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Abstract: Let X1, . . . , Xn be i.i.d. sample in R
p with zero mean and

the covariance matrix Σ∗ . The classic principal component analysis esti-

mates the projector P ∗J onto the direct sum of some eigenspaces of Σ∗

by its empirical counterpart P̂J . Recent papers [20, 23] investigate the

asymptotic distribution of the Frobenius distance between the projectors

‖P̂J −P ∗J ‖2 . The problem arises when one tries to build a confidence set

for the true projector effectively. We consider the problem from Bayesian

perspective and derive an approximation for the posterior distribution of

the Frobenius distance between projectors. The derived theorems hold true

for non-Gaussian data: the only assumption that we impose is the con-

centration of the sample covariance Σ̂ in a vicinity of Σ∗ . The obtained

results are applied to construction of sharp confidence sets for the true pro-

jector. Numerical simulations illustrate good performance of the proposed

procedure even on non-Gaussian data in quite challenging regime.
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1. Introduction

Suppose the data Xn = (X1, . . . , Xn) are independent identically distributed

zero-mean random vectors in Rp . Denote by Σ∗ its covariance matrix:

Σ∗
def
= E

(
XjX

>
j

)
.

Usually one estimates the true unknown covariance by the sample covariance

matrix, given by

Σ̂
def
=

1

n

n∑
j=1

XjX
>
j .

Quantifying the quality of approximation of Σ∗ by Σ̂ is one of the most

classical problems in statistics. Surprisingly, there is a number of deep and

strong results in this area appeared quite recently. The progress is mainly due

to Bernstein type results on the spectral norm ‖Σ̂ − Σ∗‖∞ in the random

matrix theory, see, for instance, [19, 24, 25, 27, 1]. It appears that the quality

of approximation is of order n−1/2 while the dimensionality p only enters



I. Silin and V. Spokoiny /Bayesian inference for spectral projectors 3

logarithmically in the error bound. This allows to apply the results even in the

cases on very high data dimension.

Functionals of covariance matrix also arise in applications frequently. For in-

stance, eigenvalues are well-studied in different regimes, see [22, 9, 16] and many

more references therein. The Frobenius norm and other lr -norms of covariance

matrix are of great interest in financial applications; see, e.g. [10].

Much less is known about the quality of estimation of a spectral projector

which is a nonlinear functional of the covariance matrix. Suppose we fix some

set J of eigenspaces of Σ∗ and consider direct sum of these eigenspaces and

the associated true projector P ∗J . Its empirical counterpart is given by P̂J

computed from the sample covariance Σ̂ . These objects are closely related to

the Principal Component Analysis (PCA), probably the most famous dimension

reduction method. Nowadays PCA-based methods are actively used in deep

networking architecture [14] and finance [11], along with other applications.

Over the past decade huge progress was achieved in theoretical guarantees for

sparse PCA in high dimensions, see [15, 5, 3, 6, 12].

The random quantity of our interest is the squared Frobenius distance be-

tween the true projector and the sample one ‖P̂J −P ∗J ‖22 . Even though this is

a complex non-linear object, recent technique from [18] allows to approximate

(P̂J − P ∗J ) by a linear functional of (Σ̂ −Σ∗) with root-n accuracy. Several

results about the distribution of this random variable are available for the case

when the observations are Gaussian: X1, . . . , Xn
i.i.d.∼ N (0,Σ∗) . The normal

approximation of n‖P̂ r − P ∗r‖22 was shown in [20] with a tight bound on

sup
x∈R

∣∣∣∣∣∣P
n‖P̂ r − P ∗r‖22 −E

(
n‖P̂ r − P ∗r‖22

)
Var1/2

(
n‖P̂ r − P ∗r‖22

) ≤ x

− Φ(x)

∣∣∣∣∣∣ ,
where Φ(x) is the standard normal distribution function. However, the dis-

tribution of n‖P̂ r − P ∗r‖22 depends on the unknown covariance matrix which

makes difficult to use this result for constructing the confidence sets for the true

projector P ∗J . A bootstrap approach can be used to overcome this difficulty;

see [23]. The bootstrap validity result is based on the approximation of the dis-

tribution of n‖P̂ r − P ∗r‖22 by the distribution of a Gaussian quadratic form

‖ξ‖2 . Namely, for the Gaussian data, Theorem 4.3 of [23] provides the following
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statement:

sup
x∈R

∣∣∣P(n‖P̂ r − P ∗r‖22 ≤ x)− P(‖ξ‖2 ≤ x)
∣∣∣ ≤ ♦, (1.1)

where ξ is a zero mean Gaussian vector with a specific covariance structure and

♦ is an explicit error term. The similar approximation is obtained in the boot-

strap world, this reduces the original problem to the question about Gaussian

comparison and Gaussian anti-concentration for large balls.

This paper suggests to look at this problem from Bayesian point of view. The

standard approach for a nonparametric analysis of the posterior distribution is

based on the prominent Bernstein – von Mises (BvM) phenomenon. BvM result

states some pivotal (Gaussian) behavior of the posterior. The paper [8] devel-

oped a general framework for functional BvM theorem, while [28] used similar

ideas to demonstrate asymptotic normality of approximately linear functionals

of covariance and precision matrices. In particular, it can be used to justify the

use of Bayesian credible sets as frequentist confidence sets for the target param-

eter; see [21, 26, 13, 17, 4, 7] among others. In this work, we aim to address a

similar question specifically for spectral projectors of the covariance matrix. It

appears that the general BvM technique can be significantly improved and re-

fined for the problem at hand. The use of the classical conjugated Wishart prior

helps to establish precise finite sample results for the posterior credible sets un-

der mild and general assumptions of the data distribution. The key observation

here is that, similarly to the bootstrap approach of [23], the credible level sets

for the posterior are nearly elliptic, and the corresponding posterior probabil-

ity can be approximated by a special chi-squared-type distribution. This allows

to apply the recent “large ball” results on Gaussian comparison and Gaussian

anti-concentration from [23]. Moreover, in the contrary to the latter paper [23],

we do not require Gaussian distribution of the data. We also provide explicit

bounds on the approximation error in terms of p , n and Σ∗ . Finally, we justify

the use of the Bayesian credible level sets as frequentist confidence sets.

The main contributions of this paper are as follows.

• We establish novel results on the coverage properties of posterior credible

sets for a complicated non-linear problem of recovering the eigenspace of

the sample covariance matrix. The results apply under mild conditions on

the data distribution. In particular, we do not require Gaussianity of the
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observations.

• We offer a new procedure for building sharp elliptic confidence sets for

the true projector based on Bayesian simulation from the Inverse Wishart

prior. The procedure is fully data-driven and numerically efficient, its com-

plexity is proportional to the squared dimension and independent of sam-

ple size. Numerical simulations confirm good performance of the proposed

method for artificial data: both Gaussian and non-Gaussian (not even

sub-Gaussian).

The rest of the paper is structured as follows. Some notations are intro-

duced in Section 2.1. Section 2.2 discusses the model. Bayesian framework and

the main result of the paper about the posterior credible sets are described

in Section 2.3. The use of such sets as frequentist confidence sets is discussed

in Section 2.4. Some numerical results on simulated data are demonstrated in

Section 3. Section 4 contains the proofs of the main theorems. Some auxiliary

results from the literature and the rest of the proofs are collected in Appendix A

and Appendix B, respectively.

2. Problem and main results

This section explains our setup and states the main results.

2.1. Notations

We will use the following notations throughout the paper. The space of real-

valued p×p matrices is denoted by Rp×p , while Sp+ means the set of positive-

semidefinite matrices. We write Id for the identity matrix of size d×d , rank(A)

and Tr(B) stand for the rank of a matrix A and the trace of a square matrix

B . Further, ‖A‖∞ stands for the spectral norm of a matrix A , while ‖A‖1
means the nuclear norm. The Frobenius scalar product of two matrices A and

B of the same size is 〈A,B〉2
def
= Tr(A>B) , while the Frobenius norm is denoted

by ‖A‖2 . When applied to a vector, ‖ · ‖ means just its Euclidean norm. The

effective rank of a square matrix B is defined by r(B)
def
= Tr(B)
‖B‖∞ . The relation

a . b means that there exists an absolute constant C , different from line to

line, such that a ≤ Cb , while a � b means that a . b and b . a . By a ∨ b
and a ∧ b we mean maximum and minimum of a and b , respectively. In the
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sequel we will often be considering intersections of events of probability greater

than 1−1/n . Without loss of generality, we will write that probability measure

of such an intersection is 1− 1/n , since it can be easily achieved by adjusting

constants. Throughout the paper we assume that p < n .

2.2. Setup and problem

Without loss of generality, we can assume that Σ∗ ∈ Sp+ is invertible, otherwise

one can easily transform data in such a way that the covariance matrix for

the transformed data will be invertible. Let σ∗1 ≥ . . . ≥ σ∗p be the ordered

eigenvalues of Σ∗ . Suppose that among them there are q distinct eigenvalues

µ∗1 > . . . > µ∗q . Introduce groups of indices ∆∗r = {j : µ∗r = σ∗j } and denote by

m∗r the multiplicity factor (dimension) |∆∗r | for all r = 1, q . The corresponding

eigenvectors are denoted as u∗1, . . . , u
∗
p . We will use the projector on the r -th

eigenspace of dimension m∗r :

P ∗r =
∑
j∈∆∗r

u∗ju
∗
j
>

and the eigendecomposition

Σ∗ =

p∑
j=1

σ∗ju
∗
ju
∗
j
> =

q∑
r=1

µ∗r

∑
j∈∆∗r

u∗ju
∗
j
>

 =

q∑
r=1

µ∗rP
∗
r .

We also introduce the spectral gaps g∗r :

g∗r =


µ∗1 − µ∗2, r = 1,

(µ∗r−1 − µ∗r) ∧ (µ∗r − µ∗r+1), r ∈ 2, q − 1,

µ∗q−1 − µ∗q , r = q.

Suppose that Σ̂ has p eigenvalues σ̂1 > . . . > σ̂p (distinct with probability

one). The corresponding eigenvectors are denoted as û1, . . . , ûp . Suppose that

‖Σ̂ − Σ∗‖∞ ≤ 1
4 min
r∈1,q

g∗r . Then, as shown in [18], we can identify clusters of

the eigenvalues of Σ̂ corresponding to each eigenvalue of Σ∗ and therefore

determine ∆∗r and m∗r for all r ∈ 1, q . Then we can define the sample projector

on the r -th eigenspace of dimension m∗r :

P̂ r =
∑
j∈∆∗r

ûj û
>
j .
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Under the condition that the spectral gap is sufficiently large, [23] approximated

the distribution of n‖P̂ r − P ∗r‖22 by the distribution of a Gaussian quadratic

form ‖ξ‖2 with ξ ∼ N (0, Γ ∗r ) and Γ ∗r is a block-matrix of the form

Γ ∗r
def
=


Γ ∗r1 O . . . O

O Γ ∗r2 . . . O
...

...
. . .

...

O O . . . Γ ∗rq

 (2.1)

with (q − 1) diagonal blocks of sizes m∗rm
∗
s ×m∗rm∗s :

Γ ∗rs
def
=

2µ∗rµ
∗
s

(µ∗r − µ∗s)2
· Im∗rm∗s , s 6= r.

Below we extend these result in two aspects. First, our approach allows to pick

a block of eigenspaces corresponding to an interval J in {1, . . . , q} from r−

to r+ :

J = {r−, r− + 1, . . . , r+}.

Define also the subset of indices

IJ
def
=
{
k : k ∈ ∆∗r , r ∈ J

}
,

and introduce the projector onto the direct sum of the eigenspaces associated

with P ∗r for all r ∈ J :

P ∗J
def
=
∑
r∈J

P ∗r =
∑
k∈IJ

u∗ku
∗
k
>.

Its empirical counterpart is given by

P̂J
def
=
∑
r∈J

P̂ r =
∑
k∈IJ

ûkû
>
k .

For instance, when J = {1, . . . , qeff} for some qeff < q , then P̂J is exactly

what is recovered by PCA. Below we focus on n‖P̂J − P ∗J ‖22 rather than

n‖P̂ r − P ∗r‖22 .
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The projector dimension for J is given by m∗J =
∑
r∈J m

∗
r . Its spectral gap

can be defined as

g∗J
def
=


µ∗r+ − µ

∗
r++1, if r− = 1;

µ∗r−−1 − µ
∗
r− , if r+ = q;(

µ∗r−−1 − µ
∗
r−

)
∧
(
µ∗r+ − µ

∗
r++1

)
, otherwise.

Define also for J = {r−, r− + 1, . . . , r+}

l∗J = µ∗r− − µ
∗
r+ .

To describe the distribution of the projector P̂J , introduce the following matrix

Γ ∗J of size m∗J (p−m∗J )×m∗J (p−m∗J ) :

Γ ∗J
def
= diag

(
Γ rJ
)
r∈J , (2.2)

Γ rJ
def
= diag (Γ r,s)s/∈J ,

Γ r,s
def
=

2µ∗rµ
∗
s

(µ∗r − µ∗s)2
· Im∗rm∗s , r ∈ J , s /∈ J .

It is easy to notice that when J = {r} then this definition coincides with (2.1).

Second, we relax the assumption on Gaussianity of the data. The only condi-

tion that our main result require from the underlying distribution of the inde-

pendent random vectors Xn = (X1, . . . , Xn) is the concentration of the sample

covariance matrix Σ̂ around the true covariance Σ∗ :

‖Σ̂ −Σ∗‖∞ ≤ δ̂n‖Σ∗‖∞ (2.3)

with probability 1−1/n . Clearly, the bound δ̂n from the condition can vary for

different distributions of the data, but it allows to work with much wider classes

of probability measures rather than just Gaussian or sub-Gaussian. While for

the Gaussian case one may take

δ̂n �
√
r(Σ∗)

n
∨
√

log(n)

n
,

several more examples of possible distributions and the corresponding δ̂n for

them are provided in Appendix A, see Theorem A.1. So, throughout the rest of

the paper we assume that the data satisfy condition (2.3).



I. Silin and V. Spokoiny /Bayesian inference for spectral projectors 9

2.3. Bayesian framework and credible level sets

In Bayesian framework one imposes a prior distribution Π on the set of consid-

ered covariance matrices Σ . Even though our data are not necessary Gaussian,

we can consider the Gaussian log-likelihood:

ln(Σ) = −n
2

log det(Σ)− n

2
Tr(Σ−1Σ̂)− np

2
log (2π).

The posterior measure of a set B ⊂ Sp+ can be expressed as

Π
(
B
∣∣Xn

)
=

∫
B

exp (ln(Σ)) dΠ(Σ)∫
S

p
+

exp (ln(Σ)) dΠ(Σ)
.

As the Gaussian log-likelihood ln(Σ) does not necessarily correspond to the

true distribution of our data, we call the random measure Π
(
·
∣∣Xn

)
a pseudo-

posterior. Once a prior is fixed, we can easily sample matrices Σ from this

pseudo-posterior distribution. Denote eigenvalues of Σ as σ1 > . . . > σp (as-

sume they are distinct with probability one) and eigenvectors as u1, . . . , up .

The corresponding projector onto the r -th eigenspace of dimension m∗r is

P r =
∑
k∈∆∗r

ukuk
>.

and the projector on the direct sum of eigenspaces associated with P r for

r ∈ J is

PJ =
∑
r∈J

P r =
∑
k∈IJ

uku
>
k .

In this work we focus on the conjugate prior to the multivariate Gaussian dis-

tribution, that is, the Inverse Wishart distribution IWp(G, p + b − 1) with

G ∈ Sp+ , 0 < b . p . Its density is given by

dΠ(Σ)

dΣ
∝ exp

(
−2p+ b

2
log det(Σ)− 1

2
Tr(GΣ−1)

)
.

Some nice properties of the Inverse Wishart prior distribution allow us to obtain

the following result which we will use for uncertainty quantification statements

in the next section instead of the Bernstein–von Mises Theorem.
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Theorem 2.1. Assume that the distribution of the data Xn = (X1, . . . , Xn)

fulfills the sample covariance concentration property (2.3). Consider the prior

Π(Σ) given by the Inverse Wishart distribution IWp(G, p + b − 1) . Let ξ ∼
N (0, Γ ∗J ) with Γ ∗J defined by (2.2). Then with probability 1− 1

n

sup
x∈R

∣∣∣Π (n‖PJ − P̂J ‖22 ≤ x ∣∣Xn
)
− P(‖ξ‖2 ≤ x)

∣∣∣ . ♦,
where

♦
def
=

♦1 + ♦2 + ♦3√
λ1(Γ ∗J )λ2(Γ ∗J )

+
1

n
. (2.4)

The terms ♦1 through ♦3 can be described as

♦1 �

{
(log(n) + p)

((
1 +

l∗J
g∗J

) √
m∗J ‖Σ

∗‖2∞
g∗J

∨ ‖Σ∗‖2

)
+ ‖G‖2

}

×Tr(Σ∗)

g∗J
2

√
log(n) + p

n
,

♦2 �
‖Σ∗‖∞

(
m∗J ‖Σ

∗‖2∞ ∧ Tr
(
Σ∗

2
))

g∗J
3 p

(
δ̂n +

p

n

)
,

♦3 �
m∗J

3/2‖Σ∗‖∞ Tr(Σ∗)

g∗J
2

√
log(n)

n

with δ̂n from (2.3).

Remark 2.1. The bound (2.4) can be made more transparent if we fix Σ∗ and

focus on the dependence on p, n, δ̂n only (freezing the eigenvalues, the spectral

gaps and multiplicities of the eigenvalues):

♦ �
√
p3

n
∨

√
log3(n)

n
∨ p δ̂n,

or, in the Gaussian case,

♦ �
√
p3

n
∨

√
log3(n)

n
.
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2.4. Gaussian approximation and frequentist uncertainty

quantification for spectral projectors

For the Gaussian data, Theorem 4.3 of [23] provides the explicit error bound

(1.1) with the error term ♦ of the following form:

sup
x∈R

∣∣∣P(n‖P̂ r − P ∗r‖22 ≤ x)− P(‖ξ‖2 ≤ x)
∣∣∣ ≤ ♦,

♦ �
√
m∗r Tr(Γ ∗r )√

λ1(Γ ∗r )λ2(Γ ∗r )

(√
log(n)

n
+

√
log(p)

n

)

+
m∗r
g∗r

3

Tr3(Σ∗)√
λ1(Γ ∗r )λ2(Γ ∗r )

√
log3(n)

n
. (2.5)

The next theorem extends this result to include the case of a generalized spectral

cluster and of non-Gaussian data.

Theorem 2.2. Assume the distribution of the data Xn = (X1, . . . , Xn) fulfills

the sample covariance concentration property (2.3). Suppose additionally that

the projections P ∗JXj and (Ip−P ∗J )Xj are independent and the sixth moment

of rescaled random vector Σ∗
−1/2

Xj is bounded: E‖Σ∗−1/2
Xj‖6 ≤ C . Let

ξ ∼ N (0, Γ ∗J ) with Γ ∗J defined by (2.2) . Then

sup
x∈R

∣∣∣P(n‖P̂J − P ∗J ‖22 ≤ x)− P(‖ξ‖2 ≤ x)
∣∣∣ . ♦,

where

♦
def
=

p1/4

√
n

+
∆√

λ1(Γ ∗J )λ2(Γ ∗J )
, (2.6)

∆
def
= nm∗J

(
1 +

l∗J
g∗J

) {(
1 +

l∗J
g∗J

)
δ̂4
n

g∗J
4 ∨

|J | δ̂3
n

g∗J
3

}
.

Remark 2.2. The condition on independence of P ∗JXj and (Ip − P ∗J )Xj

may seem rather restrictive, however it has a natural interpretation: while we

are interested in the “signal” P ∗JXj , the orthogonal part (Ip−P ∗J )Xj can be

considered as “noise”, and it is not too restrictive to assume that the “noise” is

independent from the “signal”. It also worth mentioning that this condition was

not required in our main result above about the behavior of the posterior.
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The proof of this result is presented in Appendix B. The obtained bound is

worse than (2.5) because we cannot utilize Gaussianity of the data anymore,

and the result makes use of Gaussian approximation technique from [2]. How-

ever, recent developments in Gaussian approximation for a probability of a ball

indicate that the bound (2.6) can be significantly improved.

Comparison of the results of Theorem 2.1 and Theorem 2.2 reveals that the

posterior distribution of n‖PJ − P̂J ‖22 given the data perfectly mimics the

distribution of n‖P̂J − P ∗J ‖22 , and, therefore, can be applied to building of

elliptic confidence sets for the true projector. Specifically, for any significance

level α ∈ (0; 1) (or confidence level 1− α ) we can estimate the true quantile

γα
def
= inf

{
γ > 0 : P

(
n‖P̂J − P ∗J ‖22 > γ

)
≤ α

}
by the following counterpart which can be numerically assessed using Bayesian

credible sets:

γ◦α
def
= inf

{
γ > 0 : Π

(
n‖PJ − P̂J ‖22 > γ

∣∣Xn
)
≤ α

}
.

Then, the main results presented above imply the following corollary.

Corollary 2.3. Assume that all conditions of Theorem 2.1 and Theorem 2.2

are fulfilled. Then

sup
α∈(0; 1)

∣∣∣α− P
(
n‖P̂J − P ∗J ‖22 > γ◦α

)∣∣∣ . ♦+ ♦,

where ♦ , ♦ are defined by (2.4), (2.6), respectively.

3. Numerical experiments

This section shows by mean of artificial data that the proposed Bayesian ap-

proach works quite well even for large data dimension and limited sample size.

We also want to track how the quality depends on the sample size n and the

dimension p . The organization of the experiments is the following. Let us fix

some true covariance matrix Σ∗ of size p×p . Without loss of generality we con-

sider only diagonal Σ∗ in all our experiments, so Σ∗ is defined by the distinct

eigenvalues µ∗r and the multiplicities m∗r . We also specify the desired subspace

that we want to investigate by fixing J . After that, for different sample sizes
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n we repeat the following two-step procedure. The first step is to determine

the quantiles of n‖P̂J −P ∗J ‖22 . For that we generate 3000 samples Xn , com-

pute the corresponding P̂J and then just take α− quantiles of the obtained

realizations n‖P̂J − P ∗J ‖22 for α from 0.001 to 0.999 with step 0.001 . The

second step is to estimate the quantiles of the pseudo-posterior distribution of

n‖PJ − P̂J ‖22 . We generate 50 samples Xn and for each realization we gen-

erate 3000 pseudo-posterior covariance matrices Σ from the Inverse Wishart

distribution with G = Ip, b = 1 . Then we compute the corresponding PJ and

take the α− quantiles of n‖PJ − P̂J ‖22 just as in the first step. So, for each

α we get 50 quantile estimates γ◦α and take median of them. For the quantiles

from the first and the second step we build the QQ-plot. Also we present a table

with coverage probabilities P(n‖P̂J −P ∗J ‖22 ≤ γ◦α) and interquartile ranges for

1− α from {0.99, 0.95, 0.90, 0.85, 0.80, 0.75} .

Let us look at the examples of conducted simulations. In the first experiment

we work with Gaussian data. The parameters of the experiment are as follows:

• p = 100 .

• m∗r = 1 for all r = 1, 100 .

• µ∗1 = 26, µ∗2 = 16, µ∗3 = 10, µ∗4 = 6, µ∗5 = 3.5 and the rest of the

eigenvalues µ∗6, . . . , µ
∗
100 are from the uniform distribution on [0.7; 1.3] .

• J = {1} , so we investigate one-dimensional principal subspace given by

P ∗1 .

The QQ-plots are depicted on Figure 1 and the coverage probabilities are pre-

sented in Table 1.

In the second experiment we check how our method performs on non-Gaussian

data. We generate non-Gaussian data in the following way. Since we consider

only diagonal matrices, we can generate components of the vectors Xj inde-

pendently. Except Gaussian distribution, we consider also the following three

options: the uniform distribution on the interval [−a; a] , the Laplace distribu-

tion with scaling parameter a and the discrete uniform distribution with three

values {−a, 0, a} . In each case the parameter a is chosen in such a way that en-

sures the variance located on the diagonal of the covariance matrix fixed earlier.

So, the parameters of the experiment are as follows:

• p = 100 .

• m∗1 = 3 , m∗2 = 3 , m∗3 = 3 and the rest of the multiplicities m∗4, . . . ,m
∗
91
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Fig 1. QQ-plots of the proposed Bayesian procedure for the first experiment (Gaussian data).

Table 1
Coverage probabilities of the proposed Bayesian procedure for the first experiment (Gaussian

data).

Confidence levels ( 1− α )
n 0.99 0.95 0.90 0.85 0.80 0.75

200 0.997 0.972 0.935 0.900 0.859 0.815
0.008 0.042 0.066 0.104 0.127 0.147

500 0.992 0.950 0.898 0.856 0.805 0.758
0.023 0.076 0.101 0.123 0.142 0.153

1000 0.992 0.958 0.910 0.859 0.816 0.768
0.012 0.043 0.076 0.080 0.083 0.094

3000 0.991 0.950 0.902 0.854 0.806 0.753
0.009 0.025 0.035 0.039 0.043 0.056
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Fig 2. QQ-plots of the proposed Bayesian procedure for the second experiment (non-Gaussian
data).

Table 2
Coverage probabilities of the proposed Bayesian procedure for the second experiment

(non-Gaussian data)

Confidence levels ( 1− α )
n 0.99 0.95 0.90 0.85 0.80 0.75

200 0.993 0.972 0.946 0.919 0.886 0.858
0.019 0.071 0.117 0.158 0.185 0.233

500 0.995 0.978 0.952 0.925 0.889 0.852
0.015 0.045 0.087 0.120 0.145 0.175

1000 0.992 0.959 0.909 0.864 0.818 0.774
0.015 0.049 0.080 0.106 0.126 0.141

3000 0.992 0.958 0.914 0.867 0.821 0.776
0.014 0.033 0.055 0.062 0.083 0.082
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are one.

• µ∗1 = 25 , µ∗2 = 20 , µ∗3 = 15 , µ∗4 = 10 , µ∗5 = 7.5 , µ∗6 = 5 and the rest of

the eigenvalues µ∗7, . . . , µ
∗
100 are from the uniform distribution on [0; 3] .

• The first nine components were generated according to: uniform, Laplace,

discrete, Gaussian, Laplace, discrete, Laplace, Laplace, uniform distribu-

tions, respectively. The rest of the components are Gaussian.

• J = {1, 2, 3} , so we investigate nine-dimensional subspace given by

P ∗1 + P ∗2 + P ∗3 .

The QQ-plots are depicted on Figure 2 and the coverage probabilities are pre-

sented in Table 2.

As we can see from the experiment, the performance of the proposed proce-

dure is rather poor when the sample size is of the same order as the dimension.

However, this regime lies beyond the scope of our results. If we have enough

data, the methods demonstrates high quality even in such challenging situa-

tion as recovering a direct sum of three subspaces from non-Gaussian (even not

sub-Gaussian) data.

4. Main proofs

This section collects the proofs of the main results. Some additional technical

statements are postponed to the Appendix.

4.1. Proof of Theorem 2.1

The Inverse Wishart prior IWp(G, p+ b− 1) is conjugate to the multivariate

Gaussian distribution, so our pseudo-posterior Π
(
Σ
∣∣Xn

)
is

IWp(G + nΣ̂, n + p + b − 1) . We will actively use the following well-known

property of the Wishart distribution:

Σ−1
∣∣Xn d

=

n+p+b−1∑
j=1

WjW
>
j

∣∣Xn,

where Wj

∣∣Xn i.i.d.∼ N (0, (G+ nΣ̂)−1) .

For shortness in this section we will use the notation np
def
= n+ p+ b− 1 and

we assume that b . p . As we will see, this assumption will help us to simplify
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the bounds, while the case b & p does not bring any gain. Moreover, define

Σn,p
def
=

1

np
G+

n

np
Σ̂

and

En,p
def
=

1

np

np∑
j=1

ZjZ
>
j − Ip ,

where Zj
∣∣Xn i.i.d.∼ N (0, Ip) . Then Σ−1

∣∣Xn can be represented as

Σ−1
∣∣Xn d

= Σ−1/2
n,p (En,p + Ip)Σ

−1/2
n,p .

We may think that in the posterior world all randomness comes from En,p .

Moreover, due to Theorem A.1, (i), there is a random set Υ such that on this

set

‖En,p‖∞ .

√
log(np) + p

np
≤
√

log(n) + p

n
,

and its posterior measure

Π
(
Υ
∣∣Xn

)
≥ 1− 1

n
.

Step 1 First, we will need the following lemma.

Lemma 4.1. The following holds on the random set Υ :

‖Σ − Σ̂‖∞ . ‖Σ̂‖∞

√
log(n) + p

n
+
‖G‖∞
n

. (4.1)

Proof. Since Σ−1
∣∣Xn d

= Σ−1/2
n,p (En,p + Ip)Σ

−1/2
n,p , we have

Σ − Σ̂ = Σ1/2
n,p (En,p + Ip)

−1Σ1/2
n,p − Σ̂

= Σ1/2
n,p

[
(En,p + Ip)

−1 − Ip
]
Σ1/2
n,p +Σn,p − Σ̂.

Note that

‖(En,p + Ip)
−1 − Ip‖∞ =

∥∥∥∥∥
∞∑
s=1

(−En,p)
s

∥∥∥∥∥
∞

≤
∞∑
s=1

‖En,p‖s∞ =
‖En,p‖∞

1− ‖En,p‖∞
. ‖En,p‖∞.
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Hence,

‖Σ − Σ̂‖∞ . ‖Σn,p‖∞‖En,p‖∞ + ‖Σn,p − Σ̂‖∞.

Finally, the observations that

‖Σn,p‖∞ ≤
‖G‖∞
n

+ ‖Σ̂‖∞,

‖Σn,p − Σ̂‖∞ ≤
‖G‖∞
n

+
np − n
n
‖Σ̂‖∞,

finish the proof.

The condition on the significant spectral gap for Σ∗ and the bound (2.3) on

the operator norm ‖Σ̂−Σ∗‖ imply a significant spectral gap for the empirical

covariance Σ̂ . The crucial Lemma A.2 applied with the central projector P̂J

in place of P ∗J allows to obtain the bound on how close the linear operator

L̂J (Σ − Σ̂)
def
=

∑
k∈IJ

∑
l/∈IJ

ûkû
>
k (Σ − Σ̂)ûlû

>
l + ûlû

>
l (Σ − Σ̂)ûkû

>
k

σ̂k − σ̂l

is to PJ − P̂J .

Lemma 4.2. The following holds on the random set Υ :

√
n‖PJ − P̂J − L̂J (Σ − Σ̂)‖2 . ∆̂0,

where

∆̂0
def
=

√
m∗J
n

(
1 +

l̂J
ĝJ

)
(log(n) + p)‖Σ̂‖2∞ + ‖G‖2∞/n

ĝ2
J

,

and l̂J , ĝJ are empirical versions of l∗J , g
∗
J .

Proof. It follows from (A.2) from Lemma A.2 that

‖PJ − P̂J − L̂J (Σ − Σ̂)‖∞ .

(
1 +

l̂J
ĝJ

)
‖Σ − Σ̂‖2∞

ĝ2
J

.

It is easy to see that the rank of L̂J (Σ − Σ̂) is at most 2m∗J , and thus the

rank of PJ − P̂J − L̂J (Σ − Σ̂) is at most 4m∗J . Hence, taking into account

the relation between the Frobenius and the spectral norm of a matrix via rank

and (4.1) from Lemma 4.1, we obtain the desired statement.
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The representation

Σ−1
∣∣Xn d

= Σ−1/2
n,p (En,p + Ip)Σ

−1/2
n,p .

helps to obtain the next result showing that L̂J (Σ − Σ̂) can be approximated

by ŜJ = L̂J

(
−Σ̂

1/2
En,pΣ̂

1/2
)

.

Lemma 4.3. It holds

L̂JΣ = L̂J

(
−Σ̂

1/2
En,p Σ̂

1/2
)

+RJ = ŜJ +RJ ,

where the remainder RJ fulfills on the random set Υ

√
n‖RJ ‖2 . ∆̂1

def
=

1√
n
· (log(n) + p)‖Σ̂‖2 + ‖G‖2

ĝJ
.

Proof. Define Rn,p by

Rn,p
def
=
(
Ip +En,p

)−1 − Ip +En,p.

Its spectral norm can be bounded as

‖Rn,p‖∞ .

∥∥∥∥∥
∞∑
s=2

(−En,p)
s

∥∥∥∥∥
∞

≤
∞∑
s=2

‖En,p‖s∞ =
‖En,p‖2∞

1− ‖En,p‖∞
. ‖En,p‖2∞.

So

Σ = Σ1/2
n,p (En,p + Ip)

−1Σ1/2
n,p = Σ1/2

n,p (Ip −En,p +Rn,p)Σ
1/2
n,p .

Therefore for Σ − Σ̂ we have

Σ − Σ̂ = Σ1/2
n,p (Ip −En,p +Rn,p)Σ

1/2
n,p − Σ̂

= −Σ1/2
n,p En,pΣ

1/2
n,p +Σ1/2

n,p Rn,pΣ
1/2
n,p +Σn,p − Σ̂.

From Σ1/2
n,p En,pΣ

1/2
n,p we pass to Σ̂

1/2
En,p Σ̂

1/2
:

Σ − Σ̂ = −Σ̂
1/2
En,p Σ̂

1/2
+ (Σ̂

1/2
En,p Σ̂

1/2
−Σ1/2

n,p En,pΣ
1/2
n,p)

+Σ1/2
n,p Rn,pΣ

1/2
n,p +Σn,p − Σ̂

= −Σ̂
1/2
En,p Σ̂

1/2
+R1 +R2 +R3,
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where we introduce the remainder terms

R1
def
= Σ̂

1/2
En,p Σ̂

1/2
−Σ1/2

n,p En,pΣ
1/2
n,p ,

R2
def
= Σ1/2

n,p Rn,pΣ
1/2
n,p ,

R3
def
= Σn,p − Σ̂.

They can be bounded in Frobenius norm:

‖R1‖2 ≤ ‖En,p‖∞‖Σ̂ −Σn,p‖1/2∞
(
‖Σn,p‖1/22 + ‖Σ̂‖1/22

)
,

‖R2‖2 ≤ ‖Rn,p‖∞‖Σn,p‖2 . ‖En,p‖2∞‖Σn,p‖2,

‖R3‖2 .
‖G‖2 + (np − n) ‖Σ̂‖2

np
.

Hence, omitting higher order terms, on Υ we have

‖R1‖2 . ‖Σ̂‖1/22

(
‖G‖∞ + p‖Σ̂‖∞

)1/2
√

log(n) + p

n
,

‖R2‖2 . ‖Σ̂‖2
log(n) + p

n
,

‖R3‖2 .
‖G‖2 + p ‖Σ̂‖2

n
.

Now we summarize

L̂J (Σ − Σ̂) = ŜJ +RJ

with

ŜJ
def
= −

∑
k∈IJ

∑
l 6∈IJ

σ̂
1/2
k σ̂

1/2
l (ûkû

>
k En,p ûlû

>
l + ûlû

>
l En,p ûkû

>
k )

σ̂k − σ̂l
,

RJ
def
=

∑
k∈IJ

∑
l 6∈IJ

(ûkû
>
k (R1 +R2 +R3) ûlû

>
l + ûlû

>
l (R1 +R2 +R3) ûkû

>
k )

σ̂k − σ̂l
.

Moreover,

∥∥RJ ∥∥2

2
= Tr

(
RJR>J

)
= 2

∑
k∈IJ

∑
l 6∈IJ

(
û>k (R1 +R2 +R3) ûl

)2
(σ̂k − σ̂l)2

≤ 2‖R1 +R2 +R3‖22
ĝ2
J

,
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and the inequality

∥∥RJ ∥∥2
≤
√

2

ĝJ
(‖R1‖2 + ‖R2‖2 + ‖R3‖2)

provides the desired bound. Similarly, we have

∥∥ŜJ ∥∥2
≤
√

2‖En,p‖∞
ĝJ

∑
k∈IJ

σ̂k

1/2∑
l 6∈IJ

σ̂l

1/2

.
Tr(Σ̂)

ĝJ

√
log(n) + p

n
,

where the last inequality holds on Υ .

The results of Lemmas 4.2 and 4.3 yield on the random set Υ

√
n‖P̂J − PJ − ŜJ ‖2 . ∆̂0 + ∆̂1.

In addition,∣∣∣n‖PJ − P̂J ‖22 − n‖ŜJ ‖22∣∣∣
= n‖PJ − P̂J − ŜJ ‖22 + 2

〈√
n(PJ − P̂J − ŜJ ),

√
nŜJ

〉
2

≤ n‖PJ − P̂J − ŜJ ‖22 + 2
√
n‖PJ − P̂J − ŜJ ‖2 ·

√
n‖ŜJ ‖2.

Thus, taking into account the bound for ‖ŜJ ‖2 and neglecting higher order

terms, on Υ we obtain∣∣∣n‖PJ − P̂J ‖22 − n‖ŜJ ‖22∣∣∣ . ∆̂2, (4.2)

where

∆̂2
def
=

{
(log(n) + p)

((
1 +

l̂J
ĝJ

) √
m∗J ‖Σ̂‖2∞
ĝJ

∨ ‖Σ̂‖2

)
+ ‖G‖2

}
×

×Tr(Σ̂)

ĝ2
J

√
log(n) + p

n
.

Step 2 The norm n‖ŜJ ‖22 can be decomposed as follows:

n‖ŜJ ‖22 = 2n

p∑
k′=1

p∑
l′=1

∑
k∈IJ

∑
l 6∈IJ

σ̂kσ̂l
(σ̂k − σ̂l)2

(
û>k′ ûkû

>
k En,pûlû

>
l ûl′

)2
=

= 2n
∑
k∈IJ

∑
l 6∈IJ

σ̂kσ̂l
(σ̂k − σ̂l)2

(
û>k En,pûl

)2
.
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Introduce a vector ξ̂J ∈ Rm
∗
J (p−m∗J ) with components

ξ̂k,l =
√

2n
σ̂

1/2
k σ̂

1/2
l

σ̂k − σ̂l
û>k En,pûl,

for k ∈ IJ , l 6∈ IJ , ordered in some particular way that will become clear later.

Note that n‖ŜJ ‖22 = ‖ξ̂J ‖2 . Clearly, for each k ≤ p and j ≤ np

ηk,j
def
= û>k Zj

∣∣Xn i.i.d.∼ N (0, 1).

Then the components can be rewritten as

ξ̂k,l =

√
2 σ̂

1/2
k σ̂

1/2
l

σ̂k − σ̂l

√
n

np

np∑
j=1

ηk,jηl,j ,

for k ∈ IJ , l 6∈ IJ . To understand the covariance structure of ξ̂J , consider one

more pair (k′, l′) and investigate the covariance:

Γ̂(k,l),(k′,l′)
def
= Cov(ξ̂k,l, ξ̂k′,l′

∣∣Xn)

=
2n

n2
p

np∑
j,j′=1

σ̂
1/2
k σ̂

1/2
l σ̂

1/2
k′ σ̂

1/2
l′

(σ̂k − σ̂l)(σ̂k′ − σ̂l′)
E
(
ηk,j ηl,j ηk′,j′ ηl′,j′

∣∣Xn
)

=
2n

np
δk,k′ δl,l′

σ̂k σ̂l
(σ̂k − σ̂l)2

with δk,k′ = 1I(k = k′) . Therefore, the covariance matrix of ξ̂J is diagonal:

Γ̂J
def
=

2n

np
· diag

(
2 σ̂k σ̂l

(σ̂k − σ̂l)2

)
k∈IJ , l/∈IJ

.

This matrix Γ̂J can be compared with the matrix Γ ∗J defined in (2.2).

Lemma 4.4. It holds

∥∥Γ̂J − Γ ∗J ∥∥1
. ∆̂3 (4.3)

with

∆̂3
def
=

p
(
m∗J ‖Σ

∗‖2∞ ∧ Tr
(
Σ∗

2
))

g∗J
3

(
‖Σ̂ −Σ∗‖∞ +

p

n
‖Σ∗‖∞)

)
.
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Proof. As both matrices Γ̂J and Γ ∗J are diagonal, it holds

∥∥Γ̂J − Γ ∗J ∥∥1
≤ 2

∑
k∈IJ

∑
l/∈IJ

∣∣∣∣ nnp σ̂k σ̂l
(σ̂k − σ̂l)2

− σ∗kσ
∗
l

(σ∗k − σ∗l )2

∣∣∣∣.
Due to the Weyl’s inequality, |σ̂k − σ∗k| ≤ ‖Σ̂ −Σ

∗‖∞ for any k . Then, after

some technical calculations, we get

∥∥Γ̂J − Γ ∗J ∥∥1
.
∑
k∈IJ

∑
l/∈IJ

σ∗k
2 + σ∗l

2

(σ∗k − σ∗l )3

(
‖Σ̂ −Σ∗‖∞ +

p

n
‖Σ∗‖∞)

)
,

which provides the desired result.

Unfortunately, the entries ξ̂k,l of ξ̂J are not Gaussian because of the product

ηk,j ηl,j . This does not allow to apply the Gaussian comparison Lemma A.4.

To get rid of this issue, we condition on P̂JZ . Namely, in the “posterior”

world random vectors P̂JZj and (Ip− P̂J )Zj are Gaussian and uncorrelated,

therefore, independent, so we can condition on ZJ
def
= (P̂JZ1, . . . , P̂JZnp)

to get that ŜJ is conditionally on Xn, ZJ Gaussian random vector with the

covariance matrix

Γ̃J
def
= Cov

(
ξ̂J
∣∣Xn, ZJ

)
.

It holds similarly to the above

Γ̃(k,l),(k′,l′)
def
= Cov(ξ̂k,l, ξ̂k′,l′

∣∣Xn, ZJ )

=
2n

n2
p

np∑
j,j′=1

σ̂
1/2
k σ̂

1/2
l σ̂

1/2
k′ σ̂

1/2
l′

(σ̂k − σ̂l)(σ̂k′ − σ̂l′)
E
(
ηk,j ηl,j ηk′,j′ ηl′,j′

∣∣Xn, ZJ
)

=
2n

np
δ̃k,k′δl,l′

σ̂
1/2
k σ̂

1/2
k′ σ̂l

(σ̂k − σ̂l)(σ̂k′ − σ̂l)

with

δ̃k,k′
def
=

1

np

np∑
j=1

ηk,jηk′,j .

Lemma 4.5. It holds on a random set of posterior measure 1− 1
n

max
k,k′∈IJ

∣∣δ̃k,k′ − δk,k′ ∣∣ .
√

log(np +m∗J )

np
,
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and on this set

∥∥Γ̃J − Γ̂J ∥∥1
. ∆̂4

def
=

m∗J
3/2‖Σ̂‖∞ Tr(Σ̂)

ĝ2
J

√
log(np +m∗J )

np
. (4.4)

Proof. The first result of the lemma follows easily from usual concentration

inequalities for sub-exponential random variables and union bound for at most

|IJ |2 = m∗J
2 pairs of k, k′ .

To obtain the second inequality we represent Γ̃J and Γ̂J as

Γ̃J = diag
(
Γ̃

(l)
J

)
l/∈IJ

,

Γ̂J = diag
(
Γ̂

(l)
J

)
l/∈IJ

.

Due to this block structure we have

‖Γ̃J − Γ̂J ‖1 =
∑
l/∈IJ

‖Γ̃ (l)
J − Γ̂

(l)
J ‖1.

Let us fix l /∈ IJ and focus on the corresponding block with size m∗J ×m∗J .

It’s easy to observe that for each k, k′ ∈ IJ

Γ̃(k,l),(k′,l) − Γ̂(k,l),(k′,l) =
2n

np

σ̂
1/2
k σ̂

1/2
k′ σ̂l

(σ̂k − σ̂l)(σ̂k′ − σ̂l)
· (δ̃k,k′ − δk,k′)

and, therefore,

max
k,k′∈IJ

∣∣∣Γ̃(k,l),(k′,l) − Γ̂(k,l),(k′,l)

∣∣∣ ≤ 2‖Σ̂‖∞σ̂l
ĝ2
J

max
k,k′∈IJ

∣∣δ̃k,k′ − δk,k′ ∣∣.
Finally, since

‖Γ̃ (l)
J − Γ̂

(l)
J ‖1 ≤

√
m∗J ‖Γ̃

(l)
J − Γ̂

(l)
J ‖2

≤ m∗J
3/2 max

k,k′∈IJ

∣∣∣Γ̃(k,l),(k′,l′) − Γ̂(k,l),(k′,l′)

∣∣∣ ,
the obtained inequalities provide the result of the lemma.

Putting together (4.3) and (4.4) yields the bound

∥∥Γ̃J − Γ ∗J ∥∥1
. ∆̂3 + ∆̂4.
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The Gaussian comparison Lemma A.4 can be used to compare the conditional

distribution of ‖ξ̂J ‖ given Xn, P̂JZ and the unconditional distribution of

‖ξJ ‖ : on a random set of posterior measure 1− 1
n

sup
x∈R

∣∣∣∣Π (‖ξ̂J ‖2 ≤ x ∣∣∣∣Xn, ZJ

)
− P

(
‖ξJ ‖2 ≤ x

)∣∣∣∣ . ∆̂3 + ∆̂4√
λ1(Γ ∗J )λ2(Γ ∗J )

.

Of course, integrating w.r.t. P̂JZ ensures similar result when conditioning on

the data Xn only:

sup
x∈R

∣∣∣∣Π (‖ξ̂J ‖2 ≤ x ∣∣∣∣Xn

)
− P

(
‖ξJ ‖2 ≤ x

)∣∣∣∣ . ∆̂3 + ∆̂4√
λ1(Γ ∗J )λ2(Γ ∗J )

+
1

n
(4.5)

with probability one.

Step 3 So far we worked in the “posterior world” and our bounds ∆̂2, ∆̂3, ∆̂4

are random, since they depend on the data Xn . Clearly, one can verify that

due to the Weyl’s inequality and the condition (2.3) the empirical objects in

the random bounds can be replaced by the true ones with high probability: the

only payment for this is a multiplicative constant factor, if we assume that δ̂n

is small enough and neglect higher order terms. So, we get

∆̂2 . ∆2
def
=

{
(log(n) + p)

((
1 +

l∗J
g∗J

) √
m∗J ‖Σ

∗‖2∞
g∗J

∨ ‖Σ∗‖2

)
+ ‖G‖2

}
×

×Tr(Σ∗)

g∗J
2

√
log(n) + p

n
,

∆̂3 . ∆3
def
=
‖Σ∗‖∞

(
m∗J ‖Σ

∗‖2∞ ∧ Tr
(
Σ∗

2
))

g∗J
3 p

(
δ̂n +

p

n

)
,

∆̂4 . ∆4
def
=

m∗J
3/2‖Σ∗‖∞ Tr(Σ∗)

g∗J
2

√
log(n)

n

with probability 1− 1/n in the Xn−world.

Now we combine the obtained bounds. For ∆2 defined above and arbitrary
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x ∈ R it holds

Π
(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)

≤ Π
(
n‖ŜJ ‖22 ≤ x+∆2

∣∣Xn
)

+Π
(
n‖PJ − P̂J ‖22 − n‖ŜJ ‖22 ≤ −∆2

∣∣Xn
)
.

Since n‖ŜJ ‖22
∣∣Xn d

= ‖ξ̂J ‖2
∣∣Xn , ∆̂2 . ∆2 with probability 1− 1

n , and taking

(4.2) into account, we deduce

Π
(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)
≤ Π

(
‖ξJ ‖2 ≤ x+∆2

∣∣Xn
)

+Π
(
Υ c
∣∣Xn

)
with probability 1 − 1

n . Subtracting P
(
‖ξJ ‖2 ≤ x

)
and taking supremum of

both sides, we get

sup
x∈R

{
Π
(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)
− P

(
‖ξJ ‖2 ≤ x

)}
≤ sup

x∈R

{
Π
(
‖ξ̂J ‖2 ≤ x+∆2

∣∣Xn
)
− P

(
‖ξJ ‖2 ≤ x+∆2

)}
+ sup
x∈R

{
P
(
‖ξJ ‖2 ≤ x+∆2

)
− P

(
‖ξJ ‖2 ≤ x

)}
+Π

(
Υ c
∣∣Xn

)
.

The first term in the right-hand side is bounded by ∆3+∆4√
λ1(Γ∗J )λ2(Γ∗J )

+ 1
n with

probability 1− 1
n due to (4.5). The second term does not exceed ∆2√

λ1(Γ∗J )λ2(Γ∗J )

according to the Gaussian anti-concentration Lemma A.3. The last term is at

most 1
n by definition of Υ . Therefore,

sup
x∈R

{
Π
(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)
− P

(
‖ξJ ‖2 ≤ x

)}
.

∆2 +∆3 +∆4√
λ1(Γ ∗J )λ2(Γ ∗J )

+
1

n

with probability 1− 1
n . Similarly, one derives

sup
x∈R

{
P
(
‖ξJ ‖2 ≤ x

)
−Π

(
n‖PJ − P̂J ‖22 ≤ x

∣∣Xn
)}
.

∆2 +∆3 +∆4√
λ1(Γ ∗J )λ2(Γ ∗J )

+
1

n

with probability 1− 1
n . The previous two inequalities yield the desired result.
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4.2. Proof of Corollary 2.3

Let ξJ ∼ N (0, Γ ∗J ) . Due to Theorem 2.2 we have

sup
x∈R

∣∣∣P(n‖P̂J − P ∗J ‖22 > x
)
− P(‖ξJ ‖2 > x)

∣∣∣ . ♦.
Fix arbitrary significance level α ∈ (0; 1) (or confidence level 1 − α ). Recall

that by γα we denote α -quantile of n‖P̂J − P ∗J ‖22 . Let us fix an event Θ

such that

sup
x∈R

∣∣∣Π (n‖PJ − P̂J ‖22 > x
∣∣Xn

)
− P(‖ξJ ‖2 > x)

∣∣∣ . ♦.
According to Theorem 2.1 its probability is at least 1 − 1/n . Hence, by the

triangle inequality it holds on Θ

sup
x∈R

∣∣∣Π (n‖PJ − P̂J ‖22 > x
∣∣Xn

)
− P

(
n‖P̂J − P ∗J ‖22 > x

)∣∣∣ ≤ ♦′ � ♦+ ♦.

Therefore, taking x = γα−♦′ and x = γα+♦′ , we get on Θ∣∣∣Π (n‖PJ − P̂J ‖22 > γα−♦′
∣∣Xn

)
− (α− ♦′)

∣∣∣ ≤ ♦′,∣∣∣Π (n‖PJ − P̂J ‖22 > γα+♦′
∣∣Xn

)
− (α+ ♦′)

∣∣∣ ≤ ♦′.
Thus,

Π
(
n‖PJ − P̂J ‖22 > γα−♦′

∣∣Xn
)
≤ (α− ♦′) + ♦′ = α,

Π
(
n‖PJ − P̂J ‖22 > γα+♦′

∣∣Xn
)
≥ (α+ ♦′)− ♦′ = α.

By definition of γ◦α the previous two inequalities yield

γα+♦′ ≤ γ◦α ≤ γα−♦′ on Θ.

Hence,

P (γ◦α < γα+♦′) ≤ P (Θc) ≤ 1

n
,

P (γ◦α > γα−♦′) ≤ P (Θc) ≤ 1

n
.
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Now we can write the following chain of inequalities:

P
(
n‖P̂J − P ∗J ‖22 > γ◦α

)
≤ P

({
n‖P̂J − P ∗J ‖22 > γα+♦′

}
∪ {γ◦α < γα+♦′}

)
≤ P

(
n‖P̂J − P ∗J ‖22 > γα+♦′

)
+ P (γ◦α < γα+♦′) ≤ α+ ♦′ +

1

n

and

P
(
n‖P̂J − P ∗J ‖22 > γ◦α

)
= 1− P

(
n‖P̂J − P ∗J ‖22 ≤ γ◦α

)
≥ 1− P

({
n‖P̂J − P ∗J ‖22 ≤ γα−♦′

}
∪ {γ◦α > γα−♦′}

)
≥ 1− P

(
n‖P̂J − P ∗J ‖22 ≤ γα−♦′

)
− P (γ◦α > γα−♦′)

= P
(
n‖P̂J − P ∗J ‖22 > γα−♦′

)
− P (γ◦α > γα−♦′) ≥ α− ♦′ −

1

n
.

Finally, these inequalities imply the following bound∣∣∣α− P
(
n‖P̂J − P ∗J ‖22 > γ◦α

)∣∣∣ ≤ ♦′ + 1

n
,

which concludes the proof.

Appendix A: Auxiliary results

Here we formulate some well-known results that were used throughout the paper.

The following theorem gathers several crucial results on concentration of

sample covariance.

Theorem A.1. Let X1, . . . , Xn be i.i.d. zero-mean random vectors in Rp .

Denote the true covariance matrix as Σ∗
def
= E

(
XiX

>
i

)
and the sample covari-

ance as Σ̂
def
= 1

n

n∑
i=1

XiX
>
i . Suppose the data are obtained from:

(i) Gaussian distribution N (0,Σ∗) . In this case, define δ̂n as

δ̂n �
√
r(Σ∗)

n
∨
√

log(n)

n
;

(ii) Sub-Gaussian distribution. In this case, define δ̂n as

δ̂n �
√
p

n
∨
√

log(n)

n
;
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(iii) a distribution supported in some centered Euclidean ball of radius R . In

this case, define δ̂n as

δ̂n �
R√
‖Σ∗‖

√
log(n)

n
;

(iv) log-concave probability measure. In this case, define δ̂n as

δ̂n �

√
log6(n)

np
.

Then in all the cases above the following concentration result for Σ̂ holds

with the corresponding δ̂n :

‖Σ̂ −Σ∗‖∞ ≤ δ̂n‖Σ∗‖∞

with probability at least 1− 1
n .

Proof. (i) See [19], Corollary 2. (ii) This is a well-known simple result presented

in a range of papers and lecture notes. See, e.g. [24], Theorem 4.6. (iii) See [27],

Corollary 5.52. Usually the radius R is taken such that R√
‖Σ∗‖

�
√

Tr(Σ∗)√
‖Σ∗‖

=√
r(Σ∗) . (iv) See [1], Theorem 4.1.

The following lemma is a crucial tool when working with spectral projectors.

Lemma A.2. The following bound holds for all J = {r−, r−+ 1, . . . , r+} with

1 ≤ r− ≤ r+ ≤ q :

‖P̃J − P ∗J ‖∞ ≤ 4

(
1 +

2

π

l∗J
g∗J

)
‖Σ̃ −Σ∗‖∞

g∗J
.

Moreover, the following representation holds:

P̃J − P ∗J = LJ (Σ̃ −Σ∗) +RJ (Σ̃ −Σ∗), (A.1)

where

LJ (Σ̃ −Σ∗) def
=
∑
r∈J

∑
s/∈J

P ∗r(Σ̃ −Σ
∗)P ∗s + P ∗s(Σ̃ −Σ

∗)P ∗r
µ∗r − µ∗s

and

‖RJ (Σ̃ −Σ∗)‖∞ ≤ 15

(
1 +

2

π

l∗J
g∗J

) (
‖Σ̃ −Σ∗‖∞

g∗J

)2

. (A.2)



I. Silin and V. Spokoiny /Bayesian inference for spectral projectors 30

Proof. Apply Lemma 2 from [18].

This lemma shows that P̃J −P ∗J can be approximated by the linear operator

LJ (Σ̃ −Σ∗) .

The next Lemma from [23] provides upper bound for ∆− band of the squared

norm of a Gaussian element.

Lemma A.3 (Gaussian anti-concentration). Let ξ be a Gaussian element in

Hilbert space H with zero mean and covariance operator Γ . Then for arbitrary

∆ > 0 and any λ > λ1

P(x < ‖ξ‖2 < x+∆) ≤ C1∆,

where

C1
def
=

e−x/(2λ)

√
λ1λ2

∞∏
j=3

(1− λj/λ)−1/2

and λ1 ≥ λ2 ≥ . . . are the eigenvalues of Γ . In particular, one has

P(x < ‖ξ‖2 < x+∆) ≤ ∆√
λ1λ2

.

Proof. See [23], Lemma 5.4.

One more Lemma from [23] describes how close are the distributions of the

norms of two Gaussian elements in terms of their covariance operators. Note

that the bound is dimension free.

Lemma A.4 (Gaussian comparison). Let ξ and η be Gaussian elements in

Hilbert space H with zero mean and covariance operators Σξ and Ση , respec-

tively. The following inequality holds

sup
x∈R

∣∣P(‖ξ‖2 ≥ x)− P(‖η‖2 ≥ x)
∣∣ . ( 1√

λ1ξλ2ξ

+
1√

λ1ηλ2η

)
♦0,

where λ1ξ, λ2ξ are two largest eigenvalues of Σξ , λ1η, λ2η are two largest eigen-

values of Ση and

♦0
def
= ‖Σξ −Ση‖1 ≤ ‖Σ

− 1
2

ξ ΣηΣ
− 1

2

ξ − I‖∞ Tr(Σξ).

Proof. See [23], Lemma 5.1 and Corollary 5.2.
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Appendix B: Auxiliary proofs

B.1. Proof of Theorem 2.2

The proof consists of three steps.

Step 1 Apply the representation (A.1) from Lemma A.2 to P̂J − P ∗J :

P̂J − P ∗J = LJ (Σ̂ −Σ∗) +RJ (Σ̂ −Σ∗).

Then, for n‖P̂J − P ∗J ‖22 one has

n‖P̂J − P ∗J ‖22 = n‖LJ (Σ̂ −Σ∗)‖22 + n‖RJ (Σ̂ −Σ∗)‖22

+2n〈LJ (Σ̂ −Σ∗), RJ (Σ̂ −Σ∗)〉2.

Let us estimate how good n‖LJ (Σ̂ − Σ∗)‖22 approximates n‖P̂J − P ∗J ‖22 :

clearly, we have∣∣∣n‖P̂J − P ∗J ‖22 − n‖LJ (Σ̂ −Σ∗)‖22
∣∣∣

≤ n‖RJ (Σ̂ −Σ∗)‖22 + 2n‖LJ (Σ̂ −Σ∗)‖2‖RJ (Σ̂ −Σ∗)‖2.

Let us elaborate on the right-hand side. First, since

RJ (Σ̂ −Σ∗) = P̂J − P ∗J −
∑
r∈J

∑
s/∈J

P ∗r(Σ̂ −Σ
∗)P ∗s + P ∗s(Σ̂ −Σ

∗)P ∗r
µ∗r − µ∗s

and P̂J , P ∗J ,
∑
r∈J

∑
s/∈J P

∗
r(Σ̂−Σ

∗)P ∗s have rank at most m∗J , then the

rank of RJ (Σ̂ −Σ∗) is at most 4m∗J . Hence, due to the relation between the

Frobenius and the operator norms via rank, we have

‖RJ (Σ̂ −Σ∗)‖2 ≤
√

4m∗J ‖RJ (Σ̂ −Σ∗)‖∞.

The bound (A.2) from Lemma A.2 gives

‖RJ (Σ̂ −Σ∗)‖2 ≤
√

4m∗J · 15

(
1 +

2

π

l∗J
g∗J

)
‖Σ̂ −Σ∗‖2∞

g∗J
2 .
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Now let us bound ‖LJ (Σ̂ −Σ∗)‖∞ :

‖LJ (Σ̂ −Σ∗)‖∞ =

∥∥∥∥∥∑
r∈J

∑
s/∈J

P ∗r(Σ̂ −Σ
∗)P ∗s + P ∗s(Σ̂ −Σ

∗)P ∗r
µ∗r − µ∗s

∥∥∥∥∥
∞

≤ 2

∥∥∥∥∥∑
r∈J

∑
s/∈J

P ∗r(Σ̂ −Σ
∗)P ∗s

µ∗r − µ∗s

∥∥∥∥∥
∞

= 2

∥∥∥∥∥∑
r∈J

P ∗r
∑
s/∈J

(Σ̂ −Σ∗)P ∗s
µ∗r − µ∗s

∥∥∥∥∥
∞

≤ 2
∑
r∈J
‖P ∗r‖

∥∥∥∥∥∑
s/∈J

P ∗s
µ∗r − µ∗s

∥∥∥∥∥
∞

‖Σ̂ −Σ∗‖∞

≤ 2|J |‖Σ̂ −Σ∗‖∞
min

r∈J , s/∈J
|µ∗r − µ∗s|

≤ 2|J | ‖Σ̂ −Σ
∗‖∞

g∗J
.

Then, for ‖LJ (Σ̂ −Σ∗)‖2 we have

‖LJ (Σ̂ −Σ∗)‖2 =
√

2m∗J ‖LJ (Σ̂ −Σ∗)‖∞ ≤
√

2m∗J 2|J | ‖Σ̂ −Σ
∗‖∞

g∗J
.

Putting this all together, we obtain∣∣∣n‖P̂J − P ∗J ‖22 − n‖Lr(Σ̂ −Σ∗)‖22∣∣∣
. nm∗J

(
1 +

l∗J
g∗J

)2 ‖Σ̂ −Σ∗‖4∞
g∗J

4 + nm∗J |J |
(

1 +
l∗J
g∗J

)
‖Σ̂ −Σ∗‖3∞

g∗J
3 .

The concentration condition for the sample covariance (2.3) provides∣∣∣n‖P̂J − P ∗J ‖22 − n‖LJ (Σ̂ −Σ∗)‖22
∣∣∣ . ∆ ,

∆ = nm∗J

(
1 +

l∗J
g∗J

) ((
1 +

l∗J
g∗J

)
δ̂4
n

g∗J
4 ∨

|J | δ̂3
n

g∗J
3

)
(B.1)

with probability 1− 1
n .
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Step 2 Following [23], we can choose {u∗j}
p
j=1 as an orthonormal basis in

Rp and represent n‖LJ (Σ̂ −Σ∗)‖22 as

n‖LJ (Σ̂ −Σ∗)‖22 = n

∥∥∥∥∥∑
r∈J

∑
s/∈J

P ∗r(Σ̂ −Σ
∗)P ∗s + P ∗s(Σ̂ −Σ

∗)P ∗r
µ∗r − µ∗s

∥∥∥∥∥
2

2

= n

p∑
l,k=1

(
u∗k
> ∑

r∈J

∑
s/∈J

P ∗r(Σ̂ −Σ
∗)P ∗s + P ∗s(Σ̂ −Σ

∗)P ∗r
µ∗r − µ∗s

u∗l

)2

= n

p∑
l,k=1

u∗k> ∑
r1∈J

∑
s1 /∈J

P ∗r1(Σ̂ −Σ∗)P ∗s1 + P ∗s1(Σ̂ −Σ∗)P ∗r1
µ∗r1 − µ∗s1

u∗l


×

u∗k> ∑
r2∈J

∑
s2 /∈J

P ∗r2(Σ̂ −Σ∗)P ∗s2 + P ∗s2(Σ̂ −Σ∗)P ∗r2
µ∗r2 − µ∗s2

u∗l


= n

p∑
l,k=1

∑
r1∈J
s1 /∈J

∑
r2∈J
s2 /∈J

(
u∗k
> P

∗
r1(Σ̂ −Σ∗)P ∗s1 + P ∗s1(Σ̂ −Σ∗)P ∗r1

µ∗r1 − µ∗s1
u∗l

)

×

(
u∗k
> P

∗
r2(Σ̂ −Σ∗)P ∗s2 + P ∗s2(Σ̂ −Σ∗)P ∗r2

µ∗r2 − µ∗s2
u∗l

)
.

As we can see, the only terms that survive in this sum are the terms with

r1 = r2 = r ∈ J , s1 = s2 = s /∈ J , k ∈ ∆∗r , l ∈ ∆∗s , and due to the symmetry

the factor 2 appears. So, we derive

n‖LJ (Σ̂ −Σ∗)‖22 = 2n
∑
k∈∆∗r ,
r∈J

∑
l∈∆∗s ,
s/∈J

(
u∗k
> P

∗
r(Σ̂ −Σ

∗)P ∗s
µ∗r − µ∗s

u∗l

)2

= 2n
∑
k∈∆∗r ,
r∈J

∑
l∈∆∗s ,
s/∈J

(
u∗k
>(Σ̂ −Σ∗) u∗l
µ∗r − µ∗s

)2

.

Now let us define for all k ∈ IJ and l /∈ IJ

SJ (u∗k, u
∗
l ) =

√
2n

u∗k
>(Σ̂ −Σ∗) u∗l
µ∗r − µ∗s

.

This set of quantities can be considered as matrix

{SJ (u∗k, u
∗
l )}k∈IJ

l/∈IJ
∈ Rm

∗
J×(p−m∗J ),
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or, we can arrange a vector SJ ∈ Rm
∗
J (p−m∗J ) with components SJ (u∗k, u

∗
l )

ordered in some particular way. Let us notice that

n‖LJ (Σ̂ −Σ∗)‖22 = ‖SJ ‖2.

Step 3 Now our goal is to show that SJ is approximately N (0, Γ ∗J ) using

a version of Berry-Esseen theorem given by [2]. Represent SJ as

SJ =
1√
n

n∑
j=1

S(j),

where S(j) is a random vector with components

S(j)(u∗k, u
∗
l ) =

√
2

µ∗r − µ∗s
(u∗k
>Xj) · (u∗l

>Xj)

for all k ∈ IJ and l /∈ IJ .

It is straightforward to verify that the covariance matrix of S(j) (and hence

of SJ ) is Γ ∗J from (2.2) under the condition that P ∗JXj and (Ip − P ∗J )Xj

are independent. Consider an entry of the covariance matrix of S(j) indexed

by (k, l) and (k′, l′) , where k ∈ ∆∗r , k
′ ∈ ∆∗r′ , r, r

′ ∈ J and l ∈ ∆∗s, l
′ ∈

∆∗s′ , s, s
′ /∈ J :

Cov
(
S(j)

)
(k,l)

(k′,l′)

= E

(
S(j)(u∗k, u

∗
l ) · S(j)(u∗k′ , u

∗
l′)
)

=
2 E

[
(u∗k
>Xj) · (u∗l

>Xj) · (u∗k′
>Xj) · (u∗l′

>Xj)
]

(µ∗r − µ∗s)(µ∗r′ − µ∗s′)
.

Now, the independence of P ∗JXj and (Ip −P ∗J )Xj implies the independence

of (u∗k, u
∗
k′)
>P ∗JXj and (u∗l , u

∗
l′)
>(Ip − P ∗J )Xj , which can be rewritten as

independence of (u∗k
>Xj , u

∗
k′
>Xj)

> and (u∗l
>Xj , u

∗
l′
>Xj)

> . This means that

the expectation in the expression for the covariance entry can be splitted as

Cov
(
S(j)

)
(k,l)

(k′,l′)

=
2 E

[
(u∗k
>Xj)(u

∗
k′
>Xj)

]
·E
[
(u∗l
>Xj)(u

∗
l′
>Xj)

]
(µ∗r − µ∗s)(µ∗r′ − µ∗s′)

.

The observation that u∗k
>Σ∗u∗k′ = µ∗r ·1I{k = k′} and u∗l

>Σ∗u∗l′ = µ∗s ·1I{l = l′}
establishes the fact that Cov(S(j)) = Γ ∗J .
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To apply Theorem 1.1 from [2], we need to bound E‖Γ ∗J
−1/2S(j)‖3 . First,

let us notice that [
Γ ∗J
−1/2S(j)

]
(u∗k, u

∗
l ) =

u∗k
>Xj√
µ∗r
· u
∗
l
>Xj√
µ∗s

.

Further, introducing the following auxiliary matrices

U∗J
def
=

{
u∗k
>

√
µ∗r

}
k∈IJ

∈ Rm
∗
J×p,

V ∗J
def
=

{
u∗l
>

√
µ∗s

}
l/∈IJ

∈ R(p−m∗J )×p ,

we have

‖Γ ∗J
−1/2S(j)‖2 =

∑
k∈IJ

∑
l/∈IJ

(u∗k
>Xj)

2

µ∗r
· (u∗l

>Xj)
2

µ∗s

=

∑
k∈IJ

(u∗k
>Xj)

2

µ∗r

 ·
∑
l/∈IJ

(u∗l
>Xj)

2

µ∗s

 = ‖U∗JXj‖2 ‖V ∗JXj‖2.

Then,

E‖Γ ∗J
−1/2S(j)‖3 = E

(
‖U∗JXj‖3 ‖V ∗JXj‖3

)
= E

(
‖U∗JΣ

∗1/2Σ∗
−1/2

Xj‖3 ‖V ∗JΣ
∗1/2Σ∗

−1/2
Xj‖3

)
≤ E

(
‖U∗JΣ

∗1/2‖3∞‖Σ
∗−1/2

Xj‖3 ‖V ∗JΣ
∗1/2‖3∞‖Σ

∗−1/2
Xj‖3

)
.

Observing that ‖U∗JΣ
∗1/2‖∞ = ‖V ∗JΣ

∗1/2‖∞ = 1 , we deduce

E‖Γ ∗J
−1/2S(j)‖3 ≤ E‖Σ∗−1/2

Xj‖6 ≤ C.

Therefore, Theorem 1.1 from [2] yields

sup
x∈R

∣∣P (‖SJ ‖2 ≤ x)− P(‖ξ‖2 ≤ x)
∣∣ . p1/4

√
n
,

or, recalling that ‖SJ ‖2 = n‖LJ (Σ̂ −Σ∗)‖22 ,

sup
x∈R

∣∣∣P(n‖LJ (Σ̂ −Σ∗)‖22 ≤ x
)
− P(‖ξ‖2 ≤ x)

∣∣∣ . p1/4

√
n
.
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Step 4 Next, for ∆ defined by (B.1) from Step 1 we may write for any

x ∈ R

P
(
n‖P̂J − P ∗J ‖22 ≥ x

)
≤ P

(
n‖LJ (Σ̂ −Σ∗)‖22 ≥ x−∆

)
+ P

(
n‖P̂J − P ∗J ‖22 − n‖LJ (Σ̂ −Σ∗)‖22 ≥ ∆

)
.

Hence,

sup
x∈R

{
P
(
n‖P̂J − P ∗J ‖22 ≥ x

)
− P

(
‖ξ‖2 ≥ x

)}
≤ sup

x∈R

{
P
(
‖LJ (Σ̂ −Σ∗)‖2 ≥ x−∆

)
− P

(
‖ξ‖2 ≥ x−∆

)}
+ sup

x∈R

{
P
(
‖ξ‖2 ≥ x−∆

)
− P

(
‖ξ‖2 ≥ x

)}
+ P

(
n‖P̂J − P ∗J ‖22 − n‖LJ (Σ̂ −Σ∗)‖22 ≥ ∆

)
.

The first term in the right-hand side was bounded in Step 3 by p1/4√
n

. The

second term is bounded by ∆√
λ1(Γ∗J )λ2(Γ∗J )

according to the Anti-concentration

Lemma A.3. The last term is less than 1/n in view of (B.1) from Step 1.

Therefore,

sup
x∈R

{
P
(
n‖P̂J − P ∗J ‖22 ≥ x

)
− P

(
‖ξ‖2 ≥ x

)}
.
p1/4

√
n

+
∆√

λ1(Γ ∗J )λ2(Γ ∗J )
+

1

n
.

Similarly, one can verify that

sup
x∈R

{
P
(
‖ξ‖2 ≥ x

)
− P

(
n‖P̂J − P ∗J ‖22 ≥ x

)}
.
p1/4

√
n

+
∆√

λ1(Γ ∗J )λ2(Γ ∗J )
+

1

n
.

Putting together the previous two bounds, we derive the final result:

sup
x∈R

∣∣∣P(n‖P̂J − P ∗J ‖22 ≥ x)− P
(
‖ξ‖2 ≥ x

)∣∣∣
.
p1/4

√
n

+
∆√

λ1(Γ ∗J )λ2(Γ ∗J )
+

1

n
.
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