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1 Introduction

In this paper, we consider a sequence {Xn, n ≥ 1} of random variables defined on
some probability space (Ω,F , P ). Hsu and Robbins [10] introduced the following concept
of complete convergence. A sequence {Xn, n ≥ 1} is said to converge completely to a
constant C if

∞∑
n=1

P (|Xn − C| > ε) <∞,

for all ε > 0. For independent and identically distributed (i.i.d., in short) random variables
{X,Xn, n ≥ 1}, let Sn =

∑n
k=1Xk, n ≥ 1 be the partial sums, Hsu and Robbins [10]

proved that Sn/n converge completely to EX, provided DX < ∞. Erdős [8] proved
the converse theorem. This Hsu-Robbins-Erdős’s theorem was generalized in different
ways. Katz [13], Baum and Katz [1], and Chow [7] formed the following generalization of
Marcinkiewicz-Zygmund type.

Theorem 1.1 Let {X,Xn, n ≥ 1} be a sequence of i.i.d. random variables and let
αp ≥ 1, α > 1/2. Then the following statements are equivalent:

(i) E|X|p <∞ and EX = 0 if p ≥ 1;
(ii)

∑∞
n=1 n

αp−2P (|Sn| > εnα) <∞ for all ε > 0;
(iii)

∑∞
n=1 n

αp−2P (max1≤i≤n |Si| > εnα) <∞ for all ε > 0;
If αp > 1, α > 1/2 the above are also equivalent to
(iv)

∑∞
n=1 n

αp−2P (supi≥n i
−α|Si| > ε) <∞ for all ε > 0.

1Supported by the National Natural Science Foundation of China (No. 11571250)
2Correspondence: yanjigao@suda.edu.cn(Jigao Yan), Tel: (86)512-65112637, Fax: (86)512-

65222691
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In many stochastic models, the assumption that random variables are independent
is not plausible. Increases in some random variables are often related to decreases in
other random variables, so an assumption of dependence is more appropriate than an
assumption of independence. One of the important dependence structure is the extended
negatively dependent structure, which was introduced by Liu [18] as follows.

Definition 1.1 Random variables Xk, k = 1, · · · , n are said to be lower extended
negatively dependent (LEND) if there is some M > 0 such that, for all real numbers
xk, k = 1, · · · , n,

P

{
n⋂
k=1

(Xk ≤ xk)

}
≤M

n∏
k=1

P{Xk ≤ xk}; (1.1)

they are said to be upper extended negatively dependent (UEND) if there is some M > 0
such that, for all real numbers xk, k = 1, · · · , n,

P

{
n⋂
k=1

(Xk > xk)

}
≤M

n∏
k=1

P{Xk > xk}; (1.2)

and they are said to be extended negatively dependent (END) if they are both LEND and
UEND. A sequence of infinitely many random variables {Xk, k = 1, 2, · · ·} is said to be
LEND/UEND/END if there is some M > 0 such that, for each positive integer n, the
random variables X1, X2, · · · , Xn are LEND/UEND/END, respectively.

In the case M = 1, the formula of END random variables reduces to the notion of
negatively orthant dependent (NOD, in short) random variables which was introduced by
Joag-Dev and Proschan [12]. They also pointed out that negatively associated (NA, in
short) random variables are NOD random variables and then END.

As pointed out in Liu [18], the END structure covers many negative dependence struc-
tures and, more interestingly, it covers certain positive dependence structures. Hence,
studying the limiting behavior of END random variables is of great significance. There
are more and more literatures appeared. See, for example, Liu [18] obtained the precise
large deviations for dependent random variables with heavy tails. Shen [25] presented
some probability inequalities and gave some applications. Wu et al [33] considered some
complete moment convergence and mean convergence theorems for the partial sums of
END random variables. Qiu et al [24], Wang et al [31, 32] and Shen et al [27] investigat-
ed some results on complete convergence of END random variables. Chen et al [6], Yan
[36, 37] considered the SLLN for END random variables, and so on.

An another group of dependencies is formed by mixing type structures defined by
special sequences of mixing coefficients. Some of them, however defined in a way that is
significantly different from the negative dependence structures, have many similar prop-
erties which allow us to use in consideration methods and tools similar to those used in
END case. In further consideration we will deal with three types of mixing dependencies:
%∗-mixing, ϕ-mixing and %−-mixing.
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Definition 1.2 A sequence of random variable {Xn, n ≥ 1} is said to be a %∗-mixing
sequence if there exists k ∈ N such that

%∗(k) = sup
S,T

(
sup

X∈L2(FS),Y ∈L2(FT )

cov(X, Y )√
V ar(X) · V ar(Y )

)
< 1,

where S, T are the finite subsets of positive integers such that dist (S, T ) ≥ k and FW is
the σ-field generated by the random variable {Xi, i ∈ W ⊂ N}.

Bradley [2] and Miller [19] studied various limit properties of random fields under the
assumption %∗(k) → 0, k → ∞. We refer to the results obtained under the condition
%∗(k) < 1 for some k ∈ N which is important in estimating the moments of partial and
maxima of partial sums, see Bryc and Smolenski [3] and Peligrad [20]. Peligrad [20], Utev
and Peligrad [29] investigated the properties of the maximum of partial sums and used
them to obtain an invariance principle, Peligrad and Gut [21] presented Rosenthal-type
maximal inequality and rate convergence for the Marcinkiewicz-Zygmund type SLLN,
Cai [4] obtained SLLN and complete convergence for random variables with different
distributions.

Definition 1.3 A sequence of random variables {Xn, n ≥ 1} is called to be ϕ-mixing
(or uniformly strong mixing) if

ϕ(n) = sup
k≥1,A∈Fk1 ,P (A)>0,B∈F∞k+n

|P (B|A)− P (B)| → 0 as n→∞,

where Fmn is the σ-field generated by random variables Xn, Xn+1, . . . , Xm.

A concept of ϕ-mixing dependence was introduced independently by Rozanov and
Volkonski [23] and Ibragimov [11]. A number of limit theorems for ϕ-mixing random
variables have been established by many authors. We refer to Wang at al [30] (Rosenthal
type maximal inequality, Hájek-Rényi type inequality, SLLN), Tuyen [28] (SLLN), and
Chen at al [5] (complete convergence and Marcinkiewicz-Zygmund type SLLN of moving
averages processes) and Kuczmaszewska [16] (complete convergence for NA, %∗-mixing
and ϕ-mixing sequences satisfying Petrov’s condition).

Definition 1.4 A sequence {Xn, n ≥ 1} is called %−-mixing, if

%−(n) = sup{%−(S, T ) : S, T ⊂ N, dist(S, T ) ≥ n} → 0, as n→∞,

where

%−(S, T ) = 0 ∨ sup{corr(f(Xi, i ∈ S), g(Xj, j ∈ T ))},

and the supremum is taken over all coordinatewise increasing real functions f on RS and
g on RT .
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Some results concerning the complete moment convergence, the complete convergence
and strong law of large numbers of Marcinkiewicz-Zygmund type for moving average
process generated by %−-mixing seguences one can find in Zhang [38]. We also refer to
Wang and Lu [34].

Most of results concerning limit theorems are formulated for identically distributed
random variables. Pruss [22] introduced the following concept of regular cover which
allowed to consider sequences without identical distribution.

Definition 1.5 Let X1, X2, · · · , Xn be random variables, and X be a random vari-
able possibly defined on a different probability space. Then, X1, X2, · · · , Xn are said to be
a regular cover of (the distribution of ) X provided we have

E(G(X)) =
1

n

n∑
k=1

E(G(Xk)), (1.3)

for any measurable function G for which both sides make sense.

In this paper, we are interested in generalizations of the Baum-Katz result. Under
some cover condition weaker than (1.3), Kuczmaszewska [14] extended the result to the
case of negatively associated (NA, in short) sequence. They got the following result

Theorem 1.2 (Kuczmaszewska [14]). Let {Xn, n ≥ 1} be a sequence of NA random
variables and X be a random variable possibly defined on a different space satisfying the
condition

1

n

n∑
k=1

P (|Xk| > x) = c · P (|X| > x) (1.4)

for all x > 0, all n ≥ 1 and some positive constant c. Let αp > 1 and α > 1/2. Moreover,
additionally assume that for p ≥ 1 EXn = 0 for all n ≥ 1. Then the following statements
are equivalent:

(i) E|X|p <∞;
(ii)

∑∞
n=1 n

αp−2P (max1≤i≤n |Si| > εnα) <∞ for all ε > 0.

Though condition (1.4) is weak in some sense, it remains a strong condition, we even
get the same result for arbitrary random variables with some rough conditions. Gut [9]
introduced the following concept of weakly mean dominated

Definition 1.6 We say that the array {Xnk, 1 ≤ k ≤ n, n ≥ 1} is weakly mean
dominated (WMD, in short) by the random variable X if, for some γ > 0,

1

n

n∑
k=1

P (|Xnk| > x) ≤ γP (|X| > x), (1.5)

for all x > 0 and all n.

A. Kuczmaszewska and Z. A.Lagodowski [15] introduced another structure which can also
be used to prove results for non-identically distributed random variables.
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Definition 1.7 Random variables {Xk, k ≥ 1} are weakly mean bounded (WMB, in
short) by random variable X (possibly defined on a different probability space) iff there
exist some constant γ1, γ2 > 0 such that for all x > 0 and n ≥ 1

γ1 · P (|X| > x) ≤ 1

n

n∑
k=1

P (|Xk| > x) ≤ γ2 · P (|X| > x). (1.6)

Obviously, if a sequence {Xk, k ≥ 1} and a random variable X satisfy WMB condition,
they must satisfy WMD ones. The aim of this paper is to consider the analogous gener-
alization of the Baum-Katz theorem for a sequence of random variables satisfying WMD
or WMB sense and some usual conditions (Marcinkiewicz-Zygmund type inequality and
Rosenthal type inequality). The main results are provided in Section 2. Some lemmas
and the proofs of the main results are presented in Section 3.

As usual, we note that C will be numerical constants whose value are without impor-
tance, and, in addition, may change between appearances. I(A) is the indicator function
on the set A. Denote X+ = max(X, 0) and X− = max(−X, 0).

2 Main Results

Before presenting our main results, we first give the following assumptions.
Hypothesis. Let {Xn, n ≥ 1} be an arbitrary sequence of random variables satisfying

for every θ ≥ 2 and n ≥ 1

E

(∣∣∣∣∣
n∑
i=1

fi(Xi)

∣∣∣∣∣
)θ

≤ C

 n∑
i=1

E|fi(Xi)|θ +

(
n∑
i=1

E|fi(Xi)|2
)θ/2

 (2.1)

and

E

(
max
1≤k≤n

∣∣∣∣∣
k∑
i=1

fi(Xi)

∣∣∣∣∣
)θ

≤ C logθ n

 n∑
i=1

E|fi(Xi)|θ +

(
n∑
i=1

E|fi(Xi)|2
)θ/2

 , (2.2)

whenever f1, f2, · · · , fn are all nondecreasing (or non-increasing) functions, Efi(Xi) = 0
and E|fi(Xi))|θ <∞, for all 1 ≤ i ≤ n.

Remark 2.1 A lot of dependent structures, for example such as ρ∗-mixing, ϕ-
mixing, NA, ND, END, etc., satisfy (2.1) and (2.2) in Hypothesis.

Theorem 2.1 Suppose αp > 1, α > 1/2. Let {Xn, n ≥ 1} be an arbitrary sequence
of random variables with EXn = 0 for all n ≥ 1 if p > 1 and X be a random variable
possibly defined on a different probability space satisfying (1.5) for all x > 0, all n ≥ 1 and
some positive constant γ. Assume that {Xn, n ≥ 1} satisfies the conditions of Hypothesis.
Then E|X|p <∞ implies that for all ε > 0

∞∑
n=1

nαp−2P

(
max
1≤k≤n

|Sk| > εnα
)
<∞, (2.3)

5



and

∞∑
n=1

nαp−2P (sup
i≥n

i−α|Si| > ε) <∞, (2.4)

where Sk =
∑k

i=1Xi, 1 ≤ k ≤ n.

The next theorem presents the necessary condition for (2.3) under assumption that
random variables {Xn, n ≥ 1} and X satisfy WMB condition (1.6).

Example 2.1 We give an example of (1.6). Suppose that P (Xk = 1− 1
k
) = P (Xk =

2− 1
k
) = 1/2 for k = 1, 2, · · · , . Then

1

n

n∑
k=1

P (|Xk| > x)→


1, 0 ≤ x < 1,

1/2, 1 ≤ x < 2,
0, x ≥ 2.

that is, if the mean dominating random variable, X, is such that P (X = 1) = P (X =
2) = 1/2, then (1.6) is satisfied.

Theorem 2.2 Suppose αp > 1, α > 1/2. Let {Xn, n ≥ 1} be a sequence of random
variables satisfying (2.1) for θ = 2 and X be a random variable possibly defined on a
different probability space satisfying (1.6) for all x > 0, all n ≥ 1 and some positive
constants γ1 and γ2. Then (2.3) implies E|X|p <∞.

As a consequence of Theorem 2.1 and Theorem 2.2 by Lemma 3.2 and Lemma 3.3 we
get the following result.

Corollary 2.1 Suppose αp > 1, α > 1/2. Let {Xn, n ≥ 1} be a sequence of END,
%∗-mixing, %−-mixing or ϕ-mixing random variables and X be a random variable possibly
defined on a different probability space satisfying (1.6) for all x > 0, all n ≥ 1 and some
positive constants γ1 and γ2. Moreover, we assume EXn = 0 for all n ≥ 1 if p > 1
and

∑∞
n=1 ϕ

1
2 (n) < ∞ in case of ϕ-mixing sequence. Then the following statments are

equivalent:
(i) E|X|p <∞;
(ii)

∑∞
n=1 n

αp−2P (max1≤i≤n |Si| > εnα) <∞ for all ε > 0.

Remark 2.2 Since END and %−- mixing random variables include NA random vari-
ables, our result also holds for NA case.

3 Some Lemmas and Proofs

To prove the main results of the paper, we need the following important lemmas.

Lemma 3.1 (cf.Liu [18]) Let {Xn, n ≥ 1} be a sequence of END random variables.
For each n ≥ 1, if f1, f2, · · · , fn are all nondecreasing ( or nonincreasing ) functions, then
random variables f1(X1), f2(X2), · · ·, fn(Xn) are also END.
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Lemma 3.2 (cf.Wang et al.[31]) Let p ≥ 2 and {Xn, n ≥ 1} be a sequence of END
random variables with EXn = 0 and E|Xn|p < ∞ for each n ≥ 1. Then there exists a
positive constant Cp depending only on p such that

E

∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
p

≤ Cp

 n∑
i=1

E|Xi|p +

(
n∑
i=1

E|Xi|2
)p/2

 , for all n ≥ 1.

and

E

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣
p)
≤ Cp(log n)p

 n∑
i=1

E|Xi|p +

(
n∑
i=1

E|Xi|2
)p/2

 , for all n ≥ 1.

Lemma 3.3 (cf.Utev and Peligrad[29], Wang and Lu[34], Wang et al.[30]) Let
p ≥ 2 and {Xn, n ≥ 1} be a sequence of %∗-mixing, %−-mixing or ϕ-mixing random
variables with EXn = 0 and E|Xn|p < ∞ for each n ≥ 1. Moreover, if Xn, n ≥ 1 are

ϕ-mixing we assume that
∑∞

n=1 ϕ
1
2 (n) < ∞. Then there exists a positive constant Cp

depending only on p such that

E

(
max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣
p)
≤ Cp

 n∑
i=1

E|Xi|p +

(
n∑
i=1

E|Xi|2
)p/2

 , for all n ≥ 1. (3.1)

Lemma 3.4 (cf.Gut [9]) Let {Xn, n ≥ 1} be a sequence of random variables sat-
isfying a weak dominating condition with mean dominating random variable X, i.e. for
some c > 0

1

n

n∑
i=1

P (|Xi| > x) ≤ cP (|X| > x).

Let r > 0 and for some A > 0

X ′i = XiI(|Xi| ≤ A), X ′′i = XiI(|Xi| > A),

X∗i = XiI(|Xi| ≤ A)− AI(Xi < −A) + AI(Xi > A),

and

X ′ = XI(|X| ≤ A), X ′′ = XI(|X| > A),

X∗ = XI(|X| ≤ A)− AI(X < −A) + AI(X > A).

Then
(i) if E|X|r <∞, then 1

n

∑n
i=1E|Xi|r ≤ CE|X|r;

(ii) 1
n

∑n
i=1E|X ′i|r ≤ C (E|X ′|r + ArP (|X| > A)) for any A > 0;

(iii) 1
n

∑n
i=1E|X ′′i |r ≤ CE|X ′′|r for any A > 0;

(iv) 1
n

∑n
i=1E|X∗i |r ≤ CE|X∗|r for any A > 0.
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Now, we present the proofs of the main results step by step.
Proof of Theorem 2.1. We first take

0 < p′ < p,
1

αp
< q < 1

such that
α(p− p′) > α(p− p′)q > 1, and p− p′ > 1 if p > 1.

For all 1 ≤ i ≤ n, n ≥ 1, denote that

X
(1)
ni = −nαqI(Xi < −nαq) +XiI(|Xi| ≤ nαq) + nαqI(Xi > nαq);

X
(2)
ni = (Xi − nαq)I(Xi > nαq);

X
(3)
ni = −(Xi + nαq)I(Xi < −nαq).

Then, for every 1 ≤ i ≤ n, n ≥ 1

Xi = X
(1)
ni +X

(2)
ni −X

(3)
ni and X

(2)
ni ≥ 0, X

(3)
ni ≥ 0.

Thus,

∞∑
n=1

nαp−2P

(
max
1≤k≤n

|Sk| > εnα
)

≤
∞∑
n=1

nαp−2P

(
max
1≤k≤n

∣∣∣∣∣
k∑
i=1

X
(1)
ni

∣∣∣∣∣ > εnα/3

)
+
∞∑
n=1

nαp−2P

(
max
1≤k≤n

∣∣∣∣∣
k∑
i=1

X
(2)
ni

∣∣∣∣∣ > εnα/3

)

+
∞∑
n=1

nαp−2P

(
max
1≤k≤n

∣∣∣∣∣
k∑
i=1

X
(3)
ni

∣∣∣∣∣ > εnα/3

)

=
∞∑
n=1

nαp−2P

(
max
1≤k≤n

∣∣∣∣∣
k∑
i=1

X
(1)
ni

∣∣∣∣∣ > εnα/3

)
+
∞∑
n=1

nαp−2P

(
n∑
i=1

X
(2)
ni > εnα/3

)

+
∞∑
n=1

nαp−2P

(
n∑
i=1

X
(3)
ni > εnα/3

)
, I1 + I2 + I3. (in say)

To prove (2.3), it suffices to show that Ik <∞, k = 1, 2, 3.
For I1, we first prove that

n−α max
1≤k≤n

∣∣∣∣∣
k∑
i=1

EX
(1)
ni

∣∣∣∣∣→ 0, n→∞. (3.2)

We will do it in three cases.
Case I. Let α ≤ 1. Then αp > 1 implies p > 1 and, according to the assumption,

8



EXn = 0, n ≥ 1. It follows from Lemma 3.4 that

n−α max
1≤k≤n

∣∣∣∣∣
k∑
i=1

EX
(1)
ni

∣∣∣∣∣
≤ n−α max

1≤k≤n

∣∣∣∣∣
k∑
i=1

[EXiI(|Xi| ≤ nαq) + nαqP (|Xi| > nαq)]

∣∣∣∣∣
= n−α max

1≤k≤n

∣∣∣∣∣
k∑
i=1

[EXiI(|Xi| > nαq) + nαqP (|Xi| > nαq)]

∣∣∣∣∣
≤ 2n−α

n∑
i=1

E|Xi|I(|Xi| > nαq) ≤ 2n1−αE|X|I(|X| > nαq)

≤ Cn1−α · nαq(1−(p−p′))E|X|p−p′ ≤ Cn−[αq(p−p
′)−1]−α(1−q) → 0, n→∞.

Case II. Let α > 1 and p > 1. We have

n−α max
1≤k≤n

∣∣∣∣∣
k∑
i=1

EX
(1)
ni

∣∣∣∣∣ ≤ n−α
n∑
i=1

[E|Xi|I(|Xi| ≤ nαq) + nαqP (|Xi| > nαq)]

≤ Cn1−α [E|X|I(|X| ≤ nαq) + nαqP (|X| > nαq)] ≤ Cn1−α → 0, n→∞.

Case III. Let α > 1 and p ≤ 1. We have

n−α max
1≤k≤n

∣∣∣∣∣
k∑
i=1

EX
(1)
ni

∣∣∣∣∣ ≤ n−α
n∑
i=1

[E|Xi|I(|Xi| ≤ nαq) + nαqP (|Xi| > nαq)]

≤ Cn1−α [E|X|I(|X| ≤ nαq) + nαqP (|X| > nαq)]

≤ Cn1−α · nαq(1−(p−p′))E|X|p−p′ ≤ Cn−[αq(p−p
′)−1]−α(1−q) → 0, n→∞.

By (3.2), to prove I1 <∞, we prove only that

I∗1 ,
∞∑
n=1

nαp−2P

(
max
1≤k≤n

∣∣∣∣∣
k∑
i=1

(
X

(1)
ni − EX

(1)
ni

)∣∣∣∣∣ > εnα/6

)
<∞. (3.3)

From Hypothesis, for each n ≥ 1, {X(1)
ni −EX

(1)
ni , 1 ≤ i ≤ n} remain satisfy the inequalities

in Hypothesis. By αq(p− p′) > 1 and 0 < q < 1, we have for p ≤ 2

α− 1

2
− αq

(
1− p− p′

2

)
> α− 1

2
− α

(
1− p− p′

2

)
=
α(p− p′)− 1

2
> 0.

By taking

τ > max

{
2, p,

p− (p− p′)q
1− q

,
αp− 1

α− 1
2

,
αp− 1

α− 1
2
− αq

(
1− p−p′

2

)} ,

9



Chebyshev’s inequality and Hypothesis we get

I∗1 ≤ C
∞∑
n=1

nαp−2−ατE

(
max
1≤k≤n

∣∣∣∣∣
k∑
i=1

(
X

(1)
ni − EX

(1)
ni

)∣∣∣∣∣
)τ

≤ C
∞∑
n=1

nαp−2−ατ logτ n
n∑
i=1

E
∣∣∣X(1)

ni

∣∣∣τ + C
∞∑
n=1

nαp−2−ατ logτ n

(
n∑
i=1

E
∣∣∣X(1)

ni

∣∣∣2)τ/2

, I∗11 + I∗12. (in say)

Again by Hypothesis

I∗11 ≤ C
∞∑
n=1

nαp−2−ατ logτ n
n∑
i=1

[E|Xi|τI(|Xi| ≤ nαq) + nαqτP (|Xi| > nαq)]

≤ C
∞∑
n=1

nαp−1−ατ logτ n · nαq(τ−(p−p′))E|X|p−p′

≤ C
∞∑
n=1

n
−α(1−q)

(
τ− p−q(p−p

′)
1−q

)
−1

logτ n <∞,

and

I∗12 ≤ C
∞∑
n=1

nαp−2−ατ logτ n

{
n∑
i=1

[
E|Xi|2I(|Xi| ≤ nαq) + n2αqP (|Xi| > nαq)

]}τ/2

.

Now, we prove I∗12 <∞ in two cases: p > 2 and 0 < p ≤ 2.
Let p > 2.

I∗12 ≤ C
∞∑
n=1

nαp−2−ατ logτ n · nτ/2
(
EX2

)τ/2 ≤ C
∞∑
n=1

n
−(α− 1

2
)

(
τ−αp−1

α− 1
2

)
−1

logτ n <∞.

For 0 < p ≤ 2 we have

I∗12 ≤ C
∞∑
n=1

nαp−2−ατ logτ n ·
(
nαq(2−(p−p

′)) · n
)τ/2 (

E|X|p−p′
)τ/2

≤ C

∞∑
n=1

n
αp−2−τ

[
α− 1

2
−αq

(
1− p−p

′
2

)]
logτ n <∞.

This ends the proof of I1 <∞. Next for I2 <∞ and each 1 ≤ i ≤ n, n ≥ 1, let

Y
(2)
ni = (Xi − nαq)I(nαq < Xi ≤ nαq + nα) + nαI(Xi > nαq + nα).

Then Y
(2)
ni ≥ 0 and

X
(2)
ni = Y

(2)
ni + (Xi − nαq − nα)I(Xi > nαq + nα).

10



Thus,

I2 ≤
∞∑
n=1

nαp−2P

(
n∑
i=1

Y
(2)
ni >

εnα

6

)

+
∞∑
n=1

nαp−2P

(
n∑
i=1

(Xi − nαq − nα)I(Xi > nαq + nα) >
εnα

6

)

≤
∞∑
n=1

nαp−2P

(
n∑
i=1

Y
(2)
ni >

εnα

6

)
+
∞∑
n=1

nαp−2
n∑
i=1

P (Xi > nαq + nα)

, I21 + I22. (in say)

By Lemma 3.4,

I22 ≤
∞∑
n=1

nαp−2
n∑
i=1

P (|Xi| > nα) ≤ C
∞∑
n=1

nαp−1P (|X| > nα)

= C
∞∑
n=1

nαp−1
∞∑
i=n

P (iα < |X| ≤ (i+ 1)α)

= C
∞∑
i=1

P (iα < |X| ≤ (i+ 1)α)
i∑

n=1

nαp−1

≤ C
∞∑
i=1

iαpP (iα < |X| ≤ (i+ 1)α) ≤ CE|X|p <∞. (3.4)

Next we prove only that I21 <∞. We first show that

n−α
n∑
i=1

EY
(2)
ni → 0, n→∞. (3.5)

If p > 1, then by Lemma 3.4

0 ≤ n−α
n∑
i=1

EY
(2)
ni ≤ n−α

n∑
i=1

EXiI(Xi > nαq)

≤ n1−αEXI(X > nαq) ≤ n1−α · nαq(1−(p−p′))E|X|p−p′

≤ Cn−[αq(p−p
′)−1]−α(1−q) → 0, n→∞.

If 0 < p ≤ 1, then by Lemma 3.4

0 ≤ n−α
n∑
i=1

EY
(2)
ni ≤ n−α

n∑
i=1

[EXiI(|Xi| ≤ 2nα) + nαP (|Xi| > 2nαq)]

≤ Cn1−α [EXI(|X| ≤ 2nα) + 2nαP (|X| > 2nα) + nαP (|X| > 2nαq)]

≤ Cn1−α
[
nα(1−(p−p

′)) + nα−αq(p−p
′)
]

≤ Cn−[αq(p−p
′)−1] → 0, n→∞.

11



By (3.5), to prove I21 <∞, it is sufficient to show that

I∗21 =
∞∑
n=1

nαp−2P

(∣∣∣∣∣
n∑
i=1

(
Y

(2)
ni − EY

(2)
ni

)∣∣∣∣∣ > εnα

12

)
<∞.

We will prove it in two cases: 0 < p < 2 and p ≥ 2.
For 0 < p < 2, by Chebyshev’s inequality, Hypothesis, Lemma 3.4 and (3.4) we have

I∗21 ≤ C
∞∑
n=1

nαp−2−2αE

∣∣∣∣∣
n∑
i=1

(
Y

(2)
ni − EY

(2)
ni

)∣∣∣∣∣
2

≤ C
∞∑
n=1

nαp−2−2α
n∑
i=1

E
∣∣∣Y (2)
ni

∣∣∣2
≤ C

∞∑
n=1

nαp−2−2α
n∑
i=1

[
E|Xi|2I(nαq < Xi ≤ nαq + nα) + n2αP (|Xi| > nαq + nα)

]
≤ C

∞∑
n=1

nαp−2−2α
n∑
i=1

E|Xi|2I(|Xi| ≤ 2nα) + C
∞∑
n=1

nαp−2
n∑
i=1

P (|Xi| > nα)

≤ C
∞∑
n=1

nαp−1−2αE|X|2I(|X| ≤ 2nα) + C
∞∑
n=1

nαp−1P (|X| > nα)

≤ C
∞∑
n=1

nαp−1−2α
n∑
i=1

E|X|2I(2(i− 1)α < |X| ≤ 2iα) + CE|X|p

= C
∞∑
i=1

E|X|2I(2(i− 1)α < |X| ≤ 2iα)
∞∑
n=i

nαp−1−2α + CE|X|p

≤ C
∞∑
i=1

iαp−2αE|X|2I(2(i− 1)α < |X| ≤ 2iα) + CE|X|p

≤ CE|X|p <∞.

Let p ≥ 2. By taking

κ > max

{
p,
αp− 1

α− 1
2

,
2(αp− 1)

α(p− p′)− 1

}
Chebyshev’s inequality and Hypothesis we have

I∗21 ≤ C
∞∑
n=1

nαp−2−ακE

∣∣∣∣∣
n∑
i=1

(
Y

(2)
ni − EY

(2)
ni

)∣∣∣∣∣
κ

≤ C
∞∑
n=1

nαp−2−ακ
n∑
i=1

E
∣∣∣Y (2)
ni

∣∣∣κ + C
∞∑
n=1

nαp−2−ακ

(
n∑
i=1

E
∣∣∣Y (2)
ni

∣∣∣2)κ/2

, I∗211 + I∗212. (in say)

It is easy to see that

I∗212 ≤ C
∞∑
n=1

nαp−2−ακ

(
n∑
i=1

EX2
i

)κ/2

≤ C
∞∑
n=1

nαp−2−ακ+
κ
2 <∞.

12



On the other hand, by Lemma 3.4 and (3.4) we get

I∗211 ≤ C

∞∑
n=1

nαp−2−ακ
n∑
i=1

[E|Xi|κI(nαq < Xi ≤ nα + nαq) + nακP (|Xi| > nα + nαq)]

≤ C
∞∑
n=1

nαp−2−ακ
n∑
i=1

[E|Xi|κI(|Xi| ≤ 2nα) + nακP (|Xi| > nα)]

≤ C

∞∑
n=1

nαp−1−ακ [E|X|κI(|X| ≤ 2nα) + nακP (|X| > nα)]

≤ C
∞∑
n=1

nαp−1−ακE|X|κI(|X| ≤ 2nα) + CE|X|p

= C
∞∑
n=1

nαp−1−ακ
n∑
i=1

E|X|κI(2(i− 1)α < |X| ≤ 2iα) + CE|X|p

= C
∞∑
i=1

E|X|κI(2(i− 1)α < |X| ≤ 2iα)
∞∑
n=i

nαp−1−ακ + CE|X|p

≤ C
∞∑
i=1

nαp−ακE|X|κI(2(i− 1)α < |X| ≤ 2iα) + CE|X|p

≤ CE|X|p <∞.

To prove the second thesis of Theorem 2.1 it is enough to show that (2.3) implies (2.4).
For 0 < ε < 1 and αp > 1 we have

∞∑
n=1

nαp−2P

(
sup
k≥n

k−α|Sk| > ε

)

=
∞∑
j=1

2j−1∑
n=2j−1

nαp−2P

(
sup
k≥n

k−α|Sk| > ε

)
≤ C

∞∑
j=1

2j(αp−1)P

(
sup

k≥2j−1

k−α|Sk| > ε

)

≤ C

∞∑
j=1

2j(αp−1)
∞∑
i=j

P

(
max

2i−1≤k<2i
k−α|Sk| > ε

)

≤ C
∞∑
i=1

P

(
max

2i−1≤k<2i
k−α|Sk| > ε

) i∑
j=1

2j(αp−1) ≤ C
∞∑
i=1

2i(αp−1)P

(
max

2i−1≤k<2i
k−α|Sk| > ε

)

≤ C

∞∑
i=1

2i(αp−1)P

(
max

2i−1≤k<2i
|Sk| > ε2(i−1)α

)
≤ C

∞∑
i=1

2i(αp−1)P

(
max
1≤k≤2i

|Sk| > ε2−α2iα
)

≤ C

∞∑
i=1

nαp−2P

(
max
1≤k≤n

|Sk| > ε2−2αnα
)
<∞.

This ends the proof of Theorem 2.1. �
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Proof of Theorem 2.2. In order to prove the result, it suffices to show that

∞∑
n=1

nαp−1P (|X| > nα) <∞. (3.6)

By (2.3), we first note that for 0 < ε < 1

∞∑
n=1

nαp−2P

(
max
1≤i≤n

|Xi| > nα
)
≤

∞∑
n=1

nαp−2P

(
max
1≤i≤n

|Xi| > εnα
)

=
∞∑
n=1

nαp−2P

(
max
1≤i≤n

|Si − Si−1| > εnα
)

(S0 = 0)

≤ 2
∞∑
n=1

nαp−2P

(
max
1≤i≤n

|Si| > εnα/2

)
<∞. (3.7)

Therefore,

P

(
max
1≤i≤n

|Xi| > nα
)
→ 0, as n→∞. (3.8)

Moreover, by Lemma ?? and (1.6)

γ1 · nP (|X| > nα) ≤
n∑
k=1

P (|Xk| > nα)

=
n∑
k=1

P

(
|Xk| > nα, max

1≤i<k
|Xi| > nα

)
+

n∑
k=1

P

(
|Xk| > nα, max

1≤i<k
|Xi| ≤ nα

)
=

n∑
k=1

P

(
X+
k > nα, max

1≤i<k
|Xi| > nα

)
+

n∑
k=1

P

(
X−k > nα, max

1≤i<k
|Xi| > nα

)

+P

(
n⋃
k=1

{
|Xk| > nα, max

1≤i<k
|Xi| ≤ nα

})

=
n∑
k=1

P

(
X+
k > nα, max

1≤i<k
|Xi| > nα

)
+

n∑
k=1

P

(
X−k > nα, max

1≤i<k
|Xi| > nα

)
+P

(
max
1≤i≤n

|Xi| > nα
)
, (3.9)

since the sets {|Xk| > nα,max1≤i<k |Xi| ≤ nα} , 1 ≤ k ≤ n are disjoint.
By Hypothesis, {X+

n , n ≥ 1} still satisfy the inequality in Hypothesis. It follows from
Cauchy-Schwarz inequality and Hypothesis that

n∑
k=1

P

(
X+
k > nα, max

1≤i<k
|Xi| > nα

)
= E

[
n∑
k=1

I

(
X+
k > nα, max

1≤i<k
|Xi| > nα

)]

= E

[
n∑
k=1

I
(
X+
k > nα

)
I

(
max
1≤i<k

|Xi| > nα
)]
≤ E

[
n∑
k=1

I
(
X+
k > nα

)
I

(
max
1≤i≤n

|Xi| > nα
)]
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= E

[
n∑
k=1

{
I
(
X+
k > nα

)
− P

(
X+
k > nα

)}
I

(
max
1≤i≤n

|Xi| > nα
)]

+E

[
n∑
k=1

P
(
X+
k > nα

)
I

(
max
1≤i≤n

|Xi| > nα
)]

≤

√√√√E

(
n∑
k=1

{
I
(
X+
k > nα

)
− P

(
X+
k > nα

)})2

P

(
max
1≤i≤n

|Xi| > nα
)

+P

(
max
1≤i≤n

|Xi| > nα
) n∑

k=1

P
(
X+
k > nα

)
≤

√√√√C2

n∑
k=1

E
{
I
(
X+
k > nα

)
− P

(
X+
k > nα

)}2
P

(
max
1≤i≤n

|Xi| > nα
)

+P

(
max
1≤i≤n

|Xi| > nα
) n∑

k=1

P
(
X+
k > nα

)
≤

√√√√C2

n∑
k=1

P (X+
k > nα)P

(
max
1≤i≤n

|Xi| > nα
)

+ P

(
max
1≤i≤n

|Xi| > nα
) n∑

k=1

P
(
X+
k > nα

)
≤

√
C2γ2nP (|X| > nα)P

(
max
1≤i≤n

|Xi| > nα
)

+ γ2P

(
max
1≤i≤n

|Xi| > nα
)
· nP (|X| > nα)

≤ γ1n

4
P (|X| > nα) +

γ2C2

γ1
P

(
max
1≤i≤n

|Xi| > nα
)

+γ2P

(
max
1≤i≤n

|Xi| > nα
)
· nP (|X| > nα) ,

(3.10)

where we used the following inequality

√
ab ≤ aγ1

4γ2C2

+
γ2C2

γ1
b, a ≥ 0, b ≥ 0.

Similarly, we can have

n∑
k=1

P

(
X−k > nα, max

1≤i<k
|Xi| > nα

)
≤ γ1n

4
P (|X| > nα) +

γ2C2

γ1
P

(
max
1≤i≤n

|Xi| > nα
)

+γ2P

(
max
1≤i≤n

|Xi| > nα
)
· nP (|X| > nα) ,

(3.11)
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Now we see that (3.9), (3.10) and (3.11) lead to

γ1n

2
P (|X| > nα) ≤ 2γ2C2 + γ1

γ1
P

(
max
1≤i≤n

|Xi| > nα
)

+2γ2nP

(
max
1≤i≤n

|Xi| > nα
)
P (|X| > nα)

By (3.8), for sufficiently large n we have

P

(
max
1≤i≤n

|Xi| > nα
)
<

γ1
8γ2

,

and consequently

nP (|X| > nα) ≤ 4(2γ2C2 + γ1)

γ1
P

(
max
1≤i≤n

|Xi| > nα
)
. (3.12)

Relations (3.7) and (3.12) give (3.6) and in conclusion we get the desired condition
E|X|p <∞. This ends the proof of Theorem 2.2. �
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