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Lasso, knockoff and Gaussian covariates: a comparison

Laurie Daviedl]

Abstract

Given data y and k covariates x; one problem in linear regression
is to decide which if any of the covariates to include when regressing
the dependent variable y on the covariates x;. In this paper three
such methods, lasso, knockoff and Gaussian covariates are compared
using simulations and real data. The Gaussian covariate method is
based on exact probabilities which are valid for all y and z; making
it model free. Moreover the probabilities agree with those based on
the F-distribution for the standard linear model with i.i.d. Gaussian
errors. It is conceptually, mathematically and algorithmically very
simple, it is very fast and makes no use of simulations. It outperforms

lasso and knockoff in all respects by a considerable margin.

1 Introduction

There are many papers on lasso from the first [Tibshirani, 1996] to a very

recent one [Bellec et al., 2017], a span of 21 years. As no theoretical com-

parisons are made in this paper we give no further references. The software
required for the comparison is the R package glmnet which can be down-

loaded from

https://CRAN.R-project.org/package=glmnet

Knockoff is much more recent. Theoretical work is to be found in [Candes et al., 2017].

The software is obtainable from R

'Faculty of Mathematics, University Duisburg-Essen, 45117 Essen, Federal Republic of

Germany, email: laurie.davies@uni-due.de



https://cran.r-project.org/web/packages/knockoff/index.html
Part of the comparison is based on the Tutorials 1 and 2 of

https://web.stanford.edu/group/candes/knockoffs/software/knockoff/

The present version of the Gaussian covariate method is new but it is based
on previous attempts, see [Davies, 2017]. It is described in Section [2| There

is as yet no R package but the software is available as an ancillary file.

The real data used in the comparison includes three of the data sets used in
[Dettling and Biithlmann, 2003], colon cancer ([Alon et al., 1999]), leukemia
(|[Golub et al., 1999]) and lymphoma ([Alizadeh et al., 2000]) available from

http://microarray.princeton. edu/oncology/
http://microarray.princeton. edu/oncology/

http://1lmpp.nih.gov/lymphoma/data/figurel).

respectively. The prostate cancer data is available from the lasso2 CRAN R
package

https://CRAN.R-project.org/package=lasso?2
and the red wine data ([Cortez et al., 2009]) from
https://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/

The Boston housing data and the Brownlee stack loss data are available from
the R package MASS

https://CRAN.R-project.org/package=MASS

A further data set is that considered in [Cox and Battey, 2017] on osteoarthri-
tis available from the Gene Expression Omnibus under accession number
GDS5363 available from



https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS5363

As in [Cox and Battey, 2017] the males have been excluded. All the data
sets are the same but with permutations so that replicating the results here
will require exactly the same data set. The one used here is that used in

[Cox and Battey, 2017] and is, I think, the DataSet SOF'T file.
For a short discussion of L; regression use is made of the R package quantreg

available from

https://CRAN.R-project.org/package=quantreg

The comparisons require the latest version of R [R Development Core Team, 2008].
The results of this paper can be reproduced by running the file runcomp.R.
This requires the FORTRAN file selvar.f and the R files comp.R and selvar.R.
The output is given in the Appendix )] The running time was eight hours

40 minutes.

2 A description of the Gaussian covariate method

2.1 The basic idea

Consider data consisting of a dependent variable y = y(n) = (y1,...,Yn)
and an explanatory variable & = (x1,...,2,). The problem is to decide if @
is indeed an explanatory variable for y in the sense that the values of y can
to some extent be explained by those of . A standard method of deciding

this is to postulate a linear model

(1) y = px + o€



with € i.i.d. standard Gaussian noise and to test the null hypothesis § = 0.

The standard test is the F-test based on the F-statistic

(2) F = (58 = 8502)/(502/(n = 1) £ Fi

where ss, = > y? and ss,, is the sum of the squared residuals after

regressing y on x. The null hypothesis is rejected if the P-value
(3) 1-— F17n_1(F)

is less than the specified size of the test a.

The Gaussian covariate approach is to compare & with a Gaussian covariate
Z with ii.d. N(0,1) components. The comparison is done through the
sum of the squared residuals. The covariate Z is clearly not an explanatory
covariate so that if @ is no better than Z in respect of the sum of squared
residuals it is concluded that « is also not an explanatory covariate: the null
hypothesis # = 0 is replaced by the question, is Z better than x?

Denote the sum of squared residuals after regressing y on Z by ss, z. It has

been shown by Lutz Dimbgen (|[Davies and Diimbgen, |) that
(4) B =1-s5s,7/ss, 2 Bijo,(n-1y)2

with P-value

(5) 1= Bijz,(n-1)/2(B)

and that the two P-values are equal

(6) 1= Bijam-1y2(B) =1— Fi,a(F).



This is a remarkable result even if it has a simple proof. It is remarkable

because both P-values are exact and uniformly distributed over [0, 1] but

whereas the P-value on the left is valid for all (non-zero) y and x that on

the right depends on the model .

We need a generalization of this result also due to Lutz Diimbgen ([Davies and Diimbgen, |).
Given y and ¢ linearly independent covariates ;,7 =1,...,fand ' —¢ > 1

i.i.d. N(0,1) additional random covariates we have

D
(7) 1 — s8¢ /850 = Br—o)j2,(n—1)/2

where ss; is the sum of squared residuals after regressing on the x;,j =
1,...,¢ and ssp the sum of squared residuals after regressing on all ¢’ covari-

ates. The case ¢/ = £+ 1 is the one required for stepwise regression.

2.2 Gaussian covariate stepwise regression

Regress y on x; including an offset by default, put

n

ssy =) _(y: — mean(y))’

i=1
and denote the sum of squared residuals by ss;. The best of the @x; is the

one with the smallest ss; given by

$8(1) = Min $8;.
J

Denote the corresponding quantities for the Gaussian covariates by S.S; and

SS(1y respectively. From

(8) 1 —SS;/s5, 2 Bijo,n-1)2-



As the Gaussian covariates are independent it follows that
(9) P(SS(U < 88(1)) =1- Bl/g,(n_l)/g(l — 55(1)/88y)k.

If the best of the x; is x;, the right hand side is referred to as the P-value
of ;. The smaller the P-value the more relevant x;,. This corresponds to
the role of testing /3;, = 0 in the linear model where the smaller the P-value
the more significant the covariate x;, .

In some applications it is useful to be less strict when selecting variables. This
may be seen as a trade-off between reducing the number of false negatives,
not selecting variables with some explanatory value, at the risk of more false
positives, selecting variables with no explanatory value. This may be done
as follows.

The random variables B /s (n—1)/2(1 — SS;/ssy) are i.i.d. U(0,1) so that

P(SS(l) S SS(l)) = 1- Bl/?,(n—l)/?(]- — 88(1)/88y>k

(10) = 1- Bk,l<Bl/2,(n—1)/2<1 — 88(1)/85y)).

This can be extended to the vth order S5, to give

(11) P(SS(,,) S 88(1)) =1- Bk_,,+1,,,(Bl/27(n,1)/2(1 — 88(1)/88y)).

Comparing ssg) with S5, is less strict than comparing it with SS5(;). Al-
though v has a direct interpretation when an integer this is not necessary in
(11)) other values may be chosen.

We state once again that all the above probabilities are exact and hold for
all y # 0 and for all covariates ¢, 7 =1,...,k.

To incorporate this into a stepwise procedure a cut-off value « for the P-value

must be specified, for example o = 0.05. Suppose at stage ¢ of the procedure
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¢ covariates have been selected. We denote the sum of the squared residuals
by ss,, with ss,o = ss, and the set of selected covariates by S;. For each
J ¢ Sy regress y on the covariates in Sy U «; and denote the smallest sum
of squared residuals taken over j by ssy 1). This is now compared with the
smallest sum of squares obtainable by considering k& — ¢ random Gaussian
covariates Z,,k = 1,...,k — £. These are so to speak chosen anew for each
¢. This is asking the question as to whether the remaining covariates are
better than Gaussian noise. Regressing y on the covariates in Sy U Z,; gives

a random sum of squared residuals S.Sy,. From @ we have
(12) 1 — SSy./s500 2 Beta(1/2, (n — £ —1)/2),
and the P-value for the best of the ; ¢ S, is given by

(13)  P(SSea) < ssey) =1 —B(1 — ssp,1)/8800,1/2, (n — £ —1)/2)F "

If the P-value is greater than the cut-off value o the procedure terminates.
Otherwise the best covariate is included and the procedure continues. The

command is
fstepwisey,x,alpha,kmax,nu=1,kexk=0,0ffset=TRUE, time=FALSE, verbose=FALSE)

Applying this to the leukemia data mentioned in Section (1| with (n,k) =
(72,3571) gives

> fstepwise(ly.original,lx.original,0.05,10,time=T) [[1]]
user system elapsed
0.022 0.000 0.021
[,1] [,2]
[1,] 1182 0.0000000000
[2,] 1219 0.0008577131
[3,] 2888 0.0035805523



Here 1182, 1219 and 2888 are the selected covariates with P-values 0.0000000000,
0.0008577131 and 0.0035805523 respectively.

The extension of the above to the vth order statistic is

(14) P(SSew) < sse ) =

11— kaZJrlfu,y(Bl/2,(n—€—1)/2(1 - SSe,(l)/SSr,z))

which is the probability that the vth best of the Gaussian covariates is better

than the best of the remaining covariates.

2.3 False positives and v

The left-hand side of requires v to be an integer. The right-hand side

does not require this and the P-value

1 — By—ts1-v0(Bij2,(n—e-1)/2(1 — 550,1)/55.,0))

is well defined for non-integer v but then loses its interpretation in terms of
the left-hand side.

Even when v is an integer it is not clear what effect the choice of v has on the
results. This can be done by relating v to the concept of false positives. A
false positive is selecting a covariate which is no better than Gaussian noise.
This may be quantified by using Gaussian noise as the covariates and then
counting the number of covariates selected all of which are false positives.
This is shown in Table [1] and may be of help in choosing a value of v for any
given data set. The 90% quantiles and medians in Table [l are based on 1000

simulations.



v 2 3 4 5 6 7 8 9 10
a=005 1 2 3 4 5 6 7 8 10
0 11 2 3 3 4 5 6

a=001 1 1 2 3 4 5 6 7 7
0 011 2 2 3 4 4

Table 1: 90% quantiles (first lines) and medians (second lines) of the number of false

positives as a function of v and « for (n, k) = (1000, 1000)

If n is small and k large even small values of v can lead to as many as n false
positives. This is the case for the leukemia data with v =5. Forv =2,...,7

the 90% quantiles are respectively

1, 3, 5, 8, 14, 22.
Putting v = 3 gives

> fstepwise(ly.original,lx.original,0.05,10,nu=3,time=T) [[1]]
user system elapsed
0.03 0.00 0.03
[,1] [,2]
[1,] 1182 0.000000e+00
[2,] 1219 1.051452e-10
[3,] 2888 7.664817e-09
[4,] 1946 3.353905e-03
[5,] 2102 6.026398e-04

Thus v = 3 leads to two more covariates but as the 90% quantile is 3 there is
no evidence that these additional covariates are correct positives. This can
be seen more precisely by regressing ly.original on the covariates 1-5 above

to give the following regression P-values.

9



> b<-1lm(ly.original~lx.originall,c(1182,1219,2888,1946,2102)])
> as.double(summary(b) [[4]][2:6,4])
[1] 2.286646e-15 4.207564e-10 1.549639e-06 1.041936e-06 4.478674e-05

We refer to these as regression P-values to distinguish them from the P-
values of @ Typically the regression P-values are much smaller. The small
regression P-values for 1946 and 2102 suggests that they may be relevant.
They may indeed be relevant but not on the basis of the small regression
P-values. To see this replace Ix.original by Gaussian noise tmpx except for
1182, 1219 and 2888 which are the first three covariates of tmpx. Running

the stepwise procedure gives

\4

set.seed(2345)

> tmpx<-rnorm(lx.original)

\

dim(tmpx)<-dim(lx.original)

\4

tmpx [,1:3]<-1x.original[, c(1182, 1219, 2888)]

> fstepwise(ly.original,tmpx,0.05,10,nu=3) [[1]]
[,1] [,2]

[1,] 1 0.000000e+00

[2,] 2 1.051452e-10

[3,] 3 7.664817e-09

[4,] 1698 5.235440e-03

and regress ly.original on these 4 covariates to give the regression P-values

> b<-1m(ly.original ~tmpx[,c(1:3,1698)])
> as.double(summary(b) [[4]1][2:5,4])
[1] 3.630659e-21 1.242047e-08 9.651025e-07 9.631336e-05

The Gaussian covariate 1698 has a regression P-value of 9.631336e-05 in spite
of being a false positive. We use this idea below when evaluating selected

covariates for real data.
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It might seem that the calculation of the regression P-values given above relies
on the model but this is not the case. It is done for convenience. Exactly
the same P-values can be obtained from ([7) which is based on Gaussian
covariates and applies for all y and all covariates .

Most of the data sets considered here have either k& small or n small and k
large. For such data sets only the default value v = 1 and possibly v = 2 are
appropriate. The exceptions are Tutorials 1 and 2 with (n, k) = (1000, 1000)
where Table (1 suggests v = 10 can be a reasonable choice.

The definition of false postive given above is an emprical one. In simulations
based on the linear model a false positive is the selection of a covariate x;
with 8; = 0. A false negative is the ommission of a covariate x; with 3; # 0.
This is the defintion we use in simulations, Tables[2/and 3] In the simulations
of graphs in Section a false negative is the omission of an edge where the
true graph has an edge. A false postive is the inclusion of an edge where the

true graph has no edge.

2.4 Repeated Gaussian covariate stepwise regression

Once the first covariate has been chosen the stepwise procedure is condi-
tional on this covariate. More generally once a subset has been chosen the
next covariate to be chosen is dependent on this subset. To illustrate this
we consider the colon cancer data with (n,k) = (62,2000). The stepwise

procedure results in

fstepwise(colon.y,colon.x,1,2,time=T) [[1]]
user system elapsed
0.004 0.001 0.005
[,1] [,2]

11



[1,]1 493 7.402367e-08
[2,] 175 4.311166e-01

For any cut-off P-value a@ < 0.43 only one covariate is chosen, namely 493.
This does not mean that only covariate 493 is relevant but that given 493
the remaining 1999 are in a sense no better than white Gaussian noise.

If covariate 493 is eliminated and the stepwise procedure applied to the re-
maining covariates again just one covariate is chosen, 377 with a P-value
1.355905e-07. The covariates 493 and 377 are highly correlated with correla-
tion coefficient of 0.778. This explains why 377 is no longer considered once

493 has been included.

Now 377 can be excluded and the procedure continued in this manner until
the P-value of the best of the remaining covariates exceed the specified cut-
off value av. The value a = 0.05 results in 82 covariates being selected. The

time required was 0.22 seconds. The first ten are

(.11 [,2] [,31]
[1,] 1 493 7.402367e-08
[2,] 2 377 1.355905e-07
[3,] 3 249 1.134563e-06

[4,] 4 1635 2.283614e-06
(5,] 4 576 2.815082e-02
(6,] 5 1423 2.760755e-05
[7,] 5 353 7.996075e-04
(8,1 6 625 3.166107e-05
[9,1] 6 739 8.354274e-04
[10,] 7 245 1.931080e-04

The value @ = 0.01 results in 45 selected covariates in 0.15 seconds. The

command is

12



fstepstepwise(y,x,alpha,kmax,nu=1,0ffset=TRUE, time=FALSE, verb=FALSE)

The Gaussian covariate procedure may be interpreted as offering a linear
approximation to the dependent covariate y whereby the inclusion of an
additional covariate does not lead to a better approximation as this additional
covariate is no better than Gaussian noise. This was demonstrated above
using the leukemia data. The repeated Gaussian procedure may be seen
as offering a series of such approximations or attempts to specify all those
covariates which are explanatory for y.

Lasso offers a single regression-type relation, a point mentioned in [Cox and Battey, 2017].
It can also be seen in Section 5 of [Bellec et al., 2017] where a true 5* in
is assumed and compared with lasso estimators.

This completes the description of the Gaussian covariate method. It is ex-
tremely simple and there is no mention of regression parameters  or the vari-
ance o of (). This contrasts with the treatment of lasso in [Bellec et al., 2017]
where all the values of the tuning parameter A considered involve o. Indeed
the estimation of o is one of the main problems with lasso as many optimality

results for the choice of A depend on the value of o.

2.5 L; regression

The idea is not restricted to least squares. It can be applied to L, regression
but then simulations are necessary. We take the Brownlee stack loss data as
an example. Suppose the covariates Air Flow and Water Temperature have
been selected. Including the covariate Acid Concentration reduces the sum
of the absolute residuals from 43.69355 to 42.08116. In a simulation with

Gaussian covariates replacing Acid Concentration the Gaussian covariates
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was better in 20% of the simulations giving a P-value of 0.204 for Acid
Concentration. This uses the R package quantreg. The corresponding P-
value for least squares regression is 0.344.

For robust regression with a smooth 1 function and for non-linear regression
such as logistic a chi-squared approximation is available (see [Davies, 2017])

removing the need for simulations.

2.6 Why Gaussian?

The method started with the question as to whether it was possible to judge
the relevance of a covariate without assuming the model . The initial
data set was the Brownlee stack loss data and the unfortunate covariate
was Acid Concentration. This was replaced by the cosine of the average
daily temperature in Berlin on the first 21 days of January 2013. The Acid
Concentration won but only just. Relying on empirical alternatives to the
covariates was not a promising option but from there it was but a short
step to simulating alternatives. Initially an attempt was made to model the
alternative covariates. If the covariate was 0-1 use the binomial, if integer
valued a Poisson etc (see page 279 of [Davies, 2014]). The results showed
that the modelling was not worth it. They were essentially the same when
one used Gaussian alternatives.

In the case of one Gaussian covariate Z = (71, ..., Z,) the sum of squared
residuals is

O wiZi)® D Yol vyl

1 ~ )
) T BT

If the Z; are not Gaussian but say Bernoulli +1 then (15 will still hold
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asymptotically but this will require conditions on y. More generally if the
Z; have finite variance then subject to conditions on the y; (15]) will hold. In
this case there seems to be no reason not to use the exact result for Gaussian
covariates.

We start from > | y? so when calculating the percentage reduction in the
sum of squares due to regression on the Z; the expression Y ", y? cancels out

2

just as o° cancels out in the F-test. This is why the calculated probabilities

hold for all y. If the Z; are replaced by i.i.d. Cauchy random variables C;
then becomes

e () Lo

2 e OF — 2 i OF
where C' is a standard Cauchy random variable. There is no cancelling
out and the distribution will depend on y even asymptotically. Moreover

(>0 lwi])? is larger than D | y? indicating that Cauchy random variables

are less exacting than Gaussian random variables.

3 Comparison of Lasso, knockoff and the Gaus-
sian covariate procedure

The comparisons given here are purely empirical. It is possible to prove
theoretical results on the Gaussian covariate method as a first attempt in
[Davies, 2017] shows but this will not be pursued further. The comparisons
are given in detail and it should be possible to repeat then using the software
available as an auxiliary file. The version of lasso to be used is the cross-

validation option cv.glmnet provided in the R package glmnet.
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Lasso and knonckoff involve randomization so that repeated use on the same
data set will in general produce different selected covariates. In such cases
we take the union of the selected covariates. The Gaussian covariate method
does not involve randomization and gives the same result each time. The

default values of a and v are 0.05 and 1 but others will be occasionally used.

3.1 Tutorials 1 and 2

The simulations of Table [2] are based on the Tutorials 1 and 2 respectively
of with the parameters as given there.

The default choice v = 1 avoids false positives possibly at the cost of false
negatives. Using this value of v in Tutorial 1 results in on average 15 co-
variates being chosen with no false positives. Putting v = 5 results in 53
covariates being chosen. Table (1| suggests that of 38 additional covariates
at most 4 will be false positives. Putting v = 10 results 62 being chosen of
which about 10 are false positives. Given the 4 with v = 5 indicates that of
the additional 9 at most 6 will be false negatives. In all v = 10 suggests at
most 10 false negatives (Table [1|) giving about 52 correctly identified covari-
ates. Table |2/ shows that these estimates are quite good. Similar calculations
apply to Tutorial 2.

It follows from Table [2| that lasso selects on average approximately 140 co-
variates in Tutorial 1 and 100 in Tutorial 2 which is somewhat excessive.

In terms of the sum of false positives and false negatives knockoff and the
choices ¥ = 5 and v = 10 are comparable. The default value of the false
discovery rate fdr is 0.1 but in Tutorial 2 it is set to 0.2. If the default

value 0.1 is used the false positive and negative values become 2.48 and 44.6
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Tutorial 1 Tutorial 2
method fp fn  time fp fn  time
lasso 824 0.52 7.89 56.0 15.9 9.79
knockoff 5.58 10.0 63.9 7.00 35.1 539
vr=1 0.00 46.2 0.25 0.00 56.5 0.04
v=>5 336 11.6 229 2.78 425 0.44
v=10 7.02 5.82 3.33 7.00 354 0.94

Table 2: Comparison of lasso, knockoff and Gaussian covariates with o = 0.05 based on

Tutorials 1 and 2.

respectively. Also in Tutorial 2 the covariance matrix Sigma was used to

construct the knockoff variables.

if only slightly. If the knockoff filter is used as in Tutorial 1 the average
numbers of false positives and negatives become 6.32 and 36.72 respectively.
The main difference between knockoff and the Gaussian covariate method is
the computing time. In Tutorial 1 it is 20 times slower that the Gaussian

method with ¥ = 10 and 50 times slower in Tutorial 2. For real data the

difference can be much larger with factors over 1000.

This seems to improve the performance

The commands for Tutorial 1 and Tutorial 2 are as follows:

ftut(1,1000,1000,60,4.5,0.1,0.05,50)

ftut(2,1000,1000,60,7.5,0.2,0.05,50)

3.2 Red wine data

For the red wine data with (n,k) = (1599, 11) the dependent variable is

variable 12 and gives subjective evaluations of the quality of the wine.
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Five applications of lasso gave 4, 4, 6, 6 and 7 selected covariates. Their
union was {1,2,5,7,9,10,11}. Five applications of knockoff gave 10, 7, 10,
11 and 10 selected covariates. The Gaussian method with cut-off P-value

a = 0.05 gives

> fstepwise(redwinel[,12] ,redwine[,1:11],0.05,10) [[1]]
[,1] [,2]

[1,] 11 0.000000e+00

[2,] 2 0.000000e+00

[3,1] 10 2.032414e-10

[4,] 7 1.027568e-04

[5,] 5 1.002491e-04

[6,] 9 1.096799e-03

The chosen covariates are in order alcohol, volatile-acidity, sulphates, total-

sulfur-dioxide, chlorides, pH (see Table 5 of [Lockhart et al., 2014]).
The repeated Gaussian method of Section [2.4] gives

> fstepstepwise(redwine[,12],redwine[,1:11],0.05,10) [[1]]
[,11 [,2] [,3]

[1,] 1 11 0.000000e+00
[2,] 1 2 0.000000e+00
[3,] 1 10 2.032414e-10

[4,] 1 7 1.027568e-04
(5,] 1 5 1.002491e-04
(6,] 1 9 1.096799e-03
(7,1 2 3 0.000000e+00
[8,] 2 8 0.000000e+00
[9,] 2 1 1.918132e-12
[10,1] 2 4 4.110445e-07
[11,] 3 6 4.283397e-02
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method  false pos. false neg.

lasso 0.04 1.26
knockoff 1.15 0.09
v=1 0.05 0.00
v=2 0.46 0.00
v=3 1.45 0.00

Table 3: Comparison of lasso, knockoff and Gaussian covariates based on the red wine

data

This indicates that the covariates 3, 8, 1 and 4 are also strongly related to
the quality of the wine but not conditional on the first six.

Finally we give the result of a simulation. The five covariates 3, 8, 1, 4 and
6 are replaced by ii.d. N(0,1) variables. Choosing one of these is a false
positive. Not choosing one of the remaining six covariates is defined as a

false negative. The result of 100 simulations are given in Table [3

The false discovery rate was set to 0.2 which is the best for this simulation.
Nevertheless in over 40% of the cases a Gaussian covariate was chosen. The
cut-off P-value for the Gaussian methods was a = 0.05. If this is reduced to
a = 0.01 the average false positive numbers become 0.02, 0.18 and 0.70. The

command is

>fredwine (redwine,nsim=100,alpha=0.05)

3.3 Cancer data
3.3.1 Colon data

The size of colon cancer data is (n, k) = (62,2000).
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A first application of lasso results in the following 15 covariates
14,249, 377,493,576, 625, 792, 1231, 1360, 1473, 1582, 1679, 1772,1843, 1924.
The next immediate application of lasso gives the following
249,377,493, 625.

How are these results to be interpreted? The initial formulation of the prob-
lem in [Tibshirani, 1996] and the analysis given in [Bellec et al., 2017] suggest
that the aim is to give a good parsimonious linear model for y. This is also
the interpretation of lasso given in [Cox and Battey, 2017]. The first appli-
cation does not result in a parsimonious linear model but the second may
do so. Regressing colon.y on these four covariates results in the regression
P-values

0.02517, 00379, 0.58052, 0.018820.

Covariate 493 with a regression P-value of 0.58052 contributes little and will
be eliminated. The model based on 249, 377 and 625 gives regression P-
values 4.71e-03, 8.26e-05 and 1.10e-02. Covariate 625 is not very convincing
and eliminating it leads to the model base solely on 249 and 377 with P-values
7.77e-05 and 9.10e-06 which looks more convincing.

All these P-values do not take into account that the four covariates were
chosen out of 2000. This can be done by calculating the P-values as defined
in (14]) with v = 1. The P-value for 493 given 249, 377 and 625 is

1 — pbeta(pbeta(l — ss1234/55124,0.5, (62 — 5)/2), (2001 — 5), 1)

where ss1934 and ssqo4 are the sums of squares residuals based on 249, 377,

493, 625 and 249, 377, 625 respectively. This gives a P-value of 1 in contrast
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to the previous one of 0.58052. The P-values corresponding to the regression
P-values 7.77e-05 and 9.10e-06 are 0.0214619 and 0.1639252 respectively.
Doing this for all possible 15 models leads in the end to just the four models
based on each individual covariate.

The reason for the above is that the covariates are correlated. Regressing 493
on 249 and 377 results in regression P-values 1.803856e-06 and 3.452139e-08
respectively.

We point out that the first three covariates for the repeated Gaussian co-
variate stepwise procedure given in Section are 493, 377 and 249 in that
order. The covariate 625 is number 8 but together with 739. This means that
the linear model based on 625 and 739 fulfills the conditions on the P-values
and shows that not all models are based on a single covariate.

On the basis of this is is better to interpret the output of lasso as an attempt
to specify those covariates which are closely related to colon.y. This is the
attitude taken in [Cox and Battey, 2017]for their method. This applies also
to the output of knockoff.

With only four covariates it was possible to check all subsets. With 15 and
more this becomes practically impossible and even if possible probably not
worth the effort. We shall therefore only consider single covariates, pairs and
triplets. For the pairs and triplets we calculate the P-value of each covariate
in turn and then list all the pairs and triplets for which all these P-values

are less than a cut-off value o taken here to be 0.01.
Five application of lasso resulted in 15, 4, 5, 25 and 29 variables. The union

consisted of the following 32 variables

14, 164, 175, 249, 353, 377, 493, 576, 611, 625, 654, 788,
792, 823, 1073, 1094, 1221, 1231, 1256, 1346, 1360, 1400, 1473,
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1549, 1570, 15682, 1668, 1679, 1772, 1843, 1873, 1924

Five applications of the knockoff filter with fdr =0.5 resulted in 12, 3, 6, 35

and 4 variables being selected. The union consisted of the 38 variables

14, 164, 175, 353, 377, 576, 611, 654, 788, 792, 823, 966, 1073, 1094, 1110,
1123, 1146, 1231, 1241, 1346, 1360, 1400, 1420, 1482, 1549, 1570, 1622, 1649, 1740, 1772,
1827, 1843, 1873, 1893, 1924, 1935, 1976, 1989.

The colon cancer data set was used in Section as an example for the
repeated Gaussian stepwise. The first ten covariates together with their P-
values were listed there.

The computing times were two seconds for lasso, two hours fifty minutes for

knockoff and 0.22 seconds for the Gaussian covariate method.

The chosen covariates will be evaluated by calculating the P-values for single,
pairs and triplets of covariates as described at the beginning of this section.
The cut-off P-value was set to a = 0.01 and the smallest P-values are given.

The result for lasso was

[1,] 1843 6.495852e-09
[2,] 493 7.398644e-08
[3,] 1772 1.078545e-07
[4,] 377 1.355903e-07
[5,] 249 1.135130e-06
[6,] 1873 1.214555e-06
[7,] 1231 2.822242e-06

(9,1 14

2

[8,] 1473 4.105941e-06
6.468307e-06
6

[10,] 1400 6.848481e-06
[11,] 1360 1.044163e-05
[12,] 576 1.516268e-05
[13,] 1256 1.737674e-05
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[14,] 1679 3.054090e-05

[156,] 625 3.175638e-05

[17,] 1549

3
3

[16,] 1924 4.711134e-05
3.631080e-04
4

[18,] 1346 4.018934e-04
[19,] 1582 1.403567e-03
[20,] 792 3.259051e-03

(22,1 175

3

[21,] 353 3.770271e-03
4.906957e-03
8

[23,] 1668 8.633158e-03.

The corresponding result for knockoff was

[1,] 1843 6.495852e-09
[2,] 377 1.355903e-07
[3,] 14 2.778769e-07
[4,] 1873 1.214555e-06
[5,] 1772
(6,1 1231

2.463932¢-06
2.822242¢-06
[7,] 1360 1.044163e-05
[8,] 576 1.516268e-05
[9,] 1400 1.168938e-04
[10,] 1935 1.411647e-04
[11,] 1549 3.631080e-04
[12,] 1346 4.018934e-04
[13,] 1924 4.747120e-04
[14,]1 175 4.906957e-03

8

[15,] 1110 8.805362e-03

The Gaussian stepwise procedure yields 71 covariates. The first 30 are
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[1,]

[2,1]

[3,1]

(4,1

[5,]

(6,1

(7,1

(8,1

[9,1]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[26,]
[27,]
[28,]
[29,]

1423
1843
1494
493
1293
1772
377
513
1406
992
1634
249
1648
1060
1042
1730
1900
1635
365
187
1231
625
792
111
14
1771
1771
138
576
1256

© © O P P P NDNDNDNDNN

.106895e-10
.495852e-09
.047067e-08
.398644e-08
.035832e-08
.078545e-07
.355903e-07
.999018e-07
.378230e-07
.819964e-07
.697313e-07
.135130e-06
.161793e-06
.316599e-06
.476826e-06
.032950e-06
.209020e-06
.285901e-06
.311574e-06
.586279e-06
.822242e-06
.630786e-06
.863052e-06
.885140e-06
.468307e-06
.208768e-06
.208768e-06
.209879e-05
.516268e-05
.737674e-05
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[30,] 1153 2.372798e-05

Comparing the complete results (see comp.res) it is seen that all the lasso
and knockoff variables apart from 175, 1110, 1360, 1549, 1668, 1924 and
1935 are included in the list of the Gaussian covariate method. There are 10
lasso variables, 6 knockoff variables and 26 Gaussian covariate variables with

P-values less than le-5.

3.3.2 Leukemia data

The size of the leukemia data is (n, k) = (72,3571).
The knockoff procedure with fdr=0.5 resulted in 31 covariates. The time
required was five hours 20 minutes. In view of this no further analysis was

carried out as it would require of the order of one day computing time.
The lasso is much faster requiring 0.3 seconds on average. Five applications
of lasso resulted in 12, 24, 14, 24 and 11 covariates, being selected. Their

union was the following 26 covariates:

219, 456, 626, 657, 672, 888, 956, 979, 1099 ,1108, 1182, 1219,
1620, 1652, 1946, 2230, 2239, 2481, 2537, 2727, 2859, 2888, 3098,
3168, 3345, 3441.

The P-value procedure with cut-off value 0.01 reduced this to the following

25 covariates.

[1,] 456 0.000000e+00
[2,] 956 0.000000e+00
[3,] 979 0.000000e+00
[4,] 1182 0.000000e+00
[5,1 1652 0.000000e+00
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[6,] 2481 0.000000e+00
[7,] 3441 0.000000e+00
[8,]1 1099 5.548895e-12
[9,] 626 3.804956e-11
[10,] 1219 5.152545e-11
[11,] 2230 2.852119e-10
[12,]1 672 6.273695e-07
[13,] 219 3.663922¢-06
[14,] 1946 2.117592e-05
[15,1 2727 4.329760e-05
[16,]1 657 4.817129e-05
[17,] 1620 5.316102e-05
[18,] 3158 1.001275e-04
[19,] 3098 1.013139e-03
[20,] 2239 1.258528e-03
[21,] 2537 1.984932e-03
[22,] 3345 3.509971e-03
[23,] 2888 3.579551e-03
[24,] 2859 6.230513e-03
[25,] 888 7.516447e-03

The repeated Gauss procedure with v = 0.05 resulted in 420 covariates which
is probably too many to be useful. Setting o = 0.000001 gave 41 covariates

all of which survived the P-value procedure.

[,1] [,2]
[1,] 435 0.000000e+00
[2,] 456 0.000000e+00
[3,] 874 0.000000e+00
[4,] 956 0.000000e+00
[5,] 979 0.000000e+00
[6,] 1182 0.000000e+00
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[7,1]

[8,1]

[9,1]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,1]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]
[30,]
[31,]
[32,]
[33,]
[34,]
[35,]
[36,]

1356
1652
2049
2481
2789
3441

436
1099
3038

626
1219
3216

907
3162
2198
2226
2079

918
2220
2230
2145
1249

951
2141

851
1014
2546
10563
2911
1104

N 0O DN OO O DO W N 0w O O O o o o

1

.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.963496e-13
.548895e-12
.134293e-12
.804956e-11
.152545e-11
.413769e-10
.513223e-10
.512024e-10
.000377e-09
.471636e-09
.085156e-09
.884187e-09
.093568e-08
.228208e-08
.499945e-08
.457288e-08
.670623e-08
.791133e-08
.359766e-08
.493699e-07
.5949562e-07
.742668e-07
.024876e-07
.150270e-07
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[37,] 1001 5.385431e-07
[38,] 2449 6.480607e-07
[39,]1 1020 8.243764e-07
[40,] 3466 9.369273e-07
[41,] 990 9.641691e-07

Of the lasso covariates with P-values less than le-6 only the covariate 672 is

not on the Gaussian procedure list.

3.3.3 Prostate cancer and osteoarthritis

The size of the prostate data (n, k) = (102,6033) which suggest a very long

time using the knockoft filter. It will not be considered.
Lasso was applied 5 times with 18, 3, 6, 14, and 14 covariates being se-
lected giving in all 18 covariates. The P-value procedure reduced this to the

following 12 with associated P-values

[1,] 1839 0.000000e+00
[2,] 2619 0.000000e+00
[3,] 4288 0.000000e+00
[5,]1 5035

[6,]1 3423

0

0
[4,] 5016 0.000000e+00

0.000000e+00

2.008727e-12
[7,] 4898 1.936399e-07
[8,] 2377 4.988987e-06
[9,] 1788 1.328393e-04
[10,] 1903 2.919642e-04
[11,] 2388 3.082575e-04

4

[12,] 2003 4.721405e-04

Of these 6 have regression P-values less than 1le-15.
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The Gaussian covariate procedure with o = 0.00001 gave 33 covariates all of

which survived the P-value procedure.

[1,] 2619 0.000000e+00
[2,] 5016 0.000000e+00
[3,] 1839 0.000000e+00
[4,1 4701 0.000000e+00
[5,] 4155 0.000000e+00

[6,] 4212

(7,1 3705

[8,] 2746

.000000e+00
.000000e+00
.000000e+00
[10,]1 3392 0.000000e+00
[11,] 3006 0.000000e+00

[12,] 4898

0
0
0
0

[9,] 5035 0.000000e+00
0
0
6.694645e-13
6

[13,] 1640 6.695755e-13
[14,] 4335 1.339151e-12
[15,] 5808 4.017453e-12
[16,] 3934 9.374057e-12
[17,] 3423 1.205236e-11
[18,] 3833

[19,]1 2425

.883538e-11
.838397e-11
[20,] 4261 3.722840e-10
[21,] 4001 3.248780e-09
[23,] 5230 8.823666e-09
[24,] 5639

[25,] 4849

.574384e-08
.764811e-08

[26,] 2386

3
8
3
3

[22,] 5249 4.436541e-09
8
2
2
7.471659e-08
8

[27,] 5783 8.060352e-08

[28,] 1540 1.117588e-07
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[29,]
[30,]
[31,]
[32,]
[33,]

Of the lasso covariates with P-values less than le-5 only 4288 is not on the

2428 1.809616e-07

2377 1.011739e-06

4448 1.288842e-06

3366 3.940713e-06

4262 7.863072e-06

Gaussian procedure list.

The osteoarthritis data set was analysed in ([Cox and Battey, 2017]). The

authors selected the following 17 covariates:

7235 11643 25125 25470 25744 27642 27920 29679 33385
36409 37443 44276 45991 46771 48415 48433 48549

The P-value procedure with cut-off value 0.01 reduces this to the following

15 covariates

[1,]
[2,]
[3,]
(4,1
(5,1
(6,1
[7,1]
[8,1]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]

37443 2.

27642
33385
27920
36409
25744
48415
46771
25470

7235
25125
48549
29679
45991
48433

925660e-10

.684164e-10
.505773e-08
.694824e-07
.585733e-07
.581411e-07
.663886e-06
.609815e-06
.000447e-06
.314328e-06
.407158e-05
.922365e-04
.984815e-04
.831023e-04
.429226e-04
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Lasso applied 5 times selected 43, 50, 23, 29 and 40 covariates giving 50 in
all. The P-value procedure reduces this to 35

[1,] 939 0.000000e+00

[2,] 3630 0.000000e+00
[3,] 11499 0.000000e+00
[5,] 26207 7.043111e-11
[6,] 43951

[7,] 29522

0
0
0
[4,] 44902 5.417777e-12
7
4.009237e-10
6.176266e-10
[8,] 41799 1.246114e-09
[9,] 23983 2.936435e-09
[10,] 24232 4.624073e-08
[11,] 38561 8.087823e-08
[12,] 30451 1.315761e-07
[13,] 33321 5.230429e-07
[14,] 23259 8.717633e-07
[15,] 35023 1.555876e-06
[16,]1 8669 2.285539e-06
[17,] 44758 5.331563e-06
[18,] 23038 6.508366e-06
[19,] 46172 9.159328e-06
[20,] 45991 1.382485e-05
[21,]1 3685

[22,] 13650

.096310e-05
.284205e-05
[23,] 21757 2.463220e-04
[25,] 5939
[26,] 36417

3
9
2

[24,] 30997 3.918151e-04
4.768018e-04
6.450063e-04
9

[27,] 4216 9.412395e-04

[28,] 14724 1.664579e-03
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[29,] 6661 2.026067e-03

[30,] 26917 3.145650e-03
[31,] 46700 3.281872e-03
[33,] 48035 4.884352e-03

[34,] 17062

2
3
3

[32,] 24462 4.818816e-03
4
4.888099e-03
8

[35,] 5210 8.442471e-03

The repeated Gaussian covariate method with o = 0.0001 gave 32 covariates

all of which survived the P-value procedure

[1,] 11499 0.000000e+00
[2,] 31848 0.000000e+00
[3,] 44902 0.000000e+00
[4,] 10546 0.000000e+00
[5,] 34803

[6,] 30451

.000000e+00
.000000e+00
[8,] 7896 0.000000e+00
[9,1 22705 0.000000e+00
[10,] 37443 0.000000e+00
[11,] 28816 0.000000e+00
[12,] 29522

(13,1 26207

0

0

0

0

0
[7,] 939 0.000000e+00

0

0

0

0

0.000000e+00

5.417888e-12
[14,] 3630 1.625333e-11
[15,] 46979 2.167155e-11
[16,] 25744 5.417888e-11
[17,] 10374 9.210221e-11
[18,] 43951 4.009237e-10
[19,] 25125 6.393108e-10
[20,] 41799 1.647038e-09

[21,] 39141 2.557243e-09
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[22,] 24232 2.806466e-09

[24,] 6740

2

[23,] 26795 4.930278e-09
5.791723e-09
6

[25,] 44664 6.095124e-09
[26,] 25241 1.106875e-08
[27,] 21350 1.783677e-07
[28,] 24266 8.452877e-07
[29,] 38561 1.122988e-06

[30,] 22929 2.326038e-06
[31,] 44758 5.331563e-06
[32,] 34076 8.007249e-05

The Gaussian list which has 19 covariates with a P-value less than 1e-9. The
Cox-Battey list has two one of which 27642 is not on the Gaussian list. The
lasso procedure has 7 such covariates all of which are on the Gaussian list.
The osteoarthritis data proved too large for the knockoff filter requiring 17.7
GB of memory.

3.4 Boston housing data and interactions

For the Boston housing data (n, k) = (506, 13). Allowing for interactions of
order up to and including eight increases the number of covariates from 13

to 203490 to give (n, k) = (506, 203490).
Lasso often failed with the laptop complaining that it could not allocate a
vector of the size 155.3 MB. One application did succeed giving 39 covariates

in 3 minutes:

94 1913 2051 2083 2129 2656 7783 7855 9859 25423 25529 30644 30789
31504 31964 91725 92955 92956 121490 121701 156301 160277 161551
187192 187214 187259 188898 188907 189367 189830 190613 192106 193822
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194153 197373 197578 197585 197823 197834

Regressing the dependent variable on these 39 resulted in three NAs. Of the
remaining 36 covariates 21 had a regression P-value exceeding 0.1. The sum

of squared residuals was 5031.45.

The Gaussian covariate procedure with a = 0.05 results in the following
10 interactions with a computing time of 13 seconds. The first interaction
is boston[, 6]?, the second boston[, 6]"boston][, 13] and so on. The sum of
squared residuals was 5690 compared with 11079 for the linear regression on

all 13 covariates.

> bostoninter<-fgeninter (boston[,1:13],8) [[1]]
[1] "number of interactions: 203490"
> bostonsv<-fstepwise(boston[,14] ,bostoninter,0.05,20,0ffset=F,time=T) [[1]]
user system elapsed
156.300 0.716 16.588
> bostonsv
[,1] [,2]
[1,] 441 0.000000e+00
[2,] 197063 0.000000e+00
[3,] 197166 7.455263e-10
[4,] 120886 1.006557e-05
[5,] 118685 2.726566e-07
[6,] 121659 1.140579e-03
[7,] 193641 1.650804e-02
[8,] 10 1.607415e-03
[9,] 7472 4.518208e-11
[10,]1 192007 9.425253e-06
> decomp(bostonsv[,1],14,8)
[[1]1]

(,11 [,21 [,3] [,4]1 [,8] [,6]1 [,71 [,8]
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[1,] 0 0 0 0 0 6 6 6
[2,] 6 6 6 6 6 6 6 13
(3,1 6 6 6 6 6 11 11 11
[4,] 1 4 7 9 9 9 9 9
[5,] 1 4 5 5 6 7 9 9
(6,] 1 5 5 5 6 6 8 13
(7,1 5 6 6 6 6 6 8 10
(8,] 0 0 0 0 0 0 0 9
[9,] 0 0 0 5 6 6 9 13
[10,] 5 5 6 6 6 9 13 13

> b<-1m(boston[,14] “bostoninter[,bostonsv[,1]])
> print (sum(b$res~2))

[1] 5690.012

> b<-1m(boston[,14] “boston[,1:13])

> print (sum(b$res~2))

[1] 11078.78

Regressing the dependent variable on these 10 covariates results in the fol-

lowing regression P-values

> as.double(summary(b) [[4]][2:11,4])
[1] 1.519294e-110 2.158545e-07 9.677670e-19 3.369443e-09 3.530752e-07
[6] 2.279109e-06 9.988516e-09 7.841906e-28 1.991632e-19 6.770982e-11

3.5 Graphs

Given covariates x;,j = 1,...,k a graph is calculated as follows. Each x;
is regressed on the remaining covariates and connected to those covariates

found to be relevant

As an example we take & to be a set of covariates generated in Tutorial 1 of
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https://web.stanford.edu/group/candes/knockoffs/software/knockoff/

The graph is determined by the matrix Sigma which is a Toeplitz matrix
with p = 0.25. As the elements decrease rapidly in size as one moves away
from the diagonal it is effectively a tridiagonal matrix with the side diagonal
elements being 0.25. The graph will have edges connecting each x; to @i,
for v =7,...,999.

One application of lasso resulted in seven false negative and 53 false positives.

The time requires was about 150 minutes.

> xc<-tut1x(1000,1000) [[1]]
> #
> tmp<-gralss(xc)
user.self
10902.11
> tmp[[1]]
[1] 1045
> fn<-999-sum(abs (tmp[[2]]1 [,2]-tmp[[2]1][,1])==1)
> fp<-sum(abs (tmp[[2]] [,2]-tmp[[2]1][,1])>=2)
> print(c("(fn,fp)",fn,fp))
[1] "(fn,fp)" "7" "53"

Knockoff gave the following error

Fehler in chol.default(Sigma_k) :

der fuehrende Minor der Ordnung 1 ist nicht positiv definit
in English

Error in chol.default(Sigma_k) :

the leading minor of order 1 is not postive definite.

The Gaussian covariate method is applied k& times and to account for this

the cut-off P-value « is replaced by a/k. The command is
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fgraphst(x,alpha,kmax,nu=1,time=FALSE, verbose=FALSE, of fset=TRUE)
Applying fgraphst to the same data set gives

> tmp<-fgraphst(xc,0.05,10,time=T)
user system elapsed

19.156 0.000 19.147
> tmp[[1]]

[1] 994
> fn<-999-sum(abs (tmp[[2]] [,2]-tmp [[2]] [,1])==1)
> fp<-sum(abs (tmp[[2]][,2]-tmp[[2]][,1]1)>=2)
> print(c("(fn,fp)",fn,fp))

(1] "(fn,fp)" "5" "o
> tmp[[2]][1:10,]
[,11 [,2]
[1,] 1 2
[2,] 2 3
[3,] 3 4
[4,] 4 5
[5,] 5 6
[6,] 6 7
(7,1 7 8
[8,] 8 9
[9,1] 9 10
[10,] 10 11

tmp[[1]] is the number of edges and tmpl[2]] gives the edges. There are no

false positives and 5 false negatives. The time requires was about 16 seconds.
In [Meinshausen and Bithlmann, 2006] lasso was used to calculate graphs for
largek. In a simulation in Section 4 of that paper with (n, k) = (600, 1000)
the method resulted in two false positives and 638 false negatives. The

description of the generation of the graph of Figure 1 is incorrect and has
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been altered to reproduce graphs with about 1800 edges. One application of
lasso gave 571 false positives and 13 false negatives. The time taken was 46

minutes.

> frgraph(st=F,lasso=T)
[1] 1829
user.self
3036.04
[1] 571 13
user system elapsed

3036.728 0.032 3034.852

For the same data the Gaussian covariate procedure with o = 0.05 resulted

in zero false positives and 118 false negatives.

> frgraph()
[1] 1829
[1] 0 118
user system elapsed

18.800 0.000 18.797

The default setting of fgraphst is to divide a by the number of variables
k so that the probability of one false positive edge is at most a. If this is
judged to be too severe at the cost of false negatives the value of o can be
increased to give so to speak a specified expected number of false positives.
Putting o = 5 in fgraphst with £ = 1000 increases the expected number of
false positives to about 1000 % (0.05 * 100/1000) = 5. In the simulation just

reported this results in 5 false positives and 12 false negatives.

> frgraph(alpha=5)
[1] 1829
[11 5 12
user system elapsed

21.284 0.000 21.271
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Graphs can also be constructed for real data sets. The colon cancer data
with (n,k) = (62,2000). Lasso requires 10 minutes and produces a graph
with 23322 edges.

> tmp<-gralss(colon.x)
user.self
703.448
> tmp[[1]]
[1] 23322

The Gaussian covariate method with a = 0.05 gives a graph with 1634 edges

in 2.8 seconds. The first ten edges are given.

> tmp<-fgraphst(colon.x,0.05,10,time=T)
user system elapsed
2.772 0.000 2.769
> tmp[[1]]
[1] 1634
> tmp[[2]]1[1:10,]
(,11 [,2]
[1,] 1 23
[2,] 1 98

(3,1 2 3
[4,] 2 126
(5,] 2 156
(6,1 4 108
(7,1 4 131
(8,1 4 367
[9,] 5 15
[10,] 5 1201

The repeated Gaussian covariate method with o = 0.05 gives a graph with
24475 edges in 69 seconds.
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> tmp<-fgraphstst(colon.x,0.05,10,nedge=1e5,time=T)
user system elapsed

62.068 0.012 62.044

> tmp[[1]]

[1] 24475

Putting a = 1le — 7 gives a graph with 1521 edges. The first 10 are

[,11 [,2]
[1,] 2 3
[2,] 2 126
(3,1 2 156
(4,] 2 162
(5,] 3 126
(6,1 4 108
(7,1 4 131
(8,1 4 367
(9,1 4 416
[10,] 4 457
[11,] 4 697
[12,] 4 864
[13,] 4 1070
[14,] 5 15

It is seen that the repeated method picks up many more highly significant
dependencies than the single method so the recommendation would seem to

be to use the repeated method with a smaller value of a.

Finally for the osteoarthritis data with (n, k) = (129,48802) lasso requires
11 seconds for one node resulting in an estimated 11*48802/(24*3600)=6.2
days for the whole graph. The Gaussian covariate method requires about

0.24 seconds for each node giving an estimated time of 3 hours 15 minutes
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for the whole graph. A specially written Fortran programme gives a graph
with 38986 edges in 52 minutes.

> tmp<-fgraphst(gse3.x,0.05,10,time=T)
user system elapsed

2941.296 0.052 2939.496

> tmp[[1]]

[1] 38986

This data set shows the limitations of the recommendation made just above.
Regress the first covariate on the remaining 44801 where o has been divided
by the number of variables as in the default version of fgraphst. This results in
4009 selected covariates. If a graph were to be constructed the first covariate
alone would be connected to 4009 other covariates. The calculated P-values
for the first 152 covariates are zero. Such a graph would be much too large

to be useful.

> tmp<-fstepstepwise(gse3.x[,1],gse3.x[,2:48802],alpha=0.05/48801,10,time=TRUE) [[1]]
user.self
T44.776
> length(tmp[,1])
[1] 4009

In this particular case one can make use of the problem and restrict the
construction of the graph to those covariates chosen in the first step as in
Section We take the 74 covariates selected by the Gaussian covariate
method and apply the repeated Gaussian procedure to calculate a graph with
a = le —6. It has 517 edges. The first covariate 11499 is connected with 18

of the 74 covariates.

> tmp<-fgraphstst(gse3.x[,stost],1e-6,10,time=T)
user system elapsed

0.096 0.000 0.095
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> tmp[[1]]
[1] 517
[,11 [,2]
[1,] 11499 3630
[2,] 11499 41799
[3,] 11499 26207
[4,] 11499 10546
[5,] 11499 46979
[6,] 11499 25241
[7,] 11499 34803
[8,] 11499 939
[9,] 11499 10374
[10,] 11499 7896
[11,] 11499 39141
[12,] 11499 26795
[13,] 11499 44664
[14,] 11499 6740
[15,] 11499 28816
[16,] 11499 24232
[17,] 11499 29522
[18,]1 11499 25125
[19,] 31848 44902
[20,] 31848 25241
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5 Appendix: Results of runcomp.R

> library(knockoff)

> library(glmnet)

> library(quantreg)

> #

> load("comp_data.rda")

> #load("gse3x.rda")

> #load("gsey.rda")

> source("selvar.R")

> source("comp.R")

> dyn.load("selvar.so")

> timel<-proc.time()

> #

> # SECTION 2.2

> #

> fstepwise(ly.original,lx.original,0.05,10,time=T) [[1]]
user system elapsed
0.008 0.000 0.010

[,1] [,2]

[1,] 1182 0.0000000000

[2,] 1219 0.0008577131

[3,] 2888 0.0035805523
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> #
> print("Table 1")
[1] "Table 1"
> #
> tmp<-fsimords(1000,1000,0.05,10,1000)
> tmp[[1]]
[1] 1 2 3 4 5 6 7 8 10
> tmp[[2]]
[11 011233456
> #
> tmp<-fsimords(1000,1000,0.01,10,1000)
> tmp[[1]]
[11 112345677
> tmp[[2]]
[11 001122344
> #
> #
> #
> fstepwise(ly.original,lx.original,0.05,10,nu=3,time=T) [[1]]
user system elapsed
0.016 0.000 0.016
[,1] [,2]
[1,] 1182 0.000000e+00
[2,] 1219 1.051452e-10
[3,] 2888 7.664817e-09
[4,] 1946 3.353905e-03
[6,]1 2102 6.026398e-04
> #
> b<-1lm(ly.original~lx.originall,c(1182,1219,2888,1946,2102)])
> as.double (summary(b) [[4]][2:6,4])

46



[1] 2.286646e-15 4.207564e-10 1.549639e-06 1.041936e-06 4.478674e-05

> #

> set.seed(2345)

> tmpx<-rnorm(lx.original)

> dim(tmpx)<-dim(1lx.original)

> tmpx[,1:3]<-1x.original[, c(1182, 1219, 2888)]

> fstepwise(ly.original,tmpx,0.05,10,nu=3) [[1]]
[,1] [,2]

[1,] 1 0.000000e+00

[2,] 2 1.051452e-10

[3,] 3 7.664817e-09

[4,] 1698 5.235440e-03

> b<-1Im(ly.original~tmpx[,c(1:3,1698)])

> as.double(summary(b) [[4]][2:5,4])

[1] 3.630659e-21 1.242047e-08 9.651025e-07 9.631336e-05

> rm(tmpx)

> #

> #

> # SECTION 2.4

> #

> #

\4

fstepwise(colon.y,colon.x,1,2,time=T) [[1]]
user system elapsed
0.004 0.000 0.002
[,1] [,2]
[1,1 493 7.402367e-08
[2,] 175 4.311166e-01
> #
> #

> tmp<-fstepstepwise(colon.y,colon.x,0.05,10,time=T) [[1]]
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user.self

0.188

> stcolon<-sort (tmp[,2])

> tmp
[,1]
[1,] 1
[2,] 2
[3,] 3
(4,1 4
(5,1 4
(6,] 5
(7,1 5
(8,1 6
(9,1 6
[10,] 7
[11,] 7
[12,] 8
[13,] 8
[14,] 9
[15,] 9
(16,1 10
(17,1 11
[18,1 12
[19,1 12
(20,1 13
[21,] 14
[22,] 14
[23,1] 15
(24,1 15
[25,]1 16

[,2]
493
377
249

1635
576

1423
353
625
739
245

1772

1771

1897
765

1346
267

1884

1843

1549
897

66

1993

1494
228
822

[,3]

.402367e-08
.355905e-07
.134563e-06
.283614e-06
.815082e-02
.760755e-05
.996075e-04
.166107e-05
.354274e-04
.931080e-04
.716390e-02
.260242e-04
.455075e-03
.477144e-04
.734873e-02
.972433e-04
.095652e-04
.866773e-04
.759877e-04
.955879e-04
.261918e-04
.473896e-02
.133834e-04
.064624e-02
.351272e-03
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[26,]
[27,]
[28,]
[29,]
[30,]
[31,]
[32,]
[33,]
[34,]
[35,]
[36,]
[37,]
[38,]
[39,]
[40,]
[41,]
[42,]
[43,]
[44,]
[45,]
[46,]
[47,1]
[48,]
[49,]
[50,]
[51,]
[52,]
[53,]
[54,]
[55,]

17
17
18
19
19
20
20
21
21
22
22
23
23
24
24
25
25
26
27
28
28
29
29
30
30
31
32
32
33
34

1682
663
1730
513
1210
1042
14
812
187
137
627
138
1231
1406
823
1060
411
780
964
365
611
391
1873
824
1400
1900
1256
892
802
1648

w P OO W O OO O O o1 0 O O b O b O W

.386727e-03
.746740e-02
.476773e-03
.690501e-03
.037406e-04
.878823e-03
.475249e-03
.459078e-03
.345395e-02
.674447e-03
.586127e-03
.232452e-03
.372632e-03
.979419e-03
.203994e-03
.208778e-03
.464091e-03
.390096e-03
.032253e-03
.171878e-03
.032157e-03
.241313e-03
.182333e-03
.930950e-03
.309922e-02
.925496e-03
.244725e-02
.598585e-03
.401268e-02
.604443e-02
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[56,]
[57,]
[58,]
[59,]
[60,]
[61,]
[62,]
[63,]
[64,]
[65,]
[66,]
[67,]
[68,]
[69,]
[70,]
[71,]
[72,]
[73,]
[74,]
[75,]
[76,]
(77,1
[78,]
[79,]
[80,]
[81,]
[82,]
> #

> #

34
35
35
36
36
37
37
38
39
40
40
41
41
42
43
43
44
44
45
46
46
47
a7
48
48
49
49

189
1153
792
67
989
992
140
1674
1892
1293
229
1634
1981
1511
26
211
581
49
1867
111
622
1671
1473
1960
293
1679
1451

> # Section 2.5

[N

.831067e-04
.645393e-02
.972154e-04
.726898e-02
.152085e-03
.934046e-02
.214284e-03
.088915e-02
.088136e-02
.138831e-02
.104997e-03
.475598e-02
.595704e-03
.519410e-02
.808292e-02
.133406e-02
.882589e-02
.194865e-02
.050095e-02
.316820e-02
.071545e-02
.352217e-02
.698842e-02
.191835e-02
.836906e-03
.885719e-02
.181720e-02
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>

>

>

#
#

flistack(stackloss, 1000)

[1] 0.2040000 0.3440461

>

>

>

#
#
# Section 3.1
#
#
set.seed(1234)

ftut(1,1000,1000,60,4.5,0.1,0.05,50)

user system elapsed

4029.124 9.236 4036.249

[1] 82.40 0.52 7.94

[1] 0.000 46.160 0.256

[1] 3.36 11.60 2.35

[1] 7.08 5.64 3.19

[1] 5.58 10.02 64.88

>

>

#
set.seed(1234)

> ftut(2,1000,1000,60,7.5,0.2,0.05,50)

user system elapsed

3360.472 11.544 3370.011

[1] 56.02 15.86 9.91

[1] 0.0000 56.5200 0.0418

[1] 2.780 42.460 0.449

[1] 7.000 35.400 0.957

[1] 7.0 35.1 54.2

>

>

#
#
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> # Section 3.2
> #
> #

\4

fstepwise(redwine[,12] ,redwine[,1:11],0.05,10) [[1]]
[,1] [,2]

[1,] 11 0.000000e+00

[2,] 2 0.000000e+00

[3,] 10 2.032414e-10

[4,] 7 1.027568e-04

[5,] 5 1.002491e-04

[6,] 9 1.096799e-03

> #

> fstepstepwise(redwine[,12],redwine[,1:11],0.05,10) [[1]]

[,1]1 [,2] [,31]

[1,] 1 11 0.000000e+00
[2,] 1 2 0.000000e+00
(3,] 1 10 2.032414e-10
(4,1 1 7 1.027568e-04
(5,] 1 5 1.002491e-04
(6,] 1 9 1.096799e-03
(7,1 2 3 0.000000e+00
(8,] 2 8 0.000000e+00
[9,] 2 1 1.918132e-12
[10,] 2 4 4.110445e-07
[11,] 3 6 4.283397e-02
> #

> fredwine(redwine,200,alpha=0.05)
[1] "results"

[1] 0.035 1.260

[1] 0.05 0.00
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[1] 0.455 0.000
[1] 1.445 0.000
[1] 1.15 0.03

Section 3.3.1

\
= O #H O H H O #®

> set.seed(1234)
> tmp<-cv.glmnet(colon.x,colon.y)
> tmplas1<-(1:2000) [abs (coef (tmp) [2:2001,1])>0]
> tmplasl
[1] 14 249 377 493 576 625 792 1231 1360 1473 1582 1679 1772 1843 1924
> tmp<-cv.glmnet(colon.x,colon.y)
> tmplas1<-(1:2000) [abs (coef (tmp) [2:2001,1])>0]
> tmplasl
[1] 249 377 493 625
> b<-1lm(colon.y"colon.x[,tmplasi])
> as.double (summary(b) [[4]][2:5,4])
[1] 0.025170468 0.003786664 0.580520055 0.018821024
> b<-Im(colon.y"colon.x[,tmplasi[c(1,2,4)]1])
> as.double(summary(b) [[4]][2:4,4])
[1] 4.712717e-03 8.257605e-05 1.097590e-02
> b<-1m(colon.y colon.x[,tmplasi[c(1,2)11)
> as.double(summary(b) [[4]][2:3,4])
[1] 7.772988e-05 9.095636e-06
> #
> b<-1m(colon.y~colon.x[,c(249,377,493,625)])
> s81234<-sum(b$res~2)
> b<-1m(colon.y colon.x[,c(249,377,625)])
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\4

ss124<-sum(b$res~2)

> pval3<-pbeta(1-ss1234/ss124,0.5, (62-5)/2)
> pval3<-1-pbeta(pval3,2001-5,1)

> pval3

(11 1

> #

> b<-1m(colon.y"colon.x[,c(249,377)]1)

> ss12<-sum(b$res~2)

> b<-1m(colon.y"colon.x[,377])

> ssi<-sum(b$res”2)

> pvall<-pbeta(l-ss12/ss1,0.5,(62-3)/2)
> pvall<-1-pbeta(pvall,2001-3,1)

> pvall

[1] 0.1438506

> b<-1m(colon.y"colon.x[,249])

> ss2<-sum(b$res”2)

> pval2<-pbeta(1l-ss12/ss2,0.5, (62-3)/2)
> pval2<-1-pbeta(pval2,2001-3,1)

> pval2

[1] 0.01800903

> #

> b<-1m(colon.x[,493] “colon.x[,c(249,377)])
> as.double (summary(b) [[4]][2:3,4])

[1] 1.803856e-06 3.452139e-08

> #

> #

> # lacolon and kncolon

> #

> set.seed(1234)

> tmpcol<-fvarch(colon.y,colon.x)
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[1] "lasso start"
[1] 15

[1] 14 249 377
[1] 4

[1] 249 377 493 625
[1]1 5

[1]1 249 377 493
[1] 25

[1] 14 164 175
[16] 1360 1400 1473
[1]1 29

[1] 14 164 175
[16] 1256 1346 1360

493 576 625 792 1231 1360 1473 1582 1679 1772 1843 1924

625 1772

249
1549

353
1400

user system elapsed

1.644 0.000 1.
[1] 14 164 175
[16] 1094 1221 1231
[31] 1873 1924
[1] "lasso end"
[1] "knockoff start"
[1]1 1
[1] 12

641
249
1256

353
1682

377

1473

353
1346

377
1668

576

1549

377
1360

493 576
1679 1772

611 654

15670 1582

493 576
1400 1473

788 792
1843 1924

788 792

1668 1679

611 625
1549 1570

1073

823
1772

654
1682

1094

1073
1843

788
1668

[1] 14 175 353 788 792 823 1360 1400 1570 1740 1843 1924

1] 2
1] 3
(11 377 792 1772
11 3
[1] 6

[1] 175 377 792 1772 1843 1924

(1] 4

95

1221

1094
1873

792
1679

1231

1221
1924

823
1772

1346

1231

1073
1843



[1] 35

(1]

14

[16] 1146

[31] 1893

(11 5
(1] 4

[1]

[1]

353

14

[16] 1123

[31]1 1827

user

6595.920

(1]

164 175 353 576
1231 1241 1346 1360
1924 1935 1976 1989

792 1843 1924
164 175 353 377
1146 1231 1241 1346
1843 1873 1893 1924
system elapsed

9.940 6601.908

"knockoff end"

> lacolon<-tmpcol [[1]]

> kncolon<-tmpcol[[2]]

\

\4

>

>

(1]
(1]

C

#load("lacolon.rda")

#load ("kncolon.rda")

# Lasso

611
1400

576
1360
1935

654 788
1420 1482

611 654
1400 1420
1976 1989

fpval(colon.y,colon.x,lacolon,0.01)

[11]

(1,1
[2,]
(3,]
4,]
(5,]
(6,1
[(7,1]

[,1]
1843
493
1772
377
249
1873
1231

"start 2"

"start 3"

[,2]
6.495852e-09
7.398644e-08
1.078545e-07
1.355903e-07
1.135130e-06
1.214555e-06
2.822242e-06
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792 823 966 1073 1094 1110 1123
1549 1570 1622 1649 1827 1843 1873

788 792 823 966 1073 1094 1110
1482 1549 1570 1622 1649 1740 1772



[8,]

[9,1]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]

1473
14
1400
1360
576
1256
1679
625
1924
1549
1346
1682
792
353
175
1668

0 P W W

> # Knockoff

.105941e-06
.468307e-06
.848481e-06
.044163e-05
.516268e-05
.737674e-05
.054090e-05
.175638e-05
.711134e-05
.631080e-04
.018934e-04
.403567e-03
.2590561e-03
.770271e-03
.906957e-03
.633158e-03

> fpval(colon.y,colon.x,kncolon,0.01)

[1] "start 2"

[1] "start 3"

(0111

(1,1]
[2,]
(3,]
4,]
(5,]
(6,1
(7,1]

[,1]
1843
377
14
1873
1772
1231
1360

[,2]

.495852e-09
.355903e-07
.778769e-07
.214555e-06
.463932e-06
.822242e-06
.044163e-05

o7



[8,]

[9,1]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]

> # Repeated Gaussian stepwise

576
1400
1935
1549
1346
1924

175
1110

o o W

.516268e-05
.168938e-04
.411647e-04
.631080e-04
.018934e-04
.747120e-04
.906957e-03
.805362e-03

> fpval(colon.y,colon.x,stcolon,0.01)

[1] "start

[1] "start 3"

[[111]

[1,]
[2,1]
(3,1
[4,]
(5,1
(6,1
(7,1
[8,1]
[9,1]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]

[,1]
1423
1843
1494
493
1293
1772
377
513
1406
992
1634
249
1648
1060
1042

2Il

[,2]

.106895e-10
.495852e-09
.047067e-08
.398644e-08
.035832e-08
.078545e-07
.355903e-07
.999018e-07
.378230e-07
.819964e-07
.697313e-07
.135130e-06
.161793e-06
.316599e-06
.476826e-06
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[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,]
[28,]
[29,]
[30,]
[31,]
[32,]
[33,]
[34,]
[35,]
[36,]
[37,1]
[38,]
[39,]
[40,]
[41,]
[42,]
[43,]
[44,]
[45,]

1730
1900
1635
365
187
1231
625
792
111
14
1771
138
576
1256
1153
137
1679
822
391
1400
211
1346
1897
245
765
353
267
1210
1549
189

© o b D D NN NN

.032950e-06
.209020e-06
.285901e-06
.311574e-06
.586279e-06
.822242e-06
.630786e-06
.863052e-06
.885140e-06
.468307e-06
.208768e-06
.209879e-05
.516268e-05
.737674e-05
.372798e-05
.812837e-05
.054090e-05
.699079e-05
.023164e-05
.746418e-05
.127294e-04
.912821e-04
.919767e-04
.938838e-04
.498139e-04
.837240e-04
.000444e-04
.092701e-04
.798292e-04
.816914e-04
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[46,] 1884
(47,1 67
(48,1 897
[49,] 663
(50,1 66
(61,1 1473
[52,] 1960
[63,] 739
(54,1 892
[65,] 581
[56,1 229
(57,1 140
(58,1 26
[59,] 15682
[60,] 1981
(61,1 1873
[62,] 812
(63,1 989
(64,1 611
(65,1 823
[66,1 780
(67,1 627
[68,] 964
[69,] 411
[70,1 824
(71,1 228
> #

> #

© © 0 N N N N o o o»

0w N o oo o0 o0 0 b W W N

.134168e-04
.506242e-04
.009980e-04
.152961e-04
.331577e-04
.841344e-04
.868915e-04
.379427e-04
.096631e-04
.850568e-04
.140953e-03
.241931e-03
.286887e-03
.403567e-03
.682871e-03
.25565639e-03
.513470e-03
.410411e-03
.064780e-03
.301922e-03
.502652e-03
.679673e-03
.161314e-03
.684128e-03
.097239e-03
.232653e-03

> # Section 3.3.2



> #
> #

> laleuk<-fvarch(ly.original,lx.original,kn=F) [[1]]

[1] "lasso start"
[1] 12

[1] 456 626 672 956
[1] 24

[1] 219 456 626 657
[16] 2230 2239 2481 2537
(1] 14

[1] 456 626 672 956
[1] 24

[1] 219 456 626 657
[16] 2239 2481 2537 2727
[1] 11

[1] 456 626 672 956

user system elapsed

2.576 0.000 2.574

[1] 219 456 626 657
[16] 2230 2239 2481 2537
[1] "lasso end"
> laleuk

[1] 219 456 626 657
[16] 2230 2239 2481 2537

979

672
2727

979

672
2859

979

672
2727

672
2727

1182 1219

888 956
2859 2888

1182 1219

888 956
2888 3098

1182 1219

888 956
2859 2888

888 956
2859 2888

1652

979
3098

1652

979
3158

1652

979
3098

979
3098

> fpval(ly.original,lx.original,laleuk,0.01)

[1] "start 2"
[1] "start 3"
[[1]1]
[,1] [,2]
[1,] 456 0.000000e+00

61

1946

1099
3158

1946

1099
3345

1946

1099
3158

1099
3158

2481

1108

2230

1182

2481

1108
3345

1108
3345

3098

1182

2481

1219

3441

1182
3441

1182
3441

3441

1219 1620 1652 1946

3098 3158 3441

1620 1652 1946 2230

1219 1620 1652 1946

1219 1620 1652 1946



[2,] 956 0.000000e+00

[3,] 979 0.000000e+00
[4,] 1182 0.000000e+00
[5,] 1652 0.000000e+00
[6,] 2481 0.000000e+00
[7,] 3441
[8,] 1099

[9,] 626

.000000e+00
.548895e-12
.804956e-11

[11,] 2230
[12,1 672

.852119e-10
.273695e-07
[13,] 219 3.663922e-06
[14,] 1946 2.117592e-05
[15,] 2727 4.329760e-05
[16,]1 657

[17,]1 1620

0

0

0

0

0

0

5

3
[10,] 1219 5.152545e-11

2

6

3

2

4

4.817129e-05

5.316102e-05
[18,] 3158 1.001275e-04
[19,] 3098 1.013139e-03
[20,] 2239 1.258528e-03
[21,] 2537 1.984932e-03
[22,] 3345 3.509971e-03

[24,] 2859

3

[23,] 2888 3.579551e-03
6.230513e-03
7

[25,]1 888 7.516447e-03
> stleuk<-fstepstepwise(ly.original,lx.original,0.000001,10,time=T) [[1]]
user.self
0.192
> stleuk<-stleuk[,2]

> print(length(stleuk))
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[1] 41
> fpval(ly.original,lx.original,stleuk,0.01)
[1] "start 2"

[1] "start 3"

[[111

[,1] [,2]
[1,]1 1182 0.000000e+00
[2,] 1652 0.000000e+00
[3,] 979 0.000000e+00
[4,] 956 0.000000e+00
[5,] 2481 0.000000e+00
[6,] 3441 0.000000e+00
[7,] 456 0.000000e+00
[8,1 874 0.000000e+00
[9,]1 2789 0.000000e+00
[10,] 435 0.000000e+00
[11,] 1356 0.000000e+00
[12,] 2049 0.000000e+00
[13,] 436 3.963496e-13
[14,] 1099 5.548895e-12
[15,] 3038 7.134293e-12
[16,]1 626 3.804956e-11
[17,] 1219 5.152545e-11
[18,] 3216 2.413769e-10
(19,1 907 5.513223e-10
[20,] 3162 6.512024e-10
[21,] 2198 2.000377e-09
[22,] 2226 2.471636e-09
[23,] 2079 6.085156e-09
[24,] 918 7.884187e-09
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[25,] 2220 1.093568e-08
[26,] 2230 1.228208e-08
[27,] 2145 1.499945e-08
[28,] 1249 2.457288e-08
[29,] 951 4.670623e-08
[30,] 2141 6.791133e-08
[31,] 8518

[32,] 1014 1.493699e-07

.359766e-08
[33,] 2546 2.594952e-07
[34,] 1053
[35,]1 2911

.742668e-07
.024876e-07
[36,] 1104 3.150270e-07
[38,] 2449 6.480607e-07
[39,] 1020 8.243764e-07

[40,] 3466

2
2
3
3

[37,] 1001 5.385431e-07
6
8
9.369273e-07
9

(41,1 990

.641691e-07

Section 3.3.3

A\
# O H#H O

>
> #
> laprost<-fvarch(prostate.y,prostate.x,kn=F) [[1]]
[1] "lasso start"
[1] 18
[1] 1291 1735 1788 1839 1848 1903 2003 2377 2388 2450 2619 3423 4279 4288 4898
[16] 5016 5035 5663
[1] 3
[1] 1839 2619 5016
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[11 6
[1] 1839 2003 2619 3423 5016 5035
[1] 14
[1] 1291 1735 1839 1848 1903 2003 2450 2619 3423 4288 4898 5016 5035 5663
[1] 14
[1] 1291 1735 1839 1848 1903 2003 2450 2619 3423 4288 4898 5016 5035 5663
user system elapsed
5.344 0.000 5.339
[1] 1291 1735 1788 1839 1848 1903 2003 2377 2388 2450 2619 3423 4279 4288 4898
[16] 5016 5035 5663
[1] "lasso end"
> fpval(prostate.y,prostate.x,laprost,0.01)
[1] "start 2"
[1] "start 3"
(111
[,1] [,2]
[1,] 1839
[2,]1 2619

.000000e+00
.000000e+00
[4,] 5016 0.000000e+00
[5,]1 5035
[6,] 3423

0

0
[3,] 4288 0.000000e+00

0

0.000000e+00

2.008727e-12
[7,] 4898 1.936399e-07
[8,] 2377 4.988987e-06
[9,] 1788 1.328393e-04
[10,] 1903 2.919642e-04
[11,] 2388 3.082575e-04
[12,] 2003 4.721405e-04

> stprost<-fstepstepwise(prostate.y,prostate.x,0.00001,10,time=T) [[1]]
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user.self
0.316
> stprost<-stprost[,2]
> print(length(stprost))
[1] 33
> fpval(prostate.y,prostate.x,stprost,0.01)
[1] "start 2"

[1] "start 3"

[[111]

[,1] [,2]
[1,] 2619 0.000000e+00
[2,] 5016 0.000000e+00
[3,] 1839 0.000000e+00
[4,] 4701 0.000000e+00
[5,] 4155 0.000000e+00
[6,] 4212 0.000000e+00
[7,1 3705 0.000000e+00
[8,]1 2746 0.000000e+00
[9,] 5035 0.000000e+00
[10,]1 3392 0.000000e+00
[11,] 3006 0.000000e+00
[12,] 4898 6.694645e-13
[13,] 1640 6.695755e-13
[14,] 4335 1.339151e-12

[15,] 5808 4.017453e-12
[16,] 3934 9.374057e-12
[17,] 3423 1.205236e-11
[18,] 3833 3.883538e-11
[19,] 2425 8.838397e-11

3

[20,] 4261 3.722840e-10
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(21,1 4001

[22,] 5249
[23,] 5230
[24,] 5639
[25,] 4849
[26,]
(27,1
[28,]

[29,]

2386
5783
1540
2428
[30,]
[31,]
[32,]

2377
4448
3366
[33,]1 4262
> #
> #
> #

o N N N 0 o W

.248780e-09
.436541e-09
.823666e-09
.574384e-08
.764811e-08
.471659e-08
.060352e-08
.117588e-07
.809616e-07
.011739e-06
.288842e-06
.940713e-06
.863072e-06

> laost<-fvarch(gse.y,gse3.x,kn=F) [[1]]

(1]
[1] 43
[1]
[13] 19391
[25] 29522
[37] 44542
[1] 50
[1]
[13] 17062

939

[25] 24765
[37] 38561
[49] 46700

21667
30451
44758

19391
26207
41045

1348

"lasso start"

21757
30997
44902

3630
20877
26917
41799

48035

23038
33321
45991

3685
21667
29522
42887

939 3630 3685 4216 5210 5939 6661

23259 23796

35023 36417
46172 46700
4216 5210
21757 21980
30451 30997

43642 43951

67

8669
23983 24232
38406 38561
48035

5939 6661
23038 23259
31218 33321
44542 44758

11499
24462
41045

8669
23796
35023
44902

13650
24765
41799

11499
23983
36417
45627

14724
26207
43642

13650
24232
38406
45991

17062
26917
43951

14724
24462
38539
46172



[1] 23
[1] 939

3630 6661 11499

[13] 33321 35023 36417 38561

[1] 29
[1] 939

3630 3685 6661

[13] 24462 26207 29522 33321

[25] 44542 44758 44902 45991

[1] 40
[1] 939

3630 3685 5210

[13] 21667 21757 23038 23259

[25] 30997 33321 35023 36417

[37] 44902 45991 46172 48035

user system elapsed

51.264 17.

[1] 939

984 69.215
1348 3630 3685

[13] 17062 19391 20877 21667

[25] 24765 26207 26917 29522

[37] 38561 41045 41799 42887

[49] 46700 48035

[1] "lasso end"

> fpval(gse.y,gse3.x,laost,0.

[1] "start 2"

[1] "start 3"

[[1]1]

[,1]
(1,1 939
[2,]1 3630
[3,] 11499
[4,] 44902
[5,] 26207

[,2]
0.000000e+00
0.000000e+00
0.000000e+00
5.417777e-12
7.043111e-11

13650
41045

11499
35023
48035

5939
23796
38406

4216
21757
30451
43642

01)

14724
41799

13650
36417

6661
23983
38561

5210
21980
30997
43951

68

17062
43951

14724
38406

8669
24232
41045

5939
23038
31218
44542

21667
44758

17062
38561

11499
24462
41799

6661
23259
33321
44758

23038
44902

21667
41045

13650
24765
43642

8669
23796
35023
44902

23259
45991

23038
41799

14724
26207
43951

11499
23983
36417
45627

23983
48035

23259
43642

17062
29522
44542

13650
24232
38406
45991

26207

23983
43951

19391
30451
44758

14724
24462
38539
46172



[6,1]

[7,1]

[8,1]

[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]
[22,]
[23,]
[24,]
[25,]
[26,]
[27,1]
[28,]
[29,]
[30,]
[31,]
[32,]
[33,]
[34,]
[35,]

43951
29522
41799
23983
24232
38561
30451
33321
23259
35023

8669
44758
23038
46172
45991

3685
13650
21757
30997

5939
36417

4216
14724

6661
26917
46700
24462
48035
17062

5210

.009237e-10
.176266e-10
.246114e-09
.936435e-09
.624073e-08
.087823e-08
.315761e-07
.230429e-07
.717633e-07
.555876e-06
.285539e-06
.331563e-06
.508366e-06
.159328e-06
.382485e-05
.096310e-05
.284205e-05
.463220e-04
.918151e-04
.768018e-04
.450063e-04
.412395e-04
.664579e-03
.026067e-03
.145650e-03
.281872e-03
.818816e-03
.884352e-03
.888099e-03
.442471e-03
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> #

\4

# Cox-Battey covariates

> #

\4

coxbat<-c (7235, 11643, 25125, 25470, 25744, 27642, 27920, 29679, 33385,

+

36409, 37443, 44276, 45991, 46771, 48415, 48433, 48549)
> fpval(gse.y,gse3.x,coxbat,0.01)

[1] "start 2"

[1] "start 3"

[[1]1]

[,1] [,2]

[1,] 37443 2.925660e-10
[2,] 27642 3.684164e-10
[3,] 33385 2

[4,] 27920 1.694824e-07

.505773e-08
[5,] 36409 5.585733e-07
[6,] 25744 7.581411e-07
[7,] 48415 1.663886e-06

[8,] 46771 2.609815e-06
[9,] 25470 3.000447e-06
[10,] 7235 3.314328e-06
[11,] 25125 2.407158e-05

[12,] 48549 1.922365e-04
[13,] 29679 1.984815e-04
[14,] 45991 3.831023e-04
[15,] 48433 6.429226e-04

> #

> stost<-fstepstepwise(gse.y,gse3.x,0.0001,10,time=T) [[1]]

user.self
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4.084

> stost<-stost[,2]
> fpval(gse.y,gse3.x,stost,0.01)
[1] "start 2"

[1] "start 3"

[[1]1]

[,1] [,2]

[1,] 11499 0.000000e+00
[2,] 31848 0.000000e+00
[3,] 44902

[4,] 10546

.000000e+00
.000000e+00
[5,] 34803 0.000000e+00
[6,]1 30451 0.000000e+00
[8,] 7896

[9,]1 22705

.000000e+00
.000000e+00
[10,] 37443
[11,] 28816

.000000e+00
.000000e+00

[12,] 29522

0
0
0
0
0
0

(7,1 939 0.000000e+00
0
0
o
0
0.000000e+00
5

[13,] 26207 5.417888e-12
(14,1 3630 1.625333e-11
[15,] 46979 2.167155e-11
[16,] 25744 5.417888e-11

[18,] 43951

2
5

[17,] 10374 9.210221e-11
4.009237e-10
6

[19,] 25125 6.393108e-10
[20,] 41799 1.647038e-09
[21,] 39141 2.557243e-09
[22,] 24232 2.806466e-09

4

[23,] 26795 4.930278e-09



[24,1 6740 5.791723e-09
[25,] 44664 6.095124e-09
[26,] 25241 1.106875e-08
[27,] 21350 1.783677e-07
[28,] 24266 8.452877e-07
[29,] 38561 1.122988e-06
[30,] 22929 2.326038e-06
[31,] 44758 5.331563e-06
[32,]1 34076 8.007249e-05
> #
> #
> # Section 3.4
> #
> #
> bostoninter<-fgeninter(boston[,1:13],8) [[1]]
[1] "number of interactions: 203490"
> bostonsv<-fstepwise(boston[,14] ,bostoninter,0.05,20,0ffset=F,time=T) [[1]]
user system elapsed
14.496 0.364 15.144
> bostonsv
[,1] [,2]
[1,] 441 0.000000e+00
[2,] 197063 0.000000e+00
[3,] 197166 7
[4,] 120886 1.006557e-05

.455263e-10

[5,] 118685 2.726566e-07
[6,] 121659 1.140579e-03
[7,] 193641 1.650804e-02
[s,] 10 1.607415e-03
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[9,] 7472 4.518208e-11
[10,]1 192007 9.425253e-06
> decomp(bostonsv[,1],14,8)
[[111]
(,11 [,21 [,31 [,4]1 [,5] [,6] [,7] [,8]
[1,] 0 0 0 0 0 6 6 6

[2,] 6 6 6 6 6 6 6 13
(3,] 6 6 6 6 6 11 11 11
[4,] 1 4 7 9 9 9 9 9
(5,] 1 4 5 5 6 7 9 9
(6,1] 1 5 5 5 6 6 8 13
[7,] 5 6 6 6 6 6 8 10
(s,] 0 0 0 0 0 0 0 9
[9,] 0 0 0 5 6 6 9 13
[10,] 5 5 6 6 6 9 13 13

> b<-1m(bostonl[,14] “bostoninter[,bostonsv[,1]])
> print (sum(b$res~2))

[1] 5690.012

> b<-1m(boston[,14] “boston[,1:13])
> print (sum(b$res~2))

[1] 11078.78

> #

> rm(bostoninter)

> #

> #

> # Section 3.5

> #

> #

> xc<-tut1x(1000,1000) [[1]]
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> #
> tmp<-gralss(xc)
user.self
9243.556
> tmp[[1]]
[1] 1045
> fn<-999-sum(abs (tmp [[2]] [,2]-tmp[[2]1][,1]1)==1)
> fp<-sum(abs(tmp[[2]][,2]-tmp[[2]1][,1]1)>=2)
> print(c("(fn,fp)",fn,fp))
(11 "(fn,fp)" "7" "53"
>
> #
> tmp<-fgraphst(xc,0.05,10,time=T)
user system elapsed

17.356 0.004 17.352
> tmp[[1]]

[1] 994
> fn<-999-sum(abs (tmp[[2]]1 [,2]-tmp[[2]] [,1])==1)
> fp<-sum(abs (tmp[[2]][,2]-tmp[[2]][,1]1)>=2)
> print(c("(fn,fp)",fn,fp))

(1] "(fn,fp)" "5" "o"
> tmp[[2]][1:10,]
[,11 [,2]
[1,] 1 2
[2,] 2 3
[3,] 3 4
[4,] 4 5
[5,] 5 6
[6,] 6 7
(7,1 7 8

74



[8,] 8 9
[9,1] 9 10
(10,7 10 11
> #
> #
> rm(xc)
> #
> frgraph(st=F,lasso=T)
[1] 1829
user.self
2831.744
[1] 571 13
user system elapsed
2832.240 0.176 2830.770
> #
> #
> frgraph()
[1] 1829
[1] 0 118
user system elapsed
18.516 0.000 18.506
> #
> #
> frgraph(alpha=5)
[1] 1829
[1] 5 12
user system elapsed
21.056 0.004 21.049
> #
> #



> tmp<-gralss(colon.x)
user.self
657
> tmp[[1]]
[1] 23322
> #
> tmp<-fgraphst(colon.x,0.05,10,time=T)
user system elapsed
2.660 0.004 2.661
> tmp[[1]]
[1] 1634
> tmp[[2]]1[1:10,]
(.11 [,2]
[1,] 1 23
[2,] 1 98

(3,] 2 3
[4,] 2 126
(5,] 2 156
(6,] 4 108
[7,] 4 131
(8,] 4 367
[9,] 5 15
[10,] 5 1201
> #

> tmp<-fgraphstst(colon.x,0.05,10,nedge=1e5,time=T)
user system elapsed
59.624 0.008 59.595
> tmp[[1]]
[1] 24475
> #
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> tmp<-fgraphstst(colon.x,le-7,10,time=T)
user system elapsed
5.212 0.000 5.207

> tmp[[1]]

[1] 1521

> tmp[[2]][1:10,]

[,1]1 [,2]
[1,] 2 3
[2,] 2 126
(3,1 2 156
4,] 2 162
(5,] 3 126
(6,1 4 108
(7,] 4 131
(8,1 4 367
(9,1 4 416
[10,] 4 457
> #
> #
> #
> #

> tmp<-fgraphst(gse3.x,0.05,10,time=T)
user system elapsed
3007.720 0.472 3006.784
> tmp[[1]]
[1] 38986
> #
> #
> tmp<-fstepstepwise(gse3.x[,1],gse3.x[,2:48802] ,alpha=0.05/48801,10,time=TRUE) [[1]]

user.self
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767.292
> length(tmpl[,1])
[1] 4009
> #
> #
> tmp<-fgraphstst(gse3.x[,stost],1e-6,10,time=T)
user system elapsed
0.012 0.000 0.010
>
> tmp[[1]]
[1] 160
> tmpil<-tmp[[2]][,1]
> tmpi2<-tmp[[2]][,2]
> edg<-cbind(stost[tmpil] ,stost[tmpi2])
> edgl1:20,]
(.11 [,2]
[1,] 11499 3630
[2,] 11499 41799
[3,] 11499 26207
[4,] 11499 10546
[5,] 11499 46979
(6,1 11499 25241
[7,] 11499 34803
[8,] 11499 939
[9,] 11499 10374
[10,] 11499 7896
[11,] 11499 39141
[12,] 11499 26795
[13,]1 11499 44664
[14,] 11499 6740
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[15,1 11499 28816

[16,] 11499 24232

[17,] 11499 29522

[18,] 11499 25125

[19,] 31848 44902

[20,] 31848 25241

> time2<-proc.time()

> print(time2[[1]]-timel1 [[1]])
[1] 31958.58

> qQO
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