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Abstract

The recent evolution of cryptocurrencies has been characterized by bubble-like

behavior and extreme volatility. While it is difficult to assess an intrinsic value

to a specific cryptocurrency, one can employ recently proposed bubble tests that

rely on recursive applications of classical unit root tests. This paper extends this

approach to the case where volatility is time varying, assuming a deterministic long-

run component that may take into account a decrease of unconditional volatility

when the cryptocurrency matures with a higher market dissemination. Volatility

also includes a stochastic short-run component to capture volatility clustering. The

wild bootstrap is shown to correctly adjust the size properties of the bubble test,

which retains good power properties. In an empirical application using eleven of

the largest cryptocurrencies and the CRIX index, the general evidence in favor of

bubbles is confirmed, but much less pronounced than under constant volatility.
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1 Introduction

The question whether the evolution of some or all of the cryptocurrencies (cryptos) is

driven by speculative bubbles has been conversely debated both in public media and

academics. Some of the currently available cryptos such as Bitcoin have similarities with

gold in that they are mined through complicated procedures and have a fixed global

supply, see e.g. Gronwald (2014) for a comparison between gold and Bitcoin. However,

while gold has a lower bound of its fundamental value given by its use in various physical

applications, there is no such lower bound for cryptos, whose intrinsic value crucially

hinges upon their acceptance as a payment device. The view that the fundamental value

of Bitcoin is zero is supported empirically by the analysis of Cheah and Fry (2015) for the

early Bitcoin market until 2014. Moreover, several studies cast doubt on the perception

of cryptos, in particular Bitcoin, as a currency. For example, Yermack (2013) argues that,

while Bitcoin is increasingly used as a medium of exchange, it can hardly be used as a

unit of account and a store of value, mainly hampered by its excessive volatility.

As of today, Bitcoin and other cryptos seem to share more characteristics of alterna-

tive or speculative assets than currencies, see e.g. Glaser et al (2014). Indeed, given their

low correlation with traditional currencies and financial assets, they can be considered as

diversifiers in portfolios, safe haven investments and hedging instruments, a role tradi-

tionally played by gold. Bouri et al (2017) study this question and find that Bitcoin is a

poor hedge but suitable for diversification purposes. Accepting the role of alternative as-

sets, understanding the market and price dynamics is of primary importance for investors.

Urquhart (2016) shows that the Bitcoin market is not weak-form market efficient, while

Nadarajah and Chu (2017) use odd-power transformations of returns to obtain market

efficiency. In various studies, price and return dynamics have been found to be intrinsi-

cally complex, with extreme volatility, spikes and jumps. For example, Gronwald (2014)

uses an autoregressive jump-intensity GARCH model to descrive Bitcoin return dynamics

until 2014, while Scaillet et al (2017) analyze the jump behavior of Bitcoin transaction

data from 2011 to 2013.
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Speculative bubbles may be rational when investors are aware of the fact that prices

have moved away from fundamental values, but consider the probability of selling at a

higher price more important than a possible crash. Irrational bubbles are mainly driven

by psychological factors, herd instincts, etc. Famous examples of irrational bubbles are

the Dutch tulip mania in 1636/37 and the south sea bubble in 1719-1721, see e.g. Dale et

al. (2005). A more recent example is the dot come bubble 1997-2001. The current market

of cryptocurrencies shows similarities with these historical events at least in its extreme

price movements over short periods of time. It is remarkable that the three historical

examples showed the evolution of the bubble and its burst over periods of roughly three

years, while we have seen a dramatic increase in crypto prices over the period 2015-2017,

but so far without a significant burst. The recent hype in public media attracts more and

more people to the market driven by psychological factors, suggesting a possible irrational

bubble.

As there seems to be consensus in the academic literature about the possible presence

of speculative bubbles in cryptocurrencies, it is useful to formulate models that allow

for bubble behavior while taking into account the complex dynamic features observed

in cryptos. Hencic and Gouriéroux (2015) apply a non-causal autoregressive process

with Cauchy innovations to the Bitcoin-US Dollar rate, which reproduces the bubble-like

behavior of the rate over the period February to July 2013. Cheah and Fry (2015) use

a continuous time model to identify bubbles via anomalous behaviors of the drift and

volatility components. A possibly nonstationary behavior of volatility does not seem to

have been taken into account explicitly for tests of bubbles in cryptocurrencies.

In this paper we follow the idea of the bubble test developed by Phillips et al (2011),

PWY in the following, which essentially tests whether the price dynamics are characterized

by a unit root versus explosive behavior. As shown by Harvey et al (2015), the original

test of PWY is biased in the presence of non-stationary volatility. For cryptocurrencies

we may expect volatilities to be nonstationary for various reasons, one of them being the

typically high volatility shortly after the initial coin offering (ICO) and a possible decline

once the crypto is becoming more mature and accepted as a payment medium. Harvey
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et al (2015) suggest a wild bootstrap procedure to correct the size of the PWY test and

show that is has good power properties. While they only consider deterministic volatility

functions, it is important to also allow for a possible volatility clustering due to stochastic

effects, such as GARCH or stochastic volatility. Moreover, we adjust the algorithm to

account for serial correlation and highly significant non-zero skewness coefficients of daily

log returns.

We combine deterministic and stochastic components by applying a version of the

so-called Spline-GARCH model of Engle and Rangel (2008) to show that the long-term

average levels of volatility change for most of the analyzed crytos, being typically higher

at the beginning of their existence than at later stages, while short term volatility is

driven by volatility clustering effects similar to classical financial assets. We then show in

a simulation study that the wild bootstrap PWY test has good size and power properties

in sample sizes typically available for the largest cryptos. We then apply this test to the

eleven largest cryptos by market capitalization on the last day of our sample, 12/31/2017,

as well as the CRIX index, see Trimborn and Härdle (2016). Our findings suggest that,

out of eleven cryptos, for eight do we reject the null hypothesis of a unit root in favor of

the explosive alternative at the 5% significance level. However, the obtained p-values are

much larger than those of the original PWY distribution, suggesting that the evidence

in favor of speculative bubbles is weaker under the presence of nonstationary volatility.

Indeed, at the 1% level we can reject the unit root only in the case of Bitcoin, which hence

shows the strongest evidence in favor of a bubble.

The remainder of the paper is organized as follows. The next section introduces the

data used in this study and gives some summary statistics. Section 3 provides evidence

in favor of time-varying volatility, decomposed into deterministic and stochastic effects.

Section 4 presents the test for explosive speculative bubbles in a general framework al-

lowing for time-varying volatility. Section 5 applies the test to the data and attempts to

date-stamp the identified bubbles, and Section 6 concludes.
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2 Data and summary statistics

Throughout the paper we will use the eleven largest cryptos on 12/31/2017, the last

day of our sample, according to the data provider Coinmarketcap.com. Additionally, we

use the crypto index CRIX developed jointly by Humboldt University Berlin, Singapore

Management University and the data provider CoinGecko, see http://crix.hu-berlin.de/

and Trimborn and Härdle (2016) for details. Table 1 gives an overview of the data under

study. In most, but not all cases, the start date corresponds to the date of the ICO. An

exception is Bitcoin, which was launched already on January 3, 2009. Bitcoin cash is a

so-called hard fork of the original Bitcoin, augmenting the blocksize of the latter from 1

to 8 MB and thus enhancing transaction times. Most of the cryptos use the Blockchain

technology, but for example IOTA does not.

Table 2 provides summary statistics of the returns of each crypto. In terms of perfor-

mance, two measures are given, the total return over the sample period and the annualized

average log return. Because the sample periods differ, the best performer in total returns

(XEM with 425,519%) is not the same as the one for annualized average log returns (ADA

with 1,348.16%). These very large numbers, unusual for any other market, illustrate the

general steep upward trend since the inception of cryptos. However, they are accompanied

by equally large numbers for average annualized volatilities, such that the Sharpe ratios

are more in line with typical values in other markets. Note that the volatilities tend to

be lower for more mature cryptos and higher for more recent ones. Bitcoin as the oldest

crypto has the lowest volatility, while the three most recent ones, i.e. BCH, ADA and

IOTA, have the highest volatilities, suggesting that volatility is a function of the elapsed

time since ICO. We will investigate this point further in the following section. As may be

expected by similar findings for financial indices, the CRIX index as a weighted average

of leading cryptos has the lowest average volatility, close to Bitcoin. It has mainly been

dominated by Bitcoin so that the other statistics of the CRIX are also similar to those of

Bitcoin.

Unlike for typical equity returns, sample skewness coefficients are mostly positive and
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significantly different from zero, a fact that may be explained by larger extrema on the

positive side than on the negative side, comparing the min and max values, and noting

that higher order moments are very sensitive to outliers. The sample kurtosis coefficients,

on the other hand, are comparable to typical values in high frequency financial assets and

reflect the fat tails of return distributions. In all cases, classical normality tests such as

Jarque-Bera reject normality at all conventional significance levels.

Serial correlation coefficients are small but often significant. To take this into account

in the following, we fit an autoregressive model of order p, where p is chosen according to

the Bayesian information criterion (BIC). The orders are reported in the last column of

Table 2.

3 Time-varying volatility

In this section we give evidence for time-varying volatility of cryptos. We have seen in

the previous section that volatility seems to be higher for cryptos whose ICO is in the

recent past, and lower for more mature cryptos. This feature can be embedded into a

volatility which is an explicit deterministic function of the number of elapsed trading

days, or simply of time. This function could take into account other effects, for example

the emergence of forks such as bitcoin cash in July 2017, or the introduction of futures

contracts on the Bitcoin at the CBOE and CME in December 2017, which may have

effects on the volatility of bitcoin prices. As in most cases these events are anticipated,

we may model them using a deterministic function of time that will be estimated for each

crypto.

Apart from deterministic effects, we also observe stochastic volatility changes, and the

volatility clustering that is typically encountered in financial markets. Periods of high

volatility alternate with those of low volatility in a random way. We will incorporate both

features of volatility changes into a model very similar to the spline-GARCH model of

Engle and Rangel (2008). To introduce the notation, we will call yt the log return of a

crypto on day t, and g(t/T ) a smooth deterministic function of time that captures the
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effects due to calendar and anticipated events. For the stochastic part of the model, we

consider two asymmetric GARCH versions, the threshold GARCH (TGARCH) model of

Glosten et al. (1993) and the exponential GARCH (EGARCH) model of Nelson (1991). It

is a priori not clear whether a leverage effect, typical for equity returns, should be present

also in cryptos. Common findings in traditional exchange rates is that leverage effects

are, if at all present, much weaker than in equity returns. However, given the current

consideration of cryptos as speculative assets rather than currencies, we may suspect some

asymmetry in the news impact functions. The complete model takes the form

εt = g(t/T )
√

htξt, ξt ∼ i.i.d.(0, 1) (1)

TGARCH : ht = ω + α
ε2t−1

g( t−1
T
)2

+ θ
ε2t−1

g( t−1
T
)2
Dt + βht−1 (2)

EGARCH : log ht = ω + α(|ξt−1| − E|ξt−1|) + θξt−1 + β log ht−1 (3)

where εt is the error term of an AR(p) model fitted to log returns obtained as the first

difference of log prices yt, with the order p given in Table 2. Dt is a dummy variable that

takes the value 1 if εt−1 is negative, and zero otherwise, α, β and θ are parameters, which

in the TGARCH case are restricted by α, β > 0 and α+β+ θη < 1, where η = E(ξt < 0),

and in the EGARCH case by β < 1. The TGARCH restriction does not assume that

the distribution of ξt is symmetric, hence η is not necessarily equal to 1/2. We will only

assume that E|ξt|p < ∞ for some p > 2.

Without further constraints, model (1)-(3) is not identified. We can obtain identi-

fiability by assuming that the unconditional variance is given by g(t/T )2 and therefore

restricting E[ht] = 1, which in the TGARCH case means that ω = 1 − α − β − θη. In

the EGARCH case, similar restrictions could be found but are more complicated as they

depend on the distribution of ξt, see Nelson (1991). Note that this restriction is not

necessary in the case of sequential estimation, estimating first the unconditional variance

g(t/T )2, then dividing through by the estimate of g(t/T ) and estimate ht as in (2) or (3)

without further constraint.

Under the above assumptions, ht is weakly and strictly stationary and g(t/T )2 is

the function towards which the conditional variance, g(t/T )2ht reverts. The two main
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differences with respect to Engle and Rangel (2008) is that rather than using a symmetric

plain vanilla GARCH we use two more flexible asymmetric versions, and instead of using

splines for the estimation of g(t/T ), we use a local linear kernel estimator.

Estimation is done in two steps, where first the nonparametric part g(t/T ) is esti-

mated using a local linear kernel estimator, see e.g. Fan and Gijsels (1996). We use

the Epanechnikov kernel and the bandwidth h chosen by least squares cross-validation to

obtain an estimate ĝh(·). In the second step, the parameters of ht are estimated using

Gaussian quasi maximum likelihood, which provides consistent, if not efficient parameter

estimates. Table 4 reports estimation results for the parametric part of the model, as a

well as the ratio of the maximum and minimum values of ĝh(·). The latter statistic gives

an indication for the variability of unconditional volatilities over the sample period and

takes values in the range of 1.97 for XMR and 4.52 for DASH. Thus, the average volatility

level varies over the sample period by a factor of roughly two to four and a half. Figures

1 and 2 show the estimated functions for BTC and CRIX. BTC has a typical shape,

representative of many other cryptos that are not shown to save space. The typical shape

is a high level in 2013, reflecting uncertainty at an early stage of the crypto as to whether

it will be accepted by the market, a lower level during the consolidation period 2014 to

2016, and an increase in 2017, paralleling increasing media coverage, the introduction

of Bitcoin Cash in July, futures contracts in December, and increasing concerns about

market regulation, the closing of online exchanges in China and uncertainty about other

countries such as South Korea.

The results of the parametric part in Table 4 can be summarized as follows:

(i) Volatility clustering, measured by the size effects α, is important and significant.

(ii) Persistence of shocks in volatility, measured by α + β + θη for TGARCH and β

for EGARCH, is high but not as high as in standard GARCH models applied to

financial returns. This is due to the presence of g(t/T ) which incorporates already

a large part of the variation of volatility.

(iii) Unlike equities, cryptos do not systematically show an asymmetry of the news im-
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pact function. In many cases, asymmetry is not significant. The cases with signif-

icant asymmetry have negative asymmetry for BTC, and positive for LTC, XLM

and XMR.

(iv) EGARCH is the preferred model in eight cases, TGARCH in only four. This may

be explained by the exponential increase of the news impact function as opposed to

only quadratic of TGARCH, so that the often occurring extreme events in cryptos

tend to be better captured by EGARCH.

To summarize these results, we find strong evidence for time-varying volatility in two

ways: a change in unconditional volatilities, viewed as deterministic functions of time,

and in conditional volatilities being driven by short term effects and stochastic factors.

This will have an impact on the performance of statistical tests for speculative bubbles,

to which we now turn.

4 Testing for explosive speculative bubbles

We follow the approach of Phillips et al (2011) to test for speculative bubbles, extended to

our framework. Under the null hypothesis, log prices yt have a unit root and follow, in the

simplest case ignoring serial correlation of the error terms, a random walk, yt = yt−1+ εt,

where εt is white noise. Under the alternative, there is at least one sub-period of the

sample for which the process is explosive, i.e. yt = (1+ δ)yt−1+ εt with δ > 0, which may

be followed, or not, by a collapse, i.e., a period with δ < 0.

Classical unit root asymptotics of Dickey and Fuller (1979) continue to hold under

heteroskedasticity as long as a so-called global homoskedasticity condition holds, see Cav-

aliere and Taylor (2009, CT in the following for brevity). This is the case, for example,

for stationary GARCH processes. If global homoskedasticity does not hold, as in our case

of model (1)- (3), the results of Dickey and Fuller (1979) no longer hold. CT provide

a generalized framework, allowing for so-called global heteroskedasticity, and derive the

unit-root asymptotics for this general case. Our model (1)- (3) fits into their framework
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as we show in the following.

First, Assumption 1 of CT holds because εt is a martingale difference sequence w.r.t.

Ft−1, and supt E[|εt|p|Ft−1] ≤ Qε < ∞, a.s. for some p > 2 because of our assumption

E|ξt|p < ∞ for some p > 2, where Ft−1 is the σ-algebra generated by {y1, . . . , yt−1}.
Denote by σ2

T,t−1 := Var(εt|Ft−1) = g(t/T )2ht the conditional variance of εt given Ft−1.

Then we can show that Assumption 2 of CT holds by finding a strictly positive determin-

istic sequence {aT} such that a−1
T σT (·) →d Ω(·) with

∫ 1

0
Ω(s)2ds > 0, a.s. For example, in

the GARCH case, i.e. θ = 0 in (2), we can set aT = 1, and assuming near-integratedness

as T increases, the process Ω(s) is given by

dΩ(s)2 = (g(s)2 − λΩ(s)2)ds+ φΩ(s)2dB(s)

with B(s) a standard Brownian motion, and where φ = limT→∞(2T )1/2αT and λ =

limT→∞ = T (1 − αT − βT ), λ > −φ2/2, see Nelson (1990). This is an extension of

example 4 of CT, who treat the stationary case with a constant unconditional variance.

Analogous results can be found for the TGARCH and EGARCH process using the results

of Duan (1997) for the weak diffusion limits of the augmented GARCH model, which

nests both as special cases. Finally, Assumption 3 of CT also holds in our case. We

are therefore in a position to proceed with the test for speculative bubbles developed by

Phillips et al (2011).

The test of Phillips et al (2011) is essentially the supremum of a forward recursive

sequence of right-tailed Dickey-Fuller tests, and the procedure is the following. First, the

minimum proportion of the sample to be used in the first DF test is chosen as r0 ∈ (0, 1),

so that the first DF statistic is computed using the observations 1, . . . , ⌊r0T ⌋. This sample

is sequentially augmented until the end of the full sample, T , each time recalculating the

DF statistic. Then, the test statistic proposed by Phillips et al (2011) is given by

PWY := sup
r∈[r0,1]

DFr, (4)

where DFr is the augmented Dickey-Fuller test statistic, i.e. the t-ratio for the OLS
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estimator of br in the regression

∆yt = ar + bryt−1 +

p
∑

j=1

αj∆yt−j + εt,r, t = 1, . . . , ⌊rT ⌋.

The alternative hypothesis is not stationarity but explosiveness, so that rejections occur

not in the left tail but in the right tail of the distribution under the null. Table 1 of Phillips

et al (2011) give critical values of this distribution, but Harvey et al (2015) show that these

are incorrect if the error process εt is not globally homoskedastic in the sense of Cavaliere

and Taylor (2009). They propose a wild bootstrap procedure to correct for the size of

the PWY test for the case p = 0 using perturbations of residuals by standard normal

random variables, see e.g. Mammen (1993). Their procedure has a good performance for

deterministic volatility functions and symmetric innovation distributions.

In our case, as we have seen in Section 2 and Table 2, return distributions are often

highly skewed to the right, due inter alia to positive extremes being more frequent than

negative ones. Moreover, as we have seen in Table 2, serial correlation of returns is often

not negligible so that we would like to reproduce this autocorrelation also in the bootstrap

samples. To better approximate the distribution of the PWY distribution under skewed

returns and using augmented DF tests, we therefore propose the following generalization

of the algorithm of Harvey et al (2015):

Step 1. Generate independent ut ∼ N(0, 1) and vt ∼ N(0, 1), t = 1, . . . , T , and compute

wt = ut/
√
2 + (v2t − 1)/2. By construction, E[wt] = 0, E[w2

t ] = 1, and E[w3
t ] = 1.

Step 2. Generate T bootstrap innovations ε∗t as: ε∗1 = 0, ε∗t = wtε̂t, t = 2, . . . , T ,

where ε̂t are the OLS residuals of the fitted AR(p) models. By construction, E[ε∗t ] = 0,

E[ε∗2t ] = ε̂2t , and E[ε∗3t ] = ε̂3t .

Step 3. Set y∗t = 0, t ≤ 0, and generate recursively the bootstrap sample as y∗t =

â+ y∗t−1 +
∑p

j=1 α̂j∆y∗t−j + ε∗t , t = 1, . . . , T .
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Step 4. Compute the bootstrap test statistic

PWY ∗ := sup
r∈[r0,1]

DF ∗
r ,

where DF ∗
r is the t-ratio for the OLS estimator of b∗r in the regression

∆y∗t = a∗r + b∗ry
∗
t−1 +

p
∑

j=1

αj∆y∗t−j + ε∗t,r, t = 1, . . . , ⌊rT ⌋.

Step 5. Repeat steps 1 to 4 B times to obtain bootstrap test statistics PWY ∗
b , b =

1, . . . , B. Then, calculate the simulated bootstrap p-value as B−1
∑B

b=1 I(PWY ∗
b >

PWY ).

If the test rejects the null hypothesis, i.e., the bootstrap p-value is smaller than a

nominal significance level, then it is possible to estimate the timings of the bubble and its

collapse, if it occurs, following the procedure of Phillips et al.(2011). In particular, they

consider the time series of sequential Dickey-Fuller statistics DFr, and define the estimate

of the beginning of the bubble period as r1 := infr≥r0{r : DFr > cvαT
(r)}, and the burst,

should it occur, as r2 := infr≥r1{r : DFr > cvαT
(r)}, where cvαT

(r) is a critical value at r

corresponding to a significance level αT . In order to eliminate the Type I error probability,

cvαT
(r) should increase to infinity at a slow rate, or equivalently, αT should decrease to

zero. Similar to PWY, the distribution ofDFr is also affected by global heteroskedasticity,

but can also be simulated using the wild bootstrap for given observations.

In the following we provide simulation evidence for the consistency of the above al-

gorithm in our model framework, i.e., allowing for both deterministic and stochastically

varying volatility, and skewed innovation distributions. The setup is as follows. We gen-

erate the process yt = (1 + δJt)yt−1 + εt, where Jt = I(t ≥ T/2) such that the process

is explosive in the second part of the sample if δ > 0, and the process does not collapse.

Under the null, δ = 0, and for the alternative we set δ ∈ {0.01, 0.02, 0.03}. The error

process εt is generated as in (1) with ξt drawn from a centered and normalized negative
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log-χ2 distribution1. The smooth, deterministic part of volatility is set as

g(t/T ) = 0.05(1 + c cos(πt/T )2)

where c ∈ {1, 2} is a constant to determine the degree of global heteroskedasticity. For

the parametric part, we use a standard GARCH model, i.e. in (2) we set θ = 0, while α is

set to 0.1 and β to 0.85. The sample size is set to T = 100 and T = 200. The number of

bootstrap replications B is set to 5,000, while each process is generated N = 500 times.

The simulation results are reported in Table 4 for a nominal level of five %.

Note that the test is undersized in small samples, with the bias increasing with the

degree of global heteroskedasticity. The empirical size converges however to the nominal

size as the sample size increases. The power of the test is slightly larger for the case c = 2,

i.e. large variation of g(t/T ), and increases as expected both in T and in δ. For the case

δ = 0.03 and T = 500 the estimated power is virtually equal to one. This confirms the

good performance of the wild bootstrap test also in the more general framework of time-

varying volatility with deterministic and stochastic effects, as well as skewed innovations,

i.e. a realistic framework in the light of our results of Sections 2 and 3. We will now apply

this test to our set of cryptos and the CRIX.

5 Empirical results

We apply the PWY test to the set of leading cryptos and the CRIX index, taking into

account time-varying volatility. We implement the test using a starting proportion of 10%

of the data, i.e. r0 = 0.1, which corresponds to the choice of Phillips et al (2011). For

the wild bootstrap we use 5,000 replications. Table 5 reports the main results. The first

column contains the obtained values of the PWY statistic (4). The next column gives

an estimate of the p-value of the PWY statistic obtained by simulating 10,000 random

walk processes with normally distributed error terms, as in Phillips et al (2011). The 1%

1Generate i.i.d. Zt ∼ N(0, 1), set ξ̃t = − logZ2

t
, t = 1, . . . , T , and then standardize ξ̃t to have mean

zero and variance one. This r.v. is right skewed.
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and 5% upper quantiles of this distribution closely correspond to the values reported in

Table 1 of Phillips et al (2011). Given our discussion above and the results of CT, these

p-values are not reliable in our context of global heteroskedasticity, but it will allow us to

assess the impact of time-varying volatility on the results of the PWY test. The next two

columns of Table 5 report estimates of the 1% and 5% upper quantiles of the distribution

of the PWY statistic using the wild bootstrap with 5,000 replications. Finally, the last

column gives the p-value corresponding to this distribution, which appropriately takes

into account global heteroskedasticity.

Let us first compare the two columns containing p-values, with and without bootstrap

correction. Taking into account global heteroskedasticity has the effect of increasing the

p-values that were found to be very close to zero, which is the case for BTC, XEM, IOTA,

ADA, XLM, LTC, and the CRIX. In other words, the evidence in favor of speculative

bubbles is much less pronounced than when this effect is ignored. However, not all p-

values increase, in particular the larger ones tend to decrease under the correction, which

is the case for BCH, ETH, XMR, and DASH.

We now analyze further the p-values obtained with the wild bootstrap correction, i.e.

the last column of table 5. Note that all p-values are quite small, the largest one being

0.1816 for BCH, the smallest one 0.0032 for BTC. Only one p-value is smaller than 1%

(BTC with 0.0032), meaning that at the 1% level one would reject the null hypothesis in

favor of a speculative bubble only for the Bitcoin. At the 5% level, this number increases

to 9 (all cryptos except IOTA, BCH and XLM). Thus, if one accepts a 5% significance

level, there is generally strong evidence in favor of speculative bubbles in the majority of

analyzed cryptos, and the CRIX index, even after having corrected for the size of the test

due to global heteroskedasticity. The effect seems strongest in the oldest and most liquid

crypto, the Bitcoin.

Finally, we turn to the analysis of the time series of recursive DFr statistics to date-

stamp the bubbles, as in Phillips et al. (2011). They choose critical values that are

close to the 4% level. We have to size-correct this distribution as it is affected by global

heteroskedasticity, which we again do by the wild bootstrap. Using this distribution, we

13



choose a critical value function that at the end of sample is close to the 1% level, while

slowly increasing to infinity to ensure consistency of the dating procedure. This can be

achieved by the function cvαT
(r) = log(log(Tr))/c, where c is chosen such that cvαT

(1)

corresponds roughly to the 1% upper quantile of the simulated distribution of DF1 under

heteroskedasticity. For Bitcoin and CRIX this gives the constants c = 2 and c = 1.5,

respectively, such that the range of critical values is (0.8186 1.003) for the Bitcoin, and

(1.0507, 1.3096) for the CRIX.

Figure 3 shows the series of DFr statistics together with critical values for the Bitcoin.

Apart from a very short crossing beginning of 2014, there are essentially two bubble

periods: the first starting on November 7, 2013 and lasting until December 18, 2013,

while the second starts on November 27, 2017, and has not collapsed until the end of the

sample. The sequential DFr statistics are shown in Figure 4 for the CRIX index, together

with corresponding critical values. Here we have clearly a single bubble, and the starting

date is estimated as May 5, 2017. The bubble has not collapsed before the end of the

sample, although it came close to the critical value twice.

To summarize our findings, at the five percent significance level there is strong evi-

dence in favor of a presence of explosive speculative bubbles in cryptocurrencies, including

the Bitcoin and the CRIX index, even taking into account non-stationarity and global

heteroskedasticity of the involved time series. This evidence is much weaker, however,

at the 1% percent level, where essentially only the Bitcoin displays a significant bubble

behavior. Finally, the dating procedure allowed us to identify bubbles in the Bitcoin and

the CRIX at the end of the sample in 2017, which have not collapsed, and which might

be explained by the general media hype during this period, the introduction of Bitcoin

futures contracts in December 2017, and increasing uncertainty about market regulation.

6 Conclusions

We have seen that it is possible to test for explosive speculative bubbles in a general

context of nonstationarity and, in particular, global heteroskedasticity. This is important

14



in applications to cryptocurrencies, which due to their non-maturity still suffer from erratic

behavior, extreme events, and very high and changing volatility. Thus, correcting the size

of sequential Dickey-Fuller-type tests is highly recommended in applications. Our results

suggest that, despite the size correction and robustness of our approach, the majority of

test results remain significant at the 5% level, although not at the 1% level. The crypto

that shows the strongest bubble behavior is the Bitcoin, taking size-corrected p-values as

a criterion. This may be explained by the fact that it is the Bitcoin that attracts the

general public as it is the best known crypto that also enjoys the widest media coverage.

However, its market share has fallen steadily over the last years, and it is likely that the

configuration of leading cryptos changes rapidly in the near future.

In the Bitcoin case, the date-stamping algorithm of Phillips et al (2011) suggested

the presence of two bubbles. In case of multiple bubbles, the generalized approach of

Phillips et al (2015a,b) refines the date-stamping strategy in several ways to obtain more

precise estimates. In principle, it is possible to use these strategies also in our context of

global heteroskedasticity, although computationally challenging, which we leave for future

research.
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Appendix: Figures and Tables
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Figure 1: Estimated conditional (rough line) and unconditional (smooth line) standard

deviations of daily log returns of Bitcoin.
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Figure 2: Estimated conditional (rough line) and unconditional (smooth line) standard

deviations of daily log returns of the CRIX index.
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Figure 3: Time series of recursive DFr statistics for Bitcoin. The dashed line is the

function log(log(Tr))/2, r ∈ [0.1, 1] giving the critical value as a function of the sample

size and corresponding roughly to the 1% upper quantile of the DF1 distribution.
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Figure 4: Time series of recursive DFr statistics for CRIX. The dashed line is the function

log(log(Tr))/1.5, r ∈ [0.1, 1] giving the critical value as a function of the sample size and

corresponding roughly to the 1% upper quantile of the DF1 distribution.
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Name Symbol Market cap % share Start date number obs

1 Bitcoin BTC 220,903,949,498 38.59 04/28/2013 1709

2 Ripple XRP 82,199,880,481 14.36 08/04/2013 1611

3 Ethereum ETH 69,767,510,695 12.19 08/07/2015 878

4 Bitcoin Cash BCH 41,526,715,510 7.25 07/23/2017 162

5 Cardano ADA 18,030,140,406 3.15 10/01/2017 92

6 Litecoin LTC 12,000,947,760 2.10 04/28/2013 1709

7 IOTA MIOTA 9,564,670,064 1.67 06/13/2017 202

8 NEM XEM 8,389,826,956 1.47 04/01/2015 1006

9 Dash DASH 7,850,364,658 1.37 02/14/2014 1417

10 Stellar XLM 5,756,694,225 1.01 08/05/2014 1245

11 Monero XMR 5,255,620,533 0.92 05/21/2014 1320

CRIX 07/31/2014 1250

Table 1: Market cap is the market capitalization in USD as of December 31, 2017,

% share is the corresponding market share, where the total market capitalization

is 572,480,327,078 USD. Start date is the first day of the sample available at

the data provider Coinmarketcap.com, each sample ending on 12/31/2017, and

number obs is the number of observations in the sample.
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Symbol total-ret mean vola skew kurt min max p

BTC 10,447 99.53 84.10 -0.138 11.89 -0.266 0.357 6

XRP 39,002 135.31 151.95 2.256 32.12 -0.616 1.027 0

ETH 27,793 234.07 162.77 -3.72 67.63 -1.302 0.412 6

BCH 513 411.14 239.02 0.125 5.63 -0.446 0.432 2

ADA 2,782 1,348.16 316.37 2.200 11.04 -0.288 0.862 0

LTC 5,235 84.97 132.02 1.883 29.81 -0.514 0.829 0

MIOTA 501 325.89 221.44 0.150 4.882 -0.377 0.383 2

XEM 425,519 303.50 177.92 2.022 19.79 -0.361 0.995 2

DASH 281,097 204.69 164.14 3.153 44.54 -0.467 1.270 4

XLM 14,685 146.58 159.81 2.135 18.76 -0.366 0.723 1

XMR 21,714 149.03 148.88 0.750 9.09 -0.378 0.584 8

CRIX 4,736 113.37 68.58 -0.510 10.35 -0.238 0.198 0

Table 2: Descriptive statistics of returns. total-ret is the total gross return over

the sample period in %. mean is the annualized average log return in %, vola

is the annualized standard deviation in %, skew, kurt, min and max are the

skewness, kurtosis, minimum and maximum of daily log returns, respectively. p

is the order of an AR(p) model fitted to returns, including a constant, chosen by

the Bayesian information criterion (BIC).

21



Symbol TGARCH EGARCH

g-ratio α θ β Lik α θ β Lik

BTC 2.37 0.159 -0.001 0.791 -2215 0.310 -0.025∗∗ 0.918 -2206

XRP 3.43 0.741 -0.444 0.403 -1978 0.615 0.173 0.680 -1989

ETH 4.22 0.299 -0.025 0.635 -1099 0.439 0.024 0.864 -1096

BCH 3.19 0.264 0.009 0.383 -216 0.343 0.058 0.250 -218

ADA 3.03 0.869 -0.894∗ 0.216 -120 0.171 0.512∗∗ 0.530 -118

LTC 3.27 0.110 -0.054∗∗ 0.857 -2150 0.173 0.051∗∗ 0.928 -2158

MIOTA 2.34 0.116 -0.110 0.548 -278 0.131 0.062 0.684 -277

XEM 2.61 0.451 0.044 0.408 -1321 0.539 -0.013 0.796 -1317

DASH 4.52 0.338 -0.100∗ 0.541 -1842 0.435 0.046 0.807 -1838

XLM 2.90 0.602 -0582∗∗ 0.172 -1614 0.348 0.231∗∗ 0.606 -1616

XMR 1.97 0.162 -0.119∗∗ 0.824 -1779 0.176 0.099∗∗ 0.928 -1778

CRIX 2.03 0.209 0.005 0.761 -1611 0.376 -0.018 0.911 -1599

Table 3: Estimation results for the semiparametric volatility models. The column

g-ratio reports the maximum of the estimated unconditional standard deviation

g(t/T ) to its minimum. In the parametric part, θ characterizes asymmetry in

both TGARCH and EGARCH. Asterisks indicate significance of this parameter

at the 5 (*) and 1 (**) percent level. All α and β estimates are significant at the

1% level. The columns Lik give the log likelihood value for the parametric part of

each model, the higher one being marked in bold.
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δ T = 100 T = 200 T = 500

c = 1

0.00 0.024 0.048 0.050

0.01 0.038 0.284 0.664

0.02 0.192 0.552 0.907

0.03 0.569 0.891 0.995

c = 2

0.00 0.022 0.040 0.045

0.01 0.032 0.325 0.703

0.02 0.239 0.565 0.924

0.03 0.607 0.933 1.000

Table 4: Monte Carlo simulation results for testing the null hypothesis δ = 0 against

δ > 0. The entries are rejection frequencies of the null hypothesis. The sample size is

T , each process is generated 500 times, and the number of bootstrap replications is 5,000.

The degree of global heteroskedasticity is controlled by the parameter c.
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Symbol PWY p-value WB 5% WB 1 % WB p-value

BTC 5.0347 0.0001 2.8349 4.2929 0.0032

XRP 1.9482 0.0132 1.3278 2.4430 0.0188

ETH 1.4184 0.0615 1.2800 2.1170 0.0388

BCH 0.5976 0.3205 1.3724 2.4410 0.1816

ADA 4.0663 0.0001 3.6213 6.1345 0.0354

LTC 5.8502 0.0001 4.1710 6.1244 0.0126

IOTA 1.6923 0.0291 2.4275 3.7207 0.1078

XEM 2.1801 0.0065 2.1519 3.0399 0.0468

DASH 0.5030 0.3657 0.3158 0.9317 0.0316

XLM 2.3411 0.0036 2.3807 3.6005 0.0512

XMR 1.6452 0.0330 1.0290 1.7062 0.0112

CRIX 4.1194 0.0001 2.4880 4.3962 0.0122

Table 5: Empirical results of the PWY test applied to the cryptos and the CRIX. PWY

is the value of the test statistic, p-value is the simulated p-value under the assumptions

of Phillips et al (2011), WB 1 % and WB 5 % are the 1% and 5% critical values of the

PWY distribution obtained by the wild bootstrap. The last column is the estimated p-value

of the test using the distribution obtained by wild bootstrap.
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Trimborn, S. and Härdle, W.K. (2016). CRIX: An index for blockchain based currencies,

SFB 649 discussion paper, Humboldt University Berlin.

Urquhart, A. (2016). The inefficiency of Bitcoin, Economics Letters, 148, 80-82.

Yermack, D. (2013). Is bitcoin a real currency? discussion paper, NYU Stern School of

Business.

27



 
 
 
 

IRTG 1792 Discussion Paper Series 2018 
 
For a complete list of Discussion Papers published, please visit 
irtg1792.hu-berlin.de. 
 
 
 
001 "Data Driven Value-at-Risk Forecasting using a SVR-GARCH-KDE Hybrid" 

by Marius Lux, Wolfgang Karl Härdle and Stefan Lessmann, January 
2018. 

002 "Nonparametric Variable Selection and Its Application to Additive 
Models" by Zheng-Hui Feng, Lu Lin, Ruo-Qing Zhu asnd Li-Xing Zhu, 
January 2018. 

003 "Systemic Risk in Global Volatility Spillover Networks: Evidence from 
Option-implied Volatility Indices " by Zihui Yang and Yinggang Zhou, 
January 2018. 

004 "Pricing Cryptocurrency options: the case of CRIX and Bitcoin" by Cathy 
YH Chen, Wolfgang Karl Härdle, Ai Jun Hou and Weining Wang, January 
2018. 

005 "Testing for bubbles in cryptocurrencies with time-varying volatility" by 
Christian M. Hafner, January 2018. 

 
 
 
 
 

SFB 649, Spandauer Straße 1, D-10178 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 
 

IRTG 1792, Spandauer Straße 1, D-10178 Berlin 
http://irtg1792.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the IRTG 1792. 
 

IRTG 1792, Spandauer Straße 1, D-10178 Berlin 
http://irtg1792.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the IRTG 1792. 
 


	AA_Frontpage
	bubble
	ZZ_Endpage

