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Abstract

This paper investigates beliefs in an ambiguous environment. In contrast to many pre-

vious studies, the beliefs regarding possible scenarios are measured independently from

attitudes. We use laboratory experiments to estimate the entire distribution of subjec-

tive beliefs and examine how beliefs are updated, incorporating new information. We

find that beliefs and updating rules are quite heterogeneous. For most subjects, we can

reject the objective equality hypothesis that beliefs are uniformly distributed. The unbi-

ased belief hypothesis cannot be rejected overall; Most subjects display no bias towards

pessimism/optimism in beliefs. The Bayesian updating hypothesis can be rejected; Most

subjects under-adjust beliefs in response to new information. Finally, we find that sub-

jects adjust their beliefs symmetrically to good news and to bad news.
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1 Introduction

One central question in the decision theory is how the presence of ambiguity a↵ects individu-

als’ decision-making. Ambiguity may a↵ect decision-making through two aspects: how is the

belief about the ambiguous environment formed and updated, and what is the attitude towards

ambiguity. These two aspects, belief and attitude, work very di↵erently in shaping final deci-

sions. This indicates that beliefs should be studied independently from attitudes. However, a

main stream of empirical literature does not separate beliefs from attitudes (Abdellaoui et al.

2011; Baillon et al. 2018a,b; Dimmock et al. 2016). Other literature which investigates beliefs

independently from attitudes either ends up with some probably confounded measurements,

or only provides a rough characterization of beliefs (eg. aggregate beliefs of all subjects par-

ticipating in an experiment). This paper aims to fill these gaps: first, we empirically extract

beliefs separated from attitudes. That is, we cleanly estimate subjects’ beliefs without being

confounded by attitudes. Second, this paper interprets a subject’s belief as a distribution. This

belief distribution captures how a subject assigns probability mass to each possible scenario of

the ambiguous environment. Accordingly, we estimate the belief distributions of each subject.

This provides a complete view of belief characterizations on an individual level, rather than

some rough depictions of beliefs. Third, we investigate how each subject updates her belief dis-

tributions in response to new information. Since decisions are generally made on an individual

level, a clean estimation of belief distributions of each subject after each update is fundamental

to the study of decision making under ambiguity.

Ambiguity describes a situation in which some outcomes of an event occur with unknown

probability (Becker and Brownson 1964; Ellsberg 1961; Epstein 1999; Knight 1921, to name a

few). Among the ambiguity literature, the KMM model (Klibano↵ et al. 2005) is a prominent

theory which achieves the separation between beliefs and attitudes. It is the foundation for

many other theoretical works which distinguish beliefs from attitudes (Gollier 2011; Izhakian

2020; Izhakian and Benninga 2011; Karni 2018; Maccheroni et al. 2013). The KMM model

explicates an ambiguous environment with a two-order probability system, in which beliefs are

characterized as distributions. Building on the KMM model, this paper manages to isolate

beliefs from attitudes and characterizes beliefs as distributions in an empirical setting.

We use laboratory experiments to investigate subjects’ beliefs. Ambiguity is operational-

ized by an urn. It is known to the subjects participating in the experiment that the urn contains

in total 100 balls, and that each ball is either white or black. However, neither the number of

white balls nor the number of black balls is known to any subject. In this way, a completely

ambiguous environment is operationalized. Each possible composition of the urn, i.e. each

possible combination of white balls and black balls, corresponds with a possible scenario. A

possible scenario is equivalent to the first-order probability in the KMM model. In the experi-

ments, we investigate the belief distribution of each subject. That is, we investigate how each

subject assigns a probability to each possible scenario. This belief distribution is equivalent to

the (conceived) second-order probability in the KMM model. In addition, we also investigate

how each subject updates her belief distribution when new information about the urn is pro-

vided to her. With the recovery of each subject’s belief distribution and its updating process,
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we test three hypotheses: (1) objective equality hypothesis ; (2) unbiased belief hypothesis ; (3)

Bayesian updating hypothesis. The hypothesis testing in turn helps us better understand how

beliefs are formed and updated.

The first hypothesis, objective equality hypothesis, pertains to the shape of the initial

prior of each subject. A subject’s initial prior is her belief distribution when no information

regarding the composition of the urn is revealed. It is hypothesized that in an ambiguous

environment, all possible, objectively-equally-likely scenarios are conceived equally likely by a

subject. This hypothesis also implies that the initial prior of a subject is uniformly distributed

under complete ambiguity if all scenarios are objectively equally likely. This is exactly the

case in the experimental setting of this paper: before any draw has occurred and without any

additional information about the composition of the urn is revealed, there is no reason to believe

that one scenario is more likely than another scenario. This paper recovers the initial prior of

each subject, and studies the shapes of the initial priors thoroughly.

Most previous literature which investigates beliefs does not elicit the entire prior distri-

bution of each subject. Some literature only recovers the aggregate belief distribution across

subjects (Buser et al. 2018; Cubitt et al. 2018; Mobius et al. 2014), rather than the belief

distribution of each individual subject as in our paper. Some literature does elicit the initial

prior distribution of each subject. One example is Ertac (2011). The author, however, only

investigates the probability mass assigned to some subsets of the scenarios, not each individ-

ual scenario. This only gives a rough picture of the initial prior. We recover the probability

mass assigned to each individual scenario, providing a full characterization of each initial prior.

Other examples which elicit the initial prior distribution of each subject include Co↵man et al.

(2019), Eil and Rao (2011). From a theoretical perspective, the elicitation methods in these

two papers are not incentive compatible. In comparison, our experiments have sound incen-

tive compatibility. More importantly, in any previous literature mentioned in this paragraph,

the objective equality hypothesis cannot be tested. The reason is that these papers investigate

beliefs regarding subjects’ performance in some self-related tasks. A subject naturally does

not treat all scenarios equally likely after the task, since she already has a picture about her

own performance in the task. In other words, scenarios are anyway not equally likely in the

first place. Therefore, the objective equality hypothesis cannot be tested in any of these papers.

Unlike them, our paper sets up an ambiguous environment in which all scenarios are equally

likely from an objective point of view when eliciting initial priors. This enables the testing

of the first hypothesis. In addition, since all subjects face the identical initial environment,

the estimated initial priors and the test results of the first hypothesis are comparable across

subjects.

In the course of the experiment, the urn is used to determine the payo↵ of some lottery:

a ball is randomly drawn out from the urn; in case that a white ball is drawn out, the lottery

pays out a positive financial reward; in case that a black ball is drawn out, the lottery pays

out zero. Therefore, a scenario (regarding the composition of the urn) with a large number of

white balls is interpreted as a good scenario, and a white draw is regarded as good news. On

the contrary, a scenario with a large number of black balls is interpreted as a bad scenario, and

a black draw is regarded as bad news. This is relevant to the second hypothesis.
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The second hypothesis, unbiased belief hypothesis, tests whether there exists pessimism

(i.e. bias towards bad scenarios) or optimism (i.e. bias towards good scenarios) in beliefs. It is

hypothesized that a subject has an unbiased initial prior. That is, there exists no pessimism or

optimism in a subject’s initial prior. It seems that pessimism/optimism has no unified definition

in literature. Giraud and Thomas (2017) as well as Binmore et al. (2012) treat pessimism as

a synonym of ambiguity aversion, and optimism as a synonym of ambiguity loving. On the

other hand, Ahn et al. (2014) define pessimism as overweighting the probabilities of low payo↵s

and underweighting the probabilities of high payo↵s, a belief characteristic. Our paper is in

line with the latter way of defining pessimism/optimism. In our paper, pessimism is defined

as a bias in belief such that more probability mass is assigned to bad scenarios (i.e. a large

number of black balls in the urn) than a neutral benchmark belief. Analogously, optimism is

defined as a bias in belief such that more probability mass is assigned to good scenarios (i.e.

a large number of white balls in the urn) than a neutral benchmark belief. An unbiased belief

is a belief displaying no bias in either way. These definitions also indicate that this paper only

investigates pessimism/optimism in beliefs, not in attitudes. The clean estimation of beliefs in

this paper makes the investigation possible.

To the best of our knowledge, pessimism/optimism strictly defined as a bias in beliefs in

comparison with an objective benchmark is not yet researched. More often studied is overcon-

fidence in beliefs, which is documented in a stream of current literature (Brenner et al. 2015;

Grossman and Owens 2012). Although similar to optimism, overconfidence in fact is a di↵erent

concept. Overconfidence is defined as a subject’s overestimation of her performance/ability.

That is, overconfidence is a bias in beliefs using a subject’s actual performance/ability as the

benchmark, i.e. a subjective benchmark. In comparison, an objective benchmark is used to

define optimism. Some literature uses the terms “optimistic” and “pessimistic” to describe

biased beliefs (Co↵man et al. 2019; Ertac 2011). But in fact the authors refer to overcon-

fidence and its antonym, since the benchmarks are still subjects’ performance/ability in this

literature. Our paper investigates biases in beliefs in comparison with an objective benchmark.

The investigation of pessimism/optimism in beliefs is original in the studies of beliefs under

ambiguity.

The third hypothesis, Bayesian updating hypothesis, pertains to subjects’ belief updating

(also called learning). It is hypothesized that a subject perfectly employs Bayes’ rule when

updating beliefs. Our experiments permit learning in the way that new information about

the composition of the urn, generated by random draws from the urn, is provided to subjects

(for the detailed design, see Chapter 3.1.). Previous literature modeling learning strategies

can be roughly categorized into two streams: literature assuming Bayesian updates (Branger

et al. 2013; Gilboa and Schmeidler 1993; Hanany and Klibano↵ 2007; Peijnenburg 2018; Pires

2002), where subjects update their beliefs employing Bayes’ rule, and literature assuming non-

Bayesian updates (Epstein 2006; Epstein et al. 2008; Marinacci 2002), where subjects deviate

from Bayes’ rule or completely abandon Bayes’ rule. To better understand the latent updating

mechanism of each subject, this paper introduces a learning strategy which incorporates both,

obedience to Bayes’ rule and departure from Bayes’ rule. For each subject, we estimate her belief

updating rule (i.e. learning strategy). This allows us to test the third hypothesis. Moreover,
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we study the updating rule of each subject in a more detailed manner. In particular, we focus

on two characteristics of a belief updating rule: whether a subject under-/over-adjusts beliefs

compared with what Bayes’ rule would suggest, and whether a subject responds to good news

(i.e. white draws) and bad news (i.e. black draws) symmetrically.

A sizable number of empirical literature studies whether subjects employ Bayes’ rule when

updating beliefs. Departure from Bayes’ rule is often documented in this literature (Charness

and Levin 2005; Filippis et al. 2017; Ouwersloot et al. 1998; Zizzo et al. 2000, to name a few).

Among the departures from Bayes’ rule, under-adjustment of beliefs is observed in Buser et al.

(2018) and Mobius et al. (2014). As for symmetry of updating, Buser et al. (2018) find that

subjects respond to good news and bad news symmetrically, whereas Eil and Rao (2011) as

well as Mobius et al. (2014) discover that subjects are more responsive to good news than to

bad news. These results indicate that how a subject deviates from Bayes’ rule specifically is

still inconclusive. Our paper recovers the updating rule of each individual subject and provides

subject-level evidence regarding this question.

This paper reaches the following findings: (1) The initial priors are mostly characterized

by bell-shaped distributions, rather than a uniform distribution. This result speaks against

the objective equality hypothesis. That is, most subjects do not conceive all scenarios under

complete ambiguity equally likely. (2) The investigation of pessimism/optimism in initial beliefs

supports the unbiased belief hypothesis : most subjects demonstrate no bias towards bad or good

scenarios. Among the biased initial beliefs, optimism is more prevalent than pessimism. (3)

The recovered belief updating rules show that the Bayesian updating hypothesis can be rejected

for most subjects; Most subjects significantly deviate from Bayes’ rule when updating beliefs.

(4) Among the subjects who significantly deviate from Bayes’ rule, most of them under-adjust

beliefs in comparison with what Bayes’ rule implies. (5) Most subjects respond to good news

and bad news symmetrically.

The rest of the paper is organized as follows: Section 2 presents the background and

underlying assumptions related to beliefs under ambiguity. Section 3 introduces the experiment

design. Section 4 presents the descriptive analysis of the belief data. Section 5 presents the

learning strategy model and discusses the belief estimation results. Section 6 tests the three

hypotheses. Section 7 concludes.

2 Background

This section introduces the main concepts and underlying assumptions in this paper.

Ambiguity and second-order probability. Let ⌦ denote a state space with ! 2 ⌦

as various states. A set of subsets of ⌦, written as �(⌦), are called events. A countably

additive probability ⇡ is a mapping which associates events with likelihood measurements:

⇡ : �(⌦) ! [0, 1]. The set of all possible ⇡ is denoted as �. In other words, � contains all

possible ways which map �(⌦) into likelihood measurements.

The first source of uncertainty arises from the assumption that no likelihood measurement

in ⇡ is equal to one. It means that whether a given event in �(⌦) will happen is uncertain. ⇡,

which describes the likelihood of events, is defined as the first-order probability. This source
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of uncertainty is interpreted as risk. � contains multiple elements, indicating multiple ways

to value ⇡. Define a mapping which associates subsets of � to likelihood measurements: µ :

�(�) ! [0, 1]. The second source of uncertainty arises from the assumption that at least

one likelihood measurement in µ is di↵erent from one and di↵erent from zero. This source

of uncertainty is interpreted as ambiguity. µ is defined as the second-order probability, and

assumed to be countably additive.

Belief. The term belief in this paper refers to the second-order probability µ. The

paper aims to estimate the second-order probability µ for each subject. Consider the urn

operationalizing ambiguity in this paper. There are only two possible states, white or black.

This can be written as ⌦ = (w, b), where w denotes white and b denotes black. The proportion

of white balls in the urn (in percent) is denoted as ⇡w. Likewise, we can define ⇡b ⌘ 1�⇡w as the

proportion of black balls. ⇡ = (⇡w, ⇡b) constructs the first-order probability. There are multiple

possible values for ⇡. Given the design of the urn, ⇡ can be (0, 1), (0.01, 0.99), · · · , (1, 0). Each
possible value of ⇡ corresponds with a possible scenario regarding the composition of the urn.

We formally define all possible values of ⇡ as � = {⇡j = (j/100, 1� j/100) : j = 0, 1, · · · , 100}.
The second-order probability is denoted as µ : �(�) ! [0, 1]. In the context of the urn, µ is

the probability mass assigned to each possible composition of the urn (i.e the belief).

In our paper, µ is assumed to be subjective and non-degenerate for most of the subjects.

Each individual can formulate a belief, µ, based on her own understanding. Hence, µ for subject

i is likely to be di↵erent from µ for subject i0, i 6= i
0. Non-degenerate indicates that µ evaluated

at any single ⇡
j is di↵erent from one, at least for most subjects. In other words, the belief, µ,

is non-trivial.

Belief updating. The belief, µ, is not static over time. Subjects can update µ using the

available relevant information. This process of updating µ is also called learning. A subject’s

belief, µ, can be updated every time a random draw is implemented and the realized state

(white or black) is observed by the subject. The initial µ, i.e. the belief before any draw has

occurred, is called the initial prior. An updated µ, i.e. a belief after some random draw(s)

is/are observed, is called posterior. Each random draw generates one piece of new information,

and thus corresponds with one specific posterior.

Pessimism, optimism, and unbiased beliefs. As explained above, the urn is also used

to determine the payo↵s of several lotteries: a white draw always results in a positive payo↵,

while a black draw always results in zero payo↵. We define that good scenarios (regarding the

composition of the urn) are those ⇡
j 2 � with a large proportion of white balls (i.e. large

⇡w), and bad scenarios are those ⇡
j 2 � with a large proportion of black balls (i.e. large ⇡b).

Therefore, the best scenario is ⇡
100 = (1, 0), i.e. ⇡w = 1, ⇡b = 0, while the worst scenario

is ⇡
0 = (0, 1), i.e. ⇡w = 0, ⇡b = 1. The midpoint between the best and the worst scenario,

⇡
50 = (0.5, 0.5), is a natural threshold discriminating between good and bad scenarios.

As a characteristic of belief, pessimism is defined as a bias in belief towards bad scenarios.

It is characterized by a second-order probability µ which associates more probability mass to

bad scenarios than a neutral benchmark belief. In contrast, optimism is defined as a bias

in belief towards good scenarios. It is characterized by a second-order probability µ which

associates more probability mass to good scenarios than a neutral benchmark belief. Unbiased

6



beliefs are beliefs which display no biases in either way.

3 Experiment design

3.1 Guess game

As explained above, we operationalize ambiguity with an urn. Subjects are told that there are

in total 100 balls in the urn, and that each ball is either a white ball or a black ball. However,

neither the number of white balls nor the number of black balls is known to any subject.

No information is conveyed regarding how the urn is assembled. A physical urn with such

ambiguous feature is simply displayed in front of the subjects as a final product. In this way,

the urn operationalizes a completely ambiguous environment. This also implies that at the very

beginning of the experiment, from an objective point of view, each possible urn composition is

equally likely.

A so-called guess game is designed to track down subjects’ beliefs regarding the composition

of the urn, or simply the conceived number of white balls in the urn. In a guess game, a subject

needs to answer the following question: standing at this point, how many white balls do you

think are there in the urn? A subject enters an integer between zero and 100 (both ends are

inclusive). Figure 1a presents the screen display of the first guess game.

In order to track down the learning and belief updating process, new information about the

urn is provided to the subjects. New information is generated by random draws from the urn.

In each draw, one ball is drawn out from the urn and its color, either white or black, is displayed

to the subjects. Then the ball is immediately put back into the urn (draw with replacement).

Guess games and draws are played/implemented for multiple times and the sequence is designed

as follows: A subject first plays the initial guess game before any draw is implemented, denoted

as G0, where the subscript indexes the number of draws already implemented. Then the first

draw is implemented. This sequence, one guess game followed by one draw, repeats 15 times.

In addition, in all Sessions except Session I, an additional guess game, G15, is played after the

15th draw1. Table 1 displays the complete experiment procedure. Following this design, when

a subject plays guess game Gn, she has already observed n times of draws (n = 0, 1, · · · , 15).
The belief reported in guess game Gn can be seen as the updated belief based on the learning of

the n-time draw history. The past draw history, if any, is displayed on the screen for subjects’

reference. Figure 1a displays the screen-shot of the initial guess game G0 when no draws are

implemented. Figure 1b, as an example, displays the screen-shot of guess game G5, in which

the history of five draws is displayed on the screen for subjects’ reference. Table 2 reports the

guess games played by each subject.

Subjects are incentivized in the way that every time a subject enters the correct number of

white balls in the guess game, she is rewarded with two Euro, otherwise zero. In other words,

subjects are incentivized to insert the mode value of their personal belief distribution in each

1
Subjects in Session I go through the sequence: Guess game G0, first draw, G1, second draw, · · · , G14, 15

th

draw. Subjects in Session II-VII go through the sequence: G0, first draw, G1, second draw, · · · , G14, 15
th

draw,

plus G15.
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guess game. The earning a subject obtained from the guess games is announced to her only at

the very end of the experiment, hence the ambiguous feature of the urn sustains throughout

the entire experiment.

The guess games elicit the mode values of subjects’ belief distributions, rather than each

entire belief distribution. This design has several advantages compared with other alternatives.

First, elicitation of mode values has sound incentive compatibility (more explanations can

be found in Chapter 3.2). One alternative could be to elicit each entire belief distribution

directly, with incentivization following the quadratic scoring rule (QSR) (Eil and Rao 2011;

Ertac 2011). Yet, the incentive compatibility of QSR relies on the assumption of risk neutrality.

This assumption is too strong since previous evidence shows that subjects are mostly risk averse

in laboratory experiments (Holt and Laury 2002). Second, eliciting a singleton mode provides

more precise information than eliciting, for instance, which subset of the possible scenarios

contains the true scenario. One of the experiments in Co↵man et al. (2019) elicits such a

subset. This only identifies a (rough) range in which the true value is conceived to be located.

Third, it is cognitively easier for a subject to guess the number of white balls than to report

the entire distribution of her belief. Hence, by eliciting only mode values, we reduce the chance

of noise in the data. Considering all these factors, we finally choose to elicit the mode of a

subject’s belief distribution, rather than other alternatives.

The true proportion of white balls in the ambiguous urn is fixed at 40 for all subjects.

Basically, it is beneficial to set the true value close to 50, since it generates more balanced

proportions of white draws and black draws along a draw history. In contrast, setting the value

far away from 50 increases the probability that draws of one color are much more frequently

observed than draws of the other color. Hence, if the true proportion of white balls is set

close to 50, subjects’ responses to both white draws and black draws are more evenly observed.

Additionally, setting the value close to 50 also increases the variation of draw history, conducive

to the belief estimation. However, the value 50 itself is a very prominent number. Subjects

may instinctively stick to this prominent point in the guess games. If true, we cannot tell

whether they learn correctly, or they simply keep entering the prominent point ignoring learning.

Therefore, we set 40 to be the true proportion of white balls. It is close to 50 but not too

prominent, and not too hard to guess. The fact that all subjects are faced with the same

ambiguous urn is to facilitate the comparability across subjects.

It is worth mentioning that the guess game design guarantees that the data obtained from

the games are purely related to the beliefs regarding the ambiguous environment, independent

from the attitude towards ambiguity (i.e. preference). Attitude plays a role in decision and

becomes observable only when subjects compare di↵erent alternatives. Since the guess game

does not imply any preference-related decisions between two alternatives, and it merely requests

that subjects report their beliefs regarding the ambiguous environment, the reported data in

the guess games is only related to beliefs.
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3.2 Incentive compatibility

In this part, we provide a brief discussion to support the incentive compatibility of our ex-

periment design. The guess games are intended to investigate the mode values of subjective

prior/posterior distributions. It is argued that eliciting the mode value of a discrete belief

distribution is truth-telling, independent of subjective attitudes (Hurley and Schogren 2005).

Below, we briefly show that the incentivization method in our experiment induces truth telling.

Suppose µj is the conceived probability mass assigned to the scenario in which the urn

contains j units of white balls and 100�j units of black balls. Under the incentivization method,

the expected earning of a subject who enters j
0 in a guess game is 2µj0 Euro. To maximize

the expected earning, a subject would choose j
0 such that j

0 = argmax
j

µj, namely the mode

value of µ. The same logic applies to each guess game Gn : n = 0, 1, · · · , 15. Therefore, our

experiment induces each subject to report her mode value of each prior/posterior in each guess

game.

One concern may be the possibility that subjects hedge across guess games. It means

that a subject may ignore her subjective prior and posteriors, distributing her guesses to cover

the support domain as widely as possible. For example, a subject may disregard learning,

and randomly enter 16 di↵erent numbers in the 16 guess games (i.e. entering guesses without

repetition). In practice, such hedging strategy is possible, and it would undermine data qual-

ity because subjects enter numbers that do not correspond to their true beliefs. However, a

dominant strategy is to choose 16 numbers, each of which is close to the conceived mode value

of a subject’s prior/posterior at that time, and simultaneously to ensure no repetition among

the 16 numbers. The closer the numbers are to the mode value, the more possible it is to win

something from the guess games. Therefore, a subject who plans to hedge, should have more in-

centive to hedge in such “clever” way rather than randomly choosing 16 numbers. It also means

that, even if a subject hedges across the guess games, her guess game responses should closely

reflect her conceived mode values. This mitigates our concern related to hedging. In fact, as

the data show, only six out of 102 subjects enter unrepeated numbers in the guess games. For

the rest of the subjects, repeated guesses show up. Hence, hedging across guess games tends

to be negligible in our sample, both from a theoretical and an empirical perspective.

Another concern may be the possibility that subjects hedge across di↵erent parts of the

experiment. If true, a subject’s elicited beliefs may be di↵erent from her true beliefs, and thus

the data quality may be undermined. Such possibility needs to be checked, since apart from

the guess games, our experiment also contains other parts. This may lead to hedging. In

some choice games, subjects are asked to price several lotteries whose payo↵s are determined

by random draws from the urn used in the guess games (i.e. subjects need to report their

conceived reservation values of these lotteries). It is possible that subjects hedge between

the guess games and such choice games: For instance, a subject who reports high reservation

values in the choice games to benefit from a higher-than-believed proportion of white balls,

may enter small numbers in the guess games to benefit from a lower-than-believed proportion

of white balls. This strategy, betting on many white balls in one game and betting on many

black balls in the others, constitutes hedging. Thus, the elicited data on beliefs may be biased.
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If hedging exists, following the logic above, a negative correlation between the responses in

the guess games and the reservation values reported in the relevant choice games should be

observed. Moreover, since subjects naturally benefit from a high number of white balls in the

choice games, responses close to zero should prevail in the guess games for maximum benefit

from hedging, if hedging exists in the first place. A check of the reported responses reveals that

hedging does not seem to occur in our sample. First, such correlation is significantly positive,

rather than negative. Second, responses close to zero are rarely seen in actual data: only nine

out of 1619 responses (0.56%) are equal to zero. 74 responses (4.57%) are in the interval [0, 19].

In fact, the responses equal to zero are as many as the responses equal to 100, implying that

no bias towards extremely low responses exists. In all, it seems that hedging across di↵erent

parts of the experiment is negligible in our sample.

3.3 Other information

The laboratory experiment is computerized by Z-tree (Fischbacher 2007). Seven sessions of

this experiment with 102 subjects in total have been conducted. The subjects are all randomly

selected from the subject pool of the Frankfurt Laboratory for Experimental Economic Research

(FLEX), Goethe University Frankfurt. Most of the selected subjects are students from Goethe

University Frankfurt. Table 2 summarizes the distribution of subjects in each session. In Session

I-VI, subjects are assigned into markets. Each market implements its draws independently. A

subject only observes the draw information of her own market. The design of market-specific

draw implementation is to meet the requirement of market-wide asset trading. Session VII

does not have asset trading. 19 subjects participate in this session and each of them observes

her own draw history, yielding 19 additional paths of draw history. In total, during the seven

sessions of the experiment, 30 di↵erent paths of draw history are generated and 102 belief

update dynamics are recorded. The variation of the data tends to enhance the explanatory

power of our findings.

Apart from the guess games, a complete experiment session also contains several other

parts, including choice games, asset trading (except in Session VII), some quizzes as well as

practice rounds for training, and a short questionnaire. Since the choice games and the asset

trading parts are not of interest in this paper, we suppress an extensive introduction of these

parts. A demonstration of a physical ambiguous urn (in fact, a big box containing 100 chips

with “white” or “black” written on), and trial draws from risky urns are implemented to help

the subjects fully understand the set-up and the tasks. The content of the ambiguous urn is

not observable to any subjects, and no draws from the ambiguous urn are implemented during

the demonstration. Therefore, when the first guess game G0 is played, the urn is completely

ambiguous, as intended.

A complete experiment session lasts about 2 hours and 15 minutes on average. The total

earning from all parts is on average 31 Euro.
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4 Descriptive analysis

The guess game response of subject i after n draws are observed is denoted as whitei,n. Figure

2 presents the frequency distribution of the responses from the first guess game (whitei,0). Each

subject plays 15 (in Session I) or 16 (in all other sessions) guess games, thus generating 15 or

16 responses. Subjects in Session I-VI are assigned into markets, as Table 2 informs. In Market

1-11, draw implementations are market-specific. It means that each market generates its own

draw history, and subjects in the same market observe the same draw history. For Market 1-11,

we compute the market-average guess game response at each n value, defined as:

whitem,n =
1

Nm

X

i2m

whitei,n (1)

m = 1, 2, · · · , 11; i 2{1, 2, · · · , Nm}; n = 0, 1, · · · , T

where Nm denotes the number of subjects in market m, and T denotes the highest number

of draws2. For the 19 subjects in Session VII, each subject observes her own draw history,

thus generating 19 independent paths of draw history. We can directly report whitei,n for each

of these 19 subjects. All paths of draw history and the corresponding guess game responses,

market-average or subject-specific, are illustrated in Figure 3.

In total, our experiment generates 30 di↵erent paths of draw history. Figure 3 illustrates

each path in one sub-graph. Sub-graphs 1-11 represent the eleven paths in Markets 1-11,

respectively. Sub-graphs 12-30 represent the other 19 paths, corresponding with the 19 subjects

in Session VII. A white bar represents a white draw, while a gray bar represents a black draw.

It can be seen that, across the 30 draw history paths, there are in total almost as many white

draws as black draws. It generates a rather balanced data set, with subjects’ responses to both

white draws and black draws being evenly observed. On the other hand, some paths generate

relatively more white draws, others generate relatively more black draws. This increases the

variety of draw history paths.

The blue lines in each sub-graph represent subjects’ responses in the guess games. Sub-

graphs 1-11 illustrate the values of whitem,n for Markets 1-11, respectively. Sub-graphs 12-30

illustrate the values of whitei,n for the 19 subjects in Session VII, respectively. Ups and downs

along the blue lines are observed in almost all sub-graphs. It implies that most of the subjects

actively respond to the draw information, and learning is prevalent and observable. Another

observation is that most subjects update their beliefs rationally. In theory, a subject who

updates her beliefs rationally should act as follows: each time a white draw is observed, she

does not downwards adjust her current belief; Each time a black draw is observed, she does

not upwards adjust her current belief. This definition can be understood as weakly rational.

Following this definition, we compute the rate of rational belief updates for each subject, defined

as the proportion of rational belief updates out of all 15 updates (14 for Session I) of a given

2
In Market 1, 14 draws (with replacement) are implemented, and accordingly 15 guess games

(G0, G1, · · · , G14) are played, hence T = 14 for Market 1. For Markets 2-11, in each market 15 draws (with

replacement) are implemented, and accordingly 16 guess games (G0, G1, · · · , G14, G15) are played, hence T = 15

for Markets 2-11. See Table 2 for details.
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subject. The proportion of rational belief updates is reported in Figure 4 in form of a frequency

distribution. It can be seen that most subjects update their beliefs rationally. More than 60%

subjects have a rate of rational belief updates no less than 0.9. i.e. over 13 out of 15 updates

meet the rationality definition. Only eight subjects have rates lower than 0.5. The overall mean

value is 0.84. The fact that subjects do learn from the draw information and update beliefs

rather rationally motivates us to study their learning strategies thoroughly. To proceed, we

construct a learning strategy which may be used to model subjects’ belief updates.

5 Learning strategy

In this chapter, we propose a learning strategy to model subjects’ belief updating dynamics.

This learning strategy develops the thought of the conjugate prior theory in the Bayesian

analyses (Diaconis and Ylvisaker 1979; Gelman et al. 2004; Schlaifer and Rai↵a 1961). The

conjugate prior theory assumes that a subject forms an initial prior which can be characterized

by a beta-distribution, and employs Bayes’ rule to update the prior using new information.

The learning strategy of this paper inherits the assumption on the initial prior, but eases the

assumption on the updating rule so that a subject can freely choose either to follow Bayes’ rule

or to deviate from Bayes’ rule. By construction, this learning strategy embraces rich flexibility

in the way of learning: it covers a variety of initial prior distributions, supported by the variety

of beta-distribution characterizations. In addition, this learning strategy covers both perfect

Bayesian updating (as a special case) and imperfect Bayesian updating (i.e. deviation from

Bayes’ rule). To better organize the detailed introduction, we first introduce the Bayesian

special case of this learning strategy, in which a subject perfectly follows Bayes’ rule. Then,

based on this Bayesian special case, we extend the learning strategy into a more general form,

i.e. imperfect Bayesian updating, in which a subject may deviate from Bayes’ rule.

5.1 Learning strategy: the Bayesian special case

In the laboratory experiments, the urn used to operationalize the ambiguous environment in

the guess games is completely ambiguous: there are 101 possible scenarios regarding the true

composition of the urn. These 101 scenarios can be indexed by the possible proportion of white

balls (in percent), denoted by ✓, where ✓ = 0, 0.01, 0.02, · · · , 1. The prior/posterior distribution
of a subject at any point in time is given by the probabilities that she assigns to each of the

101 scenarios.

The Bayesian special case of the learning strategy assumes that a subject forms an initial

prior characterized by a beta-distribution, and employs Bayes’ rule to update her priors using

new information. For simplicity, we denote this special case as LS0. According to Bernstein

von Mises Theorem, LS0 generates belief updates that asymptotically converge to the true

parameter value. The beta-distribution is chosen for initial priors since it characterizes a wide

range of distributions defined in the interval [0, 1], parameterized by only two shape parameters

↵ and �. Figure 5 illustrates some examples. In case of ↵ = � = 1, the distribution becomes

a uniform distribution. In case of ↵ = 1, � > 1, the probability density function (PDF) is
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strictly decreasing within the domain. In case of � = 1, ↵ > 1, the PDF is strictly increasing

within the domain. In case of ↵, � > 1, the PDF has a bell shape3. The higher the value of

(↵ + �) is, the more squeezed is the distribution.

Although the beta-distribution mostly applies to continuous distributions, the 101 discrete

scenarios of the white-ball proportion is to some extent dense enough. Later we discretize

the beta-distributions, translating the PDF representations of the distributions into probability

mass function (PMF) representations, to match the 101 discrete supports. Starting with a

continuous prior distribution does little harm, since our main interest is the mode of the distri-

bution, and the maximum discrepancy between the mode read from the distribution described

by a continuous PDF and the mode read from the distribution described by a discrete PMF is

only 0.005 (out of 1). We restrict ↵ � 1 and � � 1 to guarantee the uniqueness of mode value

whenever a mode exists.

Let (↵i,0, �i,0) denotes the shape parameter bundle which governs the initial prior of subject

i (the subscript “0” denotes that no draws are yet observed). The initial prior (in form of PDF)

can be written as:

Prior(✓|↵, �) = �(↵ + �)

�(↵)�(�)
✓
↵�1(1� ✓)��1 (2)

✓ 2 [0, 1]; i 2 {1, 2, · · · , N}; ↵, � � 1

where �(·) denotes the gamma function. For readability, we suppress the subscripts of ↵i,0 and

�i,0 for the time being. Suppose after n draws, subject i observes ki,n units of white draws. The

posterior of subject i following Bayes’ rule reads:

Posterior(✓|n, k;↵, �) = Prior(✓|↵, �)⇥ Prob(k|n, ✓)R
✓0 Prior(✓0|↵, �)⇥ Prob(k|n, ✓0)d✓0

(3)

where

Prob(k|n, ✓) =
 
n

k

!
✓
k(1� ✓)n�k (4)

 
n

k

!
=

n!

k!(n� k)!
(5)

For readability, we suppress the subscript of ki,n as well. It can be shown that the posteriors

are also characterized by a beta-distribution, with updated shape parameter bundle (↵+k, �+

n� k). This property is summarized in the proposition below:

Proposition 1. Suppose that Subject i, with an initial prior characterized by a beta-distribution

with shape parameter bundle (↵, �), updates her initial prior into a posterior employing Bayes’

rule. After n draws are observed with k of them being white draws, her posterior can then be

characterized by a beta-distribution with shape parameter bundle (↵ + k, � + n� k).

3
For a beta-distribution with shape parameters ↵, � � 1, its mean value is computed by

↵
(↵+�) . Its mode

value is computed by
↵�1

(↵+��2) if ↵, � > 1; the mode is equal to zero for ↵ = 1, � > 1; the mode is equal

to one for ↵ > 1,� = 1; and the mode takes any value in [0, 1] for ↵ = � = 1. Its variance is computed by

↵�
(↵+�)2(↵+�+1) .
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The proof can be found in Appendix A. Given this property, we can also visualize LS0 in

the following way: A subject forms an initial prior characterized by a beta-distribution with

(↵, �). Then the draw implementation starts. Whenever the subject observes a white draw,

she adds one to the ↵ term. Whenever she observes a black draw, she adds one to the � term.

Accumulatively, the subject in fact adds the number of white draws to the ↵ term and adds

the number of black draws to the � term: after n draws, with k of them being white draws and

n� k of them being black draws, the ↵ term becomes ↵+ k and the � term becomes �+n� k.

Her posterior is thus updated to a new beta-distribution characterized by (↵ + k, � + n � k).

Thus, this updating process can be summarized by the following equations:

↵i,n = ↵i,0 + ki,n (6)

�i,n = �i,0 + n� ki,n (7)

ki,0 = 0; all ↵, � terms � 1; n = 1, 2, · · · , T ; i 2 {1, 2, · · · , N}

where ↵i,n and �i,n denote the (updated) shape parameters governing subject i’s prior/posterior

after n draws are observed. ↵i,0 and �i,0 denote the shape parameters governing i’s initial prior

(before any draw is observed, i.e. n = 0). ki,n denotes the number of white draws that subject

i observes out of n draws. Naturally, ki,0 = 0: when no draws are implemented, no white draws

are observed.

This pattern that adds the frequency of white draws to the initial ↵i,0 and adds the

frequency of black draws to the initial �i,0 also reflects how the shape of the posterior distribution

is updated. If white draws are more frequently observed than black draws, ↵i,0 receives relatively

more add-ups than �i,0. According to the property of beta-distribution, this results in a more

left-skewed distribution with a higher mode value. On the other hand, if black draws are more

frequently observed than white draws, �i,0 receives relatively more add-ups than ↵i,0, causing

the posterior beta-distribution to be more right-skewed and the resulting mode value is lower.

This property of beta-distribution updates assumes that subjects upwards adjust their beliefs if

they witness proportionally more white balls, and downwards adjust their beliefs if they witness

proportionally more black draws, which is intuitive. In addition, when draws accumulate, n

increases for sure and ki,n is on the track of increase. Hence, both ↵i,n and �i,n are on the track

of increase. The PDF of a beta-distribution with a larger parameter bundle concentrates more

densely on some narrower bandwidth. The bell-shape PDF curve looks thinner and taller. This

is also intuitive, since when learning evolves, subjects tend to feel more confident about their

beliefs, and the posterior distribution becomes more squeezed. Another good feature of the

Bayesian updates is that the marginal adjustment diminishes when time evolves. It means that

when n increases, subjects are less sensitive to an additional draw, and thus adjust their beliefs

more mildly. Consider the belief adjustment at n = 1 and at n = 15 for instance. Adding

one piece of new information to the existing one piece can largely a↵ect the general outlook of

the information set and thus may cause large adjustment in beliefs. On the contrary, adding

one piece of new information to the existing fifteen pieces can hardly generate a similar e↵ect.

The importance of new information decreases when the total amount of information increases.

Hence, the diminishing marginal adjustment should be taken into account when modeling the

subjective belief updating process. This is achieved by this learning strategy.
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It is also worth mentioning that the Bayesian special case of this learning strategy nests

the maximum likelihood updating, one of the most prominent strategies in updating: In case

that a subject has a uniformly distributed initial prior (i.e. ↵i,0 = �i,0 = 1) and updates her

priors following Bayes’ rule, the mode value of her posterior distribution is always equal to the

maximum likelihood update after any particular number of draws (n = 1, 2, · · · ) of the same

draw history. The proposition below formally presents this relation:

Proposition 2.

argmax
✓

Posterior(✓|n, ki,n,↵i,0, �i,0) =
ki,n

n
(8)

↵i,0 = �i,0 = 1; n = 1, 2, · · · , T ; i 2 {1, 2, · · · , N}

The formal proof of this proposition can be found in Appendix B. The LHS of Equation (8)

denotes the mode of subject i’s posterior distribution after observing ki,n units of white draws

out of n draws. The RHS denotes the maximum likelihood update based on the same draw

history. Since the guess games elicit the mode values of subjects’ prior/posterior distributions,

the LHS of Equation 8 is observable. Proposition 2 implies that if a subject adopts maximum

likelihood method in belief updating, her belief dynamics can be equivalently recovered by LS0

with ↵̂i,0 = �̂i,0 = 1. In this case, we observe the maximum likelihood updates as entries in the

guess games, or equivalently the mode values of the posterior distributions recovered from LS0.

In other words, Proposition 2 states that maximum likelihood updating is nested within LS0.

5.2 Learning strategy: the general form

The general form of the learning strategy extends the idea of LS0. The learning strategy assumes

that a subject forms an initial prior characterized by a beta-distribution and updates her priors

by imperfectly employing Bayes’ rule. This means that a subject may under-adjust or over-

adjust beliefs in response to new information compared to what Bayes’ rule implies in belief

updating. Of course, she may also perfectly employ Bayes’ rule, then the learning strategy

degenerates to its Bayesian special case. The updating rule can be modeled as follows:

↵i,n = ↵i,0 + �
w
i · ki,n (9)

�i,n = �i,0 + �
b
i · (n� ki,n) (10)

all ↵, � � 1; �
w
i , �

b
i � 0; n = 1, 2 · · · , T ; i 2 {1, 2, · · · , N}

where ki,0 = 0. Equation (9) describes that subject i updates the belief parameter ↵i,n by

adding the (scaled) number of white draws to her initial ↵i,0. The number of white draws

(ki,n), before added to the initial prior, may be scaled by a multiplier: �
w
i . In case of �w

i = 1,

subject i responds to the white draws in the way that she adds exactly ki,n (without scaling) to

her initial parameter ↵i,0 after observing n draws. This implies perfect employment of Bayes’

rule (as in the Bayesian special case). In case of �w
i < 1, subject i responds to the white draws

in the way that she adds a scaled-down ki,n to her initial ↵i,0. This means that she under-adjusts

beliefs in comparison with what Bayes’ rule implies. In case of �w
i > 1, subject i responds to

the white draws in the way that she adds a scaled-up ki,n to ↵i,0, implying over-adjustment of
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beliefs in comparison with what Bayes’ rule implies. Analogously, Equation (10) describes that

subject i updates the belief parameter �i,n by adding the (scaled) number of black draws to her

initial �i,0. �
b
i = 1 implies subject i responds to black draws as Bayes’ rule implies (as in the

Bayesian special case), �b
i < 1 implies under-adjustment of beliefs compared to Bayes’ rule, and

�
b
i > 1 implies over-adjustment of beliefs compared to Bayes’ rule. Take note that both �

w
i and

�
b
i are subject-specific and time-invariant. This implies that each subject has her own updating

rule governed by the two parameters �w
i and �

b
i , and her responses to a white draw/black draw

is constant over time. Moreover, �w
i is not necessarily equal to �

b
i , implying that i’s responses

to white draws may di↵er from her responses to black draws (i.e. with di↵erent scalings on ki,n

and n � ki,n). In case of �w
i = 0 (�b

i = 0), subject i never updates her beliefs when observing

white (black) draws. In case of �w
i = �

b
i = 0, i never learns at all: her initial belief distribution,

characterized by the beta-distribution with shape parameters (↵i,0, �i,0), perpetuates.

The mechanism of the learning strategy can also be interpreted in the following way:

subject i starts with an initial prior which can be characterized by a beta-distribution with shape

parameter bundle (↵i,0, �i,0). After observing ki,n white draws out of n draws (n � 1), she acts

as if she observes �w
i · ki,n white draws, and updates her belief perfectly employing Bayes’ rule.

Analogously, after observing (n�ki,n) black draws, she acts as if she observes �b
i ·(n�ki,n) black

draws, and updates her belief perfectly employing Bayes’ rule. Thus, according to Proposition 2,

her updated belief after n draws can also be characterized by a beta-distribution, with updated

parameter bundle (↵i,0+�
w
i ki,n, �i,0+�

b
i (n�ki,n)), or simply (↵i,n, �i,n) as defined in Equation

(9) and (10), respectively. In other words, the set {(↵i,n, �i,n) : n = 0, 1, · · · , T} captures

subject i’s complete belief dynamics, and her entire belief distributions after each draw can be

recovered from (↵i,n, �i,n).

5.3 Parameter estimation

To recover a subject’s belief dynamics under this learning strategy, it is su�cient to estimate

the parameter set {↵i,0, �i,0, �
w
i , �

b
i }. Here, we directly present the regression equation for

the parameter estimation. The deduction of this equation can be found in Appendix C. The

regression equation reads:

whiten

100
= Mn


1�Mn

1� whiten/100

��0+�b(n�kn)�1
↵0+�wkn�1

+ ✏n (11)

where Mn ⌘ ↵0 + �
w
kn � 1

↵0 + �wkn + �0 + �b(n� kn)� 2
(12)

where ✏n denotes the error term. For readability, all i subscripts (indexing subjects) are sup-

pressed for the time being. In Equation (11), whiten (guess game responses), n (number of

draws), and kn (number of white draws) are observable. All other parameters, ↵0, �0, �
w and
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�
b, are to be estimated. To restrict ↵0, �0 � 1 and �

w
, �

b � 0, exponential functions are applied:

↵0 = 1 + exp(a) (13)

�0 = 1 + exp(b) (14)

�
w = exp(rw) (15)

�
b = exp(rb) (16)

We plug Equation (13)-(16) into Equation (11) and estimate parameters {a, b, r
w
, r

b} for

each subject, using her responses in the guess games as well as the observed draw history. The

estimation applies the nonlinear regression method. Equation (11) does not allow whiten = 100.

In practice, for subjects who respond 100 in the guess game, we reset whiten = 99. This only

a↵ects nine data entries (out of 1619) and seven subjects (out of 102).

With the estimated {â, b̂, r̂w, r̂b} , for each subject we recover the parameters {↵̂0, �̂0,

�̂
w
, �̂

b} based on Equation (13)-(16), respectively. For 99 out of 102 subjects, we obtain the

estimation results from the regression. For three subjects, the regression is not possible, since

there is no data variation within subjects. These three subjects never update their beliefs: two

subjects constantly respond 50 in all guess games, and one subject constantly responds 70.

For these three subjects, we manually parameterize their belief dynamics as follows: for the

two subjects constantly responding 50, ↵̂i,0 = �̂i,0 ! +1 and �̂
w
i = �̂

b
i = 0. For the subject

constantly responding 70, ↵̂i,0, �̂i,0 ! +1 and (↵̂i,0 � 1)/(↵̂i,0 + �̂i,0 � 2) = .7, as well as

�̂
w
i = �̂

b
i = 0. These parameterizations mean that, without observing any draw, they have

already had very clear beliefs about the urn composition, and that they do not update their

beliefs along the draws. In addition, such parameterizations also perfectly recover each elicited

mode.

For each subject, using the results of {↵̂i,0, �̂i,0, �̂
w
i , �̂

b
i }, we can further recover her entire

belief distribution after each draw. We proceed in the following steps: first, we derive ↵̂i,n and

�̂i,n based on Equation (9)(10), respectively. Second, we discretize the support of the belief

distributions, ✓ 2 [0, 1], to the set {✓|✓ = 0, 0.01, 0.02, · · · , 1} and compute the probability mass

(PMF) evaluated at each element of the set:

pmf(↵̂i,n, �̂i,n, ✓) =

8
>>>>>>><

>>>>>>>:

cdf(↵̂i,n, �̂i,n, 0.005); if ✓ = 0 (17)

cdf(↵̂i,n, �̂i,n, ✓ + 0.005)

�cdf(↵̂i,n, �̂i,n, ✓ � 0.005); if ✓ 2 {0.01, 0.02, · · · , 0.99} (18)

1� cdf(↵̂i,n, �̂i,n, 0.995); if ✓ = 1 (19)

1/101; for all ✓ if ↵̂i,n = �̂i,n = 1 (20)

where pmf(↵̂i,n, �̂i,n, ✓) denotes the probability mass of a beta-distribution with (↵̂i,n, �̂i,n) eval-

uated at the support ✓. Analogously, cdf(↵̂i,n, �̂i,n, ✓) denotes the value of the cumulative

distribution function. This discretization guarantees that the summation of the probability

mass within one distribution is always equal to one. In fact, pmf(↵̂i,n, �̂i,n, ✓) recovers subject

i’s entire belief distributions (in form of PMF) after each draw (n = 0, 1, · · · , T ).
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5.4 Estimation results

In this chapter, we discuss the estimation results of the parameters as computed based on Equa-

tion (17)-(20). For most subjects, the belief updating dynamics recovered from the estimated

parameters fit the observed guess game data (the elicited modes) very well. As an example,

Figure 6 illustrates the belief dynamics of Subject 46. Each sub-graph represents her recovered

belief distribution after a certain number of draws. A red vertical line, which represents her

guess game response (i.e. the elicited mode value of the belief distribution, read from the X-

axis), is added in each sub-graph. As can be seen, the mode of the estimated belief distribution

is very close to the elicited mode in each sub-graph. This indicates that the belief estimation

achieves excellent goodness of fit in terms of fitting the mode value. This consolidates the

quality of the belief estimation.

A detailed picture of the parameter estimation results is given in Table 3 and Figure 7-

8. Table 3 Panel A summarizes the results of (↵̂i,0, �̂i,0), i.e. subjects’ initial priors. Figure

7a and 7b plot �̂i,0 against ↵̂i,0. In both diagrams, the bubble size represents the number of

subjects. Ten subjects are estimated by ↵̂i,0 = �̂i,0 = 1, represented by the largest bubble in

both diagrams. Figure 7a represents the sub-samples with ↵̂i,0, �̂i,0  70 (N=94). For better

visibility, Figure 7b restricts to the sub-samples with ↵̂i,0, �̂i,0  2 (N=59). The results show

that 90 out of 102 subjects have ↵̂i,0 and �̂i,0 which are both greater than one. This implies

that nearly 90% of the subjects have bell-shaped distributed initial priors, a dominant majority

among all shapes. Ten subjects have uniformly distributed initial priors, and two subjects have

initial priors with increasing PDF representations. In terms of mode value of the initial prior, 52

subjects have a mode greater than 0.5, 38 subjects have a mode less than 0.5, and two subjects

have a mode equal to 0.5. For the ten subjects with uniformly distributed priors, the mode

is not specified, but the distribution is symmetric around 0.5. This implies that on average

the initial prior distributions are slightly left-skewed, and more probability mass is assigned to

scenarios with a proportion of white balls greater than 0.5.

The initial prior distributions recovered from (↵̂i,0, �̂i,0) are depicted in Figure 7c (in form

of PMF) and in Figure 7d (in form of CDF). Each curve represents one subject. As can be

seen, the curves cover a variety of distributions: uniform distribution (the horizontal line),

bell-shaped distributions, and extremely squeezed distributions (the vertical lines). In terms of

mode, values less than 0.5, greater than 0.5, and around 0.5 are all observed. This implies that

there exists large heterogeneity in the recovered initial prior distributions.

The parameters �̂
w
i and �̂

b
i govern subject i’s updating rule, i.e. the response to white

draws and black draws, respectively. The results are reported in Table 3 Panel B. Figure 8a

and 8b plot �̂b
i against �̂w

i . In either figure, the bubble size represents the number of subjects.

Ten subjects are estimated by �̂
w
i = �̂

b
i = 0, represented by the largest bubble in both diagrams.

For better visibility, Figure 8a and 8b restrict to the sub-samples with �̂
w
i , �̂

b
i  5 (N=93) and

�̂
w
i , �̂

b
i  1 (N=79), respectively. A �̂

w
i (�̂b

i ) not equal to one indicates that subject i deviates

from Bayes’ rule in the way she responds to the white (black) draws. The results show that,

not surprisingly, no subject perfectly follows Bayes’ rule in belief updating. A large proportion

of subjects display under-adjustment of beliefs in comparison with what Bayes’ rule implies. In
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fact, 75% of the subjects have both �̂
w
i < 1 and �̂

b
i < 1. In addition, subjects tend to respond

to white draws and black draws symmetrically. This can be seen from both diagrams, in which

most bubbles are located close to the 45-degree line.

Table 3 Panel C reports the cross tabulation of subjects’ initial priors and their responses

to white draws. Analogously, Panel D reports the cross tabulation of subjects’ initial priors

and their responses to black draws. The numbers indicate that subjects who have bell-shaped

initial priors most likely under-adjust beliefs in response to new information compared to what

Bayes’ rule implies. On the other hand, most subjects who have a uniformly distributed initial

prior do not learn at all along the draws.

In general, the nonlinear regressions fit the observed data very well: most regressions

achieve a high R
2 (mean=0.979; s.d.=0.060; max=0.999; min=0.683; N=102). The high R

2

does not seem to be driven by overfitting. First, from a theoretical perspective, overfitting is

more likely to be a serious concern if the estimation model lacks theory support (Claeskens and

Hjort 2008). This is not the case in this paper, since our belief estimation model has a sound

theoretical structure. It is an extension of the conjugate prior theory, which is empirically tested

in a sizable number of previous studies. Second, to rule out from an empirical perspective that

overfitting is a serious problem in our regressions, we re-run the regressions using subsets of the

data: for each subject, we randomly delete one data point (i.e. one guess game response); With

this smaller data set, we re-run the belief estimation for each subject and test to which extent

the estimations provide di↵erent results. Stable estimation results speak against overfitting.

We find that the re-run estimation leads to very similar results to those reported in Table 3.

For example, in Panel A, the re-run estimation skipping one data per subject fills Row (1)-(6)

with 16, 1, 1, 3, 44, 37, respectively, similar to the results based on the complete data (Row 1-6:

10, 0, 2, 2, 50, 38, respectively). Thus, the re-run estimation generates stable results regarding

initial priors as in the original estimation: most subjects still have bell-shaped initial prior

distributions. As for �̂w
i , the re-run estimation fills Row (7)-(10) of Panel B with 16, 65, 0, 21,

respectively (the results based on the complete data are 12, 69, 0, 21, respectively); For �̂b
i , the

re-run estimation fills Row (7)-(10) with 19, 64, 0, 19, respectively (the results based on the

complete data are 13, 68, 0, 21, respectively). The re-run estimation generates stable results

regarding updating rules as in the original estimation: most subjects still under-adjust beliefs

compared to Bayes’ rule. The results from the re-run regressions indicate that overfitting does

not seem to be a big problem in our estimation.

Using the estimated parameters, we recover the belief distribution dynamics of each sub-

ject. This allows us to formally test three hypotheses related to belief formation and belief

updating.

6 Hypothesis testing

In the previous sections, for each subject, we use her elicited mode values reported in the

guess games to estimate parameters which govern her belief formation and belief updates.

Consequently, we characterize, for each subject, her initial prior distribution and her updating

rule. Such characterization enables us to test the following three hypotheses:
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(a) Objective equality hypothesis: in an ambiguous environment, all possible,

objectively equally likely scenarios are conceived equally likely;

(b) Unbiased belief hypothesis: in a completely ambiguous environment, a sub-

ject’s belief demonstrates no bias towards bad or good scenarios; and

(c) Bayesian updating hypothesis: subjects employ Bayes’ rule when updat-

ing their beliefs.

Hypothesis (a) and Hypothesis (b) both, in di↵erent ways, relate to the shape of the

initial prior distribution. While Hypothesis (a) relates to the dispersion of the initial prior

distribution, Hypothesis (b) relates to the symmetry of the initial prior distribution. Hence,

both hypotheses can be tested by scrutinizing the characterizations of subjects’ initial prior

distributions, which are governed by ↵̂i,0 and �̂i,0. Hypothesis (c) is related to subjects’ belief

updating rules. The estimated parameters which govern the updating rule (i.e. �̂w
i and �̂

b
i ) can

be used to test this hypothesis. To proceed, we test Hypothesis (a)-(c) sequentially.

6.1 Objective equality hypothesis

Based on the parameter estimation results of each subject, we examine the objective equality

hypothesis, which claims that in a completely ambiguous environment, the initial prior is uni-

formly distributed, i.e. all possible, objectively equal scenarios are conceived equally likely to

realize. Table 4 Panel A summarizes the initial prior distributions across subjects. Subjects

are categorized into groups according to the shapes of their initial prior distributions. The

“without significance test” columns report the grouping based on the results of ↵̂i,0 and �̂i,0

as reported in Table 3 Panel A: ten subjects have a uniformly distributed initial prior (Row

1), two subjects have initial priors with increasing PDF representations (Row 3), and 87 sub-

jects have bell-shaped initial prior distributions (Row 4). The three subjects who never update

their beliefs are estimated by some extremely squeezed initial prior distributions (Row 5). No

subjects have an initial prior with a decreasing PDF representation (Row 2).

The results show that 87 out of 102 subjects are found to have bell-shaped distributed

initial priors, a dominating majority. Three subjects have extremely squeezed distributions,

which can also be seen as special cases of bell-shaped distributions. Therefore, for nearly 90%

of the subjects, their initial priors are characterized by bell-shaped distributions. In contrast,

only ten subjects form a uniformly distributed initial prior, accounting for less than 10% of the

sample. These results indicate that most subjects have non-uniform initial priors.

To examine the objective equality hypothesis more rigorously, for each subject we test

whether H0 : ↵i,0 = 1 & �i,0 = 1 can be rejected at 5% in a joint test. In other words, we

test whether the objective equality hypothesis which claims uniformly distributed initial priors

can be rejected. The last two columns of Table 4 Panel A report the grouping based on the

test results. The results show that for 71 subjects (70% of the sample), the objective equality

hypothesis can be rejected. This can also be seen in Figure 7a and 7b: the blue solid bubbles,

which represent subjects with non-uniformly distributed initial priors, account for a dominating
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proportion in both diagrams. In conclusion, most subjects tend not to believe that all possible,

objectively equal scenarios are equally likely, even in a completely ambiguous environment.

6.2 Unbiased belief hypothesis

In the previous section, we find that beliefs are not such that all possible scenarios are conceived

equally likely, although they are objectively equally likely according to the information available.

Rather, subjects tend to believe that certain scenarios are more likely than others. In the next

step, we investigate which particular scenarios are considered more likely and whether beliefs

are biased towards good or bad scenarios.

The unbiased belief hypothesis claims that a subject’s belief demonstrates no bias towards

either bad or good scenarios. Rejection of the hypothesis implies pessimism or optimism. In

this context, pessimism describes a tendency that a subject has beliefs that are biased towards

bad scenarios in an ambiguous environment, while optimism describes a bias towards good

scenarios. In the analysis, we focus on pessimism/optimism/unbiasedness in initial beliefs, i.e.

beliefs in a completely ambiguous environment, before any information has been revealed that

could rule out certain scenarios.

One way to diagnose pessimism or optimism in a subject’s initial belief is to compare her

initial belief, represented by the mode value of the initial prior, with an unbiased benchmark.

Any negative deviation from the unbiased benchmark is diagnosed as pessimism, and any

positive deviation as optimism. One’s initial mode value is simply whitei,0, the response of

subject i in guess game G0. Figure 2 illustrates the frequency distribution of whitei,0 across

102 subjects. A natural benchmark for an unbiased belief is given by the mid-point, i.e. 50.

Values above 50 indicate optimism, while values below 50 indicate pessimism. The mean value

of the initial modes across 102 subjects is equal to 49.64 (N=102, sd.=11.08, min=23, max=70).

Among the 102 subjects, 34 subjects choose whitei,0 < 50, 42 subjects choose whitei,0 = 50, and

26 subjects choose whitei,0 > 50. It appears that more subjects display pessimism. However,

the t-test shows that whitei,0 is not significantly di↵erent from 50 (H0 : whitei,0 = 50, p-

value=0.742). For the 34 subjects with whitei,0 < 50, the mean value of whitei,0 is equal to

38.13, with median equal to 40. The lowest observed value is 23. It seems that pessimism in

the initial beliefs is discernible, but there is no extreme pessimism. Analogously, for the 26

subjects with whitei,0 > 50, the mean value of whitei,0 is equal to 64.12, with median equal

to 63. The highest observed value is 77. Optimism seems to be discernible, but again there

is no extreme optimism. Yet, pessimism and optimism tend to display similar magnitudes in

initial beliefs. In conclusion, subjects on average seem to have unbiased initial beliefs, although

heterogeneity exists among individual subjects, with some pessimism and some optimism.

An alternative way to diagnose the pessimism or optimism in a subject’s initial belief is to

investigate the shapes of the recovered initial prior distributions. The benchmark is rescaled

from 50 in [0, 100] to 0.5 in [0, 1]. In essence, the benchmark is identical as above. For each

subject, the shape of her initial prior distribution is governed by ↵̂i,0 and �̂i,0. In case of

↵̂i,0 = �̂i,0, the distribution is symmetric, meaning that subject i equally weights bad scenarios

and good scenarios. This is categorized as an unbiased belief. In case of ↵̂i,0 < �̂i,0, the
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distribution is right-skewed, meaning that subject i assigns higher likelihood to bad scenarios

than to good scenarios. This is categorized as pessimism. In case of ↵̂i,0 > �̂i,0, the distribution

is left-skewed, meaning that subject i assigns higher likelihood to good scenarios than to bad

scenarios. This is categorized as optimism. Among the three subjects who never update their

beliefs, the two who choose whitei,0 = 50 are categorized as having unbiased beliefs, and the

one who chooses whitei,0 = 70 is categorized as having optimistic beliefs. Table 4 Panel B

summarizes the categorization. The results reported in the “without significance test” columns

are based on the estimated parameters (↵̂i,0 and �̂i,0). Twelve out of 102 subjects have unbiased

initial beliefs. We observe more cases of optimism (52 subjects) than cases of pessimism (38

subjects). Yet the di↵erence is relatively small, accounting for 13% of the sample.

To examine the unbiased belief hypothesis more rigorously, for each subject we test whether

H0 : ↵i,0 = �i,0 can be rejected at 5%. In case that the null hypothesis can be rejected, the initial

prior is considered significantly biased: significant pessimism is diagnosed in case of ↵̂i,0 < �̂i,0,

whereas significant optimism is diagnosed in case of ↵̂i,0 > �̂i,0. The last two columns of Table

4 Panel B report the grouping based on the test results. The results show that for 66 subjects

(nearly 66% of the sample), the unbiased belief hypothesis cannot be rejected. This implies

that 66% of the sample tend to have unbiased initial beliefs. In contrast, 13% of the sample

display pessimism in initial beliefs, while 23% display optimism. These results imply that, on

an individual level, the unbiased belief hypothesis cannot be rejected for most subjects. Most

subjects tend to have unbiased initial beliefs, with slightly more cases of optimism than cases

of pessimism.

An additional diagnosis is to compare the average probability mass assigned to ✓ < 0.5

(all bad scenarios: the proportion of white balls is less than 0.5) with the average probability

mass assigned to ✓ > 0.5 (all good scenarios: the proportion of white balls is greater than

0.5) of all subjects. The results (not shown in the table) show that the probability mass for

✓ < 0.5 is equal to 0.455 (subject-average), while the probability mass for ✓ > 0.5 is equal

to 0.513 (subject-average). The di↵erence, however, is insignificant: using the overall sample

data, the null hypothesis that the probability mass for ✓ < 0.5 is equal to the probability mass

for ✓ > 0.5 cannot be rejected (two-sided t-test, P-value=0.103, N=102). This implies that on

average subjects’ initial beliefs display neither pessimism nor optimism, and the unbiased belief

hypothesis cannot be rejected on a sample-population level.

The three diagnoses above lead to the same conclusion: on the level of the entire sample-

population, subjects on average tend to have unbiased initial beliefs, and the unbiased belief

hypothesis cannot be rejected. On an individual level, unbiased initial beliefs still dominate,

but heterogeneity exists: both pessimistic and optimistic initial beliefs are observed among

subjects (at discernible but not extreme degrees). Our findings di↵er from the current literature

as follows. First, we empirically identify pessimism/optimism without any confounding e↵ects

from attitudes. This is achieved (in the second and the third diagnosis) by the estimation of the

belief parameters in a regression absent from attitude parameters. In comparison, Ahn et al.

(2014) jointly estimate parameters governing pessimism/optimism and parameters governing

ambiguity attitude. This may lead to a biased estimation of pessimism/optimism. Second, a

stream of literature studies a subject’s beliefs regarding her performance in some cognitive or

22



ego-related tasks. The subject’s true performance (e.g. her score in a test, or her ranking in a

group) is set as the benchmark for the diagnosis of pessimism/optimism. Such benchmark is

obviously subjective. Unlike this literature, we define and measure pessimism/optimism based

on an objective neutral benchmark. This is original in the studies of beliefs under ambiguity.

6.3 Bayesian updating hypothesis

So far, we have investigated initial beliefs. We now turn to the question how these beliefs are

updated as new information becomes available. We examine the Bayesian updating hypothesis,

which claims that a subject employs Bayes’ rule when updating beliefs. Table 4 Panel C

summarizes the estimated updating rules, governed by �̂
w
i and �̂

b
i , across subjects. �̂

w
i = �̂

b
i = 1

indicates perfect Bayesian updating. Other cases indicate imperfect Bayesian updating. The

“without significance test” columns report the grouping based on the estimated parameter

values. In total, 99 subjects, a dominant proportion of the sample, are found to update beliefs

by imperfectly employing Bayes’ rule (Row 2). Three subjects never update their beliefs in

the experiment (Row 3). No subject is found to be perfect Bayesian updaters (Row 1). These

numbers speak against the Bayesian updating hypothesis. The fact that �̂w
i and �̂

b
i are mostly

lower than one implies that subjects mostly under-adjust beliefs in response to both white

draws and black draws compared to what Bayes’ rule suggests.

To examine the Bayesian updating hypothesis more rigorously, we test whether H0 : �w
i =

1 & �
b
i = 1 can be rejected at 5% in a joint test. In case that the null hypothesis can be

rejected, the updating rule is considered to deviate significantly from Bayes’ rule. The last two

columns of Table 4 Panel C report the grouping based on the test results. The results show

that 83 subjects significantly deviate from Bayes’ rule. Included the three subjects who never

update beliefs, for 84% of the sample, the Bayesian updating hypothesis can be rejected. Only

16% of the sample do not significantly deviate from Bayes’ rule, an obvious minority. These

results can be more directly seen in Figure 8a and 8b: the blue solid bubbles, which represent

the imperfect Bayesian updaters, are the majorities in both diagrams.

Furthermore, we scrutinize the belief updating of the 83 subjects who significantly devi-

ate from Bayes’ rule. In particular, we focus on two belief updating features: under-/over-

adjustment of belief, and symmetric/asymmetric updating. Among the 83 imperfect Bayesian

updaters, most subjects under-adjust beliefs in response to new information compared to what

Bayes’ rule implies. This can be directly seen from Figure 8a: most blue solid bubbles (i.e. 74

out of 83 subjects) lie in the area where �̂
w
i < 1 and �̂

b
i < 1. This finding confirms the results

from several papers: Mobius et al. (2014) and Buser et al. (2018) also find that subjects display

conservatism in belief updating (i.e. under-adjustment). Co↵man et al. (2019) find that both

men and women hold relatively lower beliefs than what Bayes’ rule would predict in gender

incongruent tasks.

As for whether beliefs are updated symmetrically, most of the 83 imperfect Bayesian up-

daters respond to good news (white draws) and bad news (black draws) symmetrically. This

is supported by the fact that for 50 out of the 83 subjects (i.e. 60%), the null hypothesis

H0 : �w
i = �

b
i cannot be rejected at 5%. This confirms the finding in Buser et al. (2018) that
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asymmetry is not significant. But it contrasts the finding in Mobius et al. (2014) that asymme-

try is significant, and the finding in Co↵man et al. (2019) that women are more responsive to

bad news than to good news. For the remaining 33 subjects who respond asymmetrically, 20 of

them are more responsive to bad news than to good news (i.e. �̂
w
i < �̂

b
i ). This result to some

extent contrasts the findings in Mobius et al. (2014) as well as in Eil and Rao (2011). These

authors conclude that subjects are more responsive to good news than to bad news. In gen-

eral, the dominating symmetry in belief updating and higher responsiveness to bad news than

to good news among asymmetric updating di↵erentiate our paper from other works. These

di↵erences in results may be due to the fact that beliefs in our paper are beliefs regarding

some objective, ego-unrelated event (guessing the number of white balls), while beliefs in all

of the literature mentioned in this paragraph are beliefs regarding some ego-related events (eg.

IQ test score/ranking, personal attractiveness). This implies that, as argued by Ertac (2011),

belief updating di↵ers across ego-related and ego-unrelated contexts. In addition, our paper

also di↵ers from other literature in estimation method: other papers mainly generate results

on a sample-population level. We are able to recover belief distributions of each subject and

conclude on an individual level, which generates a more precise zoom-in picture.

Overall, we find that initial beliefs do not follow a uniform distribution, i.e. some scenarios

are considered more likely than others. Moreover, there does not seem to be a dominant

bias towards good or bad scenarios. Rather, higher probability is assigned to intermediate

scenarios. Finally, we find that subjects mostly do not apply Bayes’ rule for belief updating.

They rather perform imperfect Bayesian updating, mostly under-adjusting beliefs in response

to new information compared to what Bayes’ rule implies.

To conclude this section, we discuss an important observation in the light of the three

hypothesis tests: the heterogeneity of initial beliefs and belief updating rules across subjects.

The evidence used to test the first two hypotheses clearly shows that there exists large hetero-

geneity in the characterization of subjects’ initial beliefs. Such heterogeneity is reflected in the

variety of shapes of the initial belief distributions, for instance with respect to dispersion. The

heterogeneity of initial beliefs is also discernible in the symmetry of the initial belief distribu-

tions, indicating whether a subject is pessimistic, optimistic, or has an unbiased initial belief.

All three cases are clearly observed in our sample. At last, the evidence used to test the third

hypothesis also shows that belief updating rules are also heterogeneous across subjects: the

degree to which subjects stick to current beliefs or follow Bayes’ rule varies substantially across

subjects. All in all, it can be concluded that heterogeneity prevails along both belief formation

and belief updating.

7 Conclusion

This paper manages to distinguish beliefs from attitudes in situations involving ambiguity.

The initial belief formation and the belief updating process are directly tracked down by a

simple and clear-cut experiment design. Using the elicited mode of each belief distribution,

we recover all belief distributions with full characterizations for all subjects along the learning

process. The results show that, for 70% of the subjects, their initial belief distributions are non-

24



uniform. This finding supports the rejection of the objective equality hypothesis that a subject’s

initial belief follows a uniform distribution, i.e. that a subject conceives each objectively equal

situation in an ambiguous environment equally likely. The modes of the estimated initial belief

distributions locate, for most subjects, not far away from the mid-point of the distribution:

0.5. In addition, the initial belief distributions are mainly symmetric around the mid-point 0.5.

Both findings imply that subjects assign almost equal probability masses to good scenarios as

to bad scenarios. This supports the unbiased belief hypothesis. As for subjects’ belief updating

rules, for 84% of the subjects, the Bayesian updating hypothesis can be rejected, implying that

they deviate from Bayes’ rule when updating beliefs. These subjects who significantly deviate

from Bayes’ rule mostly under-adjust their beliefs compared to what Bayes’ rule suggests, and

they respond to good news and bad news symmetrically.

The findings in the paper reveal that beliefs play an important role in analyses related

to ambiguity. The rejection of the objective equality hypothesis implies that beliefs matter.

Disregarding beliefs in studies on ambiguity aversion may lead to wrong estimations for at-

titudes towards ambiguity. Moreover, it is not enough to simply assume a prominent belief

distribution (e.g. a uniform or any other distribution). The heterogeneity of beliefs found in

this paper indicates that there exists no single belief distribution that fits for all subjects. Such

heterogeneity exists not only in initial beliefs, but in belief updating rules as well. The rejection

of the Bayesian updating hypothesis hints that most subjects do not employ Bayes’ rule when

updating beliefs. Belief estimation which directly assumes the employment of Bayes’ rule may

build up an erroneous basis. As a result, all further analyses built on this erroneous belief

basis (e.g. attitude estimation) may be biased. The heterogeneity in terms of initial beliefs

and belief updating consolidates the necessity of belief analysis as an independent part from

attitude analysis in settings involving ambiguity. Ignorance of the possible e↵ects of beliefs on

subjects’ decisions may lead to biased results when analyzing decision-making under ambiguity.
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Table 1: Experiment procedure

This table reports the main procedure of a complete experiment session. Some games may show up only in

some sessions, instead of all sessions, but the time-line applies to all sessions. n denotes the number of draws

already implemented. Gn denotes the guess game, in which subjects guess the number of white balls in the

ambiguous urn after n draws with replacement are already observed. In each draw, one ball is drawn out from

the ambiguous urn, its color is displayed, and then the ball is put back into the urn (draw with replacement).

In Session I-VI, each market implements its own draw. In Session VII, each subject observes its own draw. The

ambiguous urn design is identical universally in all sessions.

n=0 ! n=1 ! · · · n=14 ! n=15

Choice games

#
G0 G1 · · · G14 G15

# # # #
Asset Trading Asset Trading · · · Asset Trading Choice games

# # # #

1st draw 2nd draw · · · 15th draw

Earning announced;

Questionnaire; Final

payment.
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Table 2: Number of subjects per Session/Market

This table reports the number of subjects, the played guess games, the draw history information, and the other

included experimental parts, in each market of each session.

Session

ID

Market

ID

Subject

ID

No. of

subjects

Guess games

played
Draw history Other parts included

I 1 1-13 13 G0, G1, · · · , G14 Path 1 choice games, asset trading

II 2 14-20 7
G0, G1, · · · , G15

Path 2
choice games, asset trading3 21-27 7 Path 3

III 4 28-34 7
G0, G1, · · · , G15

Path 4
choice games, asset trading5 35-41 7 Path 5

IV 6 42-48 7
G0, G1, · · · , G15

Path 6
choice games, asset trading7 49-55 7 Path 7

V 8 56-62 7
G0, G1, · · · , G15

Path 8
choice games, asset trading9 63-69 7 Path 9

VI 10 70-76 7
G0, G1, · · · , G15

Path 10
choice games, asset trading11 77-83 7 Path 11

VII - 84-102 19 G0, G1, · · · , G15 Path 12-30 choice games

Total=102 Total=30
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Table 3: Estimation results of the learning strategy

This table summarizes the parameter estimation results of the learning strategy. The learning strategy assumes

that a subject starts with a beta-distributed initial prior and updates her belief by perfectly/imperfectly following

Bayes’ rule. The beta-distributed initial prior is characterized by ↵̂i,0 and �̂i,0, and the updating rule is governed

by �̂
w
i and �̂

b
i . They are estimated based on Equation (11). Panel A reports the estimated initial priors: ↵̂i,0

and �̂i,0, summarized across all subjects (N=102). The two subjects who stick to 50 in all guess games are

estimated by ↵̂i,0 = �̂i,0 ! +1 (entering Row 4). The subject who sticks to 70 in all guess games is estimated

by ↵̂i,0, �̂i,0 ! +1 and ↵̂i,0 > �̂i,0 (entering Row 5). Panel B reports the estimated updating rule: �̂
w
i and �̂

b
i ,

summarized across all subjects (N=102). The three subjects who never update their beliefs are estimated by

�̂
w
i = �̂

b
i = 0 (entering Row 7). Panel C (Panel D) reports the cross tabulation of subjects’ initial priors and

their responses to white (black) draws.

Panel A: Estimated initial prior: ↵̂i,0 and �̂i,0

count %

(1) ↵̂i,0 = �̂i,0 = 1: uniform distri. 10 9.80

(2) ↵̂i,0 = 1, �̂i,0 > 1: decreasing PDF (mode=0)

(3) ↵̂i,0 > 1, �̂i,0 = 1: increasing PDF (mode=1) 2 1.96

(4) ↵̂i,0 = �̂i,0 > 1: bell-shaped distri. (mode=0.5) 2 1.96

(5) ↵̂i,0 > �̂i,0 > 1: bell-shaped distri. (mode> 0.5) 50 49.02

(6) �̂i,0 > ↵̂i,0 > 1: bell-shaped distri. (mode< 0.5) 38 37.25

Total 102 100

Panel B: Estimated updating rule: �̂
w
i and �̂

b
i

�̂
w
i �̂

b
i

count % count %

(7) �̂ = 0: full-stickiness to initial belief 12 11.76 13 12.75

(8) 0 < �̂ < 1: under-adjustment compared to Bayes’ rule 69 67.65 68 66.67

(9) �̂ = 1: employment of Bayes’ rule

(10) �̂ > 1: over-adjustment compared to Bayes’ rule 21 20.59 21 20.59

Total 102 100 102 100
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Table 3: Estimation results of the learning strategy (Continued)

Panel C: Initial prior (↵̂i,0, �̂i,0) and response to white draws (�̂w
i )

�̂
w
i = 0 0 < �̂

w
i < 1 �̂

w
i = 1 �̂

w
i > 1 Total

(11) ↵̂i,0 = �̂i,0 = 1 7 3 10

(12) ↵̂i,0 = 1, �̂i,0 > 1 0

(13) ↵̂i,0 > 1, �̂i,0 = 1 2 2

(14) ↵̂i,0 = �̂i,0 > 1 2 2

(15) ↵̂i,0 > �̂i,0 > 1 3 36 11 50

(16) �̂i,0 > ↵̂i,0 > 1 30 8 38

Total 12 69 0 21 102

Panel D: Initial prior (↵̂i,0, �̂i,0) and response to black draws (�̂b
i )

�̂
b
i = 0 0 < �̂

b
i < 1 �̂

b
i = 1 �̂

b
i > 1 Total

(17) ↵̂i,0 = �̂i,0 = 1 8 2 10

(18) ↵̂i,0 = 1, �̂i,0 > 1 0

(19) ↵̂i,0 > 1, �̂i,0 = 1 2 2

(20) ↵̂i,0 = �̂i,0 > 1 2 2

(21) ↵̂i,0 > �̂i,0 > 1 3 35 12 50

(22) �̂i,0 > ↵̂i,0 > 1 31 7 38

Total 13 68 0 21 102
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Table 4: Initial prior distribution, pessimism/optimism in initial belief, and updating rule

This table summarizes the initial prior and the updating rule of each subject’s learning strategy. “Without

significance test” columns report results based on the estimated parameters. Panel A reports subjects’ shapes

of the initial prior distributions: ↵̂i,0 = �̂i,0 = 1 implies uniform distribution. In significance test, subjects for

whom H0 : ↵i,0 = 1 & H0 : �i,0 = 1 can be rejected at 5% are categorized as having non-uniform distributions.

Panel B reports unbiasedness/pessimism/optimism in subjects’ initial beliefs: ↵̂i,0 = �̂i,0 (↵̂i,0 < �̂i,0, ↵̂i,0 >

�̂i,0) implies unbiased initial belief (pessimism, optimism). In significance test, subjects for whomH0 : ↵i,0 = �i,0

can be rejected at 5% are categorized as displaying pessimism (if ↵̂i,0 < �̂i,0) or optimism (if ↵̂i,0 > �̂i,0). Panel

C reports subjects’ updating rules: �̂
w
i = �̂

b
i = 1 implies perfect Bayesian. In significance test, subjects for

whom H0 : �
w
i = 1 & �

b
i = 1 can be rejected at 5% are categorized as imperfect Bayesian. In all three panels,

if a subject has no significant test results, she is grouped into the same category in the last two columns as in

the “without significance test” columns.

Panel A: initial prior distribution

without H0 : ↵i,0 = 1 & �i,0 = 1

significance test can be rejected at 5%

count % count %

(1) uniform distribution 10 9.80 (31)* 30.39

(2) decreasing PDF

(3) increasing PDF 2 1.96 2 1.96

(4) bell-shaped distribution 87 85.29 66 64.71

(5) extremely squeezed PDF 3 2.94 3 2.94

Total 102 100 102 100

*For 31 subjects, H0 : ↵i,0 = 1 & �i,0 = 1 cannot be rejected at 5%. 16 subjects have no significance test results.

These include ten subjects with ↵̂i,0 = �̂i,0 = 1 (uniform distribution), two subjects with ↵̂i,0 > 1, �̂i,0 = 1

(increasing PDF), three subjects who never update beliefs, and one subject with extremely large ↵̂i,0, �̂i,0. For

these 16 subjects, the standard errors of ↵̂i,0 and �̂i,0 are close to zero, and thus no test results are available. In

the last two columns, each of them is grouped into the same category as they are in the ”without significance

test” columns.

Panel B: initial belief: unbiased belief, pessimism, or optimism

without H0 : ↵i,0 = �i,0

significance test can be rejected at 5%

count % count %

(1) unbiased initial belief 12 11.76 (66)$ 65.71

(2) pessimism in initial belief 38 37.25 13 12.75

(3) optimism in initial belief 52 50.98 23 22.55

Total 102 100 102 100

$
For 66 subjects, H0 : ↵i,0 = �i,0 cannot be rejected at 5%. 16 subjects have no significance test results. These

include ten subjects with ↵̂i,0 = �̂i,0 = 1 (uniform distribution), two subjects with ↵̂i,0 > 1, �̂i,0 = 1 (increasing

PDF), three subjects who never update beliefs, and one subject with extremely large ↵̂i,0, �̂i,0. For these 16

subjects, the standard errors of ↵̂i,0 and �̂i,0 are close to zero, and thus no test results are available. In the

last two columns, each of them is grouped into the same category as they are in the ”without significance test”

columns.
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Table 4: Initial prior distribution, pessimism/optimism in initial belief, and updating rule

(Continued)

Panel C: updating rule

without H0 : �w
i = 1 & �

b
i = 1

significance test can be rejected at 5%.

count % count %

(1) perfect Bayesian (16)§ 15.69

(2) imperfect Bayesian 99 97.06 83 81.37

(3) never update 3 2.94 3 2.94

Total 102 100 102 100

§
For 16 subjects, H0 : �

w
i = 1 & �

b
i = 1 cannot be rejected. 18 subjects have no significance test results. These

include 14 subjects with �̂
w
i = 0 or �̂

b
i = 0, three subjects who never update beliefs, and one subject estimated

by �̂
w
i = 4.41 and �̂

b
i = 1.60. For these 18 subjects, the standard errors of �̂

w
i and �̂

b
i are close to zero, and thus

no test results are available. In the last two columns, each of them is grouped into the same category as they

are in the ”without significance test” columns.
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Figure 1: Screen display of the guess game

This figure displays the computer screen a subject sees when she plays the guess game. A subject inserts

an integer between zero and 100 (inclusive) to announce her guess about the proportion of white balls in the

ambiguous urn. In order to permit learning, draws with replacement are implemented from the ambiguous urn

as the source of new information. Gn denotes the guess game played after n draws are implemented (0  n  T ,

where T = 14 in Session I, otherwise T = 15). The guess games are played in the following sequence. In Session

I: G0, the first draw, G1, the second draw, · · · , G14, the 15
th

draw. In all other sessions: G0, the first draw,

G1, the second draw, · · · , G14, the 15
th

draw, plus G15. The previous draw history, if any, is displayed on the

screen for subjects’ reference. Figure (a) is the screen display of the very first guess game (G0, the guess game

before any draw is implemented); As an example, Figure (b) shows the screen display of the guess game after

five draws are implemented (G5).

(a) Guess game before any draw: G0

(b) Guess game after five draws: G5
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Figure 2: Response of the first guess game: whitei,0

This diagram illustrates frequency distribution of subjects’ responses in the first guess game G0: whitei,0.

In discussions of pessimism/optimism/unbiased belief, the mid-point 50 is chosen as the neutral benchmark.

whitei,0 = 50 indicates that subject i has an unbiased initial belief, whitei,0 < 50 indicates pessimism in i’s

initial belief, and whitei,0 > 50 indicates optimism in i’s initial belief. Sample size: N=102.
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Figure 3: Guess game responses

This figure illustrates the draw histories and the guess game responses. In total, 30 paths of draw history

are generated. Each sub-graph represents one draw history, independently implemented using an identical

ambiguous urn. A white column represents that a white draw is observed; A gray column, a black draw. The

blue dot-lines represent the guess game response in each guess game (G0, · · · , G14 for sub-graph 1; G0, · · · , G15

for others). Sub-graphs 1-11 represent the draw history in Markets 1-11, respectively. Markets 1-11 produce

eleven di↵erent paths of draw history, and subjects in the same market observe the same draw history. The

guess game responses (blue dot-line) in sub-graphs 1-11 are thus market-wide average values, computed by

Equation (1). The sample size for sub-graphs 1-11 are reported in Table 2, i.e. No. of subjects in Markets 1-11,

respectively. Sub-graphs 12-30 represent the 19 subjects in Session VII, respectively. In Session VII, draws are

implemented per subject, i.e. Session VII produces 19 di↵erent paths of draw history, one for each subject in

Session VII. Each blue dot-line in sub-graphs 12-30 represents the guess game responses of one specific subject

in Session VII. A red reference line of 50 is added.
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Figure 4: Rate of rational belief updates

This diagram illustrates the rate of rational belief updates (i.e. guess game response) by subject. A rational

belief update is defined as such: if a white draw is observed, a subject does not downwards adjust her belief; if

a black draw is observed, a subject does not upwards adjust her belief. The rate of rational belief updates of a

given subject is the ratio of the number of her rational belief update(s) to the total number of guess games she

plays, except the first guess game. Sample size: N=102.
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Figure 5: Examples of beta-distribution: PDF

This diagram illustrates the PDF of beta-distributions with shape parameter bundle (↵,�) =

(2, 2); (3, 3); (1, 5); (5, 1); (3, 5); (5, 3), respectively. A uniform distribution is also displayed in the diagram as a

reference, which is equivalent to the beta-distribution if (↵,�) = (1, 1)
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Figure 6: Estimated belief dynamic of Subject 46: an example

This diagram illustrates the belief updating dynamic recovered from the estimated parameters ↵̂i, �̂i, �̂
w
i and

�̂
b
i of Subject 46, as an example. For reference, the red vertical line represents the elicited modes (i.e. guess

game responses), read from the X-axis. Each sub-graph represents the belief distribution after a certain number

of draws (n).
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Figure 7: Estimated initial prior: ↵i,0 and �i,0

These diagrams illustrate the estimation results of subjects’ initial priors. The learning strategy assumes that

a subject starts with a beta-distributed initial prior, and updates her beliefs by perfectly/imperfectly following

Bayes’ rule. The shape of the initial prior is characterized by (↵i,0, �i,0). They are estimated based on Equation

(11). Diagram (a) plots �̂i,0 against ↵̂i,0, for ↵̂i,0, �̂i,0  70. For better visibility, Diagram (b) restricts to the

subsamples with ↵̂i,0, �̂i,0  2. The bubble size represents the number of subjects (the largest bubble represents

ten subjects; the smallest bubble represents one subject). In Diagram (a)(b), the blue solid bubbles represent

subjects for whom H0 : ↵i,0 = 1 & �i,0 = 1 can be jointly rejected at 5% (significantly di↵erent from uniform

initial prior). Otherwise, gray hollow bubbles. A 45-degree reference line is added in (a)(b). Diagram (c)

illustrates the initial prior distributions in form of PMF, recovered from (↵̂i,0, �̂i,0) based on Equation (17)-

(20). For visibility, the subject with ↵̂i,0 = 65.5, �̂i,0 = 1 is excluded. Vertical lines represent subjects with

extremely large ↵̂i,0 and/or �̂i,0, i.e. assigning all probability mass to one scenario. Diagram (d) illustrates the

initial prior distributions in form of CDF, recovered from (↵̂i,0, �̂i,0).

(a) ↵̂i,0, �̂i,0  70 (N=94)
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(b) ↵̂i,0, �̂i,0  2 (N=59)
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(c) Initial prior distributions: PMF representations (N=101)
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(d) Initial prior distributions: CDF representations (N=102)
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Figure 8: Estimated updating rule: �̂w
i and �̂

b
i

This diagram illustrates the estimation results of subjects’ updating rule. The learning strategy assumes that

a subject starts with a beta-distributed initial prior, and updates her beliefs by perfectly/imperfectly following

Bayes’ rule. �
w
i (�

b
i ) governs how subject i updates her belief parameters in response to a white (black) draw, in

comparison with what Bayes’ rule suggests. Parameters are estimated based on Equation (11). The diagrams

plot �̂
b
i against �̂

w
i for each subject. For better visibility, Diagram (a) restricts to the subsamples with �̂

w
i , �̂

b
i  5,

and Diagram (b) restricts to the subsamples with �̂
w
i , �̂

b
i  1. The bubble size represents the number of subjects

(the largest bubble represents ten subjects; the smallest bubble represents one subject). Three reference lines

are added: �̂
w
i = 1, �̂

b
i = 1, and a 45-degree line. �̂

w
i = 1 (�̂

b
i = 1) indicates that subject i perfectly follows

Bayes’ rule in belief updating when observing a white (black) draw. In both diagrams, the blue solid bubbles

represent subjects for whom H0 : �
w
i = 1 & �

b
i = 1 can be jointly rejected at 5% (significantly di↵erent from

Bayesian updating). Otherwise, gray hollow bubbles.

(a) �̂
w
i , �̂

b
i  5 (N=93)
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8 Appendix

Appendix A: Proposition 1

Proof. Plugging Equation (2)(4)(5) into (3) yields

Posterior(✓|n, k;↵, �) = ✓
↵�1(1� ✓)��1

✓
k(1� ✓)n�k

R
✓0 ✓

0↵�1(1� ✓0)��1✓0k(1� ✓0)n�kd✓0

=
✓
↵+k�1(1� ✓)�+(n�k)�1

R
✓0 ✓

0↵+k�1(1� ✓0)�+(n�k)�1d✓0
(21)

Since
Z

✓

Prior(✓|↵, �)d✓ =
�(↵ + �)

�(↵)�(�)

Z

✓

✓
↵�1(1� ✓)��1

d✓ = 1 (22)

hence
Z

✓

✓
↵�1(1� ✓)��1

d✓ =
�(↵)�(�)

�(↵ + �)
(23)

Replacing ↵ with ↵ + k and � with � + (n� k) in equation (23) yields:

Z

✓

✓
↵+k�1(1� ✓)�+(n�k)�1

d✓ =
�(↵ + k)�(� + n� k)

�(↵ + k + � + n� k)
(24)

Plugging (24) into (21) yields:

Posterior(✓|n, k;↵, �) = �(↵ + k + � + n� k)

�(↵ + k)�(� + n� k)
✓
↵+k�1(1� ✓)�+(n�k)�1 (25)

Therefore, the posterior inherits the beta-distribution, characterized by the updated parameter

bundle (↵ + k, � + n� k).

Appendix B: Proposition 2

Proof. Using Equation (3) and ↵i,0 = �i,0 = 1 to rewrite the LHS of Equation (8) yields :

argmax
✓

Posterior(✓|n, k,↵, �) = argmax
✓

[✓k(1� ✓)n�k] (26)

For readability, we suppress the subscripts of ↵i,0, �i,0 and ki,n. Take note that all other terms in

the posterior expression can be taken out of the “argmax” operator, since they are independent

of ✓. First, consider an internal solution such that ✓
⇤ 6= 0 and ✓

⇤ 6= 1. The maximization

problem can be rewritten as:

max
✓2(0,1)

[k ln(✓) + (n� k) ln(1� ✓)] (27)

FOC leads to:

k

✓⇤
=

(n� k)

1� ✓⇤
(28)
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SOC leads to:

� k

✓⇤2
� (n� k)

(1� ✓⇤)2
 0 (29)

Hence, the internal solution is:

✓
⇤ =

k

n
(30)

where the RHS is the maximum likelihood update after observing k units of white draws out

of n draws (n � 1).

Now consider if ✓ = 0 is the solution to (26). If k 6= 0, the objective function is always

positive with any ✓ 2 (0, 1). Therefore, ✓ = 0 cannot be the solution. However if k = 0,

the objective function reduces to (1 � ✓)n. Given the domains of the variables, ✓⇤ = 0 is the

solution. In other words, only if k = 0, ✓⇤ = 0 is the solution to (26). Hence

✓
⇤ = 0 =

k

n
; if k = 0. (31)

Analogously, ✓⇤ = 1 is the solution to (26) only if k = n, therefore

✓
⇤ = 1 =

k

n
; if k = n. (32)

Combining Equation (30)-(32) yields Equation (8)

Appendix C: Belief estimation: Equation (11)

Proof. For a given subject after a given number of draws, her prior/posterior distribution

recovered from the learning strategy should satisfy that the mode of this prior/posterior is

equal to the elicited mode (the response in the guess game). Thus, the probability evaluated

at the mode of this prior/posterior should be equal to the probability evaluated at the elicited

mode:

pdf

✓
↵n � 1

↵n + �n � 2

����↵n, �n

◆
= pdf

✓
whiten

100

����↵n, �n

◆
(33)

The LHS denotes the second-order probability (in PDF) induced by the parameter bundle

(↵n, �n), evaluated at the true mode of the distribution. The RHS denotes the second-order

probability (in PDF) induced by the parameter bundle (↵n, �n), evaluated at the elicited mode.

Using the PDF formula of beta-distribution (Equation 2) to rewrite Equation (33) yields


↵n � 1

↵n + �n � 2

�↵n�1 
1� ↵n � 1

↵n + �n � 2

��n�1

=


whiten

100

�↵n�1 
1� whiten

100

��n�1

(34)

Plugging in Equation (9)(10) yields:

(Mn)
↵0+�wkn�1(1�Mn)

�0+�b(n�kn)�1 =


whiten

100

�↵0+�wkn�1 
1� whiten

100

��0+�b(n�kn)�1

(35)

where Mn ⌘ ↵0 + �
w
kn � 1

↵0 + �wkn + �0 + �b(n� kn)� 2
(36)
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Re-arranging Equation (35) yields the regression equation:

whiten

100
= Mn


1�Mn

1� whiten/100

��0+�b(n�kn)�1
↵0+�wkn�1

+ ✏n (37)

where ✏n denotes the error term.
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