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FRIEDRICH GÖTZE 1 , ALEXEY NAUMOV 2,4,5 , VLADIMIR SPOKOINY 2,4,5,6

and VLADIMIR ULYANOV 2,3 .

1Faculty of Mathematics, Bielefeld University, P. O. Box 10 01 31, 33501, Bielefeld, Germany.
E-mail: goetze@math.uni-bielefeld.de

2National Research University Higher School of Economics, 20 Myasnitskaya ulitsa, 101000,
Moscow, Russia E-mail: anaumov@hse.ru, vulyanov@hse.ru

3Moscow State University, Leninskie Gory, 1, Moscow, Russia E-mail: vulyanov@cs.msu.ru

4Skolkovo Institute of Science and Technology (Skoltech), Skolkovo Innovation Center,
Building 3, 143026, Moscow , Russia

5Institute for Information Transmission Problems RAS, Bolshoy Karetny per. 19, bld.1,
127051, Moscow, Russia.

6Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany
E-mail: spokoiny@wias-berlin.de

We derive tight non-asymptotic bounds for the Kolmogorov distance between the probabilities of
two Gaussian elements to hit a ball in a Hilbert space. The key property of these bounds is that
they are dimension-free and depend on the nuclear (Schatten-one) norm of the difference between
the covariance operators of the elements and on the norm of the mean shift. The obtained
bounds significantly improve the bound based on Pinsker’s inequality via the Kullback-Leibler
divergence. We also establish an anti-concentration bound for a squared norm of a non-centered
Gaussian element in Hilbert space. The paper presents a number of examples motivating our
results and applications of the obtained bounds to statistical inference and to high-dimensional
CLT.

Keywords: Gaussian comparison, Gaussian anti-concentration inequalities, effective rank,
dimension free bounds, Schatten norm, high-dimensional inference.

1. Introduction

In many statistical and probabilistic applications one faces the problem to evaluate how
the probability of a ball under a Gaussian measure is affected, if the mean and the covari-
ance operators of this Gaussian measure are slightly changed. Below we present particu-
lar examples motivating our results when such “large ball probability” problem naturally
arises, including bootstrap validation, Bayesian inference, high-dimensional CLT. This
paper presents sharp bounds for the Kolmogorov distance between the probabilities of
two Gaussian elements to hit a ball in a Hilbert space. The key property of these bounds
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is that they are dimension-free and depend on the nuclear (Schatten-one) norm of the
difference between the covariance operators of the elements. We also state a tight dimen-
sion free anti-concentration bound for a squared norm of a Gaussian element in Hilbert
space which refines the well known results on the density of a chi-squared distribution;
see Theorem 2.7.

Section 1.1 presents some application examples where the “large ball probability”
issue naturally arises and explains how the new bounds of this paper can be used to
improve the existing results. The key observation behind the improvement is that in
all mentioned examples we only need to know the properties of Gaussian measures on
a class of balls. It means, in particular, that we would like to compare two Gaussian
measures on the class of balls instead on the class of all measurable sets. The latter can
be upperbounded by general Pinsker’s inequality via the Kullback–Leibler divergence.
In case of Gaussian measures this divergence can be expressed explicitly in terms of
parameters of the underlying measures, see e.g. Spokoiny and Zhilova (2015). However,
the obtained bound involves the inverse of the covariance operators of the considered
Gaussian measures. In particularly, small eigenvalues have the largest impact which is
contra-intuitive if a probability of a ball is considered. Our bounds only involve the
operator and Frobenius norms of the related covariance operators and apply even in
Hilbert space setup.

The proofs of the present optimal results are based in particular on Theorem 2.6 below.
This theorem gives sharp upper bounds for a probability density function pξ(x,a) of
‖ξ − a‖2 , where ξ is a Gaussian element with zero mean in a Hilbert space H with
norm ‖ · ‖ and a ∈ H . It is well known that pξ(x,a) can be considered as a density
function of a weighted sum of non-central χ2 distributions. An explicit but cumbersome
representation for pξ(x,a) in finite dimensional space H is available (see e.g. Section 18
in Johnson et al. (1994)). However, it involves some special characteristics of the related
Gaussian measure which makes it hard to use in specific situations. Our results from
Theorem 2.6 and by Lemma B.1 are much more transparent and provide sharp uniform
and non-uniform upper bounds on the underlying density respectively.

One can even get two-sided bounds for pξ(x,a) but under additional conditions, see
e.g. Christoph et al. (1996). Asymptotic properties of pξ(x,a) , small balls probabilities
IP
(
‖ξ−a‖ ≤ ε

)
, or large deviation bounds IP

(
‖ξ‖ ≥ 1/ε

)
for small ε can be found e.g.

in Bogachev (1998), Ledoux and Talagrand (2002), Li and Shao (2001), Lifshits (2012)
and Yurinsky (1995).

The paper is organized as follows: a list of examples motivating our results and possible
applications are given in Section 1.1. Section 2 collects the main results. The proofs are
given in Section 3. Some technical results and non-uniform upper bounds for pξ(x,a)
are presented in the appendix.

1.1. Application examples

This section collects some examples where the developed results seem to be very useful.
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1.1.1. Bootstrap validity for the MLE

Consider an independent sample Y = (Y1, . . . , Yn)
⊤ with a joint distribution IP =∏

i=1,...,n Pi . The parametric maximum likelihood approach assumes that IP belongs

to a given parametric family
(
IPθ , θ ∈ Θ ⊆ IRp

)
dominated by a measure µ , that is,

IP = IPθ∗ for θ∗ ∈ Θ . The corresponding log-likelihood function can be written as a
sum of marginal log-likelihoods ℓi(Yi, θ) :

L(θ)
def
= log

dIPθ

dµ
(Y ) =

n∑

i=1

ℓi(Yi, θ), ℓi(Yi, θ) = log
dPi,θ

dµi
(Yi).

The MLE θ̃ of the true parameter θ∗ is defined as the point of maximum of L(θ) :

θ̃
def
= argmax

θ∈Θ
L(θ), L(θ̃)

def
= max

θ∈Θ
L(θ).

If the parametric assumption is misspecified, the target θ∗ is defined as the best para-
metric fit:

θ∗ def
= argmax

θ∈Θ
IEL(θ).

The likelihood based confidence set E(z) for the target parameter θ∗ is given by

E(z)
def
=
{
θ : L(θ̃)− L(θ) ≤ z

}
.

The value z should be selected to ensure the prescribed coverage probability 1− α :

IP
(
θ∗ 6∈ E(z)

)
≤ α. (1.1)

However, it depends on the unknown measure IP . The bootstrap approach is a resam-
pling technique based on the conditional distribution of the reweighted log-likelihood
L ♭(θ)

L ♭(θ) =
n∑

i=1

ℓi(Yi, θ)w
♭
i

with i.i.d. random weights w ♭
i given the data Y . Below we assume that w ♭

i ∼ N (1, 1) .
The bootstrap confidence set is defined as

E
♭(z)

def
=
{
θ : sup

θ′∈Θ

L ♭(θ′)− L ♭(θ) ≤ z
}
.
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The bootstrap distribution is perfectly known and the bootstrap quantile z♭ is defined
by the condition

IP ♭
(
θ̃ 6∈ E

♭(z♭)
)
= IP ♭

(
sup
θ∈Θ

L ♭(θ)− L ♭(θ̃) > z♭
)
= α.

The bootstrap approach suggests to use z♭ in place of z to ensure (1.1) in an asymptotic
sense. Bootstrap consistency means that for n large

IP
(
θ∗ 6∈ E(z♭)

)
= IP

(
L(θ̃)− L(θ∗) > z♭

)
≈ α;

see e.g. Spokoiny and Zhilova (2015). A proof of this result is quite involved. The key
steps are the following two approximations:

sup
θ∈Θ

L(θ)− L(θ∗) ≈ 1

2

∥∥ξ + a
∥∥2, (1.2)

sup
θ∈Θ

L ♭(θ)− L ♭(θ̃) ≈ 1

2

∥∥ξ ♭
∥∥2,

where ξ is a Gaussian vector with the variance Σ given by

Σ
def
= D−1 Var

[
∇L(θ∗)

]
D−1, D2 = −∇2IEL(θ∗),

while ξ ♭ is conditionally (given Y ) Gaussian w.r.t. the bootstrap measure IP ♭ with
the covariance Σ ♭ given by

Σ ♭ def
= D−1

(
n∑

i=1

∇ℓi(Yi, θ)
{
∇ℓi(Yi, θ)

}⊤
)
D−1.

The vector a in (1.2) is the so called modeling bias and it vanishes if the paramet-
ric assumption IP = IPθ∗ is precisely fulfilled. The matrix Bernstein inequality ensures
that Σ ♭ is close to Σ in the operator norm for n large; see e.g. Tropp (2012). This
yields bootstrap validity under the true parametric assumption in a weak sense. How-
ever, for quantifying the quality of the bootstrap approximation one has to measure the
distance between two high dimensional Gaussian distributions N (a, Σ) and N (0, Σ ♭) .
The recent paper Spokoiny and Zhilova (2015) used the approach based on the Pinsker
inequality which gives a bound in the total variation distance ‖ · ‖TV via the Kullback-
Leibler divergence between these two measures. A related bound involves the Frobenius

norm ‖·‖Fr of the matrix Σ−1/2Σ ♭Σ−1/2−IIp and the norm of the vector β
def
= Σ−1/2a :

∥∥N (a, Σ)−N (0, Σ ♭)
∥∥
TV

≤ 1

2

(∥∥Σ−1/2Σ ♭Σ−1/2 − IIp
∥∥
Fr

+
∥∥Σ−1/2a

∥∥
)
; (1.3)
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see e.g. Spokoiny and Zhilova (2015). However, if we limit ourselves to the centered balls
then these bounds can be significantly improved. Namely, by the main result of Theo-
rem 2.1 and Corollary 2.2 below, we get under some technical conditions

∣∣∣IP
(∥∥ξ + a

∥∥2 > 2z♭
)
− α

∣∣∣ ≤ C

‖Σ‖Fr

(
‖Σ −Σ ♭‖1 + ‖a‖2

)
. (1.4)

The “small modeling bias” condition on a from Spokoiny and Zhilova (2015) means
that the value ‖Σ−1/2a‖ is small and it ensures that a possible model misspecification
does not destroy the validity of the bootstrap. Comparison of (1.4) with (1.3) reveals a
number of benefits of (1.4). First, the “shift” term is proportional to the squared norm
of the vector a , while the bound (1.3) depends on the norm of Σ−1/2a , i.e. on the
whole spectrum of Σ . Normalization by Σ−1/2 can significantly inflate the vector a in
directions where the eigenvalues of Σ are small. In the contrary, the bound (1.4) only
involves the squared norm ‖a‖2 and the Frobenius norm of Σ , and the improvement
from

∥∥Σ−1/2a
∥∥ to ‖a‖2/‖Σ‖Fr can be enormous if some eigenvalues of Σ nearly vanish.

Further, the Frobenius norm
∥∥Σ−1/2Σ ♭Σ−1/2−IIp

∥∥
Fr

can be much larger than the ratio∥∥Σ −Σ ♭
∥∥
1

/
‖Σ‖Fr by the same reasons.

1.1.2. Prior impact in linear Gaussian modeling

Consider a linear regression model

Yi = Ψ⊤
i θ + εi

The assumption of homogeneous Gaussian errors εi ∼ N (0, σ2) yields the log-likelihood

L(θ) = − 1

2σ2

n∑

i=1

(Yi − Ψ⊤
i θ)2 +R = − 1

2σ2

∥∥Y − Ψ⊤θ
∥∥2 +R,

where the term R does not depend on θ . A Gaussian prior Π = ΠG = N
(
0, G−2

)

results in the posterior

ϑG

∣∣Y ∝ exp

(
L(θ)− 1

2
‖Gθ‖2

)
∝ exp

(
− 1

2σ2

∥∥Y − Ψ⊤θ
∥∥2 − 1

2
‖Gθ‖2

)
.

We shall represent the quantity LG(θ)
def
= L(θ)− 1

2‖Gθ‖2 in the form

LG(θ) = LG(θ̆G)−
1

2

∥∥DG(θ − θ̆G)
∥∥2,

where

θ̆G
def
=
(
ΨΨ⊤ + σ2G2

)−1
ΨY ,

D2
G

def
= σ−2ΨΨ⊤ +G2.
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In particular, it implies that the posterior distribution IP (ϑG

∣∣Y ) of ϑG given Y is

N (θ̆G, D
−2
G ) . A contraction property is a kind of concentration of the posterior on the

elliptic set

EG(r) =
{
θ : ‖W (θ − θ̆G)‖ ≤ r

}
,

where W is a given linear mapping from IRp . The desirable credibility property man-
ifests the prescribed conditional probability of ϑG ∈ E(rG) given Y with rG defined
for a given α by

IP
(∥∥W

(
ϑG − θ̆G

)∥∥ ≥ rG
∣∣Y
)
= α. (1.5)

Under the posterior measure ϑG ∼ N (θ̆G, D
−2
G ) , this bound reads as

IP
(
‖ξG‖ ≥ rG

)
= α (1.6)

with a zero mean normal vector ξG ∼ N (0, ΣG) for ΣG = WD−2
G W⊤ . The question of

a prior impact can be stated as follows: whether the obtained credible set significantly
depends on the prior covariance G . Consider another prior Π1 = N (0, G−2

1 ) with the
covariance matrix G−2

1 . The corresponding posterior ϑG1
is again normal but now with

parameters θ̆G1
=
(
ΨΨ⊤+σ2G2

1

)−1
ΨY and D2

G1
= σ−2ΨΨ⊤+G2

1 . We aim at checking
the posterior probability of the credible set EG(rG) :

IP
(∥∥W

(
ϑG1

− θ̆G

)∥∥ ≥ rG
∣∣Y
)
.

Clearly this probability can be written as

IP
(∥∥ξG1

+ a
∥∥ ≥ rG

)

with ξG1
∼ N (0, ΣG1

) for ΣG1
= WD−2

G1
W⊤ and

a
def
= W

(
θ̆G1

− θ̆G

)
.

Therefore,

∣∣∣IP
(∥∥W

(
ϑG1

− θ̆G

)∥∥ ≥ rG
∣∣Y
)
− α

∣∣∣ ≤ sup
r>0

∣∣∣IP
(∥∥ξG1

− a
∥∥ ≥ r

)
− IP

(∥∥ξG
∥∥ ≥ r

)∣∣∣ .

Again, the Pinsker inequality allows to upperbound the total variation distance between
the Gaussian measures N (0, ΣG) and N (a, ΣG1

) , however the answer is given via the
Kullback-Leibler distance between these two measures:

∥∥N (0, ΣG)−N (a, ΣG1
)
∥∥
TV

≤ C
(∥∥Σ−1/2

G ΣG1
Σ

−1/2
G − IIp

∥∥
Fr

+
∥∥Σ−1/2

G1
a
∥∥
)
; (1.7)
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see e.g. Panov and Spokoiny (2015). Results of this paper allow to significantly improve
this bound. In particular, only the nuclear norm

∥∥ΣG −ΣG1

∥∥
1
, the norm of the vector

a and the Frobenius norm of ΣG are involved. If G2 ≥ G2
1 , then ΣG ≤ ΣG1

and

∥∥ΣG −ΣG1

∥∥
1
= trΣG1

− trΣG

and thus, by the main result of Theorem 2.1 and Corollary 2.2 below, it holds under
some technical conditions

∣∣∣IP
(∥∥W

(
ϑG1

− θ̆G

)∥∥ ≥ rG
∣∣Y
)
− α

∣∣∣ ≤
C
(
trΣG1

− trΣG + ‖a‖2
)

‖ΣG‖Fr
.

This new bound significantly outperforms (1.7); see the discussion at the end of Sec-
tion 1.1.1.

1.1.3. Nonparametric Bayes approach

One of the central question in the nonparametric Bayes approach is whether one can
use the corresponding credible set as a frequentist confidence set for the true underlying
mean IEY = f∗ = Ψ⊤θ∗ . Here we consider the model Y = f∗ + ε = Ψ⊤θ + ε in IRn

with a homogeneous Gaussian noise ε ∼ N (0, σ2IIn) and a Gaussian prior N (0, G−2) on
θ . The credible set EG(r) for ϑG yields the credible set EG(r) for the corresponding
response f = Ψ⊤θ :

E(r) =
{
f = Ψ⊤θ : ‖AΨ⊤(θ − θ̆G)‖ ≤ r

}
,

with some linear mapping A . The radius r = rG is fixed to ensure the prescribed
credibility 1−α for the corresponding set E(rα) due to (1.5) or (1.6) with W = AΨ⊤

and ΣG = AΨ⊤D−2
G ΨA⊤ = σ2AΠGA

⊤ , with ΠG = Ψ⊤
(
ΨΨ⊤ + σ2G2

)−1
Ψ . The

frequentist coverage probability of the true response f∗ is given by

IP
(
f∗ ∈ EG(r)

)
= IP

(
‖A(f∗ − Ψ⊤θ̆G)‖ ≤ r

)
= IP

(
‖AΨ⊤(θ∗ − θ̆G)‖ ≤ r

)
.

The aim is to show that the the latter is close to 1 − α . For the posterior mean θ̆G =(
ΨΨ⊤ + σ2G2

)−1
ΨY , it holds

IE
[
A
(
f∗ − Ψ⊤θ̆G

)]
= A

(
II −ΠG

)
f∗ def

= a.

Further,

Σ
def
= Var

{
A
(
f∗ − Ψ⊤θ̆G

)}
= Var

{
AΠG ε

}
= σ2AΠ2

GA
⊤
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and hence, the vector A
(
f∗−Ψ⊤θ̆G

)
is under IP normal with mean a = A

(
II−ΠG

)
f∗

and variance Σ = σ2AΠ2
GA

⊤ . Therefore,

IP
(
f∗ ∈ EG(r)

)
= IP

(∥∥a+ ξ
∥∥ ≤ r

)
.

Here ξ ∼ N (0, Σ) . So, it suffices to compare two probabilities

IP
(∥∥a+ ξ

∥∥ ≤ r
)

vs IP
(∥∥ξG

∥∥ ≤ r
)

for all r ≥ 0 . Existing results cover only very special cases; see e.g. Johnstone (2010);
Bontemps (2011); Panov and Spokoiny (2015); Castillo (2012); Castillo and Nickl (2013);
Belitser (2017) and references therein. Most of the mentioned results are of asymptotic
nature and do not quantify the accuracy of the coverage probability. The results of
this paper enable to study this accuracy in a straightforward way. Note first that the
covariance operators Σ = σ2AΠ2

GA
⊤ and ΣG = σ2AΠGA

⊤ satisfy Σ ≤ ΣG . This
yields that

∥∥ΣG −Σ
∥∥
1
= trΣG − trΣ .

Theorem 2.1 and Corollary 2.2 allow to evaluate under some technical conditions the
coverage probability of the credibility set

∣∣IP
(
f∗ 6∈ EG(rG)

)
− α

∣∣ ≤ C
(
trΣG − trΣ + ‖a‖2

)

‖Σ‖Fr
.

The right hand-side of this bound can be easily evaluated. The value ‖a‖ = A
(
II−ΠG

)
f∗

is small under usual smoothness assumptions on f∗ . The difference

trΣG − trΣ = σ2 tr
{
A(ΠG −Π2

G)A
⊤
}

is small under standard condition on the design Ψ and on the spectrum of G2 ; see e.g.
Spokoiny (2017).

1.1.4. Central Limit Theorem in finite- and infinite-dimensional spaces

Another motivation for the current paper comes from the limit theorem in high-dimensional
spaces for convex sets, in particular, for non-centred balls. Applications of smoothing in-
equalities require to evaluate the probability of hitting the vicinity of a convex set, see e.g.
Bentkus (2003), Bentkus (2005). This question is closely related to the anti-concentration
inequalities considered below in Theorem 2.7. Recently, significant interest was shown in
understanding of the anti-concentration phenomenon for weighted sums of random vari-
ables, particularly, in random matrix and number theory. We refer the interested reader
to Rudelson and Vershynin (2008), Götze and Zaitsev (2016).
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Let Y1, . . . , Yn be i.i.d. random vectors in IRp . Assume that all these vectors have
zero mean and the covariance operator Σ . Let X be a Gaussian random vector in IRp

with zero mean and the same covariance operator Σ . We are interested to bound

δ(C) = sup
A∈C

∣∣∣∣IP
(
Y1 + · · ·+ Yn√

n
∈ A

)
− IP (X ∈ A)

∣∣∣∣ (1.8)

for some class C of Borel sets. It is worth emphasizing that the probabilities of hitting
the vicinities of a set A ∈ C , play the crucial role in the form of the bound for δ(C) .
Assume the class C satisfies the following two conditions:

(i) Class C is invariant under affine symmetric transformations, that is, DA+a ∈ C

if a ∈ IRp and D : IRp → IRp is a linear symmetric invertible operator.
(ii) Class C is invariant under taking ε -neighborhoods for all ε > 0 . More precisely,

Aε, A−ε ∈ C if A ∈ C , where

Aε = {x ∈ IRp : ρA(x) ≤ ε} and A−ε = {x ∈ A : Bε(x) ⊂ A},

with ρA(x) = infy∈A |x − y| as the distance between A ⊂ IRp and x ∈ IRp , and
Bε(x) = {y ∈ IRp : |x− y| ≤ ε} .

Let X0 be a Gaussian random vector in IRp with zero mean and the identity co-
variance operator II . Assume that the class C in (1.8) is such that for all A ∈ C and
ε > 0

IP (X0 ∈ Aε\A) ≤ ap ε, IP (X0 ∈ A\A−ε) ≤ ap ε, (1.9)

where ap = ap(C) is the so called isoperimetric constant of C , e.g. taking C as the
class of all convex sets in IRp we get ap ≤ 4 p1/4 ; see Ball (1993).

It is known (see Bentkus (2005)[Theorem 1.2]) that if C satisfies conditions (i), (ii)
and (1.9) then for some absolute constant C one has

δ(C) ≤ C (1 + ap) IE|Y1|3/
√
n. (1.10)

Therefore, the inequalities (1.9), i.e. knowledge of ap , play the crucial role in the form
of the bound (1.10).

We have a similar situation in infinite-dimensional spaces. Though contrary to the
finite dimensional case even if C is a rather small class of ”good” subsets, e.g. the class

of all balls, the convergence of IP
(
(Y1 + · · ·+ Yn)/

√
n ∈ A

)
to IP

(
X ∈ A

)
for each

A ∈ C , implied by the central limit theorem, can not be uniform in A ∈ C ; see e.g.
Sazonov (1981)[pp. 69–70]. However, the convergence becomes uniform for a class of all
balls with center at some fixed point, say a . Such classes naturally appear in various
statistical problems; see e.g. Prokhorov and Ulyanov (2013) or our previous application
examples. Thus, similar to the inequalities (1.9) we need to get sharp bounds for the
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probability IP (x < ‖X − a‖2 < x + ε) for the Gaussian element X in a Hilbert space
H . Due to our Theorem 2.7 below, it holds under some technical conditions that

IP
(
x < ‖X − a‖2 < x+ ε

)
≤ C ε

‖Σ‖Fr
for an absolute constant C .

2. Main results

Throughout the paper the following notation are used. We write a . b ( a & b ) if there
exists some absolute constant C such that a ≤ Cb ( a ≥ Cb resp.). Similarly, a ≍ b
means that there exist c, C such that c a ≤ b ≤ C a . IR (resp. C ) denotes the set of
all real (resp. complex) numbers. We assume that all random variables are defined on
common probability space (Ω,F, IP ) and take values in a real separable Hilbert space
H with a scalar product 〈·, ·〉 and norm ‖ · ‖ . If dimension of H is finite and equals p ,
we shall write IRp instead of H . Let IE be the mathematical expectation with respect
to IP . We also denote by B(H) the Borel σ -algebra.

For a self-adjoint operator A with eigenvalues λk(A), k ≥ 1 , let us denote by ‖A‖
and ‖A‖1 the operator and nuclear (Schatten-one) norm by ‖A‖ def

= sup‖x‖=1 ‖Ax‖
and

‖A‖1 def
= tr |A| =

∞∑

k=1

|λk(A)|.

We suppose below that A is a nuclear and ‖A‖1 < ∞ .
Let Σξ be a covariance operator of an arbitrary Gaussian random element in H . By

{λkξ}k≥1 we denote the set of its eigenvalues arranged in the non-increasing order, i.e.

λ1ξ ≥ λ1ξ ≥ . . . , and let λξ
def
= diag(λjξ)

∞
j=1 . Note that

∑∞
j=1 λjξ < ∞ . Introduce the

following quantities

Λ2
kξ

def
=

∞∑

j=k

λ2
jξ , k = 1, 2,

and

κ(Σξ) =





Λ−1
1ξ , if 3λ2

1,ξ ≤ Λ2
1ξ ,

(λ1ξΛ2ξ)
−1/2, if 3λ2

1ξ > Λ2
1ξ, 3λ2

2ξ ≤ Λ2
2ξ,

(λ1ξλ2ξ)
−1/2, if 3λ2

1ξ > Λ2
1ξ, 3λ2

2ξ > Λ2
2ξ.

(2.1)

It is easy to see that ‖Σξ‖Fr = Λ1ξ . Moreover, it is straightforward to check that

0.9

(Λ1ξΛ2ξ)1/2
≤ κ(Σξ) ≤

1.8

(Λ1ξΛ2ξ)1/2
.
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Hence, κ(Σξ) ≍ (Λ1ξΛ2ξ)
−1/2 and therefore equivalent results can be formulated in

terms of any of the quantities introduced. The following theorem is our main result.

Theorem 2.1. Let ξ and η be Gaussian elements in H with zero mean and covariance

operators Σξ and Ση respectively. For any a ∈ H

sup
x>0

|IP (‖ξ − a‖ ≤ x)− IP (‖η‖ ≤ x)|

.
{
κ(Σξ) + κ(Ση)

}(
‖λξ − λη‖1 + ‖a‖2

)
. (2.2)

The proof of Theorem 2.1 is given in Section 3.
We can see that the obtained bounds can be expressed in terms of the specific char-

acteristics of the matrices Σξ and Ση such as their operator and the Frobenius norms
rather than the dimension p . Another nice feature of the obtained bounds is that they
do not involve the inverse of Σξ or Ση . In other words, small or vanishing eigenvalues
of Σξ or Ση do not affect the obtained bounds in the contrary to the Pinsker bound.
Similarly, only the squared norm ‖a‖2 of the shift a shows up in the results, while the

Pinsker bound involves ‖Σ−1/2
ξ a‖ which can be very large or infinite if Σξ is not well

conditioned.
The representation (2.1) mimics well the three typical situations: in the “large-dimensional

case” with three or more significant eigenvalues λjξ , one can take κ(Σξ) = ‖Σξ‖−1
Fr =

λ−1
1ξ . In the “two dimensional” case, when the sum Λ2

kξ is of the order λ2
kξ for k = 1, 2 ,

the bound only depends on the product (λ1ξλ2ξ)
−1/2 . The intermediate case of a spike

model with one large eigenvalue λ1ξ and many small eigenvalues λjξ , j ≥ 2 , the bound
depends on (λ1ξΛ2ξ)

−1/2 .
As it was mentioned earlier, the result of Theorem 2.2 may be equivalently formulated

in a “unified” way in terms of (Λ1ξΛ2ξ)
−1/2 . Moreover, we specify the bound (2.2) in

the “high-dimensional” case which means at least three significantly positive eigenvalues
of the matrices Σξ and Ση .

Corollary 2.2. Let ξ and η be Gaussian elements in H with zero mean and covari-
ance operators Σξ and Ση respectively. Then for any a ∈ H

sup
x>0

|IP (‖ξ − a‖ ≤ x)− IP (‖η‖ ≤ x)|

.

(
1

(Λ1ξΛ2ξ)1/2
+

1

(Λ1ηΛ2η)1/2

)(
‖λξ − λη‖1 + ‖a‖2

)
.

Moreover, assume that

3‖Σξ‖2 ≤ ‖Σξ‖2Fr and 3‖Ση‖2 ≤ ‖Ση‖2Fr .
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Then for any a ∈ H

sup
x>0

|IP (‖ξ − a‖ ≤ x)− IP (‖η‖ ≤ x)|

.

(
1

‖Σξ‖Fr
+

1

‖Ση‖Fr

)(
‖λξ − λη‖1 + ‖a‖2

)
.

We complement the result of Theorem 2.1 and Corollary 2.2 with several additional
remarks. The first remark is that by the Weilandt–Hoffman inequality, ‖λξ − λη‖1 ≤
‖Σξ−Ση‖1 , see e.g. Markus (1964). This yields the bound in terms of the nuclear norm
of the difference Σξ −Ση , which may be more useful in a number of applications.

Corollary 2.3. Under conditions of Theorem 2.1 we have

sup
x>0

∣∣IP
(
‖ξ − a‖ ≤ x)− IP (‖η‖ ≤ x

)∣∣ .
{
κ(Σξ) + κ(Ση)

}(
‖Σξ −Ση‖1 + ‖a‖2

)
.

The right-hand-side of (2.2) does not change if we exchange ξ and η in Theorem 2.1
and its Corollaries hold for the balls with the same shift a . In particular, the following
corollary is true.

Corollary 2.4. Under conditions of Theorem 2.1 we have

sup
x>0

∣∣∣IP (‖ξ − a‖ ≤ x)− IP (‖η − a‖ ≤ x)
∣∣∣ .

{
κ(Σξ) + κ(Ση)

}(
‖λξ − λη‖1 + ‖a‖2

)
.

The result of Theorem 2.1 may be also rewritten in terms of the operator norm

‖Σ−1/2
ξ ΣηΣ

−1/2
ξ − II‖.

Indeed, using the inequality ‖AB‖1 ≤ ‖A‖1‖B‖ we immediately obtain the following
corollary.

Corollary 2.5. Under conditions of Theorem 2.1 we have

sup
x>0

|IP (‖ξ − a‖ ≤ x)− IP (‖η‖ ≤ x)|

.
{
κ(Σξ) + κ(Ση)

}(
tr
(
Σξ

)
‖Σ−1/2

ξ ΣηΣ
−1/2
ξ − II‖+ ‖a‖2

)
.

We now discuss the origin of the value κ(Σξ) which appears in the main theorem and
its corollaries. Analysing the proof of Theorem 2.1 one may find out that it is necessary
to get an upper bound for a probability density function (p.d.f.) pξ(x) (resp. pη(x) ) of
‖ξ‖2 (resp. ‖η‖2 ) and the more general p.d.f. pξ(x,a) of ‖ξ − a‖2 for all a ∈ H . The
same arguments remain true for pη(x) . The following theorem provides uniform bounds.
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Theorem 2.6. Let ξ be a Gaussian element in H with zero mean and covariance

operator Σξ . Then it holds for any a that

sup
x≥0

pξ(x,a) . κ(Σξ) (2.3)

with κ(Σξ) from (2.1). In particular, κ(Σξ) . (Λ1ξΛ2ξ)
−1/2 .

The proof of this theorem will be given in Section 3.

Since ξ
d

=
∑∞

j=1

√
λjξZjejξ , we obtain that ‖ξ‖2 d

=
∑∞

j=1 λjξZ
2
j . Here and in what

follows {ejξ }∞j=1 is the orthonormal basis formed by the eigenvectors of Σξ correspond-
ing to {λ1ξ}∞j=1 . In the case H = IRp , a = 0, Σξ ≍ II one has that the distribution of

‖ξ‖2 is close to standard χ2 with p degrees of freedom and

sup
x≥0

pξ(x, 0) ≍ p−1/2.

Hence, the bound (2.3) gives the right dependence on p because κ(Σξ) ≍ p−1/2 . How-
ever, a lower bound for supx≥0 pξ(x,a) in the general case is still an open question.
Another possible extension is a non-uniform upper bound for the p.d.f. of ‖ξ − a‖2 . In
this direction for any λ > λ1ξ we can prove that

pξ(x,a) ≤
exp
(
−(x1/2 − ‖a‖)2/(2λ)

)
√
2λ1ξλ2ξ

∞∏

j=3

(1− λjξ/λ)
−1/2;

see Lemma B.1 and remark after it in the Appendix. It is still an open question whether
it is possible to replace the λkξ ’s in the denominator by Λkξ , k = 1, 2 .

A direct corollary of Theorem 2.6 is the following theorem which states for a rather
general situation a dimension-free anti-concentration inequality for the squared norm of a
Gaussian element ξ . In the “high dimensional situation”, this anti-concentration bound
only involves the Frobenius norm of Σξ .

Theorem 2.7 ( ε -band of the squared norm of a Gaussian element). Let ξ be a Gaus-

sian element in H with zero mean and a covariance operator Σξ . Then for arbitrary

ε > 0 , one has

sup
x>0

IP (x < ‖ξ − a‖2 < x+ ε) . κ(Σξ) ε (2.4)

with κ(Σξ) from (2.1). In particular, κ(Σξ) can be replaced by (Λ1ξ Λ2ξ)
−1/2 .

We finish this section showing that the structure of estimates in Theorem 2.1 and
Theorem 2.7 is the right one.
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For simplicity, we consider the case of centred ball, i.e. a = 0 and denote κ(Σξ, Ση)
def
=

max{κ(Σξ),κ(Ση)} . We show in the special case that

lim sup

(
sup
x>0

|IP (‖ξ‖ ≤ x)− IP (‖η‖ ≤ x)|
κ(Σξ, Ση)‖Σξ −Ση‖1

)
≥ C1, (2.5)

where C1 is some absolute positive constant and lim sup is taken w.r.t. max(λ2ξ, λ2η) ↓
0 . Hence, in general it is impossible to obtain the upper bound in Theorem 2.1, such that
it doesn’t tend to infinity when λ2ξ (or λ2η ) tends to zero. To show (2.5) we construct
the following example. Let ξ be a Gaussian vector in IR3 with zero mean and covariance
matrix Σξ = diag(λ1ξ, λ2ξ, λ3ξ) . Similarly, let η be a Gaussian vector with zero mean
and covariance matrix Ση = diag(λ1η, λ2η, λ3η) . Then

sup
x>0

|IP (‖ξ‖ ≤ x)− IP (‖η‖ ≤ x)| ≥
∣∣∣IP (‖ξ‖ ≤

√
R)− IP (‖η‖ ≤

√
R)
∣∣∣ ,

for some R which will be chosen later. Put

E1 def
=
{
(x1, x2, x3) ∈ IR3 :

3∑

j=1

λjξx
2
j ≤ R

}
, E2 def

=
{
(x1, x2, x3) ∈ IR3 :

3∑

j=1

λjηx
2
j ≤ R

}
.

Let us take λ1ξ = λ1η, λ2ξ = λ2η, λ3η = λ3ξ(1 + ε) for some 0 < ε < 1 . This choice
gives ‖Σξ − Ση‖1 = ελ3 andκ(Σξ, Ση) ≍ (λ1ξλ2ξ)

−1/2 . It is straightforward to check
that

|IP (‖ξ‖ ≤ R)− IP (‖η‖ ≤ R)| = 1

(2π)3/2

∫

E1\E2

exp
(
−x2

1 + x2
2 + x2

3

2

)
dx1 dx2 dx3

≥ 1

(2π)3/2
(|E1| − |E2|) exp

[
−R

2

( 1

λ1ξ
+

1

λ2ξ
+

1

λ3ξ

)]
,

where |Ei| is a volume of the ellipsoid |Ei|, i = 1, 2. Applying formula for the volume of
an ellipsoid we obtain

|E1| − |E2| =
4πR3/2‖Σξ −Ση‖1

3
√
λ1ξλ2ξλ

3/2
3ξ

√
1 + ε(1 +

√
1 + ε)

>
π‖Σξ −Ση‖1√

λ1ξλ2ξ

(
R

2λ3ξ

)3/2

.

We take R = 2λ3ξ . Then

(
R

2λ3ξ

)3/2

exp
(
− R

2λ3ξ

)
≥ e−1 ≥ 1

3
.

Hence,

∣∣∣IP (‖ξ‖ ≤
√
R)− IP (‖η‖ ≤

√
R)
∣∣∣ ≥ ‖Σξ − Ση‖1

16
√
λ1ξλ2ξ

exp
[
−
(λ3ξ

λ1ξ
+

λ3ξ

λ2ξ

)]
≥ C1

‖Σξ −Ση‖1√
λ1ξλ2ξ

,
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where C1
def
= exp

(
−2
)
/16 . From the last inequality we may conclude (2.5).

We now turn to the case H = IR1 . Here, one may get a two-sided inequality. First, we
derive an upper bound. Let ξ and η be normal variables with zero mean and variances
λξ and λη resp. Without loss of generality we may assume that λξ < λη . Then

sup
x>0

|IP (‖ξ‖ ≤ x)− IP (‖η‖ ≤ x)| = 2√
2π

sup
x>0

∫ x/
√

λξ

x/
√

λη

e−y2/2 dy

≤ ‖Σξ −Ση‖1√
ληλξ(

√
λξ +

√
λη)

sup
x>0

(
x exp

(
−x2/(2λη)

))
.

‖Σξ −Ση‖1
λξ

.

We also have the following lower bound:

sup
x>0

|IP (‖ξ‖ ≤ x)− IP (‖η‖ ≤ x)| = 2√
2π

sup
x>0

∫ x/
√

λξ

x/
√

λη

e−y2/2 dy

≥ 2 ‖Σξ −Ση‖1 x0 exp
(
−x2

0/(2λξ)
)

√
2π
√
ληλξ(

√
λξ +

√
λη)

&
‖Σξ −Ση‖1

λη

,

where x0
def
=
√
λξ .

Similar arguments can be applied in the case of Theorem 2.7. The right-hand side of
(2.4) essentially depends on the first two eigenvalues of Σξ . In general, it is impossible
to get similar bounds of order O(ε) with dependence on λ1ξ only. In fact, let H = IR2

and λ1ξ = 1 and λ2ξ = 0 (i.e. ξ has the generate Gaussian distribution). Then for all
positive ε ≤ log 2 one has

sup
x>0

IP (x < ‖ξ‖2 < x+ ε) ≥ ε1/2/(2
√
π).

3. Proofs of the main results

This section collects the proofs of the main results.

Proof of Theorem 2.6. Let {ej}∞j=1 be an orthonormal basis in H formed by the
eigenvectors of Σξ corresponding to eigenvalues {λ1ξ}∞j=1 . In what follows we omit the

index ξ from the notation. Put aj
def
= 〈a, ej〉 and ξj

def
= 〈ξ, ej〉 . Then ξj , j ≥ 1 ,

are independent N (0, λj) r.v. Let gj(x) , j ≥ 1, (resp. fj(t) ) be the p.d.f (resp. c.f.)
of (ξj − aj)

2 . Moreover, let g(m,x),m ≥ 1 (resp. g(m,x),m ≥ 1 ) be the p.d.f. of∑m
j=1(ξj−aj)

2 (resp.
∑∞

j=m+1(ξj−aj)
2 ). We also introduce the c.f. f(m, t) of g(m,x) .

As

p(x,a) ≤
∫ ∞

−∞

g(m, y) g(m,x− y) dy ≤ sup
x≥0

g(m,x), (3.1)
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we may restrict ourselves to the finite dimensional case only, e.d., H = IRm , where m
is some large integer. Hence, in what follows we will assume that ξ is a m dimensional
vector.

We separately consider three cases correspondingto the definition (2.1) of κ(Σξ) :
1. 3λ2

1 ≤ Λ2
1 ;

2. 3λ2
1 ≥ Λ2

1 , 3λ2
2 ≥ Λ2

2 ;
3. 3λ2

1 ≥ Λ2
1 , 3λ2

2 ≤ Λ2
2 .

We start with the case 1. It is straightforward to check that

|fj(t)| ≤
1

(1 + 4λ2
j t

2)1/4
, j = 1, . . . ,m. (3.2)

By the inverse formula

p(x,a) =
1

2π

∫ +∞

−∞

e−itx
m∏

j=1

fj(t) dt

≤ 1

2π

∫ +∞

−∞

m∏

j=1

∣∣fj(t)
∣∣ dt ≤ 1

2π

∫ +∞

−∞

m∏

j=1

1

(1 + 4λ2
j t

2)1/4
dt.

Now Lemma A.2 implies the desired bound.
The proof in case 2 follows from the Lemma B.1 in Section B. However, as long as a

uniform bound is concerned, one can simplify the proof. Indeed, similarly to (3.1) one
can show that for m ≥ 2

g(m,x) ≤ sup
x≥0

g(2, x).

It is straightforward to check that

gj(x) =
1

2
√
2πxλj

[
exp
(
− (x1/2 − aj)

2

2λj

)
+ exp

(
− (x1/2 + aj)

2

2λj

)]
≤ 1√

2πxλj

. (3.3)

This inequality implies that

g(2, x) =

∫ x

0

g1(x− y)g2(y) dy ≤ 1

2π
√
λ1λ2

∫ x

0

(x− y)−1/2y−1/2 dy =
1

2
√
λ1λ2

.

It remains to use the fact that the r.h.s. of the previous inequality can also be bounded
by C/

√
Λ1Λ2 .

Finally we consider the case 3. Define wj
def
= λ2

j/Λ
2
2 for j ≥ 2 and rewrite ‖ξ‖2 as

follows

‖ξ‖2 d

= (ξ1 − a1)
2 + Λ2 η,
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where η
def
=
∑m

j=2

√
wj (Zj − a′j)

2 , a′j
def
= aj/

√
λj , Zj ∼ N (0, 1) . Let pη be the p.d.f. of

random variable η . The bound (3.3) implies

g(m,x) ≤ 1√
2πλ1

∫ x/Λ2

0

pη(z)√
x− Λ2 z

dz ≤ C√
λ1Λ2

sup
x>0

∫ x

0

pη(z)√
x− z

dz. (3.4)

Note that pη(z) is bounded by some absolute constant. Indeed, by the inverse formula

pη(z) =
1

2π

∫ +∞

−∞

e−itz
m∏

j=2

f j(t) dt,

where f j(t) is the characteristic function of
√
wj (Zj − a′j)

2 for j = 2, . . . ,m . Similarly

to (3.2) we can bound |f j(t)| ≤ (1 + 4wj t
2)−1/4 and

pη(z) ≤ 1

2π

∫ +∞

−∞

m∏

j=2

∣∣f j(t)
∣∣ dt ≤ 1

2π

∫ +∞

−∞

m∏

j=2

1

(1 + 4wj t2)1/4
dt .

In view of
∑

j≥2 wj = 1 , Lemma A.2 implies

sup
z

pη(z) . 1.

Combining this bound with (3.3) and (3.4) yields the upper bound of order
(
λ1Λ2

)−1/2 ≍
(
Λ1Λ2

)−1/2
in case (3). This completes the proof of the theorem.

Remark 3.1. We would like to remark that instead of Lemma A.2 one may also apply
an alternative approach from Ulyanov (1987)[Lemma 5].

Proof of Theorems 2.1. We split the proof into two parts. In the first part we study
the case a = 0 . The second part is devoted to the case Σξ = Ση . The final estimate
will follow by combining the two obtained estimates and the triangular inequality.

Case I : a = 0 .

Without loss of generality we may assume that Σξ = λξ, Ση = λη , where λξ
def
=

diag(λ1ξ, λ2ξ, . . .), λη
def
= diag(λ1η , λ2η, . . .) and λ1ξ ≥ λ1ξ ≥ . . . and similarly in de-

creasing order for λiη ’s.
Fix any s : 0 ≤ s ≤ 1 . Let Z(s) be a Gaussian random element in H with zero mean

and diagonal covariance operator V(s) :

V(s)
def
= sλξ + (1− s)λη.
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Denote by f(t, s) (resp. p(x, s) ) the characteristic function (resp. p.d.f.) of ‖Z(s)‖2 . Let
λ1(s) ≥ λ2(s) ≥ . . . be the eigenvalues of V(s) and introduce the diagonal resolvent

operator G(t, s)
def
= (II − 2itV(s))−1 . Recall that ‖Z(s)‖2 d

=
∑n

j=1 λj(s)Z
2
j , where

Zj, j ≥ 1, are i.i.d. N (0, 1) r.v. Then it is straightforward to check that a characteristic
function f(t, s) of ‖Z(s)‖2 can be written as

f(t, s) = IE exp{it‖Z(s)‖2} = exp

{
− 1

2
tr log

(
II − 2itV(s)

)}
,

where for an operator A and the identity operator II we use notation

log(II +A) = A

∫ 1

0

(II + yA)−1dy.

It is well known, see e.g. Chung (2001)[§6.2, p. 168], that for a continues d.f. F (x) with
c.f. f(t) we may write

F (x) =
1

2
+

i

2π
lim

T→∞
V.P.

∫

|t|≤T

e−itxf(t)
dt

t
.

Let us fix an arbitrary x > 0 . Then

IP (‖ξ‖2 < x)− IP (‖η‖2 < x) =
i

2π
lim

T→∞
V.P.

∫

|t|≤T

f(t, 1)− f(t, 0)

t
e−itx dt.

By the Newton-Leibnitz formula

f(t, 1)− f(t, 0) =

∫ 1

0

∂f(t, s)

∂s
ds.

It is straightforward to check that

∂f(t, s)/∂s

t
= if(t, s) tr

{
(λξ − λη)G(t, s)

}
.

Changing the order of integration we get

IP (‖ξ‖2 < x) − IP (‖η‖2 < x)

= − 1

2π

∫ 1

0

∫ ∞

−∞

tr {(λξ − λη)G(t, s)} f(t, s)e−itx dt ds. (3.5)

Since G(t, s) is the diagonal operator with (1 − 2itλj(s))
−1 on the diagonal, we may

fix s and j and consider the following quantity

1

2π

∫ ∞

−∞

(1 − 2itλj(s))
−1f(t, s)e−itx dt.
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Let Zj(s), j ≥ 1 be independent exponentially distributed r.v. with parameter 1/(2λj(s))
(we write Exp(2λj(s)) ), which are also independent of Zk, k ≥ 1 . Then

IEeitZj(s) = (1− 2itλj(s))
−1.

Moreover, (1− 2itλj(s))
−1f(t, s) is the characteristic function of Zj(s) + ‖Z(s)‖2 . Let

pj(x, s) be the corresponding p.d.f. Then

1

2π

∫ ∞

−∞

(1− 2itλj(s))
−1f(t, s)e−itx dt = pj(x, s).

Denote by P(x, s) a diagonal operator with pj(x, s) on the main diagonal. Then we
may conclude that

1

2π

∫ ∞

−∞

tr {(λξ − λη)G(t, s)} f(t, s)e−itx dt = tr {(λξ − λη)P(x, s)} .

It is clear that the absolute value of the last term is bounded above by

‖λξ − λη‖1 max
j

sup
x≥0

pj(x, s)

and we need to bound uniformly each pj(x, s) . For any j :

pj(x, s) =

∫ ∞

−∞

p(y, s)pj(x− y, s) dy ≤ sup
x≥0

p(x, s),

where pj(x, s) is the p.d.f. of Zj(s) . Applying Theorem 2.6 we obtain

sup
x≥0

p(x, s) . κ(Σ(s)),

where κ(Σ(s)) is from (2.1). It remains to integrate over s to obtain

sup
x>0

∣∣∣IP (‖ξ‖2 < x)− IP (‖η‖2 < x)
∣∣∣ ≤

{
κ(Σξ) + κ(Ση)

}∥∥λξ − λη

∥∥
1
.

Case II : Σξ = Ση and a 6= 0 .

We may rotate ξ such that Σξ = Λξ . Then we have to replace a by appropriate a ,

but ‖a‖ = ‖a‖ . Fix any s : 0 ≤ s ≤ 1 . Let a(s)
def
= a

√
s . Introduce the diagonal

operator G(t)
def
= (II − 2it Λξ)

−1 . It is straightforward to check that a characteristic
function f(t,a(s)) of ‖ξ − a(s)‖2 can be written as

f(t,a(s)) = IE exp{it‖ξ − a(s)‖2}

= exp

{
it

(
s‖a‖2 + s〈G(t)a,a〉 − 1

2it
tr log

(
II − 2itΛξ

))}
.
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Repeating the arguments from the proof of Theorem 2.1 we obtain (compare with (3.5))

IP (‖ξ − a‖2 < x) − IP (‖ξ‖2 < x)

= − 1

2π

∫ 1

0

∫ ∞

−∞

[
‖a‖2 + 〈G(t)a,a〉

]
f(t,a(s))e−itx dt ds.

Moreover, we may rewrite the last equation as follows

IP (‖ξ − a‖2 < x)− IP (‖ξ‖2 < x)

= −‖a‖2
∫ 1

0

p(x,a(s)) ds −
∞∑

j=1

[aj ]
2

∫ 1

0

pj(x,a(s)) ds,

where p(x,a(s)), pj(x,a(s)) are p.d.f of ‖ξ − a(s)‖2 and Zj + ‖ξ − a(s)‖2 resp. Here
Zj is a random variable with exponential distribution Exp(2λjξ) . It remains to apply
Theorem 2.6 and integrate over s .
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Appendix A: Technical results

Lemma A.1. It holds

sup
0<a≤1

a

∫ ∞

0

1

(1 + t2)a+1/2
dt ≤ C , (A.1)

and

sup
a≥1

a1/2
∫ ∞

0

1

(1 + t2)a+1/2
dt ≤ C . (A.2)
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Proof. Define

H(a)
def
=

∫ ∞

0

1

(1 + t2)a+1/2
dt. (A.3)

Obviously, H(a) monotonously decreases in a . Integration by parts implies for a > 0

∫ ∞

0

t2

(1 + t2)a+3/2
dt = − 1

2a+ 1

∫ ∞

0

t d

(
1

(1 + t2)a+1/2

)

=
1

2a+ 1

∫ ∞

0

1

(1 + t2)a+1/2
dt =

H(a)

2a+ 1
.

At the same time, for a > 0

∫ ∞

0

t2

(1 + t2)a+3/2
dt =

∫ ∞

0

1 + t2

(1 + t2)a+3/2
dt−

∫ ∞

0

1

(1 + t2)a+3/2
dt = H(a)−H(a+ 1) .

This implies a recurrent relation

H(a+ 1) =
a

a+ 1/2
H(a) .

For a ∈ [0, 1] , it implies

aH(a) = (a+ 1/2)H(a+ 1) ≤ 3

2
H(1) = C

and (A.1) follows. For a = a0 + k with a0 ∈
[
1, 2
]
and an integer k ≥ 0 , we use that

√
a H(a) =

√
a

(a− 1)(a− 2) . . . a0
(a− 1/2)(a− 3/2) . . . (a0 + 1/2)

H(a0)

=

√
a(a− 1)

a− 1/2

√
(a− 1)(a− 2)

a− 3/2
. . .

√
(a0 + 1)a0
a0 + 1/2

√
a0 H(a0) ≤

√
2H(1) = C .

This proves (A.2).

Lemma A.2. Let λ1 ≥ λ2 ≥ . . . ≥ λp and

3λ2
1 ≤ Λ2 def

=

p∑

j=1

λ2
j .

Define

hj(t)
def
=

1

(1 + λ2
j t

2)1/4
, j = 1, . . . , p.
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Then it holds

∫ ∞

0

p∏

j=1

hj(t) dt .
1

Λ
.

Proof. Let qj be a set of positive numbers with qj ≥ 3 and
∑

j q
−1
j = 1 . A specific

choice will be given later. By the Hölder inequality

∫ ∞

0

p∏

j=1

hj(t) dt ≤
p∏

j=1

(∫ ∞

0

|hj(t)|qj dt
)1/qj

.

Further, for each j , by the change of variable λjt = u

∫ ∞

0

|hj(t)|qj dt =

∫ ∞

0

dt

(1 + λ2
j t

2)qj/4
= λ−1

j

∫ ∞

0

du

(1 + u2)qj/4
= λ−1

j H(qj/4− 1/2)

with H(·) from (A.3). Therefore, by (A.2) of Lemma A.1 in view of qj/4− 1/2 ≥ 1/4

∫ ∞

0

p∏

j=1

hj(t) dt ≤
p∏

j=1

(
1

λjH(qj/4− 1/2)

)1/qj

.

p∏

j=1

(
1

λj

√
qj/4− 1/2

)1/qj

. (A.4)

Now we fix qj by the condition

λ2
j (qj/4− 1/2) = τ,

where the constant τ is determined by
∑p

j=1 q
−1
j = 1 . This yields

1

qj
=

λ2
j

4τ + 2λ2
j

,

p∑

j=1

λ2
j

4τ + 2λ2
j

= 1,

and obviously τ ≤ Λ2/4 and τ + λ2
1/2 ≥ Λ2/4 . The condition 3λ2

1 ≤ Λ2 implies

qj =
4τ

λ2
j

+ 2 ≥ Λ2 − 2λ2
1

λ2
1

+ 2 ≥ 3, j ≤ p.

Also

τ ≥ 1

4

(
Λ2 − 2λ2

1

)
≥ 1

4

(
Λ2 − 2Λ2

3

)
& Λ2 .
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Now it follows from (A.4) that

∫ ∞

0

p∏

j=1

hj(t) dt .

(
1√
τ

)q−1

1
+...+q−1

p

.
1

Λ

as required.

Appendix B: A non-uniform bound for the density of

a weighted non-central χ2 distribution

Lemma B.1. Let ξ be a Gaussian element in H with zero mean and covariance

operator Σξ . For any a ∈ H and all λ > λ1ξ

pξ(x,a) ≤
exp
(
−(x1/2 − ‖a‖)2/(2λ)

)
√
2λ1ξλ2ξ

∞∏

j=3

(1− λjξ/λ)
−1/2. (B.1)

Remark B.1. The infinite product in the r.h.s. of (B.1) is convergent. Indeed, taking
logarithm and using log(1 + x) ≥ x/(x+ 1) for x > −1 we obtain

0 < −1

2
log

∞∏

j=3

(1− λjξ/λ) ≤
1

2(λ− λ1ξ)

∞∑

j=3

λjξ < ∞,

where we also used the fact that Σξ is a nuclear and ‖Σξ‖1 < ∞ . Taking λ = ‖Σξ‖1
we get

∏∞
j=3 (1 − λjξ/λ)

−1/2 ≤ √
e.

Proof. We will use the notation from the proof of Theorem 2.6. We rewrite gj(x) as
follows

gj(x) =
1√

2πxλj

dj(x),

where

dj(x)
def
= dj(λj , x)

def
=

1

2

[
exp
(
−(x1/2 − aj)

2/(2λj)
)
+ exp

(
−(x1/2 + aj)

2/(2λj)
)]
.

It is straightforward to check that for a ≥ b ≥ 0

((a− b)1/2 − c)2 + (b1/2 − d)2 ≥ (a1/2 − (c2 + d2)1/2)2,

and

dj(x) ≤ exp
(
−(x1/2 − |aj |)2/(2λj)

)
.
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We have for all j = 1, 2, . . . and any λ > λ1

gj(x) ≤
1√

2πxλj

exp
(
−(x1/2 − |aj |)2/(2λ)

)
dj(λλj/(λ− λj), x). (B.2)

Moreover,

(2πx)−1/2(λ − λj)
1/2/(λλj)

1/2 dj(λλj/(λ− λj), x) (B.3)

is the density function of
(√

λ/(λ− λj) ξj − aj
)2

. These inequalities imply

g(2, x) =

∫ x

0

g1(x− y)g2(y) dy

≤ 1

2π
√
λ1λ2

exp
(
−(x1/2 − (a21 + a22)

1/2)2/(2λ)
) ∫ x

0

(x− y)−1/2y−1/2 dy

=
1

2
√
λ1λ2

exp
(
−(x1/2 − (a21 + a22)

1/2)2/(2λ)
)
.

Similarly, applying the last inequality, (B.2) and (B.3) we obtain

g(3, x) =

∫ x

0

g(2, x− y)g3(y) dy

≤ 1

2
√
λ1λ2

√
2πλ3

exp
(
−(x1/2 − (a21 + a22 + a23)

1/2)2/(2λ)
)

×
∫ x

0

dj(λλ3/(λ− λ3), y)

y1/2
dy

≤ 1

2
√
λ1λ2

exp
(
−(x1/2 − (a21 + a22 + a23)

1/2)2/(2λ)
)(

1− λ3

λ

)−1/2

.

By induction we get

g(m,x) ≤ 1

2
√
λ1λ2

exp
(
− (x1/2 − (a21 + . . .+ a2m)1/2)2

2λ

) m∏

j=3

(
1− λj

λ

)−1/2

. (B.4)

Now take an arbitrary ε > 0 and any integer m > 0 . Let 0 < µ < 1/(2λj) for all
j ≥ m + 1 . Without loss of generality we assume that at least two λj , j ≥ m + 1 , are
non-zero. Otherwise the arguments are simpler. By Markov’s inequality we obtain

IP




∞∑

j=m+1

ξ2j ≥ ε2



 ≤ e−µε2
∞∏

j=m+1

IEeµξ
2

j = e−µε2
∞∏

j=m+1

1√
1− 2µλj

.
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Choosing µ
def
= 1/(2

∑∞
j=m+1 λj) we get

IP




∞∑

j=m+1

ξ2j ≥ ε2


 ≤ 2 exp





−ε2


2

∞∑

j=m+1

λj




−1




.

Hence, there exists M1 = M1(ε) such that for all m ≥ M

IP




∞∑

j=m+1

ξ2j ≥ ε2


 ≤ ε2.

For any m ≥ 1 we obtain

∞∑

j=m+1

(ξj − aj)
2 ≤ 2




∞∑

j=m+1

ξ2j +

∞∑

j=m+1

a2j



 .

We choose M2 = M2(ε) such that
∑∞

j=m+1 a
2
j ≤ ε2 . Hence, for M = M1 + M2 we

obtain the following inequality

IP (x− ε ≤ ‖ξ − a‖2 ≤ x+ ε) ≤ IP



x− ε− 4ε2 ≤
m∑

j=1

(ξj − aj)
2 ≤ x+ ε



+ ε2.

The last inequality implies

IP (x− ε ≤ ‖ξ − a‖2 ≤ x+ ε) ≤ ε2 + (2ε+ 4ε2) sup
y∈T (ε,x)

g(m, y),

where T (ε, x)
def
= {y ∈ R1 : x− ε− 4ε2 ≤ y ≤ x+ ε} . Dividing the right-hand side of the

previous inequality by ε we obtain (B.1) from (B.4) as ε tends to 0.
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