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Abstract In this paper, the complete convergence and complete moment convergence for maximal
weighted sums of extended negatively dependent random variables are investigated. Some sufficient
conditions for the convergence are provided. In addition, the Marcinkiewicz—Zygmund type strong law
of large numbers for weighted sums of extended negatively dependent random variables is obtained.
The results obtained in the article extend the corresponding ones for independent random variables

and some dependent random variables.
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1 Introduction

In this paper, we consider a sequence {X,,,n > 1} of random variables defined on some proba-
bility space (2, %, P). It is well known that the complete convergence plays an important role
in establishing almost sure convergence of summation of random variables as well as weighted
sums of random variables. The concept of the complete convergence was introduced by Hus
and Robbins [11] as follows.

Definition 1.1 A sequence of random variables {Uy,n > 1} is said to converge completely to
a constant 0 if for any e > 0,

(o)

> P(U, — 6] > ¢) < oc.

n=1

Chow [7] presented the following more general concept of the complete moment convergence.

Definition 1.2 Let {Z,,,n > 1} be a sequence of random variables and a, > 0,b, > 0, and
q>0,if

ZanE{b;1|Zn\ —e}d <oo  for some or all e > 0,

n=1
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then the above result was called the complete moment convergence.

As we know, the complete moment convergence implies complete convergence. Moreover,
the complete moment convergence can more exactly describe the convergence rate of a se-
quence of random variables than the complete convergence. So, a study on complete moment
convergence is of interest.

When {X,,,n > 1} is a sequence of independent and identically distributed random vari-
ables, Baum and Katz [3] proved the following remarkable result concerning the convergence
rate of the tail probabilities P(|S,| > en”) for all £ > 0, where S,, = Y | X; are the partial

sums.

Theorem 1.3 Letr > 1/2 and p > 1. Let {X,X,,n > 1} be a sequence of independent
and identical distributed random variables. Assume further that EX = 0 if r < 1. Then the
following statements are equivalent:

(i) EIXP/" < oo

(ii) 3207 nP72P(|S,] > en™) < oo, for all e > 0.

n=1

In convenient, we call n?~2 as the weight function of the tail probabilities, and n” as the
boundary function in the tail probabilities. Many useful linear statistics are weighted sums
of independent and identically distributed random variables, such as, least-squares estimators,
nonparametric regression function estimators and jackknife estimates, and so on. However, in
many stochastic model, the assumption that random variables are independent is not plausible.
Increases in some random variables are often related to decreases in other random variables, so
an assumption of dependence is more appropriate than an assumption of independence. One
of the important dependence structure is the extended negatively dependent structure, which
was introduced by Liu [12] as follows.

Definition 1.4 Random variables Xy, k = 1,...,n are said to be lower extended negatively
dependent (LEND) if there is some M > 0 such that, for all real numbers x, k=1,...,n,

k=1 k=1
they are said to be upper extended negatively dependent (UEND) if there is some M > 0 such

that, for all real numbers zp, k=1,...,n,

P{ ﬂ (X > xk)} <M ] P{Xx > o} (1.2)

k=1 k=1
and they are said to be extended negatively dependent (END) if they are both LEND and UEND.
A sequence of infinitely many random variables { Xy, k = 1,2,...} is said to be LEND/ UEND /
END if there is some M > 0 such that for each positive integer n, the random wvariables
X1, Xo,..., X, are LEND/ UEND/ END, respectively.

The END structure covers all negative dependence structures and, more interestingly, it
covers certain positive dependence structures. Some applications for END sequence have been
found. See, for example, Liu [12] obtained the precise large deviations for dependent random
variables with heavy tails. Liu [13] studied the sufficient and necessary conditions of moderate

deviations for dependent random variables with heavy tails. Shen [18] gave the probability
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inequalities. Chen [5], Yan [30] considered the SLLN for END random variables and applications
to risk theory and renewal theory, and so on.

Recall that the sequence {X,,,n > 1} is stochastically dominated by a random variable X if

sup P{|X,| >t} < CP{|X| > t}, (1.3)
n>1

for some positive constant C' and all ¢ > 0. A real valued function I(x), positive and measurable
on [A, o) for some A > 0, is said to be slowly varying if
I(\zx)

AT =1 for each A > 0.

Recently, Shen et al. [20] discussed the complete convergence of weighted sums of extended

negatively dependent random variables and obtained the following result:

Theorem 1.5 Let 1/2 < r <1 and {X,,n > 1} be a sequence of mean zero END random
variables, which is stochastically dominated by a random variable X. Let I(x) > 0 be a slowly
varying and monotone non decreasing function. Assume further that {an;,1 <i<n,n>1} is

an array of real numbers such that

If
E[IXY71(X]Y7)] < oo,

then for any € > 0,

n

> aniX;

=1

o0
Z Z(Z)P( > En’”) < 00.
n=1

The above result extended Theorem 1.3 in three aspects: independent and identically dis-
tributed random variables to END random variables without identical distribution; partial sums
to weighted sums and changed the weight function of tail probability.

Motivated by the above works, we will further study the complete convergence for weighted
sums of END random variables, the purpose of this article is threefold:

(1) generalise the condition of weight {a,;,1 < i < n,n > 1} to >, |an|* = O(n) for
some «a > 0;

(2) change the boundary function in the tail probabilities;

(3) take into account the complete moment convergence for the maximal of weighted sums
as well.

This work is organized as follows: some lemmas and main results on complete convergence
and complete moment convergence for maximal weighted sums of END random variables are
provided in Section 2. The proofs for the main results are presented in Section 3.

Before we present our main results, we note that C will be numerical constants whose
value are without importance, and, in addition, may change between appearances. a,, = O(b,,)
stands for a,, < Cb, for all n > 1 and I(A) is the indicator function on the set A. Denote
Xt =max(X,0) and X~ = max(—X,0).
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2 Some Lemmas and Main Results
To proceed the main results, we need some important lemmas.

Lemma 2.1 ([12]) Let {X,,n > 1} be a sequence of END random variables.

(i) For eachm > 1, if f1, fo,..., fn are all nondecreasing (or nonincreasing) functions, then
f1(X1), f2(X2), ..., fu(X,) are also END random variables.

(ii) For each n > 1, there exists a constant M > 0 such that

E(ﬁxj) < MﬁEXj.
i=1 =1

Lemma 2.2 ([24]) Let p > 2 and {X,,n > 1} be a sequence of END random wvariables with
EX, =0 and E|X,|P < oo for each n > 1. Then there exists a positive constant C,, depending
only on p such that

n p n n p/2
E ZXi SCP[ZEXi|p+(ZE|Xi|2> } foralln>1
i=1 i=1 i=1
and
j P n n ) p/2
) < P |P ) > 1.
E(lgagl ;X ) < Cp(logn) [;qu + (;Em ) ] for alln >1

Lemma 2.3 ([1,2]) Let{X,,n > 1} be a sequence of random variables, which is stochastically
dominated by a random variable X. For any o > 0 and 8 > 0, the following two statements
hold:

E|Xn|*I(|Xn| < 8) < CLIE[X|*I(|X] < B) + B P{|X| > B}];
E[Xn|" (| Xn| > 8) < CoEIX[I(|X] > 3),

where Cy and Cy are positive constants. Consequently, E|X,|* < CE|X|*.

Lemma 2.4 Let {an;, 1 <i<n,n>1} be an array of real numbers such that

Z lani|* <n  for some & > 0. (2.1)
i=1
Then
(i) for every 0 < ¢ <&,

n

> lanil¢ < n; (2.2)

i=1
(ii) for allm > 1, k > &,

D HI )G+ 1)< Cm+1)'7E, (2.3)
j=m
where I,; = {1 <i<n: nYEGH1)TVE < aps| < n/E57YEY, for eachn > 1,5 > 1. Obviously,
it holds that for allmn >m > 1, k > €,

n—1

S HIL) G+ 1)< Cm+ 1) E (2.4)

j=m
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(iii) for arbitrary s > 1,

w

§(Inj) < s+ 1. (2.5)

j=1
We will use the following properties of slowly varying functions.

Lemma 2.5 ([17]) If ¢(x) is a function slowly varying at infinity, then for any r >0,
Cin~"l(n) <> i 7TU(i) < Can~l(n),
i=n

and
n
Can™t(n) <Y i TU(i) < Cyn”i(n),
i=1
where C;,1=1,2,3,4 are positive constants depending only on r.

Lemma 2.6 Let {an;,1 <i<n,n>1} be an array of real numbers satisfying
Z lan:|* = O(n)  for some o> 0 (2.6)
i=1
and X be a random variable. Let b, = n/*(logn)3/7 for some v > 0.
(i) If p > max{a,v(6+ 1)/3} for some (3, then

= (logn)? &
7;2 W ; E|aniX|pI(|aniX‘ < bn)
CE|X]|, fora>~(B+1)/3,
<{ CBIX|"log(1 4 X)), fora=n(8+1)/3,
CE| X5+, for a <~(B+1)/3.

(ii) If p=a, B = 2, then

3 (logn)” 3" BlaniX|*I(JaniX| > by)
=1

= nby
CE|X|%, for a >,
<4 CE[X|*log(1+|X]|), fora=r,
CE|X|, for a < 7.

Lemma 2.7 Let 0 < a < 2 and v > 0. Suppose that the sequence {X,;,i > 1,n > 1} is
stochastically dominated by a random variable X with E|X|* < co. And {an;,1 <i<n,n>1}
be an array of real numbers satisfying (2.6). Additionally, assume that EX,; =0 for 1 < a <2
and b,, as in Lemma 2.6. Then

z]: EYnz
i=1

where Yy = aniXnid (|ani Xni| < bpn) 4+ bnd(aniXni > by) —bpl(ani Xni < —by) for each 1 <i <
n,n > 1.

1
— max

< —3a/y a '
o < Cltogn) " EIXI" =0 as o, o)

Now, we present our main results as follows.



6 Yan J. G.

Theorem 2.8 Let {X,;,i > 1,n > 1} be an array of rowwise END random variables, which
was stochastically dominated by a random variable X. For some 0 < a < 2, v > 0, {an;,1 <
i <m,n > 1} be an array of real numbers satisfying (2.6) and b, as in Lemma 2.6. Additionally,
assume that EX,; =0 forl <a < 2. If

E|X|* < o0, for a >,
EIX|*log(1+ |X|) <00,  fora=n, (2)
E|X|" < oo, for a <,

then

§ a’TLZ ni

Theorem 2.9 Let {X,;,i > 1,n > 1} be an array of rowwise END random variables, which

0

1
E max
1<j<n

n= 2

> ¢eb ) < oo foralle>0. (2.9)

was stochastically dominated by a random variable X. For some 0 < a < 2, v > 0, {an;, 1 <
i <m,n > 1} be an array of real numbers satisfying (2.6) and b, as in Lemma 2.6. Additionally,
assume that EX,; =0 for 1 < a < 2. If (2.8) holds, then for 0 < 7 < a,

oo
> LE 3
— — mmaXx a
n 1<] Zn . ni ?’L’L
=1

n=2
Remark 2.10 Under the conditions of Theorem 2.9, we can obtain that

- 6) < oo foralle> 0. (2.10)
+

§ anz ni
i=1
§ anani
i=1

oo 1 J
>e E —P| max E AriX i
n 1<j<n | 4
n=2 i=1

Hence, from (2.11) we get that the complete moment convergence implies the complete conver-

—5>t1/7>d

> by (e + sl/f)) dt

> by(e+ 51/7)> for all € > 0. (2.11)

gence.

Theorem 2.11 Conditions as those of Theorem 2.8. Let T,, = Z?:l aniXni for eachn > 1,
then

Ty
lim — =0, as. (2.12)

3 Proofs of Main Results

Proof of Lemma 2.4 (i) By Jensen’s inequality and (2.1), we get

n n % c
S fanl¢ < (Z|am|f) i f<n
i=1 =1
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(ii) By the denotes of I,,;, we see that for every n > 1, {I,,;,j > 1} are pairwise disjoint and

ULy={1<i<n:0<|an| <n'/}
i>1

since Y1 Jani|® < n < oo.
For all m > 1, by k > £ we have

n )

i=1 j=li€ly;
> Zﬁ([ n(j+1)" Z n(j+1)""
j=1 j=m

8(Ing)n (G + 1)~ + 1)/

.F'ﬂg

I
3

8(Ln)n( + 1)~ (m 4 1)~/ 1,

o

I
3

Hence, (2.3) holds.
(iii) On the other hand, by (2.1), for arbitrary s > 1,

n
> ankl* = Z > lankl >nz

k=1 Jj= 1k61n] J=

which implies (2.5).

Proof of Lemma 2.6 ~ Without loss of generality, we may assume that
n
Z |ani|® <n, for some o > 0.
i=1
Then, by Lemma 2.4,

1
Z(Oﬂz:m i X|PI(|ani X| < bp)

n=2 =1

“H(logm)” ¥ Z |ans P BIXPI(Jani X| < 0/ (logn)*/7)
i=1

n 5 (logn)® T S0 S JaniPEIXPI(aniX| < 0/ (logn)?/7)
j=1i€ln;

 (log n) wzﬁ I/ P BXPI(X| < (j + 1)/ (log n)*/7)

Il
(¢ iPﬁ §

3
||
N

IA
M8
3

n=2
=3 0t (ogn)? % S #(Lny)j P EIXIPI(X] < (logn)¥/7)
n=2 j=1

N p/a
n~ (logn)’ ™Y (1)

E|X[PI(kY*(logn)*7 < |X| < (k+1)"/*(logn)*/7)

53
n=2
<2
k=1
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21+ L.

(ﬁ+1)

First for Iy, if a > 1 , by Lemma 2.4 and p > «, we have

L < C’Zn (logn)?~ 7E|X|”I(|X\ < (logn)®/7)
< C’Zn (logn)?~ % (log n)3 =)/ "E|X|*I(|X]| < (logn)3/")

< CE|X|¢ Z n~(logn)’~ =
n=2

< CE|X|".

Ifa< M , by Lemma 2.4 and p > @, we have

11<CZn (logn)*~ % E|XPI(|X| < (logn)*/7)

_CZn (logn)? ZE|X|pI(log( —1) < |X|"/3 <logm)
m=2

SCZE|X|P1(1og( L) < X[ <logm) 3 n (log ) ¥

n=m

m=2
(oo}
<Y (logm)’ FHE|IXPI(log(m — 1) < [X["/? < logm)

m=2

= (logm)®~ FHEX|MST EIX P Ilog(m — 1) < | X/ < logm)
m=2

<03 (logm)® =% (logm) T =5 B X |5 I(log(m — 1) < [X]/? < logm)
m=2

< CE‘Xlw(,GJrl)

Next for I, by Lemma 2.4 and p > «, we have
B—3e > 1 |X| 1 - —p/
I < CZn (logn)?~= ZE|X|”I(ka < logm)? < (k+ 1)a) Zn(znj)g P/

k=1

> X !
<C’Zn (logn)?~= Z(k+1)1—E|XPI(k <(|3M§(k+l)a>

= logn)

= > X

=C E n~'(logn)?~~ E (k+1)1_aE|XaE|X|p_aI(k<lx < (1| < (k‘—i—l)«i)
ogn

k=1

ar( gt R

n=2
—C’Zn (logn) _%E\X\“I(\X\ > (logn)*/")

= CZn (logn)? = Z E|X|*I(logm < |X|"/3 < log(m + 1))

n=2 m=n
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—C i E|X|*I(logm < |X["/* < log(m + 1)) i n~ (logn)”~
m=2 =2
Observing that
C, for o > @7
i nlogn)? =% < C'loglogm, for = @7
" C’(logm)ﬁ_%ﬂ, for a < V(ﬁ; 1)7
we get
CE|X|*, for o > W’
I, <{ CE|X|*log(1+ |X]), for“:WBTm’
CE|X|YB+1)/3, for a < @
Therefore,
CE|X|*, for ao > @,
I=h+1<{ CEX|*log(l+|X]), foro‘:@’
OE|X|7(,6+1)/3, for a < @

The proof of Lemma 2.6 is completed.
Proof of Lemma 2.7 We will discuss (2.7) into two cases.
Casel O<a<l.

By Lemma 2.3, Markov’s inequality and E|X|* < oo we have

J

1

— max

<
by, 1<j<n -

|EY,;|

&~
-

©
I
—

n
E|aniXm|I(‘aani| < bn) + OZP(|aanm| > bn)

=1

IA
Fa
M-

s
Il
-

Elani X |I(JaniX| < by) + C > PllaniX| > by)

i=1

INA
Fla

s
Il
—

C &
« l—o « el
Blani X |*an X" (0 X| < ba) + 1 S Jani Bl X|

n =1

INA
Fla

©
Il
—

|ani|  E]X |

=1

INA
,Q 3IQ
=

<
Case Il 1<a<?2.
For all 1 <i < n,n > 1, denote

Zni = anani - Yni

logn) 2/ "E|X|* — 0  asn — oc. (3.1)
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Then

0< Zpi = 0niXpi —bp < apiXpi  for ap; Xns > by,
and

AniXni < @piXpi +bp = Zp; <0 for a,; X < —by,.
Hence,

By EX,; =0 for 1 < a < 2, Lemma 2.3 and E|X\" < oo we get
i| = — max

n 1<j<n Z EZT”
5"2{31ﬂ22n|
" i=1

1 n

IN

IN

IN

C n
- > Blan X|I(|ani X| > by)
=1

C - « [e3
< b72|am| E|X|%I(|ani X| > by)

n =1

< C(logn) 3/ "E|X|* — 0 asn — oo.

From (3.1) and (3.2), we see that (2.7) holds.
Proof of Theorem 2.8 By (2.6) and
Uni = Gy — Qs

without loss of generality, we may assume that a,; > 0 and Zz 1an <n.
For fixed n > 1, let Z,,; as those in the proof of Lemma 2.7 and

A= ﬂ{)/ni = anani}a

=1

B = Z = U{Ynz 7é an'Lan} = U{|an1X7w| > bn}7
=1 =1

Zanz ni >5b }

1<j<n

E,; :{max

It is easy to check that for all € > 0,

{ 1I£1Ja<xn ;Ym > ¢b, } U { EJl{|ame| > bn}}

Then, by Lemma 2.7, for n large enough, we have

> sbn) + P( O{|am-Xm| > bn})

i=1

J
z%Em)gP(Imm E:Kn
=1

1<j<n

Yan J. G.
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J J n
(1rgja<xn Z " > by — max ;EYM ) + Z; P(|ani Xni| > bn)
max zjj - Eb + ZP | Xni| > bn). (3.3)
1<j<n Pt n'L 7711 ni ni

i=1

To prove (2.9), it suffices to show that

S | : by,
oo 1 n

= Z . ZP(|aani| > by,) < oo. (3.5)
n=2 n =1

First for Jy, by Lemma 2.1, it is easy to see that {Y,; — EY,;,1 <i<mn,n > 1} is an array
of rowwise END random variables. Hence, it follows from Markov’s inequality, Lemmas 2.2
and 2.3 that
2
Vi) )

1

J

Z“”

= 2
n=2 nb" i=1
log®n log n
<oy e 3 Blani X *T(Jani Xos| < br) +cz S Pllani Xl > by)
n=2 nooi=1 — =1
log®n log?n
SCZ ~ ZE\amX| I(lan X| < by) +OZ Zp laniX| > by)
n=2 n i=1

1
<CZlog nZE\ Wi X[PT(|aniX| < by) +CZ s anlale‘” (lani X[ > bn)

’I’L

£ Ji1 + Jio. (36)

From Lemma 2.6 (i) (for p = 8 = 2), (ii) and (2.8) we obtain that J1; < oo, Ji2 < oo and
then J; < oo.

Finally, we have

oo 1 n N
Jy < Z b ZE|ame| I(|aniXni| > bn) < J12 < 0.

n=2 " =1
The proof of Theorem 2.8 is completed. O
Proof of Theorem 2.9  For all € > 0, we have
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1 !
= ;/0 (1ri1ja<xn Zam nil >e+1t7 )dt
n=2
o0 1 o0
+z:2n/1 (1I§]a<xn Zam ni| >e+tT )dt
n= =1

= i % <1glja<xn Z anz ni| = eb )
i %/ (éljaéxn Z;ame» > bnti)dt
— P

éI(l + K. (3.7)

To prove (2.10), it suffices to show that K; < oo and Ks < co. By Theorem 2.8, we have
K1 < oo. Next for K. Foreach 1 <i<n,n>1andallt>1, let

V! = aniXni I (|ani Xni| < bt/ ™) + bt "I (an Xpi > bt 7)) — bt "1 (an: X i < —bnt'/7);

Z7/7,1 = aniXn; — Yéw
= m{YT:l = aniXnil};
=1
o n n
A = V), # aniXni} = J{laniXni| > bat"/"};
1=1 =1
: /
/I . i 1/7
Eni - { 121?;(” Z; a’anz > bnt }

By Lemma 2.7, for all ¢ > 1, and n large enough

n
Y/i > bntl/T> + P( U{|anani| > bntl/T})

)

J
P(E),) < P( max

1<j<n

> b, t'/T — max
1<j<n

SP( max

1<j<n

> (Y- EYy)

=1

n

+ 3 P(|aniXni| > bat'/7)

J

> (Vo= EY))
i=1

n

1 1/7 1/7
> bt )+ZP(|ame|>bnt . (39)

i=1

To prove Ko < 00, it suffices to show that

< 1 o J 1
Koy 25 = P Y. — EY'. btV ) dt < oo 3.9
21 7;”/1 (f%jljagxn ;( ni nz) > 2 003 ( )
o 1 o N
Ky 2y 7/ > " P(|aniXni| > bot"/7)dt < oo. (3.10)
n 1 N
n=2 1=1

By Lemma 2.1, {Y,), — EY,.,1 < i < n,n > 1} is still an array of rowwise END random



Complete Convergence and Complete Moment Convergence 13

variables. Hence, it follows from Markov’s inequality, Lemmas 2.2 and 2.3 that

[e’e) 1 %) 1 2
< — -
Ky < C’; - /1 b%tQ/TE(&l%Xn )dt
— 1 [~ Ingn - ’ 1\2
<C 5/1 R ZE(Ym — EY/,)%dt
n=2 n i=1

[e%S) 1 2 0o n
gcz o8 "/ ZP(\am-Xm-| > btV )dt
n :

yo o / - Z/TZEmm X2 (i Xoi] < bt/ )t
2

J

> (Y, — EY},)
=1

n=

log®n B
< CZ " /1 ZP(\ale > b tY7)dt
n=2 i=1
e loan o B n
+CZ nb2 / =2/ ZE|amX\2(|amX| < b,)dt

1
CZ o8 ”/ t 2/TZE|amX\ (b < |aniX| < bt/ ™)dt

n=2 i=1

£ CKa11 4+ CKya + CKois. (3.11)

For 0 < 7 < v and (2.6), we get
1 niX
KgnfC’E = ”/ E:P(m i >dt

1
< CZ og” nZE\amX|TI(|amX\ > b,)

"'Ll

1
<C’Z og” ”ZE\ wi X | (Jani X| > by)
=1

< CJip < 00. (312)

For 0 < 7 < ae < 2, it follows from Lemma 2.6 and (2.8) that

1
K1 <CZ o8 nZE|amX| (|laniX| < by) < co. (3.13)

nzl

Taking t = 27, by Markov’s inequality and Lemma 2.3 if follows that

1
Ko <CZ o8 ”/ aT" 3ZE|amX\ (b < |aniX| < bz)dw
=1

_Czlog 15 / S Blan XP (b < aniX] < byt)do

nTYLl i=1

I
<CZ og"n Z T 32E|amX| (b < |aniX| < bn(m +1))

nb2
=1

Z Zm7_3E|am‘X|2(bns < |aniX| < bn(s+1))
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—Czlog HZZE‘G’“)Q (bps < |ani X| < by (s+1))i -3

nzlel

log?n _
Z & ZZST 2 Bani X [2(bns < |aniX| < bu(s + 1))

nb2
=1 s—1

1 o0
Z 08 SN N 2 Bl X[ X2 (s < JaniX] < b5 + 1)

nb2
noi=1s=1

1og2n -
<C Elan; X|"I(|an; X b,
<O B S Bl X1 oniX] > b

. log® n & o
<Cy — > Blani X|*I(|an: X| > by)

n=2 noog=1

< CJig < . (314)
By (3.11)—(3.14), we get (3.9). On the other hand, it is obviously to see that
Kiy < CKon < o0,

which completes the proof of Theorem 2.9. O
Proof of Theorem 2.11  For all € > 0, from (2.9) we know that

o0
00 > Zzn P(1?]a§n|Tj| > abn>
n—=

oo 2011
ZZ Z (271 — 1) IP( max |T|>5b)

1=0 n=2°

co 2011
> 9itl _ 1 *1P< T : )
_C; 22:1_( ) max [Tj] > ebyina
> CZP( ma [T)] > by ). (3.15)
It follows from Borel-Cantelli lemma that
P( max |Tj| > ebyist, i. o) ~0. (3.16)
1<5j<2¢

Hence
maxy<j<oi |1}
max << |11 — 0, a.s. asi— oo. (3.17)
bQi+1
For all positive integers n, there exists a non-negative integer 7, such that 2°=! < n < 2¢.

Thus

max |Tn| < maxlSnSQi Tj|

2i-1<p<2i b, boi—1

:IMXK"@W.QQ/Q.<H1

3/
- 1) — 0, a.s. asi— o0. (3.18)
i—

bgi+1

We have
T,
lim | |:O, a.s. (3.19)

n— oo bn
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The proof of Theorem 2.11 is completed. O
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