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Abstract

We model the term structure of implied volatility (TSIV) with an adaptive approach

to improve predictability, which treats dynamic time series models of globally time-

varying but locally constant parameters and uses a data-driven procedure to find the

local optimal interval. We choose two specifications of the adaptive models: a simple

local AR (LAR) model for a univariate implied volatility series and an adaptive dynamic

Nelson-Siegel (ADNS) model of three factors, each based on an LAR, to model the cross-

section of the TSIV simultaneously with parsimony. Both LAR and ADNS models

uniformly outperform more than a dozen alternative models with significance across

maturities for 1-20 day forecast horizons. Measured by RMSE and MAE, the forecast

errors of the random walk model can be reduced by between 20% and 60% for the 5 to

20 days ahead forecast. In terms of prediction accuracy of future directional changes,

the adaptive models achieve an accuracy range of 60%-90%, which strictly dominates

the range of 30%-59% of the alternative models.
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1 Introduction

Option prices contain rich information about future underlying asset returns as well as

volatilities. Canina and Figlewski (1993) and Jiang and Tian (2005) find that the implied

volatility of the at-the-money option is a more effi cient forecast of realized volatility than

volatility measures based on historical data. Breeden and Litzenberger (1978) and volumin-

ous following studies show that, for a given maturity, the entire risk-neutral distribution of

the underlying asset returns is foreseen in option prices across the strikes as market investors

with heterogeneous expectations about the future price movement trade at different strike

prices.

In comparison, the information content of implied volatilities along the maturity dimen-

sion, i.e., the term structure of implied volatilities (TSIV), is less explored. Stein (1989) finds

that option implied volatilities of long terms overreact to shocks to the short term volatility,

which is inconsistent with the expectation hypothesis. Since then, Diz and Finucane (1993),

Heynen et al. (1994), Campa and Chang (1995), Byoun et al. (2003), and Mixon (2007)

debate whether the expecation hypothesis holds for the implied volatility term structure

and do not reach consensus. Some studies conclude that implied volatilities with different

durations do behave differently (see, for example, Xu and Taylor, 1994; Christoffersen et

al., 2008; Guo et al., 2014). However, it remains unclear how useful the information from

the entire term structure is for out-of-sample prediction and how performance varies for

different forecast horizons.

We examine this issue using an adaptive approach. The adaptive approach is first pro-

posed in Mercurio and Spokoiny (2004) to forecast volatility where the basic model is simply

a varying mean process, and is shown to outperform the more sophisticated GARCH model

in the out-of-sample prediction. The approach takes a non-parametric view of the persist-

ence of time series and considers nonstationarity to be generated by time-varying structures

in the underlying models. Time series possessing these properties can be observationally

equivalent to processes generated by long memory models or models with sophisticated time-

varying mechanisms such as clustering properties, abrupt or smooth structural breaks, or

regime-switchs, etc., see Diebold and Inoue (2001) and Granger and Hyung (2004) for ex-

amples. Chen et al. (2010) extend the approach further with a local AR (LAR) model

with time-varying parameters and demonstrate its superiority in out-of-sample forecasts

for realized volatility against several popular long memory models and regime switching

models. Moreover, Giacomini et al. (2009) estimate portfolio risk with the time-varying

copula model. Spokoiny et al. (2013) extend the local approach to a quantile regression to

investigate the tail dependence of the Hong Kong stock market and to analyze the distri-

butions of the risk factors of temperature dynamics. Chen and Niu (2014) apply an LAR

model with exogenous variables (LARX) to successfully forecast the yield curve. Haerdle et
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al. (2015) develop a local adaptive multiplicative error model for high-frequency forecasts.

In these works, choosing a sophisticated yet simple model as the local model is the key for

successful application, especially for forecast performance.

Recognizing that implied volatility, as with many other financial time series, is often

highly persistent with nonstationary features, we treat the series as globally time-changing,

but locally stationary, processes. We apply a LAR model as a basic specification to forecast

the implied volatility of a particular term and strike price, and an adaptive dynamic term

structure model built on the LAR as an extended specification for the TSIV of a strike

price, one of the Adaptive Dynamic Nelson-Siegel (ADNS) models without exogenous mac-

rovariables used in Chen and Niu (2014) for yield curve modeling. More specifically, we

propose two specifications of the adaptive model. The first models the single implied volat-

ility as a univariate time series; the other models the entire term structure given a strike

price to explore information across maturity. Mimicking a real-time forecasting senario, at

each point in time, we model the time series parametrically with past historic information.

We assume that the parameters are approximately constant (homogeneous), but only up

to a point beyond which homogeneity will be rejected by a statistical test. Once the test

procedure selects the longest possible homonegeous interval, the prediction is made, assum-

ing that the homogeneity will remain within the forecast horizon. This adaptive approach,

thus, strikes a balance between information effi ciency and stationarity concerns. It not only

uses the longest sample possible under homogeneity to increase information effi ciency, but

also limits the sample to a properly chosen interval to reduce parameter instability. As

comparisons, we use thirteen models assessed in Guo et al. (2018).

The results are encouraging. The adaptive models dramatically outperform the altern-

ative models. The ADNS model is more parsimoneous with higher effi ciency for the whole

TSIV than the LAR model for a single IV. While Guo et al. (2018) find their models may

slightly improve predictability against the random walk benchmark model up to the 5-day

horizon, we find that our two adaptive models strongly improve predictability against their

models up to the 20-day horizon; the longer the horizon, the better the performance. The

key driving force is the adaptive process used. The LAR for a single IV and ADNS for

the TSIV perform almost equally well, and both, remarkably, outperform the random walk

model in all combinations of maturity and horizon. The ADNS parsimonously combines

cross-section information in three factor LAR prosesses without modeling each maturity

separately.

In a striking comparison to the marginal improvement of other models relative to the

random walk, the ADNS significantly reduces forecasting errors for almost all maturities.

For example, when it comes to forecast the 20-day ahead implied volatility for 730-day

maturity calls, the root mean squared errors (RMSE) and mean absolute errors (MAE)
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for the ADNS are only 59% and 46% of those of the random walk model, while the best

forecast among the other models does not beat the random walk model. Moreover, no single

model, except the ADNS, consistently beats the benchmark random walk model across all

forecast horizons. Results of out-of-sample R2 also demonstrate that only the adaptive

models can outperform random walk on 5- to 20-days forecast horizons. We further verify

the statistical significance of the adaptive models against all models 5- to 20-days forecast

horizons by computing the Diebold-Mariano (DM) (Diebold and Mariano, 1995) and the

Clark-West (CW) (Clark and West, 2006, 2007) test statistics. In terms of the directional

forecast of future changes, while alternative models accurately predict between 30% and

59% of the time, the adaptive models have prediction accuracy ranged between 60% and

90%.

The clear dominance of our adaptive models over other models suggests the power of

adaptive forecasting with suitable local models; prediction accuracy increases further for

longer maturities and longer horizons.

Our work is closely related to the literature on implied volatility surface (IVS) modeling.

Mapping option price quotes in terms of implied volatility against the maturity and strike

price dimensions generates the IVS. For practitioners, forecasting the IVS has become more

and more important for risk management and in developing trading strategies, and is crucial

in the market of volatility derivatives. In the academic literature, the joint dynamics of the

IVS are often factorized along both dimensions of strike price and maturity, as shown

by Gonclaves and Guidolin (2006) and Neumann and Skiadopoulos (2013), among many

others. The strike price dimension, widely known as the option smile, has received much

more attention than the maturity dimension. The sources and implications of the implied

volatility smile on the underlying asset returns are often emphasized. For example, Bollen

and Whaley (2004) proposes net hedging demand as an alternative explanation of the

option smile beyond stochastic volatility and jumps in asset prices. In this paper, we focus

on the information content embodied in the TSIV in terms of out-of-sample forecasting.

Understanding the role of the TSIV in implied volatility forecasting is necessary and helpful

for IVS modeling.

Our study is also related to the emerging literature on the VIX and VIX derivatives.

Luo and Zhang (2012) find that the VIX with different times to maturity subsumes all

information contained in historical volatilities. However, they do not consider using the

information of the entire term structure to predict future implied volatilities. Zhu and Zhang

(2007) and Lin (2013) both show that modeling the variance term structure is important for

VIX derivatives pricing. In our robustness check with the VIX futures term structure data,

we demonstrate the power of using the adaptive methods to predict VIX futures directly.

Finally, our study can be included in the multi-factor stochastic volatility models liter-
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ature. Christoffersen et al. (2008) and Christoffersen et al. (2009) show that a two-factor

volatility model which breaks volatility into long-run and short-run components assists

option price modeling. Our empirical results are consistent with these studies as we demon-

strate that that the information from the entire term structure is useful in predicitng future

implied volatilities.

The rest of the paper is organized as follows. Section 2 describes the data, providing

strong evidence for persistence and against TSIV stationarity. Section 3 describes the

ADNS for modeling and forecasting with the LAR model as a dynamic element. Section 4

reports the forecast results and Section 5 concludes.

2 Data

We use two data sets to verify the predictive accuracy of the adaptive models against

alternative popular models. The first data set is the daily implied volatility data of S&P

500 index call options from 1996 to 2011, a total of 16 years, which is the same sample as

explored in Guo et al. (2018). The data set is obtained from the Ivy DB OptionMetrics

database. For the detailed forecast comparison with alternative models, we select the term

structure data of relatively liquid call options with a delta of 0.5. The TSIV consists of ten

different times to maturity (30, 60, 91, 122, 152, 182, 273, 365, 547 and 730 days) on each

trading day. Any missing data of non-traded times to maturity on a specific trading day are

interpolated and provided by OptionMetrics. For robustness check, we re-do all exercises

on the TSIV data with two different deltas, 0.4 and 0.6, respectively. The second data set

for robustness check is the daily VIX futures term structure from December 31, 2010 to

September 1, 2017, which contains market information on the implied volatility across strike

prices given a maturity. We directly estimate the term structure with NS interpolation and

make prediction based on the adapative models.

Figure 1 plots five selected maturities from our data set. Along the time series dimension,

the figure shows that the series behave differently in different periods, being relatively

more tranquil in 2004-2007 than in 1996-2003, then becoming highly volatile in 2008-2011.

Modeling time series with long spans across different regimes often incurs nonstationarity

problems. Thus, we divide the 16-year sample into four subsamples, each of four years,

to reflect possible changes in the regimes mentioned above. We select the 1-month (30

days) and 1-year (365 days) maturities to plot the autocorrelation function (ACF) for each

subsample in Figure 2 and the partial ACF (PACF) for each subsample in Figure 3. These

figures reveal that, even within the subsamples with mitigated changing regime problems,

the ACFs still present slowly decaying patterns which are highly significant up to lag 50,

and the PACFs are significant after the first two lags, indicating strong persistence. These
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features justify our application of the adaptive approach described in Section 3 to choose

subsamples in a data-driven way to address the persistence problem.

[Figure 1. Time Plot of Selected Maturities of Implied Volatility]

[Figure 2. Sample Autocorrelations of 1-month and 1-year Implied Volatility]

[Figure 3. Sample Partial Autocorrelations of 1-month and 1-year Implied Volatility]

Figure 1 also reveals strong comovement across maturities. Comparing the five time series

and their statistics, there is an upward sloping curve, on average, with a higher variation

at the short end. However, the shape can be reversed to a downward slope during turmoil

or in the crisis periods of 1998-1999, 2002-2003 and 2008-2009. The changing shapes can

be further visualized three-dimensionally in Figure 4, where we plot the evolution of the

volatility curve in three representative months. The first month, January 1996, is a normal

period where the curve is upward sloping and positively humped; the second month, March

2004, is a period of moderate volatility where the curve is sometimes upward, flat, or even

downward sloping; the third month, September 2008, is a special period during which the

Lehman Brothers’bankrupty triggered a huge spike of the whole volatility curve with a

sharp downward shape and negative hump. These shapes of the implied volatility term

structure are qualitatively similar to the term structure of interest rates, or often called the

yield curves.

[Figure 4. The Term Structure of Implied Volatility in Selected Periods]

3 Adaptive dynamic Nelson-Siegel model for the TSIV

There is a rich literature on the cross-sectional modeling of the yield curve, among which the

Nelson-Siegel interpolation (the NS model) proposed by Nelson and Siegel (1987) and then

developed by Diebold and Li (2006) as the dynamic NS (DNS) model is the most popular

of the three-factor reduced-form models, and it is widely used by investors, researchers and

policy makers. The NS model has satisfactorily modeled the term structure of implied

volatility, see Chalamandaris and Tsekrekos (2011) and Guo et al. (2014), among others.

Although cross-section information is helpful for forecasting the TSIV, such as in VAR or

VECM models, the results of Guo et al. (2018) do not favor the DNS when compared to

alternative models.

But Guo et al. (2018) assume the stationarity of all models used in the estimation sample

and use predetermined window lengths to estimate parameters for prediction. When we look
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at the data, we find that the time series behaves differently in time, for mean, reversability or

volatility. In reality, changes in market conditions, business cycles and policies alike influence

the pricing and trading of assets, sometimes temporarily and sometimes fundamentally. The

implication is that the time-changing features of the data should be modeled for forecast

precision.

The LARmodel used in Chen et al. (2010) for realized volatility is convenient for modeling

a single IV. However, it is computationally burdensome to predict the whole TSIV using

this univariate model.

We will, therefore, model the TSIV jointly with the ADNS proposed in Chen and Niu

(2014) which considers cross-sectional comovement in the maturity dimension. That is, we

model the dynamics of the three NS factors as an LAR model. The LAR model allows time-

varying parameters globally as well as local homogeneity in subsamples where parameters

can be approximately constant. The ADNS model has performed remarkably well in yield

curve forecasting. Chen and Niu (2014) show that the ADNS can outperform the random

walk, as well as many alternative yield curve models with predetermined window selection.

The superior predictability increases along the forecast horizon, up to 12 months ahead at

the monthly frequency. This paper extends the scope of the ADNS application to the TSIV

at the daily frequency.

Both the LAR specification of a single IV and the ADNS specification for the TSIV will be

assessed against more than a dozen alternative models in our empirical study. The following

illustration of the adaptive approach will focus on the ADNS which nests the LAR as its

state dynamics.

3.1 Cross-sectional modeling with Nelson-Siegel factors

In the framework of Nelson and Siegel (1987) and Diebold and Li (2006), the yield curve

across maturities can be formulated by three factors, β1t, β2t and β3t, named level, slope

and curvature, respectively. This gives

yt(τ) = β1t + β2t

(
1− e−λτ
λτ

)
+ β3t

(
1− e−λτ
λτ

− e−λτ
)

+ εt(τ), εt(τ) ∼ N(0, σ2
ε ) (1)

where yt(τ) denotes the yield curve with maturity τ (in days) at time t. Determining the

exponentially decaying rate of the loadings for the slope and curvature factors, the shape

parameter λ needs to be calibrated with a reasonable value for the goodness of fit in the

cross section. Minimizing the squared errors of Equation (1) for the whole sample, we find

that λ falls into a range where the peak of the curvature factor is around 2 to 4 months (60

to 120 days). Calibrating the value with the sample up to the end of 2001, the point before

the out-of-sample forecast exercise, we find that λ = 0.0196 is optimal, which ensures peak
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curvature at the three-month maturity. The factor loadings with λ = 0.0196 are depicted

in Figure 5. We continue with this λ value for the ADNS model forecast.

[Figure 5. Nelson-Siegel Factor Loadings]

Conditional on λ = 0.0196, the loadings of the factors in Equation (1) are fixed for each

maturity. We apply OLS to extract the three factors at each time period. Figure 6 displays

the dynamics of the extracted three factors.

[Figure 6. Time Evolution of Nelson-Siegel Factors Extracted from Implied Volatility]

The level factor β1t traces the long maturity volatility y(730) well, as displayed in the last

panel of Figure 1. The slope factor β2t is negative on average, implying an upward sloping

curve, but surges positively to produce a negative slope during periods of market turmoil

or crisis. The curvature factor fluctuates around zero, with a positive value for a positive

hump shape and a negative value for an inverted hump.

With the factors already extracted in the first place, we model each factor, βit, i = 1, 2

and 3, with an LAR process. The factor forecast is then used to construct the forecast of

the TSIV according to Equation (1).

3.2 Local autoregressive model for factor dynamics

To simplify this illustration, in what follows, we omit the subscript i when no specific factor

is referred to. In modeling the TSIV at the daily frequency, we do not consider exogenous

factors related to the business cycle at a lower frequency. But the modeling framework is

suffi ciently flexible to accomodate exogenous factors for future improvement. The properties

and robustness of the LAR model are investigated and demonstrated through Monte Carlo

simulations in Chen and Niu (2014).

3.2.1 The LAR model and estimator

When we model the factor at a particular time t, the LAR(1) is defined through a parameter

set θt:

βt = θ0t + θ1tβt−1 + µt, µt ∼ N(0, σ2
t ) (2)

where θt = (θ0t, θ1t, σt)
>. The parameter set is indexed to time to reflect the assumption

that it can be time varying. However, the key to LAR model estimation is to identify

an interval of length mt, [t − mt, t − 1], over which the process can be described by an
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autoregressive model and where the parameter θt stays approximately constant, or is locally

homogenous. For a specified interval, the (quasi) maximum likelihood estimation can be

used to estimate the parameters. The local maximum likelihood estimator θ̃t is defined as:

θ̃t = arg max
θt∈Θ

L(β; It, θt)

= arg max
θt∈Θ

{
−mt log σt −

1

2σ2
t

t∑
s=t−mt+1

(βs − θ0t − θ1tβs−1)2

}

where Θ is the parameter space and L(β; It, θt) is the local log-likelihood function.

3.2.2 The testing procedure for homogeneous intervals

At time t, the goal is to conduct a backward selection for the longest possible interval of

local homogeneity among a finite set of candidates. We divide the sample into discrete

increments of M periods (M > 1) between any two adjacent subsamples to obtain Kt

candidate subsamples for any particular time point t, or

I
(1)
t , · · · , I(K)

t with I(1)
t ⊂ · · · ⊂ I

(K)
t ,

where the shortest subsample, I(1)
t , should be reasonably fit by an AR(1) model with con-

stant parameters and local homogeneity is assumed to hold within I(1)
t by default.

Starting from the first subsample, I(1)
t , the parameters are estimated with the maximum

likelihood (ML) estimator θ̃
(k)
t for a specific interval I(k)

t . This estimate may or may not

be accepted as the homogenous adaptive estimator, which is denoted as θ̂
(k)

t , except for the

first subsample where θ̂
(1)

s = θ̃
(1)
s by default. Acceptance or rejection, starting from I

(2)
t

onwards, is controllwhied by a likelihood ratio test defined in each following subsample I(k)
t

as

T
(k)
t =

∣∣L(I
(k)
t , θ̃

(k)
t )− L(I

(k)
t , θ̂

(k−1)

t )
∣∣1/2, k = 2, · · · ,K (3)

where L(I
(k)
t , θ̃

(k)
t ) = maxθt∈Θ L(β; I

(k)
t , θt) denotes the fitted likelihood under hypothetical

homogeneity and L(I
(k)
t , θ̂

(k−1)

t ) = L(β; I
(k)
t , θ̂

(k−1)

t ) refers to the likelihood in the current

testing subsample using the parameter estimate from the previously accepted local homo-

geneous interval I(k−1)
t .

The test statistic measures the difference between these two estimates, which is then to

be compared with a set of critical values ζ1, · · · , ζK . If T
(k)
s ≤ ζk, then the difference is

regarded as acceptable due to sampling randomness, and we accept the current subsample

I
(k)
t as being homogeneous and update the adaptive estimator θ̂

(k)

t = θ̃
(k)
t . If T (k)

t > ζk,

then this indicates that the model significantly changes, and the procedure terminates with

the latest accepted subsample I(k−1)
t selected, such that θ̂

(k)

t = θ̂
(k−1)

t = θ̃
(k−1)
t . For ` ≥ k,
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we denote θ̂
(`)

s = θ̃
(k−1)
s , meaning that the adaptive estimator for an even longer subsample

at time t is the ML estimate over the longest subsample of local homogeneity identified.

The procedure is continued until the parameter change cannot be rejected or the longest

subsample, I(K)
t , is reached under local homogeneity.

3.2.3 Critical value calibration

The required set of critical values are calibrated empirically with Monte Carlo experiments,

where an underlying AR(1) model, such as Equation (4) with reasonable constant parameter

values θ∗, is used to simulate training samples with a length of I(K). This gives

βt = θ∗0 + θ∗1βt−1 + µt, µt ∼ N(0, σ∗2). (4)

With constant parameters, the training sample is a globally homogeneous AR(1) time

series with θ∗ = (θ∗0, θ
∗
1, σ
∗) for t = 1, · · · , T . Since time homogeneity is fulfilled globally,

the ML estimate θ̃
(k)
t in each subsample I(k)

t , k = 1, · · · ,K, is optimal. The estimation
error can be measured by the fitted log-likelihood ratio:

Rk = Eθ∗
∣∣∣L(I(k)

t , θ̃
(k)
t

)
− L

(
I

(k)
t , θ∗

)∣∣∣1/2 , (5)

where Rk is computed numerically with a known value of θ∗.

In the backward testing procedure, the goal is to achieve an adaptive estimator θ̂
(k)

t close

to θ∗. Under a specific θ̂
(k)

t , a temporal difference, denoted as D(k)
t , will arise between the

ML estimator θ̃
(k)
t and the adaptive estimator θ̂

(k)

t :

D
(k)
t =

∣∣∣L(I(k)
t , θ̃

(k)
t

)
− L

(
I

(k)
t , θ̂

(k)

t

)∣∣∣1/2 .
Ideally, for θ̂

(k)

t close to θ∗, the stochastic distance D(k)
t is bounded by the ideal estimation

error Rk in Equation (5):

Eθ∗
(
D

(k)
t

)
= Eθ∗

∣∣∣L(I(k)
t , θ̃

(k)
t

)
− L

(
I

(k)
t , θ̂

(k)

t

)∣∣∣1/2 ≤ Rk. (6)

With this inequality as the risk bound, the critical values determining Eθ∗
(
D

(k)
t

)
can be

computed numerically. To see this, note that for a given ζk, with which comparing the test

statistic T (k)
s , two outcomes can arise:

• If T (k)
t ≤ ζk, such that we accept θ̂

(k)

t = θ̃
(k)
t , then we have D(k)

t = 0; or

• If T (k)
t > ζk, such that we set θ̂

(k)

s = θ̂
(k−1)

s = θ̃
(k−1)
s , then we haveD(k)

t =
∣∣∣L(I(k)

t , θ̃
(k)
t

)
− L

(
I

(k)
t , θ̂

(k−1)

t

)∣∣∣1/2.
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With simulated training samples, Eθ∗
(
D

(k)
t

)
can be computed given any specified ζk.

Thus, ζk can be calibrated to the value when the risk bound, Equation (6), is reached.

Although the calibration of critical values relies on a set of hyperparameters (θ∗, K, M),

Chen and Niu (2014) demonstrate that the calibration is quite robust against reasonable

deviations to the true value θ∗, and to a wide range of K and M combinations. To make

our calibration reasonable, we use the NS factors from 1996 to 2001 to calculate the ML

estimate as θ∗ for our training samples. The assumption is that the time-varying parameters

fluctuate around this θ∗ which can be regarded as a sample averaged over 1996 to 2001. We

use θ∗ to simulate N series of data, each of length T = 180, and calibrate the set of critical

values as described above in this section. The same set of calibrated critical values are

adopted for every time point throughout the real-time estimation and forecast from 2002 to

2011. In our procedure, at each point in time, we consider K = 30 subsamples for the test

procedure, with the increment of M = 6 trading days between any adjacent subsamples,

i.e., 180 trading days (about 8 or 9 calendar months) is the maximal subsample size. As

it happens, T = 180 is a suffi ciently large training sample length as the selected maximal

intervals in our empirical study never reach it.

3.2.4 Estimation

Following the test and estimation procedure described in Section 3.2.3, we estimate the

LAR(1) model for each trading day from 2001-12-31 onwards for each factor of the ADNS

model. To easily visualize, the results and the time-varying features of the parameters, we

plot the parameter estimates for the ADNS factors on the last trading day of each month in

Figure 7. In each column, we plot the evolution of the three parameters of the LAR process

of the NS factor: the intercept, θ0t; the autoregressive coeffi cient, θ1t; and the standard

deviation of the error term, σt. The parameters fluctuate wildly. Changes in the standard

deviation are in line with the volatile behavior of the implied volatility for different periods.

Figure 7 shows the varying properties of the parameters along time, which supports the

adaptive approach application.

[Figure 7. Parameter Evolution for Factor Dynamics in the ADNS Model]

3.3 The ADNS state-space framework for the TSIV

To summarize, the state-space representation of the ADNS model is the following:

yt(τ) = β1t + β2t

(
1− e−λτ
λτ

)
+ β3t

(
1− e−λτ
λτ

− e−λτ
)

+ εt(τ), εt(τ) ∼ (0, σ2
ε,τ ) (7)

βit = θ
(i)
0t + θ

(i)
1t βit−1 + µ

(i)
t , µ

(i)
t ∼ (0, σ2

it), i = 1, 2, 3. (8)
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Now, based on the extracted NS factors and locally estimated state dynamics, the TSIV

forecast h steps ahead can be directly obtained as a combination of h-steps ahead forecasts

of the Nelson-Siegel factors:

ŷt+h/t(τ) = β̂1,t+h/t + β̂2,t+h/t

(
1− e−λτ
λτ

)
+ β̂3,t+h/t

(
1− e−λτ
λτ

− e−λτ
)

(9)

where the factor forecasts are obtained by

β̂i,t+h/t = θ̂0t + θ̂1tβ̂i,t, i = 1, 2, 3. (10)

Coeffi cient θ̂jt (j = 0, 1, 2) is obtained by regressing β̂i,t on an intercept and β̂i,t−h. We

estimate the LAR model for each specific forecast horizon.

4 LAR and ADNS forecasts and comparison with alternative
models

In this section, we show the results of the LAR model for a single IV and the ADNS model

forecast for the whole TSIV, in comparison with the random walk model and thirteen other

models for multiple forecast horizons. The forecast comparison is made over a long time

span of 10 years.

4.1 Forecast procedure

Using the TSIV data described in Section 2 from 1996 to 2011, we make a psuedo real-

time out-of-sample forecast. The forecast period for model comparison is from 2002-1-2

to 2011-12-30, a total of 2519 trading days. We make 1-, 5-, and 20-day ahead forecasts.

Here the forecast horizon is in units of trading days, such that the 5-day ahead forecast is

one calendar week ahead, and the 20-day ahead forecast is about a calendar month ahead,

etc., taking the holidays in between into consideration. So for forecasting the first period of

2002-1-2, the 1-day ahead forecast is based on a sample up to 2001-12-31, the 5-day ahead

forecast is based on a sample up to 2001-12-24, and the 20-day ahead forecast is based on

a sample up to 2001-12-3. We make this estimation and forecast exercise for each forecast

horizon day after day until we reach the end of the sample.

At each estimation period t, we use data up to t. The three NS factors are first extracted

using OLS for the available sample. Then, for each factor of the ADNS, we estimate

a LAR(1) process with the identified longest homogenous interval for a specific forecast

horizon. Based on the local adaptive estimator, we make 1-, 5- and 20-day ahead out-of-

sample forecasts for the NS factors as described by Equation (10). The predicted TSIV
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of various maturities are then constructed by the forecast of the NS factors at the specific

horizon according to Equation (9).

It is straight forward to forecast the single IV as a univariate time series with LAR.

4.2 Alternative models for comparison

For comparison, we choose forecasts from the random walk model and thirteen other al-

ternative models as summarized in Table 1. Forecast of these alternative models have been

examined in Guo et al. (2018) with recursive estimation, i.e., the estimation sample ex-

tends as the forecast exercise moves forward. Among these thirteen forecast results, there

are ten single model forecasts and the other three are combination forecasts based on the

single model forecast. For different forecast horizons h, the direct forecast is used with a

regression on lag h information. Guo et al. (2018) also examine two combination forecasts

using discounted mean squared prediction errors. We do not consider these combinations

because their forecast period starts later than that of the base models to construct weights

from the initial forecasts generated by the base models. Also, in their paper, these two

combination forecasts do not outperform the other thirteen forecasts.

We now list the econometric representations of these alternative forecasts. First, the

random walk model serves as a natural benchmark for all, with ŷt+h(τ) = yt(τ). Then, the

thirteen alternative models are as follows.

(M1) Nelson-Siegel factors as univariate AR(1) processes, which is a simple DNS model.

(M2) Nelson-Siegel factors as multivariate VAR(1) processes.

These two specifications both belong to the traditional DNS models where the estimation

is based on a predetermined regression window length.

(M3) Slope regression: ŷt+h(τ)− yt(τ) = c0(τ) + c1(τ) (yt(730)− yt(30)).

(M4) AR(1) on volatility levels: ŷt+h(τ) = c0(τ) + c1(τ)yt(τ).

(M5) VAR(1) on volatility levels: ŷt+h = c0 + c1yt, where the vector of yt =


yt(30)

yt(91)

yt(152)

yt(365)

yt(730)

.

(M6) VAR(1) on volatility changes: ẑt+h = c0+c1zt, where ẑt =


yt(30)− yt−h(30)

yt(91)− yt−h(91)

yt(152)− yt−h(152)

yt(365)− yt−h(365)

yt(730)− yt−h(730)

.
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(M7) ECM(1) with one common trend: ẑt+h = c0+c1zt, where ẑt =


yt(30)− yt−h(30)

yt(91)− yt(30)

yt(152)− yt(30)

yt(365)− yt(30)

yt(730)− yt(30)

.

(M8) ECM(1) with two common trends: ẑt+h = c0+c1zt, where ẑt =


yt(30)− yt−h(30)

yt(91)− yt−h(91)

yt(152)− yt(30)

yt(365)− yt(30)

yt(730)− yt(30)

.
(M9) AR(1) regression on the first three principal components of the TSIV. Each principal

component is modeled as an AR(1) process, and a volatility forecast is generated by the

principal components with loadings estimated from the principal component analysis for

each period.

(M10) VAR(1) on empirical level, slope and curvature: ŷt+h = c0 + c1Ft, where the

empirical factors are constructed by the volatility of the representative maturities; Ft = yt(365)

yt(365)− yt(30)

2yt(122)− [yt(365) + yt(30)]

.
Then three combination forecasts are considered based on the model forecast from model

(1) to (10); ŷc,t+h (τ) =
∑10

k=1wk,t (τ) ŷk,t+h (τ).

(M11) The mean combination forecast: wk,t (τ) = 1/10.

(M12) The median combination forecast: the median of ŷk,t+h (τ), k = 1,...,10.

(M13) The trimmed mean combination forecast: wk,t (τ) = 0 for the smallest and largest

forecasts and wk,t (τ) = 1/8 for the remaining forecasts.

4.3 Measures of forecast comparison

The measures for forecast performance include the forecast RMSE, the MAE, out-of-sample

R2, and the percentage of correct predictions of future directional changes. The first three

evaluate forecast variance and fit around the realized value, and the fourth measures the

ability to predict the direction of future changes. Moreover, for statistical significance, we

use the DM test to evaluate outperformance of the adaptive models against alternative

models M1 to M13, and use the CW test to compare the adaptive models with random

walk under nested model framework.
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4.4 Forecast results

4.4.1 Comparison by forecast RMSE, MAE and out-of-sample R2

Table 2 reports the forecast RMSE and MAE of the benchmark random walk model, the

LAR for a single IV and the ADNS for a TSIV. The left-hand column shows the RMSE

results and the right-hand column shows the results for MAE, with each panel showing the

results of the model for each maturity and forecast horizons (denoted by h) of 1, 5 and 20

trading days, respectively. Table 3 reports the relative performance of the LAR and the

ADNS compared to the random walk, based on the results in Table 2.

The ratios in Table 3 are the most intuitive comparison of the relative strengh of the LAR

and the ADNS versus the random walk. If a ratio is smaller than 1, then the number is in

bold, indicating a better forecast by either the LAR or the ADNS. If the number is between

0.8 and 0.9, then the bold number is underlined; if the number is smaller than 0.8, then a grey

shadow is added to visually emphasize the outperformance. The ratios unequivocally show

that the LAR and the ADNS outperform random walk for both measures. The advantage

increases as the forecast horizon increases, from a reduction of RMSE or MAE of a few

percent for the 1-day ahead forecast, to a reduction of between 10% and 20% reduction for

the 5-day ahead forecast, and a huge reduction of between 30% and 50% for the 20-day

ahead forecast. Compared with the single LAR of each IV series, the ADNS model not only

predicts all cross-sections with only three factor processes, but also improves the forecast

performance of the RMSE measure.

[Table 2. Forecast RMSE and MAE of LAR, ADNS and Random Walk]

[Table 3. Ratios of Forecast RMSE and MAE of LAR and ADNS vs. Random Walk]

It may be argued that the random walk is not a good model for the volatility curve

econometrically or economically, or that the ADNS superiority is not clearly shown. Hence,

using the random walk model’s performance as a benchmark against which to compare the

thirteen sets of alternative forecasts will give a better assessment. Table 4 reports the ratio

of the RMSE and the MAE of the thirteen alternative forecasts relative to the random

walk model for the 1-, 5-, and 20-day ahead forecast horizons. Some multivariate factor

models exhibit better prediction abilities of between 1% and 4% for the 1- and 5-day ahead

forecast, such as M6, M7, and M8. The forecast combinations also perform relatively well

for the 1- and 5-day ahead forecasts with a reduction of 1-3 % reduction compared to the

randow walk forecast. But clearly none of these alternative models perform better than our

adaptive models.
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[Table 4. Forecast Comparison of Alternative Models with Random Walk]

Out-of-sample R2 is another measure for predictibility. We compute the ratio of out-of-

sample R2 of M1-M13 and the adaptive models against random walk and the results are

reported in Table 5. A number bigger than 1 indicates a better prediction of the compared

model than random walk. The results show that the random walk is unbeatable by M1-M13

across forecast horizons and maturities. But the ADNS model can beat random walk for

forecast horizons of h = 20 days across all maturities, and the LAR model performs even

better for both h = 5 and h = 20 across all maturities.1

[Table 5. Out-of-sample R2 comparison versus random walk ]

4.4.2 Comparison of future sign change predictions

For successful trading strategies, it is often crucial to forecast future directional changes,

i.e., whether volatility will go up or down. Since the random walk model assumes no change,

it is not useful here. It is interesting to assess how well the adaptive models perform with

respect to the alternative models in the directional prediction.

For each model, based on the model forecast of ŷt+h(τ), we can compute ∆ŷt+h(τ). Then

we compare the signs of the predicted change ∆ŷt+h(τ) and the realized change ∆yt+h(τ).

We document the correct sign prediction frequency for each model/maturity/horizon com-

bination in Table 6.

[Table 6. Frequency of Correct Sign Prediction for Future Changes]

Table 6 shows that the thirteen alternative models have only a moderate performance

with around 50% of correct predictions, and the best performance is 59% correct predictions

for Model 7 predicting the 5-day ahead 30-day IV. In stark contrast, the adaptive models

show a commanding advantage, with the frequency of correct prediction ranging from an

average 63-64% across the TSIV for the 1-day ahead forecast, 73-74% for the 5-day ahead

forecast, and 86-86% for the 20-day ahead forecast.

1Guo et al. (2018) show that even with the marginal forecast advantages with respect to the random
walk, the alternative models are able to produce economically viable profits after controlling for reasonable
transaction costs. The forecast advantages of M6-M8 of a reduction in the errors of a few percent, with
respect to the random walk model, are actually trivial compared to the superior forecast of the ADNS.
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4.4.3 Statistical test of forecast performance

The above results show performance of the adaptive models with various measures based on

a large forecast sample, i.e., 2002-01-21 to 2011-12-30, a total of 2519 trading days. Most

measures confirm their sizable advantage against all alternative models for horizons h = 5

and h = 20. To demonstrate further their statistical significance, we use the DM test to

evaluate outperformance of the adaptive models against alternative models M1 to M13, and

use the CW test to compare the adaptive models with random walk under nested model

framework.

The DM test is proposed by Diebold and Li (1995) for forecast comparison between

different models or model-free methods. Under the hypothesis of equal predictive accuracy,

the loss differential between two forecasts follows a limiting normal distribution. The CW

test is developed by Clark and West (2006, 2007) for forecasts between nested models. They

point out that the DM test does not have a standard normal distribution when applied to

forecast from nested models. The CW test addresses the distribution issue for nested models.

The LAR and ADNS models can be nested with the random walk under two restrictions:

1) the intercept of the LAR is zero or the combined intercept of LARs of the three ADNS

factors is zeros, and 2) the autoregressive coeffi cients of the LAR or the LARs underlying

the ADNS are 1s.

Based on the test applicability, we compute the DM test statistics for LAR/ADNS against

M1 to M13 and the CW test statistics for LAR/ADNS against the random walk. The results

are shown for LAR in Table 7-a and for ADNS in Table 7-b. A negative (positive) value

indicates better (worse) accuracy of LAR/ADNS against an alternative model in terms of

quadratic loss measured by mean-squared predicted errors (MSPE). Both tests show that

the adaptive forecasts outperform alternative models significantly for h = 5 and h = 20

across all maturities.

[Table 7. Test of forecasting performance against alternative models]

4.4.4 Stable subsample lengths

The reason that the ADNS model performs markably better is that the data generating

process is time changing, as shown in Figure 7 with estimated parameter evolution. The

conventional practice to include more observations may contribute to more robust estim-

ates, with the trade-off of higher parameter uncertainty with frequently or wildly changing

parameters. To what extent and for how long a local model can stay homogenous is crucial

to determining the trade-off. Table 8 summarizes the average lengths detected for homo-

genous intervals for each factor and each forecast horizon. It shows that the first and third
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NS factors are less stable, with average homogenous intervals of less than 30 trading days,

while the second NS factor changes less frequently but only up to an average of 39 trading

days. Another feature is that, as the forecast horizon lengthens, the lengths of the stable

intervals tend to decline. The implication is that the adaptive procedure can be explored

up to a limit, conditional on the frequency of the data.

[Table 8. Average Lengths of Homogenous Intervals Detected Adaptively]

4.5 Robustness check with alternative data

In order to understand whether the adaptive models are robust for different strikes and

whether it works well with model-free implied variance, such as VIX futures, we make

robustness checks with alternative data.

First, from the same data source of Ivy DB OptionMetrics, we select the TSIV from two

different deltas, 0.4 and 0.6, respectively. The maturity structure and time span is the same

as the TSIV at delta of 0.5. From the previous exercises, we already know that no alternative

models among M1-M13 can dominate the random work. We re-do the forecast comparison

with the random walk for the ease of comparison and report the CW test statistics in Table

9. The results echo those when delta is 0.5 that the adaptive model significantly outperform

the random walk for forecast at h = 5 and h = 20 across all maturities.

Second, we forecast the VIX futures term structure with the adaptive models and compare

the forecast accuracy with random walk prediction. In order to forecast the whole term

structure, we interpolate the VIX futures term structure of discrete maturies of 1 to 10

month contracts with the NS models at each trading day. It should be noted that for a

n-month contract in the database, its remaining maturity may be between n − 1 and n

months until another new contract of n-month replaces it as the market benchmark for

n-month VIX futures. Therefore, on each trading day, we compute the precise remaining

maturity in the unit of day for each contract. Then we interpolate the whole term structure

up to 10 months with the static NS model for each trading day. We use the sample from

December 31, 2010 to April 30, 2012 as the training sample, then make adaptive estimation

and prediction starting from May 2, 2012 to September 1, 2017. For the random walk model,

we assume that each NS factors follows a random walk and forecast the future NS factors

and term structure accordingly. For each forecast horizon, we compare the NS implied

futures price with the VIX futures actually exist in the database at their precise maturity,

and compute the CW test statistics for adaptive models against the random walk.

The lower panel of Table 9 shows the test statistics with VIX futures term structure. The

results are more encouraging. The adaptive models not only significantly outperform the
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random walk at h = 5 and h = 20 across all maturities, but they also forecast significantly

better than the random walk at h = 1 for medium to long term contracts. And the ADNS

performs better than the LAR.

5 Conclusion

When modeling the TSIV, we show that the adaptive procedure, combined with local parsi-

moneous dynamic models, can generate markedly better prediction performance in compar-

ison to the random walk and thirteen alternative forecast models. The forecast advantage

of this approach originates from an ability to adaptively choose suitable homogeneous in-

tervals, maximally including useful information while reducing parameter instability.

The ADNS model based on three NS factors across maturity, with each factor modeled

as an LAR process, is more effi cient than modeling each single IV with an LAR model. The

ADNS model consistently outperforms the random walk model over the whole volatility

curve for multiple forecast horizons up to 20 trading days ahead. The forecast errors of the

random walk model, measured by RMSE and MAE, can be reduced by between 20% and

60% for the 5- to 20-day ahead forecasts by using the ADNS model. The outperformance is

reasured with robustness check using TSIV at alternative deltas and the VIX futures term

structure.

The successful application of the ADNS model to forecasting beyond the yield curve

context shows the power of the LAR model when in combination with a parsimonious

cross-sectional NS interpolation. The results not only demonstrate to investors, researchers

and policy makers the importance of modeling the time-changing aspects of financial time

series for forecast purposes, but also give an effective example of how to achieve this.
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Table 1. Alternative Models for Comparison 

 

We choose the random walk model and other thirteen models as alternative models for forecast 

comparison. 

1)  The random walk model is the benchmark model in Guo et al. (2018). 

2)  The thirteen models which have the same forecast period for comparison are listed below: 

M1: Nelson-Siegel factors as univariate AR(1) processes,  with λ = 0.0147 

M2: Nelson-Siegel factors as multivariate VAR(1) processes, with λ = 0.0147 

M3: Slope regression 

M4: AR(1) on volatility levels 

M5: VAR(1) on volatility levels 

M6: VAR(1) on volatility changes 

M7: ECM(1) with one common trend 

M8: ECM(1) with two common trends 

M9: AR(1) regression on three principal components 

M10: VAR(1) on empirical level, slope and curvature 

M11: mean combination forecast 

M12: median combination forecast 

M13: trimmed mean combination forecast 
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Table 2. Forecast RMSE and MAE of LAR, ADNS and Random Walk 

 

 
 RMSE  

 MAE 

 
 y(n)\h 1 5 20 

y(30) 0.0197  0.0317  0.0515  

y(60) 0.0149  0.0246  0.0417  

y(91) 0.0126  0.0211  0.0362  

y(122) 0.0108  0.0184  0.0319  

y(152) 0.0095  0.0164  0.0289  

y(182) 0.0086  0.0150  0.0267  

y(273) 0.0072  0.0126  0.0228  

y(365) 0.0064  0.0115  0.0210  

y(547) 0.0052  0.0096  0.0181  

y(730) 0.0047  0.0088  0.0170  
 

  y(n)\h 1 5 20 

y(30) 0.0125  0.0207  0.0327  

y(60) 0.0095  0.0163  0.0265  

y(91) 0.0081  0.0141  0.0235  

y(122) 0.0070  0.0123  0.0209  

y(152) 0.0062  0.0111  0.0192  

y(182) 0.0056  0.0102  0.0179  

y(273) 0.0047  0.0087  0.0157  

y(365) 0.0042  0.0079  0.0145  

y(547) 0.0034  0.0067  0.0129  

y(730) 0.0031  0.0062  0.0123  
 

RW 

  
 

 

 

 

 

   

LAR   

 y(n)\h 1 5 20 

y(30) 0.0181  0.0277  0.0398  

y(60) 0.0139  0.0214  0.0323  

y(91) 0.0118  0.0186  0.0276  

y(122) 0.0100  0.0161  0.0235  

y(152) 0.0088  0.0144  0.0214  

y(182) 0.0080  0.0130  0.0187  

y(273) 0.0067  0.0110  0.0153  

y(365) 0.0060  0.0100  0.0136  

y(547) 0.0048  0.0081  0.0116  

y(730) 0.0043  0.0072  0.0098  
 

  y(n)\h 1 5 20 

y(30) 0.0112  0.0166  0.0193  

y(60) 0.0086  0.0128  0.0151  

y(91) 0.0074  0.0113  0.0135  

y(122) 0.0063  0.0098  0.0114  

y(152) 0.0056  0.0089  0.0104  

y(182) 0.0052  0.0080  0.0092  

y(273) 0.0044  0.0068  0.0077  

y(365) 0.0039  0.0062  0.0068  

y(547) 0.0031  0.0051  0.0059  

y(730) 0.0028  0.0046  0.0050  
 

ADNS  

 
y(n)\h 1 5 20 

y(30) 0.0181  0.0272  0.0371  

y(60) 0.0140  0.0216  0.0292  

y(91) 0.0119  0.0184  0.0248  

y(122) 0.0103  0.0161  0.0214  

y(152) 0.0090  0.0142  0.0189  

y(182) 0.0082  0.0129  0.0172  

y(273) 0.0068  0.0108  0.0140  

y(365) 0.0062  0.0097  0.0126  

y(547) 0.0049  0.0081  0.0107  

y(730) 0.0046  0.0076  0.0101  
 

  
y(n)\h 1 5 20 

y(30) 0.0112  0.0162  0.0193  

y(60) 0.0087  0.0130  0.0153  

y(91) 0.0075  0.0112  0.0134  

y(122) 0.0065  0.0099  0.0117  

y(152) 0.0057  0.0088  0.0104  

y(182) 0.0052  0.0081  0.0095  

y(273) 0.0045  0.0069  0.0080  

y(365) 0.0041  0.0063  0.0072  

y(547) 0.0032  0.0052  0.0059  

y(730) 0.0032  0.0050  0.0057  
 

Notes: 1) h denotes the forecast horizon in trading day units. The forecast period is from 2002-01-21 to 

2011-12-30, a total of 2519 trading days. 

2) In comparison to the random walk model, forecast RMSE and MAE results are reported for the two 

adaptive models: the LAR model for each single IV, and the ADNS for the whole TSIV with three factors, 

with each factor based on an LAR process.   
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Table 3. Ratios of Forecast RMSE and MAE of LAR and ADNS vs. Random Walk 

 

 
 RMSE ratio vs. R.W.  

 MAE ratio vs. R.W. 

 
 y(n)\h 1 5 20 

y(30) 0.918  0.873  0.773  

y(60) 0.929  0.871  0.775  

y(91) 0.934  0.880  0.762  

y(122) 0.930  0.875  0.736  

y(152) 0.930  0.879  0.739  

y(182) 0.932  0.866  0.699  

y(273) 0.941  0.870  0.672  

y(365) 0.938  0.874  0.649  

y(547) 0.926  0.850  0.641  

y(730) 0.913  0.812  0.574  

Average 0.929  0.865  0.702  
 

  
y(n)\h 1 5 20 

y(30) 0.894  0.800  0.591  

y(60) 0.903  0.785  0.570  

y(91) 0.917  0.799  0.573  

y(122) 0.908  0.790  0.544  

y(152) 0.912  0.801  0.543  

y(182) 0.917  0.781  0.513  

y(273) 0.931  0.779  0.489  

y(365) 0.926  0.787  0.471  

y(547) 0.910  0.757  0.457  

y(730) 0.896  0.732  0.409  

Average 0.911  0.781  0.516  
 

LAR 

  
 

 

 

 

 

   

ADNS  

  

 y(n)\h 1 5 20 

y(30) 0.920  0.858  0.721  

y(60) 0.940  0.877  0.701  

y(91) 0.944  0.870  0.686  

y(122) 0.955  0.873  0.671  

y(152) 0.951  0.863  0.652  

y(182) 0.949  0.859  0.643  

y(273) 0.951  0.852  0.615  

y(365) 0.973  0.848  0.601  

y(547) 0.941  0.843  0.590  

y(730) 0.991  0.856  0.593  

Average 0.952  0.860  0.647  
 

  y(n)\h 1 5 20 

y(30) 0.899  0.782  0.592  

y(60) 0.917  0.797  0.577  

y(91) 0.928  0.797  0.569  

y(122) 0.935  0.800  0.560  

y(152) 0.927  0.791  0.541  

y(182) 0.932  0.793  0.533  

y(273) 0.945  0.790  0.508  

y(365) 0.969  0.790  0.493  

y(547) 0.921  0.776  0.458  

y(730) 1.013  0.802  0.464  

Average 0.938  0.792  0.530  
 

Notes: 1) h denotes the forecast horizon in trading day units. The forecast period is from 2002-01-21 to 

2011-12-30, a total of 2519 trading days.  

2) The ratios of forecast RMSE and MAE of the two adaptive models versus the random walk model are 

reported. The two adaptive models are: the LAR model for each single IV, and the ADNS for the whole 

TSIV with three factors, with each factor based on an LAR process. 

3) For the forecast ratio comparison, a number smaller than 1 is marked in bold, indicating a better forecast than 

the adaptive model. If the number is between 0.8 and 0.9, then the bold number is underlined; if the number is 

smaller than 0.8, then a grey shadow is added for emphasis.   
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Table 4. Forecast Comparison of Alternative Models with Random Walk 

4-a. RMSE Ratios versus Random Walk 

h = 1 

             y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

y(30) 1.001  0.996  1.000  1.001  0.998  0.974  0.974  0.973  0.991  0.996  0.979  0.984  0.980  

y(91) 1.043  1.015  0.996  1.000  0.999  0.975  0.981  0.979  1.013  1.019  0.989  0.991  0.989  

y(152) 1.030  1.008  0.997  1.000  1.001  0.977  0.981  0.979  1.014  1.022  0.990  0.992  0.991  

y(365) 1.084  1.027  1.000  1.000  0.999  0.977  0.980  0.979  1.015  0.999  0.988  0.989  0.987  

y(730) 1.077  1.059  1.001  1.001  1.002  0.984  0.988  0.987  1.069  1.226  1.003  0.996  0.999  

h = 5    

            y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

y(30) 0.992  0.992  1.001  0.999  0.996  0.958  0.965  0.962  0.983  0.997  0.972  0.978  0.974  

y(91) 1.033  1.019  0.998  1.000  1.009  0.976  0.980  0.976  1.009  1.014  0.990  0.996  0.991  

y(152) 1.017  1.004  1.003  1.001  1.010  0.978  0.982  0.978  0.997  1.008  0.989  0.995  0.990  

y(365) 1.049  1.012  1.005  1.001  1.012  0.984  0.991  0.987  1.002  1.009  0.992  0.997  0.994  

y(730) 1.038  1.032  1.006  1.003  1.015  0.994  1.002  0.997  1.034  1.079  1.002  1.004  1.002  

h = 20    

            y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

y(30) 0.991  1.000  1.003  0.989  1.010  1.021  1.005  1.003  0.982  1.006  0.984  0.995  0.987  

y(91) 1.026  1.021  1.016  1.000  1.025  1.022  1.021  1.022  0.999  1.018  1.002  1.013  1.005  

y(152) 1.030  1.020  1.026  1.005  1.031  1.032  1.026  1.026  0.997  1.024  1.008  1.017  1.012  

y(365) 1.051  1.023  1.026  1.007  1.033  1.037  1.034  1.036  0.998  1.028  1.012  1.020  1.015  

y(730) 1.038  1.023  1.018  1.008  1.024  1.041  1.038  1.037  1.005  1.032  1.008  1.014  1.009  

4-b. MAE Ratios versus Random Walk 

h = 1 

             y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

y(30) 1.006  1.001  1.000  1.004  1.001  0.980  0.979  0.980  0.991  0.999  0.981  0.987  0.982  

y(91) 1.070  1.031  0.996  1.001  1.003  0.980  0.988  0.982  1.024  1.035  0.994  0.994  0.993  

y(152) 1.031  1.005  0.999  1.000  1.002  0.984  0.987  0.986  1.010  1.020  0.989  0.991  0.989  

y(365) 1.125  1.050  1.004  1.000  1.003  0.988  0.990  0.989  1.023  1.002  0.994  0.994  0.992  

y(730) 1.099  1.088  1.003  1.001  1.005  0.994  0.999  0.997  1.101  1.320  1.013  0.998  1.006  

h = 5    

            y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

y(30) 1.005  1.001  1.001  1.014  1.000  0.965  0.961  0.968  0.989  1.003  0.975  0.982  0.976  

y(91) 1.053  1.027  0.995  1.011  1.015  0.973  0.978  0.975  1.020  1.022  0.994  1.000  0.994  

y(152) 1.038  1.010  1.004  1.012  1.017  0.981  0.981  0.982  1.011  1.016  0.995  1.001  0.996  

y(365) 1.075  1.026  1.005  1.008  1.016  0.987  0.988  0.984  1.012  1.013  0.997  1.000  0.997  

y(730) 1.049  1.030  1.007  1.009  1.014  1.002  1.000  0.994  1.038  1.086  1.001  1.001  1.001  

h = 20    

            y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

y(30) 1.045  1.039  1.005  1.037  1.049  1.000  1.024  1.024  1.011  1.038  1.000  1.024  1.005  

y(91) 1.086  1.053  1.004  1.034  1.059  1.019  1.038  1.031  1.034  1.044  1.016  1.037  1.019  

y(152) 1.079  1.035  1.017  1.027  1.046  1.024  1.031  1.030  1.023  1.035  1.015  1.030  1.017  

y(365) 1.093  1.023  1.023  1.017  1.026  1.036  1.028  1.028  1.009  1.016  1.010  1.021  1.011  

y(730) 1.049  0.998  1.018  1.013  1.003  1.042  1.031  1.028  0.997  0.999  0.998  1.003  0.998  

Notes: 1) h denotes the forecast horizon in trading day units. The forecast period is from 

2002-01-21 to 2011-12-30, a total of 2519 trading days.  

2) For the forecast ratio comparison between an alternative model and the random walk model, 

a number smaller than 1 is marked in bold, indicating a better forecast than the random 

walk. 
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Table 5. Out-of-sample R
2
 Comparison versus Random Walk  

 

h = 1 

             

  

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 LAR ADNS 

y(30) 1.000  0.999  0.999  0.999  0.999  1.000  1.000  1.000  1.000  0.999  1.000  1.000  1.000  1.000  0.995  

y(91) 0.999  0.999  0.999  0.998  0.998  1.000  1.000  1.000  0.999  0.998  1.000  1.000  1.000  0.998  0.995  

y(152) 0.999  0.999  0.999  0.999  0.999  1.000  1.000  1.000  0.999  0.999  1.000  1.000  1.000  0.999  0.997  

y(365) 0.999  0.999  0.999  0.998  0.999  1.000  1.000  1.000  0.999  0.999  1.000  1.000  1.000  0.999  0.998  

y(730) 0.999  0.999  0.999  0.998  0.998  1.000  0.999  0.999  0.999  0.995  0.999  0.999  0.999  0.999  0.998  

h = 5    

            
  

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 LAR ADNS 

y(30) 0.999  0.998  0.999  0.999  1.000  1.008  1.006  1.006  1.003  0.999  1.005  1.003  1.005  1.039  0.998  

y(91) 0.999  0.997  0.999  0.993  0.996  1.003  1.001  0.992  0.998  0.997  1.000  0.999  0.999  1.019  0.991  

y(152) 0.999  0.998  0.999  0.996  0.998  1.001  1.000  1.000  1.000  0.998  1.000  0.999  1.000  1.016  0.997  

y(365) 0.999  0.999  0.999  0.996  0.998  1.000  0.999  0.999  1.000  0.999  1.000  0.999  1.000  1.014  1.005  

y(730) 0.999  0.999  0.999  0.998  0.998  1.000  0.999  0.999  0.998  0.995  0.999  0.999  0.999  1.012  1.007  

h = 20    

            
  

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 LAR ADNS 

y(30) 1.004  0.980  0.997  1.007  0.994  0.981  0.989  0.990  1.015  0.990  1.012  1.001  1.009  1.319  1.027  

y(91) 0.997  0.980  0.986  0.985  0.983  0.987  0.984  1.004  0.998  0.985  0.999  0.994  0.997  1.200  1.000  

y(152) 0.996  0.980  0.983  0.986  0.986  0.987  0.983  0.982  0.998  0.983  0.993  0.988  0.991  1.161  1.001  

y(365) 0.997  0.985  0.985  0.988  0.988  0.989  0.985  0.984  1.000  0.986  0.994  0.991  0.993  1.124  1.005  

y(730) 0.998  0.986  0.985  0.995  0.987  0.991  0.982  0.982  0.998  0.984  0.994  0.990  0.992  1.198  1.004  

Notes: 1) h denotes the forecast horizon in trading day units. The forecast period is from 2002-01-21 to 

2011-12-30, a total of 2519 trading days.  

2) For the forecast ratio comparison between an alternative model and the random walk model, a number bigger 

than 1 is marked in bold, indicating a better forecast than the random walk. 
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Table 6. Frequencies of Correct Sign Prediction for Future Changes (Unit: %) 

 

h = 1 

             

  

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 LAR ADNS 

y(30) 51.7  53.0  45.4  51.9  53.3  56.6  57.2  57.4  52.4  53.1  55.2  53.2  54.7  65.0  64.9  

y(91) 50.7  51.3  53.2  52.0  52.4  56.5  55.5  56.9  50.7  50.9  54.5  53.4  54.1  63.4  64.2  

y(152) 50.3  52.1  51.8  51.4  51.3  56.2  55.4  55.9  51.1  51.3  53.6  53.2  53.4  63.5  63.3  

y(365) 51.5  51.6  51.1  52.0  51.5  55.0  54.0  54.4  52.0  52.4  52.4  52.7  52.4  63.2  59.9  

y(730) 49.0  49.9  50.7  52.3  52.8  55.7  55.2  55.7  49.8  50.1  50.9  53.3  51.0  65.9  59.0  

Average 50.7  51.6  51.2  51.8  51.7  56.0  54.9  55.2  51.0  51.5  53.2  52.9  53.1  63.9  62.7  

h = 5    

            
  

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 LAR ADNS 

y(30) 52.8  53.0  46.0  52.9  53.1  57.7  58.6  57.2  53.1  52.7  55.6  53.4  54.7  71.9  73.6  

y(91) 52.4  52.8  53.1  52.0  51.4  57.3  56.1  56.5  52.0  51.1  53.5  52.8  53.5  73.0  72.4  

y(152) 51.2  51.3  51.1  51.6  51.6  55.1  56.6  55.1  51.7  50.3  53.1  52.2  52.8  72.4  73.6  

y(365) 51.6  52.6  50.0  51.4  51.7  53.4  55.5  55.4  51.8  51.8  53.9  53.1  53.4  72.7  72.4  

y(730) 47.6  50.0  49.1  51.0  51.4  51.8  53.0  53.8  51.4  50.6  51.1  51.8  51.3  77.3  70.8  

Average 51.2  51.9  50.7  51.7  51.6  54.9  55.4  55.1  51.8  51.1  53.2  52.3  53.0  73.7  72.6  

h = 20    

            
  

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 LAR ADNS 

y(30) 53.9  53.2  43.0  55.2  53.1  54.2  53.2  53.5  54.2  54.1  54.0  53.7  53.8  82.8  82.9  

y(91) 53.1  53.1  52.4  54.4  52.6  50.2  51.9  52.1  52.8  54.4  53.2  52.8  53.1  85.4  83.9  

y(152) 51.7  55.0  49.3  53.3  53.6  49.1  51.0  50.7  54.4  55.5  52.6  53.0  52.8  86.9  85.4  

y(365) 52.0  54.5  45.7  54.0  53.4  44.9  49.0  49.8  54.1  52.6  54.5  53.3  53.9  89.5  87.6  

y(730) 51.0  55.5  39.4  54.7  55.9  43.7  46.4  47.0  56.0  56.1  54.5  53.8  54.2  90.2  88.6  

Average 52.3  54.1  47.2  54.2  53.4  48.2  50.0  50.5  54.0  54.1  53.6  53.1  53.5  87.1  85.9  

Notes: 1) h denotes the forecast horizon in trading day units. The forecast period is from 2002-01-21 to 

2011-12-30, a total of 2519 trading days.  

2) The frequencies (%) of correct sign prediction for each model are reported for different maturities of IV and 

different forecast horizons. In each row of a given maturity and forecast horizon, the best forecast (the highest 

number) is marked in bold.   
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Table7. Test of Forecasting Performance against Alternative Models 

7-a. LAR against M1-M13 with DM Test and against Random Walk with CW Test 

 

h = 1 

             

 

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 R.W.(CW) 

y(30) 1.63**  1.94**  4.28***  3.78***  1.41*  1.96** 3.43***  3.22***  4.01***  2.18**  4.79***  4.01***  4.69***  0.69 

y(91) 3.18***   2.35***  3.86***   3.90***   -4.21***   -1.91**  2.98***   3.25***   -1.12 -2.26**  3.27***   3.44***   3.33***   1.67** 

y(152) 5.19***  3.89***  5.10***  5.01***  1.82**  3.57***  4.80***  4.57***  3.19***  0.68 5.46***  5.50***  5.46***  2.34** 

y(365) 5.66***  5.03***  5.27***  5.47***  -6.12***  -2.27*  5.30***  5.34***  1.41*  5.09***  5.10***  5.84***  5.48***  3.33*** 

y(730) 6.29***  4.86***  6.58***  6.44***  -5.56***  -5.90***  3.95***  4.15***  -5.14***  -17.28***  1.66**  5.45***  3.39***  5.53*** 

h = 5    

            
 

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 R.W.(CW) 

y(30) -11.69***  -11.01***  -10.08***  -9.79***  -11.19***  -11.17***  -9.36***  -9.29***  -10.12***  -11.06***  -9.50***  -10.05***  -9.60***  -9.48*** 

y(91) -11.43***   -12.00***   -10.75***   -9.88***   -13.22***   -12.59***   -10.44***   -14.26***   -11.92***   -12.02***   -11.00***   -11.32***   -11.07***   -5.42*** 

y(152) -12.20***  -12.57***  -11.84***  -11.10***  -12.72***  -12.10***  -11.32***  -11.37***  -11.99***  -12.19***  -11.47***  -11.73***  -11.60***  -6.10*** 

y(365) -12.15***  -12.40***  -11.97***  -11.54***  -14.51***  -13.05***  -11.68***  -11.70***  -12.27***  -12.22***  -11.73***  -11.73***  -11.79***  -6.96*** 

y(730) -13.02***  -13.15***  -12.97***  -12.59***  -14.31***  -13.94***  -13.16***  -13.06***  -14.30***  -16.35***  -13.17***  -13.07***  -13.13***  -7.11*** 

h = 20    

            
 

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 R.W.(CW) 

y(30) -26.70***   -25.68***   -24.08***   -23.29***   -25.66***   -25.81***   -23.89***   -22.97***   -25.04***   -25.55***   -23.83***   -24.82***   -23.92***   -13.56*** 

y(91) -28.62***  -28.260***  -25.66***  -26.65***  -29.09***  -28.10***  -26.56***  -26.92***  -28.58***  -27.81***  -26.67***  -27.42***  -26.76***  -14.29*** 

y(152) -29.37***   -28.70***   -27.23***   -27.98***   -29.84***   -28.21***   -27.39***   -27.15***   -29.40***   -28.11***   -27.55***   -28.06***   -27.63***   -15.96*** 

y(365) -30.44***  -30.07***  -29.57***  -30.66***  -31.44***  -29.96***  -29.38***  -29.14***  -30.75***  -29.38***  -29.57***  -29.69***  -29.61***  -16.72*** 

y(730) -33.27***  -32.82***  -32.63***  -33.96***  -33.17***  -32.09***  -33.06***  -32.93***  -33.69***  -32.76***  -32.87***  -32.77***  -32.86***  -18.95*** 
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       7-b. ADNS against M1-M13 with DM Test and against Random Walk with CW Test 

 

h = 1 

             

 

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 R.W.(CW) 

y(30) 2.45*** 1.99** 3.21*** 1.82** 2.13** 2.97*** 2.62*** 2.65*** 3.03*** 2.17** 3.33*** 2.83** 3.26*** -1.64** 

y(91) 5.19***  4.51*** 4.53***   5.48***   1.93***   3.16***   5.04***   4.71***   4.16***   3.47***   5.16***   5.06***   5.13***   0.07* 

y(152) 5.33***  4.71***  4.93***  5.33***  3.55***  4.52***  5.06***  4.98***  4.98***  3.39***  5.35***  5.35***  5.33***  0.86 

y(365) 5.44***  5.85***  4.89***  5.66***  3.45*** 5.23*** 6.11***  6.05***  5.54***  5.48***  6.38***  6.10***  6.30***  0.10 

y(730) 7.83***  7.79***  7.73***  7.94*** 5.90***  5.66***  8.04***  7.78***  6.40***  -4.48** 8.08***  8.19***  8.26***  2.01** 

h = 5    

            
 

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 R.W.(CW) 

y(30) -8.03** -7.33***   -6.74***   -5.84***   -7.53***   -7.45***   -5.75***   -5.69***   -6.65***   -7.39***   -6.02***   -6.49***   -6.12***   -7.62*** 

y(91) -5.90***  -6.28***  -5.23***  -4.35***  -7.73***  -6.93***  -4.82***  -8.13***  -6.43***  -6.51***  -5.44***  -5.73***  -5.52***  -7.73*** 

y(152) -5.72*** -6.05***   -5.42***   -4.62***   -6.46***   -5.66***   -4.85***   -4.89***   -5.62***   -5.89***   -5.06***   -5.29***   -5.17***   -8.32*** 

y(365) -7.73***  -8.07***  -7.55***  -6.86***  -10.96***  -8.97***  -7.11***  -7.13***  -7.96***  -7.86***  -7.33***  -7.36***  -7.38***  -10.54*** 

y(730) -2.45***  -2.71***  -2.66***  -2.26***  -3.22***  -3.19***  -2.82***  -2.80***  -3.09***  -4.48***  -2.61***  -2.66***  -2.63***  -11.52*** 

h = 20    

            
 

y(n)\Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 R.W.(CW) 

y(30) -7.19** -6.72***   -5.70***   -5.01***   -6.83***   -6.82***   -5.04***   -4.98***   -5.72***   -6.78***   -5.10***   -5.68***   -5.22***   -9.60*** 

y(91) -3.98***  -4.52***  -3.35***  -2.38***  -6.12***  -5.26***  -2.93***  -6.83***  -4.57***  -4.76***  -3.55***  -3.87***  -3.64***  -9.61*** 

y(152) -3.52***  -3.98***  -3.28***  -2.39***  -4.41***  -3.54***  -2.68***  -2.74***  -3.39***  -3.82***  -2.85***  -3.11***  -2.97***  -10.18*** 

y(365) -6.02***  -6.48***  -5.95***  -5.25***  -9.23***  -7.33***  -5.58***  -5.60***  -6.14***  -6.30***  -5.66***  -5.74***  -5.73***  -12.44*** 

y(730) -4.44***    -4.84***    -4.53***    -4.10***    -6.04***    -5.93***    -4.84***    -4.74***    -5.99***    -9.02***    -4.74***    -4.70***    -4.71***    -11.88*** 

 

Notes: 1) h denotes the forecast horizon in trading day units. The forecast period is from 2002-01-21 to 2011-12-30, a total of 2519 trading 

days.  

2) Diebold-Mariano (DM) test statistics (Diebold and Mariano, 1995) are provided for LAR/ADNS against M1 to M13. Clark-West (CW) 

test statistics are provided for LAR/ADNS against the random walk model. For both test statistics, a negative (positive) value indicates 

better (worse) accuracy of LAR/ADNS against an alternative model in terms of quadratic loss measured by mean-squared predicted 

errors (MSPE). Significance of 10%，5% and 1% are marked by *, **, and ***, respectively.  
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Table 8.  Average Lengths of Homogenous Intervals Detected Adaptively  

(Unit: trading days) 

 

 
h = 1 h = 5 h = 20 

NS1 30 28 18 

NS2 39 36 31 

NS3 19 26 22 

 

Notes: h denotes the forecast horizon.  
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Table 9. Robustness Check with Alternative Data on Forecast Performance 

 against Random Walk using CW Test 

 
 LAR  

 ADNS 

 
 y(n)\h 1 5 20 

y(30) -0.90 -7.78*** -14.01*** 

y(60) -0.12 -8.35*** 14.14*** 

y(91) 0.21 -9.24*** -14.83*** 

y(122) 0.06 --9.56*** -15.36*** 

y(152) 0.79 -9.94*** -16.34*** 

y(182) 0.92 -10.96*** 16.59*** 

y(273) 1.00 -11.27*** 18.56*** 

y(365) -0.32 -11.03*** -20.88*** 

y(547) 0.23 -11.72*** -20.88*** 

y(730) 0.74 -12.84*** -22.14*** 
 

  y(n)\h 1 5 20 

y(30) -2.39*** -6.56*** -13.86*** 

y(60) -0.22 -6.48*** -13.75*** 

y(91) 0.12 -7.35*** -14.71*** 

y(122) 0.29 -7.53*** -15.10*** 

y(152) 0.35 -7.89*** -15.37*** 

y(182) 0.29 -8.56*** -16.14*** 

y(273) -0.35 -9.03*** -18.11*** 

y(365) -0.19 -8.99*** -18.71*** 

y(547) 3.60*** -9.94*** -20.21*** 

y(730) 2.48 -11.26*** -21.38*** 
 

IVs 

Delta=0.4 

  
 

 

 

 

 

   

IVs 

Delta=0.6  

 y(n)\h 1 5 20 

y(30) -2.11** -8.46*** -13.67*** 

y(60) -0.20 -8.73*** -13.75*** 

y(91) -0.02 -8.97*** -13.67*** 

y(122) 0.15 -9.48*** -14.73*** 

y(152) 0.75 -9.47*** -15.27*** 

y(182) 0.03 -10.59*** -15.61*** 

y(273) 0.29 -11.70*** -17.85*** 

y(365) 0.51 -12.31*** -18.44*** 

y(547) -0.36 -13.29*** -20.52*** 

y(730) 0.09 -13.83*** -21.82*** 
 

  y(n)\h 1 5 20 

y(30) -3.78*** -6.68*** -11.97*** 

y(60) -1.50* -6.57*** -11.79*** 

y(91) -1.46* -7.16*** -12.27*** 

y(122) -1.48* -7.12*** -13.20*** 

y(152) -1.25 -7.54*** -13.58*** 

y(182) -0.92 -8.41*** -14.12*** 

y(273) -2.13** -9.72*** -16.68*** 

y(365) -1.78** -10.18*** -17.84*** 

y(547) 0.97 -11.63*** -19.66*** 

y(730) 1.75** -12.25*** -21.00*** 
 

VIX 

Futures 

 
y(m)\h 1 5 20 

y(1m) -1.73** -10.88*** -12.49*** 

y(2m) 0.53 -9.96*** -12.31*** 

y(3m) 0.07 -10.94*** -14.46*** 

y(4m) -0.83 -11.717***  -15.22***  

y(5m) 0.29 -12.04***  -15.96*** 

y(6m) -1.35* -10.27*** -15.91*** 

y(7m) -2.41*** -10.60*** -16.66*** 

y(8m) -2.94*** -12.95*** -17.95*** 

y(9m) -3.01*** -11.04*** -16.98*** 

y(10m) -2.91*** -9.88*** -16.58*** 
 

  
y(m)\h 1 5 20 

y(1m) -3.34*** -12.96*** -13.07*** 

y(2m) -1.20 -11.53*** -12.64*** 

y(3m) -2.46** -11.84*** -13.69*** 

y(4m) -3.94*** -14.78*** -14.56*** 

y(5m) -4.17*** -15.58*** -16.01*** 

y(6m) -4.61*** -14.75*** -15.28*** 

y(7m) -4.98*** -15.30*** -16.38*** 

y(8m) -4.97*** -14.54*** -19.00*** 

y(9m) -5.76*** -14.43*** -18.44*** 

y(10m) -6.10*** -13.46*** -18.20*** 
 

Notes: 1) h denotes the forecast horizon in trading day units. The forecast period for the IVs data is from 2002-01-21 

to 2011-12-30. The forecast period for VIX future is from 2012-05-02 to 2017-09-01. 

2) Clark-West (CW) test statistics are provided for LAR/ADNS against the random walk model. A negative (positive) 

value indicates better (worse) accuracy. Significance of 10%，5% and 1% are marked by *, **, and ***, respectively.  
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