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Abstract

The	proliferation	of	agent-based	models	(ABMs)	in	recent	decades	has	motivated	model	practitioners	to	improve	the
transparency,	replicability,	and	trust	in	results	derived	from	ABMs.	The	complexity	of	ABMs	has	risen	in	stride	with	advances	in
computing	power	and	resources,	resulting	in	larger	models	with	complex	interactions	and	learning	and	whose	outputs	are	often
high-dimensional	and	require	sophisticated	analytical	approaches.	Similarly,	the	increasing	use	of	data	and	dynamics	in	ABMs
has	further	enhanced	the	complexity	of	their	outputs.	In	this	article,	we	offer	an	overview	of	the	state-of-the-art	approaches	in
analysing	and	reporting	ABM	outputs	highlighting	challenges	and	outstanding	issues.	In	particular,	we	examine	issues
surrounding	variance	stability	(in	connection	with	determination	of	appropriate	number	of	runs	and	hypothesis	testing),
sensitivity	analysis,	spatio-temporal	analysis,	visualization,	and	effective	communication	of	all	these	to	non-technical	audiences,
such	as	various	stakeholders.
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Introduction
1.1 	Agent-based	models	(ABMs)	have	been	gaining	popularity	across	disciplines	and	have	become	increasingly	sophisticated.	The

last	two	decades	have	seen	excellent	examples	of	ABM	applications	in	a	broad	spectrum	of	disciplines	including	ecology	(Grimm
&	Railsback	2005;	Thiele	&	Grimm	2010),	economics	(Kirman	1992;	Tesfatsion	&	Judd	2006),	health	care	(Effken	et	al.	2012),
sociology	(Macy	&	Willer	2002;	Squazzoni	2012),	geography	(Brown	&	Robinson	2006),	anthropology	(Axelrod	&	Hammond
2003),	archaeology	(Axtell	et	al.	2002),	bio-terrorism	(Carley	et	al.	2006),	business	(North	&	Macal	2007),	education
(Abrahamson	et	al.	2007),	medical	research	(An	&	Wilensky	2009),	military	tactics	(Ilachinski	2000),	neuroscience	(Wang	et	al.
2008),	political	science	(Epstein	2002),	urban	development	and	land	use	(Brown	et	al.	2005),	and	zoology	(Bryson	et	al.	2007).
This	methodology	now	also	penetrates	organizational	studies	(Carley	&	Lee	1998;	Lee	&	Carley	2004;	Chang	&	Harrington	2006),
governance	(Ghorbani	et	al.	2013),	and	is	becoming	actively	employed	in	psychology	and	other	behavioural	studies,	exploiting
data	from	laboratory	experiments	and	surveys	(Duffy	2006;	Contini	et	al.	2007;	Klingert	&	Meyer	2012).

1.2 	ABMs	produce	a	rich	set	of	multidimensional	data	on	macro	phenomena,	comprising	a	myriad	of	details	on	micro-level	agent
choices	and	their	dynamic	interactions	at	various	temporal	and	spatial	resolutions.	Despite	significant	progress	made	in
empirically	grounding	ABM	mechanisms	and	agent	attributes	(Robinson	et	al.	2007;	Windrum	et	al.	2007;	Smajgl	et	al.	2011),
ABMs	continue	to	harbour	a	considerable	amount	of	subjectivity	and	hence	degrees	of	freedom	in	the	structure	and	intensity	of
agents'	interactions,	agents'	learning	and	adaptation,	and	any	potential	thresholds	affecting	switching	in	strategies.	The
increasing	complexity	of	ABMs	has	been	further	stimulated	by	improvements	in	computing	technology	and	wider	availability	of
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advanced	computing	resources.	These	qualities	demand	a	comprehensive	(or	at	least	sufficient)	exploration	of	the	model's
behaviour.

1.3 	To	complicate	matters	further,	an	ABM	is	typically	a	stochastic	process	and	thus	requires	Monte	Carlo	sampling,	in	which	each
experiment	(or	parameter	setting)	is	multiply	performed	using	distinct	pseudo-random	sequences	(i.e.,	different	random	seeds)	in
order	to	achieve	the	statistical	robustness	necessary	for	testing	hypotheses	and	distinguishing	multiple	scenarios	under	varying
experimental	or	parameter	settings.	By	"random	seed",	we	mean	the	seed	for	the	random	number	generator.	Thus,	an	ABM
delivers	a	high	volume	of	output	data	rendering	the	identification	of	salient	and	relevant	results	(such	as	trends)	and	the
assessment	of	model	sensitivities	to	varying	experimental	conditions	a	challenging	problem.

1.4 	All	these	complications	apply	not	only	to	the	analysis	of	ABM	output	data	but	also	to	the	model's	design	and	implementation.	The
massive	diversity	in	outputs,	often	exhibiting	temporal	and	spatial	dimensions,	necessitates	judicious	model	design,	planning,	and
application.	Poor	or	unstructured	design	may	lead	to	unnecessarily	larger	outputs	to	reach	the	same	(or	even	less)	precise
conclusions	that	one	may	infer	from	outputs	of	well-designed	models	and	experimentation.	The	standards	employed	in	the	ABM
field,	such	as	ODD	(Overview,	Design	concepts,	and	Details)	(Grimm	et	al.	2006,	2010;	Müller	et	al.	2013)	and	DOE	(design	of
experiments)	(Fisher	1971),	have	significantly	improved	transparency,	replicability,	and	trust	in	ABM	results.	However,	the	field
continues	to	lack	specific	guidance	on	effective	presentation	and	analysis	of	ABM	output	data,	perhaps	due	to	this	issue's	having
less	priority	in	ABM	social	science	research	or	due	to	technical	barriers.	Furthermore,	converging	on	universal	standards	remains
elusive	partly	due	to	the	broad	spectrum	of	research	fields	employing	ABMs.	Domain-relevant	metrics,	analytical	techniques,	and
communication	styles	are	largely	driven	by	each	discipline's	target	audience.

1.5 	Yet,	there	are	common	methodological	challenges	facing	ABM	modellers	in	their	path	toward	understanding,	refining,	and
distilling	the	most	relevant	and	interesting	results	from	a	nearly-endless	sea	of	output	data.	While	a	modeller	invests	a	significant
amount	of	time	and	effort	in	the	development	of	an	ABM	itself,	a	comprehensive	or	compelling	analysis	of	the	ABM	output	data	is
not	always	considered	as	deserving	the	same	resource-intensive	attention.	Proper	output	analysis	and	presentation	are	vital	for
developing	a	domain-specific	message	containing	innovative	contributions.

1.6 	This	paper	aims	to	provide	an	overview	of	the	state-of-the-art	in	how	agent-based	modellers	contend	with	their	model	outputs,

their	statistical	analysis,	and	visualization	techniques.[1]	We	discuss	challenges	and	offer	examples	for	addressing	them.	The	first
topic	deals	with	several	issues	surrounding	the	study	of	variance	in	the	model	outputs	(i.e.,	stability)	and	its	impact	on	both	model
design	(e.g.,	simulation	runs	or	"samples")	and	analysis	(e.g.,	hypothesis	testing).	The	next	one	addresses	the	state	of	sensitivity
analysis	and	the	complexities	inherent	in	the	exploration	of	the	space	that	encapsulates	both	the	parameters	and	the	outcomes.
The	third	topic	focuses	on	the	analysis	and	presentation	of	spatial	(including	geospatial)	and	temporal	results	from	ABMs.

1.7 	We	also	survey	the	role	of	effective	visualization	as	a	medium	for	both	analysis	and	exposition	of	model	dynamics.	Comments	on
visualization	appear	within	each	main	topic	as	visualization	strategies	tend	to	be	strongly	defined	and	constrained	by	the	topic
matter.	Finally,	we	outline	outstanding	issues	and	potential	solutions	which	are	deemed	as	future	work	for	ourselves	and	other
researchers.

Determining	Minimum	Simulation	Runs	and	Issues	of	Hypothesis	Testing
2.1 	ABM	researchers	strive	to	expose	important	and	relevant	elements	in	their	models'	outputs	and	consequently	the	underlying

complex	dynamics	in	both	quantitative	and	qualitative	ways.	Compelling	statements	about	an	ABM's	behaviours	may	be	drawn
from	descriptive	statistics	of	distinct	outcomes	(e.g.,	mean	and	standard	deviation)	or	statistical	tests	in	which	outcomes	are
compared	(e.g.,	t-test),	predicted	(in	the	statistical	sense,	e.g.,	multiple	regression),	or	classified	(e.g.,	clustering	or	principal
component	analysis).	Given	the	stochastic	nature	of	most	ABMs,	these	analytical	exercises	require	an	outcome	pool	drawn	from
a	sufficient	number	of	samples	(i.e.,	simulation	runs).

2.2 	The	quantity	of	ABM	output	samples	has	several	ramifications	to	experimental	design	and	the	quality	of	the	analysis.	For	those
large	and	complex	ABMs	whose	longer	run	times	prohibit	the	production	of	large	samples,	the	relevant	question	is	the	minimum
number	of	required	runs.	Conversely,	expedient	ABMs	offer	the	temptation	of	producing	far	greater	sample	counts	thereby
increasing	the	sensitivity	of	statistical	tests	possibly	to	the	point	of	absurdity.	That	is,	one	might	produce	so	many	samples	such
that	traditional	tests	expose	extremely	small	and	contextually	inconsequential	differences.	We	focus	our	discussion	on	the
methods	for	the	determining	the	number	of	minimum	runs.	Implications	of	having	too	many	samples	are	discussed	in	Appendix	B.

Minimum	Sample	Size	(Number	of	Runs)

2.3 	The	determination	of	the	minimum	sample	size	partly	relies	on	the	analytical	objective.	One	common	objective	is	a	statistical
description	of	the	outcomes	typically	in	the	form	of	means	and	standard	deviations	(or	alternatively,	variances).	Since	the	shape
of	a	model's	output	distributions	are	usually	a	priori	unknown,	the	point	or	sample	size	at	which	outcome	mean	and	variance
reaches	relative	quiescence	or	stability	is	crucial	to	accurate	reporting	of	the	descriptive	statistics.	Otherwise,	the	statistics	would
harbour	too	much	uncertainty	to	be	reliable.	Unfortunately,	all	of	the	different	criteria	for	determining	this	point	of	stability	suffers
from	some	degree	of	subjectivity,	and	thus	it	falls	on	the	analyst	to	wisely	make	the	selection.	Furthermore,	these	approaches
appear	to	remain	either	underused	or	unknown	to	many	ABM	researchers	(Hamill	2010).	In	fact,	a	survey	of	some	of	ABM
literature	reveals	sample	sizes	to	be	too	low,	conveniently	selected	(sample	sizes	of	100	or	less	are	common),	or	exorbitantly
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high	(Angus	&	Hassani-Mahmooei	2015).

Variance	Stability

2.4 	Assessing	variance	stability	requires	a	metric	to	measure	the	uncertainty	surrounding	the	variance	(or	the	variance	of	variance	if
you	will).	Law	and	Kelton	(2007)	and	Lorscheid	et	al.	(2012)	offer	such	metrics	both	of	which	rely	on	some	functional	ratio
between	the	variance	and	the	sample	mean.	Law	&	Kelton's	approach	seeks	a	sample	size	in	which	the	variability	remains	within
some	predefined	proportion	of	the	confidence	interval	around	the	mean	(confidence	interval	bound	variance),	thus	it	is	bound	to
the	assumptions	of	normality,	namely	that	the	mean	has	a	Gaussian	distribution.	Hence,	the	researcher	must	select	this
proportion	from	outputs	of	a	trial	set	of	runs.	Lorscheid	et	al.'s	method	eschews	those	assumptions	by	employing	the	coefficient	of
variation	and	a	fixed	epsilon	(E)	limit	of	that	metric.	While	these	are	dimensionless	metrics,	their	use	is	problematic	for	simulation
studies	in	which	multivariate	outcomes	from	parameter	effects	are	analyzed.

2.5 	The	coefficient	of	variation	is	simply	the	ratio	of	the	standard	deviation	of	a	sample	(σ)	to	its	mean	(μ):

cV =

σ
μ

2.6 	This	scaling	offers	a	similar	interpretation	as	the	confidence	interval	(C.I.):	cV→ 0	is	equivalent	to	t(0 ∉ C. I. ) → ∞	and	the	p-
value	approaches	0.	That	is,	when	the	standard	deviation	shrinks	relative	to	the	mean,	the	probability	of	the	confidence	interval
spanning	across	the	value	of	0	drops	precipitously.	The	coefficient	of	variation	(cV)	will	exhibit	substantial	variance	for	small
sample	sizes	just	like	the	standard	error	of	the	mean.	For	example,	the	cV	of	a	single	ABM	outcome	obtained	from	a	set	of	five
runs	will	vary	more	with	the	same	metrics	taken	from	other	sets	of	five	runs	than	if	each	set	contained	far	more	runs,	say	100.
Lorscheid	et	al.	compare	the	cV's	of	differently	sized	sets	of	runs	(e.g.,	the	cV	from	10	runs,	then	100,	500,	and	so	forth).	The
sample	size	at	which	the	difference	between	consecutive	cV's	falls	below	a	criterion,	E,	and	remains	so	is	considered	a	minimum
sample	size	or	minimum	number	of	ABM	runs.	For	example,	if	an	outcome	drawn	from	runs	of	different	sample	sizes,	
n ∈ {10, 500, 1000, 5000, 10000},	yields	the	cV's	(rounded	to	1/100)	{0.42, 0.28, 0.21, 0.21, 0.21}	and	we	select	E = 0.01,	we	would
consider	the	third	sample	size	(n = 1000)	as	the	point	of	stability.	These	cV	stability	points	are	obtained	for	all	ABM	outcomes	of
interest	(in	a	multivariate	setting),	and	thus	the	minimum	number	of	runs	for	the	ABM	is	the	maximum	of	these	points:

nmin = argmaxn |c
x ,n
V − c

x ,m
V | < E, 	∀x	and	∀m > n

where	nmin 	is	the	estimated	minimum	sample	size;	x	is	a	distinct	outcome	of	interest;	and	m	is	some	sample	size	 > n	for	which
the	cV	(of	each	outcome)	is	measured.

2.7 	However,	the	fixed	E	favors	those	μ	sufficiently	larger	than	0	and	also	larger	than	its	corresponding	σ	and	penalizes	nmin 	for
outcomes	with	μ	closer	to	0.	That	is,	the	more	likely	an	outcome's	confidence	interval	encompasses	0,	the	erroneously	larger	the
estimation	of	nmin 	will	be.	Conversely,	the	fixed	E	renders	the	procedure	too	effective	and	results	in	an	underestimation	of	nmin 	for
those	C.I.'s	that	reside	far	from	0,	relative	to	σ.	Therefore,	we	urge	some	caution	in	using	cV	to	determine	the	minimum	sample
size	and	applying	it	only	to	ABMs	for	which	the	outcomes	of	interest	are	prejudiced	against	attaining	a	value	of	0.	As	such,
Lorscheid	et	al.'s	approach	determines	a	minimum	sample	size	not	just	based	on	variance	stability	but	also	the	likelihood	an
outcome's	confidence	interval	contains	0.

2.8 	Alternatively,	one	might	consider	just	variance	stability	without	any	consideration	of	the	mean	value.	Following	Lorscheid	et	al.'s
strategy	of	assessing	stability	from	metrics	on	an	outcome	for	a	sequence	of	sample	sizes,	we	track	the	windowed	variance	of
simple	outcomes	from	several	canonical	statistical	distributions	as	well	as	an	ABM	model.	The	distributions	we	employ	here	for

demonstration	purposes	are	the	normal	(or	Gaussian),	uniform,	exponential,	Poisson,	χ2,	and	t	distributions.[2]	While	ABM
outputs	do	not	always	conform	to	one	of	these	parametric	distributions,	the	ones	we	examine	here	are	distinct	enough	to	provide
us	with	a	sense	of	variance	stability	for	a	spectrum	of	distributions.	These	distributions	will	serve	as	proxies	for	ABMs'	outcomes
and,	for	our	purposes,	have	been	parameterized	so	that	their	theoretical	variance	σ2 ≈ 1.	We	also	include	an	outcome	from	a
simple	ABM	model	of	Birth	Rates	(Wilensky	1997).	This	ABM	entails	two	dynamically	changing	populations	(labelled	"red"	and
"blue").	Here,	our	outcome	is	the	size	of	the	"red"	population.	For	further	details,	see	Figure	17	in	Appendix	C.

2.9 	In	Figure	1a,	we	offer	variances	for	varying	sized	samples	of	Gaussian	variates	(i.e.,	scalars	drawn	from	the	Gaussian
distribution	parameterized	to	have	a	variance	of	1).	At	low	sample	sizes,	there	is	considerable	variance	surrounding	the	sample
variance	itself	as	evidenced	by	the	"noisiness"	of	the	variance	from	one	sample	size	to	the	next.	After	a	certain	point	(roughly	
n = 400),	this	outer	variance	appears	to	stabilize	and	continues	to	further	converge	to	0	albeit	slowly.

2.10 	The	outer	variance	at	each	sample	size	can	then	be	measured	using	the	variance	of	proximal	sample	sizes.	For	example,	the
outer	variance	for	n = 10	is	calculated	from	variance	of	the	sample	variances	of	n ∈ {10, …, 10 + (W − 1)g},	where	W	is	some
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predetermined	size	of	the	window	and	g	is	our	sample	size	increment;	we	select	g = W = 10,	and	we	so	consider	
n ∈ {10, 20, …, 100}	for	the	variance	surrounding	n = 10.	Notationally,	this	outer	variance	may	be	expressed	as	σ2	(s2)	but	given	its
estimation	using	windows,	we	assign	it	ω2n,	where	n	is	the	sample	size.	In	Figure	1,	we	chart	the	ω2n	relative	to	its	maximum	value

(

ω2n

maxω2 )	for	each	distribution.

	

Figure	1.	Sample	Size	vs.	Variance	Stability.	The	colours	in	the	right	plot	denote	the	distribution:	normal,	uniform,

exponential,	Poisson,	χ2,	Student's	t,	and	Birth	Rate	ABM.

2.11 	The	colours	distinguish	the	seven	distributions.	The	grey,	dashed	horizontal	line	expresses	our	semi-subjective	criterion	(of	0.20)
under	which	the	relative	ω2n	must	reside	in	order	for	n	to	be	deemed	a	"minimum	sample	size".	The	speed	at	which	this	condition
is	met	varies	considerably	among	the	distributions,	highlighting	the	need	to	forego	distributional	assumptions	regarding	ones
ABM	outputs	in	variance-based	minimum	sample	size	determination,	unless	the	distributional	shapes	are	well-identified.	This
approach	for	assessing	variance	stability	bears	two	elements	of	further	subjectivity.	Firstly,	the	point	of	stability	may	be	identified
by	either	the	first	n	at	which	the	criterion	condition	is	met	or	the	first	n	at	which	all	further	sample	sizes	meet	the	condition.	The	red
and	green	vertical	lines	in	Figure	1a	respectively	denote	these	points	of	stability	for	the	Gaussian	distribution.	Secondly,	the	outer
variance	could	have	been	assessed	using	a	larger	pool	of	variates	at	each	n	rather	than	estimated	under	windows.	However,	in
keeping	with	the	strategy	of	minimizing	the	number	of	test	simulation	runs	nmin ,	we	report	the	findings	of	window-based	ω2	rather
than	σ2	(s2).

Effect	Size

2.12 	In	traditional	statistical	analysis,	the	common	approach	for	determining	minimum	sample	size	requires	one	to	first	select	the	size
of	a	detectable	effect	(i.e.,	a	statistic	such	as	the	mean	or	difference	of	means	scaled	by	a	pooled	standard	deviation).	This
approach	also	requires	a	selection	of	acceptable	levels	of	the	type	I	and	type	II	errors.	A	type	I	error	is	coarsely	the	probability	(in
the	frequentist	sense)	that	the	null	hypothesis	is	rejected	when	in	fact	it	is	true.	The	type	II	error	is	the	converse:	the	likelihood
that	the	null	hypothesis	is	retained	when	the	alternative	hypothesis	is	true.	For	example,	one	might	compare	the	means	of	two
ABM	outcomes	each	from	separate	sets	of	sample	of	runs.	These	outcomes	may	be	borne	of	distinct	model	parameterizations	(a
necessary	though	not	sufficient	condition	for	yielding	a	true	difference)	and	measured	to	be	significantly	different	under	a
rudimentary	t-test.	However,	a	small	sample	size	will	penalize	the	test	which	may	not	report	a	statistically	significant	difference
between	means	of	those	outcomes:	a	type	II	error.	Alternatively,	these	outcomes	may	arise	from	identical	parameterizations	yet
the	t-test	erroneously	reveals	a	significant	difference:	a	type	I	error.	The	rates	of	type	I	and	II	errors	are	expressed	as	α	and	β.	The
converse	of	the	type	II	error	(1 − β)	is	called	the	"power"	level.

2.13 	The	minimum	sample	size	nmin 	can	then	be	computed	as

nmin ≥ 2

s2

δ (tV,1 −α / 2 + tV,1 −β/ 2)2

where	s	is	the	standard	deviation	of	the	outcome	or	the	pooled	standard	deviation	of	two	outcomes,	δ	is	lower	bound	on	the
absolute	difference	in	means	that	is	to	be	classified	as	significantly	different;	t	is	the	t-statistic	(or	the	quantile	function	of	the	t
distribution);	ν	is	the	degrees	of	freedom	(here	nmin − 1),	and	α	and	β	are	the	levels	of	type	I	and	II	errors	respectively.	In	lay
terms,	the	minimum	sample	size	occurs	at	the	point	at	which	both	type	I	and	type	II	errors	occur	at	the	desired	critical	levels	as
determined	by	the	t-test,	hence	the	employment	of	the	t	distribution.	This	approach	has	been	suggested	in	the	ABM	literature
(e.g.,	Radax	&	Rengs	2010).	As	nmin 	appears	on	both	sides	of	the	equation,	trial-and-error	or	algorithmic	iterations	can	usually

http://jasss.soc.surrey.ac.uk/18/4/4.html 4 25/01/2016



converge	on	nmin .	A	similar	equation	is	employed	when	the	outcome	is	a	proportion	∈ [0, 1].	The	non-central	t	distribution	can
also	be	used	for	sample	size	determination	(as	in	the	R	statistical	package).

2.14 	A	close	inspection	of	this	approach	reveals	test	sensitivity	to	the	outcome	distribution's	departure	from	the	normal.	In	Table	1,	we
empirically	measure	the	power	level	(and	hence	the	level	of	type	II	error)	by	drawing	pairs	of	variate	sets	from	some	typical

distributions	and	the	Birth	Rate	model,	parameterized	such	that	identical	effect	sizes	of	0.5.[3]	Thus,	an	insignificant	t-test
comparison	for	a	pair	of	variate	sets	is	tantamount	to	a	type	II	error.	For	each	distribution	type	and	sample	size	n,	the	comparison
was	performed	for	5000	pairs	of	variate	sets	each	of	size	n.	Each	set	pair	was	compared,	and	we	monitor	the	proportion	of	pairs
of	these	sets	that	yielded	a	significant	p-value:	an	empirically-derived	power	level.	The	empirical	power	levels	for	a	range	of
sample	sizes	n	are	graphically	shown	in	Figures	15	and	16	in	Appendix	A.

Table	1:	Minimum	Sample	Sizes	for	Outcome	Distributions.	nt,	ne,	and	nW	are	the	theoretically-
derived,	empirically-derived,	and	Wilcox-test-based	minimum	sample	sizes,	nmin .

Distr. nt ne nW ne − nt nW− nt

Normal 64 65 68 1 4
Exponential 64 59 78 −5 14
Poisson 65 61 64 −4 −1

Birth	Rate 64 65 70 1 6
Birth	Rate	(d = 1.0) 18 19 26 1 8

2.15 	We	observe	incongruities	between	the	theoretical	nmin 	(nt)	and	the	empirically-derived	ne.	In	fact,	the	power	calculation
overestimates	nmin 	for	the	skewed	distributions	(i.e.,	the	exponential	and	the	Poisson).	While	the	differences	in	these	nmin 	are
relatively	minor,	they	could	have	a	material	benefit	for	large	scale	ABMs	for	which	each	run	is	costly.	However,	in	these	cases,
using	the	t-	test	for	exposing	a	predetermined	effect	size	has	to	be	deemed	appropriate.	For	these	surveyed	distribution	types,
the	empirical	distributions	of	the	means	themselves	frequently	pass	the	Shapiro	test	of	normality	hence	allowing	for	the	use	of	the
t-test.

2.16 	Given	the	sensitivity	of	the	traditional	t-test	to	distributional	skewness	as	well	as	the	uncertainty	of	the	distributional	shape	in
ABM	outcomes,	one	might	turn	to	a	more	conservative	test,	the	Wilcoxon	ranked	sum	test 	(also	known	as	the	Mann-Whitney
test);	the	nW	column	reports	this	test's	suggested	minimum	sample	sizes.	Interestingly,	the	more	efficient	Wilcoxon	test	appears
to	propose	a	lower	minimum	size	for	the	Poisson	distribution.

2.17 	When	we	assess	the	efficiency	of	calculating	nmin 	for	the	Birth	Rate	ABM,	we	find	that,	despite	the	flatness	plus	bimodality	of	the
outcome	distribution,	the	calculation	of	nmin 	is	almost	accurate,	and	the	Wilcox	test	is	modestly	conservative	compared	to	the
exponential	distribution.

Multivariate	Stability

2.18 	Since	most	ABMs	typically	produce	multiple	outcomes,	the	calculation	of	the	required	sample	size	would	have	to	consider	all
outcomes	of	interest.	Furthermore,	analysis	of	ABMs	often	entails	an	exploration	of	parameter	settings	(or	the	parameter	space)
in	order	to	understand	the	dependencies	between	key	input	parameters	and	their	outcomes	including	their	variability.	Given	the
complexity	of	ABMs,	the	outcomes'	variance	may	or	may	not	be	constant	(i.e.,	homoskedastic)	across	the	parameter	settings.
Hence,	the	task	of	understanding	model	output	sensitivity	to	different	experimental	conditions	that	are	relevant	to	the	research
question	is	vital.	While	the	topic	of	sensitivity	analysis	is	further	elaborated	in	3.1,	we	discuss	it	here	briefly	given	its	role	in
determining	the	adequate	run	sample	size	applicable	to	all	the	chosen	parameter	settings.	Well-structured	DOE	(described
further	in	Section	3)	can	be	very	helpful	to	comprehensively	explore	model	variabilities	corresponding	to	multiple	model
parameters.

Visualization	for	statistical	issues

2.19 	One	visualization	approach	for	examining	univariate	ABM	outcome	distributions	is	the	violin	plot	which	combines	elements	of	a
box	plot	and	a	kernel	density	plot,	with	a	smoothed	estimation	of	outcomes'	variances	across	the	ranges	of	factors/parameters
(see,	e.g.,	Kahl	&	Hansen	2015).	Figure	2	illustrates	the	multifaceted	influence	of	six	variables	(each	with	3	values	following	a	3k

factorial	design)	on	the	output	measure	("compensation	payment").	Details	may	be	found	in	Lorscheid	(2014).
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Figure	2.	Violin	plots	for	a	univariate	analysis	of	potential	control	variables.	Source:	Lorscheid	(2014)

2.20 	The	grey	area	indicates	the	dispersion	of	values.	The	white	dot	in	the	plot	indicates	the	median	of	the	data	set.	The	black	line
above	the	median	is	the	area	of	the	second	quartile,	and	the	black	line	below	the	median	is	the	third	quartile	of	the	data	set.	For	a
detailed	description	of	violin	plots	see	Hintze	and	Nelson	(1998).

Solution	space	exploration	and	sensitivity	analysis
3.1 	There	are	a	variety	of	topics	that	may	be	gathered	under	the	broad	heading	of	parameter	or	input-output	space	exploration,

including	optimization,	calibration,	uncertainty	analysis,	sensitivity	analysis,	as	well	as	the	search	for	specific	qualitative	model
features	such	as	"regime	shifts"	and	"tipping	points".	In	all	cases,	the	goal	is	to	provide	additional	insight	into	the	behaviour	of	the
ABM	through	the	examination	of	certain	parameter	settings	and	their	corresponding	output	measures.

3.2 	We	will	first	discuss	"exploration"	in	a	broad	sense,	followed	by	a	more	detailed	discussion	of	a	variety	of	methods	for	performing
one	particularly	important	exploration	task:	sensitivity	analysis.

Input/Output	Solution	Space	Exploration

3.3 	One	of	the	most	common	forms	of	parameter	space	exploration	is	manual	(or	human-guided)	exploration	(also	called	the	"trial-
and-error	method"	or	"educated	guessing").	This	approach	can	be	computationally	efficient	if	guided	by	an	individual	familiar	with
the	model's	dynamics	and/or	outputs.	The	intuitions	of	a	model's	author/developer,	a	domain	expert,	or	a	stakeholder	can	inform
parsimonious,	iterative	parameter	selection	in	such	a	way	as	to	generate	and	test	relevant	hypotheses	and	minimize	the	number
of	regions	searched	or	the	number	of	required	simulation	runs.	However,	this	exploration	strategy	is	vulnerable	to	human	bias	and
fatigue	leading	to	a	disproportionate	amount	of	attention	paid	to	the	target	phenomena	and	the	neglect	of	large	portions	of	the
model's	behaviour	space.	Distributing	the	burden	of	the	exploration	task	(e.g.,	crowd	sourcing)	may	address	some	of	its
limitations.	Nevertheless,	more	systematic,	automated,	and	unbiased	approaches	are	required	to	complement	the	shortcomings
of	solely	human-guided	searching,	which	will	always	play	a	role	in	space	exploration,	especially	in	its	preliminary	stages.

3.4 	The	simplest	of	the	systematic	exploration	approaches	fall	under	the	class	of	regular	sampling	techniques	in	which	the
parameters	are	chosen	(or	sampled)	in	a	systematic	manner	to	ensure	their	having	certain	statistical	or	structural	properties.
Some	of	these	techniques	are	random,	quasirandom,	gridded/factorial,	Latin	hypercube,	and	sphere-packing.	Sampling	may
globally	consider	the	entire	parameter	space	or	focus	locally	on	a	particular	region	(e.g.,	altering	one	parameter	at	a	time	for
"univariate	sensitivity	analysis").	The	well-established	methodological	history	of	DOE	and	the	recent	literature	on	design	and
analysis	of	simulation	experiments	(e.g.,	Sacks	et	al.	1989)	can	guide	the	sampling	strategy.	However,	the	complexity	of	ABMs
(and	their	outputs)	can	render	classic	DOE	inappropriate	as	noted	by	Sanchez	and	Lucas	(2002).	Classic	DOE	(a)	assumes	only
linear	or	low-order	interactions	among	experimental	parameters	(or	factors)	and	outputs,	(b)	makes	little	or	no	provision	for	the
iterative	parameter	selection	process	(i.e.,	sequential	virtual	experiments),	and	(c)	also	assumes	typical	error	(Gaussian	and
unimodal)	in	the	output.	An	example	of	multi-modal	ABM	output	is	presented	in	Appendix	C.	Thus,	traditional	DOE	methods,
while	useful	for	ABMs,	ought	to	be	implemented	with	caution	and	consideration	for	appropriate	methods	that	address
complexities	in	the	output.	Research	into	DOE	methods	for	ABMs	is	still	evolving	(Klein	et	al.	2005;	Kleijnen	et	al.	2005;
Ankenman	et	al.	2008;	Lorscheid	et	al.	2012).

3.5 	Research	into	more	sophisticated	exploration	techniques	has	been	informed	by	meta-heuristic	searching,	optimization
algorithms,	and	machine	learning.	Researchers	propose	the	use	of	genetic	algorithms	(GA)	(Holland	1975)	for	a	wide	range	of
exploration	tasks	including	directed	searches	for	parameters	that	yield	specific	emergent	behaviours	(Stonedahl	&	Wilensky
2011),	parameter	optimization	(Stonedahl	et	al.	2010),	calibration/parameter	estimation	(Calvez	&	Hutzler	2006;	Heppenstall	et
al.	2007;	Stonedahl	&	Rand	2014)	and	sensitivity	analysis	(Stonedahl	&	Wilensky	2010).	The	query-based	model	exploration
(QBME)	paradigm	provided	by	Stonedahl	and	Wilensky	(2011)	expands	Miller's	(1998)	application	of	GA	in	ABM	output
exploration.	In	QBME,	parameters	producing	user-specified	model	behaviours	are	discovered	through	automation	such	as	GAs,
thus	inverting	the	traditional	workflow	(see	Figure	3).	Stonedahl	and	Wilensky	(2011)	demonstrate	QBME	for	identifying
convergence,	divergence,	temporal	volatility,	and	geometric	formations	in	models	of	collective	animal	motion	(i.e.,
flocking/swarming).
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Figure	3.	Query-Based	Model	Exploration	(QBME).	This	framework	for	exploring	ABM	parameter-spaces	exploits	genetic
algorithms	(or	other	meta-heuristic	search	algorithms)	to	efficiently	search	for	parameters	that	yield	a	desired	model	behaviour.

Source:	Stonedahl	and	Wilensky	(2011)

Sensitivity	analysis:	Approaches	and	challenges

3.6 	Sensitivity	analysis	(SA)	is	a	variation	of	parameter/input-output	space	exploration	that	focuses	on	model	response	to	changes	in
the	input	parameters	(Figure	4).	Specifically,	the	researcher	seeks	to	identify	parameters	for	which	small	variations	most	impact
the	model's	output.

Figure	4.	Uncertainty	and	sensitivity	analysis	as	part	of	the	modelling	process.	Source:	Ligmann-Zielinska	et	al.	(2014)

3.7 	This	discovery	can	aid	in	prioritizing	prospective	data	collection	leading	to	improved	model	accuracy,	reduction	of	output
variance,	and	model	simplification	(Ligmann-Zielinska	et	al.	2014).	Model	insensitive	parameters	may	even	be	relegated	to	mere
numerical	constants	thereby	reducing	the	dimensionality	of	the	input	parameter	space	and	promoting	model	parsimony;	this
simplification	process	is	referred	to	as	"factor	fixing"	(Saltelli	et	al.	2008).	Ignoring	these	non-influential	input	parameters	can
have	ill-effects	on	the	model	by	increasing	its	computational	cost	and	also	on	its	reception	when	these	parameters	are
controversial	for	stakeholders	not	involved	with	the	model's	development	(Saltelli	et	al.	2008).

3.8 	The	proliferation	of	various	SA	methods	stems	from	the	variety	of	ABM	styles	and	research	problems	ABMs	address	as	well	as
from	the	availability	of	increasing	computational	capacity	(Hamby	1994;	Saltelli	et	al.	2000).	Currently,	the	ABM	practice	of	SA
has	entailed	one	or	more	of	the	following	methods:	one-parameter-at-a-time,	elementary	effects,	standardized	regression
coefficients,	meta-modelling,	and	variance-based	decomposition	(Thiele	et	al.	2014;	ten	Broeke	et	al.	2014).	Below,	we	briefly
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discuss	each	of	these,	their	advantages,	and	drawbacks,	in	the	context	of	ABMs.

3.9 	In	one-parameter-at-a-time	(OAT),	each	input	parameter	in	turn	is	examined	over	a	set	of	values	(defined	either	ex	ante	to	the
SA	or	dynamically	during	SA)	and	in	isolation	by	holding	the	other	parameters	at	a	constant	baseline.	Meanwhile,	the	effects	of
these	marginal	(i.e.,	one-at-at-time)	parameter	changes	are	monitored,	and	repeated	iterations	increase	the	procedure's
robustness.	Hassani-Mahmooei	and	Parris	(2013),	for	example,	applied	OAT	to	their	ABM	of	micro-level	resource	conflicts	to
identify	preferable	initial	conditions	and	to	evaluate	the	influence	of	stochasticity	on	the	model;	the	similarity	of	outcomes	within	a
threshold	demonstrated	the	model's	insensitivity	to	randomness.	OAT's	simplicity	while	attractive	also	exposes	its	limitations	in
ABM	SA	(Ligmann-	Zielinska	2013).	For	one,	the	impactful	and	relevant	values	for	each	input	parameter	may	be	a	priori	unknown
thus	rendering	any	prioritization	of	parameters	difficult	and	the	search	for	key	parametric	drivers	inefficient.	Also,	the	marginal
nature	of	the	parameter	search	space	surrounding	the	baseline	obscures	parameter	interactions	and	severely	shrinks	the	input
hypercube	with	larger	parameter	sets.	For	example,	with	as	few	as	10	input	parameters,	OAT	covers	only	0.25%	of	the	input
space	(for	a	geometric	proof,	see	Saltelli	and	Annoni	(2010)).

3.10 	Elementary	effects	(EE)	expands	on	OAT	by	relinquishing	the	strict	baseline.	That	is,	a	change	to	an	input	parameter	is
maintained	when	examining	a	change	to	the	next	input	rather	than	resuming	the	baseline	value	(as	done	in	OAT).	Passing	over
the	parameter	set	is	multiply	repeated	while	randomly	selecting	the	initial	parameter	settings.	These	perturbations	in	the	entire
parameter	space	classify	EE	as	global	SA	(Saltelli	et	al.	2008).	Originally	proposed	by	Morris	( 1991)	and	improved	by
Campolongo	et	al.	(2000),	EE	is	suited	for	computationally	expensive	models	having	large	input	sets	and	can	screen	for	non-
influential	parameters.

3.11 	Global	SA	may	also	be	performed	through	estimation	of	standardized	regression	coefficients	(SRC),	which	in	its	basic	form
succinctly	measures	the	main	effects	of	the	input	parameters	provided	the	relationships	between	the	parameters	and	the
outcomes	are	primarily	linear.	A	standardized	regression	coefficient	expresses	the	magnitude	and	significance	of	these
relationships	as	well	as	the	explained	variance.	More	precisely,	the	square	of	the	coefficient	is	the	variance	explained.

3.12 	One	glaring	limitation	of	SRC	is	its	ability	handle	spatial	inputs	(of	spatial	ABMs)	unless	a	small	set	of	scalars	or	indices	can
sufficiently	serve	as	proxies	for	entire	maps	(Lilburne	&	Tarantola	2009).	Also,	SRC	can	expose	lower-order	effects	but	not
complex	interdependencies	(Happe	et	al.	2006).

3.13 	Meta-modelling	(or	emulation)	can	address	the	low-order	limitations	of	SRC.	A	meta-model	(emulator,	a	model	of	a	model)	is	the
surrogate	representation	of	the	more	complex	model	(like	ABM)	created	in	order	to	reduce	the	computational	time	of	the
simulations	necessary	for	SA.	For	example,	Happe	et	al.	2006	collated	model	responses	from	a	2k	factorial	design	on	a	relatively
small	set	of	parameters	and	fitted	a	second-order	regression.	Meta-modelling	can	be	computationally	efficient	and	not	necessarily
require	large	amounts	of	data.	For	even	higher	order	effects,	meta-modelling	methods	such	as	Gaussian	process	emulators	are
required	(Marrel	et	al.	2011).

3.14 	Variance-based	SA	(VBSA)	is	considered	the	most	prudent	approach	for	evaluating	model	sensitivities	as	it	does	not	assume
linearity	(Ligmann-Zielinska	&	Sun	2010;	Fonoberova	et	al.	2013;	Tang	&	Jia	2014).	In	VBSA,	the	total	variance	of	a	given	output
is	decomposed	and	apportioned	to	the	input	parameters	including	their	interactions	(Saltelli	et	al.	2000;	Lilburne	&	Tarantola
2009).	Two	indices	per	input	(i)	are	drawn	from	the	partial	variances:	a	first-order	(main	effects)	index	Si	and	a	total	effects	index	
STi.	Si	is	the	ratio	of	i's	partial	variance	to	the	total	variance.	STi	is	the	sum	of	all	non-i	indices	(∑S − i)	and	captures	interactions
between	i	and	the	other	inputs	(Homma	&	Saltelli	1996).	Si	alone	is	sufficient	for	decomposing	additive	models,	so	VBSA	is
unnecessary	for	models	known	to	produce	largely	linear	output	as	calculation	of	the	index	pairs	is	computationally	expensive
requiring	large	sample	sizes	(Ligmann-Zielinska	&	Sun	2010);	for	example,	VBSA	for	k	parameters	requires	M	(k + 1)	model	runs
where	M > 1000.	This	computational	load	may	be	reduced	through	parameter	(or	factor)	grouping	(Ligmann-Zielinska	2013;
Ligmann-Zielinska	et	al.	2014),	parallelization	(Tang	&	Jia	2014),	or	quasi-random	sampling	(Tarantola	&	Zeitz	2012).	Situations
in	which	inputs	are	exogenously	correlated	may	result	in	non-unique	VBSA	(Mara	&	Tarantola	2012).	While	recent	methods
addressing	these	dependencies	have	been	developed	(Kucherenko	et	al.	2012;	Mara	&	Tarantola	2012;	Zuniga	et	al.	2013),	they
still	require	elaborate	DOE	coupled	with	a	very	large	sample	size	and	algorithmic	complexity.

3.15 	Genetic	algorithms	(GAs)	may	also	be	used	for	SA	(Stonedahl	&	Wilensky	2010).	Parameters	are	altered	under	the	genetic
paradigm	of	reproduction	in	which	pairs	of	"fitter"	parameter	sets	exchange	subsets.	The	fitness	(or	objective)	function	may	be
tailored	to	expose	model	sensitivities	to	its	parameters	(as	opposed	to	calibration).	For	example,	Stonedahl	and	Wilensky	(2010)
allowed	GAs	to	search	through	12	parameters	of	the	"Artificial	Anasazi"	ABM	(Dean	et	al.	2000;	Janssen	2009)	in	order	to	induce
responses	departing	far	from	the	empirical,	historical	values,	while	constraining	the	search	to	a	limited	range	( ± 10%	of	their
calibrated	settings).	See	Figure	18	in	Appendix	D	for	a	plot	of	the	outlier	results.

3.16 	The	reliance	on	mean	and	variance	for	distributional	information	in	many	of	the	practiced	methods	of	SA	is	insufficient	for	more
complex	distributions.	Future	research	should	investigate	moment-independent	methods	(Borgonovo	2007;	Baucells	&
Borgonovo	2013).

Visualization	in	sensitivity	analysis

3.17 	Visualizations	of	the	input	parameter-output	relationships	are	an	integral	part	of	SA.	In	scatter-plots,	these	relationships	are
directly	and	simply	plotted	potentially	revealing	dependencies	(see	Figure	5).	We	used	the	simple	Schelling	segregation	model
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(Schelling	1969)	of	red	and	green	agents	on	a	100x100	grid	implemented	in	Agent	Analyst
(http://resources.arcgis.com/en/help/agent-analyst/).	The	model	contains	four	uniform	parameters	(lower	and	upper	bounds	in
parentheses):	number	of	agents	(3000,	6000;	discrete),	tolerance	to	agents	of	different	colour	(0.2,	0.5),	random	seed	(1,	10000;
discrete),	and	percent	of	green	agents	(10,	50).	We	measured	agent	migration	(total	number	of	agent	moves	during	model
execution)	for	N = 1280	model	runs.

Figure	5.	Sensitivity	analysis	with	scatterplots.	Scatterplots	of	total	migration	versus	the	four	model	inputs	at	t = 100;	note	that
number	of	agents	has	more	influence	on	the	variability	of	total	agent	migration	than	the	other	inputs.

3.18 	Typically,	the	y-axis	and	x-axis	(for	a	two-dimensional	scatterplot)	express	values	for	an	output	and	an	input	parameter,
respectively.	Scatterplots	are	especially	useful	when	the	dependencies	are	structured,	the	output	is	a	scalar,	and	the	number	of
model	parameters	is	limited	allowing	for	an	unencumbered	enumeration	of	parameters	and	output	combinations	in	separate
scatterplots.	More	complex	model	behaviours	require	alternative	visualization	styles	such	as	pie	charts	to	display	variance
partitions	(see	Figure	6).

Figure	6.	Sensitivity	indices	obtained	from	decomposition	of	migration	variance	at	t = 100.	Note	that	almost	30%	of	migration
variance	is	caused	by	interactions	among	inputs	–	mainly	tolerance	and	number	of	agents.

3.19 	A	snapshot	of	variance	decomposition	at	the	end	of	the	model	run	(e.g.,	Figure	6)	may	be	insufficient	in	assessing	the
importance	of	parameters	and	consequently	their	prioritization	(Ligmann-Zielinska	&	Sun	2010).	Thus,	visualizing	variance
decomposition	temporally	will	reveal	parameter	stability	over	the	course	of	the	model	run	(see	Figure	7).	Spatial	outputs	such	as
land	use	change	maps	may	also	receive	similar	treatment	to	reveal	the	extent	of	outcome	uncertainty	in	regions	(or	clusters)	due
to	specific	parameters	(Ligmann-Zielinska	2013).
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Figure	7.	Time	series	of	sensitivity	indices	obtained	from	decomposition	of	migration	variance	measured	over	time.	The	example
demonstrates	that	parameter	sensitivities	can	considerably	vary	during	simulation,	with	number	of	agents	dominating	the

variance	at	t = 10,	and	tolerance	dominating	the	variance	at	t = 100.

3.20 	SA	for	multiple	outcome	variables	in	an	ABM	incurs	additional	challenges	due	to	differences	in	each	parameter's	impact	on	the
outcomes	(see	Figure	4).	This	issue	is	of	particular	concern	for	model	simplification	and	demands	either	one	single,	well-chosen
outcome	that	is	adequately	representative	of	the	model's	behaviour	or	more	conservatively,	the	difficult	task	of	undergoing	SA
across	the	whole	spectrum	of	outputs:	scalars,	time-	and	space-dependent	measures.

Spatio-Temporal	Dynamics

Temporal	and	spatial	dimensions	of	ABM	output	data:	challenges

4.1 	As	a	stochastic	process,	an	ABM	generates	(or	is	capable	of	generating)	time	series	(TS)	data.	To	a	slightly	lesser	extent,	ABMs
also	operate	within	topological	boundaries	often	expressed	as	a	spatial	landscape,	whether	empirical	(e.g.,	Parker	et	al.	2002;
Bousquet	&	Le	Page	2004;	Heppenstall	et	al.	2012;	Filatova	2014)	or	stylized	(e.g.,	early	use	by	Schelling	1969,	1978;	Epstein	&
Axtell	1996).	Similar	to	other	ABM	outcomes,	both	the	TS	and	spatial	data	are	borne	out	of	complex	endogenous	dynamics	over
which	the	modeller	exerts	full	control.	Thus,	it	is	rarely	the	case	that	the	output	data	is	produced	by	a	single	component	of	the
model.	Instead,	most	of	ABM	TS	and	spatial	output	recorded	embody	the	long	list	of	unique	features	that	ABMs	exhibit	such	as
emergence	rather	than	aggregation	at	the	macro-level,	interaction	rather	than	reaction	at	the	meso-level,	and	non-linearity	rather
than	linearity	of	processes	and	decision-making	at	the	micro-level.	Spatial	maps	generated	by	ABMs	may	also	capture	eventual
spatial	externalities,	path-dependencies,	and	temporal	lag	effects.	These	characteristics	render	the	analysis	of	ABM	outputs	less

appropriate	for	more	traditional	tools.	These	issues	derive	from	the	reasons	ABM	are	used	in	the	first	place.[4]	We	consider	this
challenging	nature	of	TS	and	spatial	output	analysis	in	the	following	sections.

Time:	approaches	and	visualization	techniques

Time	series	generated	by	ABMs	(ABM	TS)	represent	a	myriad	of	temporal	outcomes,	such	as	evolving	agent	characteristics
(e.g.,	sociodemographics,	utility,	opinions);	agent	behaviours/decisions	(e.g.,	strategies,	movements,	transformations);	or
measures	descriptive	of	the	model	state	(e.g.,	agent	population	or	subpopulation	counts).	All	these	are	often	presented	as	simple
line	graphs	representing	1)	outcomes	of	individual	agents	of	special	interest	(Squazzoni	&	Boero	2002,	Fig.	9)	or	2)	aggregated
statistics	(such	as	mean	or	median)	over	the	entire	agent	population,	subgroups,	or	an	individual	(with	measurements	over
several	runs)	under	varying	levels	of	temporal	granularity	(e.g.,	a	moving	window	covering	several	time	points)	(Izquierdo	et	al.
2008).	Comparisons	of	multiple	TS	are	often	facilitated	by	the	inclusion	of	confidence	intervals	(Raczynski	2004,	Fig.	4)	and
occasionally	performed	against	experimental/empirical	(Richiardi	et	al.	2006;	Boero	et	al.	2010,	Fig.	1)	or	theoretical	(Takahashi
&	Terano	2003,	Fig.	4)	outcomes	or	expectations	(Angus	&	Hassani-Mahmooei	2015).	TS	comparisons	have	also	been
performed	for	calibration	purposes	(Richiardi	et	al.	2006).

4.2 	Despite	the	proliferation	of	ABMs,	effective	TS	analytical	techniques	remain	under-used	(Grazzini	&	Richiardi	2015).	Angus	and
Hassani-Mahmooei	(2015)	surveyed	over	100	ABM	publications	in	JASSS	and	found	very	few	instances	of	additional	(statistical)
modelling	of	TS	data.	Only	in	agent-based	financial	market	research	does	one	find	relevant	TS	statistical	and	econometric
analysis	(Yamada	&	Terano	2009;	Chen	et	al.	2012;	Neri	2012).

4.3 	In	this	section,	we	discuss	elements	of	TS	analysis	in	the	context	of	ABMs	and	present	some	basic	and	some	compelling
examples,	while	stopping	short	of	expounding	formal	TS	modelling	such	as	auto-regressive	models.

http://jasss.soc.surrey.ac.uk/18/4/4.html 10 25/01/2016



4.4 	Among	the	techniques	for	analysing	ABM	TS,	we	consider	time	series	decomposition	to	be	one	of	the	more	useful	methods.
Decomposition	entails	partitioning	a	TS	into	four	components:	trend,	cyclical,	seasonal,	and	random	components.	The	prominent
trend	is	the	most	structured	of	these	components	and	depicts	the	long-term	linear	or	non-linear	change	in	the	TS	data.	The
seasonal	component	exhibits	regular	periodicity	due	to	some	fixed	external	cycle	such	as	seasons,	months,	weeks,	or	days	of	the
year.	Exogenous	model	events	such	as	regular	additions	of	a	fixed	count	of	agents	to	the	agent	pool	are	also	considered
seasonal.	Cycles	having	irregular	periodicity	constitute	the	cyclical	component.	Finally,	the	residual	or	random	component
captures	the	unexplained	variation	remaining	after	the	prior	three	components	are	filtered	from	the	TS.

4.5 	The	spectrum	of	TS	analysis	techniques	runs	from	the	calculation	of	moving	averages	and	linear	filtering	(see	Figures	8a	and	8b)
to	the	more	sophisticated	exponential	smoothing	and	autoregressive	modelling.	Furthermore,	ABM	relevant	ergodicity	tests	may
be	applied	to	infer	stationarity	of	statistical	moments	(e.g.,	mean,	variance,	skewness,	kurtosis,	etc.)	hence	equilibrium	of	those
moments	across	a	pool	of	simulation	runs	(Grazzini	2012).

4.6 	For	an	example	of	ABM	TS	analysis,	we	examine	the	output	of	the	well-known	El-Farol	"bar	patron"	game-theoretic	ABM	(Rand
&	Wilensky	2007).	The	initial	conditions	are:	memory	size	=	5,	number	of	strategies	=	10,	overcrowding	threshold	=	50.	The
number	agents	increases	by	2%	every	52	steps.	Figure	8a	presents	the	original	data	and	its	linear	increasing	trend	(in	red).
Subtle	structure	in	the	TS	is	exposed	when	we	plot	a	moving	average	along	with	its	decomposed	trend	(obtained	via	exponential
smoothing)	(Figure	8b).

(a)	Linear	trend																																																														(b)	Moving	average
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(a)	Linear	trend																																																														(b)	Moving	average
Figure	8.	Time	Series	of	Bar	Attendance	in	El	Farol	ABM.	The	black	and	grey	series	represent	the	original	data;	the	red	line	is
the	linear	fit	(left)	or	decomposed	trend	(right);	and	the	blue	line	is	a	moving	average.	The	upper	subfigures	are	labelled	(a)	and

(b).	The	lower	subfigures	are	(c)	and	(d).

4.7 	The	model	behaviour	is	augmented	to	include	an	arbitrary,	one-time	increase	in	population	increase	while	the	gradual	increase
is	reduced	to	0%.	While	the	linear	trend	for	the	new	results	(Figure	8c)	coarsely	captures	the	population	increase,	the	sudden
change	is	made	starkly	visible	using	a	moving	average	(plus	decomposed	trend)	(Figure	8d).

4.8 	Comparisons	between	TS	drawn	from	distinct	model	parameterizations	can	be	easily	performed	through	direct	(albeit	naïve)

visual	comparison	of	the	two	series,	plotting	the	differences,	or	calculating	their	Euclidean	distance[5]	or	cross	correlation.
However,	these	comparison	approaches	are	applied	to	exact	temporal	pairwise	data	and	thus	fail	to	account	for	the	complexities
of	ABMs	that	may	produce	TS	that	are	dissimilar	only	through	interspersed	lags.	In	addition	to	Richiardi's	(2012)	suggestions	for
robust	TS	comparison,	we	advocate	the	use	of	dynamic	time	warping	(DTW)	to	address	the	above	complication	(Keogh	&
Ratanamahatana	2005).	DTW	is	now	extensively	used	in	areas	such	as	motion	and	speech	recognition.	Using	a	stylized	pair	of
TS,	Figure	9	depicts	the	effectiveness	of	DTW,	which	identifies	comparable	pairs	of	data	occurring	at	differing	time	scales.

Figure	9.	Comparing	distance	(similarity)	measurement	methods	between	Euclidean	Distance	(left)	and	DTW	(right)

4.9 	To	further	demonstrate	DTW's	effectiveness,	we	compare	40	distinct	parameter	settings	in	Epstein's	ABM	of	civil	violence
(Epstein	2002;	Wilensky	2004).	The	primary	distinction	is	the	initial	cop	density	which	ranges	from	4.05	and	5.00	in	increments	of
0.05%	and	results	in	varied	sizes	of	the	population	of	quiet	citizens,	our	outcome	measure	of	interest	here.	We	obtain	10	TS
samples	(i.e.,	model	runs)	under	NetLogo	each	having	a	duration	of	200	ticks/time	points.	In	Figure	10,	we	present	four	individual
runs	in	order	to	highlight	the	difficulty	of	direct	visual	comparison.
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Figure	10.	Comparing	Time	Series	from	Distinct	Parameterizations	of	Quiet	Citizens	of	Civil	Violence	ABM

4.10 	While	the	outcomes	are	initially	similar,	they	rapidly	diverge	sharing	only	the	characteristic	of	the	outcomes'	exhibiting	some
fluctuation.	The	two	runs	under	the	same	parameter	setting	(4.1%)	naturally	diverge	due	to	distinct	random	sequences	(from	a
RNG	using	distinct	random	seeds).

4.11 	Comparisons	of	all	pairs	of	the	experimental	conditions	are	presented	in	Figure	11.	These	comparisons	are	performed	on
normalized	outcomes	averaged	over	the	suite	of	runs.	The	distance	measurements	in	the	left	matrix	are	direct	correlations	and
Euclidean	distances	in	the	right	matrix.	The	cells	in	the	upper	triangle	of	each	matrix	correspond	to	direct	comparison	of	the	TS
while	those	in	the	lower	triangle	indicates	the	measurements	under	DTW.	The	row	and	columns	denote	increasing	cop	densities.

Figure	11.	Comparing	DTW	against	non-DTW	for	correlation	and	Euclidean	distance

4.12 	The	figures	illustrate	the	superiority	of	DTW	in	capturing	TS	differences	under	these	measurements,	over	the	direct	use	of	exact
temporal	pairs.	DTW	clearly	exposes	greater	similarity	of	the	outcomes'	TS	when	the	experimental	parameters	(cop	density)	are
also	similar	whereas	the	direct	measurements	do	not.	This	relationship	is	largely	monotonic	as	one	would	expect.	Thus,	DTW	is
appropriate	for	models	for	which	the	outcome	TS's	structure	(specifically,	both	its	seasonal	and	irregular	periodicities)	is	greatly
affected	by	the	experimental	conditions.

4.13 	Finally,	TS	analysis	provides	a	highly	informative	opportunity	to	precisely	estimate	the	impact	of	changes	in	the	input	variables
on	the	outputs	of	an	ABM	model.	Techniques	such	as	panel	data	(or	longitudinal)	analysis,	which	take	into	account	both	TS	and
cross	sectional	components	of	the	data,	can	enable	the	agent-based	modellers	to	uncover	robust	evidence	on	how	model
behaviours	are	associated	with	the	changes	in	the	variables	of	the	agents	and/or	the	model	over	time.	Other	prominent
components	of	TS	analysis	(such	as	forecasting,	classification	and	clustering,	impulse	response	function,	structural	break
analysis,	lag	analysis,	and	segmentation)	may	also	be	used	along	with	estimation	and	auto-regressive	methods	in	order	to
provide	a	better	understanding	of	series	generated	by	ABMs.

Processing	spatial	ABM	output:	approaches	and	visualization	techniques

4.14 	The	spatial	environment	in	ABMs	vary	from	cellular	grids	(in	which	only	inter-agent	distance	matter)	to	raster	or	vector
representations	of	multiple	layers	of	a	rich	GIS	data.	Locations	in	a	spatial	ABM	may	relate	to	output	metrics	at	the	individual	or
aggregated	agent	level	(e.g.,	income,	opinion,	or	a	strategy)	or	other	spatial	qualities	(e.g.,	land-use	categories).	It	is	challenging
to	seek	patterns	and	to	compare	across	experimental	conditions	in	a	search	for	a	compelling	narrative	while	screening	through
hundreds	of	maps	produced	by	an	ABM.	Spatial	ABM	analysis	is	often	informed	by	methods	from	geography	and	spatial
statistics/econometrics.	Here,	we	review	some	spatial	metrics	and	visualization	approaches	for	spatial	analysis.

4.15 	Quantitative	indices	such	as	the	Kappa	index	of	agreement	(KIA	or	Cohen's	κ)	have	been	widely	employed	for	cell-by-cell
comparison	of	ABM	outcomes	on	spatial	maps	(Manson	2005).	More	recent	work	suggest	alternatives	to	the	κ	such	as	a	moving
window	algorithm	(Kuhnert	et	al.	2005)	and	expose	its	limitations	(Pontius	&	Millones	2011).	Pontius	(2002)	proposes	more
comprehensive	methods	and	measures	for	tracking	land	use	changes	and	comparing	maps	under	multiple	resolutions	(from
coarse	to	fine).

4.16 	Various	spatial	metrics	are	often	used	to	measure	land-use	change	and	detect	spatial	patterns	such	as	fragmentation	and	sprawl
(Parker	&	Meretsky	2004;	Torrens	2006;	Liu	&	Feng	2012;	Sun	et	al.	2014).	These	metrics	include	mere	counting	of	land-use
categories,	landscape	shape	index,	fractal	dimension,	edge	density,	as	well	as	adjacency,	contiguity,	and	centrality	indexes.
Moran's	I	is	another	spatial	autocorrelation	statistic	indicating	the	extent	of	dispersion	or	clustering	(Wu	2002).	Millington	et	al.
(2008)	used	a	contagion	index	along	with	basic	patch	count	metrics	to	identify	fragmentation.	Griffith	et	al.	(2010)	used	Getis-Ord
Gi*	"hotspot"	analysis	to	identify	statistically	significant	spatial	clustering	of	high/low	values	while	analysing	the	spatial	patterns	of
hominids'	nesting	sites.	Zinck	and	Grimm	(2008)	used	spatial	indices	(shape	index,	edge	index	)	and	basic	metrics	(counts	and
areas	of	discrete	"island"	regions)	to	systematically	compare	empirical	data	to	simulation	results	from	the	classic	Drossel-
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Schwabl	forest	fire	cellular	automata	ABM.	Software	offering	these	metrics	include	C++	Windows-based	'FRAGSTATS'	and	the
'SDMTools'	package	(for	the	platform-independent	R),	the	functionality	of	which	may	be	augmented	by	Bio7	and	ImageJ	for
image	processing.

4.17 	In	another	example,	Sun	et	al.	(2014,	Table	6)	reported	basic	statistics	(i.e.,	mean	and	standard	deviation)	on	nine	spatial
metrics	estimated	over	multiple	parameter	settings	for	varying	levels	of	land	market	representation	in	their	urban	ABM.	The
significance	of	mean	differences	(across	conditions)	were	assessed	with	the	Wilcoxon	signed	rank	test.	Means	of	the	metrics
were	jointly	visualized	across	all	parameter	settings	in	a	line	graph	style	called	"comprehensive	plotting"	(Sun	et	al.	2014,	Figures
5–8),	which	then	allows	for	identification	of	conditions	producing	outlying	behaviour	facilitating	visual	sensitivity	analysis.

4.18 	Obviously,	statistical	models	such	as	regressions	and	ANOVAs	may	be	employed	to	relate	model	parameters	and	outcomes	to
spatial	outcomes	(e.g.,	Filatova	et	al.	2011).	However,	dependencies	among	spatially	distributed	variables	require	special
treatment	in	the	form	of	a	weighted	matrix	incorporated	into	a	spatial	regression	model	as	a	predictor	or	as	part	of	the	error	term.
Locales	may	be	disambiguated	further	in	statistical	prediction	through	geographically	weighted	regression	(GWR).	These
methods	also	fall	under	the	auspices	of	spatial	econometrics.

Reporting	and	visualizing	ABM	results	over	time	and	space

4.19 	Typically,	spatial	ABM	output	is	rendered	as	two-dimensional	maps.	A	collection	of	these	can	highlight	model
dynamism/progression	or	allow	for	comparison	of	metrics	and	experimental	conditions	(Parry	&	Bithell	2012,	Figure	14.11)	or
expose	key,	informative	trajectories	(e.g.,	Barros	2012,	Figure	28.3).	3D	views	are	also	used	to	portray	outputs	particularly	in
evacuation	and	commuting	(Patel	&	Hudson-Smith	2012).	Often,	visual	inspection	of	the	data	offers	face	validation	and	high-level
inference.	For	example,	a	spatial	overlay	is	commonly	used	to	analyse	raster	outputs	and	evaluate	the	spatial	distribution	of
multiple	model	behaviours	and	outcomes.

4.20 	The	spatial	distribution	of	outcomes	is	subject	to	the	stochastic	and	path	dependent	nature	of	ABMs	and	often	demand
aggregation	for	effective	presentation	of	model	behaviour	(Brown	et	al.	2005).	Naturally,	a	mean	with	a	confidence	interval	for	an
outcome	in	each	spatial	location	can	be	sufficient	for	reporting	a	set	of	maps	(over	time	or	across	experimental	conditions)	(e.g.,
Tamene	et	al.	2014).	Alternatively,	a	frequency	map	for	a	single	parameter	setting	reveals	each	location's	state	transition
probabilities	(as	a	proportion	of	total	simulation	runs)	(Brown	et	al.	2005).	These	transitions	may	easily	be	portrayed	as	a	colour-
gradient	map	(e.g.,	Magliocca	2012).	Plantinga	and	Lewis	(2014)	warn	against	constructing	deterministic	transition	rules	out	of
these	probabilities.	Brown	et	al.	(2005)	also	suggest	distinguishing	areas	of	non-transition	(or	invariant	regions)	from	variant
regions;	the	method	for	identifying	these	areas	is	called	the	variant-invariant	method.

4.21 	Judicious	selection	of	a	temporal	sequence	of	maps	can	reveal	model	dynamics.	Software	such	as	a	"map	comparison	kit"
(RIKS	BV	2010)	can	perform	automated	tests	to	identify	the	extent	to	which	two	raster	maps	are	different.	Pontius	et	al.	(2008)
extends	the	comparison	exercise	to	include	three	maps	while	considering	pixel	error	and	location	error.	Comparisons	include	all
pairs	of	simulation	outputs	at	times	1	and	2,	a	"true",	reference	map	at	time	2,	and	all	three	maps	jointly.

4.22 	While	showcasing	a	map	as	an	output	of	an	ABM	is	always	appealing,	supplementing	it	with	summary	statistics	of	spatial
patterns	allows	for	deeper	understanding	of	experimental	effects	and	consequently	the	model's	behaviour.	In	addition	to	the
spatial	metrics	discussed	in	4.3,	quantities	of	land	use	and	conversions	may	be	reported	as	histograms	across	different	scenarios
and	land-use	types	over	time	(e.g.,	Figure	4	in	Villamor	et	al.	(2014)).

4.23 	Color-gradients	in	landscape	visualizations	can	be	used	to	represent	temporal	changes	in	a	metric	of	interest.	Filatova	(2014)
employs	these	spatio-temporal	change	gradients	to	present	land	price	changes	(due	to	market	trades	in	an	ABM	focusing	on
coastal	properties)	between	two	points	in	time	in	an	empirical	landscape	(Figure	12).

Figure	12.	Changes	in	property	prices	over	time

4.24 	The	blue	and	red	gradients	correspond	to	the	valence	of	the	change	(i.e.,	falling	and	rising	prices,	respectively);	their	darkness	or
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intensity	indicate	level	of	change.	Such	visualizations	may	offer	easy	identification	of	clusters	and	boundaries.

4.25 	Another	obvious	way	to	depict	the	differences	in	spatially	distributed	ABM	output	data	is	to	visualize	in	3D	plots.	The	3rd
dimension	clearly	permits	the	inclusion	of	additional	information	such	as	time	or	one	of	agents'	inner	attributes.	For	example,
Huang	et	al.	(2013)	employed	3D	colored	bar	plots	(Figure	13)	in	which	the	2D	layout	corresponds	to	physical	location.

4.26 	Such	3D	visualizations	offer	insights	into	the	ABM's	dynamics	or	highlight	vital	structural	differences	across	experiments.	For
example,	Dearden	and	Wilson	(2012)	use	a	3D	surface	to	plot	the	macro	metrics	of	interest	of	their	retail	ABM	as	a	function	of
different	values	of	the	two	most	critical	parameters	affecting	agents'	choices.	3D	surfaces	over	different	parameters	spaces	can
also	be	compared	with	each	other,	as	demonstrated	by	Dearden	and	Wilson	in	their	comparisons	of	activity	within	consumer	and
retailer	agent	classes.

	
Figure	13.	Price	of	land	and	sequence	of	transactions	under	various	market	conditions	when	agents	have	heterogeneous

preferences	for	location.	Left:	Allocation	of	land	on	this	market	is	only	preference	driven.	Right:	Land	allocation	happens	through
competitive	bidding.	The	higher	the	bar,	the	higher	the	land	price.	colours	denote	the	time	when	land	was	converted	into	urban

use.	Source:	Huang	et	al.	(2013)

4.27 	In	this	example,	the	color	adds	a	fourth	dimension	(time	of	an	event)	to	the	conveyed	information.	Furthermore,	functional	shapes
are	more	easily	discernible	in	3D;	in	this	case,	the	upper	section	of	Figure	13b	might	be	fitted	to	a	paraboloid	or	a	similar	solid	of
revolution.

4.28 	Another	efficient	use	of	3D	visualization	for	ABMs	with	geo-spatial	elements	is	shown	in	Figure	14.	Malleson's	model	of	burglary
in	the	context	of	urban	renewal/regeneration	comprises	agents	who	travel	to	commit	crime	in	an	urban	landscape	(Malleson	et	al.
2013).

Figure	14.	Spatio-temporal	Trajectories	of	Burglars.	Source:	Nicolas	Malleson.	http://nickmalleson.co.uk/research

4.29 	The	colored,	segmented	lines	in	the	figure	when	overlaid	onto	the	2D	city	map	depict	the	trajectories	of	burglar	agents	seeking
targets	while	the	z-axis	denotes	the	temporal	dimension	to	their	journey.	This	joint	portrayal	of	time	and	space	succinctly
communicates	important	features	such	as	key	locations	of	activity	for	the	agents	(i.e.,	where	lines	appear	vertical)	as	well	as	the
origin	of	the	agent	and	its	destination,	in	this	case	a	presumably	"safe"	location.

4.30 	Finally,	given	the	dynamic	nature	of	ABMs,	their	spatial	and	temporal	outputs	are	appropriate	for	dynamic	presentation
modalities.	Interactive	3D	visualizations	offer	the	ability	to	examine	the	data	from	alternative	perspectives.	Increasingly,	video	(or
animation)	has	been	used	to	capture	ABM	behaviour	as	a	means	to	communicate	ABM	output	to	both	practitioners	as	well	as	the
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broader	lay-audience.[6]	Model	behaviour	may	also	be	captured	as	animated	GIF	files,	the	small	sizes	of	which	facilitate	their	use
in	presentations	and	web	pages	(Lee	&	Carley	2004;	Lee	2004).

Discussion	and	conclusions
5.1 	While	ABM	as	a	technique	offers	many	exciting	opportunities	to	open	research	frontiers	across	a	range	of	disciplines,	there	are	a

number	of	issues	that	requires	rigorous	attention	when	dealing	with	ABM	output	data.	This	paper	highlights	the	outstanding
complexities	in	the	ABM	output	data	analysis	and	consolidates	currently-used	techniques	to	tackle	these	challenges.	In	particular,
we	group	them	into	3	themes:	(i)	Statistical	issues	related	to	defining	the	number	of	appropriate	runs	and	hypothesis	testing,	(ii)
Solution	space	exploration	and	sensitivity	analysis,	and	(iii)	Processing	ABM	output	data	over	time	and	space.	We	also	briefly
discuss	stakeholder	involvement	in	ABM	research 	(iv)	below.

5.2 	Statistical	issues	related	to	defining	a	number	of	runs	and	hypothesis	testing:	For	analysing	ABMs,	the	calculation	of	statistics
from	model	outcomes	across	multiple	simulation	runs	is	required.	However,	the	statistical	methods	are	challenged	by	both	a
plethora	of	ABM	output	data	for	which	traditional	statistical	tests	will	expose	minute	effects	and	complex	ABMs	for	which	runs	are
costly.	In	the	former	scenario,	statistical	methods	need	to	be	tempered	(e.g.,	a	more	critical	p-value)	or	an	acceptable	ceiling	on
the	number	samples	(or	runs)	should	be	enforced.	For	the	latter	case,	a	predetermination	of	test	sensitivity	(e.g.,	effect	size)	must
be	made	before	calculating	a	minimum	number	of	runs.	However,	the	stability	of	outcome	variance	needs	to	be	secured,	and	we
demonstrate	and	review	approaches	for	estimating	the	point	at	which	this	is	achieved.	We	also	reveal	that	the	traditional
approach	to	determining	minimum	sample	size	is	sensitive	to	the	shape	of	the	distribution	and	we	suggest	empirical	estimation	of
the	power	level	or	use	of	the	more	conservative	Wilcoxon	rank	sum	test.	Another	challenge	is	the	analysis	of	many	influencing
variables.	The	analysis	of	complex	interdependencies	within	a	simulation	model	can	be	addressed	by	systematic	design	of
experiment	principles,	and	univariate	analysis	may	support	the	analysis	by	pre-defining	parameter	ranges.	Overall,	ABM
researchers	should	be	aware	of	the	statistical	pitfalls	in	the	analysis	of	simulation	models	and	of	the	methods	described	to
address	these	challenges.

5.3 	Solution	space	exploration	and	sensitivity	analysis:	An	ABM	cannot	be	properly	understood	without	exploring	the	range	of
behaviours	exhibited	under	different	parameter	settings	and	the	variation	of	model	output	measures	stemming	from	both	random
and	parametric	variation.	Accordingly,	it	is	important	for	ABM	analysts	and	researchers	to	be	familiar	with	the	range	of	methods
and	tools	at	their	disposal	for	exploring	the	solution	space	of	a	model,	and	for	determining	how	sensitive	model	outputs	are	to
different	input	variables.	ABMs	pose	particular	challenges	for	SA,	due	to	the	nonlinearity	of	interactions,	the	non-normality	of
output	distributions,	and	the	strength	of	higher-order	effects	and	variable	interdependence.	While	some	model	analyses	may	find
success	using	simple/classic	SA	techniques,	practitioners	would	do	well	to	learn	about	some	of	the	newer	and	more	sophisticated
approaches	that	have	been	(and	are	being)	developed	in	an	effort	to	better	serve	the	ABM	community.

5.4 	Processing	ABM	output	data	over	time	and	space:	While	every	ABM	has	the	potential	to	produce	high	resolution	panel	data	on
aggregated	and	agent-level	metrics	over	long	time	periods,	the	standard	time	series	techniques	are	rarely	applied.	We	argue	that
the	use	of	time	series	techniques	such	as	decomposition	and	moving	averages	analysis	not	only	improve	the	scientific	value	of
ABM	results	but	also	help	gaining	valuable	insights	–	e.g.,	the	emergence	of	the	two	regimes	in	the	data	over	time	–	that	are	likely
to	be	omitted	otherwise.	The	use	of	Euclidean	distance	similarity	measurement	and	dynamic	time	warping	offers	high	utility
especially	when	temporally	varying	outputs	need	to	be	compared	between	experiments	or	in	a	sensitivity	analysis	exercise.
When	dealing	with	spatial	data	analysis,	ABM	researchers	actively	use	methods	developed	in	geography	such	as	spatial
indexes,	map	comparison	techniques,	series	of	2D	or	3D	maps,	2D	histograms,	and	videos.	In	addition,	ABM-specific	methods
are	being	actively	proposed	–	such	as	3D	histograms	reflecting	temporal	changes	over	a	spatial	landscape,	spatio-temporal
output	variable	change	gradients,	as	well	as	overlaying	temporal	ABM	dynamics	over	a	2D	map.

5.5 	Communicating	ABM	results	to	stakeholders:	The	utility	and	effectiveness	of	many	ABMs	and	their	outputs	are	often	judged	by
the	model's	consumers:	the	user,	the	stakeholder,	or	decision-maker.	Thus,	a	qualitative	understanding	of	the	model	is	essential
as	model	acceptance	and	adoption	depend	strongly	on	subjective,	qualitative	considerations	(Bennett	et	al.	2013).

5.6 	The	clarity	and	transparency	of	ABM	mechanisms	facilitate	stakeholder	involvement	in	the	modelling	process.	This	participatory
modelling	is	a	powerful	strategy	to	facilitate	decision-making,	management,	and	consensus	building	(Voinov	&	Bousquet	2010).	In
contrast	to	other	techniques	such	as	System	Dynamics	(SD),	Computational	General	Equilibrium,	or	Integrated	Assessment
Modelling,	ABM	rules	are	explicit,	directly	embedded	in	the	model,	and	do	not	necessarily	have	to	be	aggregated	or	proxied	by
obscure	equations.	Thus,	ABMs	have	been	historically	at	the	forefront	of	participatory	modelling.	Communicative	graphical	user
interfaces	(GUIs)	in	platforms	such	as	NetLogo	and	Cormas	have	also	contributed	to	the	clarity	in	presentation	and	ease	of
interpretation	(as	they	have	done	for	SD's	Stella	or	Vensim).	A	clone	of	participatory	modelling	with	ABMs	conceived	by	French
modellers	became	known	as	companion	modelling	(Bousquet	et	al.	1999;	Barreteau	et	al.	2003;	Étienne	2014)	and	is	applied
globally	particularly	in	developing	nations	(Becu	et	al.	2003;	Campo	et	al.	2010;	Worrapimphong	et	al.	2010).	As	the	focus	is	on
the	model	as	a	process	rather	than	a	product	(Voinov	&	Bousquet	2010),	co-learning	between	stakeholders	and	modellers	results
in	expedient	cycles	of	modelling,	output	presentation	and	discussion,	and	subsequent	amendment	of	the	model.

5.7 	Moss	(2008)	notes	that	evidence	should	precede	theory,	whenever	modelling	becomes	embedded	in	a	stakeholder	process.
Thus,	interpretation	of	model	outputs	requires	more	than	mere	quantitative	evaluation	and	interpretation,	and	the	necessary	task
of	weighing	model	outputs	against	values	and	perceptions	of	both	stakeholders	and	modellers	alike	continues	to	challenge	us
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(Voinov	et	al.	2014).

5.8 	Directions	for	future	research:	Most	of	the	challenges	and	techniques	considered	in	this	paper	are	quite	computationally
intensive.	Yet,	the	fact	that	an	analysis	of	ABM	output	data	often	requires	more	time	and	attention	than	the	design	and	coding	of
an	ABM	itself	is	still	largely	underestimated	especially	by	amateurs	in	the	ABM	field.	Thus,	user-friendly	software	products	that

support	design	of	experiments	(e.g.,	the	AlgDesign	package	in	R	(Wheeler	2011)),[7]	parameter	space	exploration,	sensitivity
analysis,	temporal	and	spatial	data	exploration	are	in	high	demand.	For	example,	the	MEME	software	is	one	step	toward	this
goal	and	is	a	valuable	tools	for	ABM	researchers.	ABMs	would	ideally	support	real	world	decision-making,	hence	efficient,	user-
friendly	ABM	platforms,	supporting	data	analysis	and	visualization,	would	reinforce	use	of	ABM	in	participatory	modelling.
Moreover,	insights	into	advanced	statistical	techniques	could	assist	in	resolving	some	of	the	statistical	issues	discussed	in
Section	2.
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Notes

	1This	paper	was	inspired	by	a	workshop	at	the	2014	iEMSs	conference:	the	G2	workshop	"Analyzing	and	Synthesizing	Results
from	Complex	Socio-ecosystem	Models	with	High-dimensional	Input,	Parameter,	and	Output	Spaces".	During	that	workshop,
several	key	issues	facing	today's	simulation	modellers	were	identified	and	discussed.	The	ones	deemed	to	be	more	exigent	have
become	the	focus	of	this	paper.

2The	normal	or	Gaussian	distribution	also	known	as	the	"bell-curve"	is	the	most	easily	recognized	empirical	distribution
containing	a	single	mode	and	often	captures	many	naturally	observed	outcomes.	The	uniform	distribution	is	a	flat,	artificial
distribution	and	can	be	considered	to	serve	as	the	control	distribution	among	this	set.	The	exponential	is	often	used	to	model
failure	rates	and	is	amodal	and	skewed.	The	Poisson	expresses	the	probability	of	a	given	number	events	occurring	within	a	known
interval.	The	χ2	(chi-squared)	is	typically	employed	in	statistical	tests	as	well	as	the	Student's	t	distribution.	We	include	these	two
as	they	are	readily	recognizable	by	many	practitioners	of	applied	statistics.

3The	effect	size	calculation	we	employ	is	Cohen's	d	(Cohen	1988):	d =

μ1 −μ2
spooled .

4LeBaron	et	al.	(1999,	p.	1512),	for	example,	note	that	their	artificial	stock	market	has	time	series	capturing	phenomena	observed
in	real	markets,	including	weak	forecastability	and	volatility	persistence.

5

Euclidean	distance =

n

∑
i =1(xi − yi)2

where	n	is	the	number	of	data	points	in	each	vector.

6For	examples,	we	cite	Epstein	&	Axtell	(1996)	and	the	corresponding	video:	https://www.youtube.com/watch?v=SAXWoRcT4NM
and	Helbing	et	al.	(2005)	and	the	corresponding	video:	https://www.youtube.com/watch?v=yW33pPius8E.

7Further	options	in	R	for	DOE	may	be	found	at	http://cran.r-project.org/web/views/ExperimentalDesign.html.

Appendix	A:	Minimum	Sample	Size	for	Distributions

√
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Figure	15.	Minimum	Sample	Size	for	Three	Distributions

The	black	curve	denotes	the	empirical	power	level.	The	red	line	denotes	the	desired	power	level:	1 − β = 0.80.	The	solid	green
vertical	line	denotes	the	minimum	sample	size	derived	from	the	power	calculation	while	the	dotted	green	line	shows	the
empirically-derived	size.	The	blue	curve	and	line	denote	the	power	and	minimum	size	according	to	the	two	sample	Mann-
Whitney-Wilcoxon	test.

	
Figure	16.	Minimum	Sample	Sizes	for	Birth	Rate	ABM

The	red	line	denotes	the	desired	power	level:	1 − β = 0.80.	The	solid	green	vertical	line	denotes	the	minimum	sample	size	from
the	power	calculation;	the	dotted	green	line	shows	the	empirically-	derived	size;	and	the	blue	curve	and	vertical	line	denote	the
power	and	minimum	sample	size	according	to	the	Mann-Whitney-Wilcoxon	test.

Appendix	B:	Issues	of	Hypothesis	Testing
	There	exists	an	ongoing	debate	over	the	emphasis	researchers	should	place	on	significance	tests.	A	large	sample	size	can	easily
classify	a	minute	difference	as	being	significant.	Thus,	many	(in	the	ABM	field	and	outside)	argue	for	greater	attention	paid
towards	the	effect	size	itself	(whether	it	is	Cohen's	d	or	a	standardized	regression	coefficient)	as	the	benchmark	for	a	"significant"
finding	(Coe	2002;	Ziliak	&	McCloskey	2008,	2009;	Sullivan	&	Feinn	2012;	White	et	al.	2013;	Troitzsch	2014).	In	fact,	recently	the
journal	of	Basic	and	Applied	Social	Psychology	has	implemented	policy	to	remove	p-values	from	their	publications.	Alternatively,
researchers	may	turn	to	methods	and	measures	that	penalize	(or	minimize	the	impact	of)	large	samples	sizes.	Rouder	et	al.
(2009)	demonstrate	the	effectiveness	of	such	penalties	in	measures	such	as	the	Bayesian	information	criterion	and	the	JSZ
Bayes	factor.	Cameron	and	Trivedi	(2005,	p.279)	suggest	using	√logn	as	a	more	stringent,	critical	t-statistic.	An	earlier
suggestion	by	Good	(1982,	1984,	1992)	entails	adjusting	the	critical	p-value	using	a	sample	size	of	n = 100	as	a	reference	point
rather	than	leaving	it	fixed	(e.g.,	p < 0.05)	for	all	sample	sizes.	Furthermore,	the	estimated	minimum	sample	size	may	be	reduced
through	variance	reduction	by	control	variates	which	are	outcomes	having	known	mean	and	variance	and	are	sufficiently
correlated	with	other	outcomes	of	interest	for	which	the	mean	and	variance	are	unknown.	This	technique	is	discussed	in	the
context	of	simulation	models	by	Law	and	Kelton	(2007).	Finally,	sample	size	determination	for	large	simulations	which	are	costly
to	run	(i.e.,	demanding	heavy	computing	resources	and	incurring	long	execution	times)	may	be	addressed	through	bootstrapping
of	a	smaller	set	of	outcomes	for	estimating	their	variance	(Lee	&	Carley	2013).

Appendix	C:	Multi-Modal	ABM	Output	of	Birth	Rate	ABM
	Multi-modality	in	the	output	may	indicate	separate	attractors	in	the	phase	space	bridged	by	tipping	points.	For	example,	the
output	distribution	(a	subpopulation)	of	a	simple,	population	genetics	ABM	(Wilensky	1997,	1999)	under	a	single	parameter
setting	exhibits	clear	bimodality	(Figure	17).	The	carrying	capacity	was	set	to	200;	the	fertility	rate	for	both	red	and	blue
populations	was	2.0;	and	10000	runs	of	300	steps	were	performed.
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Figure	17.	Birth	Rate	ABM	Output	Distribution.	Histogram	of	the	"red"	population	after	300	times	steps,	fitted	to	a	Gaussian
curve	(from	the	NetLogo	Simple	Birth	Rates	Model	(Wilensky	1997))

Interpreting	the	mean	red	agent	population	of	100.5	(with	a	large	degree	of	error)	as	being	singularly	and	truly	descriptive	of	the
stochastic	process	would	be	grossly	inaccurate	and	overlook	the	salient	bifurcation	in	which	the	red	agent	population	tends	to
either	diminish	to	extinction	(0)	or	dominate	(around	200).	This	example	illustrates	how	ABM	stochasticity	may	produce	non-
normally	distributed	output	that	cannot	be	sensibly	described	by	merely	its	mean	and	variance.

Appendix	D:	Anasazi	Model	Outliers

Figure	18.	Sensitivity	analysis	example.	Source:	Stonedahl	and	Wilensky	(2010)

The	red	line	denotes	the	historical	data	and	the	black	lines	represent	outcomes	from	100	simulated	runs	parameterized	(via	a
GA	search)	to	produce	output	time-series	that	maximally	differ	from	the	historical	data.
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