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Abstract

The CRIX (CRyptocurrency IndeX) has been constructed based on a number of cryp-

tos and provides a high coverage of market liquidity, hu.berlin/crix. The crypto currency

market is a new asset market and attracts a lot of investors recently. Surprisingly a market

for contingent claims hat not been built up yet. A reason is certainly the lack of pricing

tools that are based on solid financial econometric tools. Here a first step towards pricing of

derivatives of this new asset class is presented. After a careful econometric pre-analysis we

motivate an affine jump diffusion model, i.e., the SVCJ (Stochastic Volatility with Corre-

lated Jumps) model. We calibrate SVCJ by MCMC and obtain interpretable jump processes

and then via simulation price options. The jumps present in the cryptocurrency fluctutations

are an essential component. Concrete examples are given to establish an OCRIX exchange

platform trading options on CRIX.
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1 Introduction

The Cryptocurrency (CC) market, in particular Bitcoin, has been receiving a lot of attention

recently. Bitcoin (BTC) as a constituent of CRIX is based on a decentralized network and

blockchain technology. It has by its very construction a pre-programmed inelastic money supply

with a limit of 21 million bitcoins, which is going to be achieved by today’s prediction in

2140. For the investors who want to ride the CRIX or BTC wave, the issue of pricing a CC

derivatives is certainly interesting. The first aim of this study is to characterize and investigate

the econometric properties of the CC prices. The second aim is to employ the traced dynamics

for a continuous time model that permits contingent claims on CCs. More precisely, we calibrate

the dynamics of the CRIX log returns to a stochastic volatility model with jumps. The advantage

of this econometric model is that we obtain interpretable jump locations and frequencies.

The BTC price continuously soars to a record historical high, up to 12th December 2017, nearly

17613 USD. Its value has risen more than 2000 percent from around 1000 USD at the start of the

year 2017. Extremely high trading volume and volatility in the CC market have been observed.

Recently Ripple (XRP) has gained momentum and for a short period of time has taken the place

of the second most liquid CC before Ethereum (ETH). A list of the most traded CCs is presented

in an appendix.

Market participants express serious concerns for such a bumpy ride since any ascent may be

followed by dramatic drops along the way. Coinmarketcap.com records as of today over 1400

CCs, many of them arising from ICOs (Initial Coin Offerings). The aggregate market capital-

ization of all CCs in circulation recently touched an all-time high exceeding 170 billion USD.
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A growing number of newly created CCs and a rocket-alike speed of acceleration in trading

volumes make it necessary to analyze this phenomenon scientifically.

The world’s largest online trading platform, IG group that is an established member of the FTSE

250 with a market capitalization of 2.1 billion GPB, suspended at some point the trade of some

CCs due to high speculative risk patterns. A rising risk especially takes place in the OTC market

that accommodates big volume traders. The OTC market makers incur the unavoidable risk

position from the very unbalanced orders between buying and selling. Sometimes when trading

platforms cannot net customers’ trades against each other, some of them will act themselves

as a market maker. All these scenarios indicate the emergence of a counterparty risk, which

endangers the functioning of trading platforms and damages the stability of the CC markets.

Due to the hedge demand against high volatility in this emerging but certainly immature market,

the CME (Chicago Mercantile Exchange) group, the world’s leading and most diverse deriva-

tives marketplace, just launched BTC futures, based on the CME CF Bitcoin Reference Rate

(BRR), on 18th Dec. 2017. Its main competitor, CFE (Cboe Futures Exchange), also launched

trading in Cboe bitcoin futures on 10th Dec. 2017. To accompany this demand scientifically,

this paper dives into option pricing not only for BTC but also for CRIX, the benchmark index

for CCs. A correctly priced CC option provides the market with leverage, transparency, price

discovery and risk transfer capacities. From the regulatory point of view, the ultimate goal is to

reduce the risk of underlying market through introducing the corresponding derivative market

as an alternative marketplace for speculators and arbitragers.

CRIX is designed to represent the market performance of leading CCs. It is based on a Laspeyre

mechanism and it may be less volatile than most of its constituents. It is well understood

that BTC is a highly volatile asset and this is consequently true also for CRIX. Ciaian et al.

(2016) analyzes traditional determinants of price formation (demand and supply) together with

specific factors of digital currencies: demand factors, such as attractiveness for investment, act

as the keys for determining BTC price changes. BTC is also positively affected by an increase

in information, as it creates a required awareness among users Bouoiyour et al. (2016). In
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summary, these findings conclude that despite being a highly speculative asset, speculation in

this case is not fully undesirable.

Even if speculations indeed create price volatility and might lead to a bubble, BTC brings

desirable liquidity into the market. Scaillet et al. (2018) states that new information (irrespective

of fundamental or speculative nature) brings large volatility. However, comparing these findings

one needs to be skeptical relative to the illiquidity of market and the absence of authorities. It

should also be kept in mind that a large proportion of about 30% of the BTC universe is held by

solely 112 people relative to 15 million BTC owners. The BTC market is extremely sensitive

to large trading volumes and big swings. These results point to illiquidity and aggressive trades

as key factors, creating jumps in the CC market.

A financial econometric analysis based on CRIX and BTC motivates a jump diffusion model.

The data sample is from 01/08/2014 to 29/09/2017 and is downloaded from crix.berlin. We

first consider standard time series models, as in Chen et al. (2017), including ARIMA, GARCH

and EGARCH. It is discovered via residual analysis that the heavy tails of CRIX and apparent

volatility clustering are not properly reflected. A swift move to continous time pricing models

is therefore not justified! Given the numerous interventions and news driven shocks on the

CC markets a jump component may help to integrate such events in a proper pricing model.

More precisely, a diffusion associated with Stochastic Volatility and possibly Correlated Jumps

(SVCJ) is motivated by these thoughts. In the SVCJ dynamics one may price CC derivatives.

The SVCJ approach allows for correlated jumps in both returns and volatility, and enables us to

capture the exogenously created extreme returns. This jump diffusion model is calibrated using

MCMC. In summary, one achieves better estimations and calibrations compared to the models

without jumps.

All calculations based on MATLAB quantlets can be found on www.quantlet.de. This platform

is Github based and uses the display technique as described in Borke and Härdle (2018). The

paper is organized as follows. Section 2 presents results on econometric analysis of BTC and

CRIX. Section 3 discusses the SVCJ model, compares with diffusions without jump and our
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pricing formula. It also presents the technique of how to put a price on a contingent claim on

CCs. Section 4 concludes the study.

2 The dynamics of CRIX and BTC

The CRyptocurrency IndeX developed by Härdle and Trimborn (2015) provides a mar-

ket measure which consists of a selection of representative cryptos. Through the exceptional

channel of an ICO, a CC startup can bypass the rigorous and regulated capital-raising process

required by venture capitalists or banks. The appendix lists the top 10 constituents used to con-

struct the CRIX index. The mechanism of selecting CRIX constituents is explained in Trimborn

and Härdle (2018).

Figure 1 shows CRIX from 01/08/2014 to 29/09/2017. One observes that CRIX dropped sub-

stantially in mid 2015, perhaps as a result of a loss of interest in CCs. After a few months

moving up and down, CRIX was, however, sloping up till beginning of 2017 as a stable period

for CC markets. A dramatic soar was observed after March of 2017 due to a widespread interest

in CCs. The subsequent drop in June was caused by a sequence of political interventions. The

Chinese government has decided to force strict limits, temporary halts and even ban the CCs

activities. The Chinese government announced a ban on ICOs, effectively shutting the financ-

ing door for many local startups. Recently the South Korean government announced similar

measures to protect the small scale investors from possible total losses.

Figure 1 (left panel) indicates that neither CRIX nor BTC behaves like conventional stock

prices, one records extremely high volatility and scattered spikes. Clearly, they are far from

being stationary, the differentiation and detrending, or change point detection are required.

Looking at their ACF a natural approach is to start with an ARIMA(p, d, q) model.

a(L)∆yt = bLεt (1)

where yt is the variable of interest, ∆yt = yt − yt−1, L is the lag operator and εt ∼ N(0, σ2).
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Figure 1: CRIX Daily Price and Return (upper panel) and BTCs Price and Return (lower panel)
from Aug. 1st, 2014 to Sep. 29th, 2017
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CRIX Bitcoin
Coefficients Estimate Standard deviation Estimate Standard deviation
intercept c 0.002 0.001 -0.002 0.001

a1 -0.819 0.188 -0.521 0.159
a2 -0.791 0.112 -0.747 0.160
b1 0.828 0.207 0.467 0.168
b2 0.746 0.127 0.700 0.176

Log lik 2243.360 . 2139.340 .

Table 1: Estimation result of ARIMA(2,0,2) model

Model selection criteria like AIC or BIC indicates that the ARIMA(2, 0, 2) is the model of

choice. Similarly, BTC shares these features. The significant negative signs in a1 and a2 in-

dicate an overreaction, that is, a promising positive return today leads to a return reversal in

the following two days, or the other way around. It shows that the CC markets have a ten-

dency to overreact good or bad news, and this overreaction can be corrected in the following

two days. An ARIMA model for the CC assets, therefore, suggests a predictability due to an

“overreaction”.

The Ljung-Box test confirms that there is no serial dependence in the residuals based on the

ARIMA(2, 0, 2) specification, the details of these numerical computations are available in the

quantlets used. Note that the squared residuals carry incremental information which are ad-

dressed in the following GARCH analysis.

2.1 GARCH Model

The GARCH model reflects the changes in the conditional volatility of the underlying asset in

a parsimonious way. Duan (1995) develops a GARCH option pricing model in the context of

the continuously compounded GARCH return process. A similar effort can be found in Heston

and Nandi (2000). In Chen et al. (2017), GARCH and variants like t-GARCH, EGARCH have

been reported, and they are seen to be nicely fitting the dynamics of CRIX but still could not

handle the extreme tails in the residual distribution.

Let us start with a GARCH model for characterizing the conditional variance process of CRIX
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and BTC, respectively. The ARIMA-t-GARCH model is proposed first, with t-distributed in-

novations used to capture fat tails:

a(L)∆yt = bLεt (2)

εt = Ztσt, Zt ∼ t(ν)

σ2
t = ω + β1σ

2
t−1 + α1ε

2
t−1 (3)

where σ2
t represents the conditional variance of the process at time t, t(ν) refers to the zero-mean

t distribution with ν degrees of freedom. The covariance stationarity constraint α1 + β1 < 1

is imposed. As shown in Table 2, the β1 estimates from CRIX and BTC indicate a persistence

in the variance process, but their values are relatively smaller than those estimated from the

stock index return (see Franke et al. (2015)). Typically, the persistence-of-volatility estimates

are very near one, showing that conditional models for stock index returns are very close to

being integrated. By comparison, BTC and CRIX place a relatively higher weight in the α1

coefficient and relatively lower weight in the β1 to imply a less smooth volatility process and

striking disturbances from the innovation term. This may further imply that the innovation is

not pure white noise and can be occasionally contaminated by the presence of jumps.

In addition to the property of leptokurtosis, the leverage effect is commonly observed in prac-

tice. According to a large body of literature, starting with Engle and Ng (1993), the leverage

effect refers to an asymmetric volatility response given a negative or positive shock. The lever-

age effect is captured by the exponential GARCH (EGARCH) model by Nelson (1991),

εt = Ztσt

Zt ∼ t(ν)

log(σ2
t ) = ω +

p∑
i=1

βi log(σ2
t−i) +

q∑
j=1

gj
(
Zt−j

)
(4)

where gj (Zt) = αjZt + φj(|Zt−j| − E|Zt−j|) with j = 1, 2, . . . , q. When φj = 0, we have

the logarithmic GARCH (LGARCH) model from Geweke (1986) and Pantula (1986). To ac-

8



Coefficients Estimates robust std t value
CRIX
ω 4.93e− 05 2.69e− 05 1.83∗

α1 2.23e− 01 4.28e− 02 5.45∗∗∗

β1 7.76e− 01 5.62e− 02 13.81∗∗∗

ν 3.10e+ 00 2.19e− 01 14.15∗∗∗

Bitcoin
ω 3.92e− 05 1.49e− 05 2.63∗∗∗

α1 2.28e− 01 4.46e− 02 5.12∗∗∗

β1 7.70e− 01 5.13e− 02 14.98∗∗∗

ν 3.64e+ 00 4.08e− 01 8.91∗∗∗

Table 2: Estimated coefficients of t-GARCH(1,1) model
∗ represents significant level of 10% and ∗ ∗ ∗ of 0.1%.
The robust version of standard errors (robust std) are based on the method of White (1982).

econ_tgarch

commodate the asymmetric relation between stock returns and volatility changes, the value

of gj (Zt) must be a function of both the magnitude and the sign of Zt. Over the range of

0 < Zt < ∞, gj (Zt) is linear in Zt with slope αj + φj , and over the range −∞ < Zt ≤ 0,

gj (Zt) is linear in Zt with slope αj − φj .

The estimation results based on the ARIMA(2,0,2)-t-EGARCH(1,1) model are reported in Ta-

ble 3. The estimated α1 is no longer significant, showing a vanished sign effect. However, a

significant positive value of φ1 indicates that the magnitude effect represented by φ1(|Zt−1| −

E|Zt−1|) plays a bigger role in the innovation in log(σ2
t ).

We compare the model performances between two types of GARCH models through informa-

tion criteria, and find that a t-EGARCH(1,1) model for both CRIX and BTC is suggested. The

shape estimates (ν) in Table 2 and 3 together with the QQ plots indicate a fatter tail in the return

distribution of CRIX than that of BTC. Some constituents in the CRIX may behave more ex-

tremely than BTC does. Note that, as shown in Figure 2, the QQ plots demonstrate a deviation

from the student-t. Being equipped with these findings and taking into account the occasional

interventions, we opt for the models with jumps for better characterizing the CC dynamics. The

presence of jumps is indeed more likely in this decentralized, unregulated and illiquid market.

Numerous political interventions also suggest the introduce of jumps.

9
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Coefficients Estimates robust std t value
CRIX
ω 4.93e− 05 2.69e− 05 1.83∗

α1 5.58e− 02 4.34e− 02 1.34
β1 9.62e− 01 1.38e− 02 69.43∗∗∗

φ1 5.36e− 01 1.39e− 01 3.85∗∗∗

ν 2.42e+ 00 2.42e− 01 10.02∗∗∗

Bitcoin
ω 3.84e− 05 1.47e− 05 2.61∗∗∗

α1 1.05e− 03 5.10e− 02 0.98
β1 9.52e− 01 1.54e− 02 61.73∗∗∗

φ1 4.16e− 01 6.64e− 02 6.25∗∗∗

ν 3.26e+ 00 4.16e− 01 7.82∗∗∗

Table 3: Estimated coefficients of t-EGARCH(1,1) model
∗ represents significant level of 10% and ∗ ∗ ∗ of 0.1%.
The robust version of standard errors (robust std) are based on the method of White (1982).

econ_garch
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Figure 2: The QQ plot for CRIX (left) and Bitcoin (right) based on t-GARCH(1,1) model
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3 Stochastic Volatility Model with Jumps

Although we have fitted a variety of financial econometrics model to the CRIX and BTC price,

there still is evidence of non-Gaussianity and fat tails in the residuals. The political interventions

followed by influental media comments in the past and the hype created sudden price moves

motivates to consider more flexible and richer Stochastic Volatility (SV) models with jumps.

3.1 Models

In order to calibrate the CRIX dynamics with an SV part and Correlated Jumps (SVCJ) in return

and volatility, we refer to the continuous time model of Duffie et al. (2000). The framework

proposed in that paper indeed encompasses the standard jump diffusion and the SV with Jumps

(SVJ) of Bates (1996). More precisely, let {St} be the price process, {d logSt} the log returns

and {Vt} be the volatility process, and the SVCJ dynamics are as follows:

d logSt = µdt+
√
VtdW

(S)
t + Zy

t dNt (5)

dVt = κ(θ − Vt)dt+ σV
√
VtdW

(V )
t + Zv

t dNt (6)

Cov(dW
(S)
t , dW

(V )
t ) = ρdt (7)

P (dNt = 1) = λdt (8)

Like in the Cox-Ingersoll-Ross model, κ and θ are the mean reversion rate and mean reversion

level respectively. W (S) and W (V ) are two correlated standard Brownian motions with corre-

lation denoted as ρ. Nt is a pure jump processes with a constant mean jump-arrival rate λ and

the random jump sizes are Zy
t and Zv

t . Since the jump driving Poisson process is the same in

both (5), (6), the jump sizes can be correlated. The random jump size Zy
t conditional on Zv

t , is

assumed to have a Gaussian distribution with mean µy + ρjZ
y
t and standard deviation is set to

be σy. The jump in volatility Zv
t is assumed to follow an exponential distribution with mean µv:

Zy
t |Zv

t ∼ N(µy + ρjZ
v
t , σ

2
y); Zv

t ∼ Exp(µv). (9)
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The correlation ρ between the diffusion terms is introduced to capture the possible leverage

effects between return and volatility. The media and hype interventions may be correlated as

well, the correlation term ρj is taking care of that. The SV process
√
V t is modelled as a square

root process. With no jumps in the volatility, the parameter θ is the long run mean of Vt and

the process reverts to this level at a speed governed by the parameter κ. The parameter σV is

referred to as the volatility of volatility and it measures the variance responsiveness to diffusive

volatility shocks. In the absence of jumps the parameter µ measures the expected log-return.

This diffusion equation has been used in many financial time series applications, Eraker et al.

(2003), Eraker (2004) and Broadie et al. (2007). It is a rich model since it covers SV and SVJ

approaches as well. If we set Zv
t = 0 in (9) such that jumps are only present in prices, we obtain

the SVJ model of Bates (1996). Taking λ = 0, such that jumps are not present at all, the model

reduces to the pure SV model originally proposed by Heston (1993). If we set κ = θ = σV = 0

and define Zv
t = 0 the model reduces to the pure jump diffusion introduced in Merton (1976).

3.2 Estimation: MCMC

An SVCJ model can be estimated by several methods. Calibration on observed option prices

with the help of Fourier transformation has been advocated by Duffie et al. (2000)). There is

however no market yet for options on CCs or the CRIX index. One therefore has to calibrate

the SVCJ model using available numerical teechniques. Here we employ the Markov Chain

Monte Carlo (MCMC) technique since it allows for a wide class of numerical fitting procedures

that can be steered by variation of priors for example. As a caveat though one must keep in

mind, that given that there are no options yet, one may not be able to reflect the correct market

price of risk, Franke et al. (2015). The empirical calibration is based on the following Euler

discretization,

Yt = µ+
√
Vt−1ε

y
t + Zy

t Jt (10)

Vt = α + βVt−1 + σV
√
Vt−1ε

v
t + Zv

t Jt (11)

12



where Yt+1 = log(St+1/St) is the log return, α = κθ, β = 1 − κ and εyt , εvt are the N(0, 1)

variables with correlation ρ. Jt is a Bernoulli random variable with P (Jt = 1) = λ and the

jump sizes Zy
t and Zv

t are distributed as specified in (9).

Now we give a brief description on how to calibrate SVCJ with MCMC, see also Johannes

and Polson (2009), Tsay (2005), Asgharian and Bengtsson (2006) for more details. Define the

parameter vector Θ = {µ, µy, σy, λ, α, β, σv, ρ, ρj, µv}, Recall Yt as the log-returns and define

Xt = {Vt, Z
y
t , Z

v
t , Jt} as the latent variance, jump sizes and jump. MCMC treats all components

of both Θ and X def
= {Xt}t=1,..,T as random variables. The fundamental quantity is the joint pdf

p(Θ, X|Y ) of parameters and latent variables conditioned on data. Using Bayes formula

p(Θ, X|Y ) = p(Y |Θ, X)p(X|Θ)p(Θ). (12)

it can be decomposed into three factors: p(Y |Θ, X), the likelihood of the data, p(X|Θ) the prior

of the latent variables conditioned on the parameters, and p(Θ) the prior of the parameters. The

prior distribution p(Θ) has to be specified beforehand and is part of the model specification.

In comfortable settings the posterior variation of the parameters given the data is robust with

respect to the prior. We will touch this point again when we display our empirical results.

The posterior is typically not available in closed form and therefore simulation is used to obtain

random draws from it. This is done by generating a sequence of draws, {Θ(i), X
(i)
t }Ni=1 which

form a Markov chain whose equilibrium distribution equals the posterior distribution. The point

estimates of parameters and latent variables are then taken from their sample means. We present

our results for the following prior for the parameters: µ ∼ N(0, 25), (α, β) ∼ N(021, I22),

σV2 ∼ IG(2.5, 0.1), µy ∼ N(0, 100), σy2 ∼ IG(10, 40), ρ ∼ U(1, 1), ρj ∼ N(0, 0.5), µV ∼

IG(10, 20)(Inverse Gaussian) and λ ∼ Be(2, 40) (Beta Distribution). We have varied the vari-

ance of the priors and found stable outcomes, ie. the reported mean of the posterior that is taken

as an estimate of Θ is quite robust relative to changes in prior variance. A similar observa-

tion has been made by Asgharian and Nossman (2011) for example, and is chosen such that it

represents a wide range of possible realistic estimates. With these choices the posterior for all

13



parameters except σV and ρ are all conjugate (meaning that the posterior distribution is of the

same type of the distribution as the prior but with different parameters). The posterior for Jt is

a Bernoulli distribution. The jump sizes Zy
t and Zv

t follow a posterior normal distribution and

a truncated normal distribution respectively. Hence, it is straightforward to obtain draws for the

joint distribution of Jt, Z
y
t and Zv

t . However, the posteriors for ρ, σV2 and Vt are non-standard

distributions and must be sampled using the Metropolis-Hastings algorithm. We use the random

walk method for ρ and Vt , and independence sampling for σ2
V . For the estimation of posterior

moments, we perform 5000 iteratations, and in order to reduce the impact of the starting values

we allow for a burn-in for the first 1000 simulations.

SVCJ is known to be able to disentangle returns that are related to sudden unexpected jumps

from large diffusive returns caused by periods of high volatility. For the CC situation that we

consider here we are particularly interested in linking the latent historical jump times to news

and known interventions. The estimates Ĵt
def
= (1/N)

∑N
i=1 J

i
t (where N is the total number of

iterations, i refers to each draw) indicate the posterior probability that there is a jump at time

t, unlike the "true" vector of jump times, it will not be a vector of ones and zero. Following

Johannes et al. (1999), we assert that a jump has occured on a specific date t if the estimated

jump probability is sufficiently large; that is, greater than an approporiately chosen threshold

value:

J̃t = 1{Ĵt > ζ}, t = 1, 2, ..., T (13)

In our empirical study we choose ζ so that the number of inferred jump times divided by the

number of observations is approximately equal to the estimate of λ.

The parameter estimates (mean and variance of the posterior) for the SVCJ, SVJ and SV model

for CRIX and BTC are presented in Table 4 and 5, respectively. The estimate of µ is positive, ρ

the correlation between return and volatility is significant and positive. This is remarkable and

worth noting since it is different from a positive leverage effect that is observed consistently

over a sequence of studies, see e.g. Eraker (2004). One reason for this might be that CRIX and
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BTC are not informative but rather emotional and sentiment driven and are therefore different

from conventional stock prices. The diagnosis that we can make here is more consistent with the

“inverse leverage effect” that has been claimed for commodity markets, Schwartz and Trolled

(2009). In other words, the“inverse leverage effect” (associated with a positive ρ ) implies that

increasing prices are associated with increasing volatility. Moreover, the estimates for the SV

part of SVCJ is much less extreme than of the SVJ and the SV models. More precisely, the

volatility of variance σv being substantially reduced from 0.017 (SV) to 0.011(SVJ) and 0.008

(SVCJ).

The mean of the jump size of the volatility µv is significant and positive. The jump intensity λ

is also significant. The jump correlation ρj is negative and insignificant, paralleling results of

Eraker et al. (2003) and Chernov et al. (2003) for stock price dynamics. This might be due to

the fact that even with a long data history, jumps are rare events. Im summary the SVCJ model

fits the data well by a smaller overall MSE.

Table 4: CRIX parameters for SVCJ, SVJ and SV, *** (**, *)means significance at 1%
level(5%, 10%).

SV CJ SV J SV
——————— ———————– ———————–

Mean Std.Dev Mean Std.Dev Mean Std.Dev
µ 0.042*** 0.006 0.044*** 0.009 0.023*** 0.009
µy -0.049 0.371 -0.515 0.303 - -
σy 2.061*** 0.432 2.851*** 0.767 - -
λ 0.051*** 0.007 0.035*** 0.009 - -
α 0.010*** 0.001 0.026 0.019 0,010*** 0.001
β -0.19*** 0.009 -0.24*** 0.073 -0.04*** 0.009
ρ 0.275*** 0.069 0.214** 0.102 0.003*** 0.068
σv 0.007*** 0.001 0.016* 0.009 0.018*** 0.002
ρj -0.210 0.364 - - - -
µv 0.709*** 0.089 - - - -
MSE 0.673 - 0.702 - 0.736 -

Figure 3 shows the estimated jump in returns (first row), in volatility (middle row) together with

the estimated volatility (last row) for CRIX (left column) and BTC (right column). One sees that

jumps occur frequently both for the return and volatility for both CRIX and BTC. Apparently,

the jumps in volatility process is much larger and more frequent than in the returns for both

CRIX and BTC. It seems that for BTC, jump sizes are smaller and occur less frequently both

for returns and volatility.
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Table 5: BTC parameters for SVCJ, SVJ and SV model, *** (**, *)means significance at 1%
level(5%, 10%).

SV CJ SV J SV
——————— ———————– ———————–

Mean Std.Dev Mean Std.Dev Mean Std.Dev
µ 0.041 *** 0.010 0.029*** 0.009 0.030*** 0.008
µy -0.084 0.385 -0.562 0.366 - -
σy 2.155*** 0.517 2.685*** 0.595 - -
λ 0.041*** 0.008 0.033*** 0.007 - -
α 0.010*** 0.001 0.010 0.002 0.009*** 0.002
β -0.132*** 0.009 -0.116*** 0.011 -0.033*** 0.010
ρ 0.407*** 0.089 0.321*** 0.049 0.169*** 0.052
σv 0.008*** 0.001 0.011*** 0.002 0.017*** 0.002
ρj -0.573 0.642 - - - -
µv 0.620*** 0.099 - - - -
MSE 0.735 - 0.757 - 0.763 -

Figure 4 presents the in-sample fitted volatility processes for SVCJ and SVJ respectively. The

maximum volatility level for both CRIX and BTC were found in October and November, 2017

right before the recent dramatic increase of CC prices. BTC has a smaller estimated volatility.

Moreover, it is not hard to see that both SVJ and SVCJ models lead to a similar overall pattern

of the volatility process though the SVCJ model produces sharper peaks for CRIX and BTC.

A useful model diagnostic is to examine the residuals obtained from the discrete model,

εyt =
Yt − µ− Z

y
t Jt√

Vt−1
(14)

Once these residuals are calculated based on the estimated parameters, they should, according

to (9), be approximately standard normally distributed. Figures 5 and 6 show the QQ plots of

the residuals coming from the fitting of different models. From these diagnostics, it is evident

that the GARCH and even the SV models are misspecified. For the SVJ and SVCJ models

the QQ plot diagnostics are substantially improved, however, it is apparent that SVCJ is the

preferred choice.

Finally Figure 7 graphs the 5%, 25%, 75% and 95% percentiles of the 5000 simulated paths for

each horizon up to 30 days for the different models considered here. This can be considered as

an interval forecast of BTC and CRIX. There is no big difference between the results. ARIMA

has the smallest average width of among all models. SCVJ, SVJ, SV produce similar forecast
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Figure 3: Jumps in returns and volatility from the SVCJ model for Crix(left panel) and Bit-
coin(right panel).
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Figure 4: Estimated volatility from SVCJ and SVJ models for Crix(left panel) and Bitcoin(right
panel).
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results, and SVCJ results to a wider interval in some forecast horizons. SVCJ, SVJ, SV produce

similar forecast results at the 25th and 75th level. However, at the 5% (95%) percentile, the

SV and SVCJ models present more difference in term of forecast. This is the same when we

look at the BTC price forecast at the 95% percentile, both SV and SVJ models over estimate the

underlying price while at the 5% percentile, SV (SVJ) over (under) estimate the BTC prices.
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Figure 5: Normal probability plots for SVCJ, SVJ, SV models for Crix.

Figure 6: Normal probability plots for SVCJ, SVJ, SV models for Bitcoin.
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Figure 7: Confidence intervals of simulated observations for different models for ARIMA for
both Crix and Bitcoin (upper panel), Crix (lower left) and Bitcoin (lower right)

econ_SVCJ

19



3.3 Option pricing

After we fixed the SVCJ parameters, we advance with a numerical technique called Crude

Monte Carlo to approximate the CRIX option prices. Derivative securities such as futures and

options are priced under a probability measure Q commonly referred to as the “risk neutral”

or martingale measure. Since our purpose is to explore the impact of model choice on option

values we follow Eraker et al. (2003) and set the risk premia to be 0. This is disputable, but

for the lack of existence of the officially traded options a justifiable path to pricing OCRIX

contingent claims.

Suppose we have an option with pay-off at time of maturity T as C(T ), and typically for call

option C(T ) = (ST −K)+. The price of this option at time t is denoted as

EQ[exp{−r(T − t)}C(T )|Ft]

The crude Monte Carlo is done for 10000 iterations to approximate the option price. Moneyness

for strike K at t is defined to be K/St. The pricing formulae are functions of moneyness and

time to maturity τ = (T − t) and are not available in closed form.

The fitted call option prices on time 20170717 using SVCJ are presented in Table 6 for CRIX

assuming a CRIX level of St = 6500) and Table 7 for BTC assuming BTC price St = 2250)

We see that for example, a call on BTC with the strike K = 1250 and time to maturity 60 days

would be traded at 1157.95 at time 20170717. For the prices produced by SV and SVJ model,

we refer to Table 9, 10, 11 and 12 in the Appendix.

Figure 8 shows the estimated price of call options with respect to moneyness assuming 30 days

time to maturity) and assuming an ATM situation at 20170717. It can be seen that the price

drops with increase of moneyness and it increases gradually with time to maturity. To futher

understand how does the price changes with respect to time to maturity and moneyness over

time for different models, we show in Figure 10 and Figure 11, the one-dimensional contour

plot of the option price on 20170717 estimated from SVCJ, SVJ and SV. For both CRIX and
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Figure 8: Call option prices C against K and time to maturity, 20170717. Crix(left panel) and
Bitcoin(right panel)

econ_SVCJ

BTC, we can see from the contour plot that the relationship between the price and the time to

maturity or moneyness varies over time for all three models. However, the SVCJ model has

the most volatile pattern among the three. In particular, for BTC we see a drastic change in

the contour structure on e.g. 20170715, as the price suddenly drops from 2232.65 USD on

20170714 to 1993.26 USD on 20170715.

Figure 12 and 13 diplay the price difference between the estimated option price from the SVJ

and the SVCJ model with respect to moneyness and time to maturity. It is not hard to see that

the pattern is similar to the fitted volatility function as shown in Figure 9. Therefore the price

difference between SVJ and SVCJ model is mainly contributed by the jump in the volatility

process, which reflects the necessity of adopting a SVCJ model in practice.

4 Conclusion

"The Internet is among the few things that humans have built that they do not truly understand"

Schmidt and Cohen (2017). Well, if people do not understand the Internet, how are they ex-

pected to understand CCs? There is an enormeous amount of misinformation that created such

misunderstanding though. CCs are simply new asset classes, that may be thought of as cur-
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Figure 9: Estimated volatility functions, 201707. Crix(left panel) and Bitcoin(right panel).
econ_SVCJ

Figure 10: Call option price against moneyness, 201707. Crix(left panel) and Bitcoin(right
panel).

Figure 11: Call option price against time to maturity, 201707. CRIX(left panel) and BTC(right
panel).
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Figure 12: Price difference between the SVJ and SVCJ model plotted against time moneyness,
201707. CRIX(left panel) and BTC(right panel).

Figure 13: Price difference between the SVJ and SVCJ model plotted against time to maturity.
CRIX (left panel) and BTC (right panel).
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Table 6: Option price for CRIX call option at different time to maturity τ and strike prices K
for SVCJ. 20170717

K\τ 1.00 7.00 30.00 60.00 90.00 180.00 360.00 720.00
5500.00 1700.70 1971.69 2376.41 2661.03 2836.39 3359.68 3670.35 4175.19
5600.00 1622.22 1861.35 2346.51 2745.06 2836.35 3188.52 3583.43 4473.40
5700.00 1509.72 1865.38 2310.64 2735.19 2773.45 3185.18 3381.22 3851.61
5800.00 1517.11 1797.53 2284.87 2610.68 2841.49 3026.03 3858.18 4166.42
5900.00 1451.34 1710.80 2190.93 2426.56 2764.44 2978.83 3532.85 4373.64
6000.00 1372.53 1649.63 2149.38 2423.62 2645.95 3056.08 3728.81 3857.57
6100.00 1325.74 1610.69 2062.01 2471.14 2647.20 3049.92 3673.39 4078.56
6200.00 1286.20 1649.02 2078.84 2384.83 2710.22 2984.17 3065.60 3787.80
6300.00 1257.31 1590.43 2066.53 2319.82 2712.00 2761.42 3566.18 4778.50
6400.00 1194.82 1584.19 2003.73 2350.16 2586.18 2825.99 3320.98 3924.42
6500.00 1153.04 1497.01 1913.27 2303.17 2605.96 2975.90 3378.30 4161.48
6600.00 1099.42 1477.81 1885.04 2252.67 2502.56 3058.84 3305.54 3944.97
6700.00 1020.15 1437.87 1872.02 2173.94 2505.58 2747.43 3453.51 3852.04
6800.00 974.45 1367.32 1908.37 2174.41 2372.43 2839.14 3616.94 4051.21
6900.00 932.90 1311.90 1858.10 2117.97 2488.77 2998.27 3070.65 3791.22
7000.00 885.79 1296.37 1853.47 2200.17 2388.94 2674.59 3591.75 3617.75
7100.00 823.41 1258.83 1742.18 2096.70 2329.85 2693.00 3665.56 4025.92
7200.00 799.13 1259.14 1730.04 2128.48 2412.37 3013.89 3063.93 4102.05
7300.00 765.20 1251.43 1624.24 2118.81 2331.00 2730.96 3145.85 3462.55
7400.00 778.72 1176.72 1677.32 2034.31 2248.58 2709.87 3249.47 4388.28
7500.00 685.19 1135.72 1701.65 2083.99 2375.38 2787.90 3114.68 3619.57

Table 7: Option price for Bitcoin call option at different time to maturity τ and strike prices K
for SVCJ. 20170717

K\τ 1.00 7.00 30.00 60.00 90.00 180.00 360.00 720.00
1250.00 1069.18 1017.81 1099.87 1125.90 1157.95 1248.98 1361.04 1365.96
1350.00 959.02 959.02 1006.02 1066.67 1094.08 1224.48 1302.60 1316.03
1450.00 885.20 860.15 929.32 995.45 1046.89 1099.35 1258.83 1438.90
1550.00 802.38 791.34 901.27 950.34 1015.76 1114.94 1192.24 1332.08
1650.00 707.97 739.10 825.07 882.17 902.32 1062.17 1175.59 1282.36
1750.00 625.86 678.22 786.88 856.72 896.56 962.79 1192.61 1338.49
1850.00 552.26 618.94 697.11 785.62 862.83 897.74 1110.36 1289.51
1950.00 502.28 545.58 663.47 740.32 819.72 903.60 1052.09 1229.45
2050.00 425.46 511.28 629.14 741.65 772.51 905.30 1027.76 1193.43
2150.00 358.30 460.57 597.44 683.55 740.64 870.66 1036.76 1164.23
2250.00 302.88 408.62 543.02 633.31 720.57 872.42 938.68 1051.71
2350.00 265.91 378.10 492.86 594.01 651.03 783.37 887.62 1064.33
2450.00 211.26 347.79 470.85 580.30 657.43 761.39 940.90 1085.75
2550.00 193.69 304.13 437.06 547.15 608.36 766.19 914.62 1101.72
2650.00 156.38 266.64 421.86 518.27 571.42 719.92 827.17 992.20
2750.00 136.24 247.38 397.92 484.70 556.31 651.86 863.10 1066.75
2850.00 135.28 228.47 345.42 465.75 541.61 672.76 788.25 955.97
2950.00 100.02 202.57 341.11 413.75 488.15 627.52 780.53 917.27
3050.00 103.45 179.93 313.83 424.23 496.05 619.88 758.99 911.33
3150.00 82.59 162.72 290.90 371.20 450.85 593.10 752.88 888.89
3250.00 72.93 140.40 273.97 358.26 442.91 571.96 726.49 933.57
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rencies in a non physical form or of commodities or if one prints out the CC account that one

holds as fiat money on paper. As a currency they are all trust based to enable transactions and

establishment of markets.

As an asset class a secondary option market is a natural enrichment for the control of volatility,

for price discoveries and for enhanced performance of forecast. In this paper we analyse the

benchmark index CRIX (crix.berlin) for its econometric dynamics. We find that standard finan-

cial econemetric models based on GARCH and its variants are not able to reflect the deep dark

tail situations in CRIX and e.g. BTC for the reason that these models do not reflect the jump

presence. We therefore calibrate the dynamics of the CRIX and BTC log returns to a stochas-

tic volatility model with jumps. The advantage of this econometric model is that we obtain

interpretable jump locations and frequencies. It also allows for pricing of contingent claims.

The SVCJ model is estimated via MCMC and shows stable results over a variety of priors. We

present an almost perfect fit in a distributional sense. The QQ plots are precisely confirming the

Gaussian innovations that drive the continuous time diffusions process with stochastic volatil-

ity. We present a tableau of option prices for different time to maturity and moneyness. The

calculation are done via Monte Carlo and under the assumption of market price of risk to be

equal to zero. This has to be done since there is no established option market yet. We believe

that this research helps in establishing an option market for CCs in the near future.
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5 Appendix:List of CCs

The Research Data Center hu-berlin/rdc supported by IRTG 1792 provides an access

to the dataset. At time of writing, BTCs market capitalization as a percentage of CRIX total

market capitalization is 41%. Currently, the CRIX consists of 75 index members. This number

was found with statistical methods, see for more details in http://crix.hu-berlin.de. Here we

describe the top 10 coins collected in the CRIX.

No. Cryptos Symbol Description

1 Bitcoin BTC

BTC is the first CC, created by the anonymous

person(s) named Satoshi Nakomoto in 2009 and

has a limited supply of 21 million coins. It

uses the SHA-256 Proof-of-Work hashing algo-

rithm.

2 Ethereum ETH

ETH is a Turing-complete CC platform created

by Vitalik Buterin. It raised US$18 million

worth of bitcoins during a crowdsale of ether

tokens in 2014.

3 Bitcoin cash BCH

BCH brings a reliable currency to the world,

fulfilling the original bitcoin’s promise of

"point-to-point digital cash" and provides busi-

nesses and users with low transaction fees and

reliable transaction confirmation.

4 Ripple XRP

Ripple is a payment system created by Rip-

ple Labs in San Francisco. It allows for banks

worldwide to transact with each other without

the need of a central correspondent. It was one

of the earliest altcoin in the market and is not a

copy of BTC’s source code.
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5 Litecoin LTC

Litecoin is branded the "silver to bitcoin’s

gold". It was created by Charles Lee, an ex-

employee of Google and current employee of

Coinbase.

6 IOTA IOT

IOT, an open-source distributed ledger protocol,

goes "beyond blockchain" through its core in-

vention of the blockless Tangle. The IOTA Tan-

gle is a quantum-proof Directed Acyclic Graph,

with no fees on transactions and no fixed limit

on how many transactions can be confirmed per

second in the network.

7 Cardano ADA

ADA, Designed and developed by IOHK, in-

novates Cardano Settlement Layer as a Proof

of Stake cryptocurrency based on the Haskell

implementation of the white paper Ouroboros:

A Provably Secure Proof of Stake Blockchain

Protocol.

8 Dash DASH

Dash is a privacy-centric cryptocurrency. It

anonymizes transactions using PrivateSend, a

concept that extends the idea of CoinJoin.

9 NEM XEM

XEM, a CC platform launched in 2015, is writ-

ten from scratch on the Java platform. It pro-

vides many services on top of payments such as

messaging, asset making and naming system.

10 Monero XMR
XMR is the leading cryptocurrency with a focus

on private and censorship-resistant transactions

Table 8: Top 10 CCs used in construction of CRIX
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Table 9: Option price for CRIX calls at different time to maturity τ and strike prices K for SVJ.
20170717

K\τ 1.00 7.00 30.00 60.00 90.00 180.00 360.00 720.00
5500.00 1519.23 1653.64 1948.01 2213.13 2236.85 2741.01 3043.31 3432.85
5600.00 1419.07 1614.03 1856.26 2198.38 2244.50 2647.72 3052.62 3468.09
5700.00 1364.69 1528.17 1833.97 2067.55 2219.64 2561.57 2877.45 3413.68
5800.00 1301.39 1504.09 1814.05 2061.48 2165.44 2554.22 2943.87 3442.18
5900.00 1238.29 1461.01 1723.13 2060.90 2155.57 2468.25 2926.67 3428.88
6000.00 1171.25 1422.40 1719.12 1876.69 2139.17 2401.04 2766.27 3232.10
6100.00 1112.21 1341.72 1662.11 1933.53 2114.46 2445.15 2787.49 3181.24
6200.00 1075.23 1341.71 1622.08 1901.96 2006.56 2476.04 2929.48 3384.33
6300.00 1033.49 1259.66 1554.50 1843.90 2118.94 2425.29 2777.42 3405.77
6400.00 907.65 1240.67 1572.87 1827.40 1973.01 2355.75 2654.88 3198.64
6500.00 893.65 1167.71 1533.27 1745.53 1962.42 2383.25 2725.50 3338.71
6600.00 820.08 1161.17 1484.08 1742.47 1967.27 2288.48 2747.74 3052.27
6700.00 793.46 1083.36 1492.16 1703.92 1882.94 2321.05 2616.79 3164.87
6800.00 813.15 1031.33 1380.94 1714.34 1808.57 2199.88 2733.80 3001.09
6900.00 716.85 1008.18 1373.28 1616.95 1797.88 2210.80 2646.95 3199.27
7000.00 691.51 1011.13 1327.54 1580.70 1859.21 2155.43 2582.22 2971.25
7100.00 623.76 898.85 1299.75 1532.40 1727.76 2153.71 2548.25 2926.45
7200.00 589.95 896.01 1269.16 1574.41 1731.65 2150.75 2430.03 3108.01
7300.00 549.96 851.58 1247.41 1537.25 1727.48 2027.80 2563.57 3082.29
7400.00 585.51 860.62 1223.00 1517.07 1615.95 2055.82 2460.49 2954.29
7500.00 484.38 785.55 1182.36 1378.83 1592.91 2017.55 2361.38 2983.25

5.1 Additional Tables for Pricing
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Table 10: Option price for CRIX calls at different time to maturity τ and strike prices K for SV.
20170717

K\τ 1.00 7.00 30.00 60.00 90.00 180.00 360.00 720.00
5500.00 1278.72 1559.09 1959.85 2136.31 2291.23 2627.61 2996.95 3223.16
5600.00 1190.57 1512.70 1885.56 2102.15 2263.43 2523.04 3011.67 3203.38
5700.00 1118.34 1437.43 1732.72 2040.55 2292.38 2503.40 3046.01 3180.93
5800.00 1044.16 1389.84 1717.11 1981.39 2166.67 2488.79 2876.14 3173.82
5900.00 985.43 1250.46 1647.45 1970.84 1975.05 2358.53 2840.98 3365.54
6000.00 929.09 1272.21 1625.65 1957.72 2075.81 2370.56 2689.30 3127.72
6100.00 846.08 1221.00 1579.72 1887.34 1974.22 2331.31 2745.73 3283.08
6200.00 787.51 1152.98 1559.45 1846.29 2022.94 2304.82 2681.89 3030.52
6300.00 736.92 1099.30 1542.18 1721.37 1984.72 2157.44 2773.65 3082.67
6400.00 683.88 1096.25 1447.81 1706.58 1923.64 2151.32 2624.78 3117.61
6500.00 629.67 1003.69 1421.64 1726.32 1843.63 2290.61 2604.47 3067.25
6600.00 570.72 1002.77 1402.49 1621.71 1850.89 2091.57 2538.98 2976.26
6700.00 536.96 922.66 1417.76 1577.39 1804.97 2122.91 2596.53 3124.71
6800.00 479.85 885.41 1309.41 1620.85 1753.63 2081.38 2687.52 2938.64
6900.00 443.59 841.91 1257.76 1529.91 1731.73 1935.59 2365.98 2958.66
7000.00 397.46 817.77 1295.92 1506.96 1703.15 2096.44 2440.30 2994.91
7100.00 358.85 779.26 1215.88 1491.60 1735.59 1997.29 2306.17 3007.89
7200.00 346.01 718.90 1187.23 1484.38 1716.16 1972.58 2284.85 2735.76
7300.00 297.17 707.24 1128.35 1411.96 1592.25 1904.08 2430.86 2766.59
7400.00 280.01 688.76 1156.22 1388.58 1621.48 1845.45 2426.65 2891.36
7500.00 247.22 635.55 1075.68 1357.45 1519.07 1944.85 2284.36 2915.14

Table 11: Option price for BTC calls at different time to maturity τ and strike prices K for SVJ.
20170717

K\τ 1.00 7.00 30.00 60.00 90.00 180.00 360.00 720.00
1250.00 1064.85 1033.01 1100.20 1123.24 1160.75 1201.23 1327.60 1472.02
1350.00 959.09 970.52 1026.62 1061.08 1084.23 1192.36 1369.41 1487.17
1450.00 886.93 867.61 954.97 1016.83 1071.43 1154.19 1255.90 1459.35
1550.00 809.50 804.15 889.15 961.11 1005.34 1063.62 1258.91 1283.68
1650.00 721.23 768.59 826.53 898.89 963.17 1028.24 1215.46 1427.56
1750.00 664.76 694.54 787.95 851.09 944.14 1064.60 1214.10 1249.38
1850.00 570.52 635.94 711.84 852.07 885.28 1017.04 1121.49 1304.71
1950.00 512.29 576.61 681.92 796.60 834.36 982.20 1114.49 1176.52
2050.00 427.11 520.25 641.50 739.36 772.18 941.37 1125.87 1265.28
2150.00 380.08 469.71 603.82 685.08 737.93 916.16 1099.15 1253.77
2250.00 326.57 438.30 590.85 666.83 758.94 837.28 997.85 1255.53
2350.00 269.49 396.02 537.18 626.14 691.93 832.70 1031.18 1083.78
2450.00 237.23 370.24 511.91 607.20 666.93 820.12 978.48 1255.60
2550.00 204.33 332.11 448.49 562.52 639.45 786.32 893.43 1193.56
2650.00 172.57 302.61 451.29 552.30 617.59 747.86 847.73 1162.78
2750.00 144.18 273.33 432.72 542.46 625.52 725.66 954.69 1130.77
2850.00 123.83 253.31 398.65 489.49 569.56 714.75 837.14 1051.28
2950.00 107.31 210.62 368.57 489.35 539.88 700.19 900.59 1052.99
3050.00 93.15 191.68 357.75 461.92 546.27 678.59 830.83 1006.12
3150.00 81.37 187.33 326.54 423.21 503.43 644.42 869.81 1071.14
3250.00 81.85 167.41 313.05 401.94 487.19 641.72 889.76 985.55
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Table 12: Option price for BTC calls at different time to maturity τ and strike prices K for SV.
20170717

K\τ 1.00 7.00 30.00 60.00 90.00 180.00 360.00 720.00
1250.00 995.84 1004.22 1029.74 1082.74 1084.83 1179.59 1216.10 1346.55
1350.00 903.13 917.99 953.02 1001.62 1037.17 1104.18 1143.62 1328.01
1450.00 797.56 826.45 911.42 927.01 971.60 1056.94 1115.92 1211.31
1550.00 714.15 748.50 811.92 872.76 924.94 984.84 1089.48 1195.81
1650.00 614.00 671.71 757.16 800.37 864.46 930.87 1048.44 1165.70
1750.00 530.73 598.15 691.99 743.59 809.24 873.12 989.64 1151.55
1850.00 450.97 528.07 634.70 711.05 750.49 804.50 912.36 1103.70
1950.00 372.29 462.11 567.54 683.99 703.14 787.34 871.95 1053.84
2050.00 300.44 404.72 544.71 597.14 661.98 748.35 875.81 1007.02
2150.00 240.73 356.16 488.93 561.01 611.53 704.67 828.16 980.96
2250.00 186.15 305.61 440.95 538.28 559.86 697.84 743.97 965.96
2350.00 142.91 273.56 398.06 489.53 548.33 629.77 789.06 932.60
2450.00 101.17 225.25 362.18 462.04 520.66 622.08 744.72 917.09
2550.00 73.96 200.60 334.88 414.82 491.67 585.88 713.12 850.85
2650.00 51.01 170.79 320.81 378.28 447.84 535.59 661.32 856.58
2750.00 35.60 145.28 261.67 356.89 411.18 523.39 660.04 861.44
2850.00 23.81 123.14 261.85 331.88 413.75 506.06 635.91 777.71
2950.00 14.54 100.39 231.20 300.13 365.73 473.96 665.24 823.04
3050.00 9.25 85.84 211.53 290.34 367.98 441.68 619.74 797.52
3150.00 5.05 78.52 190.86 277.61 326.19 412.51 530.80 767.74
3250.00 2.65 65.87 178.61 260.99 317.15 415.77 563.82 681.10
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