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Abstract

In this paper, we propose a new class of regime shift models with flexible switching

mechanism that relies on a nonparametric probability function of the observed thresh-

old variables. The proposed models generally embrace traditional threshold models

with contaminated threshold variables or heterogeneous threshold values, thus gaining

more power in handling complicated data structure. We solve the identification issue by

imposing either global shape restriction or boundary condition on the nonparametric

probability function. We utilize the natural connection between penalized splines and

hierarchical Bayes to conduct smoothing. By adopting different priors, our procedure

could work well for estimations of smooth curve as well as discontinuous curves with

occasionally structural breaks. Bayesian tests for the existence of threshold effects are

also conducted based on the posterior samples from Markov chain Monte Carlo (M-

CMC) methods. Both simulation studies and an empirical application in predicting

the U.S. stock market returns demonstrate the validity of our methods.
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Inference, Spline.

JEL Classification:

∗The authors acknowledge the supports from NSFC with grant numbers #71571152, #71571154, #11101341

and the Fundamental Research Funds for the Central Universities with grant number 2015B13114. E-mail

addresses: hqchen2009@gmail.com (H. Chen), amyli999@hotmail.com (Y. Li), ming.lin50@gmail.com (M.

Lin) and zhuyanli 921@126.com (Y. Zhu).

2



1 Introduction

Since the seminal work of Tong and Lim (1980) and Tong (1983), threshold model-

s have been widely applied to analyze various kinds of economic data.1 With the use of

segmentation, it maintains the merit of simplicity as linear models do, but also captures var-

ious types of nonlinear phenomena, such as business cycles, jumps and asymmetry. Given

their success in both theoretical and empirical studies, threshold models have attracted a

remarkable amount of research attention and being extended in different ways, including the

smooth transition threshold model (STAR) by Chan and Tong (1986), the double-threshold

ARCH model by Li and Li (1996), the multiple-regimes threshold model by Tsay (1998).

The estimation and asymptotics for threshold models as well as their variants have been well

established by a sequence of studies, including Chan (1993), Hansen (1997), Tsay (1998),

Seo and Linton (2007) and Gonzalo and Pitarakis (2012). A nice summary about the de-

velopment of threshold models in last 30 years can be found in Hansen (2011) and Tong

(2011).

Classical threshold models investigated in the aforementioned studies define regimes in

a deterministic way, relying on an observed threshold variable relative to a fixed threshold

value. Such a mechanism has its economic interpretation, but might not always be satisfied

in empirical applications. For instance, it excludes the possibility of the existence of sta-

tus mixtures. Moreover, it might be a difficult task to find such an appropriate threshold

variable, or the threshold variable may be subjected to measurement errors. In addition,

the homogeneity assumption on the threshold value may be too strong. All of the above

challenges require more flexible regime switch mechanism. Quandt (1972) considers the pure

random switching model which requires no observed threshold variable. Hamilton (1989)

generalized the switching mechanism and proposed the Markov switching model, which as-

sumes the latent regime state follows a Markov process. Such a model becomes a popular

tool to analyze business cycles and regime shifts existing in various type of asset prices.

However, the merit of requiring no threshold variable might also lead to its drawback, as the

results are hard to interpret due to the untractable regime status.

In this paper, we propose a new class of regime shift models. Instead of modeling how

1For example, Durlauf and Johnson (1995) and Hansen (2000) use threshold regressions to study the

multiple stages in economic growth models. Potter (1995), Tsay (1998) and Chen et al. (2012) apply

threshold autoregressive models (TAR) to analyze the GDP growth rates, unemployment rates, inflation

rates and stock returns.
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the unobserved regime status transits, we focus on studying how the observed threshold

variable and some latent factors, such as measurement errors or individual preference het-

erogeneity, affect the status of the regime simultaneously. Our model could be viewed as a

partially-hidden switching model that combines both threshold models and random switch-

ing models. We adopt a nonparametric probability function to help classify the unobserved

regime status. A closely related work is Wu and Chen (2007), but they adopt the parametric

logistic link to model the relationship between the regime status and the threshold variable.

Though our model might be more involved, the nonparametric setting enables us to enjoy

more flexibility in model specification, and it also frees us from conducting various transfor-

mations to determine the appropriate form of the threshold variable. It could be shown that

many popular models, including the random switching models and the classical threshold

models, are our special cases. Moreover, we could handle the complicated situations when

measurement errors or latent heterogeneity or time varying effects present. Hence the main

advantage of our approach is obvious, as it provides a unified way to handle various compli-

cated data structures and allows the data to reveal which might be the true nature of the

switching mechanism.2

For the sake of identification, we propose a novel approach, which impose restrictions on

the nonparametric probability function rather than on the regression coefficients associated

with different regimes. Though it may be a conventional way to assume, for example, the

first regression coefficient in status I is less than that in status II (Kim and Nelson, 1999; Wu

and Chen, 2007; Henkel et al., 2011), such an approach might perform poorly if indeed the

unknown regression coefficients are close to each other. Moreover, it implicitly assumes the

existence of multiple regimes and thus hinders inference on the existence of threshold effects.

In contrast, we avoid such a caveat by imposing constraints on the conditional probability of

falling into status I given the observed threshold variable. We discuss various conditions for

model identification, and demonstrate how to incorporate the constraints for estimation. In

particular, two different types of constraints are considered. One is to assume some boundary

condition, while the other is to assume a monotonic pattern. The former is less restrictive,

while the latter explores the global feature of the underlying probability function and may

2Another related work is Cai et al. (2015), who extend STAR models by allowing the state variables to

enter into the transition function in a nonparametric way. Their model can be regarded as a time-varying

weighted average of two linear models, and the estimation can be obtained by least squares methods as no

latent status variable is involved.
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be more efficient if the monotonic condition holds. Estimating a nonparametric function

with shape restrictions has also been studied by many authors, for instance, Ramsay (1998)

and Ait-Sahalia and Duarte (2003). To our best knowledge, we may be the first to consider

this in the regime shift model.

We employ a Bayesian approach as well as MCMC techniques for estimation. We model

the nonparametric probability function via some transformation of the spline function, and

utilize the natural connection between penalized splines and hierarchical Bayes to conduct

smoothing. Moreover, we extend the choices of prior for the spline coefficients from the

Gaussian distribution to some heavy-tailed distribution, so the approach could work for es-

timating smooth curve as well as discontinuous curve with occasionally jumps. It turns out

our Bayesian approach is in the spirit of conditional penalized likelihood aiming at smooth-

ing or variable selection. In the latter case, we also recommend choosing different penalty

parameter such that the estimate could be locally adaptive. Based on the sample posterior,

we also consider the nonstandard test on the existence of threshold effects. Simulations show

the validity of our method. We also apply our method to analyze the U.S. stock market re-

turn. The results indicate that our approach could bring better out-of-sample predictability

compared to various benchmark models.

The remainder of the paper is organized as follows. Section 2 introduces the model setup

and inference procedure. Section 3 presents Monte Carlo simulations. Section 4 provides the

empirical application, while Section 5 concludes.

2 Modeling and Inference

2.1 The Model

Consider the following two-state regime switching model

yt = x′tβIt + σItεt, t = 1, · · · , T (1)

where xt’s are exogenous covariates, εt’s are i.i.d noise terms, with mean zero and variance 1.

Each of the state variable It takes value either 1 or 2, i.e., the model switches between two

regimes. Parameters βIt ’s and σIt ’s are the regression coefficients and the standard deviation,

respectively. When It’s are independent Bernoulli random variables, the model (1) is the

random switching model proposed by Quandt (1972). If It is defined as 1 + 1(zt < γ) such
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that the regime status is 1 when the threshold variable zt is no less than a fixed value γ, the

model (1) becomes the classical threshold model.

In this paper, we propose to model the regime switching function by the following

nonparametric probability function, defined by

P (It = 1|zt) = g(zt) and P (It = 2|zt) = 1− g(zt),

the model (1) becomes

yt =

{
x′tβ1 + σ1εt, with probability g(zt);

x′tβ2 + σ2εt, with probability 1− g(zt),
(2)

where zt is an observed threshold variable. Obviously, the random switching model and the

threshold model are two special cases with g(zt) as a constant or a step function, respectively.

With various forms of g(zt), the model (2) could embrace many different models with complex

data structure. The following two examples are some typical cases.

Example 1: Threshold model with heterogenous threshold values.

In some applications of threshold models, the threshold values could vary across individ-

uals or over time. For example, in marketing science, an active research area is to study the

asymmetric price effects to consumers’ behavior, see Helson (1964), Kahneman and Tversky

(1979), Chang et al. (1999) and Bell and Lattin (2000). Terui and Dahana (2006) consider a

choice model in which consumers switch their utility function among different forms accord-

ing to the relationship between the retail price and the reference price, an unknown price

threshold. They consider incorporating a random component on the price threshold value

in order to capture the heterogeneity of consumers’ preference. In general, one may set up

the following threshold model with heterogenous threshold values.

yt =

{
x′tβ1 + σ1εt, if zt ≥ γt;

x′tβ2 + σ2εt, if zt < γt,

where γt = γ + ut and ut is independent of zt. Suppose ut has the cumulative distribution

function Fu(·), then the regime switching function is

g(zt) = P (zt ≥ γ + ut | zt) = P (ut ≤ zt − γ | zt) = Fu(zt − γ).

Example 2: Threshold model with measurement errors.
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In empirical studies, it may be quite common to have measurement error, thus resulting

in loss of information or misleading conclusions, see Madansky (1959), Amemiya (1985, 1990)

and Lewbel (1997). One example is about the q theory. In the literature. the marginal q (the

ratio of a firm’s market value to the replacement value) might be treated a good predictor

for firm investment. However, empirical evidence suggested the financially constrained firms

may violate this relation, see Fazzari et al. (1988), Barnett and Sakellaris (1998), Hu and

Schiantarelli (1998) and Hansen (1999). However, Erickson and Whited (2000) argue that

these findings could be artifacts due to the measurement errors in marginal q. In general,

to handle threshold models with contaminated threshold variable, we propose the following

model:

yt =

{
x′tβ1 + σ1εt, if z∗t ≥ γ;

x′tβ2 + σ2εt, if z∗t < γ,

zt = z∗t + vt

where z∗t is the true threshold variable, but could not be directly observed. Instead, we have

its contaminant version zt subjected to measurement error vt that is independent of z∗t . One

could further extend this model to incorporate measurement errors in the regressors xt’s.

Let fz∗(·) and fv(·) be the density functions of z∗t and vt, respectively. Then the regime

probability function g(zt) could be expressed as

g(zt) = P (z∗t > γ|zt) =

∫∞
γ
fv(zt − z∗t )fz∗(z∗t )dz∗t∫∞

−∞ fv(zt − z
∗
t )fz∗(z

∗
t )dz

∗
t

.

From the above two examples, our nonparametric random switching model is very flex-

ible in handling various complicated data structure. When it is not clear what is the true

switching mechanism, a parametric set up might be exposed to model misspecification risk,

and model estimation bias. Therefore, we prefer to model the probability function g(z) non-

parametrically. We shall soon describe our estimation procedures, but we need to discuss

the regime identification issues first.

2.2 Model Identification

We now discuss the identification conditions required for the proposed model (2). As

an illustration, consider the following two threshold models:

Model I: yt =

{
x′tβ1 + σ1εt, with probability g(zt);

x′tβ2 + σ2εt, with probability 1− g(zt),

7



and

Model II: yt =

{
x′tβ̃1 + σ̃1εt, with probability g̃(zt);

x′tβ̃2 + σ̃2εt, with probability 1− g̃(zt).

When β̃I = β3−I , σ̃I = σ3−I for I = 1, 2 and g̃(zt) = 1 − g(zt), Model I and Model II

are identical. In other words, one may not able to distinguish the two regimes. For the

sake of identifiability, some previous studies suggest to impose constraints on the regression

coefficients in each regime. For example, Kim and Nelson (1999) and Wu and Chen (2007)

require that β1,1 < β2,1 to avoid ambiguity of regime classification.

However, in practice, one may not know in advance whether β1,1 and β2,1 are differ-

ent, or in the worst scenario, the two regimes may share the same regression coefficients

with different variance. Moreover, such an approach implicitly assume the existence of two

regimes. If in fact all data are generated from the same status, it may still be tempted to

yield different estimates of β1,1 and β2,1, thus misleadingly imply the existence of threshold

effects. With respect to all the concerns mentioned above, we propose to set constraints on

the nonparametric function g(z) instead and introduce the following definitions.

Definition 1: A probability function g(z) is said to be informative about the regime

status if there exists a value z̄ such that g(z̄) 6= 0.5, or equivalently, P (It = 1 | zt = z̄) 6=
P (It = 2 | zt = z̄).

Remark 1: An informative probability function is the most general condition we need

to distinguish two regimes. When P (It = 1 | zt = z̄) 6= P (It = 2 | zt = z̄), one could define

the two regimes such that P (It = 1 | zt = z̄) > 0.5. When the regime probability function is

not informative, i.e., g(z) ≡ 0.5 for all z, the model is unidentifiable.

Though the existence of an informative regime probability function might be helpful for

model identification, it may not be very practical as one may not know in advance where

this particular value z̄ might be. Alternatively, we discuss the following two conditions that

yield an informative regime probability function.

C1: g(z) satisfies the following boundary condition: g(zL) 6= 0.5 or g(zU) 6= 0.5, where

zL and zU are the lower and upper limit of the support of zt.

C2: g(z) satisfies the following shape restriction: g(z) is a monotonic function.

Obviously, C2 implies C1, and C1 implies the regime probability function is informa-
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tive. Hence either condition is sufficient for the sake of model identifiability. Without prior

knowledge, we tend to believe that it might be more likely to find that g(z) 6= 0.5 when

z approaches extreme values. This motivates us to consider C1 as a fairly mild condition.

Condition C2 is more restrictive than C1, but it could also be satisfied in various models.

The following proposition shows that g(z) = P (It = 1 | zt = z) is monotonically increasing

in the aforementioned two motivating examples.

Proposition 1: In example 1, the regime probability function g(z) is monotonically

increasing. In example 2, g(z) is monotonically increasing if the measurement error follows

a normal distribution.

The proof is presented in the Appendix.

Remark 2: In many practical settings, shape restrictions may result from theoretical

properties and stylized facts. For example, utility function, cost functions and profit func-

tions in economics are well known to be monotonic increasing, with convex or concave shapes.

In medicine sciences, the dose response curve in the phase I clinical trial has an increasing

trend. In survival analysis or reliability analysis, the hazard rate and the failure rate might

be modeled as monotonic curves as well. In our empirical application, the regime statuses

could be interpreted as the bear and bull markets, and the threshold variable is set to be the

growth rate of industry production. If the industry production is in a good shape, the market

may be more likely to be a bull market. Hence we assume the regime probability function

g(z) to be monotonically increasing. When the shape restriction assumption is reliable, our

estimate of g(z) may be improved since it explores the global curve feature rather than the

local boundary condition.

Now we discuss how to model the probability function g(z) nonparametrically under

Condition C1 or C2. Note that g(z) also needs to satisfy 0 ≤ g(z) ≤ 1. Hence we propose to

treat g(z) as a transformation of a nonparametric curve f(z), i.e. g(z) = H(f(z)) for some

pre-specified function H(·), and convert the problem into modeling f(z) nonparametrically.

The choices of H are quite flexible, and most invertible functions with range between [0,1]

might be considered. In particular, we recommend two choices of H as follows.

C1′ : g(z) = H(f(z)) =
exp(f(z))

exp(f(z)) + 1
,

or

C2′ : g(z) = H(f(z)) =

∫ z
a

exp(f(u))du∫ z
a

exp(f(u))du+ 1
. (3)
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For either choice, we adopt the p-th truncated power polynomial splines (TPPS) to model

f(z), i.e.,

f(z) = α0 +

p∑
i=1

αiz
i +

K∑
i=1

bi(z − τk)p+, (4)

where τ1, · · · , τK are K selected knots on the support of the threshold variable, and xi+ =

{max(x, 0)}i.
We first compare these two different choices and leave the discussions on how to choosing

K and τj’s in the next subsection. Choice C1′ could be used to model g(z) under condition

C1. When using C1′, we suggest first applying a monotonic transform to the threshold

variable so that zt ≥ 0 and P (It = 1 | zt = 0) 6= 0.5 after transform. We then define the

first regime such that g(0) = P (It = 1|zt = 0) > 0.5, or equivalently, requiring α0 > 0 in

equation (4). The choice of the degree p reflects one’s assumption on the smoothness of

f(z), or equivalently, g(z). If g(z) ∈ Wm, i.e., the total variation of its m-th derivative∫
{g(m)(z)}2dz <∞, we could choose p = m− 1. In particular, if g is a discontinuous curve

with finite structural breaks, we could let p = 0.

In contrast, choice C2′ could be used to model g(z) as a monotonically increasing func-

tion to satisfy condition C2. For convention, we can define the first regime such that

g(z) = P (It = 1|zt = z) is monotonically increasing. Similar to C1′, the choice of the

degree p reflects the smoothness of g. If g(z) ∈ Wm, m ≥ 2, we could choose p = m − 2.

Though higher degree p could be used, choosing p = 0 or p = 1 will lead to more efficient

computation as the integration in equation (3) has a closed form. The lower bound a of

the integration should be less than zL, the lower limit of the support of zt. If zt has an

unbounded support, one should choose p = 1 and restrict α1 > 0 to guarantee the existence

of the integration.

In the next subsection, we shall discuss how to choose K and τj’s via penalized method.

Our main task is to estimate the parameters β1, β2, σ1, σ2 and the nonparametric regime

probability function g(z). We adopt a unified estimating procedure that could work for both

choices of H under C1′ and C2′.

2.3 Priors and Estimation

Recall that we express f(z) via the p-th degree TPPS as in equation (4), where

α0, · · · , αp, b1, · · · , bK are unknown parameters and τk’s are K selected knots. When the
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number of knots K increases as the sample size does, the spline representation is flexible

enough to be treated as a nonparametric approach. As pointed out by Li and Ruppert

(2008), the choice of K and τk’s might not be important as long as K exists some lower

bound. However, to prevent from overfitting which tends to interpolate the data, one need

to control the roughness of the estimate. A simple idea is to incorporate a penalty term

related to total variation of the highest order derivative f (p+1)(z).

Let fε(·) be the density function of εt in model (2), the likelihood of {yt, xt, zt, t =

1, · · · , T} could be written as

L =
T∏
t=1

{
fε

(
yt − xtβ1

σ1

)
g(zt) + fε

(
yt − xtβ2

σ2

)
[1− g(zt)]

}
.

Suppose g(zt) = H(f(zt)) for some pre-specified H, and f(z) is the p-th degree TPPS defined

in (4). It could be shown that
∫

[f (p+1)(z)]2dz =
∑K

i=1 b
2
k (Claeskens et al., 2009). In the spirit

of penalized likelihood, we may propose to conduct smoothing by minimizing the following

criterion:

−2
T∑
t=1

log

{{
fε

(
yt − xtβ1

σ1

)
g(zt) + fε

(
yt − xtβ2

σ2

)
[1− g(zt)]

}}
+ λ

K∑
i=1

b2k, (5)

subjected to αj > 0, where j = 0 or 1, in correspondence to assuming condition C1 or C2

for model identification, respectively. Obviously, the nonparametric estimate f̂(z) is highly

affected by the choice of λ. In practice, it is always a major issue to discuss how to determine

an appropriate amount of penalty. Though some data drive methods like cross-validation or

generalized cross-validation could be employed, an alternative solution might be to treat bk’s

as Gaussian random coefficients N(0, σ2
b ) and use likelihood principle to choose the penalty

parameter. Note that log of the joint distribution defined by our model (2) with Gaussian

priors on bk’s has exactly the same form as (5) if we define λ = 1/σ2
b .

In traditional nonparametric regression, Ruppert et al. (2003) has adopted the above

idea to determine the penalty term and conduct smoothing. However, their approach might

not be applied in our case, as the computation is more involved when the joint distribution

does not belong to the exponential family. Given the difficulty in solving the optimization

problem (5), we decide to turn into the Bayesian approach. The use of the Bayesian approach

has several advantages. First, it provides an elegant solution to handle parameter constraints

and nonparametric smoothing simultaneously. In particular, the constrains αj > 0 could

be easily incorporated if we let the support of the prior P (αj) to be nonnegative, while
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smoothing could be conducted as we include an extra layer to model the prior distribution

of σ2
b and let the posterior to tell us what amount of penalty might be appropriate. Second,

we also gain more advantages in handling hypothesis testing as shown in the next subsection.

Before we elaborate this, let us describe our estimating procedure in details.

In the model (2), the joint posterior distribution of the parameters β1, β2, σ1, σ2,

α0, · · · , αp, b1, · · · , bK , σ2
b and the latent status variables I1, · · · , IT can be written as

P (β1, β2, σ
2
1, σ

2
2, α1:p, b1:K , σ

2
b , I1:T | y1:T , x1:T , z1:T ) (6)

∝ P (β1)P (β2)P (σ2
1)P (σ2

2)

p∏
i=1

P (αi)P (σ2
b )

K∏
k=1

P (bk | σ2
b )

×
T∏
t=1

g(zt)
2−It [1− g(zt)]

It−1fε

(
yt − xtβIt

σIt

)
.

Without strong prior information, we use flat conjugate priors when possible. Assuming

εt ∼ N(0, 1), we assign the normal and inverse gamma priors for the regression coefficients

and the variance for the error terms, respectively, i.e., βj ∼ N(µβ,Σβ), σ2
j ∼ IG(Aσ, Bσ).

For non-restricted spline coefficients αi’s, we may assume that αi ∼ N(µα, σ
2
α). For αi

that needs to satisfy the constraint αi > 0, we may assume the gamma distribution for

convention, i.e., αi ∼ G(Aα, Bα). For the rest of the spline coefficients, we first consider the

typical hierarchical representation such that σ2
b ∼ IG(Ab, Bb) and bk | σ2

b ∼ N(0, σ2
b ).

We adopt the Metropolis-within-Gibbs algorithm to draw samples {β(s)
1 , β

(s)
2 , (σ2

1)(s), (σ2
2)(s),

α
(s)
1:p, b

(s)
1:K , (σ

2
b )

(s), I
(s)
1:T , s = 1, · · · , S} from the joint posterior distribution (6). The posterior

mean of the model parameters can be estimated by the averages of the MCMC samples. To

implement the sampling algorithm, we summarize the full conditional distributions of each

component of the parameters and the latent statuses as follows.

P (βj | rest) ∼ N
(
µβ,j,Σβ,j

)
,

P (σ2
j | rest) ∼ IG(Aσ +

∑
t:It=j

1/2, Bσ +
∑
t:It=j

(yt − xtβj)2/2),

P (α0:p | rest) ∝
p∏
i=0

P (αi)
T∏
t=1

{
ct1 g(zt) + ct2 [1− g(zt)]

}
, (7)

P (b1:K | rest) ∝
K∏
i=1

P (bi)
T∏
t=1

{
ct1 g(zt) + ct2 [1− g(zt)]

}
,

P (σ2
b | rest) ∼ IG(Ab +K/2, Bb +

∑
k

b2k/2),

P (It = j | rest) = [ct1 g(zt)]
2−j{ct2 [1− g(zt)]}j−1/ {ct1 g(zt) + ct2 [1− g(zt)]} ,

12



where µβ,j = Σβ,j

(
σ−2j

∑
t:It=j

xty
′
t + Σ−1β µβ

)
, Σβ,j =

(
σ−2j

∑
t:It=j

xtx
′
t + Σ−1β µβ

)−1
and

ctj = fε

(
yt−xtβ1

σ1

)
for j = 1, 2. When simulating α0:p and b1:K , we have integrated out the

regime status I1:T to facilitate fast convergence rate. The conditional distributions of α0:p

and b1:K might be involved, but we can draw samples via the Metropolis-Hastings method.

See Gilks et al. (1995) and Liu (2001) for a detailed description of MCMC sampling.

Though it may be natural to treat bk’s as Gaussian random variables, we would also like

to discuss other possible choices of the prior. The Gaussian prior might result in L2 penalty

that plays the key role of smoothing. However, we think it may be kind of restrictive as g(z)

might not be smooth. For example, in the classical threshold model, g(z) = 1(z ≥ γ), with a

discontinuous point at the threshold value γ. When the smoothness assumption is violated,

we may instead consider sparseness assumption on the spline coefficients bk’s, as we only

have occasional jumps or structural break. Therefore, we recommend to choose Choice C1′

with p = 0, and turns the problem into conducting variable selection on nonzero bk’s. If we

follow the idea of Park and Casella (2008), we may consider the Laplacian prior for bk, i.e.,

p(bk|σ2
b ) ∼ 1

σ2
b,k

exp{−(|bk|/σ2
b )}. This is equivalent to the Bayesian LASSO procedure, which

includes the L1 penalty in the log-likelihood. However, we do think the assumption that all

bk’s share the same homogenous parameter σ2
b might be restrictive. Think of the classical

threshold model. The curves are extremely smooth except at the break point. Therefore,

an adaptive setting with each bk’s associated with various σ2
b,k might be more reasonable.

Hence we use the following hierarchical representation:

p(bk | σ2
b,k) ∼

1

σ2
b,k

exp{−(|bk|/σ2
b,k)}, σ2

b,k ∼ IG(Ab, Bb).

The posterior distribution are similar as in (7), except that the conditional distribution of

σ2
b,k becomes

P (σ2
b,k | rest) ∼ IG(Ab + 1, Bb + |bk|).

Note that the joint likelihood with different Laplacian prior of bk’s is equivalent to conducting

an adaptive lasso procedure, which could achieve sparseness as it tries to minimizes

−2
T∑
t=1

log

{{
fε

(
yt − xtβ1

σ1

)
g(zt) + fε

(
yt − xtβ2

σ2

)
[1− g(zt)]

}}
+

K∑
i=1

2|bk|/σ2
b,k.

13



2.4 Bayesian Inference

An obvious advantage of Bayesian approach lies in the fact that the posterior provides

a powerful inferential machinery. With the help of MCMC, the credible interval for any

parameter could be constructed for inference. Specifically, the level 100(1 − α)% highest

posterior density (HPD) interval of a particular parameter θ can be constructed as the min-

imum length interval that includes 100(1− α)% of the MCMC samples {θ(s), s = 1, · · · , S}.
We can also conduct significance test on each component βj,i of the regression coefficients

βj, j = 1, 2. Chen et al. (2010) defined the posterior odds for testing H0 : βj,i = 0 as

r(βj,i) =

∑S
s=1 1(β

(s)
j,i > 0)∑S

s=1 1(β
(s)
j,i ≤ 0)

.

The null hypothesis can be rejected at the α-level if r(βj,i) > (1−α)/α or r(βj,i) < α/(1−α).

Among different hypothesis questions, one may be particularly interested in checking

whether the threshold effect really exists. The hypothesis is then constructed as

H0 : β1 = β2 and log(σ2
1) = log(σ2

2) versus H1 : β1 6= β2 or log(σ2
1) 6= log(σ2

2). (8)

Even for classical threshold model, this is a nonstandard test as the threshold value γ is

a nuisance parameter which is not identified under the null (Davies, 1977). The frequen-

tists’ approach to handle the so called Davies’ problem relies on taking supremum over the

unidentified parameter, thus leading to a complicated null distribution associated with the

test statistic. In Bayesian analysis, this kind of tests are often conducted based on the

posterior odds of the hypotheses (Berger and Yang, 1994), which is defined as

P (H0 | data)

P (HA | data)
=
P (H0)

P (H1)
× P (data | H0)

P (data | H1)
,

where P (H0)/P (H1) is the prior odds of the hypotheses, and P (data | H0), P (data | H1) are

the marginal likelihoods.

...............................................................................

For our nonparametric regime shift model, we propose to use the 100(1− α)% highest

posterior density (HPD) interval based on the MCMC sample of the regression parameters

to draw the inference. In particular, the testing procedure is designed as below.

1. Define ∆(s) =

(
β
(s)
1 − β

(s)
2

log [σ2
1]

(s) − log [σ2
2]

(s)

)
, s = 1, · · · , S.
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2. Calculate

D(s) = (∆(s) − µ)′Σ−1(∆(s) − µ),

where µ and Σ are sample mean and sample variance of ∆(s), s = 1, · · · , S, respectively.

Define

D0 = (0− µ)′Σ−1(0− µ),

where 0 is the origin.

3. Reject H0 if D0 is greater than the 1− α quantile of D(s), s = 1, · · · , S.

Remark: Our inferential procedure is valid as our model identification condition is

imposed on g(zt) only. The marginal posterior of the regression coefficient βj’s and σj’s

could then be used for inference on the existence of the threshold variables.

3 Conclusions

Though threshold models have been proposed for more than three decades, the growth

of its literature is still ongoing. The regime switching mechanism of the classical threshold

model is completely controlled by the observable threshold variable relative to the threshold

value. Such a deterministic setup could endorse some nice properties, but may be too restric-

tive in real applications. In this paper, we propose a new type of regime switching models

with nonparametric regime probability functions, which could be treated as a combination

of classical threshold models and random switching models. The use of a nonparametric link

function enable us to avoid model miss-specification risk, thus allowing us to better discover

the sample feature and handle various complicated situations.

We solve the identification problem by imposing constraints on the regime probability

function and adopt the penalized spline approach for nonparametric estimation. To circum-

vent the difficulty caused by high dimensional optimization as well as parameter constraint,

we employ the Bayesian approach with MCMC sampling techniques. We consider various

choices of the priors on the spline coefficients, that enable us to conduct handle automatic

smoothing or variable selection. We also design a Bayesian test on the threshold effects

based on the MCMC samples. We demonstrate the validity of our methods via simulations

and an empirical example.
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We conclude our paper by pointing out some potential topics for future research. First,

it is possible to extend our prior and augmenting the prior of the scale parameter σb with

a point mass at zero. This will help us to formally design a nonparametric test on the link

function with parametric null versus general alternative. Second, it may be a very interesting

direction to extend our model to allow multiple regimes or include more threshold variables

in the regime probability function.

Appendix

Proof of Proposition 1: In example 1, the regime probability function g(z) = Fu(z − γ),

it is always a monotonically increasing function.

In example 2, suppose vt ∼ N(0, σ2
v), we have

g(z) =

∫∞
γ
fz∗(z

∗)fv(z − z∗)dz∗t∫∞
−∞ fz∗(z

∗)fv(z − z∗)dz∗

=

∫∞
γ
fz∗(z

∗) exp{− (z−z∗)2
2σ2
v
}dz∗∫ γ

−∞ fz∗(z
∗) exp{− (z−z∗)2

2σ2
v
}dz∗ +

∫∞
γ
fz∗(z∗) exp{− (z−z∗)2

2σ2
v
}dz∗

=
1∫ γ

−∞ fz∗ (z∗) exp{−
(z−z∗)2

2σ2v
}dz∗∫∞

γ fz∗ (z∗) exp{−
(z−z∗)2

2σ2v
}dz∗

+ 1

.

The first term in the denominator can be written as∫ γ
−∞ fz∗(z

∗) exp{− (z−z∗)2
2σ2
v
}dz∗∫∞

γ
fz∗(z∗) exp{− (z−z∗)2

2σ2
v
}dz∗

=

∫ γ
−∞ fz∗(z

∗) exp{− (z−γ+γ−z∗)2
2σ2
v

}dz∗∫∞
γ
fz∗(z∗) exp{− (z−γ+γ−z∗)2

2σ2
v

}dz∗

=

∫ γ
−∞ fz∗(z

∗) exp{ (2z−γ−z
∗)(z∗−γ)

2σ2
v

}dz∗∫∞
γ
fz∗(z∗) exp{ (2z−γ−z

∗)(z∗−γ)
2σ2
v

}dz∗
.

Because
∫ γ
−∞ fz∗(z

∗) exp{ (2z−γ−z
∗)(z∗−γ)

2σ2
v

}dz∗ is monotonically decreasing as z increases and∫∞
γ
fz∗(z

∗) exp{ (2z−γ−z
∗)(z∗−γ)

2σ2
v

}dz∗ is monotonically increasing, so g(z) is a monotonically

increasing function. This completes the proof. �
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