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Abstract

Human	mobility	and,	in	particular,	commuting	patterns	have	a	fundamental	role	in	understanding	socio-economic	systems.	Analysing	and	modelling	the	networks	formed	by	commuters,	for	example,
has	become	a	crucial	requirement	in	studying	rural	areas	dynamics	and	to	help	decision-making.	This	paper	presents	a	simple	spatial	interaction	commuting	model	with	only	one	parameter.	The
proposed	algorithm	considers	each	individual	who	wants	to	commute,	starting	from	their	residence	to	all	the	possible	workplaces.	The	algorithm	decides	the	location	of	the	workplace	following	the
classical	rule	inspired	from	the	gravity	law	consisting	of	a	compromise	between	the	job	offers	and	the	distance	to	the	job.	The	further	away	the	job	is,	the	more	important	the	offer	should	be	to	be
considered	for	the	decision.	Inversely,	the	quantity	of	offers	is	not	important	for	the	decision	when	these	offers	are	close	by.	The	presented	model	provides	a	simple,	yet	powerful	approach	to
simulate	realistic	distributions	of	commuters	for	empirical	studies	with	limited	data	availability.	The	paper	also	presents	a	comparative	analysis	of	the	structure	of	the	commuting	networks	of	the	four
European	regions	to	which	we	apply	our	model.	The	model	is	calibrated	and	validated	on	these	regions.	The	results	from	the	analysis	show	that	the	model	is	very	efficient	in	reproducing	most	of	the
statistical	properties	of	the	network	given	by	the	data	sources.
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	Introduction

1.1 For	two	decades,	not	only	the	number	of	commuters	(i.e.	people	living	in	a	municipality	and	working	in	another)	but	also,	the	average	distance	travelled	by	workers	has	increased	in	most	European
countries.	This	makes	commuting	a	fundamental	phenomenon	in	understanding	socio-economic	macrostructures.	The	precise	description	of	commuting	patterns	has	a	central	role	in	many	applied
questions:	from	the	studies	on	traffic	and	the	planning	of	infrastructures	(Ortuzar	2001)	to	the	diffusion	of	epidemics	(Balcan	2009)	or	large	demographic	simulations	(Huet	2011).

1.2 Despite	their	importance	for	describing	realistic	socio-economic	frameworks,	datasets	describing	human	commuting	patterns	are	rarely	provided	by	statistical	offices.	Therefore	a	large	effort	has	been
made	to	find	some	algorithmic	procedures	able	to	reconstruct	commuting	flows,	starting	from	the	aggregate	datasets	that	are	usually	available.	These	are	models	that	simulate	the	morphogenesis	of
the	network,	taking	into	account	the	constraints	given	by	the	available	aggregate	data	and	the	geographical	properties	of	the	networks.	Good	reviews	of	these	methods	can	be	found	in	Ortuzar	(2001),
in	the	framework	of	transport	modelling,	in	Barthélémy	(2011),	in	the	framework	of	spatial	networks	modelling,	and	finally	in	Rouwendal	and	Nijkamp	(2004)	concerning	micro-economy.	On	the	other
hand	the	field	still	has	many	gaps,	mostly	due	to	the	difficulties	met	in	calibrating	the	parameters	of	the	proposed	models	and	in	finding	good	descriptions	for	zones	inhabited	by	small	populations.	A
discussion	on	the	state	of	the	art	is	provided	in	section	1.

1.3 Our	research	takes	place	in	the	framework	of	the	European	project	PRIMA[1].	The	microsimulation	model	developed	within	the	PRIMA	project	simulates	the	dynamics	of	the	population	living	in	the
European	rural	(low	population	density)	municipalities.	Therefore,	one	of	our	main	focuses	is	the	commuting	structures	in	the	rural	areas	of	our	case	study	regions.	These	structures	had	to	be	analysed
and	reproduced	in	the	microsimulation	model,	which	aims	to	help	decision-making	regarding	land-use	policies.	Thus,	we	needed	a	simple	commuting	network	algorithm	able	to	generate	the	network	of
the	European	regions	where	the	detailed	commuting	data	was	not	available.

1.4 For	some	of	these	regions,	the	only	available	data	at	the	municipality	level	consisted	of	total	number	of	individuals	commuting	out	of	the	municipality	and	total	number	of	individuals	commuting	into	the
municipality.	In	these	cases,	the	precise	structure	of	the	commuting	network	was	unknown.	In	other	words,	the	exact	flows	of	individuals	going	from	a	municipality	where	they	live	to	another	one	where
they	work	was	missing.	Consequently,	these	flows	had	to	be	recreated	on	the	basis	of	a	set	of	assumptions.	A	description	of	the	case	studies	we	analysed	is	provided	in	section	2.

1.5 This	paper	describes	the	method	we	used	to	recreate	all	the	commuting	flows.	Our	method	generates	a	commuting	network,	using	a	Monte	Carlo	simulation	approach	that	can	also	be	applied	to	low
density	zones.	It	is	based	on	the	individual	choices	of	the	commuters.	We	propose	an	extremely	simplified	framework,	inspired	by	the	gravity	law,	which	aims	to	be	general	enough	to	be	applicable	to
areas	with	diverse	geographical	features	and	different	commuting	structures.	Despite	its	simplicity,	the	proposed	approach	is	capable	of	faithfully	replicating	the	structure	of	observed	commuting
networks.

1.6 Our	algorithm	considers	each	individual	who	wants	to	commute,	from	their	living	place	to	all	possible	workplaces.	Individuals	decide	where	they	work	following	a	classical	rule	consisting	of	a
compromise	between	the	job	offers	and	the	distances	to	the	jobs.	The	further	away	the	job	is,	the	more	important	the	offer	should	be	to	be	considered	in	the	decision.	Inversely,	the	number	of	offers	is
less	important	for	decision-making	when	these	offers	are	in	municipalities	nearby.	We	initialize	the	algorithm	with	aggregate	data	on	job	seekers	(i.e.,	the	number	of	out-commuters)	and	job	offers	(i.e.,
the	number	of	in-commuters)	in	each	municipality.	The	algorithm	memorizes	past	choices	and	after	a	job	is	associated	to	a	commuter,	the	local	information	for	the	municipalities	involved	in	the	choice
is	updated.	The	algorithm	is	repeated	until	all	the	jobs	are	assigned.	The	details	of	the	model	are	explained	in	section	3.1.

1.7 We	also	provide	a	method	to	calibrate	the	unique	parameter	of	our	algorithm,	using	detailed	data	from	statistical	offices.	We	show	that,	even	if	the	selected	regions	are	significantly	diverse,	the
parameter	does	not	vary	dramatically	from	one	region	to	another.	The	calibration	method	is	presented	in	section	3.2.

1.8 Finally,	we	provide	a	quantitative	framework	to	compare	the	network	observed	by	statistical	offices	with	the	generated	structures	of	our	algorithm	(Section	4).	In	particular,	we	articulate	the	validation
systems	at	two	levels.	In	section	4.2	we	focus	on	the	global	topological	properties	of	the	network,	such	as	the	probability	distributions	of	important	network	indicators	(e.g.,	degrees	and	weights).	In
section	4.3,	we	introduce	a	statistical	framework	that	allows	a	comparison,	at	the	local	level,	of	the	similarity	between	the	flows	observed	in	the	real	case	against	those	present	in	the	generated
network.

1.9 An	implementation	of	the	algorithm	in	NetLogo,	provided	as	additional	material	and	detailed	in	the	appendix,	allows	a	graphical	representation	of	the	generation	model.

Background

2.1 The	literature	on	the	construction	and	use	of	commuting	networks	is	abundant;	both	from	the	point	of	view	of	the	analysis	of	the	structures,	and	from	the	point	of	view	of	the	models	(see	the	reviews	of
Ortuzar	2001;	Barthélémy	2011;	Rouwendal	and	Nijkamp	2004	in	various	research	domains).

2.2 Many	recent	papers	adopted	an	approach	based	on	network	theory.	An	interesting	and	complete	analysis	of	the	commuting	structures	from	this	point	of	view	was	introduced	in	De	Montis	et	al.	(2007;
2010).	In	this	framework,	most	importantly	concerning	the	modelling	issues,	the	question	about	the	commuting	networks	is	set	in	the	larger	conceptual	category	of	spatially	constrained	network
structures.	This	kind	of	analysis	concerns	not	only	commuting,	but	all	the	situations	where	the	geography	has	a	significant	role:	from	the	reconstruction	of	migrant	patterns	(Lemercier	and	Rosental
2008)	to	the	analysis	of	the	internet	at	autonomous	system	level	(Pastor-Satorras	and	Vespignani	2004),	to	airline	network	structure	(Barrat	et	al.	2004).	A	particularly	important	study	in	this	context	is
Barrat	et	al.	(2005)	where	the	concept	of	"preferential	attachment"	(Barabasi	and	Albert	1999)	is	adapted	in	order	to	consider	not	only	the	strength	of	a	node	given	by	its	current	in-degree,	but	also	the
spatial	constraint	included	in	the	journey-to-work	network.

2.3 A	more	classical	approach	comes	from	the	micro-economists	(Rouwendal	and	Nijkamp	2004).	Starting	from	the	monocentric	model	of	residential	location	proposed	by	Alonson	(1964),	economists	and
geographers	in	urban	modelling	initially	did	not	consider	the	space	as	determinant	in	residence	location	of	the	individual,	assuming	that	places	of	work	are	all	located	in	the	centre	of	a	unique	city.	In
the	same	way,	looking	at	the	decision	regarding	the	job,	job	search	theory	does	not	take	especially	into	account	the	distance	of	commuting	in	its	first	formalization.	It	assumes	a	worker's	optimal
strategy	is	simply	to	reject	any	wage	offer	lower	than	a	reservation	wage,	and	accept	any	wage	offer	higher	than	this	reservation	wage.	However,	commuting	time	was	soon	included	in	new	job-search
models	as	in	(Van	Den	Berg	and	Gorter	1997).	In	this	model,	a	job	offer	consists	of	a	wage	and	a	commuting	time	pair.	To	be	applied,	this	approach	requires	data	on	wage	offers	and	their	locations.
When	working	with	models	at	very	local	level	(e.g.,	municipalities	or	villages),	wage	data	is	often	difficult	to	obtain.
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2.4 However,	the	most	used	approach	to	the	modelling	of	commuting	or	migration	structures	is	the	one	based	on	the	so-called	gravity	law	models	(Haynes	1988).	The	term	gravity	law	is	a	metaphor	from
classical	physics.	We	can	imagine	that	as	it	happens	in	gravitation,	the	interaction	between	two	municipalities	depends	proportionally	on	a	parameter:	for	example,	the	size	of	the	municipality
(equivalent	to	mass	in	the	gravitational	law),	and	in	inverse	proportion	with	some	power	law	of	the	distance.	It	is	recognized	that	the	concept	of	"distance"	can	be	formulated	as	something	other	than	a
real	geographical	or	spatial	category:	it	can	be	a	travelling	time,	a	topological	distance	on	a	network,	but	also	a	"social"	distance	(e.g.	the	cases	of	border	cities	where	different	languages	are	spoken).
The	classical	formalization	of	probability	pij	of	a	commuter	to	live	in	the	municipality	i	and	to	work	in	the	municipality	j	is	the	following:

(1)

where	we	consider	different	proportionality	parameters	Mi,	Nj,	respectively	for	the	origin	and	destination	municipalities	(this	size	could	refer	to	the	area	of	the	municipalities,	its	population	or	the	number
of	working	people)	and	the	distance	between	each	pair	of	municipalities	dij.

2.5 Using	this	probability	model,	it	is	possible	to	determine	the	traffic	between	each	pair	of	municipalities	with	different	methods	(e.g.	IPF,	multinomial	models,	etc.).	We	notice	that	the	functions	f(Mi),	g(N i)
and	h(dij)	may	assume	any	possible	shape.	For	h(dij),	the	literature	generally	agrees	that	an	exponential	specification	appears	to	fit	better	with	reality.	However,	in	some	applications,	a	power	law
decay	often	seems	to	be	a	better	fit	(De	Montis	2007,	2010;	Reggiani	and	Vinciguerra	2007).	Some	studies	propose	a	combined	form	of	the	two	(Ortuzar	and	Willusem	2001),	or	a	different	form	(de
Vries	et	al.	2009),	in	order	to	better	fit	the	empirical	data.

2.6 The	most	common	applied	model	of	spatial	interaction	to	generate	commuting	networks	is	the	so	called	"doubly-constrained"	model	(Wilson	1998;	Choukroun	1975).	Based	on	the	gravity	law,	it
predicts	the	number	Tij	of	journeys-to-work	between	any	pair	of	origin	(i)	-	destination	(j)	zones	considering	the	number	of	out-commuters	of	i	and	the	number	of	in-commuters	of	j:

(2)

where:

2.7 The	factors	Ai	and	Bj	ensure	that	the	Tij	table	is	consistent	with	the	exogenous	rows	and	columns	totals.	These	balancing	factors,	plus	a	distance	parameter	β,	implicit	in	the	function	h(dij),have	to	be
calibrated.	An	entropy	maximization	approach	allows	calibrating	such	model	considering	only	one	parameter	to	find	(β)	since	Ai	and	Bj	are	automatically	solved	by	this	method.	This	optimization
approach	consists	in	associating	any	particular	microstate	with	a	macrostate,	which	is	simply	the	number	of	trips	from	an	origin	to	a	destination.	A	macrostate	is	feasible	if	it	reproduces	known
properties	referred	to	as	system	states	(for	example,	the	total	number	of	travelers).	Estimating	the	solution	of	the	model	consists	in	finding	the	macrostates,	maximizing	a	chosen	distance	function	of
the	considered	macrostate	to	the	observed	data	among	the	feasible	macrostates	(Bernstein	2003).

2.8 Several	improvements	were	proposed	based	on	this	doubly-constrained	model.	In	Fotheringham	(1981),	a	competing	destination	model	is	introduced	to	improve	the	spatial	structure	of	the	generated
network.	Fik	and	Mulligan	(1990)	extend	this	competing	model	to	measure	the	accessibility	of	a	destination	related	to	destinations	of	the	same	hierarchical	order	in	the	system	of	central	places
(founded	on	the	Central	Place	Theory).	They	also	incorporate	a	measure	that	relates	to	the	number	of	intervening	opportunities	from	the	living	place	i	to	the	attractive	force	j.	These	intervening
opportunities	are	the	potential	destinations	within	a	distance	smaller	than	dij.	To	go	beyond	the	gravity	law	models'	weaknesses,	some	authors	developed	an	approach	founded	on	the	network
paradigm	(Thorsen	et	al.	1999;	Gitlesen	2010).	This	kind	of	procedure	has	the	disadvantage	of	increasing	the	number	of	parameters,	which	is	what	we	wanted	to	avoid.

2.9 Very	recently,	Simini	et	al.	(2011)	proposed	an	algorithm	free	of	parameters	to	generate	many	different	spatial	networks.	They	consider	the	job	demand	and	the	job	offer	as	a	part	of	the	population	of
the	origin-destination	zones,	and	compute	the	probability	of	a	flow	between	the	origin	i	and	the	destination	j,	considering	these	parts	and	the	density	of	people	living	between	i	and	j.	They	apply	this
principle	for	the	generation	of	the	commuting	network	of	USA	at	the	county	level.	This	model	is	very	interesting,	nonetheless	we	doubt	its	suitability	to	reproduce	a	commuting	network	at	such	a	low
level	as	the	municipalities	in	our	study	regions	(such	as	France,	where	the	average	size	of	an	Auvergne	municipality	is	1024	inhabitants).	Though	this	model	addresses	similar	issues,	the	authors
conclude	the	lack	of	an	effective	distance	weakens	their	model	fitness.

2.10 Our	study	analyses	different	regions	from	various	countries.	Regions	are	defined	as	sets	of	NUTS3[2]	areas	for	each	country;	these	regions	vary	in	size,	population,	and	other	economic	and	social
properties.	We	are	interested	in	the	inter-municipality	commuting	network.	Very	few	papers	deal	with	this	topic	on	a	small	scale.	Some	studies	analyse	the	inter-municipality	commuting	network	(De
Montis	2007,	2010),	showing	that	the	Sardinian	and	the	Sicilian	inter-municipal	commuting	networks	exhibit	a	traffic	property	based	on	a	power	law	with	exponent	2.	Others,	such	as	Thorsen	and
Gitlesen	(1998),	compare	different	spatial	interaction	models	by	an	empirical	evaluation	of	the	municipalities	of	a	Norwegian	region.	One	study	analyses	at	the	district	level	(which	is	higher	than	the
municipality	level)	the	German	commuting	network	(Patuelli	et	al.	2007),	using	a	comparison	of	two	spatial	interaction	models.	The	set	of	publications	shows	the	interest	in	such	an	approach	to	study
the	evolution	of	these	types	of	networks	over	time.

2.11 For	the	presented	model,	the	individual	choice	for	a	job	location	is	probabilistic.	Decisions	are	mainly	stochastic,	and	so	is	the	model.	Each	time	the	model	is	run,	we	obtain	a	different	network	based
on	the	statistical	properties	used	as	input.	This	should	be	contrasted	with	the	generation	of	an	optimized	network	making	deterministic	the	flow	between	the	related	municipalities.	Especially	for	the
latter,	a	deterministic	approach	does	not	appear	relevant,	since	the	local	commuting	choice	is	influenced	by	many	local	decisions	which	can	be	seen	as	random	variations.	The	validation	of	the	model
shows	that	we	obtained	a	good	fit	of	the	network	given	by	the	observed	data.	These	results	are	very	stable;	the	stochasticity	of	the	model	thus	reflects	local	diversity	without	perturbing	the	statistical
properties	of	the	network.	For	the	deterrence	function,	we	decided	to	use	a	power	law;	nevertheless,	another	function	could	be	tested.

Regional	commuting	network	structures	-	Specific	differences	and	global	properties.

3.1 The	first	part	of	our	study	concerns	the	analysis	of	our	study	regions.	The	local	statistical	offices[3]	provide	all	the	information	necessary	to	characterize	the	structure	of	the	commuting	network.	We
consider:	two	separated	NUTS2	regions	in	France	(Auvergne	and	Bretagne),	each	composed	of	four	NUTS3	regions;	a	group	of	two	NUTS3	regions	in	the	UK	(Nottinghamshire	and	Derbyshire);	and	a
group	of	two	NUTS3	regions	in	Germany	(the	Altmark	region	is	composed	by	the	districts	of	Stendal	and	Salzwedel).	Differences	between	the	data	availability	within	regions	must	be	noted,	as	the	data
for	Auvergne	and	Bretagne	is	much	more	comprehensive,	in	comparison	to	the	other	two	case	study	regions.	Indeed,	data	describing	the	commuting	flows	between	each	pair	of	municipalities	with	less
than	10	commuters	is	not	available	in	the	German	data	(Altmark)	and	the	simlar	flows	smaller	than	3	are	not	available	in	the	English	data	(Nottinghamshire	and	Derbyshire).

3.2 The	selected	regions	differ	on	many	aspects:	the	number	of	municipalities,	geographical	structure,	and	socio-economic	characteristics.	They	were	chosen	by	the	European	project	because	they	are	all
rural	regions	with	diverse	socio-economic	characteristics.	Table	1	presents	some	basic	characteristics	of	each	case	study.

Table	1:	Characteristics	of	selected	study	regions

Region Number	of
municipalities

Average	size	of	a	municipality	(by
number	of	inhabitants)

Average	inter-municipality
distance	(in	km)

Number	of	commuters	living	and
working	in	the	region

Part	of	commuters	living	in	and
working	outside	the	region

Total	area
surface	(in	km2)

Auvergne	(France) 1310 1024 88 261822 7.73% 26,013
Bretagne	(France) 1269 2447 99 608587 7.32% 27,208
Altmark	(Germany)	-
subregions

91 2527 50 16770 66.82% 4,715

Nottinghamshire 372 5300 44 573022 12.4% 4,839
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3.3 The	objective	of	this	first	analysis	is	to	determine	the	characteristics	of	the	commuting	networks	composed	by	the	regional	commuting	flows	that	are	present	in	each	region.	For	this	analysis,	we	create
a	commuting	matrix	from	a	dataset	containing	the	number	of	individuals	that	commute	(i.e.	reside	in	one	settlement	and	work	in	another)	within	each	of	the	selected	regions.	A	representative	section	of
the	matrix	used	is	shown	in	Table	2.	Each	row	represents	the	place	of	residence	and	each	column	represents	the	working	place;	the	cell	at	the	intersection	of	each	row	and	column	contains	the
number	of	persons	living	and	working	in	the	corresponding	row	and	column.	For	our	analysis	we	ignore	the	cells	in	the	diagonal	of	the	table,	as	they	represent	non-commuting	individuals	(i.e.,	persons
living	and	working	in	the	same	place).

Table	2:	Example	of	commuting	data	from	the	Altmark	Region

Municipality	of	employment
Municipality	of	residence 81026 81030 81035 81045 81080 81095 ...
81026 0 0 0 0 0 0 ...
81030 0 0 0 3 0 0 ...
81035 0 0 0 2 0 0 ...
81045 0 2 2 0 2 2 ...
81080 0 0 0 0 0 0 ...
81095 0 2 0 8 0 0 ...
... ... ... ... ... ... ... 0

3.4 After	analyzing	some	global	properties	of	the	network	structure	we	observe	that	the	presented	regions	have	quite	dissimilar	structures.	The	first	analyzed	property	of	the	networks	concerns	the
distributions	of	the	degrees.	The	degree	is	a	property	of	the	associated	un-weighted	network.	For	the	construction	of	the	un-weighted	network	we	consider	all	the	municipalities	and	add	a	directed	link
between	the	municipality	i	and	the	municipality	j	if	at	least	one	individual	commutes	from	i	to	j.	The	in-degree	of	a	municipality	i	(kin(i))	is	the	number	of	links	entering	in	i,	while	the	out-degree	(kout(i))	is
the	number	of	links	starting	from	i.

3.5 The	probability	distributions	of	the	"in	and	out"	degrees	are	represented	in	figures	1.	As	we	can	observe	on	these	figures,	the	different	case	studies	are	characterized	by	very	different	behaviours
according	to	the	degree	distribution.

Figure	1.	In	and	Out	degree	distributions	of	each	case	study	region

3.6 The	out-degree	distribution	shows	that	the	municipalities	in	the	UK	region	always	have	a	large	and	uniform	degree	distribution.	This	can	be	explained	by	the	fact	that	for	the	UK,	the	number	of
commuters	is	extremely	large,	and	the	network	is	very	dense	in	terms	of	links.	This	kind	of	uniform	structure	can	be	connected	to	the	lack	of	"working	hubs"	able	to	attract	workers	more	strongly	than
the	other	municipalities.	This	corresponds	with	what	we	observe	in	the	in-degree	distribution	where	we	see	that	few	municipalities	have	a	small	in-degree	while	a	considerable	part	has	a	high	in-
degree.

3.7 The	situation	in	Auvergne	and	Bretagne,	where	the	in-degree	distributions	suggest	the	presence	of	real	"working	hubs"	in	the	commuting	network	(a	small	but	not	unimportant	part	of	municipalities
reached	much	more	than	the	others)	is	totally	different.

3.8 For	the	Altmark	region,	the	total	number	of	connections	is	generally	lower,	suggesting	that	this	region	represents	only	a	part	of	a	larger	commuting	network.	This	can	be	explained	considering	that	the
majority	of	commuters	in	the	studied	region	work	outside	this	region	(66.82%	as	shown	in	Table	1).

Figure	2.	Distribution	of	the	commuting	distances	(in	meters)	for	the	selected	case	studies

3.9 Another	important	consideration	concerns	the	distribution	of	distances	covered	by	the	commuters.	This	measure	is	presented	in	Figure	2.

3.10 The	distribution	of	the	distances	shows	that	in	the	UK	regions,	smaller	distances	are	favoured.	This	confirms	our	intuition	that	job	offers	are	homogeneously	distributed	among	all	the	municipalities	in
the	region	(thus,	there	are	no	working	hubs).	For	this	reason	people	do	not	need	to	travel	long	distances	to	find	a	job.	The	opposite	situation	is	observed	in	the	Altmark	case,	where	a	significant	share
of	the	commuters	can	travel	up	to	80	km.

3.11 In	this	section	we	provided	a	brief	description	of	the	selected	case	studies.	We	showed	the	structural	differences	and	global	properties	of	the	studied	commuting	networks.	In	the	following	section	we
present	a	method	to	construct	a	synthetic	network,	based	on	the	decision	of	the	individual	workers.	This	method	is	then	used	to	generate	commuting	networks	for	regions	where	the	detailed
commuting	data	is	not	available.
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A	Monte-Carlo	simulation	approach	to	generate	realistic	commuting	networks

4.1 The	usual	methods	for	reconstructing	the	structure	of	commuting	networks	are	based	on	the	gravity	law.	The	main	hindrance	of	this	approach	is	that	it	is	not	easy	to	calibrate	the	gravity	law	model
(Williams	1976).	Moreover,	it	is	a	deterministic	method	which	appears	inappropriate	when	flows	for	small	municipalities	must	be	predicted,	as	it	is	the	case	for	our	study	regions.	We	propose	a	simple
network	generation	model	that	presents	a	higher	level	of	universality	and	which	can	be	applied	with	a	good	degree	of	confidence	to	all	the	case	study	regions.

The	individual-level	generation	model

4.2 The	model	is	based	on	the	individual	choices	of	the	commuters,	namely	people	in	the	active	class	that	do	not	work	in	the	municipality	where	they	reside.

4.3 When	looking	for	an	occupation	outside	of	the	living	place,	two	factors	can	influence	the	choice	of	the	destination:	the	distance	of	the	potential	workplace	and	its	"attractiveness"	(defined	by	the	number
of	jobs	it	offers).	The	further	away	the	possible	destination	is,	the	more	its	attractiveness	will	matter	in	the	decision.	If	the	possible	destination	is	near,	the	settlement	attractiveness	becomes	less
significant	for	the	individual's	decision	for	a	workplace.

4.4 We	start	from	a	typology	of	data	that	is	usually	available,	for	each	municipality,	in	each	case	study:

the	total	number	of	out-commuters	(Ri),	also	called	the	job	demand	of	the	municipality	i,
the	total	number	of	in-commuters	(Qi),	also	called	the	job	offer	(or	attractiveness)	of	the	municipality	j,
the	distances	among	each	couple	of	municipalities	(dij)

4.5 In	the	presented	study	we	use	the	Euclidean	distances	in	km	to	describe	the	distances.	Similar	results	can	be	obtained	using,	for	example,	the	road	distance	or	travelled	time	measures.	Some
performed	test	on	the	results	showed	that	the	algorithm	is	robust	to	the	choice	of	other	distance	definitions.

4.6 To	each	commuter	residing	in	each	municipality	i,	the	algorithm	associates	a	working	destination	j	according	to	the	job	offers	of	all	the	municipalities	different	from	i	in	the	region	and	the	distance
between	the	municipality	i	and	all	the	possible	destinations.	The	algorithm	for	the	generation	of	the	network	evolves	according	to	the	following	steps:

For	each	remaining	commuter	who	has	not	already	found	a	place	to	work,	we:

Select	a	residence	municipality	i	at	random	among	the	municipalities	where	there	is	at	least	one	out-commuter	(Ri>0)
Select	the	working	destination	j	randomly	following	the	probability	distribution	given	by:

(3)

Update	the	number	of	out-commuters	of	i	and	the	number	of	in-commuters	of	j:	Ri=Ri-1,	Q j=Qj-1
Recalculate	thePi→j	distribution

The	relation	between	the	offer	and	the	distance	is	characterized	in	the	model	with	the	parameter	β	which	captures	the	relative	impact	of	the	distance.	Using	this	algorithm	we	ensure	that	the	generated
network	respects	exactly	the	incoming	and	outgoing	traffic	from	each	node.

4.7 Different	values	of	the	parameter	β	produce	different	distance	and	degree	distributions	for	the	generated	networks.	We	calibrate	the	parameter	for	the	case	studies	where	the	complete	information	in
the	network	is	known,	in	order	to	have	the	same	distance	distribution	as	the	one	observed	for	the	real	network.

4.8 Analysing	the	calibration	on	the	regions	where	the	data	is	available,	we	observe	that	with	an	appropriate	choice	of	the	parameter	β	we	are	able	to	generate	a	commuting	network	with	statistical
properties	which	are	very	similar	to	the	real	network.	The	calibration	procedure	and	the	analysis	of	the	accuracy	of	the	generation	algorithm	are	presented	in	the	following	sections.

Model	calibration

4.9 The	proposed	model	depends	on	the	spatial	parameter	β	which	represents	the	relative	importance	of	the	distance	to	the	destination	when	choosing	a	working	place.	A	typical	property	that	distinguishes
commuting	networks	is	the	distribution	of	the	travelled	distance	for	each	worker.	We	employ	this	information	to	calibrate	the	parameter	β.	In	fact,	each	value	of	β	produces	a	network	with	a	typical
distance	distribution,	as	it	is	displayed	in	Figure	3	for	the	Auvergne	case	study.

Figure	3.	Distance	(d	in	KM)	distribution	for	the	real	network	and	three	different	β	values	for	the	Auvergne	case
study

4.10 We	observe	that,	for	excessively	low	values	of	β	the	preference	toward	distant	working	places	is	overestimated,	while	for	excessively	high	values,	the	choice	of	close	places	is	overestimated.	We
calibrate	β	in	order	to	minimize	the	distance	between	the	generated	travelled	distance	distribution	and	the	one	obtained	from	the	observed	data.	The	minimized	distance	is	the	Kolmogorov-Smirnov
distance:

(4)

where	Pco|g(d)	are	the	cumulative	distance	distributions	for	the	observed	(o)	and	generated	(g)	networks.

4.11 For	each	case	study	we	calculated	this	distance	for	different	values	of	β	and	chose	the	minimum	of	the	function	⟨DKS⟩(β)	as	the	calibrated	parameter	value.	Indeed,	to	choose	the	parameter	value,	we
considered	⟨DKS⟩	since	the	model	is	stochastic.	The	value	of	⟨DKS⟩	is	obtained	by	calculating	the	average	of	the	DKS,	measured	on	100	replications	of	the	generated	network	for	each	β	value.	Within
these	replications,	the	variation	of	the	measured	DKS	is	very	low,	at	most	1.13%	of	⟨DKS⟩.	The	calibration	process	is	described	in	Figure	4.	Each	dot	corresponds	to	a	tested	value	of	β	(with	a	step	of
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0.5	from	0	to	7	for	β,	and	with	a	step	of	0.1	from	2	to	3	for	the	⟨DKS⟩	values	required	to	identify	the	minimum).	Figure	4	shows	that	for	the	analyzed	regions,	the	value	of	β	lies	in	the	range	[2,	3].

Figure	4.	Calibration	process	results	for	the	four	case	study	regions	based	on	the	minimization	of	the	average	Kolmogorov-Smirnov	distance	over	100	replications	(each	dots	represents	the	result	for
a	tested	β	value.)

4.12 Table	3	lists	the	optimal	values	for	all	the	studied	regions,	where	the	⟨DKS⟩	distance	is	minimized.

Table	3:	Optimal	values	of	β	for	the	studied	regions

Region β
Auvergne 2.71
Bretagne 2.59
Altmark 2.1
Nottinghamshire	and	Derbyshire 2.2

In	the	analyzed	regions,	notwithstanding	the	relevant	geographic	and	demographic	differences,	the	coefficient	varies	slightly	in	the	interval	β	∈	[2,3].

4.13 Moreover,	we	can	observe	that	for	all	the	regions	in	the	whole	considered	interval,	the	average	KS	distance	⟨DKS⟩	between	the	observed	distribution	and	generated	ones	is	always	small.	This
suggests	a	strategy	for	applying	this	algorithm	to	the	cases	where	the	calibration	datasets	are	not	available.	A	stochastic	procedure	where	at	each	replication	the	β	value	is	randomly	extracted	in	the
interval	β	∈	[2,3]	can	reproduce,	with	a	good	approximation,	the	commuting	patterns	of	the	region.	This	last	assumption	is	valid	only	if	the	considered	region	is	sufficiently	isolated;	that	is,	if	the	total
number	of	commuters,	in	and	out	from	a	municipality,	commute	to	other	municipalities	within	the	same	region.

Validation

5.1 To	assess	the	quality	of	the	generated	network,	we	compare	its	properties	to	the	properties	of	the	observed	network	(i.e.,	data	obtained	from	the	regions'	corresponding	National	Statistical	Office).

5.2 Two	different	kinds	of	properties	are	investigated:	a	first	group	is	measured	on	the	municipality	network	where	we	consider	that	two	municipalities	are	linked	when	at	least	one	worker	commutes
between	them,	whatever	the	origin-destination	is	(i.e.,	considering	an	unweighted	network);	a	second	one	is	measured	on	the	weighted	network	which	has	direct	links	weighted	by	the	number	of
individuals	commuting	from	a	given	municipality	to	another	one.

5.3 For	the	unweighted	network,	two	different	indicators	are	considered:

1.	 The	ability	of	the	generated	data	to	fit	the	observed	in	and	out	degree	distributions	of	the	"municipality"	network;
2.	 The	traffic	density	distribution	describing	the	density	of	each	weight	that	can	be	associated	to	an	undirected	link.	For	an	arc	between	two	municipalities,	this	weight	is	the	sum	of	the	individuals

going	from	one	municipality	to	the	other	in	both	directions	through	the	arc.

5.4 For	the	weighted	network,	we	compare	the	number	of	commuters	of	both	the	generated	and	the	observed	network.

5.5 All	these	statistics	were	not	used	to	generate	simulated	networks.	Moreover,	we	must	remember	that	the	number	of	people	looking	for	a	job	in	a	municipality	i	(Ri)	and	the	job	offers	in	a	municipality	j
(Qj),	are	reproduced	precisely	in	all	municipalities	by	the	generation	algorithm.

The	properties	of	the	municipality	network	(i.e.	the	unweighted	network)

5.6 We	consider	three	variables	to	describe	the	topological	properties	of	the	network	and	the	characteristic	of	the	commuting	flows:	the	in	and	out	degree	distribution	(p(kin)	and	p(kout))	and	the	traffic
distribution	(p(T)).	These	indicators	are	influenced	by	the	choice	of	the	parameter	β.	As	we	can	observe	in	Figure	5	for	the	Auvergne	case	study,	for	β	=	0	(i.e.,	when	the	geography	is	not	important),
higher	network	degrees	and	lower	traffics	are	observed.	As	the	geography	becomes	more	important	(i.e.,	as	β	is	increased)	the	maximum	network	degree	decreases	and	the	maximum	amount	of
traffic	increases.	When	distance	is	not	important,	people	choose	their	working	destination	in	a	wider	range	of	available	municipalities.	On	the	contrary,	a	strong	distance	constraint	forces	to	choose	only
between	the	nearby	municipalities.	As	a	consequence	of	this,	traffic	on	this	smaller	number	of	connections	will	also	be	globally	higher.

5.7 For	the	Auvergne	case	study,	Figure	5	shows	the	comparison	of	the	generated	and	the	observed	data.	It	can	be	seen	that,	the	distributions	at	the	calibration	point	(β	=	2.7)	fit	the	distributions	of	the
observation	network	perfectly.	This	fitness	should	be	observed,	considering	that	none	of	the	three	measurements	(in-commuting	degree,	out-commuting	degree	and	distribution	of	traffic),	are	used	by
the	model;	thus,	the	fitness	of	the	generated	network	to	the	observed	one	is	a	positive	assessment	of	the	effectiveness	of	the	model.

http://jasss.soc.surrey.ac.uk/15/2/6.html 5 12/10/2015



Figure	5.	In	(kin)	and	out	(kout)	degree	distributions	and	traffic	(T)	distribution	for	some	generated	networks	with	various	values	of	β	and	for	the	observed	network	for	the	Auvergne	case	study.	The
results	for	the	generated	networks	are	averaged	on	100	replications	of	the	generation	algorithm

5.8 Figure	6	shows	the	comparison	between	these	measures	for	the	observed	network	and	the	generated	ones	for	the	other	case	studies.	As	we	can	notice	in	these	figures,	the	traffic	(T)	distribution	is
well	reproduced	in	all	the	case	studies.	It	is	not	the	case	for	the	degree	distributions	in	the	UK	case	study	where	the	generation	process	completely	fails	in	the	estimation.	We	attribute	this	discrepancy
to	the	quality	of	the	Census	data.	Indeed,	in	UK,	a	small-cell	adjustment	method	(Stillwell	and	Duke-Williams	2007)	is	applied	to	prevent	disclosure	of	personally	identifying	data.	In	particular,	this
method	suppresses	some	commuting	data	by	replacing	values	of	1	and	2	with	0	or	3.	This	adjustment	makes	the	definition	of	a	link	between	two	municipalities	different	in	the	model	beyond	the	data
and	in	the	generated	network	through	our	algorithm.	According	to	the	census	data,	two	municipalities	are	linked	only	if	at	least	three	individuals	commute	among	them.	In	our	generated	network,	they
are	linked	if	at	least	one	individual	commute	among	them.	A	large	number	of	municipality	pairs	are,	in	reality,	linked	by	only	one	or	two	individuals.	Such	pairs	are	underestimated	in	the	real	UK	data.
We	believe	this	is	the	reason	why	the	model	seems	to	overestimate	the	connectivity	between	municipalities.
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Figure	6.	In	(kin)	and	out	(kout)	degree	distributions	and	traffic	(T)	distribution	for	the	generated	networks	at	the	calibration	point	and	for	the	real	network	for	the	Bretagne,	Altmark	and	UK	case	studies.	The
results	for	the	generated	networks	are	averaged	on	100	replications	of	the	model

The	common	part	of	commuters	of	the	weighted	network

5.9 We	now	define	an	indicator	to	compare	the	generated	commuting	network	and	the	observed	commuting	network.	The	statistical	offices	of	France,	Germany	and	United	Kingdom	provided	the	observed
commuting	networks.	Assuming	that	Mn(N)	is	the	set	of	all	possible	networks	for	a	set	of	municipalities.	Let	O	∈	Mn(N)	be	one	commuting	network	when	Oij	is	the	number	of	commuters	from
municipality	i	to	municipality	j.	Let	G	∈	Mn(N)	be	another	commuting	network	between	the	same	set	of	municipalities	where	Gij	is	the	number	of	commuters	from	municipality	i	to	municipality	j.

5.10 To	assess	the	similarity	of	flows	between	the	generated	and	the	observed	networks,	we	can	compute	the	common	part	of	commuters	(CPC)	(Eq.	7)	from	the	number	of	common	commuters	(NCC)
between	O	and	G	(Eq.	5)	and	the	number	of	commuters	(NC)	in	O	(Eq.	6).	The	CPC	appears	to	be	a	good	indicator	of	the	prediction	quality.	This	indicator	may	be	seen	as	a	simplified	variant	of	the
Sørensen	index,	with	the	two	compared	matrices	having	the	same	size.	The	CPC	was	chosen	for	its	intuitive	explanatory	power:	it	is	a	similarity	coefficient	which	gives	the	likeness	degree	between
two	networks.	Its	value	ranges	from	0,	when	there	are	no	commuters	flows	in	common	in	the	two	networks,	to	a	value	of	1,	when	all	commuters	flows	are	exactly	identical	in	the	two	networks.

(5)

(6)

(7)

5.11 This	gives	us	an	indicator	to	directly	compare	one	replication	of	the	generated	network	with	the	observed	one.	We	do	the	same	with	all	the	100	replications	for	a	given	β	value	and	compute	the
average	of	the	obtained	100	CPC	to	evaluate	the	quality	of	the	model.	Within	the	100	replications,	the	CPC	varies	at	most,	by	1.76%	of	the	average;	this	means	that	the	stochastic	model	is	very	stable
(i.e.,	the	stochasticity	does	not	have	a	significant	effect	on	the	properties	of	the	network).

Figure	7.	Common	part	of	commuters	(at	the	bottom)	for	different	β	values	for	each	case	study	region	(compared	to	the	calibration	graph	of	the	Figure	4,	presented	above)

5.12 Figure	7	presents	the	average	CPC	for	each	region	and	for	different	βvalues.	It	is	noticeable	that	the	best	value	of	the	average	CPC	function	is	very	close	to	the	one	given	by	the	calibration	value	of	β
for	all	the	studied	regions.	This	point	is	stressed	in	Figure	7	by	the	dotted	line	showing	the	match	between	the	average	CPC	value	and	the	minimum	of	the	DKS.	The	proximity,	in	terms	of	β	of	the
minimum	of	the	DKS	function	with	the	maximum	of	the	CPC	function,	is	surprising	and	reinforces	the	idea	the	CPC	is	a	good	quality	indicator.	We	also	notice	that	the	best	values	for	both,	the	DKS	and
the	common	part	of	commuters,	varies	when	defining	the	model	parameter	between	β=	2	and	β	=	3.	Also,	the	results	from	the	CPC	indicator	reinforce	the	suggested	method	for	the	generation	of	a
network	in	the	case	where	the	data	is	not	directly	available.	In	fact,	for	any	point	in	the	interval	β	∈	[2,3],	and	for	all	the	considered	regions,	the	CPC	value	never	goes	below	CPC=0.6,	showing	that	the
generation	process	yields	networks	that	match	the	observed	network	with	good	accuracy.

5.13 Table	4	shows	the	average	CPC	for	each	case	study	region	and	the	optimal	β	value.	Results	are	encouraging:	average	CPC	values	fall	between	0.67	and	0.76.	On	average	we	obtained	about	70%	of
commuters	in	common.	It	means	that	70%	of	the	observed	network	is	returned	by	the	model.	One	may	also	notice	that	the	optimal	β	value	seems	to	vary	in	the	same	way	as	the	average	inter-
municipality	distances	of	the	region	(see	table	1),	for	which	the	Germany	and	the	UK	regions	both	have	a	small	value,	whereas	the	Auvergne	and	the	Bretagne	regions,	both	show	a	large	value.

Table	4:	Average	Common	Part	of	Commuters	for	the	four	case	study	regions

Region β Average	Common	Part	
of	Commuters

Auvergne 2.71 0.683
Bretagne 2.59 0.684
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Altmark 2.1 0.751
Nottinghamshire	and	Derbyshire 2.2 0.676

Discussion	and	conclusions

6.1 We	propose	a	very	simple	stochastic	individual-based	model	able	to	generate	a	commuting	network	with	good	accuracy.	This	model	is	based	on	the	doubly-constrained	model	proposed	by	Wilson
(1998)	and	has	its	roots	on	the	so-called	gravitational	laws	(i.e.,	consider	that	individuals	tend	to	"gravitate"	towards	more	attractive	areas).	It	is	built	on	the	same	principles:	an	individual	tends	to
choose	a	job	location	depending	on	the	job	offers	and	the	distance	to	the	offer.	The	effect	of	the	distance	decreases	as	the	distance	increases,	following	a	function	that	we	have	chosen	as	a	power
law.	Our	model	has	only	one	parameter	which	can	be	easily	calibrated.	It	ensures	that	the	number	of	out-commuters	and	in-commuters	for	each	municipality	is	respected	without	needing	to	solve	an
optimization	problem.	However,	it	must	be	stressed	that	our	proposed	model	does	not	try	to	reconstruct	the	exact	structure	of	a	commuting	network.	Achieving	this	would	require	considering	additional
local	properties,	which	are	very	specific	for	each	region.	Instead,	we	aimed	to	create	a	model	that	can	generate	realistic	synthetic	networks	from	a	limited	set	of	data	(number	of	in-commuters	and	out-
commuters	on	each	municipality),	which	can	be	used	in	cases	where	the	detailed	commuting	data	is	unavailable.	Moreover,	reproducing	exactly	a	network	at	a	very	low	level,	especially	for	very	small
municipalities	(e.g.,	around	1000	inhabitants	on	average	in	some	French	regions	or	less	than	200	for	the	studied	German	region)	makes	no	sense	since	very	small	commuting	links	between	small
municipalities	can	result	from	stochastic	factors	that	cannot	be	captured	with	a	real	deterministic	law.	As	our	algorithm	is	stochastic,	it	obtains	many	possible	combinations	of	generated	networks
respecting	the	total	local	commuting	flows.	This	approach	seems	more	relevant	than	a	deterministic	approach	for	modelling	a	commuting	network	at	the	municipality	level.

6.2 Our	algorithm	is	validated	on	four	case-study	regions	situated	in	France,	Germany	and	the	United-Kingdom.	We	compare	the	properties	of	the	observed	network	given	by	the	complete	origin-
destination	table	to	those	of	the	generated	networks.	We	conclude	that	the	in	and	out	degree	distributions	of	the	municipality	network,	the	traffic	distribution	of	the	same	network	are	well	fitted	by	the
generated	networks'	distributions.	Moreover,	the	common	part	of	commuters	of	a	generated	network	with	the	observed	network	(i.e.,	the	complete	origin-destination	table)	appears	high	for	all	the	case
study	regions.	Incidentally,	we	have	noticed	that	the	optimal	parameter	value	of	our	algorithm	is	very	close	to	the	parameter	value	that	yields	a	higher	value	of	common	commuters.

6.3 The	proposed	model	appears	quite	relevant	for	our	main	problem.	Nevertheless,	we	must	remember	that	aggregated	statistics	available	at	the	municipality	level	correspond	to	all	the	in-commuters	and
all	the	out-commuters	of	each	municipality.	This	includes	commuters	that	live	or	work	outside	the	region	(i.e.,	in	other	municipalities	not	included	in	the	network).	To	be	sure	that	our	model	produces	a
representative	network,	it	has	to	be	applied	on	a	region	where	these	commuters	linked	to	the	outside	represent	an	insignificant	part	of	the	total	number	of	commuters.	In	other	words,	the	region	should
be	what	Paelinck	and	Nijkamp	(1975)	called	a	"polarized	region":	"a	connex	area	in	which	the	internal	economic	relationships	are	more	intensive	than	the	relationships	with	respect	to	regions	outside
the	area"	(Cörvers	et	al.	2009;	Konjar	et	al.	2010)	.

6.4 In	spite	of	this	limitation,	it	is	apparent	from	the	results	of	the	analysis	of	the	Altmark	network	(a	region	where	66.82%	of	the	workers	commute	outside	the	region)	that	the	similarity	of	the	generated	and
real	network	is	good	(as	shown	in	the	analysis	of	Figure	7).	However,	we	have	to	keep	in	mind	that	the	data	regarding	the	commuting	flows	smaller	than	10	are	not	available	for	the	Altmark	region,	and
currently	we	do	not	know	how	this	limitation	impacts	on	the	results.	Two	issues	have	affect	on	the	proposed	method	when	the	used	data	includes	individuals	residing	or	working	outside	the	region.	On
the	one	hand,	the	model	will	tend	to	overestimate	the	traffic	within	municipalities,	as	residents	who	ought	to	work	outside	are	distributed	within	network	municipalities.	On	the	other	hand,	the	number	of
connections	may	be	underestimated	as	residents	occupy	jobs	which	should	be	taken	by	individuals	living	outside	the	region	(thus,	leaving	municipality	with	low	attractivity	without	in-commuters).

6.5 Such	limitations	may	be	addressed	with	the	use	of	additional	data	detailing	the	number	of	individuals	commuting	from	or	to	places	outside	the	region.	Alternatively,	it	is	possible	to	conclude	through
aggregated	data	at	the	regional	level	or	expertise,	whether	a	region	is	sufficiently	independent	from	another	regarding	the	labour	market.

6.6 The	second	issue	concerns	the	model	calibration.	Most	of	the	known	power-law	networks	have	an	exponent	value	situated	between	2	and	3.	Our	first	case	studies	seem	to	show	that	the	exponent	of
our	power-law	deterrence	function	varies	in	the	same	range.	We	notice	that	the	error	remains	quite	low	between	these	two	boundaries	for	β.

6.7 A	further	possible	analysis	involves	testing	the	quality	of	an	algorithm	free	of	parameters	proposed	by	Simini	(2011),	even	if	it	does	not	take	directly	into	account	the	number	of	commuters.	Such
algorithm	should	be	tested	on	sparsely	populated	regions	such	as	the	ones	we	worked	on	(i.e.,	at	the	municipality	level).	They	apply	this	principle	for	the	generation	of	the	commuting	network	of	USA	at
the	county	level.	This	model	is	very	interesting;	albeit	we	question	its	quality	to	reproduce	a	commuting	network	for	very	local	regions	the	ones	we	studied.

6.8 Finally,	the	model	could	be	improved	by	the	use	of	other	types	of	distances	(such	as	the	commuting	time	between	municipalities).	Although	our	results	show	that	even	using	a	measure	such	as	the
Euclidean	physical	distance	(in	the	case	of	French	regions,	or	a	driving	distance	(in	the	case	of	the	Germany	region),	the	model	generates	networks	with	similar	properties	of	those	observed	by	the	real
data.	Such	refinement	is	usually	limited	by	the	lack	of	distance	data	(in	this	case,	commuting	time)	for	the	regions.	Furthermore,	it	may	be	possible	to	select	a	better	value	of	β	if	additional	case	study
regions	with	geographical	and	socio-economic	differences	are	analysed.

Appendix:	Implementation	of	the	model	in	the	NetLogo	framework

A.1 An	example	implementation	of	the	model	is	included	to	illustrate	how	the	model	works.	The	implementation	was	performed	in	NetLogo	5.0RC4[4]	and	may	run	in	previous	versions	(it	was	successfully
tested	in	version	4).	The	implementation	provides	a	way	to	visualize	the	generation	of	a	network	from	two	input	files	containing	the	in-commuting	and	out-commuting	information	for	each	municipality
in	a	region	and	the	distances	between	each	pair	of	municipalities.

A.2 As	mentioned,	the	model	requires	two	input	files	to	run:

1.	 The	commuters	file	named	commuters.csv:	Which	should	contain	a	list	of	municipalities	(one	for	each	line	in	the	file)	and	the	number	of	individual	who	commute-out	and	commute-in	(in	that
order)	for	each	municipality.	Each	column	must	be	separated	by	one	blank	space.

2.	 The	distances	file	named	distances.csv:	Which	should	contain	the	distance	between	each	pair	of	municipalities	as	a	three	column	row	containing	the	origin	municipality,	the	destination
municipality,	and	the	distance	between	the	pair	(in	that	order).	Each	column	should	also	be	separated	by	a	blank	space.

A.3 The	interface	of	the	implementation	is	shown	in	Figure	8.	Prior	to	starting	a	simulation	the	beta	parameter	must	be	set	in	order	to	define	the	weight	of	the	distance	in	the	commuting	decision.	For
illustrative	purposes	the	proportional-sizes	control	is	provided	to	present	each	municipality	(depicted	as	a	house	in	the	interface)	with	a	size	relative	to	the	initial	number	of	in-commuters	(job
availability).
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Figure	8.	Interface	of	sample	model	implementation	in	NetLogo

A.4 The	buttons	go	and	go-forever	are	used	to	run	the	simulation	for	one	step	or	for	a	continuous	loop	(until	the	total	number	of	commuters	has	been	processed).	The	update-layout	button	runs	a	network
layout	procedure	until	pressed	again;	this	may	be	used	to	improve	the	visual	position	of	the	network	(it	does	not	have	any	effect	on	the	simulation	results).

A.5 Results	are	reported	in	the	three	provided	charts,	which	show	the	distribution	of	in-commuters,	out-commuters,	and	traffic	(number	of	links	with	a	number	of	commuters	are	present).	The	number	of
processed	commuters	and	the	total	number	of	commuters	read	from	the	input	files	is	also	shown.
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2The	Nomenclature	of	Territorial	Units	for	Statistics.	NUTS	2	corresponds	to	European	basic	regions	for	the	application	of	regional	policies	and	NUTS	3	to	small	regions	for	specific	diagnoses.	For
more	details,	see	http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction

3In	France:	thanks	to	the	Maurice	Halbwach	Center,	which	made	available	the	complete	French	origin-destination	tables	for	commuters	in	1999.	In	Germany:	Commuting	data	was	purchased	from	the
German	Federal	Employment	Agency	(Bundesagentur	für	Arbeit)	for	the	year	2000.	In	the	United	Kingdom:	Origin-destination	data	was	obtained	via	the	Office	for	National	Statistics	NOMIS	online
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