
Kalkbrener, Michael; Packham, Natalie

Working Paper

Correlation Under Stress In Normal Variance Mixture
Models

IRTG 1792 Discussion Paper, No. 2018-035

Provided in Cooperation with:
Humboldt University Berlin, International Research Training Group 1792 "High Dimensional
Nonstationary Time Series"

Suggested Citation: Kalkbrener, Michael; Packham, Natalie (2018) : Correlation Under Stress In
Normal Variance Mixture Models, IRTG 1792 Discussion Paper, No. 2018-035, Humboldt-Universität
zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time
Series", Berlin

This Version is available at:
https://hdl.handle.net/10419/230746

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/230746
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

  
  
  

  
  

  
  

  
  

  
 

 
 

 
 

 
 

 
  
  

 
 

 
 

  
  

  
  

  
  

  
  
  

 
 

 
 

 
 

 

IRTG 1792 Discussion Paper 2018-035 

 
Correlation Under Stress 

In Normal Variance 
Mixture Models 

 
Michael Kallbrener * 
Natalie Packham *² 

 

* Deutsche Bank AG, Germany  
*² Berlin School of Economics and Law, Germany 

 
 

This research was supported by the Deutsche 
Forschungsgemeinschaft through the  

International Research Training Group 1792  
"High Dimensional Nonstationary Time Series". 

 
http://irtg1792.hu-berlin.de 

ISSN 2568-5619 
 

     
     

In
te

rn
at

io
na

l R
es

ea
rc

h 
Tr

ai
ni

ng
 G

ro
up

 1
79

2 



Electronic copy available at: http://ssrn.com/abstract=1541622

CORRELATION UNDER STRESS IN NORMAL VARIANCE MIXTURE MODELS

Michael Kalkbrener and Natalie Packham

August 27, 2012

We investigate correlations of asset returns in stress scenarios where a common risk
factor is truncated. Our analysis is performed in the class of normal variance mixture
(NVM) models, which encompasses many distributions commonly used in financial
modelling. For the special cases of jointly normally and t-distributed asset returns
we derive closed formulas for the correlation under stress. For the NVM distribution,
we calculate the asymptotic limit of the correlation under stress, which depends on
whether the variables are in the maximum domain of attraction of the Fréchet or
Gumbel distribution. It turns out that correlations in heavy-tailed NVM models are
less sensitive to stress than in medium- or light-tailed models. Our analysis sheds light
on the suitability of this model class to serve as a quantitative framework for stress
testing, and as such provides valuable information for risk and capital management
in financial institutions, where NVM models are frequently used for assessing capital
adequacy. We also demonstrate how our results can be applied for more prudent stress
testing.

Keywords: Stress testing, risk management, correlation, normal variance mixture
distribution, multivariate normal distribution, multivariate t-distribution.

1. INTRODUCTION

In risk management, stress testing encompasses various techniques used by financial firms
to test bank capital adequacy in a strongly adverse market environment. Stress tests on bank
portfolios are mandatory under the Basel II regulatory rules, and have gained importance as
an integral part of risk management and banking supervision in the aftermath of the subprime
crisis, see e.g. Turner (2009), Larosière et al. (2009), Brunnermeier et al. (2009), BIS (2009).
For example, bank supervisors conducted mandatory stress tests in the previous years to assess
the adequacy of capital buffers of the largest U.S. and European banks.

A standard technique of conducting stress tests is to calculate portfolio risk measures, such
as expected loss, value-at-risk, economic capital or regulatory capital under the assumption of
adverse market conditions. Typically, stress scenarios are translated into constraints on risk
factors, which are economic or market variables that affect portfolio losses. In our setup, the
constraints are formalised by truncating the risk factor variables, that is, by conditioning on
the range of values that a risk factor may attain. For example, a stress scenario for an equity
portfolio may be defined as a decrease of an equity index (considered as a risk factor) by more
than 10% within a time period of one year.

The truncation of risk factors is a commonly used stress testing technique for the credit
risk management and capital management of financial institutions, see e.g. Bonti et al. (2006),
Kalkbrener and Overbeck (2008), Duellmann and Erdelmeier (2009). In these papers, stress
scenarios are implemented in structural credit portfolio models, which link the default of a
firm to the relationship between its assets and liabilities. The dependence between assets is
specified by systematic factors, which usually represent geographic regions or industries. Each

Michael Kalkbrener, Risk Analytics & Instruments, Deutsche Bank AG, michael.kalkbrener@db.com. The
views expressed in this paper are those of the authors and do not necessarily reflect the position of Deutsche
Bank AG.

Natalie Packham, Finance Department, Frankfurt School of Finance & Management, n.packham@fs.de.
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stress scenario specifies a constraint on one or more systematic factors and thus quantifies the
impact of a downturn in an economy or industry on the credit portfolio of a bank.1

The outcome of a stress test depends strongly on the correlations among portfolio components
in the stress scenario. In general, the conditional correlation between asset returns – conditional
on the truncated factor – is different from the unconditional correlation. However, the condi-
tional correlations are the correlations that implicitly enter the calculation of risk measures
under the stress scenario, since the risk measure is now calculated under a new probability mea-
sure obtained by conditioning. An analysis of conditional correlation may therefore contribute
to understanding the behaviour of portfolio models under stress and to refine the stress testing
methodology.

In this paper we analyse correlation under stress for a quite general class of distributions that
encompasses many models commonly encountered in the financial industry. We provide closed
formulas for the conditional correlation in the cases of jointly normally distributed asset returns
and jointly t-distributed asset returns, which are standard distributions in portfolio modelling.2

More generally, we consider normal variance mixture (NVM) distributions, a family of distri-
butions with diverse tail behaviour, ranging from light- to heavy-tailed. Essentially, a random
vector follows an NVM distribution if it has a representation as a jointly normally distributed
random vector multiplied with a strictly positive and independent “mixing” random variable.3

NVM distributions belong to the class of elliptical distributions, whose key parameter for de-
scribing the dependence is the correlation matrix. These properties make NVM distributions
attractive for high-dimensional applications, such as modelling the asset returns of a bank port-
folio. For NVM models, we calculate the asymptotic limit of the conditional correlation. Here,
we employ results and techniques from extreme value theory.

It turns out that the limit of the conditional correlation depends on whether the variables in
the NVM model are in the maximum domain of attraction (MDA) of a Fréchet distribution or
the Gumbel distribution.4 More precisely, consider asset returns Ai and Aj with (unconditional)
correlation ρij and a risk factor V , whose correlation with each of the asset returns is denoted
by ρi and ρj , respectively. We show that the asymptotic limit of the conditional correlation of
Ai and Aj equals

(1.1)
ρi ρj + (ρij − ρi ρj) (α− 1)√

(ρ2
i + (1− ρ2

i ) (α− 1)) (ρ2
j + (1− ρ2

j ) (α− 1))
, α > 2,

if the risk factor is stressed, i.e., if V is truncated at a threshold C, and C converges to −∞.
The parameter α specifies the tail index of the asset returns and the risk factor in the Fréchet
case. The case when the variables are in the MDA of the Gumbel distribution corresponds to
the limit as α → ∞, in which case the asymptotic limit of the conditional correlation between
Ai and Aj is

(1.2)
ρij − ρi ρj√

(1− ρ2
i )(1− ρ2

j )
.

1For further stress test methods, see also Kupiec (1998), Berkowitz (2000) and Breuer et al. (2009); for
applications of extreme value theory to stress testing, see e.g. Longin (2000) and Schachter (2001).

2For example, in structural credit portfolio models, such as CreditMetrics
TM

, Gupton et al. (1997), and
Moody’s KMV, Crosbie and Bohn (2002), the multivariate normal distribution is still the de-facto standard for
modelling log-returns of asset values.

3For example, the increments of certain time-changed Brownian motion models, such as the variance gamma
or the inverse Gaussian processes and certain stochastic volatility models follow an NVM distribution, see e.g.
Madan and Seneta (1990), Barndorff-Nielsen (1998), Geman et al. (2001).

4Essentially, the MDA of the Fréchet distribution consists of the heavy-tailed distributions, such as the t-
distribution, while the MDA of the Gumbel distribution contains mostly light- to medium-tailed distributions,
for example, the normal and the lognormal distributions.
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The limit formula (1.1) of the conditional asset correlation has a number of interesting conse-
quences. First of all, it shows that for small α the correlations in the NVM model are insensitive
to stress, i.e., the conditional correlations do not differ significantly from the unconditional cor-
relations in heavy-tailed NVM models. In the Gumbel case, on the other hand, the impact of
stress on the conditional correlation is typically much stronger than for heavy-tailed models, in
particular when comparing to the heavy-tailed case with α sufficiently close to 2. The asymptotic
conditional correlation may be either greater or smaller than the unconditional asset correlation
depending largely on the correlations between the risk factor and the respective asset returns. In
particular, when the assets in question are sufficiently correlated with the risk factor, the con-
ditional correlation is typically smaller than the unconditional correlation. Loosely speaking, in
many cases systematic risk is reduced by conditioning on the risk factor, whereas unsystematic
risk remains (a detailed example is given in Section 5).

The implications of our results are three-fold: first, they shed light on the impact of stress
tests on the correlation of portfolio constituents and associated portfolio diversification within a
model family that includes many commonly used light- and heavy-tailed distributions. Second,
depending on how the conditional correlation obtained from the model reconciles with empirical
observation, one may assess whether the model class is an appropriate model for the dependence
structure. Furthermore, one may incorporate correlation as an additional risk factor and apply
appropriate changes to the correlation itself when applying a stress scenario. We discuss these
applications in our examples.

In a wider sense, our results may be of interest in the context of systemic risk measures,
such as CoVaR and ∆CoVaR, suggested by Adrian and Brunnermeier (2011), and marginal
expected shortfall (MES), suggested by Acharya et al. (2010). Essentially, these measures gauge
risk conditioned on certain stress events, such as a bank or the system being in distress. The
(model) effect of such stress events on the correlation between institutions may give additional
useful information when using these measures.

The model behaviour of conditional correlation has also been studied for example by Boyer
et al. (1999), where formulas for conditional asset correlations are determined for bivariate
normally distributed asset returns, when one of two asset returns is stressed. Malevergne and
Sornette (2002) consider in addition bivariate t-distributed asset returns. These are special cases
of our analysis of the stressed NVM model, in which the stressed risk factor coincides with one of
the assets. In a stress test setup similar to ours, that is, by truncating a common risk factor, Bae
and Iscoe (2010) consider a jump-diffusion model in order to achieve an increasing conditional
correlation.

The remainder of the paper is structured as follows: in Section 2 we introduce the model setup
involving asset returns and a single risk factor. We derive a general formula for conditional asset
correlations in NVM models, which is based on some conditional expectations, in Section 3. In
addition, we provide explicit formulas for the cases when the risk factor and the asset returns
are normally distributed and t-distributed. In Section 4, we investigate the asymptotic limit
of conditional correlation as the truncation of the risk factor tends to −∞. More precisely, we
derive formula (1.1) for the case when the NVM distribution is in the MDA of the Fréchet
distribution (under some additional moderate assumption) and formula (1.2) when it is in the
MDA of the Gumbel distribution. In Section 5 we analyse the relationship between correlations
under stress and Value-at-risk in structural credit portfolios. We also provide examples where
the correlation itself is considered to be a risk factor and subjected to change under stress. An
empirical example involving DAX data is given. Finally, we conclude and discuss the results in
Section 6. Appendix A provides a brief overview of the concepts from extreme value theory that
are applied in this paper.
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2. DEFINITIONS AND PROBLEM

Let V,A1, . . . , Ak be random variables on a probability space (Ω,A,P). In our setting, V will
be interpreted as a risk factor, and A1, . . . , Ak may be interpreted as additional risk factors or
as variables that specify asset returns or the credit quality of k assets.

We assume that V,A1, . . . , Ak follow a multivariate normal variance mixture (NVM) distri-
bution, i.e., there exist normally distributed variables X,Y1, . . . , Yk and a P–a.s. strictly positive
random variable W , independent of X,Y1, . . . , Yk, such that

(2.1) V :=
√
WX, Ai :=

√
WYi, i = 1, . . . , k.

We assume in addition that W is integrable and that X and Y1, . . . , Yk are standardized.5 For
i, j ∈ {1, . . . , k} the correlations of X,Yi, Yj are denoted by

(2.2) ρi := Corr(X,Yi), ρij := Corr(Yi, Yj).

It is straightforward to show that Corr(V,Ai) = ρi and Corr(Ai, Aj) = ρij . We shall also
sometimes use the following orthogonalization of Yi on X:

(2.3) Yi = ρiX +
√

1− ρ2
iZi,

where Zi is a standard normally distributed variable independent of X and W .

The NVM distribution encompasses a number of distributions that are commonly used to
model asset returns. Some examples of NVM distributions are the multivariate normal distri-
bution, in which case the mixing variable W is a constant, or the multivariate t-distributions,
when W follows an inverse gamma distribution. When W follows a so-called generalised inverse
Gaussian distribution, then the NVM distribution is a symmetric generalised hyperbolic dis-
tribution. More generally, NVM distributions belong to the family of elliptic distributions, for
which correlation appropriately describes the dependence among the variables. For a general
review of NVM distributions we refer to (McNeil et al., 2005, Section 2.3) and Bingham and
Kiesel (2002).

Let us consider the situation when V is truncated by C ∈ R, that is, V ≤ C and write

(2.4) PC(A) = P(A|V ≤ C), A ∈ A,

for the corresponding conditional distribution. In this setting, the random variable V is inter-
preted as a stressed risk factor with C the level of stress applied to V .

Let us rephrase the objectives of the paper: we wish to analyse the impact of the stress on
the correlation of the Ai, i = 1, . . . , k. In the special cases of a multivariate normal model
(W = 1) and a jointly t-distributed model (W inverse gamma distributed), we derive formulas
for conditional asset correlations CorrC(Ai, Aj), where CorrC is the correlation coefficient under
the measure PC (Section 3). For the general NVM model, we derive the limit of the conditional
asset correlations as C → −∞ (Section 4).

3. CORRELATIONS UNDER STRESS

In this section we derive a general formula for the conditional correlation CorrC(Ai, Aj). We
further derive explicit formulas for the case when the variables are normally distributed (Section
3.1) and when the variables are t-distributed (Section 3.2).

5Working with standardized variables is not a restriction, as long as we are interested only in correlations.
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Figure 1.— Left: Simulated asset returns of A1 and A2 that are jointly normally distributed
with ρ12 = 0.6 and each with standard deviation 0.2. Right: Samples conditional on V ≤ −0.3,
where V is normally distributed with standard deviation 0.2, and ρ1 = 0.8 and ρ2 = 0.7.

Proposition 3.1 In the NVM model, and additionally writing EC and VarC for the expectation
and variance under PC , respectively, the conditional correlation of Ai, Aj is given by

(3.1) CorrC(Ai, Aj) =
ρi ρj

VarC(V )
EC(W )

+ ρij − ρi ρj√(
ρ2
i

VarC(V )
EC(W )

+ (1− ρ2
i )
) (

ρ2
j

VarC(V )
EC(W )

+ (1− ρ2
j )
) .

Observe that the conditional correlation depends only on the univariate quantity
VarC(V )

EC(W )
.

In the remainder of the paper we shall thus concentrate on deriving explicit formulas for this
quantity and for the limit of this quantity as C → −∞.

Proof: By the independence of Zi and V , Zi is a standard normal random variable under
PC , so that, by Equation (2.3),

(3.2) EC(Zi Zj) = E(Zi Zj) =
ρij − ρi ρj√

(1− ρ2
i ) (1− ρ2

j )
.

Also, by Equation (2.3), we have EC(Ai) = ρi EC(V ), so that one obtains

VarC(Ai) = ρ2
i VarC(V ) + (1− ρ2

i )EC(W )

CovC(Ai, Aj) = ρi ρj VarC(V ) + (ρij − ρi ρj)EC(W ).

The claim follows by dividing both the conditional covariance and the conditional variance by
EC(W ). Q.E.D.

Let us illustrate the impact of truncating a risk factor on the conditional correlation: The
left plot of Figure 1 shows a scatterplot of 5000 simulated samples representing asset returns of
two assets, A1 and A2. The asset returns are jointly normally distributed, each with a standard
deviation of 20%, and with a correlation of ρ12 = 0.6. Let us assume that the assets are in
addition correlated with a common risk factor V , which is also normally distributed with a
standard deviation of 20%, and where ρ1 = 0.8 and ρ2 = 0.7. The right plot shows the samples
conditional on V ≤ −0.3. It appears that the conditional samples are less correlated than
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the unconditional samples; in fact, their correlation is approximately 0.25. We confirm this
observation analytically below.

3.1. Special case: normal distribution

Let us set W = 1, so that V = X and Ai = Yi are normally distributed. Denote by φ the
standard normal density function and by N the standard normal distribution function.

Proposition 3.2 Let V,A1, . . . , Ak be standard normally distributed. Then,

(3.3) CorrC(Ai, Aj) =
ρi ρj VarC(V ) + ρij − ρi ρj√

(ρ2
i VarC(V ) + 1− ρ2

i )(ρ
2
j VarC(V ) + 1− ρ2

j )
,

with

(3.4) VarC(V ) = 1− C φ(C)

N(C)
− (φ(C))2

(N(C))2
.

Proof: The first equation follows directly from Proposition 3.1, so it remains to prove Equa-
tion (3.4). First, observe that E(V 1{V≤C}) = −φ(C), which follows directly from φ(C) =∫ C
−∞ φ

′(x) dx =
∫ C
−∞−xφ(x) dx. Second, observe that E(V 2 1{V≤C}) = N(C) − C φ(C), which

follows from C φ(C) =
∫ C
−∞ (xφ(x))′ dx = N(C) −

∫ C
−∞ x

2 φ(x) dx. The claim is now obtained
via

VarC(V ) = EC(V 2)−
(
EC(V )

)2
=

E(V 2 1{V≤C})

P(V ≤ C)
−

E(V 1{V≤C})
2

P(V ≤ C)2
.

Q.E.D.

Let us illustrate conditional correlation for five examples. The data are given in Table I. Here,
ρ12 specifies the correlation between assets A1 and A2, and ρi is the correlation between the risk
factor and asset Ai, i = 1, 2. Since all variables are standardized, the correlation Corr(Z1, Z2)
of the orthogonalization of Equation (2.3) is given by Equation (3.2). In all examples, we have
set ρ12 = 0.6. In example 1, the first asset coincides with the risk factor. In examples 2 and 3,
both assets are quite strongly correlated with the risk factor. In example 4, both assets are only
weakly correlated with the risk factor, and in example 5, A1 is strongly correlated with the risk
factor, while the correlation between A2 and the risk factor is low. The conditional correlations
as a function of the truncation level are shown in Figure 2. When the dependence of both assets
on the risk factor is sufficiently high, the conditional correlation decreases as the truncation level
decreases. For example, assume that V denotes the return on an equity index and let A1 and
A2 be the returns on two index components. Clearly, a negative return smaller than C on the
equity index return V translates into a strong negative return on two index constituents A1 and
A2. However, conditional on V ≤ C, the correlation between A1 and A2 is now driven mainly
by the correlation between the specific components Z1 and Z2, as demonstrated in Figure 1.
In fact, we show in Section 4.1 that the conditional correlation converges to Corr(Zi, Zj) as
C → −∞. This also explains why in Example 5 the conditional correlation increases with the
stress level. For example, there could be a second risk factor driving the correlation of Z1 and
Z2. This second risk factor becomes more dominant as the stress level increases.
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TABLE I

Example parameters.

Example ρ12 ρ1 ρ2 Corr(Zi, Zj)

1 0.6 1 0.6 0
2 0.6 0.8 0.7 0.093
3 0.6 0.6 0.6 0.375
4 0.6 0.1 0.1 0.596
5 0.6 0.7 0.02 0.82

Figure 2.— Conditional asset correlations when V,A1, A2 are normally distributed. The risk
factor V has a standard deviation of 20%; for example, one may think of C as the truncation
level of an equity index return with volatility 20%.

3.2. Special case: t-distribution

The class of multivariate t-distributions is frequently used in the finance industry to model
random variables with heavy tails. We derive an explicit formula for conditional correlations in
t-distributed models. As outlined above, it is sufficient to calculate VarC(V )/EC(W ), which can
be expressed in terms of beta functions.

Proposition 3.3 Let V,A1, . . . , Ak follow a multivariate t-distribution with parameter ν > 2
denoting the degrees of freedom. Then, for C < 0,

VarC(V )

EC(W )
=

EC(V 2)− EC(V )2

EC(W )
=
f(ν, C)

g(ν, C)
,

with

f(ν, C) := B

(
ν

C2 + ν
;
ν − 2

2
,
3

2

)
−

4
(

ν
C2+ν

)ν−1

(ν − 1)2B
(

ν
C2+ν

; ν2 ,
1
2

)
g(ν, C) :=

B
(

1
2 ,

ν
2

)
ν − 2

−

(
B
(
ν−2

2 , 1
2

)
−B

(
ν

ν+C2 ; ν−2
2 , 1

2

))
ν − 1

,

where B(y; a, b) :=
∫ y

0 t
a−1(1− t)b−1 dt is the incomplete beta function and B(a, b) := B(1; a, b)

is the beta function.
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Proof:6 For n ∈ N, n < ν, and for C < 0 we first show that the conditional moments of V
are given by

(3.5) EC(V n) =
(−1)n νn/2B

(
ν

C2+ν
; ν−n2 , n+1

2

)
B
(

ν
C2+ν

; ν2 ,
1
2

) .

Since V is t-distributed, we have

(3.6) E
(
V n 1{V≤C}

)
=

∫ C
−∞ x

n
(

ν
x2+ν

) ν+1
2

dx
√
νB
(
ν
2 ,

1
2

) .

Integration by substitution with variable transformation x = −
√(

1
y − 1

)
ν yields

∫ C

−∞
xn
(

ν

x2 + ν

) ν+1
2

dx =
1

2
(−1)nν

n+1
2

∫ ν
C2+ν

0
(1− y)

n−1
2 y

ν−n−2
2 dy

=
1

2
(−1)nν

n+1
2 B

(
ν

C2 + ν
;
ν − n

2
,
n+ 1

2

)
.(3.7)

By combining Equations (3.6) and (3.7) we obtain

E
(
V n 1{V≤C}

)
=

(−1)nνn/2B
(

ν
C2+ν

; ν−n2 , n+1
2

)
2B
(
ν
2 ,

1
2

) .

Dividing by P(V ≤ C) = B
(

ν
C2+ν

; ν2 ,
1
2

)
/
(
2B
(
ν
2 ,

1
2

))
yields Equation (3.5).

A simple representation can be obtained for the first conditional moment EC(V ): it is an
immediate consequence of the definition of incomplete beta functions that

B

(
ν

C2 + ν
;
ν − 1

2
, 1

)
=

∫ ν
C2+ν

0
t
ν−1

2
−1 dt =

2
(

ν
C2+ν

) ν−1
2

ν − 1
,

and therefore

(3.8) EC(V ) =
2 (C2 + ν)

1−ν
2 ν

ν
2

(1− ν)B
(

ν
C2+ν

; ν2 ,
1
2

) .
Turning to the calculation of the conditional mean of W we now show that, for C < 0,

(3.9) EC(W ) =

νB (ν2 , 1
2

)
ν − 2

−
ν
(
B
(
ν−2

2 , 1
2

)
−B

(
ν

C2+ν
; ν−2

2 , 1
2

))
ν − 1

/B( ν

C2 + ν
;
ν

2
,
1

2

)
.

6We are grateful to an anonymous referee whose suggestions significantly simplified the initial proof, which
was based on hypergeometric functions.
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Since X and W are independent and ν/W follows a chi-square distribution with ν degrees of
freedom, we have

E
(
W 1{V≤C}

)
= E

(
W 1{X≤C/

√
W}

)
=

∫ ∞
0

∫ C
√

y
ν

−∞

(
ν

y

)e−x2

2

√
2π

(2−ν/2e−y/2y
ν
2
−1

Γ
(
ν
2

) )
dx dy

=
2(−ν−1)/2ν
√
π Γ
(
ν
2

) ∫ ∞
0

∫ C
√

y
ν

−∞
e
−x2−y

2 y
ν
2
−2 dx dy.

Integration by substitution with variable transformation x = −
√
z yields∫ ∞

0

∫ C
√

y
ν

−∞
e
−x2−y

2 y
ν
2
−2 dx dy =

∫ ∞
0

∫ ∞
C2y
ν

e
−y−z

2 y
ν
2
−2

2
√
z

dz dy.

For the function

F (t) :=

∫ ∞
0

∫ ∞
ty
ν

e
−y−z

2 y
ν
2
−2

2
√
z

dz dy

we use the representation F (t) = F (0) +
∫ t

0 F
′(x) dx and obtain

∫ ∞
0

∫ ∞
C2y
ν

e
−y−z

2 y
ν
2
−2

2
√
z

dz dy = F (C2) = 2
ν−3

2
√
π Γ
(ν

2
− 1
)
−

2
ν−3

2 Γ
(
ν−1

2

)
ν

∫ C2

0

(
x
ν + 1

) 1
2
− ν

2√
x
ν

dx.

Integration by substitution with variable transformation x = −
(
1− 1

z

)
ν yields

∫ C2

0

(
x
ν + 1

) 1
2
− ν

2√
x
ν

dx =

∫ 1

ν
C2+ν

z
ν−4

2 ν√
1− z

dz = ν

(
B

(
ν − 2

2
,
1

2

)
−B

(
ν

C2 + ν
;
ν − 2

2
,
1

2

))
.

By combining the above equations we obtain

E
(
W 1{V≤C}

)
=

ν

4
√
π Γ
(
ν
2

) (√π Γ
(ν

2
− 1
)
− Γ

(
ν − 1

2

)(
B

(
ν − 2

2
,
1

2

)
−B

(
ν

C2 + ν
;
ν − 2

2
,
1

2

)))
.

The basic identities

Γ(1/2) =
√
π, Γ(a+ 1) = Γ(a) a, B(a, b) = Γ(a)Γ(b)/Γ(a+ b),

can now be used to simplify the above representation of E
(
W 1{V≤C}

)
:

E
(
W 1{V≤C}

)
=

ν

2ν − 4
−
ν
(
B
(
ν−2

2 , 1
2

)
−B

(
ν

ν+C2 ; ν−2
2 , 1

2

))
2(ν − 1)B

(
ν
2 ,

1
2

) .

Dividing by P(V ≤ C) = B
(

ν
C2+ν

; ν2 ,
1
2

)
/
(
2B
(
ν
2 ,

1
2

))
yields Equation (3.9).

The representation VarC(V )/EC(W ) = f(ν, C)/g(ν, C) is now an immediate consequence of
Equations (3.5), (3.8) and (3.9). Q.E.D.
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Figure 3.— Conditional asset correlations when V,A1, A2 are t-distributed with parameter
ν = 4 (left) and ν = 10 (right). The risk factor V has a standard deviation of 20%.

Examples of the conditional asset correlation for t-distributed models with parameter ν = 4
and ν = 10 are given in Figure 3. As before the examples refer to the data in Table I. As in the
normally distributed case, the conditional correlations increase or decrease depending on the
correlations with the risk factor V . In the more heavy-tailed case (ν = 4), the effect is much less
pronounced than in the less heavy-tailed case (ν = 10), which is in turn less pronounced than
the normally distributed case. In other words, correlations in t-distributed models with rather
heavy tails are quite insensitive to stress, whereas correlations in normally distributed models
are much more affected by stress.

4. ASYMPTOTIC LIMIT OF CORRELATIONS UNDER STRESS

In this section we derive asymptotic limits for conditional correlations as the truncation level
C tends to −∞. Using Proposition 3.1, limC→−∞CorrC(Ai, Aj) is determined by

(4.1) lim
C→−∞

VarC(V )

EC(W )
,

if this limit exists. For normally distributed V the limit (4.1) can be computed using only
properties of the normal distribution; see Section 4.1.

More generally, it turns out that essentially the limit exists whenever V is in the maximum
domain of attraction (MDA) of some extreme value (EV) distribution.7 A random variable X
is in the MDA of the distribution H if H is non-degenerate and if a scaled and normalized
distribution of the maximum Mn of n iid copies of X converges to H. The limit distribution
H is one of the Fréchet, Gumbel or Weibull EV distributions. We write X ∈ MDA(H) (or
F ∈ MDA(H), where F is a distribution function) to mean that X (F ) is in the MDA of H, cf.
Appendix A.

The limit (4.1) depends on whether W is in the MDA of the Fréchet distribution, in which
case V is in the Fréchet MDA, or whether V is in the MDA of the Gumbel distribution.8 We
treat the two cases separately in Sections 4.2 and 4.3, respectively.

The following result, required later, holds for all NVM-distributed variables.

7Basically all continuous distributions commonly used in statistics are in the MDA of some EV distribution,
see (McNeil et al., 2005, Section 7.1).

8The case that V is in the MDA of the Weibull distribution does not arise, as all distributions in this MDA
have a finite right endpoint.
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Lemma 4.1 On R \ {0}, V has a density, given by fV (x) = E
(

1√
W

φ

(
x√
W

))
.

Proof: We have

FV (x) = P
(√

W X ≤ x
)

= E
(
P

(
X ≤ x√

W

∣∣∣W)) = E
(

N

(
x√
W

))
.

For every x > 0, the family of derivatives of N(x/
√
w), w > 0, is locally bounded (that is,

there exist a neighbourhood U of x and a constant M such that for all u ∈ U and for all w the
derivatives are bounded by M); this follows from the continuity of the derivatives in x and w
and by observing that the limits tend to zero as w → 0 and as w →∞. The claim now follows
by the Fundamental Theorem of Calculus and by Dominated Convergence. Q.E.D.

4.1. Special case: normal distribution

Let us first analyse the case of jointly normally distributed V and A1, . . . , Ak (that is, W = 1).
Although this is a special case of V in the MDA of the Gumbel distribution, we examine this
special case separately as it requires only properties of the normal distribution, whereas the
more general result relies on techniques from extreme value theory.

Proposition 4.2 Let V be a standard normally distributed random variable. Then,

lim
C→−∞

VarC(V ) = 0.

By inserting this into the formula for asset correlations, Equation (3.1), resp. Equation (3.3),
one immediately obtains the limit of the conditional correlation:

Corollary 4.3 Let V,A1, . . . , Ak be jointly normally distributed. Then, for |ρi| < 1 and
|ρj | < 1,

(4.2) lim
C→−∞

CorrC(Ai, Aj) =
ρij − ρi ρj√

(1− ρ2
i )(1− ρ2

j )
= Corr(Zi, Zj).

If either |ρi| = 1 or |ρj | = 1 (but not both), then limC→−∞CorrC(Ai, Aj) = 0. If ρi = ρj = ±1,
then limC→−∞CorrC(Ai, Aj) = 1. If ρi = −ρj = ±1, then limC→−∞CorrC(Ai, Aj) = −1.

According to Equation (4.2), the correlation under stress of Ai, Aj converges towards the
correlation of the residuals Zi and Zj obtained by regressing Yi and Yj on X.

Proof of Proposition 4.2: The claim follows from Equation (3.4), if we show that9

(4.3) lim
C→−∞

[
Cφ(C)

N(C)
+
φ(C)2

N(C)2

]
= 1.

Let C < 0. We shall use the identity N(C) = φ(C) f(C), for C < 0, where f is the continued
fraction

f(C) =

 1

−C + 1
−C+ 2

−C+ 3
−C+···

 ,
9It is known from (Sampford, 1953) that for C < 0 the expression in brackets is in (0, 1) and strictly decreasing.
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see (Abramowitz and Stegun, 1972, Equation 26.2.14). We obtain

Cφ(C)

N(C)
+
φ(C)2

N(C)2
=

C

f(C)
+

1

f(C)2
=

C
1

−C+ 1

−C+ 2
−C+···

+

 1
1

−C+ 1

−C+ 2
−C+···


2

= C

[
−C +

1

−C + 2
−C+···

]
+

[
−C +

1

−C + 2
−C+···

]2

=

[
−C +

1

−C + 2
−C+···

]
·

[
C − C +

1

−C + 2
−C+···

]

=
−C

−C + 2
−C+···

+

[
1

−C + 2
−C+···

]2

= 1−
2

−C+···
−C + 2

−C+···
+

[
1

−C + 2
−C+···

]2

.

Observing that
1

−C + 2
−C+···

≤ − 1

C
, and

2

−C + · · ·
≤ − 2

C
, for C < 0, Equation (4.3) is

obtained by taking the limit. Q.E.D.

Figure 4 shows the asymptotic asset correlation for the examples of Table I, where the nor-
mally distributed case corresponds to the figure labeled “(Gumbel)”.

4.2. W and V in the Fréchet MDA

Let us assume that W ∈ MDA(Φα/2) (i.e., W is in the Fréchet MDA with tail index α/2),
with α > 2. Lemma 4.4 below establishes that V ∈ MDA(Φα). Hence, the tail distribution
function F̄V (x) = 1− FV (x) is regularly varying (at ∞) with index −α and can be represented
as F̄V (x) = x−α L(x), for some slowly varying function L. Some members of the Fréchet MDA
are the t-distribution, the Pareto distribution and the inverse gamma distribution.

Lemma 4.4 If W is in MDA(Φα/2), then
√
W and V are in MDA(Φα). Furthermore,

lim
x→∞

F̄V (x)

F̄√W (x)
= E

(
Xα 1{X≥0}

)
.

Proof: By Theorem A.4 in the Appendix, F̄W can be written as F̄W (x) = x−α/2L(x), for
x > 0 and some slowly-varying function L. From F̄√W (x) = F̄W (x2) = x−αL(x2), we obtain

that
√
W ∈ MDA(Φα). The claim then follows directly from (Breiman, 1965, Proposition 3 and

Equation (3.1)) or (McNeil et al., 2005, Theorem 7.35). Q.E.D.

The main result of this section is the following proposition.

Proposition 4.5 Let W ∈ MDA(Φα/2), α > 2. Then,

lim
C→−∞

VarC(V )

EC(W )
=

1

α− 1
.

By inserting the previous result into Equation (3.1) we obtain the asymptotic limit of
CorrC(Ai, Aj) for heavy-tailed factors:
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Corollary 4.6 Let W ∈ MDA(Φα/2), with α > 2. Then

lim
C→−∞

CorrC(Ai, Aj) =
ρi ρj + (ρij − ρi ρj) (α− 1)√

(ρ2
i + (1− ρ2

i ) (α− 1)) (ρ2
j + (1− ρ2

j ) (α− 1))
.

If V is t-distributed with parameter ν (i.e., W follows an inverse gamma distribution with
parameters ν/2, ν/2), then the formula above holds with α = ν. Observe that as α approaches
the value 2, the limit correlation tends to ρij , which is just the unconditional correlation. In
other words, when the tail is very heavy, then correlations are unaffected by stress testing.

Figure 4 shows the asymptotic correlation (for the heavy-tailed case as derived in Corollary
4.6) as a function of the tail index α for the five examples of Table I. This illustrates once again
that the sensitivity of conditional correlation to stress increases with the tail index α. In other
words, the greater α, the greater the deviation from the unconditional correlation.

For the proof of Proposition 4.5 we need the following auxiliary result first.

Lemma 4.7 Let X be a non-negative random variable with distribution function F and with
F̄ (x) > 0. If E(Xk) <∞, k ≥ 0, then

E(Xk|X > x) = xk + k

∫ ∞
x

F̄ (y) yk−1

F̄ (x)
dy, x ≥ 0.

Moreover, if X ∈ MDA(Φα), then, for k < α, E(Xk) <∞ and

lim
x→∞

E(Xk|X > x)

xk
=

α

α− k
.

Proof: We have E(Xk|X > x) = E(Xk 1{X>x})/F̄ (x). For the numerator we obtain that

E(Xk 1{X>x}) = xk F̄ (x) +

∫ ∞
x

k tk−1 F̄ (t) dt,

e.g. by (Kallenberg, 2001, Lemma 3.4), and the first claim follows.
For the second claim, observe first that E(Xk) < ∞ if k < α, see (Embrechts et al., 1997,

Proposition A 3.8). Let L be the slowly varying function defined by F̄ (x) = x−αL(x). Applying
Karamata’s Theorem (Theorem A.5), yields

lim
x→∞

E(Xk|X > x)

xk
= lim

x→∞

k
∫∞
x yk−1−αL(y) dy

xk−α L(x)
+ 1 =

α

α− k
.

Q.E.D.

Proof of Proposition 4.5: First, let us show that

(4.4) lim
C→−∞

VarC(V )

C2
=

α

(α− 2)(α− 1)2
.

Note that V =
√
WX is symmetric about 0, that is, FV (x) = F̄V (−x) for all x ∈ R. Hence,

lim
C→−∞

VarC(V )

C2
= lim

C→−∞

E(V 2|V ≤ C)− [E(V |V ≤ C)]2

C2

= lim
C→∞

E(V 2|V ≥ C)− [E(V |V ≥ C)]2

C2

=
α

α− 2
−
(

α

α− 1

)2

,
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where the last step follows from Lemma 4.7, and Equation (4.4) follows.
Second, let us show that

(4.5) lim
C→−∞

EC(W )

C2
=

α

(α− 2)(α− 1)
.

Observe that, for C ≥ 0, E−C(W ) = E(W |
√
WX ≥ C). Now choose a nonnegative sequence

(cn)n≥1 such that cn →∞ as n→∞, and write

lim
n→∞

E−cn(W )

c2
n

= lim
n→∞

E(W |
√
WX ≥ cn)

c2
n

= lim
n→∞

E(W 1{
√
WX≥cn})

c2
n F̄V (cn)

= lim
n→∞

E

E
(
W 1{

√
WX≥cn}|X

)
c2
n F̄V (cn)

 .(4.6)

In order to exchange the order of limit and expectation, we must show that the sequence of
random variables Gn(X), n ≥ 1, defined P–a.s. by

Gn(X) :=
E
(
W 1{

√
WX≥cn}|X

)
c2
n F̄V (cn)

, n ≥ 1,

is uniformly integrable and that Gn(X), n ≥ 1, converges P–a.s.. To establish uniform integra-
bility we have to show that

(4.7) lim
D→∞

lim sup
n

∫ ∞
0

Gn(x)1{Gn(x)>D}N(dx) = 0.

Let L be the slowly varying function that satisfies F̄V (x) = x−αL(x), with α the tail index of
V .

First, choose C̄ > 0 such that for all c > C̄ the following four conditions are satisfied:

E(W |
√
W > c)

c2
≤ α

α− 2
+ 1,(4.8)

F̄√W (c)E
(
(X1{X>0})

α
)
≤ 2F̄V (c),(4.9)

xα−2L(c/x)

L(c)
< 2, 0 <x ≤ 1,(4.10)

xα−2L(c/x)

L(c)
< 2xα−1, 1 ≤x ≤ c/C̄.(4.11)

The existence of C̄ satisfying Conditions (4.8) and (4.9) follows from Lemmas 4.4 and 4.7.
Conditions (4.10) and (4.11) are a consequence of Theorem A.6 with parameters ε = 1 and
δ = α− 2 for (4.10) and ε = 1 and δ = 1 for (4.11).

Now, let cn ≥ C̄ and x ≤ cn/C̄. Then, by Equations (4.8) and (4.9),

Gn(x) =
E
(
W 1{

√
Wx≥cn}

)
c2
n F̄V (cn)

=

∫∞
cn/x

w2 F√W (dw)

c2
n F̄V (cn)

=

( ∫∞
cn/x

w2 F√W (dw)

(cn/x)2 F̄√W (cn/x)

)
/

(
c2
n F̄V (cn)

(cn/x)2 F̄√W (cn/x)

)

≤
(

α

α− 2
+ 1

)
F̄√W (cn/x)

x2 F̄V (cn)

≤ H(α)
F̄V (cn/x)

x2 F̄V (cn)
= H(α)

xα−2L(cn/x)

L(cn)
,
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where H(α) :=
2

E
(
(X1{X≥0})α

) ( α

α− 2
+ 1

)
. Hence, by Equations (4.10) and (4.11),

(4.12) Gn(x) ≤


2H(α) 0 < x ≤ 1,

2H(α)xα−1 1 < x ≤ cn/C̄,
E(W )

c2n F̄V (cn)
x > cn/C̄.

By Equation (4.12) we obtain

lim
D→∞

lim sup
n

∫ cn/C̄

0
Gn(x)1{Gn(x)>D}N(dx)

≤ lim
D→∞

∫ 1

0
2H(α)1{2H(α)>D}N(dx)

+ lim
D→∞

∫ ∞
1

2H(α)xα−1 1{2H(α)xα−1>D}N(dx) = 0.

Finally,

lim
D→∞

lim sup
n

∫ ∞
cn/C̄

Gn(x)1{Gn(x)>D}N(dx)

≤ lim
D→∞

lim sup
n

1{ E(W )

c2n F̄V (cn)
>D

} E(W )

c2
n F̄V (cn)

[
1−N(cn/C̄)

]
≤ lim sup

n

E(W )

c2
n F̄V (cn)

[
1−N(cn/C̄)

]
= lim sup

n

E(W ) N̄(cn/C̄) eλcn

c2
n F̄V (cn) eλcn

= 0,

where λ > 0, and where the last step follows, since the numerator vanishes in the limit, while
the denominator tends to∞, see Lemma A.7. This completes the proof of uniform integrability,
that is, we have established Equation (4.7).

It remains to evaluate limn→∞Gn(X). For any x > 0,

lim
n→∞

Gn(x) = lim
n→∞

∫
cn/x

w2 F√W (dw)

c2
nF̄V (cn)

= lim
n→∞

[( ∫∞
cn/x

w2 F√W (dw)

(cn/x)2 F̄√W (cn/x)

)
/

(
c2
n F̄V (cn)

(cn/x)2 F̄√W (cn/x)

)]
.

By Lemma 4.7, we obtain for the limit of the numerator,

lim
n→∞

( ∫∞
cn/x

w2 F√W (dw)

(cn/x)2 F̄√W (cn/x)

)
=

α

α− 2
.

For the denominator, application of Lemma 4.4 and the definition of regularly varying functions
yield

lim
n→∞

c2
nF̄V (cn)

(cn/x)2 F̄√W (cn/x)
= lim

n→∞

[
F̄V (cn)

F̄√W (cn)
·
x2 F̄√W (cn)

F̄√W (cn/x)

]
= E

(
(X1{X≥0})

α
)
· x−(α−2).
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Figure 4.— Asymptotic asset correlations as C → −∞.

Hence,

lim
n→∞

Gn(X) =
α
(
X1{X≥0}

)α−2

(α− 2)E
(
(X1{X≥0})α

) P–a.s..

Finally, taking expectation (continuing Equation (4.6)), we obtain

(4.13) E
[

lim
n→∞

Gn(X)
]

=
αE

(
(X1{X≥0})

α−2
)

(α− 2)E
(
(X1{X≥0})α

) =
α

(α− 1)(α− 2)
,

where the last equality follows, because by partial integration∫ ∞
0

xa φ(x) dx =
1

a+ 1

∫ ∞
0

xa+2 φ(x) dx, a > 0.

Since Equation (4.13) holds for any sequence (cn)n≥1, we have established Equation (4.5).
Combining Equations (4.4) and (4.5) completes the proof. Q.E.D.

4.3. V in the Gumbel MDA

Let us now consider the case when V is in the MDA of the Gumbel distribution. The MDA of
the Gumbel distribution comprises a wide range of distribution functions, such as the lognormal,
exponential, and the normal distributions.

The following proposition is the main result of this section.

Proposition 4.8 Let V ∈ MDA(Λ). Then, lim
C→−∞

VarC(V )

EC(W )
= 0.

The corresponding formula for asset correlations is obtained by inserting this expression into
Equation (3.1).

Corollary 4.9 Let V ∈ MDA(Λ). Then, for |ρi| < 1 and |ρj | < 1,

(4.14) lim
C→−∞

CorrC(Ai, Aj) =
ρij − ρi ρj√

(1− ρ2
i )(1− ρ2

j )
= Corr(Zi, Zj).
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If either |ρi| = 1 or |ρj | = 1 (but not both), then limC→−∞CorrC(Ai, Aj) = 0. If |ρi| = |ρj | = ±1,
then limC→−∞CorrC(Ai, Aj) = 1. If ρi = −ρj = ±1, then limC→−∞CorrC(Ai, AJ) = −1.

The asymptotic correlations for the examples of Table I are given in Figure 4.
For the proof of Proposition 4.8 we need the following properties of the tail function F̄V (x)

of V . Observe that from the first part of Lemma 4.7 one obtains a “mean excess function for
higher moments”, in the sense that

(4.15) E(V k − xk|V > x) = k

∫ ∞
x

yk−1 F̄V (y)

F̄V (x)
dy, x ≥ 0.

Furthermore, it follows from Theorem A.9 that for V ∈ MDA(Λ)

lim
C→∞

∫∞
C F̄V (x) dx

CF̄V (C)
= 0,(4.16)

lim
C→∞

∫ ∞
C

xF̄V (x) dx = 0.(4.17)

Lemma 4.10 Let V ∈ MDA(Λ). Then lim
C→∞

∫∞
C C F̄V (x) dx∫∞
C x F̄V (x) dx

= 1.

Proof: The denominator vanishes, see Equation (4.17). Furthermore, the numerator is strictly
smaller than the denominator, so it vanishes, too. By Lemma 4.1, F̄V is continuous and therefore

d

dC

∫ ∞
C

x F̄V (x) dx = −CF̄V (C) 6= 0, C > 0,

so that the conditions for applying the rule of L’Hospital to

∫∞
C C F̄V (x) dx∫∞
C x F̄V (x) dx

are satisfied:

lim
C→∞

∫∞
C C F̄V (x) dx∫∞
C x F̄V (x) dx

= lim
C→∞

∫∞
C F̄ (x) dx− CF̄V (C)

−CF̄V (C)
= lim

C→∞
1−

∫∞
C F̄V (x) dx

CF̄V (C)
.

But the last term vanishes, see Equation (4.16). Q.E.D.

Proof of Proposition 4.8: By symmetry of V , we may equally show that

(4.18) lim
C→∞

Var(V |V ≥ C)

E(W |V ≥ C)
= 0.

Let C > 0 and write Var(V |V ≥ C) in the form

Var(V |V ≥ C) = C2 + E(V 2 − C2|V ≥ C)− (C + E(V − C|V ≥ C))2

= E(V 2 − C2|V ≥ C)− 2C E(V − C|V ≥ C)− (E(V − C|V ≥ C))2 .

We divide each component by E(V 2 − C2|V ≥ C) and analyse the limit for C → ∞: by
Equation (4.15) and Lemma 4.10,

lim
C→∞

2C E(V − C|V ≥ C)

E(V 2 − C2|V ≥ C)
= lim

C→∞

∫∞
C C F̄V (x) dx∫∞
C x F̄V (x) dx

= 1.

Furthermore, as C →∞

(E(V − C|V ≥ C))2

E(V 2 − C2|V ≥ C)
=

E(V − C|V ≥ C)

2C
· 2C E(V − C|V ≥ C)

E(V 2 − C2|V ≥ C)
→ 0,
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since
E(V − C|V ≥ C)

2C
=

∫∞
C F̄V (x) dx

2CF̄V (C)
vanishes, cf. Equation (4.16).

By combining the equations above we obtain

lim
C→∞

Var(V |V ≥ C)

E(V 2 − C2|V ≥ C)
= 0.

For completing the proof of Equation (4.18) we show that

(4.19) E(V 2 − C2|V ≥ C) ∼ 2E(W |V ≥ C).

From E(W1{V≥C}) = E
(
E(W1{

√
WX≥C}|W )

)
= E

(
W N̄

(
C√
W

))
we obtain

E(V 2 − C2|V ≥ C)

2E(W |V ≥ C)
=

∫∞
C x F̄V (x) dx

E(W1{V≥C})
=

∫∞
C x F̄V (x) dx

E
(
W N̄

(
C√
W

)) .
Both the numerator and the denominator vanish as C →∞; for the numerator this follows from
Equation (4.17), and for the denominator this follows by Dominated Convergence. We apply
the rule of L’Hospital (where the derivative of the denominator is obtained by applying the
Dominated Convergence Theorem) and further the identity (derived by partial integration)

φ(x) =

∫ ∞
x

y φ(y) dy = x N̄(x) +

∫ ∞
x

N̄(y) dy,

and obtain

C F̄V (C)

E
(√

W φ
(

C√
W

)) =
C F̄V (C)

E
(
C N̄

(
C√
W

)
+
√
W
∫∞
C/
√
W N̄(y) dy

) .
Finally, it follows from F̄V (z) = E(N̄(z/

√
W )), z ∈ R, that

C F̄V (C)

E
(
C N̄

(
C√
W

)
+
√
W
∫∞
C/
√
W N̄(y) dy

) =
C F̄V (C)

C F̄V (C) +
∫∞
C F̄V (y) dy

→ 1,

as C →∞, where the limit is a consequence of Equation (4.16). This establishes Equation (4.19)
and completes the proof. Q.E.D.

Remark 4.11 Since we have used only properties of the class of rapidly varying functions,
to which the distribution functions with infinite right endpoint in the Gumbel MDA belong,

Proposition 4.8 can be generalised to “If F̄V is rapidly varying, then lim
C→−∞

VarC(V )

EC(W )
= 0.”.

5. EXAMPLE: APPLICATION TO STRESS TESTING

Let us demonstrate how the results from the previous sections can be applied in practice. The
initial motivation for analyzing correlations under stress is to better understand the results of
stress tests performed in financial institutions. A typical example of a credit portfolio stress test
is presented in Bonti et al. (2006), where a sample investment banking portfolio consisting of
25,000 loans is modelled in a structural credit portfolio model, see Merton (1974). In the Merton
model, firm i defaults if its asset value Ai (at some fixed time horizon) falls below a threshold
Di ∈ R, chosen such that P(Ai ≤ Di) equals a given probability of default. Bonti et al. (2006)
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specify the dependence structure of the asset variables via 75 systematic factors that represent
geographic regions and industries. The factors are assumed to be normally distributed, which
is still industry standard in credit portfolio modelling. The stress scenario is implemented by
truncating one of the systematic factors, the risk factor for the automotive industry.

The results of the stress test reported in Bonti et al. (2006) show a pattern that is often
encountered: the relative impact of the stress on the expected loss of the portfolio, i.e., the mean
of the portfolio loss distribution, is much stronger than on the value-at-risk of the portfolio. In
the specific stress test, the portfolio EL increased by 56% whereas the 99.98% VaR increased
by 19% only.

The correlation formulas derived in the present paper provide insight into the behaviour of
these risk measures under stress. First of all, note that the systematic country and industry fac-
tors typically show high positive (unstressed) correlations, which induce positive correlations of
systematic factors and asset variables of the individual counterparties. In a normally distributed
model, these correlations are significantly reduced under stress as illustrated in Figure 2. It is
therefore not surprising that the increase of the stressed VaR, which strongly depends on the
asset correlations in the stressed model, is less significant than the increase of the stressed EL,
which only depends on exposure and stressed default probabilities.

In addition to the analysis of stress tests, the formulas for correlations under stress can be
used to design new meaningful stress scenarios, where the conditional correlation is set to an
appropriate value, such as an empirical conditional correlation. We provide two examples of
credit portfolio stress tests for illustration.

Both stress tests are implemented in a structural credit portfolio model with NVM-distributed
asset variables as specified in (2.1) and (2.2). We make two simplifying assumptions, which, how-
ever, do not affect the qualitative behaviour of the results: First, we assume that the correlations
of X and Yi and the correlations of Yi and Yj are homogeneous, i.e., there exist ρ, ρ̄ such that

(5.1) ρ = Corr(X,Yi), ρ̄2 = Corr(Yi, Yj)

for all i, j ∈ {1, . . . , k}, i 6= j. In this case, the asset variables Ai :=
√
WYi, i = 1, . . . , k,

can be conveniently represented by the systematic factor V =
√
WX (was: X), an additional

systematic factor
√
WY (was: Y ) and k specific factors

√
Wε1, . . . ,

√
Wεk (was: ε1, . . . , εk),

where X,Y, ε1, . . . , εk (was: all of which) are standard normally distributed and independent:

(5.2) Ai =
√
W

(
ρ̄

(
ρ

ρ̄
X +

√
1− ρ2/ρ̄2Y

)
+
√

1− ρ̄2εi

)
.

It is easily seen that Corr(
√
WX,Ai) = Corr(X,Yi) and that Corr(Ai, Aj) = Corr(Yi, Yj).

As a second simplification, we consider only credit portfolios consisting of loans with identical
default probability p and we assume that the portfolios are infinitely granular with equally
weighted loans. In the normally distributed case, this leads to the well-known Vasicek formula,
Vasicek (1991), which is the basis for the Basel 2 formula for regulatory capital for credit risk.
The Vasicek formula is easily generalised to normal variance mixtures, in which case the portfolio
loss is given by

(5.3) L := lim
k→∞

1

k

k∑
i=1

1{Ai≤D} = N

D/√W − ρ̄
(
ρ/ρ̄X +

√
1− ρ2/ρ̄2 Y

)
√

1− ρ̄2

 P–a.s.,

where N denotes the normal distribution function and D is the truncation threshold that yields
a default probability p, i.e., P(Ai ≤ D) = p. Both the Vasicek formula and Equation (5.3) follow
from the Strong Law of Large Numbers by conditioning on W , X and Y , and from Fubini’s
Theorem; for further details see e.g. (Bluhm et al., 2003, Proposition 2.5.4).
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Figure 5.— Top row: normally distributed asset returns; bottom row: t-distributed asset
returns (ν = 5). Left column: Unconditional correlation ρ2 vs. conditional correlation ρ2

C for
different stress probabilities; middle column: VaR for different stress probabilities; right column:
VaR for different stress probabilities with correlation stressed. Stress probabilities: solid line:
unstressed; small dashes: 10%; wide dashes: 1%; dash-dot-dash: 0.1%.

Note that Equation (5.3) illustrates another interpretation of the general NVM model: instead
of NVM-distributed systematic and specific components with a common mixing variable, which
introduces dependence between the two components, one can think of normally distributed
independent components and a stochastic default threshold D/

√
W .

5.1. Stressing the correlation

In the first example, we choose a one-factor model with uncorrelated specific components,
that is, the asset variables are given by Equation (5.2) with ρ̄2 = ρ2 = Corr(Ai, Aj) for any two
assets i, j. We set the default probability to p = 0.005, and we examine value-at-risk (VaR) at
the 99.9% level for different correlations and stress levels. The truncation threshold C is chosen
according to given stress probabilities of 10%, 1%, 0.1%, that is, P(V ≤ C) ∈ {10%, 1%, 0.1%}.
We consider both a normally distributed model and a t-distributed model with parameter ν = 5.

In the middle column of Figure 5, the unstressed and stressed VaR’s are shown as a function
of the unstressed correlation ρ2. As can be seen, VaR increases with the stress level and with
ρ2. Furthermore, VaR is greater in the t-distributed case than in the normally distributed case.

In these stress scenarios the dependence structure is specified via unstressed correlations.
It is ignored that correlations under stress may behave differently than implied by the model.
The formulas for conditional correlation derived in the previous sections can be applied to set
the conditional correlation to a target value rather than relying on the values implied by the
model. The left column of Figure 5 shows the mapping of asset correlation ρ2 to the correlations
under stress CorrC(Ai, Aj) =: ρ2

C . This allows for choosing target correlations under stress by
inserting appropriate unstressed correlations into the model. With the formulas for conditional
correlation derived for normally and t-distributed random variables one can make the notion
of a stressed correlation precise, whereas for the more general normal variance mixtures the
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asymptotic correlation may be used to derive the unstressed correlation.

Thus, in a second step, we consider the correlation itself as an additional risk factor subjected
to stress. Here, we employ a “constant correlation” assumption in the sense that we require
the target conditional correlation to equal the original unstressed correlation. The resulting
VaR’s under stress are shown in the right column of Figure 5. Since in our example conditional
correlation decreases with increasing stress, these stressed VaR’s are greater than the stressed
VaR’s in the first case. In particular, under high stress, VaR increases to 1, the notional amount
of the portfolio, even for moderately low correlations. On the other hand, the differences in
expected loss, which corresponds to the probability of default, between the two stress scenarios
are relatively small compared to the differences in VaR.

The example gives an explanation for the observation of the relatively moderate increase of
VaR under stress compared to EL mentioned at the beginning of the section. It confirms that
decreasing conditional correlation in light-tailed models is a key driver of this behaviour. More-
over, we demonstrate that choosing a heavy-tailed distribution or that stressing the correlation
in an appropriate way mitigates the problem.

All calculations were done by simulating the risk factor. For each given stress probability,
100,000 simulations fulfilling the condition {V ≤ C} were drawn. To assess the quality of
the estimates we calculate the sample standard deviation of the VaR estimator assuming a
correlation of 0.5 by simulating the estimator ten times. The resulting standard deviations are
within 2% of the VaR figure in the normally distributed case and within 1.2% in the t-distributed
case.

In the above setup, one may also consider one of the assets as a risk factor. Truncating the
asset return at its default boundary and providing the correlation under stress may be useful
for studying contagion effects.

5.2. Empirical example

In contrast to the first example we now implement stress scenarios in the unrestricted two-
factor model (5.3) and calibrate model parameters to empirical data, consisting of rating data
and equity time series of the DAX and its 30 constituents. The default probability p that enters
the Vasicek formula is set to 0.058% (i.e., 5.8 basis points). This value is derived from S&P
credit ratings of the DAX companies.10 Taking the DAX return to be the systematic factor, the
correlation parameters are calibrated to historical equity data, i.e., to daily returns from the
DAX index and its n = 30 constituents ranging from 5 February 2001 to 20 December 2011.11

10The credit ratings are mapped to one-year default probabilities, using cumulative default rates of European
corporates from 1981 until 2010, S&P (2011). The default probabilities are in turn mapped to hazard rates,
of which a weighted average is calculated. From this, an average default probability of 0.00058 is determined.
Three names do not have a credit rating, making up a total of 9.62% of the DAX, which we simply ignore in our
calculations.

11Since the time series data are typically not iid, one can consider applying a GARCH filter to each time
series. This entails fitting each time series to a GARCH model and dividing each return by its corresponding
volatility estimate from the GARCH model, yielding anythe so-called innovations, which are assumed to be iid.
Each innovation is then multiplied with the volatility forecast for the next time period. Under the assumption
of iid innovations, this yields a sample of iid returns. We refer to e.g. (Barone-Adesi et al., 1998), (McNeil and
Frey, 2000), (Alexander and Sheedy, 2008) for further details on GARCH filtering.
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Figure 6.— Average correlations under stress ρ̄2
C = CorrC(Ai, Aj) (left), resp. ρ2

C =
(CorrC(V,Ai))

2 (right); solid line (small dashes): assuming constant ρ2 and ρ̄2 and normally
distributed (t-distributed) asset returns; wide dashes: ρ̄2

C , resp. ρ2
C , implied by the data.

The average (unstressed) correlations are given by

ρ = Corr(V,Ai) =
1

n

n∑
i=1

ρi = 0.6161

ρ̄2 = Corr(Ai, Aj) =
1

n2 − n(n− 1)/2

n∑
i=1

n∑
j=i+1

ρij = 0.415.

Note that ρ̄ = 0.6442 and that ρ2 = 0.3796.
We use the formulas for conditional correlation to calculate the correlations under stress for

ρ2 and ρ̄2 as estimated for both the normal distribution and the t-distribution, where in the
latter case we set ν = 3.46, which is the average tail index estimated from the DAX returns.
In addition, we calculate average empirical correlations when the DAX is subjected to stress.
As can be seen from Figure 6, the empirical conditional correlation behaves differently than
the conditional correlations in both the normally distributed and the t-distributed case. For
thresholds close to 0, the empirical conditional correlation is similar to the t-distributed case.
For more severe stress the empirical conditional correlation is smaller than in the t-distributed
case, but still greater than in the normally distributed case.12 Of course, as the stress increases,
the sample size decreases. The actual number of samples under conditioning ranges from 74 at
C = −0.035 to 1069 at C = −0.0025 (the total number of returns is 2769).

We calculate VaR under stress for ρ2 and ρ̄2 as estimated for both the normal distribution
and the t-distribution. We repeat the calculations, but now with the empirical conditional
correlations. For this we back out unstressed correlations from the empirical stressed correlations
ρ2
C and ρ̄2

C that need to be fed into the model to produce the target correlations under stress.
The resulting EL’s and VaR’s are shown in Figure 7.13 In the normally distributed case

the lower conditional correlation (compared to the empirical conditional correlation) translates

12Observe that one should not necessarily expect that conditional correlations increase with the level of stress
applied. This so-called correlation breakdown refers to an increase of dynamic correlations in stressed markets and
has been verified empirically in different markets, see for example Longin and Solnik (2001), Loretan and English
(2000), Ang and Chen (2002), Ang and Bekaert (2002), Kim and Finger (2000). It has gained wide interest as it
annihilates the risk reducing effect of a well-diversified or a hedging portfolio when it is needed most, namely in
a stressed market. The association of conditional correlation with correlation breakdown is not straightforward:
one cannot necessarily deduce from the behaviour of conditional correlations that correlations change with time
or state. This point is discussed in detail in Boyer et al. (1999).

13All calculations are done by Monte Carlo simulation with 500,000 simulations fulfilling {
√
WX ≤ C} for

each truncation level C.
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Figure 7.— EL (left) and VaR (right) for the DAX portfolio under stress. Top: normal
distribution case; bottom: t-distribution case. Solid line: Assuming constant ρ2 and ρ̄2; dashed
line: setting ρ2

C and ρ̄2
C to the values determined from the data.

into lower stressed EL’s and VaR’s (see top graphs of Figure 7). Thus, imposing the empirical
conditional correlations rather than using the unconditional estimates gives a more prudent
estimate of risk under the stress scenario. For the t-distributed case, the impact of the correlation
parameter turns out to be more moderate: in line with the correlation analysis in Figure 6, the
stressed EL and VaR figures turn out to be similar for truncation levels greater than −2% (given
the scarcity of data, a clear interpretation for lower truncation levels may be difficult). Hence, in
this example the t-distributed model provides a consistent framework for modelling unstressed
as well as realistic stressed correlations.

6. CONCLUSION

We study correlations in truncated NVM distributed models. The main motivation for our
analysis comes from stress testing. Stress tests on bank portfolios have gained particular impor-
tance as a technique for assessing the adequacy of capital buffers in financial institutions, and
as such form an integral part of risk management and banking supervision.

The class of NVM models is significant for practical applications as it encompasses many
models commonly encountered in the financial industry. For example, our results can be ap-
plied to the most popular credit portfolio models such as CreditMetrics

TM
and Moody’s KMV,

where log-returns of asset values follow a multivariate normal distribution. The appeal of the
NVM distribution in the industry certainly comes from its simplicity combined with diverse tail
behaviour, ranging from light- to heavy-tailed.

From a technical point of view, our results are summarised as follows: for the special cases
of jointly normally and t-distributed asset returns we have derived closed formulas for the
correlation in the truncated model. For the NVM distribution, we have calculated the asymptotic
limit of the correlation, which depends on whether the variables are in the maximum domain of
attraction of the Fréchet or Gumbel distribution. It turns out that correlations in heavy-tailed
NVM models are less sensitive to stress than in medium- or light-tailed models.

Our analysis allows for a critical review ot the suitability of this model class to reproduce
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empirically observed conditional correlations, and as such provides valuable information for
risk and capital management in financial institutions. Also, using our results, the conditional
correlation can take the role of a further free parameter, which can be set to a target value, for
example to design more prudent stress tests.

We illustrate the application of our correlation formulas by comparing value-at-risk under
stress for a stylized credit portfolio, both under different distribution and correlation assump-
tions, and using empirical conditional correlations derived from DAX data.
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APPENDIX A: SOME RESULTS FROM EXTREME VALUE THEORY

We give a brief review of some results of extreme value theory that are applied in this paper; standard references
to EVT are Embrechts et al. (1997), Resnick (2007) and de Haan and Ferreira (2006).

The central result of classical extreme value theory is the Fisher-Tippett Theorem, which specifies the form
of the limit distribution for centered and normalized maxima.

Theorem A.1 (Fisher-Tippett Theorem, limit laws for maxima) Let (Xn) be a sequence of iid random variables,
and let Mn = max(X1, . . . , Xn). If there exist norming constants cn > 0, dn ∈ R and some non-degenerate
distribution function H such that

(A.1)
Mn − dn

cn

L→ H, as n→∞,

then H belongs to the type of one of the following three distribution functions:

Fréchet: Φα(x) =

{
0, x ≤ 0

exp{−x−α}, x > 0
α > 0.

Weibull: Ψα(x) =

{
exp{−(−x)α}, x ≤ 0

1, x > 0
α > 0.

Gumbel: Λ(x) = exp{−e−x}, x ∈ R.

If Equation (A.1) holds, then the type of the limiting distribution is uniquely determined, and does not depend
on the particular choice of norming constants cn, dn.

Definition A.2 A random variable X with distribution function F belongs to the maximum domain of attrac-
tion of H if there exist constants cn > 0, dn ∈ R such that Equation (A.1) holds, written X ∈ MDA(H) and
F ∈ MDA(H).

A different parameterization allows grouping the Fréchet, Weibull and Gumbel distributions into one family
of distribution functions, called the generalised extreme value distributions.

A.1. Maximum domain of attraction of the Fréchet distribution

The distributions that are in MDA(Φα), α > 0, have a particularly elegant and convenient representation via
slowly varying functions or regularly varying functions.

Definition A.3 A positive, Lebesgue-measurable function L on (0,∞) is slowly varying (at ∞) if

lim
x→∞

L(tx)

L(x)
= 1, t > 0.

A positive, Lebesgue-measurable function h on (0,∞) is regularly varying (at ∞) with index ρ ∈ R if

lim
x→∞

h(tx)

h(x)
= tρ, t > 0.

We shall drop the specification “at ∞”, since we only consider functions that are regularly or slowly varying
at∞. It is easily seen that h is regularly varying with index ρ if and only if there exists a slowly varying function
L such that h(x) = xρ L(x) (just choose L(x) = h(x)/xρ). For details on regularly varying functions, we refer to
Bingham et al. (1987).

The following theorem completely characterises those distribution functions that are in the MDA of the Fréchet
distribution.

Theorem A.4 (Gnedenko (1943)) The distribution function F belongs to MDA(Φα), α > 0, if and only if
F̄ (x) := 1− F (x) = x−α L(x) for some slowly varying function L.

It follows directly that these distribution functions have infinite right endpoint, that is sup{x : F (x) < 1} =∞.
Examples of distributions in MDA(Φα) are the t-distribution and the inverse gamma distribution. The parameter
α is called the tail index. In the case of the t-distribution the degree of freedom is α.

An important result for regularly varying functions, which is used in Section 4.2, is Karamata’s Theorem, see
(Bingham et al., 1987, Theorem 1.5.11 (ii)) or (McNeil et al., 2005, Theorem A.5).
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Theorem A.5 (Karamata’s Theorem) Let L be a slowly varying function that is locally bounded in [x0,∞), for
some x0 ≥ 0. Then,

(i) for κ > −1,∫ x

x0

tκ L(t) dt ∼ 1

κ+ 1
xκ+1 L(x), as x→∞,

(ii) for κ < −1,∫ ∞
x

tκ L(t) dt ∼ − 1

κ+ 1
xκ+1 L(x), as x→∞.

The following bound for regularly varying functions can be found e.g. in Potter (1942) and (de Haan and
Ferreira, 2006, Proposition B.1.9):

Theorem A.6 (Potter bound) Suppose h is regularly varying with index ρ. For arbitrary ε > 0 and δ > 0 there
exists x0 = x0(ε, δ) such that for x ≥ x0, x t ≥ x0,

(1− ε)tρ min(tδ, t−δ) <
h(tx)

h(x)
< (1 + ε)tρ max(tδ, t−δ).

Conversely, if h satisfies the above property then h is regularly varying with index ρ.

The following is a direct consequence of Corollary 1.3.2 and Lemma 1.3.5 of (Embrechts et al., 1997):

Lemma A.7 If F̄ is regularly varying, then limx→∞ e
εxF̄ (x) =∞, for all ε > 0.

A.2. Maximum domain of attraction of the Weibull distribution

Distributions in MDA(Ψα), α > 0, all have finite right endpoint. They include, for example, the uniform and
the beta distributions.

A.3. Maximum domain of attraction of the Gumbel distribution

The MDA of the Gumbel distribution covers a wide range of distribution functions, such as the lognormal,
exponential and the normal distributions. This class contains distribution functions with both finite and infinite
right endpoint. If the distribution function F ∈ MDA(Λ) has an infinite right endpoint, then F̄ is rapidly varying.

Definition A.8 A positive, Lebesgue-measurable function h on (0,∞) is rapidly varying with index −∞ if

lim
x→∞

h(tx)

h(x)
=

{
0, t > 1,

∞, 0 < t < 1.

For rapidly varying functions, there exists an analogous result to Karamata’s Theorem, see e.g. (Embrechts
et al., 1997, Theorem A3.12):

Theorem A.9 Let h be a non-increasing, rapidly varying function. Then for some z > 0 and all κ ∈ R∫ ∞
z

tκ h(t) dt <∞ and lim
x→∞

xκ+1 h(x)∫∞
x
tκ h(t) dt

=∞.
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