asset returns and changes of volatility. It is more challenging to establish

such a return-volatility relationship for jumps in high-frequency data. We propose new non-

parametric methods to assess and test for a discontinuous leverage effect — i.e. a covariation

between contemporaneous jumps in prices and volatility. The methods are robust to market

microstructure noise and build on a newly developed price-jump localization and estimation

procedure. Our empirical investigation of six years of transaction data from 320 NASDAQ

firms displays no unconditional negative covariation between price and volatility cojumps.

We show, however, that there is a strong and significant discontinuous leverage effect if

one conditions on the sign of price jumps and whether the price jumps are market-wide or

idiosyncratic.

Keywords: High-frequency data, market microstructure, news impact, market-wide
jumps, price jump, volatility jump

JEL classification: C13, C58

1. Introduction

Understanding the relation between asset returns and volatility is among the most en-

during and highly active research topics in finance. From an economic point of view, there

seems to be a consensus that stock market returns and changes in volatility should be nega-

tively related.1 The linear, inverse return-volatility relationship is usually attributed to both

changes in financial leverage and a time-varying risk premium; see Black (1976), French et

∗Corresponding author: bibinger@mathematik.uni-marburg.de, Hans-Meerwein-Str. 6, 35032 Marburg,
tel.: 004964212825464, fax: 004964212825469
†The views expressed are those of the individual authors and do not necessarily reflect official positions of
the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors.

1Some papers define the leverage effect as the relation between returns and the level of volatility. Duffee
(1995) discusses the relation between the two definitions.
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al. (1987), Duffee (1995), Bekaert and Wu (2000) and Bollerslev et al. (2006). The financial

leverage explanation motivates labeling statistical dependence between stock returns and

volatility as the “leverage effect.” Following Wang and Mykland (2014) and Aït-Sahalia et

al. (2017), this paper measures the leverage effect with a covariation statistic.2

Estimation of the leverage effect is challenging. Aït-Sahalia et al. (2013) document that

the leverage effect fades out when using data sampled at increasing observation frequencies.

Specifically, in the framework of the Heston model, they show that discretization errors,

volatility estimates and market microstructure noise bias the naïve return-volatility correla-

tion estimator towards zero. Recent research has tried hard to establish the leverage effect

for intraday data.

If the asset price and volatility processes have both Brownian and jump components, then

the relation between returns and volatility splits into continuous and discontinuous parts.

Continuous leverage refers to the covariation between the Brownian components of the price

and volatility processes. Vetter (2012), Wang and Mykland (2014), Aït-Sahalia et al. (2017)

and Kalnina and Xiu (2017) study measures of continuous leverage. These papers document

a negative and usually time-varying continuous leverage effect. The discontinuous leverage

effect (DLE) measures the covariation between sizes of contemporaneous price and volatility

jumps. Bandi and Renò (2016) highlight the importance of both leverage components for

asset pricing and risk management. They show how the intensity of price-volatility cojumps,

as well as their signs and magnitudes, affect the return and variance risk premia.

The existence of the DLE appears controversial, however. Several previous studies

reached different conclusions regarding a DLE. Jacod et al. (2017) use truncated returns

and increments of local spot-volatility estimates to construct correlation statistics for one-

minute S&P 500 Exchange-Traded Funds (ETF) data from 2005 to 2011. These correlation

statistics indicate little evidence of a DLE. In contrast, Bandi and Renò (2016) focus on

a relatively small set of very large price jumps and a spot variance estimator based on

infinitesimal cross-moments for high-frequency S&P 500 futures from 1982 to 2009. Their

parametric estimates suggest a significant DLE with correlations from -0.6 to -1. Aït-Sahalia

et al. (2017) find that the DLE for five-second Dow Jones index data from 2003 to 2013 is

usually different from zero. Their empirical analysis does not recover the sign and mag-

nitude of the discontinuous leverage, however. Finally, Todorov and Tauchen (2011) use

2We also provide methodological and empirical evidence for a correlation statistic in Sections 3.4 and 5.2,
respectively.
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five-minute, option-implied volatility index (VIX) data to evaluate volatility jumps in the

S&P 500 index from 2003 to 2008. The authors find that squared jumps in the S&P 500

index are strongly positively correlated with jumps in the VIX. All these papers focus on

stock market indexes, not individual stocks, and only use methods that are not robust to

market microstructure noise.

Our paper makes both methodological and empirical contributions. We introduce novel

methods to estimate the covariation of contemporaneous price and volatility jumps–denoted

by Aït-Sahalia et al. (2017) as the DLE. A direct extension of our covariation estimator

consistently estimates the corresponding correlation. Aït-Sahalia et al. (2017) derive a limit

theorem for the DLE estimator that only applies to a setting without market microstructure

noise. Christensen et al. (2014) point out, however, that it is important to use noise-robust

methods and thereby to avoid downsampling the data to lower observation frequencies.

Downsampling may result in spurious jump detection and affect the accuracy of discontinu-

ous leverage estimates. Using noise-robust estimators for jumps in log prices and volatility,

we establish a stable central limit theorem under market microstructure noise for the DLE

for finite activity price jumps or large jumps of an infinite activity jump component. We

provide a consistent, asymptotic test for the presence of the DLE.

We estimate the covariation using only the physical measure, i.e., observed stock prices.

DLE estimation requires three steps: price-jump localization, price-jump estimation and

estimation of changes in the spot-volatility process at price-jump times. In the presence of

microstructure noise, none of the three steps is standard. We use spectral methods for the

estimation. Reiß (2011) introduces spectral estimation of the quadratic variation from noisy

observations. Bibinger et al. (2014) and Altmeyer and Bibinger (2015) establish the asymp-

totic efficiency of spectral estimators of the integrated volatility matrix in the multivariate

case with noisy and non-synchronous observations. Bibinger et al. (2017) propose a related

spot-volatility estimator. Although spectral and the popular pre-average estimators have

some similarities, they belong to different classes of estimators; see Remark 1 of Bibinger

and Winkelmann (2018). Our theoretical contribution is to provide methods to detect and

estimate price jumps and to combine the three steps to infer the DLE.

To detect price-jump times, we refine the adaptive thresholding approach of Bibinger

and Winkelmann (2015). We construct an argmax-estimator, as is often used in change-

point analysis. This refinement of the jump localization is motivated by the fact that

estimation of price jumps becomes more difficult in cases where the jump times are not
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precisely determined, see Vetter (2014) for a related problem. To estimate the price-jump size

at a detected jump time, we first review the pre-average method of Lee and Mykland (2012),

which extends the Lee and Mykland (2008) approach to a model with market microstructure

noise. While Lee and Mykland (2012) mainly focus on a global test for jumps, we focus on

local jump estimates. We generalize their stable central limit theorem from a jump diffusion

to more general semimartingale models. Estimating the entire quadratic variation with

jumps or testing for jumps over a whole day are related yet different problems. Jacod et al.

(2010) and Koike (2017) have developed rate-optimal consistent pre-average estimators for

the quadratic variation and Bibinger and Winkelmann (2015) provide spectral estimators

for this purpose. These methods neither locate nor estimate the size of individual price

jumps. The Lee and Mykland (2012) method utilizes natural local average statistics to

address inference on price jumps under noise. Their pre-average method attains the optimal

rate of convergence for local price-jump estimation. As one ingredient of the price-jump

localization, we exploit the simple structure of these pre-average statistics that permits an

asymptotic theory based on Gaussian approximations. Using spectral local statistics for

price-jump estimation, we derive a superior estimator with a smaller variance than the

pre-average estimator. The asymptotic variance of the spectral estimator attains the lower

bound. Thus, we provide the first feasible, asymptotically efficient estimator of price jumps

from noisy observations. To estimate changes in the spot volatility at a price-jump time,

we employ the jump-robust techniques of Bibinger and Winkelmann (2018). Finally, we

plug the price-jump and volatility-jump estimates into the DLE statistic of Aït-Sahalia et

al. (2017).

Our methods provide new empirical evidence about the DLE for 320 individual stocks,

which were actively traded at the NASDAQ stock exchange from 2010 to 2015. We find no

prevalent evidence of an unconditional DLE in individual stock data, but we identify two

forces that prevent significant unconditional discontinuous leverage estimates: First, while

downward price jumps usually covary negatively with contemporaneous volatility jumps,

upward price jumps covary positively with contemporaneous volatility jumps. Second, mar-

ket jumps, i.e. price jumps that coincide with jumps of a market portfolio, display a larger

DLE. In contrast, idiosyncratic price jumps, which occur without a contemporaneous jump

of the market portfolio, are associated with a smaller and less significant DLE. We establish

an economically and statistically significant covariation between cojumps in stock prices and

volatility by conditioning on the sign of price jumps and whether those jumps are systematic
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or idiosyncratic.

Our failure to find an unconditionally negative DLE is consistent with the asset pricing

models of Pástor and Veronesi (2012, 2013) in which specific events trigger jumps. That

is, the continuous leverage effect and the DLE are fundamentally different in that model.

Their learning model implies that changes in monetary or government policy trigger market-

wide price and volatility cojumps, where the uncertainty about the impact of a new policy

regime on the profitability of private firms always raises volatility, regardless of the effect

on prices. News that causes asset prices to jump up while causing volatility to jump down

is incompatible with their model. Our results are also consistent with Pelger (2017), who

studies systematic and non-systematic risk factors in S&P500 high-frequency firm data.

That is, we confirm that the DLE appears predominantly for systematic risk, while being

weaker and more often non-significant for idiosyncratic risk.

The rest of the paper is organized as follows. Section 2 introduces the model and assump-

tions. Section 3 presents the price-jump estimators, spot-volatility estimation and the DLE

estimator. We compare the spectral approach for price jumps with the Lee and Mykland

(2012) pre-average estimator. Section 4 provides Monte Carlo evidence and Section 5 the

empirical findings. Section 6 concludes. The Appendix contains the proofs.

2. Statistical model and assumptions

We work with a very general class of continuous-time processes, namely Itô semimartin-

gales. Its implicit no-arbitrage properties make it the most popular model for log-price pro-

cesses in financial econometrics. The model is formulated for a log price,Xt, and its volatility,

σt, over a fixed time period t ∈ [0, 1], on some filtered probability space (Ω,F , (Ft),P):

Xt = X0 +
∫ t

0
bs ds+

∫ t

0
σs dWs +

∫ t

0

∫
R
δ(s, z)1{|δ(s,z)|≤1}(µ− ν)(ds, dz)

+
∫ t

0

∫
R
δ(s, z)1{|δ(s,z)|>1}µ(ds, dz) , (1)

with a standard Brownian motion Ws, the jump size function δ, defined on Ω × R+ × R,

and the Poisson random measure µ, which is compensated by ν(ds, dz) = λ(dz) ⊗ ds with

a σ-finite measure λ. We write ∆Xt = Xt −Xt− with Xt− = lims<t,s→tXs for the process

of jumps in Xt and ∆σ2
t = σ2

t − σ2
t− for jumps of the squared volatility. Our notation

follows that of Jacod and Protter (2012). We impose mild regularity assumptions on the

characteristics of Xt.
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Assumption 1. The drift (bt)t≥0 is a locally bounded process. The volatility never vanishes,

inft∈[0,1] σt > 0 almost surely. For all 0 ≤ t + s ≤ 1, t ≥ 0, some constants Cn, C̃n > 0,

some α > 1/2 and for a sequence of stopping times Tn, increasing to ∞, we have that

∣∣∣E[σ(t+s)∧Tn − σt∧Tn |Ft
]∣∣∣ ≤ Cn sα , (2)

E
[

sup
t∈[0,s]

|σ(t+t)∧Tn − σt∧Tn |
2
]
≤ C̃n s . (3)

Assumption 1 requires some smoothness of the volatility process. It does not exclude volatil-

ity jumps, only fixed times of discontinuity are excluded. We impose the following regularity

condition on the jumps.

Assumption 2. Assume for the predictable function δ in (1) that supω,x |δ(t, x)|/γ(x) is

locally bounded with a non-negative, deterministic function γ that satisfies

∫
R
(γr(x) ∧ 1)λ(dx) <∞ . (4)

The index r, 0 ≤ r ≤ 2, in (4) measures the jump activity. Smaller values of r make

Assumption 2 more restrictive. In particular, r = 0 results in finite-activity jumps and

r = 1 implies that jumps are summable.

Remark 1. Assumption 1 is satisfied in a very general model, where the volatility process

σt is an Itô semimartingale

σt = σ0 +
∫ t

0
b̃s ds+

∫ t

0
σ̃s dW̃s +

∫ t

0

∫
R
δ̃(s, z)1{|δ̃(s,z)|≤1}(µ− ν)(ds, dz)

+
∫ t

0

∫
R
δ̃(s, z)1{|δ̃(s,z)|>1}µ(ds, dz) , (5)

with a standard Brownian motion W̃s, when the characteristics in (5) are locally bounded and

when an analogous condition as (4) holds for δ̃ in (5) with r = 2. We may use the same µ in

(1) and (5), such that µ is a jump measure on R+ ×R governing the jumps in the log price

and its volatility. The predictable functions, δ and δ̃, defined on Ω×R+×R, then determine

common jumps of σt and Xt. Whenever δδ̃ ≡ 0, there is no price-volatility cojump. Our

asymptotic theory and Assumption 1 allow for generalizations of (5), such as inclusion of

long-memory fractional volatility components. Thus, our theoretical setup nests almost any

popular stochastic volatility model that allows for both continuous and discontinuous leverage

effects.
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In practice, one cannot observe the efficient price (1) directly and one must account for

market microstructure noise in analyzing price and volatility jumps. To efficiently exploit

high-frequency prices, we posit a latent discrete observation model with noise:

Observe Ytn
i
, i = 0, . . . , n, with Yt = Xt + εt , (6)

where εt captures the market microstructure noise. We use the typical notation, ∆n
i Y =

Ytn
i
− Ytn

i−1
, i = 1, . . . , n, for noisy returns and analogous notation for the processes Xt and

εt. In our baseline setup, market microstructure noise is a white noise process (εt)t≥0,

independent of Xt, with E[εt] = 0 and E[ε2t ] = η2, as well as E[ε4+δ
t ] <∞ for some δ > 0, for

all t ∈ [0, 1]. The process Yt is accommodated on the product space (Ω̄,G, (Gt), P̄), where

Gt = Ft ⊗ σ(εs, s ≤ t) contains information about the signal and noise. Below we extend

the model to more general setups with serially correlated, heteroscedastic noise. Because

we apply our methods to locally infer price and volatility jumps of individual stock prices,

non-synchronicity of the multivariate data is of less importance here.

3. Inference on the discontinuous leverage effect

The DLE is defined as the covariation of contemporaneous price and volatility jumps.

We estimate it in three steps. We first address noise-robust estimation of price jumps in

Section 3.1, then we turn to noise-robust estimation of spot-volatility changes in Section

3.2. In Section 3.3, we show how to detect a priori unknown price-jump times in noisy data

and how to refine price-jump estimation in this case. The estimated DLE is the covariation

of the price-jump and spot-volatility estimates at detected jump times. This estimator is

presented in Section 3.4.

3.1. Price-jump estimation

3.1.1. Local jump estimator and test using pre-averaged log prices

Consider the statistic

TLM (τ ; ∆n
1Y, . . . ,∆n

nY ) = P̂ (tnl )− P̂ (tnl−Mn
) , l = bτnc+ 1 , (7)
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at a (stopping) time τ ∈ (0, 1) and with pre-processed price estimates

P̂ (tnj ) = M−1
n

(j+Mn−1)∨n∑
i=j

Ytn
i
. (8)

Lee and Mykland (2012) propose a test for price jumps at time τ based on (7). The window

length for the pre-averaging is Mn = c
√
n, with a proportionality constant c. The following

proposition generalizes Lemma 1 in Lee and Mykland (2012), where the authors assume

that they observe discrete, noisy observations from a jump-diffusion model.

Proposition 3.1. Under Assumption 1 and Assumption 2 with r < 4/3 for equidistant

observations, tni = i/n, the Lee-Mykland statistic (7) obeys the stable3 central limit theorem,

√
Mn

(
TLM (τ ; ∆n

1Y, . . . ,∆n
nY )−∆Xτ

) (st)−→MN
(

0, 1
3(σ2

τ + σ2
τ−) c2 + 2η2

)
, (9)

as n→∞, where MN stands for mixed normal.

Thus, in case of a price jump at τ , (7) consistently estimates the price-jump size. The central

limit theorem accounts for a contemporaneous volatility jump. If there is no volatility jump,

then σ2
τ = σ2

τ− in (9). With the null hypothesis, ∆Xτ = 0, and alternative, |∆Xτ | > 0,

Proposition 3.1 facilitates a consistent test for a jump in the stock price at time point

τ ∈ (0, 1).

3.1.2. Local jump estimator and test using spectral statistics

To estimate price jumps using spectral statistics, we consider an orthogonal system of

sine functions that are localized on a window around τ :

Φj,τ (t) =
√

2
hn

sin
(
jπh−1

n (t− (τ − hn/2))
)
1[τ−hn/2,τ+hn/2](t) , j ≥ 1 . (10)

Asymptotically efficient volatility estimation from noisy observations (6) motivates consid-

eration of local averages of noisy log prices in the frequency domain; see Reiß (2011) and

Bibinger et al. (2014). Intuitively, spectral statistics,

Sj(τ) =
n∑
i=1

∆n
i Y Φj,τ ((tni−1 + tni )/2) , j ≥ 1 , (11)

3Stable means stable convergence in law with respect to F .
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maximize the local information load about the signal process and thereby allow for local

estimates of the efficient prices: Xτ and Xτ−. The scaling factor in front of the sine in (10)

ensures that
∫ τ+hn/2
τ−hn/2 Φ2

j,τ (t) dt = 1. We propose the following statistic:

T (τ ; ∆n
1Y, . . . ,∆n

nY ) =
Jn∑
j=1

(−1)j+1a2j−1S2j−1(τ)
√
hn/2 , (12)

with weights (a2j−1)j≥1, to infer price jumps. (12) is a rescaled weighted sum of spectral

statistics over odd spectral frequencies up to some spectral cut-off frequency 2Jn−1. Exclud-

ing even frequencies and alternating the signs of addends facilitate a consistent estimation

of price jumps, ∆Xτ , as in (9) above.

The window length is set to be hn = κ log (n)/
√
n, for some constant κ. Despite the

logarithmic factor, the window length resembles the one in (8). We derive optimal oracle

weights by minimizing the variance, which vary with the volatility σt. Yet, under Assumption

1, the error of approximating σ2
t constant on [τ−hn/2, τ) and [τ, τ+hn/2] is asymptotically

negligible. Then, as in the weighted least squares approach, this leads to optimal weights

aj ∝ 1/Var(Sj(τ)) .4

In order to consistently estimate the jump (Xτ −Xτ−), we set
∑Jn
j=1 a2j−1 = 1 such that

a2j−1 =
(
Var
(
S2j−1(τ)

)−1(∑Jn
u=1

(
Var
(
S2u−1(τ)

))−1
) (13)

=
( 1

2 (σ2
τ + σ2

τ−) + π2(2j − 1)2h−2
n n−1η2)−1(∑Jn

u=1( 1
2 (σ2

τ + σ2
τ−) + π2(2u− 1)2h−2

n n−1η2)−1
) .

For an adaptive method, we estimate these oracle optimal weights by plugging in the esti-

mated noise variance,

η̂2 = −n−1
n−1∑
i=1

∆n
i Y∆n

i−1Y = η2 +OP̄
(
n−1/2) , (14a)

4We write A ∝ B for proportionality, i.e. A = cB for some non-zero constant c.
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and the pre-estimated spot squared volatility,

σ̂2
τ−,pil = kn

Jp

k−1
n∑
k=1

Jp∑
j=1

(
S2
j (τ − khn)− π2j2h−2

n n−1η̂2)
× 1

(∣∣∣(Jp)−1
Jp∑
j=1

(
S2
j (τ − khn)− π2j2h−2

n n−1η̂2)∣∣∣ ≤ un)
= σ2

τ− +OP̄
(
n−1/8) , (14b)

with k−1
n = Rn1/4 for a constantR, a threshold sequence, un = h$n , 0 < $ < 1, and maximal

spectral frequency, Jp, leading to the above rate-optimal estimators under Assumptions 1

and 2 with r < 3/2. The notation S2
j (τ−khn) refers to squared spectral statistics computed

from k−1
n bins with sine functions centered around times, τ − khn, before τ . σ̂2

τ,pil is the

analog of (14b), replacing τ − khn by τ + khn. Bibinger and Winkelmann (2018) detail the

construction and prove the asymptotic properties of pre-estimators (14a) and (14b) and also

suggest how to choose R and Jp.

Next, we state asymptotic results for T (τ ; ∆n
1Y, . . . ,∆n

nY ), which refers to statistic (12)

with estimated optimal weights.

Proposition 3.2. Under Assumption 1 and Assumption 2 with r < 4/3 for equidistant

observations, tni = i/n, our statistic (12) obeys the stable central limit theorem as n → ∞

and Jn →∞:

n1/4 (T (τ ; ∆n
1Y, . . . ,∆n

nY )−∆Xτ

) (st)−→MN
(

0, 2
(σ2

τ + σ2
τ−

2

)1/2
η
)
. (15)

In the case of no volatility jump at τ , στ = στ− and the asymptotic variance is 2στη. Finally,

we extend Proposition 3.2 to a more realistic model that incorporates serially correlated,

heteroscedastic noise and irregular sampling.

Assumption 3. Assume the existence of a differentiable, cumulative distribution function,

F , that determines the observation times via a quantile transformation, tni = F−1(i/n), i =

0, . . . , n. Assume (F−1)′ is α-Hölder continuous for some α > 1/2, i.e., |(F−1)′(t) −

(F−1)′(s)| ≤ |t− s|α for all s, t.

The noise process εt is independent of Xt. For all t, we have E[εt] = 0 and E
[
ε4+δ
t

]
<∞, for

some δ > 0. Further, assume (εtn
i
) is an R-dependent process, such that Cov(εtn

i
, εtn

i+u
) = 0

for all i and all u > R for some R < ∞, then the long-run variance process converges as
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follows:

n−btnc∑
l=−btnc

Cov
(
εbtnc, εbtnc+l

)
→ η2

t , (16)

for t ∈ [0, 1], uniformly in probability. The process (η2
t )t∈[0,1] is locally bounded and satisfies,

for all t, (t+ s) ∈ [0, 1], the mild smoothness condition:

|η2
t+s − η2

t | ≤ Ksα . (17)

The noise does not vanish: η2
t > 0 for all t ∈ [0, 1].

Proposition 3.3. Under Assumptions 1, 2 with r < 4/3 and 3, the statistic (12) obeys the

stable central limit theorem as n→∞ and Jn →∞

n1/4 (T (τ ; ∆n
1Y, . . . ,∆n

nY )−∆Xτ

) (st)−→MN
(

0, 2
(σ2

τ + σ2
τ−

2

)1/2
ητ
(
(F−1)′(τ)

)1/2)
. (18)

In analogy to Proposition 3.1, Propositions 3.2 and 3.3 show the consistency of the spectral

jump estimator and give a consistent test for a price jump at time τ . One can construct stan-

dardized, feasible versions of (15) and (18) by inserting spot squared volatility and long-run

noise variance estimators. See (14a) and Bibinger et al. (2017) for such estimators. In fact,

the pre-estimation of optimal weights also estimates the variances of (12). The asymptotic

variance of the Lee-Mykland statistic in (9) generalizes to (1/3)(σ2
τ +σ2

τ−)(F−1)′(τ)c2 + 2η2
τ

under the conditions from Proposition 3.3. Lee and Mykland (2012) provide a generalization

to R-dependent noise using sub-sampling, and this directly applies to our general setup with

Assumption 3. The spectral price-jump estimator (12) and the pre-average jump estimator

(7) have the same optimal convergence rate and similar asymptotic properties.

Remark 2. Writing (9) with rate n1/4 instead of M1/2
n , the variance of the Lee-Mykland

estimator (7) with στ = στ− becomes 2
3σ

2
τ c + 2η2c−1. The variance is minimized by the

constant c =
√

3ησ−1
τ , which yields 4στη/

√
3 in (9). Since 4/

√
3 ≈ 2.31, this optimized

variance of (an infeasible) Lee-Mykland estimator is about 16% larger than the variance 2στη

of the spectral estimator in (15). Moreover, according to the LAN result of Koike (2017), the

latter is optimal. That is, the variance of the spectral estimator coincides with a lower bound

for the asymptotic variance, which is given by the inverse of the Fisher information from

Proposition 5.2 of Koike (2017). Our estimator is hence the first feasible, asymptotically

11



efficient estimator for price jumps in the semimartingale model with market microstructure

noise.

We caution, however, that estimates via spectral statistics (12) and pre-averages (7) are

biased when a jump is not located close to time τ but instead close to one of the edges

of the local window. Figure 1 illustrates this. The bias for the Lee-Mykland estimator is

linear. This effect directly relates to the so-called “pulverisation” of jumps by pre-averages

described in Mykland and Zhang (2016). For our statistic, the bias hinges on the weights

and the spectral cut-off. The lower panel of Figure 1 reveals that the bias is similar for

both methods. The bias becomes important when studying price jumps at a priori unknown

times, such as when one is estimating the DLE. Section 3.3 discusses our solution. Related

problems by not knowing the exact timing of jumps arise and have been addressed in different

ways in Vetter (2014) and Bibinger and Winkelmann (2015).

3.2. Spot-volatility estimation

We estimate the contemporaneous volatility adjustment to a price jump at time τ ∈ (0, 1).

We employ the spectral spot squared volatility estimators of Bibinger and Winkelmann

(2018), smoothed over local windows before τ and after τ , to consistently estimate the

volatilities σ2
τ and σ2

τ−. Based on estimated oracle optimal weights for volatility estimation

wjk = I−1
k Ijk =

(
σ2

(k−1)hn + π2j2h−2
n

η2
(k−1)hn
n

)−2

∑Jn
m=1

(
σ2

(k−1)hn + π2m2h−2
n

η2
(k−1)hn
n

)−2 , (19)

inserting spot squared volatility and noise variance estimators, with

ζadk (Y ) =
Jn∑
j=1

ŵjk

(
S2
jk − π2j2h−2

n

η̂2
(k−1)hn
n

)
, (20)

the spectral estimator of the spot squared volatility at time τ− is

σ̂2
τ− = kn

bτh−1
n c−1∑

k=bτh−1
n c−k−1

n

ζadk (Y )1{hn|ζadk (Y )|≤un} . (21)

To estimate the noise variance η2 and pre-estimate the spot squared volatility in (19), we

use (14a) and (14b), respectively. To obtain (20), we adapt Sjk = Sj((k−1/2)hn) from (11).

Analogously to σ̂2
τ−, σ̂2

τ is defined by summing over k ∈ {bτh−1
n c + 1, . . . , bτh−1

n c + k−1
n }.

The theory by Bibinger and Winkelmann (2018) renders the following result:

12



Corollary 3.4. Under Assumptions 1 and 2 with r < 3/2 for equidistant observations,

tni = i/n, and under Assumption 3 for the noise, the statistics (21) with kn ∝ n−β log(n)

satisfy

nβ/2
((
σ̂2
τ − σ̂2

τ−
)
−∆σ2

τ

) (st)−→MN
(
0, 8(σ3

τ + σ3
τ−)ητ

)
(22)

for all

0 < β <
(

1/4 ∧ $
(

1− r

2

))
, (23)

with $ from the truncation sequence un, such that we come arbitrarily close to the optimal

rate n1/8 in (22).

Theorem 10.30 of Aït-Sahalia and Jacod (2014) provides a related result for volatility-jump

estimation without microstructure noise, where the first line in their equation (10.81) for one

fixed point in time corresponds to our result under condition (23). The corollary provides

an asymptotic test of the hypothesis of no volatility jump, ∆σ2
τ = 0, against the alternative

that ∆σ2
τ 6= 0. The statistic (27) in Bibinger and Winkelmann (2018) gives an efficient test.

For non-equidistant observations, the noise level in (22) includes ((F−1)′(τ))1/2, analogous

to (18) for price jumps.

3.3. Price-jump estimation at unknown price-jump times

The time of a price jump is usually unknown. Hence the jump times need to be estimated

from the observed high-frequency data. Estimation of price jumps at a priori unknown times

poses an intricate problem due to the fact that price-jump times, τk, can only be located on

(asymptotically small) time intervals and not determined exactly. Given the bias problem

emphasized at the end of Section 3.1, it is crucial to detect jump times very precisely. Since

price jumps are one component of the DLE, biased price-jump estimates produce a bias in

DLE estimates. To estimate price-jump times, we propose the following procedure.

We begin our jump-detection procedure with local quadratic variation estimates, as in

Bibinger and Winkelmann (2015) and related works on spectral volatility estimation. The

local quadratic variation estimates enable volatility estimation (21) and a thresholding pro-

cedure to locate bins ((k − 1)hn, khn) that contain a (large) price jump. We apply a bin-

wise threshold, un(khn) = 2 log(h−1
n )hnσ̂2

(k−1)hn,pil, with pre-estimated squared volatility,

13



as defined in (14b). The moving threshold accounts for intraday volatility patterns. Be-

sides the threshold un, DLE estimation with infinite active jumps requires the detection of

bins with an increase in quadratic variation larger than a finite constant a2. For the price

jump detection, this requires unbiased estimation of the changes in the quadratic varia-

tion, ∆k[X,X] = [X,X]khn − [X,X](k−1)hn , on bins with price jumps. To detect bins with

∆k[X,X] > a2 ∨un, we adapt the statistics from Section 3.1.3 of Bibinger and Winkelmann

(2015) and define

ζ̃adk,l =
∑
j∈Jn

ŵjk

(
1
2S

2
jk + 1

2 S̃
2
jl − π2j2h−2

n

η̂2
(k−1)hn
n

)
,

ζ̃adk = max
(
ζ̃adk,k, ζ̃

ad
k,k+1

)
, (24)

by summing over the set Jn of odd numbers up to the cut-off Jn and with spectral statistics

S̃jk = Sj((k−1)hn) shifted by hn/2 in comparison to Sjk = Sj((k−1/2)hn). This adjustment

of (20) allows for unbiased estimation of the increase in quadratic variation on bins with

jumps. Due to the overlapping nature of shifted bins and the maximum operator in (24), a

jump on a bin also affects a neighboring bin. The weighting of a jump on a neighboring bin

is always smaller, however, than the weighting on the bin containing the jump. Thus, the

increment in jump variation on a bin containing a jump is estimated by

∆k [̂X,X] = hn ζ̃
ad
k 1{ζ̃ad

k
>max(ζ̃ad

k−1,ζ̃
ad
k+1)} . (25)

The thresholding procedure detects asymptotically small bins with jumps. The exact posi-

tion of the unknown jump time within the detected bin remains unknown, however.

To account for the bias problem in price-jump estimation, emphasized in Section 3.1,

one can adjust the spectral estimator (12) by cutting out detected jump bins. For the

following discussion, we focus on a single unknown price-jump time τ . As illustrated in

the upper part of Figure 2, the price before and after the jump then could be estimated

based on observations on two neighboring time windows to the left and right of the jump

bin. A similar construction is used in Section 10.5 of Aït-Sahalia and Jacod (2014) to locate

volatility-jump times. However, the bin-widths determined by thresholding decay with order

hn and are of the same size as the bins on which the price-jump estimation is conducted.

For efficient price-jump estimation, we therefore refine the localization of price-jump times

to smaller intervals. The lower part of Figure 2 illustrates this.
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To more precisely locate the jump time τ̂ ∈ ((k − 1)hn, khn), on a bin with ∆k [̂X,X] >

a2∨un, we partition this jump bin into Rn sub-intervals of lengths (rn+ ln)/n with (rn+ ln)

an even integer. The jump window (tnl−ln , t
n
l+rn), with l = bτnc+1, includes the price jump.

rn determines the number of observations to the right of the price jump up to the end of the

jump window, ln or ln + 1 is the number of observations to the left of the price jump down

to the beginning of the jump window. For the price-jump estimation, we then cut out this

jump window that contains τ . We identify the jump window by comparing Rn increments

of pre-averages

ι̇ = argmaxi=1,...,Rn
∣∣TLM((k − 1)hn + (i− 1/2)rn + ln

n
; ∆n

1Y, . . . ,∆n
nY
)∣∣ , (26)

with the statistics from (7), averaging over (rn + ln)/2 �
√
n instead of Mn observations.

We exploit the simple asymptotics of the argmax of pre-averages to detect the sub-interval

with the jump.5 The price-jump size is estimated with spectral statistics, computed from

observations on a window of length hn around the cut out sub-interval with the jump. That

is, given tnl+rn and tnl−ln , we use (12) with the basis (10) centered around Ytn
l+rn
−Ytn

l−ln
and

with returns ∆n
i Y in an interval [tnl−ln − hn/2, t

n
l−ln ] to the left of the jump window and

[tnl+rn , t
n
l+rn+hn/2] to the right of the jump window. This is the same as deleting observations

Ytn
i
on (tnl−ln , t

n
l+rn) and shifting observations Ytn

i
from the left and right towards the center.

This construction of the refined cut-out procedure is illustrated in Figure 2.

Proposition 3.5. When Rn → ∞, with Rn = O(
√
n), such that (rn + ln) ∝ nδ → ∞, for

some 0 < δ < 1/2, the adjusted price-jump estimation with the cut-out window determined

by

tnl−ln = (k − 1)hn + (ι̇− 1)rn + ln
n

, tnl+rn = (k − 1)hn + ι̇
rn + ln
n

, (27)

with ι̇ defined in (26), satisfies under Assumptions 1, 2 and 3, for a jump time τ when r = 0

or with |∆Xτ | > a for some a > 0 in that the Lévy measure µ does not have an atom, the

central limit theorem in Proposition 3.3.

While (rn+ ln) is set by the econometrician, the two summands ln and rn are unknown and

depend on the true value of τ . The refinement of the cut-out method uses one additional

5Note that the asymptotics of maximum statistics of spectral estimators are much more intricate. We
therefore mix spectral and pre-average detection techniques for the refined detection of jumps.

15



tuning parameter, Rn, or equivalently (rn + ln), which fixes the lengths of the sub-intervals.

Proposition 3.5 establishes asymptotically efficient (large) price-jump estimation under noise,

even if the jump time τ is unknown.

Analogously, the Lee-Mykland statistic (7) can be adjusted for the unknown time point,

τ , in the jump window (tnl−ln , t
n
l+rn). We estimate the price to the left of the jump window

with P̂ (tnl−ln−Mn
) and to the right of the jump window with P̂ (tnl+rn). This adjustment is

also robust in the sense that Proposition 3.1 remains valid.

Consider the two illustrative extreme examples in determining jump windows:

Example 1. Rn = 1 implies cutting out the whole bin with tnl−ln = (k − 1)hn and tnl+rn =

khn. This is the cut-out method without refinement as sketched in the upper part of Figure

2. We can show that the price-jump estimator (12) is consistent and preserves (almost)

the optimal convergence rate in this case. However, the constant in the variance in (15)

increases when the jump window is of order n−1/2.

Example 2. Rn = nhn − 1, when τ̂k = argmaxi {tni ∈ [(k − 1)hn, khn)| |∆n
i Y |}, implies

centering (12) around the largest absolute return on a bin. Since the noise is centered and

its variance, η2
τk
, typically is rather small (see Hansen and Lunde (2006)), the time of the

largest absolute return might be considered a good candidate for the jump arrival and the

method would require one fewer tuning parameter. In particular, if one restricts attention to

jumps much larger than ητk , the method could also perform well in practice. Theoretically,

however, centering the jump window around the largest absolute return is only suitable if

one assumes that ητk → 0 when n→∞.

3.4. Discontinuous leverage effect

This section establishes inference on a covariation measure for contemporaneous price and

volatility jumps. Aït-Sahalia et al. (2017) introduced it as the tail discontinuous leverage

effect in their equation (2.7):

[X,σ2]dT (a) =
∑
s≤T

∆Xs

(
σ2
s − σ2

s−
)
1{|∆Xs|>a} . (28)

Combining the above jump-localization procedure with the spectral jump and volatility

estimators and setting T = 1, we consider the DLE estimator

̂[X,σ2]
d

1(a) =
h−1
n −1∑
k=2

∆̂X τ̂k

(
σ̂2
τ̂k
− σ̂2

τ̂k−
)
1{∆k [̂X,X]>a2∨un}

, (29)
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where τ̂k are the estimated price-jump times, ∆̂X τ̂k are the estimated log-price jumps and

σ̂2
τ̂k− and σ̂2

τ̂k
are the spot-volatility estimates. Only finitely many addends with (large)

price jumps in (29) are non-zero. The corresponding bins are determined by thresholding.

If the time of one (large) price jump τk is ascribed to a bin, we can directly estimate the

associated volatility jump based on σ̂2
τk− from (21) and σ̂2

τk
. In contrast, the price-jump

estimation relies on (12) with the refined cut-out method and Proposition 3.5.

Aït-Sahalia et al. (2017) point out that a central limit theorem for the DLE in the

presence of market microstructure noise cannot generally be obtained with pre-averaging

or related approaches. However, by focusing either on the tail DLE, with some a > 0 or

assuming r = 0 in Assumption 2, we derive the following asymptotic result:

Proposition 3.6. Under Assumptions 1, 2 and 3, for any a > 0 in that the Lévy measure

µ does not have an atom, the estimator for the DLE (29) satisfies the feasible (self-scaling)

central limit theorem

nβ/2
(̂[X,σ2]

d

1(a)− [X,σ2]d1(a)
)(∑h−1

n −1
k=2

(
∆̂X τ̂k

)2 8η̂τ̂k
(
σ̂3
τ̂k

+ σ̂3
τ̂k−
)
1{∆k [̂X,X]>a2∨un}

)1/2 (d)−→ N(0, 1) , (30)

with β as in (23). If no price jump is detected, we set the estimate equal to zero. In

particular, the limit theorem facilitates, for some α ∈ (0, 1), an asymptotic level α test with

asymptotic power 1 for testing the hypothesis H̃0 : [X,σ2]d1(a) = 0, against the alternative

H̃1 : [X,σ2]d1(a) 6= 0:

ϕ = 1{
|nβ/2 ̂[X,σ2]

d

1(a)|>q1−α/2

√∑h
−1
n −1
k=2

(∆̂X τ̂k )2 8η̂τ̂k (σ̂3
τ̂k

+σ̂3
τ̂k−

)1{∆k [̂X,X]>a2∨un}

} , (31)

where q1−α/2 denotes the (1− α/2) quantile of the standard normal law.

One loses no generality by imposing the scaling T = 1; any fixed T ∈ R+ can be considered.

The condition that the Lévy measure µ does not have an atom in a is analogous to (10.76)

in Aït-Sahalia and Jacod (2014). There are only atoms in at most countably many values.

According to Aït-Sahalia and Jacod (2014), the condition holds for any a > 0 if µ has a

density. This applies to all models used in finance with infinite jump activity.
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Proposition 3.7. Under Assumptions 1, 2 and 3 and under the specific case of finite jump

activity, r = 0 in Assumption 2, the estimator for the DLE,

̂[X,σ2]
d

1 =
h−1
n −1∑
k=2

∆̂X τ̂k

(
σ̂2
τ̂k
− σ̂2

τ̂k−
)
1{∆k [̂X,X]>un}

,

together with β as in (23) and $ < 1+δ/2−1/4
2+δ/2 , satisfies the feasible central limit theorem,

nβ/2
(̂[X,σ2]

d

1 − [X,σ2]d1
)(∑h−1

n −1
k=2

(
∆̂X τ̂k

)2 8η̂τ̂k
(
σ̂3
τ̂k

+ σ̂3
τ̂k−
)
1{∆k [̂X,X]>un}

)1/2 (d)−→ N(0, 1) . (32)

The upper bound on $ relates to Assumption 3 and the existence of higher moments of εt.

If all moments of the noise exist, the bound imposes no condition on the truncation. For

δ → 0 in Assumption 3, $ < 3/8 leads to more conservative thresholds. Since r = 0 in (23),

we also derive the optimal rate in this case. Although we conjecture that this upper bound

on $ is not needed, it simplifies the proof considerably.

Proposition 3.6 follows from combining our results on jump localization, the estimation

of price jumps at detected jump times and Corollary 3.4 about volatility-jump estimation.

However, the proof cannot be extended in a similar way to the case r 6= 0 and a = 0 when

considering infinitely many small price jumps. It is unknown if an asymptotic distribution

theory is possible in this general case. Propositions 3.6 and 3.7 give us exactly the statistics

we require for our data study, however.

Remark 3. Propositions 3.6 and 3.7 indicate that, in the asymptotic results of the esti-

mated DLE, the estimation error for the volatility jumps dominates the error for the price

jumps. Consequently, the length of the jump window in Proposition 3.5 for price-jump es-

timation has asymptotically no effect on DLE estimation. Nevertheless, choosing Rn > 1

is of interest from an applied point of view. Removing jump windows has a locally similar

effect as downsampling the data to a lower observation frequency. Given the discussion by

Christensen et al. (2014) about spurious jump detection via downsampling, one would like

to avoid deleting large jump windows in the empirical application. The refined method is

superior to cutting out larger windows in that it poses less risk of estimating spuriously large

jumps.

The leverage effect is also often defined as a correlation, rather than as the covariation (28).

To gain further insights across individual firms in the empirical Section 5, we follow Jacod
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et al. (2017) and consider a scaled measure of the DLE:

[X,σ2]dT (a)√
[X,X]dT (a)[σ2, σ2]dT (a)

=
∑
s≤T ∆Xs∆σ2

s1{|∆Xs|>a}√∑
s≤T (∆Xs)21{|∆Xs|>a}

√∑
s≤T (∆σ2

s)21{|∆Xs|>a}

, (33)

that is, the correlation between contemporaneous price and volatility jumps. We may use

a = 0 in case of finite activity jumps, r = 0 in Assumption 2. Note that (33) is a path-wise

defined, integrated measure. (33) is a scalar parameter only under the restriction to time-

homogeneous jump measures. Using Propositions 3.6 and 3.7, and setting T = 1, we obtain

the following result:

Corollary 3.8. Under all conditions from Proposition 3.6 and with

̂[σ2, σ2]
d

1(a) =
h−1
n −1∑
k=2

(
σ̂2
τ̂k
− σ̂2

τ̂k−
)2
1{∆k [̂X,X]>a2∨un}

, (34a)

[̂X,X]
d

1(a) =
h−1
n −1∑
k=2

(
∆̂X τ̂k

)2
1{∆k [̂X,X]>a2∨un}

, (34b)

we derive a consistent estimator of (33) with

̂[X,σ2]
d

1(a)√
[̂X,X]

d

1(a) ̂[σ2, σ2]
d

1(a)
− [X,σ2]d1(a)√

[X,X]d1(a)[σ2, σ2]d1(a)
= OP̄(n−β/2) ,

with β as in (23). Analogously, in the setup of Proposition 3.7, we obtain the same result

for a = 0.

Remark 4. In the general model (1), the covariation (28) and its normalized correlation

(33) appear to be the natural quantities to measure discontinuous leverage. This is in line

with previous works. For a continuous leverage effect, Kalnina and Xiu (2017) point in their

equation (4) at another different (integrated) spot correlation measure. As explained by the

authors, this quantity is only well-defined for purely continuous semimartingales and hence

not feasible in our setup. Kalnina and Xiu (2017) propose a second correlation measure in

their equation (5), which corresponds to (33). Aït-Sahalia et al. (2017) discuss difficulties in

estimating a correlation like (33) for the continuous leverage effect. A source of the problem,

identified in their Section 7.5, is a bias in the estimation of the volatility of volatility. In

contrast to a correlation based on the continuous leverage effect, the corresponding correlation

for the DLE (33) does not suffer from such problems. In particular, the consistency of the
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variation of the finitely many volatility jumps in (34a) follows from Corollary 3.4.

4. Simulations

This section reports the results of simulation studies of the finite-sample properties of the

price-jump estimators, the corresponding price-jump tests and the discontinuous leverage

statistics. The simulation study in Bibinger and Winkelmann (2018) evaluates the finite-

sample inference on volatility jumps.

This simulation study emulates that of Lee and Mykland (2012). Although their theory

only applies to the jump-diffusion setup, they simulate a more complex and realistic model,

including stochastic volatility and time-varying noise. The efficient price follows

Xt = 1 +
∫ t

0
σs dWs , t ∈ [0, 1], (35)

with Heston-type stochastic volatility,

dσ2
s = 0.0162

(
0.8465− σ2

s

)
ds+ 0.117σs dBs , (36)

where B and W are two independent standard Brownian motions. We adopt the parameter

values of Lee and Mykland (2012) in (36) and assume 252 trading days per year and 6.5

trading hours a day. The model for the market microstructure noise is

εtn
i

= 0.0861∆n
i X + 0.06

(
∆n
i X + ∆n

i−1X
)
Ui , i = 0, . . . , n, (37)

with (Ui)0≤i≤n being a sequence of normally distributed random variables with mean 0

and variance q2. We consider two parameterizations of q, which governs the noise level

(market quality parameter). The cross-correlation between Xt and noise violates one of our

theoretical assumptions, but we expect no degradation in the performance of our approach.

We estimate q in the presence of serial correlation with the noise estimator suggested in

Proposition 1 of Lee and Mykland (2012).

We implement the self-scaling adaptive version of (12) with pre-estimated optimal weights.

The notes to Table 1 give values of hn. The pre-averaging for the Lee-Mykland statistics (7)

refers to a block-size, Mn = c
√
n/k, where k denotes the order of serial correlation in the

simulated noise. The constant c is chosen according to Table 5 of Lee and Mykland (2012).
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Evaluation of the pre-average and spectral tests to infer price jumps

Lee and Mykland (2012) compare the performance of the noise-robust local jump tests in

Lee and Mykland (2012) to those in Lee and Mykland (2008), which are not designed to be

robust to noise. We replicate this simulation study and compare the finite-sample perfor-

mances of the statistics defined in (7) and (12). Considering the power of the tests associated

with Proposition 3.1 (Lee-Mykland) and Proposition 3.2 (our spectral method) allows us to

compare our results to those in Table 4 of Lee and Mykland (2012). We generate realiza-

tions of Yi = Xtn
i

+ εtn
i
for one trading hour using time resolutions of 1, 2 and 3 seconds,

respectively (n = 3600, 1800, 1200). The jump size in τ is related to the noise level q, i.e.,

∆Xτ = 0 under the hypothesis and ∆Xτ = q, 2q, 3q under the alternative.

Table 1 shows the simulation results, along with the values reported by Lee and Mykland

(2012) in parentheses. Most of our results for the Lee-Mykland test closely track those

reported by Lee and Mykland (2012). Our results for the power under moderate noise and

smaller jumps are a bit better than expected from Lee and Mykland (2012), while some

results in the large noise case are smaller. In the large noise case, we report values where

Mn is doubled compared to the constant adopted from Lee and Mykland (2012), which led

to higher power. The windows used for the spectral method are much larger than the values

Mn/n for the Lee-Mykland statistics.

At first glance it might seem surprising that the power in Table 1 increases for larger noise.

This is not, however, because of large noise that makes precise testing and estimation more

difficult, but because the jump sizes increase along with q. Large jumps naturally produce

better testing results. The size of both tests on the hypothesis appears to be accurate. The

new spectral test (10) attains considerably better power in all cases.

Evaluation of the pre-average and spectral estimators for price-jump sizes

In the same setup, we compare the performance of the jump-size estimators. Table 2 confirms

that our spectral estimator attains a smaller root mean square error (RMSE) than the Lee-

Mykland estimator, in all configurations, with the same optimal parameter choice as above.

Efficiency gains are most relevant for the configuration with moderate noise and the smallest

jump size. In this setup, our new estimator has a RMSE that is almost 50% smaller for

n = 3600. For large noise and jump size q, our new estimator reduces the RMSE by 20%.

These significant improvements of estimation accuracy are particularly relevant because the

moderate noise setting is realistic for current high-frequency data.
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Figure 3 demonstrates the finite-sample accuracy of the normal limit laws in (15) and

(9). The empirical distributions closely approximate their normal asymptotic limit.

Evaluation of the discontinuous leverage estimator

We modify the simulation setup by adding one jump at a random time to the volatility in

(36). The volatility-jump size is set to the median value from the empirical sample described

in Table 3. To create discontinuous leverage, we implement a contemporaneous downward

price jump of 0.2%, which is comparable to the sizes in Figure 5. Using a rather large price

jump and average volatility-jump size allows us to study the finite-sample accuracy of the

result (30). We can analyze the DLE estimator (29) because thresholding reliably detects

jumps of this size. We simulate one trading day with observation frequencies of 1, 2 and

3 seconds, frequencies that generate 23400, 11700 and 7800 observations, respectively, over

the day.

We analyze the performance of the DLE in a model with moderate microstructure noise.

We first estimate spectral statistics over a partition of the whole day, identifying price jumps

by thresholding. Next, we estimate the squared volatility before and after the jump by local

averages of the bin-wise, parametric estimates over 8 bins. Then, we estimate the local jump

size using (12) and implement the refinement from Section 3.3 for unknown jump times. We

partition the bin with the detected jump in R = 6 equidistant sub-intervals and apply the

adjusted jump size estimation using (26). The window sizes for the first step and the price-

jump estimation are equal: we use h−1 = 100 for the 1-second frequency and h−1 = 50 for

the two smaller frequencies. The spectral cut-off frequency is set to J = 30 in all cases.

Estimates are reasonably robust to different values of h and J .

For the fixed, true value -2.324 of the DLE (28),6 we obtain the following results:

Frequency 1 sec 2 sec 3 sec

Bias -0.04 -0.02 -0.03

Variance 0.16 0.19 0.21

The inherently slow convergence rate of the estimation leads to pronounced finite sample

variances. Figure 4 shows QQ-normal plots for the test statistic obeying the central limit

theorem (30). The normal distribution fits reasonably well for all frequencies. Our test

for the DLE attains very high power (approximately 99%) in the case of one observation

6We rescale all DLE values by multiplying by 107.
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per second and only slightly smaller power for the lower observation frequencies. Overall,

simulations indicate that the DLE estimation performs well in this complex environment.

5. The discontinuous leverage effect in stock prices

This section presents results of applying the spectral methods of Section 3 to stock

price data. We first introduce the dataset and discuss how to estimate price and volatility

jumps on these data. Finally, we investigate the DLE, i.e., a covariation measure, and the

associated correlations of price and volatility cojumps.

5.1. Price and volatility cojumps

We use NASDAQ order book data from the LOBSTER database. Initially, we pick the

30 stocks with the largest market capitalizations from each of the 12 NASDAQ industries

for a total of 12 ∗ 30 = 360 stocks.7 The sample spans January 1, 2010 to December 31,

2015, 1,509 days with trading from 9:30 to 16:00 EST. The tick-by-tick data shows evidence

of market microstructure noise, such as significant negative first-order autocorrelation. The

test of Aït-Sahalia and Xiu (2017), equation (40), displays significant noise for 50% of all

stocks, across all trading days.8 As shown in the simulations of Winkelmann et al. (2016),

spectral estimators perform particularly well with liquid stocks, i.e., those having at least

about one trade every 15 seconds. To restrict the analysis to very liquid stocks, we exclude

trading days with fewer than 1,500 trades for a given stock.9 This selection procedure

reduces the number of firms to 320. We focus on transactions with non-zero returns but do

not adjust the data further; that is, we do not clean or synchronize trades. The number of

observed trades varies substantially across stocks and days. There is a maximum of 227,139

intradaily observations for the Apple Inc. stock on September 9, 2014; the median number

of daily transactions across stocks is much smaller, only 5,977.

The local jump detection and estimation takes the time-varying trading activity into

account. We partition each trading day d into h−1,(d,s) bins for every stock s. As suggested

by our theoretical results, the number of bins k = 1, ..., h−1,(d,s) grows with the number of

trades n(d,s) with h−1,(d,s) = b3
√
n(d,s) log(n(d,s))−1c. We detect price jumps by applying the

7The industries can be found on www.nasdaq.com/screening/industries.aspx. The year 2013 serves as the
baseline year.

8Aït-Sahalia and Xiu (2017) report similar percentages for the S&P100 in their Table 4. To control the
overall significance level of tests across firms and trading days, we use the Benjamini and Hochberg (1995)
step-up procedure at level α = 0.1. In case of no market microstructure noise our methods remain valid.

9Results are robust to higher (2,000) and lower (1,000) thresholds.
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adaptive threshold, u(d,s)
k = 2 log(h−1,(d,s))/h−1,(d,s)σ̂

2,(d,s)
k,pil , to bin-wise quadratic variation

estimates (25). It is well-known that the number of detected price jumps depends on the

thresholding procedure in that a lower threshold usually increases the number of detected

small price jumps.10 We find that relatively small volatility changes at price-jump time

points strongly influence the DLE estimates. For that reason, we apply the test for volatility

jumps, as proposed by Bibinger and Winkelmann (2018), to focus on price jumps with signif-

icant contemporaneous volatility jumps.11 The tests for volatility jumps reduce the influence

of the price-jump-detection threshold on the DLE estimates. For price-jump estimation, we

partition jump bins into R = 6 sub-intervals and center (12) around the cut-out return

obtained via (26).12 The number of frequencies studied on each bin is J (d,s) = 5 log(n(d,s)).

We average the truncated spectral statistics over d3 4
√
n(d,s)/ log(n(d,s))e bins to estimate

spot volatility to the right and left of the detected price jump.

Figure 5 shows two examples of price-volatility cojumps of the Apple Inc. stock, an

upward price jump in the left panel and a downward price jump in the right panel. The

estimates of the price jumps are 0.27% and -0.24%, respectively. Note that if one would

approximate the price-jump sizes just by looking at Figure 5 and assuming a small noise

level, one may expect much larger price-jump estimates. Christensen et al. (2014) and

Barndorff-Nielsen et al. (2009) explain that seemingly large returns often consist of smaller,

unidirectional returns on a short time interval.13 This explains how downsampling to lower

observation frequencies can affect both jump detection and the estimation of price-jump

sizes. Figure 5 also suggests that volatility jumped contemporaneously with the price jump.

That is, the variability of the stock price appears in both cases much smaller before the

price jump than afterwards. This apparent jump in volatility is not directly determined by

the price jump mechanically feeding through to higher volatility. Indeed estimated changes

in volatility only use log-price information from bins that neighbor the price-jump bin. The

increase in spot volatility evaluated approximately 30 minutes before and after the price

10The main results about the DLE are robust against different threshold choices. As a robustness check,
we substitute the log(K) term of the threshold to log(log(K)), which increases the number of price-jump
days per stock from around 14% to 29%.

11Note that in (29), summands without volatility jumps “automatically” cancel out because σ2
τ = σ2

τ−. To
control the overall significance level of tests across firms and price jumps at level α = 0.1, we use the
Benjamini and Hochberg (1995) step-up procedure (the false discovery rate).

12Note that centering the jump estimator around the largest absolute return on a detected bin, as described
in Example 2, does not change the main conclusions about the DLE. However, individual estimates of
price-jump sizes can differ quite substantially.

13While Christensen et al. (2014) attribute a local drift to such phenomena, Barndorff-Nielsen et al. (2009)
explain this characteristic by the microstructure of the orderbook and call it “gradual jumps”.
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jumps is 184% (left panel of Figure 5) and 163% (right panel of Figure 5). Note that the

strong upward jumps in both the price and volatility processes, in the left panel of Figure

5, is not consistent with the negative price-volatility cojump correlation in high-frequency

data that Bandi and Renò (2016) report for S&P 500 futures.

To get deeper insights about price and volatility cojumps, Table 3 shows summary statis-

tics for detected cojumps and quantiles of the respective jump distributions. Panel A of Table

3 shows summary statistics for the Apple Inc. stock; Panel B displays averages across the

320 stocks. We condition results on the sign of price jumps and whether they are mar-

ket jumps or idiosyncratic. Following Li et al. (2017), we use a market index to measure

market jumps. The market proxy is the NASDAQ Composite Index, which is the market

capitalization-weighted index of about 3,000 equities listed on the NASDAQ stock exchange.

The price-jump detection method proposed in Section 3.3 finds these market jumps on 8%

of the days in the sample. We define idiosyncratic jumps as discontinuities where the index

displays no contemporaneous market jump.

The top row of Panel A of Table 3 shows that the Apple Inc. stock price displays 209

contemporaneous price-volatility cojumps, with more downward price jumps (126 or 60%)

than upward price jumps (83 or 40%). Panel B of Table 3 shows that the average number of

price-volatility cojumps in the six-year sample across all individual stocks is 73.8. Columns

three to five and six to eight of Table 3 show the quantiles of the price-jump and volatility-

jump distributions. They indicate that idiosyncratic jumps tend to be smaller than market

jumps. The magnitude of price jumps is in line with the sizes of -0.15 to 0.18% reported by

Lee and Mykland (2012) for the IBM stock in 2007.

The magnitude of volatility jumps is striking. The 0.75 empirical quantile of the volatility-

jump distribution of the Apple Inc. stock for negative market price jumps is about 505%.

That is, volatility frequently jumps to more than five times its pre-jump size when prices

jump down. The analogous 0.75 quantile for volatility jumps, conditional on a negative

market price jump, averaged across all firms is 445%. Scheduled news announcements are

known to reduce trading and volatility right before the announcement but portend a strong

response afterwards, which is manifested in large volatility jumps. The rows labeled “mar-

ket,” in Panel B of Table 3, show that volatility jumps are usually positive for both positive

and negative price jumps. Overall, the volatility-jump distribution is right-skewed, indicat-

ing the important role of upward jumps in volatility.
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5.2. The discontinuous leverage effect

This subsection characterizes the DLE of contemporaneous price and volatility jumps.

Figure 6 illustrates a typical relation between price jumps and contemporaneous volatility

jumps using data from Apple Inc. from 2010 to 2015. Following Duffie et al. (2000) and

Bandi and Renò (2016), one would expect an unconditional, negative linear relation between

the price and volatility-jump sizes. However, the figure does not depict such a uniformly

negative relation. Row 1 of Table 4 documents the absence of an unconditional price-

volatility cojump relation across firms. That is, the test (30) rejects the null hypothesis of

no DLE for only 10% of the 320 firms. The DLE estimates and correlation (33) are usually

close to zero, with inconsistent signs across firms. The median DLE across all firms is 0.17;

the corresponding correlation is 0.01. In other words, there is no prevalent unconditional

leverage effect using either the covariation or correlation measure of leverage.

This result confirms previous negative findings of parametric asset pricing models by

Chernov et al. (2003), Eraker et al. (2003) and Eraker (2004), who use U.S. stock index and

option data. Jacod et al. (2017) also find no significant correlation of price-volatility cojumps

in one-minute S&P 500 ETF data. Row 1 of Table 4 thus extends the literature’s negative

results on discontinuous leverage to the cross-section of individual stock price processes.

Given that it is difficult to reject the hypothesis of no DLE, the question arises if we

should expect the discontinuous relation to be similar to that of the continuous leverage. As

discovered by Lahaye et al. (2011), specific events cause large jumps and those jumps are

relatively rare. Volatility jumps are very large on impact, but the level of volatility often

subsequently decays quickly toward a pre-event level. The impact of news potentially drives

common price and volatility jumps, as described by Pástor and Veronesi (2012, 2013). We

conjecture that news effects usually trigger upward jumps in volatility, regardless of the

effect on prices, and thus produce a positive (negative) correlation of volatility jumps with

contemporaneous upward (downward) price jumps. To investigate this response pattern, we

condition the DLE estimates on the signs of the price jumps.

Rows 2 and 5 of Table 4 show the outcomes of the DLE test (30) conditional on upward

and downward price jumps, respectively. We focus on stocks with more than 10 price-

volatility cojumps and exclude jumps larger than six standard deviations, which leaves us

with 307 firms. Quantiles of the DLE estimates and correlations indicate that the DLE

is negative for downward price jumps and positive for upward price jumps. That is, the

leverage statistic quantiles are uniformly positive (negative) for positive (negative) price
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jumps. Row 2 of Table 4 shows that 65% of the firms display a significant DLE if prices

jump up. Similarly, row 5 of Table 4 shows that 63% of the firms have a statistically

significant DLE for negative price jumps. The positive (negative) relation between positive

(negative) price jumps and contemporaneous volatility jumps is also visible in the scatter

plot in Figure 6.

In addition to conditioning on the sign of the price jump, we consider the fact that

standard asset pricing models price different sources of risk differently. Systematic jumps

are often related to macroeconomic news announcements and trigger cojumps across a large

fraction of all firms while firm-specific jumps likely reflect idiosyncratic risk.

Conditioning on whether price jumps are market-wide or idiosyncratic reveals a strong

conditional relation between discontinuities in prices and volatility (see rows 3 and 6 of

Table 4). We focus on firms having more than 10 market price-volatility cojumps and omit

jumps larger than six times its standard deviation. This shrinks the number of firms to 230.

For this sample, positive, market-wide, price jumps and contemporaneous volatility jumps

(see row 3 of Table 4) display a significant DLE for 89% of the firms. The median DLE

estimate across all firms for a single, positive price-volatility cojump is 2.88. The median

correlation between positive market jumps and volatility jumps is 0.32. Downward market

jumps (see row 6 of Table 4) exhibit a significant downward sloping relation for 85% of

the firms. The median DLE estimate for a single price-volatility cojump is -2.02 with a

corresponding correlation of -0.31. A comparison of rows 3 to 4 and 6 to 7 of Table 4 shows

that market jumps usually covary more strongly with contemporaneous volatility jumps

than do idiosyncratic price jumps. Market jumps show a stronger conditional DLE than do

idiosyncratic jumps because market events coincide with large price and volatility cojumps.

This allows us to conclude that the tail DLE is particularly strong.

In contrast to market jumps, idiosyncratic jumps are smaller, coming more from the

center of the jump distributions, and display a weaker DLE. Rows 4 and 7 of Table 4

indicate that about 66% of the stocks have a significant DLE for idiosyncratic jumps.

In summary, two forces prevent an unconditionally negative DLE: First, the sign of the

price-volatility cojump depends on the sign of the price jump. That is, positive (negative)

price jumps are positively (negatively) correlated with contemporaneous volatility jumps.

Second, the DLE is stronger for market price jumps than for idiosyncratic price jumps.

The positive (negative) covariation between upward (downward) price jumps and con-

temporaneous volatility jumps might explain why Jacod et al. (2017) find no significant,
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unconditional correlation between price and volatility jumps, while Todorov and Tauchen

(2011) report a strong positive relation between squared price jumps and jumps in volatility.

Our results indicate that one would expect a positive unconditional DLE between squared

price jumps and volatility.

The weaker relation between idiosyncratic price jumps and volatility jumps relates to Yu

(2012), who models a time-varying leverage effect in a (semi)parametric stochastic volatility

model where the time-variation is associated with the size of returns. By conditioning on

positive and negative price jumps, we focus on Yu’s positive and negative extreme states.

Our analysis indicates that it is important to distinguish market jumps and idiosyncratic

jumps, which roughly implies distinguishing the tail from the rest of the price-jump distri-

bution.

6. Conclusion

This paper makes both methodological and empirical contributions to the literature on

contemporaneous price and volatility jumps. We propose a nonparametric estimator of the

discontinuous leverage effect (DLE) in high-frequency data that is robust to the presence of

market microstructure noise. The new estimator allows us to study transactions data from

the order book without down-sampling to a lower, regular observation frequency. For DLE

estimation, we develop an efficient jump estimator for unknown jump times. We document

that the new estimator has superior asymptotic and finite sample qualities compared to a

method utilizing pre-average jump-size estimation.

Previous research has found it difficult to empirically document a DLE. Studying con-

temporaneous price and volatility jumps of 320 individual NASDAQ stocks from 2010 to

2015, we also find mixed and mostly insignificant, unconditional DLEs when considering all

detected price and volatility cojumps. We show that the event-specific nature and distinct

sources of jumps obscure the true relation between price and contemporaneous volatility

jumps. We establish that a strong and significant DLE exists by conditioning on the sign of

price jumps and on whether the price jumps are market or idiosyncratic jumps.

The DLE is different than its continuous counterpart, which was studied by Kalnina and

Xiu (2017) and Aït-Sahalia et al. (2017), for example. In line with the model of Pástor

and Veronesi (2012, 2013) the sign of the DLE depends on the sign of the price jump: a

negative DLE across stocks exists for market downward price jumps but DLE estimates are

consistently positive for market upward price jumps.
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Our findings have implications for the parametric modeling of asset prices. Our empirical

results cast doubt on the unconditional bivariate normality assumption of Bandi and Renò

(2016), which implies tail independence and a generally linear relation around the center

of the price-volatility cojump distribution. On the contrary, our results indicate that price-

volatility cojumps around the center of the joint jump distribution—i.e. smaller jumps—are

usually only weakly related, while jumps of the upper and the lower quantiles exhibit a strong

and significant DLE. The linear dependence, which was introduced by Duffie et al. (2000),

allows for tail dependence but appears to conflict with the data because it imposes one

linear relation for both upward and downward price jumps. A specification that combines

the uncorrelatedness assumption of Broadie et al. (2007) and a price jump sign dependence,

as modeled by Maneesoonthorn et al. (2017), may adequately capture jump sizes of con-

temporaneous price and volatility cojumps. Working out the pricing implications of such a

parametric model might be a path for future research.

Finally, one would like to explore the cross-sectional and time series dimension of the

estimated DLE in detail. It is natural to ask if an asset pricing framework, such as that in

Cremers et al. (2015), prices discontinuous leverage.
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Figure 1: Example for
∑J

j=1 J
−1(−1)j+1Φ2j−1,τ (t)

√
hn/2 (top) and, with oracle optimal weights a2j−1

from the simulation setup in Section 4,
∑J

j=1 a2j−1(−1)j+1Φ2j−1,τ (t)
√
hn/2 (bottom), as functions of

time t for three values of J on window [τ − hn/2, τ + hn/2], τ = 0.5, hn = 0.2. The plots illustrate that, if a
jump occurs on the interval and is not sufficiently close to τ , the estimation of ∆Xτ becomes biased for the
actual jump.

Figure 2: Illustration of the cut-out method and the three tuning parameters. On the top the bin with a
located (large) price jump is cut out (Example 1). The proposed refined cut-out procedure with Rn = 5 is
illustrated below. Interval lengths are given in parentheses.
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Table 1: Comparison of size and power of the two tests.

Moderate noise case, q = 0.0005

Frequency (n) ∆Xτ = 0 ∆Xτ = q ∆Xτ = 2q ∆Xτ = 3q

Test LM BNW LM BNW LM BNW LM BNW
3 sec (1200) 0.049 0.045 0.199 0.274 0.473 0.677 0.777 0.924

(0.034)∗ (0.059)∗ (0.320)∗ (0.786)∗

2 sec (1800) 0.050 0.053 0.280 0.382 0.695 0.828 0.937 0.988
(0.030)∗ (0.071)∗ (0.483)∗ (0.920)∗

1 sec (3600) 0.049 0.056 0.281 0.594 0.697 0.982 0.950 1
(0.046)∗ (0.091)∗ (0.709)∗ (0.988)∗

Large noise case, q = 0.005

Frequency (n) ∆Xτ = 0 ∆Xτ = q ∆Xτ = 2q ∆Xτ = 3q

Test LM BNW LM BNW LM BNW LM BNW
3 sec (1200) 0.052 0.049 0.296 0.996 0.803 1 0.997 1

(0.046)∗ (0.275)∗ (0.889)∗ (0.997)∗

2 sec (1800) 0.053 0.052 0.465 0.999 0.937 1 0.988 1
(0.046)∗ (0.593)∗ (0.998)∗ (1)∗

1 sec (3600) 0.050 0.049 0.829 1 0.994 1 0.997 1
(0.041)∗ (0.918)∗ (1)∗ (1)∗

The table lists the simulated values of standardized test statistics (7) and (12), from 6000 itera-
tions for each configuration, exceeding the 0.05-quantile of the standard normal. “LM” marks the
Lee-Mykland test and “BNW” our proposed spectral test. We simulated from the model given by
(35), (36) and (37). In parentheses ( )∗, we report the values from Table 4 in Lee and Mykland
(2012) of their analogous simulation study. Following Table 5 in Lee and Mykland (2012), we
used constants c = 1/19 for q = 0.0005 and c = 1/9 for q = 0.005 to determine Mn in (7) (for
∆Xτ = 2q, 3q and q = 0.005, we doubled Mn, which increased the power). For (12), we used
hn = κ log (n)/

√
n with κ ≈ 5/12 for q = .0005 and κ ≈ 2/3 for q = .005.

Table 2: Comparison of RMSEs for the two price-jump size estimators.

Moderate noise case, q = 0.0005

Frequency (n) ∆Xτ = q ∆Xτ = 2q ∆Xτ = 3q

Estimator LM BNW LM BNW LM BNW
3 sec (1200) 11.0 9.9 11.1 10.2 11.9 10.8
2 sec (1800) 6.8 5.3 6.9 6.0 7.9 6.8
1 sec (3600) 4.7 2.6 4.8 3.6 6.3 4.7

Large noise case, q = 0.005

Frequency (n) ∆Xτ = q ∆Xτ = 2q ∆Xτ = 3q

Estimator LM BNW LM BNW LM BNW
3 sec (1200) 14.8 14.4 15.0 14.5 15.2 14.5
2 sec (1800) 10.0 9.4 10.2 9.5 10.6 9.5
1 sec (3600) 5.6 4.5 5.9 4.6 6.4 4.6

The table lists the root mean square errors, multiplied by 104, of the estimators
(7) and (12), from 6000 iterations for each configuration under the alternative when
price jumps are present. “LM” marks the Lee-Mykland estimator and “BNW” our
proposed estimator. We simulated from the model given by (35), (36) and (37).
Tuning parameters are reported in Table 1.
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Figure 3: QQ-normal plots for the Lee-Mykland statistic (left) and the spectral, jump statistic (12) (right).
The top panels depict the 6000 iterations when ∆Xτ = 0. The bottom panels show results for the iterations
when ∆Xτ = q = 0.0005.

Figure 4: QQ-normal plots for the DLE (30), with 1-second (left) and 3-second (right) observation frequen-
cies.
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Figure 5: Examples of common price and volatility jumps. Upper figures indicate price processes
as functions of trading hours. Lower figures display the related spectral statistics on 39 10 minute
partitions of the trading day. 2013-08-13: n = 87445, estimated quadratic variation Q̂V = 3.5×10−4,
estimated integrated volatility ˆIV = 6.05 × 10−5. 2013-05-14: n = 40707, Q̂V = 2.29 × 10−4,
ˆIV = 5.86× 10−5.

analysis. We also need a strategy to deal with situations when price jumps occur with less than two

hours in between. However, for the current example this turned out to be of minor relevance as we do

not find many days where this is the case. We propose to group several succeeding jumps together and

analyze if one volatility jump has occurred by looking at windows left and right of the series of jumps.

Table 2 reports the rejection rates for the 5% and 10% significance levels. Results indicate that on a

5% significance level 36% (INTC) up to 75% (AAPL) of jumps in prices are accompanied by jumps

in volatility. For Amazon we find 14 price-volatility jumps with respect to the 5% and identically with

respect to the 10% significance level. In comparison with detected price jumps, it appears that the

rejection rate decreases in the percentage of price jumps. This leads to relatively stable frequencies

of price volatility co-jumps over time across the considered stocks. Referring again to the 5% signif-

icance level, the Apple stock price displays with around 6% of the trading days the lowest frequency

of common price and volatility jumps. With around 17% of trading days Intel has the largest number

19

Figure 5: Price process at the NASDAQ stock exchange of Apple Inc. on two different days with price-
volatility cojumps. Number of trades: 87,445 (left), 40,707 (right).

Table 3: Price and volatility cojumps: NASDAQ order book, 2010-2015.

Conditioning
criteria

# of
cojumps

Price-jump size Volatility-jump size
Q0.25 Q0.5 Q0.75 Q0.25 Q0.5 Q0.75

Panel A: Apple Inc. stock

All jumps 209 -0.095 -0.033 0.048 43.8 88.6 193.4
Positive price jumps
· All 83 0.029 0.070 0.152 -28.4 84.8 180.3
· Market 20 0.073 0.152 0.266 -28.2 124.7 266.0
· Idiosyncratic 63 0.028 0.061 0.119 -28.4 80.6 153.3
Negative price jumps
· All 126 -0.137 -0.084 -0.046 51.4 89.6 216.9
· Market 19 -0.172 -0.110 -0.050 86.2 316.5 504.9
· Idiosyncratic 107 -0.130 -0.084 -0.046 49.4 82.5 174.4
Panel B: Mean across all stocks

All jumps 73.8 -0.115 0.014 0.152 39.2 137.3 299.1
Positive price jumps
· All 38.5 0.108 0.175 0.286 -23.3 114.4 290.7
· Market 9.9 0.139 0.206 0.327 154.2 269.5 361.9
· Idiosyncratic 28.6 0.101 0.164 0.266 -21.8 108.9 230.1
Negative price jumps
· All 35.4 -0.254 -0.160 -0.101 76.7 145.6 315.0
· Market 7.6 -0.283 -0.194 -0.141 168.8 276.8 444.6
· Idiosyncratic 27.9 -0.242 -0.154 -0.098 74.7 119.5 304.2
Quantiles (Q) of the jump distributions are in percent. Market jumps refer to days with jumps in
the NASDAQ composite index. Idiosyncratic jumps refer to days without jumps in the NASDAQ
composite index.
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Figure 6: Scatter plot of price-volatility cojumps. Sample period 2010-2015.

Table 4: The discontinuous leverage across NASDAQ firms.

Row Conditioning Rejection DLE quantiles Correlation quantiles
criteria rate Q0.25 Q0.50 Q0.75 Q0.25 Q0.50 Q0.75

1 All jumps 0.10 -0.37 0.17 1.01 -0.12 0.01 0.15
Positive price jumps

2 · All 0.65 1.14 2.08 3.87 0.11 0.28 0.44
3 · Market 0.89 1.64 2.88 4.48 0.12 0.32 0.55
4 · Idiosyncratic 0.66 0.84 1.63 3.15 0.09 0.26 0.47

Negative price jumps
5 · All 0.63 -3.72 -1.75 -0.88 -0.47 -0.29 -0.09
6 · Market 0.85 -3.75 -2.02 -1.03 -0.62 -0.31 -0.15
7 · Idiosyncratic 0.67 -3.53 -1.69 -0.92 -0.52 -0.32 -0.14

The rejection rate indicates the percentage of firms having a significant DLE. We control the overall signifi-
cance at level α = 0.1 with the step-up procedure of Benjamini and Hochberg (1995). DLE quantiles refer to
a firm’s average DLE, rescaled by ×107. The empirical quantiles contain all DLE and correlation estimates
across firms.
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Appendix. Proofs

Standard localization techniques allow us to assume that there exists a constant Λ, such

that

max {|bs(ω)|, |σs(ω)|, |Xs(ω)|, |δω(s, x)|/γ(x)} ≤ Λ ,

for all (ω, s, x) ∈ (Ω,R+,R), i.e., characteristics are uniformly bounded. We refer to Jacod

and Protter (2012), Section 4.4.1, for a proof.

A.1. Proof of Proposition 3.1

We decompose the observations Ytn
i
into signal Xtn

i
and noise εtn

i
. In order to analyze

the discretization variance from the signal terms, an illustration of the pre-processed price

estimates (8) as a function in the efficient log-returns ∆n
i X is helpful. Reordering addends,

similar as in the proofs of Zhang (2006), we obtain the identity

M−1
n

( l+Mn−1∑
i=l

Ytn
i
−

l−1∑
i=l−Mn

Ytn
i

)
= M−1

n

l+Mn−1∑
i=l

(
Ytn
i
− Ytn

i−Mn

)
=
Mn−1∑
k=1

∆n
l+kY

Mn − k
Mn

+
Mn−1∑
k=0

∆n
l−kY

Mn − k
Mn

. (A.1)

The expectation and variance of noise terms are readily derived using the left-hand side of

(A.1) and the fact that εtn
i
is i.i.d. with mean zero and variance η2. For the signal part, we

exploit the above identity and consider the right-hand side of (A.1). Considering the drift

part Bt =
∫ t

0 bs ds in the pre-processed price estimates (8), we can bound the right-hand

side above by

∣∣∣Mn−1∑
k=1

∆n
l+kB

Mn − k
Mn

+
Mn−1∑
k=0

∆n
l−kB

Mn − k
Mn

∣∣∣ ≤ KMn n
−1 = O(n−1/4) ,

P-almost surely, with a constant K, using the fact that

Mn−1∑
k=1

(1− k/Mn) +
Mn−1∑
k=0

(1− k/Mn) = Mn .

We decompose the signal process, Xt = Bt +Ct +Jt, into its jump component, (Jt)t≥0, and

the continuous Itô semimartingale, (Ct)t≥0. Under Assumption 2 and for r ≥ 1, we can,
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with some constant Kp depending on p, use the estimate

∀s, t ≥ 0 : E
[
|Jt − Js|p

∣∣Fs] ≤ Kp E
[( ∫ t

s

∫
R

(γr(x) ∧ 1)λ(dx)ds
)1/r]

(A.2)

≤ Kp|t− s|(1/r)

to find that the jump terms in the right-hand side of (A.1) satisfy

E
[∣∣∣Mn−1∑

k=1
∆n
l+kJ

Mn − k
Mn

+
Mn−1∑
k=1

∆n
l−kJ

Mn − k
Mn

∣∣∣] = O
(
Mnn

−1/r) ,
with some r < 4/3, where we omit ∆n

l J for l = bτnc+ 1. Thus, the terms multiplied with

n1/4 tend to zero in probability by Markov’s inequality. Because the expectations of all

increments ∆n
i C vanish and E[∆n

l (C + J + ε)|∆Xτ ] = ∆Xτ for l = bτnc + 1, we conclude

that

E
[
TLM (τ ; ∆n

1Y, . . . ,∆n
nY )

)
|∆Xτ

]
= ∆Xτ + OP̄

(
n−1/4) .

In the case that tni = i/n, Itô isometry and the smoothness of the volatility granted by (2)

and (3) imply that for l = bτnc+ 1,

E[(∆n
l+kC)2|Fτ ] = E

[ ∫ (l+k)/n

(l+k−1)/n
σ2
s ds

∣∣Fτ]+OP(n−2)

= σ2
τ

n
+OP

(
n−1

√
Mn/n

)
,

for all k = 1, . . . ,Mn − 1. Analogously, we obtain that

E[(∆n
l−kC)2|Fτ−Mn/n] =

σ2
τ−
n

+OP
(
n−1

√
Mn/n

)
,

for all k = 1, . . . ,Mn − 1. Use of the identities

Mn−1∑
k=0

(1− k/Mn)2 = 1
3Mn + 1

2 + 1
6M

−1
n ,

Mn−1∑
k=1

(1− k/Mn)2 = 1
3Mn −

1
2 + 1

6M
−1
n ,

and the independence of the noise and signal terms yield the asymptotic variance,

Var
(√

Mn T
LM (τ ; ∆n

1Y, . . . ,∆n
nY )

)
→ 1

3(σ2
τ + σ2

τ−) c2 + 2η2
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of the rescaled statistic. The form of the variance in (9) follows from the above. Using that

E[(∆n
l+kC)4|Fτ ] = 3σ4

τ

n2 + OP
(
n−2) , E[(∆n

l−kC)4|Fτ−Mn/n] =
3σ4

τ−
n2 + OP

(
n−2)

and with the assumed existence of E[ε4t ], the Lyapunov criterion with fourth moments ob-

tained from (A.1) yields, together with the above considerations, the central limit theorem

(9).

Next, we prove that the convergence is stable in law. The latter is equivalent to the joint

weak convergence of αn =
√
Mn

(
TLM (τ ; ∆n

1Y, . . . ,∆n
nY ) − ∆Xτ

)
with any G-measurable

bounded random variable Z:

E [Zg(αn)]→ E [Zg(α)] = E[Z]E [g(α)] (A.3)

for any continuous bounded function, g, and

α =
(
1/3(σ2

τ + σ2
τ−)c2 + 2η2)1/2U , (A.4)

with U , a standard normally distributed, random variable that is independent of G. In order

to verify (A.3), consider the sequence An = [(τ −Mn/n) ∨ 0, (τ + Mn/n) ∧ 1]. Each αn is

measurable with respect to the σ-field G1. The sequence of decompositions

C̃(n)t =
∫ t

0
1An(s)σs dWs , C̄(n)t = Ct − C̃(n)t ,

ε̃(n)t = 1An(t)εt , ε̄(n)t = εt − ε̃(n)t ,

of (Ct)t≥0 and (εt)t≥0 are well-defined. If Hn denotes the σ-field generated by C̄(n)t, ε̄(n)t

and F0, then
(
Hn
)
n
is an isotonic sequence with

∨
nHn = G1. Since E[Z|Hn]→ Z in L1(P),

it thus suffices that

E[Zg(αn)]→ E[Z g(α)] = E[Z]E[g(α)] , (A.5)

for Z being Hq measurable for some q. Note that we can approximate the volatility to be

constant over local intervals [τ−Mn/n, τ) and [τ, τ+Mn/n]. Then, for all n ≥ q, conditional

on Hq, αn has a law independent of C̄(n)t and ε̄(n)t, such that the ordinary central limit
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theorem implies the claimed convergence.

A.2. Proof of Proposition 3.2

A neat decomposition of the spectral statistics into observation errors and returns of the

efficient price is obtained with summation by parts

Sj(τ) =
( n∑
i=1

∆n
i XΦj,τ ((tni−1 + tni )/2)−

n−1∑
i=1

εtn
i
Φ′j,τ (tni )

tni+1 − tni−1
2

)
(1 + OP̄(1)) , (A.6)

where the asymptotically negligible remainder comes from approximating

Φj,τ ((tni+1 + tni )/2) − Φj,τ ((tni−1 + tni )/2) with the derivative and end-effects. The system

of derivatives (Φ′j,τ )j≥1 is again orthogonal such that covariances between different spectral

frequencies vanish.

First, we prove that the drift is asymptotically negligible under Assumption 1. Because∫ 1
0 Φj,τ (t) dt = 2

√
2hn/(πj) and

∫ 1
0
∣∣Φj,τ (t)

∣∣ dt = 2
√

2hn/π, we get with generic constant K

that P-almost surely

∣∣∣ n∑
i=1

∆n
i B Φj,τ ((tni−1 + tni )/2)

∣∣∣ ≤ K n∑
i=1

(tni − tni−1)
∣∣Φj,τ ((tni−1 + tni )/2)

∣∣ ≤ K √hn
π

,

and thus

∣∣∣ Jn∑
j=1

(−1)j+1a2j−1

n∑
i=1

∆n
i B Φj,τ ((tni−1 + tni )/2)

∣∣∣ ≤ K Jn∑
j=1

(1 + j2h−2
n /n)−1

√
hn

= K

Jn∑
j=1

(
1 + j2

κ2 log2(n)

)−1√
hn

≤ K
( log(n)∑

j=1

√
hn +

Jn∑
j=1

j−2
√
hn log2 (n)

)
≤ K log2(n)

√
hn .

This yields that P-almost surely

n1/4
√
hn
2

∣∣∣ Jn∑
j=1

(−1)j+1a2j−1

n∑
i=1

∆n
i B Φj,τ ((tni−1 + tni )/2)

∣∣∣→ 0 ,

which ensures that we can neglect the drift in the asymptotic analysis of (12).

Next, we analyze the variance of (12) with oracle optimal weights (13). A locally constant

approximation of σs, s ∈ [τ − hn/2, τ) and σs, s ∈ [τ, τ + hn/2] is asymptotically negligible
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under Assumption 1. Based on (A.6), using the fact that

∫ τ

τ−hn/2
Φ2
j,τ (t) dt =

∫ τ+hn/2

τ

Φ2
j,τ (t) dt = 1/2 ,

yields the following variances of spectral statistics:

Var
(
Sj(τ)

)
= 1

2(σ2
τ + σ2

τ−) + π2j2

h2
n

η2

n
.

We thus obtain the conditional variance,

Var
(
n1/4 T (τ ; ∆n

1Y, . . . ,∆n
nY )

∣∣Fτ)
= n1/2

( Jn∑
j=1

(1
2(σ2

τ + σ2
τ−) + π2(2j − 1)2h−2

n n−1η2)−1
)−1

hn/2 + OP̄(1)

= 1
2

(∑Jn
j=1( 1

2 (σ2
τ + σ2

τ−) + π2(2j − 1)2h−2
n n−1η2)−1

log(n)

)−1
+ OP̄(1)

= 1
2

(∫ ∞
0

1
1
2 (σ2

τ + σ2
τ−) + π2(2z)2η2 dz

)−1
(1 + O(1)) + OP̄(1)

= 2
(σ2

τ + σ2
τ−

2

)1/2
η + OP̄(1) .

With δn ≤ n−1, l = bτnc+ 1, we have that

E
[
T (τ ; ∆n

1Y, . . . ,∆n
nY )|∆Xτ

]
=
√
hn
2

Jn∑
j=1

a2j−1(−1)j+1Φ2j−1,τ (τ + δn)E[∆n
l Y |∆Xτ ] + OP̄(n−1/4)

=
√
hn
2

Jn∑
j=1

a2j−1(−1)j+1Φ2j−1,τ (τ + δn)∆Xτ + OP̄(n−1/4)

= (1 + O(δn))∆Xτ + OP̄(n−1/4) .

Considering further jumps on the estimation window, (A.2) yields for some constant K

E
[∣∣∣ Jn∑
j=1

(−1)j+1a2j−1
∑
i 6=l

∆n
i J Φj,τ ((tni−1 + tni )/2)

∣∣∣] ≤ K log2(n)
√
hn sup

i
|tni − tni−1|1/r−1

by the triangle inequality, decomposing |tni − tni−1|1/r = (tni − tni−1)|tni − tni−1|1/r−1 and using

the same Riemann sum approximation as for the drift terms above. As for the Lee-Mykland

statistic, r < 4/3 ensures asymptotic negligibility of further jumps on [τ − hn/2, τ + hn/2].
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Since we assume E[ε4t ] <∞, we can establish a Lyapunov condition with fourth moments.

Integral approximations with
∫ 1

0 Φ4
j,τ (t) dt and

∫ 1
0 (Φ′j,τ )4(t) dt yield, with generic constant

C, for all j,

n
h2
n

4

n∑
i=1

E[(∆n
i X)4]Φ4

j,τ ((tni−1 + tni )/2) ≤ Cnh2
n n
−1 3

2h
−1
n = O(hn)

as well as,

n
h2
n

4

n∑
i=1

E[(εtn
i
)4](Φ′j,τ )4(tni )(tni+1 − tni−1)4/16 ≤ Cnh2

n h
−5
n n−3 log5(n)

≤ Cn−1/2 log2(n) .

Considering signal and noise terms separately, we derive for the signal terms with Jensen’s

inequality for weighted sums,

n
h2
n

4

n∑
i=1

E
[(

∆n
i X

Jn∑
j=1

(−1)j+1a2j−1Φ2j−1,τ ((tni−1 + tni )/2)
)4]

≤ nh
2
n

4

n∑
i=1

E[(∆n
i X)4]

Jn∑
j=1

a2j−1Φ4
2j−1,τ ((tni−1 + tni )/2) = O

( Jn∑
j=1

a2j−1 hn

)
= O(hn) .

An analogous bound by Jensen’s inequality for the noise terms implies the Lyapunov con-

dition.

Stability of weak convergence is proved along the same lines as for Proposition 3.1 and

we omit the proof. It remains to show that

E
[∣∣∣ Jn∑
j=1

(−1)j+1(â2j−1 − a2j−1
)
S2j−1(τ)

√
hn/2

∣∣∣] = OP̄
(
n−1/4) , (A.7)

where â2j−1 denotes the estimated oracle weights, to prove the claimed result. Using the

triangle and Hölder’s inequalities, we can bound the right-hand side of (A.7) by

Jn∑
j=1

E
[∣∣â2j−1 − a2j−1

∣∣ ∣∣S2j−1(τ)
∣∣]√hn

2

≤
Jn∑
j=1

(
E
[∣∣â2j−1 − a2j−1

∣∣2]E[∣∣S2j−1(τ)
∣∣2])1/2

√
hn
2 .

In order to analyze the magnitude of the error of pre-estimating the weights,
∣∣â2j−1−a2j−1

∣∣2,
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we interpret (13) as a function of the variables σ2
τ , σ2

τ− and η2. Differential calculus and the

delta method yield the upper bound,

Jn∑
j=1

K
(
a2

2j−1
(
δn(σ2

τ ) + δn(η2)
)2 Var(S2j−1(τ))

)1/2√
hn/2

≤
Jn∑
j=1

K δn(σ2
τ )

(
Var(S2j−1(τ))

)−1/2∑Jn
u=1

(
Var(S2u−1(τ))

)−1

√
hn/2

≤
Jn∑
j=1

K
(

1 + j2

log2(n)

)−1/2
δn(σ2

τ )
√
hn/2 = O

(
log3(n)δn(σ2

τ )
√
hn

)
= O

(
n−1/4),

for the right-hand side of (A.7) with generic constant K and bounds δn(σ2
τ ) ≤ Kn−1/8 and

δn(η2) ≤ Kn−1/2 for the errors of pre-estimating σ2
τ , σ2

τ− and η2 with (14a) and (14b),

respectively. This ensures (A.7) and completes the proof of Proposition 3.2.

A.3. Proof of Proposition 3.3

The proof reduces to generalizing the analysis of the asymptotic variance and fourth

moments for a Lyapunov condition. Consider the noise term on the right-hand side of (A.6)

under R-dependent noise and for tni = F−1(i/n). The expectation still vanishes and the

variance becomes the following:

E

[( n−1∑
i=1

εtn
i
Φ′j,τ (tni ) t

n
i+1−t

n
i−1

2

)2
]

= E

[
n−1∑
i=1

ε2tn
i
(Φ′j,τ (tni ))2( tni+1−t

n
i−1

2
)2+2

n−1∑
i=1

R∧(n−i)∑
u=1

εtn
i
εtn
i+u

Φ′j,τ (tni )Φ′j,τ (tni+u) t
n
i+1−t

n
i−1

2
tni+u+1−t

n
i+u−1

2

]

= E

[
n−1∑
i=1

(Φ′j,τ (tni ))2 t
n
i+1−t

n
i−1

2 (F−1)′(τ)n−1
(
ε2tn
i

+
R∧(n−i)∑
u=1

εtn
i
εtn
i+1

)]
(1 + O(1))

= η2
τ (F−1)′(τ)n−1

∫ 1

0
Φ′j,τ (t) dt(1 + O(1)) = η2

τ (F−1)′(τ)n−1π2j2h−2
n (1 + O(1)) .

We used the smoothness of (F−1)′ and Φ′j,τ for approximations. The same Riemann sum

approximation as in the equidistant observations case applies for the signal term. Using a

(double-Riemann sum) integral approximation as Jn → ∞, analogously as in the proof of

Proposition 3.2, yields the asymptotic variance in (18). Introducing the shortcut, δRi,v =

1{|i−v|≤R}, we obtain the following estimates for the fourth moments:

E

[( n−1∑
i=1

εtn
i
Φ′j,τ (tni ) t

n
i+1−t

n
i−1

2

)4
]
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= E

[
n−1∑

i,v,u,r=1
εtn
i
εtnv εtnuεtnr Φ′j,τ (tni )Φ′j,τ (tnv )Φ′j,τ (tnu)Φ′j,τ (tnr ) t

n
i+1−t

n
i−1

2
tnv+1−t

n
v−1

2

× tnu+1−t
n
u−1

2
tnr+1−t

n
r−1

2

]

=
n−1∑

i,v,u,r=1
E
[
εtn
i
εtnv εtnuεtnr

](
δRi,vδ

R
u,r + δRi,uδ

R
v,r + δRi,rδ

R
v,u

)
Φ′j,τ (tni )Φ′j,τ (tnv )

× Φ′j,τ (tnu)Φ′j,τ (tnr ) t
n
i+1−t

n
i−1

2
tnv+1−t

n
v−1

2
tnu+1−t

n
u−1

2
tnr+1−t

n
r−1

2

=
(
(F−1(τ))′

)23 η4
τ n
−2 −Rn ,

with a remainder, Rn, that satisfies for some constant C that

Rn ≤
np∑

i,v,u,r=1
C
(
δRi,vδ

R
u,r

(
δRi,u + δRv,r + δRi,r + δRv,u

)
+ δRi,uδ

R
v,r

(
δRi,v + δRu,r + δRi,r + δRv,u

)
+ δRi,rδ

R
v,u

(
δRi,v + δRu,r + δRi,u + δRv,r

))
n−4

= O
(
nR3n−4) = O

(
n−3) = O

(
n−2) ,

such that Rn is asymptotically negligible. Inserting the estimate, the Lyapunov condition is

ensured in the generalized setting. Under R-dependence, the convergence of the generalized

variance and the generalized Lyapunov criterion imply the central limit theorem (18) and

stability is proved analogously as above.

A.4. Proof of Proposition 3.5

Suppose that τ ∈ ((k − 1)hn, khn) and we run the procedure from (26) to find a sub-

interval that contains the jump. The variances of the statistics TLM
(
(k − 1)hn + (i −

1/2) rn+ln
n ; ∆n

1Y, . . . ,∆n
nY
)
, i = 1, . . . , Rn, defined as in (7) withMn replaced by (rn+ ln)/2,

are readily obtained from (A.1) and given by

Var
(
TLM

(
(k − 1)hn + (i− 1/2)rn + ln

n
; ∆n

1Y, . . . ,∆n
nY
))

=
4η2

(k−1)hn
rn + ln

+ ln
n

σ2
τ−
3 + rn

n

σ2
τ

3 + O
(rn + ln

n

)
.

In particular, for rn + ln = O(
√
n), remainders in the proof of Proposition 3.1 become even

smaller and the noise term prevails in the variance, such that, for all i,

√
rn + ln T

LM
(
(k−1)hn+(i−1/2) rn+ln

n ; ∆n
1 (C+ε), . . . ,∆n

n(C+ε)
) (st)−→MN

(
0, 4η2

(k−1)hn
)
,
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with Ct the continuous semimartingale part of Xt. Since, under Assumption 3, covariances

between

( 2
rn + ln

Ti+(rn+ln)/2−1∑
j=Ti

(
εtn
j
−εtn

j−(rn+ln)/2

))
i=1,...,Rn

, Ti = b(k−1)hn nc+(i−1/2)(rn+ln)+1,

are negligible, we deduce joint weak convergence to i.i.d. Gaussian limit random variables.

Similarly as in Lee and Mykland (2012), using basic extreme value theory, we derive that

B−1
n

(
max

i=1,...,Rn

√
rn + ln T

LM
(
(k−1)hn + (i−1/2) rn+ln

n ; ∆n
1 (C + ε), . . . ,∆n

n(C + ε)
)
−An

)
(st)−→ ξ ,

with ξ a standard Gumbel random variable and

An = 2η(k−1)hn
√

2 log(Rn)− η(k−1)hn
log(4π log(Rn))√

2 log(Rn)
, B−1

n =
√

log(Rn)√
2η(k−1)hn

.

For (rn + ln) ∝ nδ, δ > 0, and if the jump is not located very close to the edges between the

sub-intervals, the statistic on the sub-interval with the jump tends to infinity. That is, for

Mn = max
i=1,...,Rn

TLM
(
(k − 1)hn + (i− 1/2) rn+ln

n ; ∆n
1Y, . . . ,∆n

nY
)
,

where now (∆n
j Y ) are inserted, not (∆n

j (C + ε)), we have that

√
rn + lnMn −An →∞ .

As long as Mn > (rn + ln)−1/2+ε for some ε > 0, this holds true. We need to carefully

consider the potential bias issue discussed at the end of Section 3.1. The probability that

Mn ≤ (rn + ln)−1/2+ε translates to the probability that a jump is located in some small

(in n decreasing) vicinity of the block edges. Using that jump times are locally uniformly

distributed, we obtain that

P
(
Mn ≤ (rn + ln)− 1

2 +ε) = P
(

min
i=1,...,Rn

∣∣∣τ − (k − 1)hn − (i− 1) rn+ln
n

∣∣∣ ≤ (rn + ln) 1
2 +ε

n

)
= P

(
U ∈ (0, 2(rn + ln)−1/2+ε)

)
= O

(
(rn + ln)−1/2+ε) ,

with U a random variable uniformly distributed on [0, 1] and using the symmetry. Ap-

parently, the probability converges to zero for ε sufficiently small. This implies that, for
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any such choice of Rn and rn + ln, the procedure asymptotically almost surely detects the

sub-interval which contains the jump.

Assigning jump times to a bin by thresholding induces a negligible error. This is proved

analogously as in the proof of Proposition 3.6 in the next paragraph.

Cutting out noisy prices in the window (tnl−ln , t
n
l+rn) around τ , the adjusted statistics (12)

are asymptotically unbiased estimators of ∆Xτ . Considering their asymptotic properties,

we can exploit most parts of the proof of Proposition 3.2. The only relevant difference is

due to the increment over the cut-out window in the spectral statistics

√
hn
2

Jn∑
j=1

(−1)j+1a2j−1(Ytn
l+rn
− Ytn

l−ln
)Φ2j−1,τ (τ) .

The increments Ytn
l+rn
− Ytn

l−ln
take the role of ∆n

l Y , l = bτnc + 1, where the window of

statistics (12) is centered. Using Jensen’s inequality, we obtain that

E
[(√hn

2

Jn∑
j=1

a2j−1(−1)j+1Φ2j−1,τ (τ)(Xtn
l+rn
−Xtn

l−ln
)
)2]

≤ hn
2

Jn∑
j=1

a2j−1Φ2
2j−1,τ (τ)E

[
(Xtn

l+rn
−Xtn

l−ln
)2]

≤ max(σ2
τ , σ

2
τ−)(tnl+rn − t

n
l−ln) = O(n−1/2) .

Since Φ′2j−1,τ (τ) = 0, the summation by parts transformation (A.6) shows that the variance

due to noise is not affected by the adjustment. Overall, we conclude that for the adjusted

estimator,

|∆̂Xτ − T (τ ; ∆n
1Y, . . . ,∆n

nY )| = OP̄(n−1/4) .

We conclude the result with Proposition 3.3.

A.5. Proof of Propositions 3.6 and 3.7

Denoting the finitely many stopping times with |∆Xτk | > a, as τ1, . . . , τN , (28) can be

written

[X,σ2]dT (a) =
N∑
k=1

∆Xτk

(
σ2
τk
− σ2

τk−
)
.

The estimator (29) then becomes

̂[X,σ2]
d

1(a) =
N̂∑
k=1

∆̂X τ̂k

(
σ̂2
τ̂k
− σ̂2

τ̂k−
)
.

46



The case without price jumps on the considered interval, N = 0, is trivial. Consider the set

Ω̃n =
{
ω ∈ Ω|τ1 > k−1

n hn, τN < 1− k−1
n hn, τi − τi−1 > 2k−1

n hn , i = 1, . . . , N − 1
}

∪
{
ω ∈ Ω|τi = k · hn , i = 1, . . . , N − 1, k = 0, . . . , h−1

n − 1
}{

.

We can restrict to the subset Ω̃n, since P(Ω̃n) → 1 as n → ∞. We infer the jump times

{τi, i = 1, . . . , N}, or the respective bins on which jumps occur by thresholding. To show

that this identification of jump times only induces an asymptotically negligible error, we

prove that

∣∣∣ h−1
n −1∑
k=2

∆̂X τ̂k

(
σ̂2
τ̂k
− σ̂2

τ̂k−
)
1{∆k [̂X,X]>a2∨un}

−
N∑
k=1

∆̂Xτk

(
σ̂2
τk
− σ̂2

τk−
)∣∣∣ = OP̄

(
n−β/2

)
.

This is ensured by Corollary 3.4 and by Proposition 3.5 if

h−1
n −1∑
k=2

∣∣1{∆k [̂X,X]>a2∨un}
− 1{τi∈((k−1)hn,khn)}

∣∣ = OP̄
(
n−1/8) .

Denote K = {1 ≤ k ≤ h−1
n |τi ∈ ((k − 1)hn, khn)} and K{ = {2, . . . , h−1

n − 1} \ K. The last

relation can be rewritten

∑
k∈K

1{∆k [̂X,X]≤a2∨un}
+
∑
k∈K{

1{∆k [̂X,X]>a2∨un}
= OP̄

(
n−1/8) . (A.8)

For each k in the finite set K, we prove that

1{∆k [̂X,X]≤a2∨un}
= OP̄

(
n−1/8) .

The restriction to Ω̃n ensures that the considered jumps cannot occur on neighboring bins.

Corollary 3.3 and its proof in Bibinger and Winkelmann (2015) establishes that ∆k [̂X,X] =

(∆Xτi)2 + χi with Var(χi) = O(n−1/2). More precisely, as outlined in Section 3.1.3 of

Bibinger and Winkelmann (2015), for τi ∈ ((k − 1)hn, khn), we have that

E[hn S2
jk] = 2 sin2(πjh−1

n (τi − (k − 1)hn))(∆Xτi)2 +O(hn) ,

E[hn max(S̃2
jk, S̃

2
j(k+1))] = 2 cos2(πjh−1

n (τi − (k − 1)hn))(∆Xτi)2 +O(hn) .
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The contribution with the cosine term is by S̃2
jk when τi ∈ ((k − 1)hn, (k − 1/2)hn) and by

S̃2
j(k+1) when τi ∈ ((k − 1/2)hn, khn). When τi = (k − 1/2)hn, the cosine vanishes. Since

the Lévy measure does not have an atom in a, it thus holds that, for some fixed ε > 0,

∆k [̂X,X] = a2 + ε+ χi .

Using Chebyshev’s inequality, we derive that

P̄
(
∆k [̂X,X] ≤ a2 ∨ un

)
≤ P̄

(
|χi| > ε− un

)
= O

(
n−1/2) .

Considering indicator functions 1An with pn = P̄(An) → 0, using that E[1An ] = pn and

Var(1An) ≤ pn, we obtain that

∑
k∈K

1{∆k [̂X,X]≤a2∨un}
= OP̄

(
n−1/4) = OP̄

(
n−1/8) . (A.9)

Due to the maximum operator in (24), the term with the square cosine factor above feeds

in two successive statistics. The cosine giving some factor bounded from above by one, we

have for τi ∈ ((k − 1)hn, khn) that

ζ̃adk > max(ζ̃adk−1, ζ̃
ad
k+1) ,

asymptotically almost surely. We conclude that the first sum in (A.8) is asymptotically

negligible.

For k ∈ K{, neighboring a bin with k± 1 ∈ K, it holds asymptotically almost surely that

ζ̃adk < max(ζ̃adk−1, ζ̃
ad
k+1), such that the indicator function sets it to zero. For all other k ∈ K{

we have that ∆k [̂X,X] = hnζ̃k with ζ̃k the local estimate for σ2
(k−1)hn satisfying by Lemma

2 of Bibinger and Winkelmann (2018) the upper moment bound

E
[
|ζ̃k|4+δ] = O

(
log(n)

)
for δ from Assumption 3. Markov’s inequality yields for k ∈ K{

P̄
(
∆k [̂X,X] > a2 ∨ un

)
= O

(
h4+δ
n log(n)

(
a2 ∨ un

)(4+δ)
)
.
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Thereby we obtain that

∑
k∈K{

1{∆k [̂X,X]>a2∨un}
= OP̄

(
h−1
n h2+δ/2

n

√
log(n)

(
a2 ∨ un

)(2+δ/2)
)
. (A.10)

If a > 0, then this sum decays very fast as n→∞ and we clearly have OP̄(n−1/8). If a = 0,

then the resulting order is h1+δ/2
n

√
log(n)h−$(2+δ/2)

n and the term is OP̄(n−1/8) when

$ <
1 + δ/2− 1/4

2 + δ/2 .

A slightly stronger condition even implies the summability,

∑
n∈N

P̄
( ∑
k∈K{

1{∆k [̂X,X]>a2∨un}
> 0
)
<∞ ,

and thus the almost sure convergence by Borel-Cantelli. With (A.10), we deduce (A.8) and

are left to consider price and volatility-jump estimates at times τ̂i, i = 1, . . . , N̂ . In both

cases, a > 0 or a = 0 when r = 0 in Assumption 2, N <∞ holds almost surely. On Ω̃n, all

involved local estimates for different price-jump times τi, i = 1, . . . , N , are computed from

disjoint datasets. The latter are not necessarily independent, but all covariations converge

to zero asymptotically. For the single price-jump estimates, we have by Proposition 3.5 that

∆̂X τ̂i = ∆Xτ̂i +OP̄
(
n−1/4) .

Based on Corollary 3.4, we obtain that

((
σ̂2
τ̂i − σ̂

2
τ̂i−
)
−∆σ2

τ̂i

) (st)−→
√

8(σ3
τ̂i

+ σ3
τ̂i−)ητ̂iZi ,

for all i = 1, . . . , N̂ , with β from (23) and (Zi) i.i.d. standard normals. By the asymptotic

negligibility of covariations, the vector

nβ/2
(
σ̂2
τ̂1 − σ̂

2
τ̂1−, . . . , σ̂

2
τ̂N̂
− σ̂2

τ̂N̂−

) (st)−→
(
U1, . . . , UN̂

)
, (A.12)

converges stably in law, where U1, . . . , UN̂ are independent and Ui =
√

8(σ3
τ̂i

+ σ3
τ̂i−)ητ̂iZi.

Altogether, the asymptotic orders of different error terms and standard relations for weak
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and stochastic convergences imply (30).

A.6. Proof of Corollary 3.8

According to the proof of Propositions 3.6 and 3.7, the identification of bins with (large)

jumps only induces an asymptotically negligible error. We are thus left to consider

∑N̂
k=1 ∆̂X τ̂k

(
σ̂2
τ̂k
− σ̂2

τ̂k−
)(∑N̂

k=1
(
∆̂X τ̂k

)2∑N̂
k=1

(
σ̂2
τ̂k
− σ̂2

τ̂k−
)2)1/2 −

∑N̂
k=1 ∆X τ̂k∆σ2

τ̂k(∑N̂
k=1

(
∆X τ̂k

)2∑N̂
k=1

(
∆σ2

τ̂k

)2)1/2 .

From (A.12), we adopt that

nβ/2
( N̂∑
k=1

(
∆̂X τ̂k

(
σ̂2
τ̂k
− σ̂2

τ̂k−
)
−∆X τ̂k∆σ2

τ̂k

)) (st)−→
N̂∑
k=1

∆X τ̂kUk .

In the estimation of the discontinuous leverage, the estimation error of (∆σ2
τ̂k

) dominates

the smaller error of estimating (∆X τ̂k). Analogously, for estimating (33)

N̂∑
k=1

((
∆̂X τ̂k

)2 − (∆X τ̂k

)2) = OP̄
(
n−1/4) ,

readily obtained from Proposition 3.3 and the delta method, induces an error that is negli-

gible at first asymptotic order. For the second variation, we deduce that

nβ/2
N̂∑
k=1

((
σ̂2
τ̂k
− σ̂2

τ̂k−
)2 − (∆σ2

τ̂k

)2) (st)−→
N̂∑
k=1

2∆σ2
τ̂k
Uk ,

from (A.12) and applying the binomial formula or the delta method for the square function.

Another application of the delta method yields

nβ/2
( ̂[X,σ2]

d

1(a)√
[̂X,X]

d

1(a) ̂[σ2, σ2]
d

1(a)
− [X,σ2]d1(a)√

[X,X]d1(a)[σ2, σ2]d1(a)

)

=
N̂k∑
k=1

Uk

(
∆X τ̂k(

[X,X]d1(a)[σ2, σ2]d1(a)
)1/2 − ∆σ2

τ̂k
[X,σ2]d1(a)(

[X,X]d1(a)
)1/2([σ2, σ2]d1(a)

)3/2)+ OP̄(1) ,

such that we obtain a stable central limit theorem with rate nβ/2 and asymptotic variance

8(σ3
τ̂k

+ σ3
τ̂k−)ητ̂k

[X,X]d1(a)[σ2, σ2]d1(a)

(
∆X τ̂k −

∆σ2
τ̂k

[X,σ2]d1(a)
[σ2, σ2]d1(a)

)2
.

This implies Corollary 3.8.
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