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taken for one another, with unmodelled level breaks rendering fractional integra-
tion tests highly unreliable. We therefore extend the Lobato and Robinson (1998)
approach to allow for the possibility of changes in level at unknown points in the
series. We show that the resulting statistics have standard limiting null distribu-
tions, and that the tests based on these statistics attain the same asymptotic local
power functions as infeasible tests based on the unobserved errors, and hence there
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is present. We report results from a Monte Carlo study into the finite-sample be-
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1 Introduction

It is well known that if not accounted for, level shifts in a weakly autocorrelated (or short

memory) process, denoted I(0), can induce features in the autocorrelation function and

the periodogram of a time series that can be mistaken as evidence of long memory; see,

inter alia, Diebold and Inoue (2001), Gourieroux and Jasiak (2001), Granger and Hyung

(2004), Mikosch and Stărică (2004), Qu (2011), and Iacone, Leybourne, and Taylor (2019).

To avoid the possibility of spurious inference being made about the memory properties

of a time series, it is therefore important to develop tests on the fractional integration

(memory) parameter of a time series which are robust to level shifts. As a consequence,

Iacone et al. (2019) generalise the parametric score and Lagrange Multiplier [LM] time

domain based fractional integration tests of Tanaka (1999) and Nielsen (2004) to allow for

the possibility of a break in the deterministic trend function at an unknown point in the

sample. These tests are equivalent to analogous extensions of the frequency domain tests

of Robinson (1994) to allow for breaks in the deterministic trend function. Iacone et al.

(2019) show that this approach delivers an LM test which, regardless of whether a break

occurs or not, is a locally most powerful test and has a χ2
1 limiting null distribution.

However, a significant practical disadvantage of the tests of Iacone et al. (2019) is that,

like the tests of Robinson (1994), Tanaka (1999) and Nielsen (2004) from which they are

derived, they are based on fitting a full parametric model to the data. Crucially, the short

run component of this model must be correctly specified under the null hypothesis for the

resulting test to be correctly asymptotically sized. This requirement is clearly problematic

in practice, and is likely to be further complicated in the case where level breaks are present

as this would likely interfere with any preliminary model selection stage used to specify

the form used for the short memory component. It therefore seems worth developing long

memory tests analogous to those of Iacone et al. (2019) but which do not require the user

to specify a parametric model for the short memory component of the series.

Our contribution in this paper is therefore to develop semiparametric analogues of

the parametric LM and score tests of Iacone et al. (2019). We will base our approach on

an extension of the semiparametric frequency domain based fractional integration tests

of Lobato and Robinson (1998). This approach is based on the use of a low frequency

approximation provided by the local Whittle [LW] likelihood, which obviates the need

to explicitly model any short range dependence present in the data. To account for the

possibility of level breaks, the Lobato and Robinson (1998)-type statistics we propose

are constructed from data which have been de-trended allowing for the possibility of

level breaks, the locations of which are estimated by a standard residual sum of squares

estimator applied to the levels data. The tests proposed in Lobato and Robinson (1998),

again based on the LM testing principle, are specifically designed for testing the null

hypothesis that a time series is I(0). We show that, as conjectured in Lobato and Robinson
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(1998, p. 478), their approach can be generalised to provide a valid test for the null

hypothesis that the series is integrated of order δ, for any δ lying in the stationary and

invertible region of the parameter space (−0.5 < δ < 0.5). It is also possible to test orders

of integration outside the stationary and invertible region using data transformations. For

example, the null hypothesis of an autoregressive unit root can be obtained by testing for

the null hypothesis of short memory in the first differences of the series; as such this is

then a test in the levels data for a unit root allowing for the possibility of trend breaks.

Because the tests are based on the LM testing principle, no preliminary estimation of the

memory parameter is required.

Our focus on the Lobato and Robinson (1998) testing approach is due, at least in part,

to results in Shao and Wu (2007a) who show that the standard Lobato and Robinson

(1998) tests are, for a suitable choice of the bandwidth parameter m used in the local

Whittle loss function, considerably more powerful than other semiparametric tests for

testing the null of I(0) against the alternative of fractional integration that are available in

the literature. In particular, they show that tests based on the rescaled range and rescaled

variance statistics and tests based on the well-known KPSS statistic of Kwiatkowski,

Phillips, Schmidt and Shin (1992) have power against local alternatives of order (ln(T ))−1,

where T denotes the sample size. On the other hand, the Lobato and Robinson (1998)

tests have power against local alternatives of orderm−1/2, where the bandwidth parameter

m is typically of the type m = T α for some 0 < α < 1. Moreover, these other approaches

have only been developed to test the null hypothesis of I(0) against the alternative of

fractional integration, whereas we wish to maintain the flexibility to test a more general

I(δ) null hypothesis. Busetti and Harvey (2001, 2003) develop extensions of the KPSS

test that allow for a single level break at an unknown point in the sample, although their

approach is based on the assumption that a level break is known to occur.

We establish that, regardless of whether level breaks occur or not, the large sample

properties of the tests we propose are identical to those which obtain for the standard Lo-

bato and Robinson (1998) tests for δ = 0 in the case where no level break occurs. In par-

ticular, our proposed LM-type test has a χ2
1 limiting null distribution and the correspond-

ing score-based test a N(0, 1) limiting null distribution, regardless of the value of δ being

tested under the null hypothesis, and each attains the same asymptotic local power func-

tion as the corresponding infeasible test based on the unobserved errors. Moreover, these

asymptotic local power functions do not alter between the break and no break cases and

so there is no loss in asymptotic local power from allowing for level breaks, even where

none is present. Although based on different and hence not directly comparable models,

these large sample properties contrast with those of most popular unit root tests, such as

that of Dickey and Fuller (1979), and stationarity tests, such as that of KPSS. In partic-

ular, the limiting null distributions of unit root and stationarity test statistics tend to be

non-standard and depend on the functional form of the fitted deterministic, differing be-
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tween the no break and break cases, and dependent on the locations of the breaks. More-

over, where breaks are fitted but not actually present in the data, these tests show a con-

siderable decline in asymptotic local power relative to the case where no break is fitted.

The remainder of the paper is organised as follows. Section 2 sets out the fractionally

integrated level break model within which we work. To aid exposition this model allows

for up to one level break. Extensions to allow for multiple level breaks are discussed

in Section 5. Section 3 describes our tests in the infeasible case where the errors are

observable. Our proposed semiparametric statistics for the case of unknown level breaks

are described in Section 4, where we also establish their large sample properties. Section 6

summarises the results from a Monte Carlo simulation study into the finite sample size

and power properties of our proposed tests and compares with the nonparameteric KPSS-

type tests of Busetti and Harvey (2001, 2003). Illustrative empirical examples of the

methods developed in this paper to bitcoin returns data, VIX market volatility, U.S. CPI

inflation, and U.S. real GDP growth are considered in Section 7. Section 8 concludes.

Proofs of our main results are provided in a mathematical appendix. A supplementary

appendix contains full details of the Monte Carlo design and results.

2 The Fractionally Integrated Level Break Model

Consider the scalar time series process, yt, satisfying the data generating process (DGP),

yt = β1 + β2DUt (τ
∗) + ut, t = 1, ..., T. (1)

In (1), the level break term, DUt (τ
∗), is defined for a generic τ as DUt (τ) := I (t ≥ ⌊τT ⌋),

I (.) denoting the usual indicator function, ⌊.⌋ denoting the integer part of its argument,

and where A := B and B =: A is used to denote that A is defined by B. Where a

level break occurs, i.e. where β2 6= 0, we assume that the true level break fraction is such

that τ ∗ ∈ [τL, τU ] =: Λ, where Λ ⊂ (0, 1) is compact and the quantities τL and τU are

trimming parameters below and above which, respectively, a level break is deemed not to

occur. In order to greatly simplify exposition and to keep notation manageable, the model

considered in (1) allows for the presence of up to one level break in the data. In Section 5

we will subsequently discuss how the approach we outline in what follows for up to one

level break straightforwardly extends to the case where one allows for up to k level breaks.

In the context of (1) the shocks, ut, are assumed to follow a stationary and invertible

process which is fractionally integrated of order δ, denoted ut ∈ I (δ). For our purposes,

we define fractional integration for ut as

ut := ∆−δηt, (2)

where ηt is a zero mean I(0) process. We define I(0) to be such that ηt has spectral density

f(λ) with f(λ) → G for some G ∈ (0,∞) as λ → 0; formal assumptions on ηt required
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for our large sample theory results will be delayed until Section 3. The assumption that

ut is stationary and invertible entails that the long memory parameter, δ, is such that

δ ∈ (−0.5, 0.5). A process satisfying the conditions just stated for ut is often referred to

in the literature as a type I fractionally integrated process.

Our interest focuses on testing the null hypothesis that ut, and hence yt, is I(δ0) for

some δ0 ∈ (−0.5, 0.5); that is, H0 : δ = δ0 in (1). Based on the familiar LM testing

principle we will develop tests against two-sided alternatives of the form H1 : δ 6= δ0 (yt

is not I(δ0)) together with corresponding score-type tests against one-sided alternatives

of the form H1 : δ > δ0 (yt is more persistent than an I(δ0) series) or H1 : δ < δ0 (yt is

less persistent than an I(δ0) series).

Next, in Section 3, we discuss the tests proposed in Lobato and Robinson (1998) which

were developed for testing the specific null hypothesis that yt is short memory. These tests

apply to the case where either ut in (1) is observable or where it is known that β2 = 0. We

show that this approach can be readily extended to develop tests for the null hypothesis

that yt is I(δ0) for some δ0 ∈ (−0.5, 0.5). Then, in Section 4, we show how these tests

can be generalised to allow for the possibility that β2 6= 0 in (1), such that a level shift

could potentially occur in the data. The testing approach we outline in Section 4 does

not assume knowledge of whether a level shift genuinely occurs; that is, we do not assume

knowledge of whether β2 = 0 or β2 6= 0.

3 Tests of H0 : δ = δ0 when it is known that β2 = 0

Suppose for the purposes of this section that it is known to be the case that β2 = 0 in (1).

Under this restriction we can also set β1 = 0 with no loss of generality because, as discussed

in Lobato and Robinson (1998, p. 477), the statistics we will discuss in this paper are

invariant to β1 in the case where β2 = 0. The restriction that β2 = 0 is therefore equivalent

to the case where β1, β2 and τ ∗ are all known, such that ut in (1) is observable. We may

therefore proceed as if ut were observable. We will discuss the application of the tests to

ut, although in the context of this section they could equally be applied to yt because no

mean-correction is required (provided the mean is constant) due to invariance to β1.

For observable ut, semiparametric inference on δ based on the approximation of the

Whittle likelihood at low frequencies was proposed by Künsch (1987) and analysed further

in Robinson (1995b). This approach is semiparametric as it does not require the specifi-

cation of a parametric model for f(λ) and, within the class of semiparametric methods,

it has the advantage of being based on a (local) likelihood, and it is therefore consider-

ably more efficient than other semiparametric estimates such as the log-periodogram re-

gression of Geweke and Porter-Hudak (1983) and Robinson (1995a).

For a generic series at, let wa (λ) :=
1√
2πT

∑T
t=1 ate

iλt denote the Fourier transform of

at, and let Ia (λ) := |wa (λ)|2 denote the periodogram. Then, as discussed in Robinson

(1995b), for the observable series ut, the local Whittle estimate of δ is obtained by min-
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imising the loss function R (d) with respect to d, where

R (d) := ln

(
1

m

m∑

j=1

λ2dj Iu (λj)

)
− 2d

1

m

m∑

j=1

ln (λj) (3)

and m denotes the bandwidth, satisfying the rate condition that 1/m + m/T → ∞ as

T → ∞. Recall that λj :=
2πj
T

for integer j are the Fourier frequencies. Applying the LM

principle to the objective function in (3) yields the LM-type statistic to test H0 : δ = δ0,

LM∗
m(δ0) := m

(
∂2R (d)

∂2d

)−1(
∂R (d)

∂d

)2
∣∣∣∣∣
d=δ0

.

Defining the score-type statistic

t∗m(δ0) := −
(
m−1/2

∑m
j=1 νjλ

2δ0
j Iu (λj)

1
m

∑m
j=1 λ

2δ0
j Iu (λj)

)
, where νj := ln j − 1

m

m∑

j=1

ln j, (4)

the LM∗
m(δ0) statistic in (5) can be equivalently re-written in terms of the Fourier fre-

quencies and the periodogram ordinates at those frequencies as

LM∗
m(δ0) = t∗m(δ0)

2 =

(
m−1/2

∑m
j=1 νjλ

2δ0
j Iu (λj)

1
m

∑m
j=1 λ

2δ0
j Iu (λj)

)2

. (5)

The null hypothesis H0 that ut is I(δ0) can then be rejected for large values of LM∗
m(δ0),

while a large positive (negative) value of t∗m(δ0) would allow rejection against the one-

sided alternative H1 : δ > δ0 (H1 : δ < δ0). It will turn out that standard critical values

can be employed in the context of these decision rules.

Lobato and Robinson (1998) analyse the special case of the t∗m(0) and LM
∗
m(0) statis-

tics in (4) and (5), respectively, which obtain setting δ0 = 0, such that one is testing the

null hypothesis of short memory, H0 : δ = 0. For the purpose of later sections, we need

to also define the Lobato and Robinson (1998) score- and LM-type test statistics for the

hypothesis H0 : δ = δ0 applied to the observed data, {yt}, and which do not account

for the possibility of level breaks; we will denote these as tm(δ0) and LMm(δ0), respec-

tively. These differ from the infeasible statistics t∗m(δ0) and LM
∗
m(δ0) for the hypothesis

H0 : δ = δ0 which are applied to the unobserved innovations, {ut}. In the context of this

section, where it is known that β2 = 0, then tm(δ0) and t
∗
m(δ0) coincide, as do LMm(δ0)

and LM∗
m(δ0). Lobato and Robinson (1998) establish that, under certain regularity con-

ditions (see Assumption 1 below), t∗m(0) and LM∗
m(0) have N(0, 1) and χ2

1 limiting null

distributions, respectively. Shao and Wu (2007a) subsequently demonstrate that under

local alternatives of the form Hc : δ = cm−1/2, where c is a constant (such that Hc re-

duces to H0 : δ = 0 when c = 0), t∗m(0)
d→ N(2c, 1) and, hence, LM∗

m(0)
d→ χ2

1 (4c
2),

where χ2
1 (4c

2) denotes a non-central χ2
1 distribution with non-centrality parameter 4c2.
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Before progressing to consider the case where ut is not observable, that is where it is

not known for sure that β2 = 0 in (1), we first show that the properties established for the

LM∗
m(0) and t

∗
m(0) statistics in Lobato and Robinson (1998) and Shao and Wu (2007a)

carry over to the general case of the LM∗
m(δ0) statistic in (5) and corresponding t∗m(δ0)

statistic in (4) for testing H0 : δ = δ0 for any δ0 ∈ (−0.5, 0.5). To do so we first introduce

sufficient conditions for establishing these large sample justifications. We will discuss two

sets of possible assumptions under which our large sample results obtain. The first set,

given in Assumption 1, coincides with the conditions adopted by Robinson (1995b). The

second set, given in Assumption 2, coincides with those employed by Shao andWu (2007a).

Assumption 1.

(i) ηt :=
∑∞

j=0 ψjεt−j and εt is a martingale difference sequence with E (εt|Ft−1) = 0,

E (ε2t |Ft−1) = 1, E (ε3t |Ft−1) = κ3 < ∞, E (ε4t |Ft−1) = κ4 < ∞, a.s., where Ft is

the σ-field of events generated by εs, s ≤ t.

(ii) The weights ψj are such that
∑∞

j=0 ψ
2
j <∞.

(iii) The spectral density of ηt, f(λ), is twice boundedly differentiable in a neighbourhood

of λ = 0 and satisfies, as λ→ 0+, that f(λ) = G(1+O(λ2)) and ∂
∂λ

ln f(λ) = O(λ−1)

for some G ∈ (0,∞).

(iv) The bandwidth, m, is such that 1
m
+ m5(lnm)2

T 4 → 0 as T → ∞.

Remark 3.1. The conditions on ηt detailed in Assumption 1 coincide with those given

in Robinson (1995b) and are slightly stronger than those in Lobato and Robinson (1998).

A full discussion of these conditions is given in Robinson (1995b, pp. 1634 and 1641)

and Lobato and Robinson (1998, p. 478). Assumption 1 includes all stationary and

invertible finite-order ARMA models for ηt. Assumption 1 allows for non-linearity via the

martingale difference assumption on the innovations, but is otherwise linear. Notice also

that Assumption 1 requires f(λ) to be smooth only around λ = 0 and so does not rule

out long memory behaviour at frequencies other than λ = 0 (although this needs to be

strengthened in Assumption 3 to obtain results for our feasible tests). ♦

The assumption of conditional homoskedasticity imposed by part (i) of Assumption 1

may be considered unacceptable for many data applications, in particular those involving

financial data. Shao and Wu (2007a,b) show that this can be weakened to allow for a

wide class of stationary, causal non-linear processes. To that end, suppose that

ηt = F (. . . , εt−1, εt), (6)

where εt are independent and identically distributed (IID) random variables and F is a

measurable function such that ηt is well defined as a stationary, causal, ergodic process.

For a random variable ξ and p > 0, write ξ ∈ Lp if ‖ξ‖p := (E(|ξ|p))1/p < ∞. Let {ε′t},
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t ∈ Z, be an IID copy of {εt}, Ft = (. . . , εt−1, εt), F∗
k := (F−1, ε0), η

′
k = F (F∗

0 , ε1, . . . , εt)

and ϑq(k) = ‖ηk − η′k‖q.

Assumption 2. For ηt and F defined as in (6) and for some q > 4:

(i) ηt ∈ Lq and
∑

k1,k2,k3
cum(η0, ηk1 , ηk2 , ηk3) <∞.

(ii)
∑∞

k=1 kϑq(k) <∞.

(iii) The spectral density of ηt, f(λ), satisfies f(λ) = G(1 +O(λ2)) as λ→ 0+ for some

G ∈ (0,∞).

(iv) The bandwidth, m, is such that (lnT )3

m
+ m

T 2/3 → 0 as T → ∞.

Remark 3.2. Assumption 2 includes a number of widely used nonlinear time series mod-

els for ηt such as bilinear models, threshold models, GARCH and ARMA-GARCH models;

see Shao and Wu (2007a, p. 254) and Shao and Wu (2007b) and the references therein for

further discussion of this assumption and further examples of classes of nonlinear processes

which satisfy it. While Assumption 2 weakens, inter alia, the conditional homoskedastic-

ity restriction of Assumption 1, this comes at the cost of a stronger assumption on the

bandwidth, that is restricted to be such that m = o(T 2/3). Moreover, as discussed in

Shao and Wu (2007b, Remark 3.1), Assumption 2(ii) implies continuous differentiability

of f(λ) for all frequencies, whereas, as discussed in Remark 3.1 and Robinson (1995b),

Assumption 1 only imposes conditions on f(λ) in a local-to-zero band. There is therefore

a clear trade-off between the conditions imposed on ηt by Assumptions 1 and 2. ♦

In Theorem 1 we now derive the large sample properties of the LM∗
m(δ0) and t

∗
m(δ0)

statistics, obtained for the case where it is known that β2 = 0 in (1). To facilitate

discussion of asymptotic local power, we consider the local alternativeHc : δ = δ0+cm
−1/2.

Theorem 1. Let yt be generated according to (1) with β2 = 0, and let either Assumption 1

or Assumption 2 hold on ηt. Then, for any δ0 ∈ (−0.5, 0.5), under Hc : δ = δ0 + cm−1/2:

(i) LM∗
m(δ0)

d→ χ2
1(4c

2); and

(ii) t∗m(δ0)
d→ N(2c, 1).

Remark 3.3. Theorem 1 shows that the results obtained for the limiting null distributions

of the LM∗
m(0) and t

∗
m(0) statistics in Lobato and Robinson (1998) apply more generally

to the LM∗
m(δ0) and t

∗
m(δ0) statistics for testing the null hypothesis that ut is I(δ0) for any

δ0 in the usual stationary and invertible region. Theorem 1 also shows that tests based on

the LM∗
m(δ0) and t

∗
m(δ0) statistics posses the same local power functions as tests based on

the LM∗
m(0) and t

∗
m(0) statistics. Moreover, these results hold regardless of whether ut is

conditionally homoskedastic or conditionally heteroskedastic (satisfying Assumption 2). ♦
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4 Feasible Tests of H0 : δ = δ0 Allowing for a Level Break

Recall that the LM- and score-based tests discussed in Section 3 are based on the as-

sumption that β2 = 0, such that the LMm(δ0) and tm(δ0) statistics calculated on the ob-

served data {yt} will coincide with the LM∗
m(δ0) and t

∗
m(δ0) statistics based on the shocks,

{ut}, even if β1 6= 0 such that {ut} are unobservable (because the statistics are invariant

to β1). However, where β2 6= 0 this is no longer the case, and we cannot proceed as if the

tests were based on the unobservable shocks, {ut}. Moreover, where β2 6= 0 the LMm(δ0)

and tm(δ0) statistics constructed from the observed data, {yt}, are non-similar tests and

will diverge. For example, if δ0 = 0 it can be shown that the (exact) rates of divergence

are LMm(0) = Op(m ln(m)2) and tm(0) = Op(
√
m ln(m)) under H0, so that both statis-

tics will diverge with the sample size, even under the null hypothesis. As a consequence,

therefore, the Lobato and Robinson (1998) tests will spuriously reject the null with prob-

ability tending to one as the sample size diverges. That is, tests based on LMm(δ0) or

tm(δ0) are uninformative if it is unknown whether β2 = 0 or not. In this section we will

therefore discuss how feasible versions of the tests discussed in Section 3 can be derived

for the case where it is not known for certain whether β2 = 0 or not.

In the context of (1), the disturbances ut are not observable and so they must be

estimated. For a generic (putative) break location, τ , we can do so by using standard

ordinary least squares (OLS) estimators of the parameters β1 and β2 in (1). To that

end, let β := (β1, β2)
′, and let y := (y1, . . . , yT )

′, xt(τ) := (1, DUt(τ))
′, and x(τ) :=

(x1(τ), . . . , xT (τ))
′. Then the OLS estimate of β is given by β̂(τ) = (β̂1(τ), β̂2(τ))

′ :=

(x(τ)′x(τ))−1x(τ)′y. For a given value of τ we then have the corresponding estimated

residuals ût(τ) := yt − β̂(τ)′x(τ), with associated periodogram Iû(τ)(λj).

Based on Iû(τ)(λj), we can then define analogues of the LM∗
m(δ0) statistic of (5) and

the corresponding score-based statistic t∗m(δ0) in (4), for testing H0 : δ = δ0 as follows

tm(δ0; τ) := −
(
m−1/2

∑m
j=1 νjλ

2δ0
j Iû(τ)(λj)

1
m

∑m
j=1 λ

2δ0
j Iû(τ)(λj)

)
(7)

LMm(δ0; τ) := (tm(δ0; τ))
2. (8)

If the true break fraction, τ ∗, were known then one would simply evaluate LMm(δ0; τ)

and tm(δ0; τ) at τ = τ ∗. Our focus, however, is on the case where τ ∗ is unknown and so

will need to be estimated from the data. An obvious candidate is the minimum residual

sum of squares [RSS] estimator considered in Iacone et al. (2019), viz,

τ̂ := arg min
τ∈[τL,τU ]

T∑

t=1

ût(τ)
2, (9)

where it is recalled that τL and τU are trimming parameters such that [τL, τU ] ⊂ (0, 1).

Tests for H0 : δ = δ0 could then be based on LMm(δ0; τ̂) and tm(δ0; τ̂).
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For these tests to be operational, we will need to establish the large sample behaviour

of the LMm(δ0; τ̂) and tm(δ0; τ̂) statistics under the null hypothesis, H0 : δ = δ0, and show

that unique asymptotic critical values (in the sense that they do not depend on any nui-

sance parameters) for the tests can be obtained from these distributions. In fact, we will

be able to show in what follows that these statistics have the same limiting null distri-

butions as were obtained for their infeasible counterparts LM∗
m(δ0) and t

∗
m(δ0) in Theo-

rem 1. In order to do so, however, we must impose some additional regularity conditions

on ηt. In particular, Assumptions 1 and 2 must be strengthened to Assumptions 3 and 4,

respectively, as follows:

Assumption 3. Let Assumption 1 hold. Assume further that:

(i) suptE(|εt|q) <∞ for some q > 1/(1 + 2δ).

(ii) The weights ψj are such that
∑∞

j=0 j|ψj| <∞.

(iv) For some ǫ > 0, the bandwidth, m, is such that T ǫ

m
→ 0 as T → ∞.

Assumption 4. Let Assumption 2 hold, and define the projection operator ℘kξ := E(ξ|Fk)−
E(ξ|Fk−1). Then we assume further that:

(i) ηt ∈ Lq and
∑∞

k=0 ‖℘0ηk‖q <∞ for some q > 1/(1 + 2δ).

(iv) For some ǫ > 0, the bandwidth, m, is such that T ǫ

m
→ 0 as T → ∞.

Remark 4.1. Both Assumptions 3 and 4 impose the additional moment condition that

q > 1/ (1 + 2δ) moments exist. This condition is needed so that we can appeal to the

functional central limit theorem [FCLT] for fractional processes for which the moment

condition is necessary; see Theorem 2 of Johansen and Nielsen (2012). The fractional

FCLT also requires that q > 2, but this is implied in Assumptions 1 or 2 so is not stated

explicitly here. The condition placed on the weights ψj in Assumption 3(ii) is quite

standard for the (fractional) FCLT and is met by all stationary and invertible finite-

order ARMA models. This condition also implies continuity of the spectral density of

ηt and hence rules out long memory at other frequencies, see Remarks 3.1 and 3.2. The

condition that 0 <
∑∞

j=0 ψj < ∞ (and a similar condition for the non-linear process) is

again omitted because it is implied by the assumption 0 < f(0) < ∞. The additional

condition required to hold on the bandwidth in part (iv) of Assumptions 3 and 4 is not

restrictive in practice because much larger bandwidths will typically be used. ♦

We are now in a position to state our main result in Theorem 2 which details the

large sample behaviour of the feasible statistics LMm(δ0; τ̂) and tm(δ0; τ̂) under local

alternatives of the form Hc : δ = δ0 + cm−1/2. We will do this by comparing them to

the infeasible LM∗
m(δ0) and t

∗
m(δ0) statistics, respectively. Inherent in doing so will be to

analyse the distance between ût and ût(τ̂), the latter given by ût(τ) evaluated at τ = τ̂ , and

establish how this affects the distance between the feasible and infeasible statistics. The

9



behaviour of both LMm(δ0, τ̂) and tm(δ0, τ̂) clearly depend on the large sample properties

of the estimates τ̂ of (9) and β̂(τ̂), the latter given by β̂(τ) evaluated at τ = τ̂ . For the

properties of τ̂ we apply a result of Lavielle and Moulines (2000), and we combine this

with a fractional FCLT for ut to obtain results for β̂(τ) following a similar analysis to that

in Lemma 1 of Iacone et al. (2019). In Theorem 2 we then establish that these properties

are sufficient to show that the differences, LMm(δ0, τ̂)− LM∗
m(δ0) and tm(δ0, τ̂)− t∗m(δ0),

are both asymptotically negligible, regardless of whether or not a trend break occurs (i.e.,

whether β2 6= 0 or β2 = 0).

Theorem 2. Let yt be generated according to (1), and let either Assumption 3 or As-

sumption 4 hold on ηt. Then, for any δ0 ∈ (−0.5, 0.5), under Hc : δ = δ0 + cm−1/2:

(i) If β2 = 0, then tm(δ0; τ) − t∗m(δ0) = op(1) and LMm(δ0; τ) − LM∗
m(δ0) = op(1), in

each case uniformly in τ .

(ii) If β2 6= 0, then tm(δ0; τ̂)− t∗m(δ0) = op(1) and LMm(δ0; τ̂)− LM∗
m(δ0) = op(1).

Some remarks are in order.

Remark 4.2. An immediate consequence of Theorem 2 is that both LMm(δ0; τ̂) −
LM∗

m(δ0) and tm(δ0; τ̂)−t∗m(δ0) are of op(1) irrespective of whether β2 6= 0 or β2 = 0. Con-

sequently, regardless of the value of β2, LMm(δ0; τ̂)
d→ χ2

1(4c
2) and tm(δ0; τ̂)

d→ N(2c, 1)

under Hc, and tests based on these statistics thereby attain exactly the same asymptotic

local power functions as obtained by the infeasible tests based on LM∗
m(δ0) and t∗m(δ0),

respectively. Moreover, since LMm(δ0; τ̂)
d→ χ2

1 and tm(δ0; τ̂)
d→ N(0, 1) under H0, stan-

dard critical values can be used. ♦

Remark 4.3. The result given in part (i) of Theorem 2 demonstrates that when no level

break occurs, the difference between the statistics based on ût and ût(τ) is asymptotically

negligible, and that this holds uniformly in τ and, hence, holds for τ̂ . Part (ii) of Theorem 2

shows that when β2 6= 0, such that a level break occurs, the differences between the

semiparametric statistics based on ût and ût(τ̂) are asymptotically negligible. This arises

because τ̂
p→ τ ∗ at a sufficiently fast rate; cf. part (i) of Lemma 1 in Iacone et al. (2019). ♦

Remark 4.4. A formal proof of Theorem 2 is provided in the appendix. However, it

seems useful to summarise the essential parts of the proof here. Beginning with the case

in which in fact no level break occurs (β2 = 0), we first establish uniformly in τ results for

β̂(τ). It is at this stage that the fractional FCLT is used. We can then derive properties

of the estimated residuals ût(τ) and analyse the distance between the Fourier transforms

(and hence the periodograms) of ût(τ) and of ut. In the second part of the proof we

consider the case in which a break does occur (β2 6= 0). In this case, we first establish

the properties of the estimate of the break, τ̂ , using results from Lavielle and Moulines

(2000). These properties allow us to bound the distance between β̂(τ̂) and β̂(τ ∗), and
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use this to study the distance between the Fourier transforms (and the periodograms) of

ût(τ̂) and of ût(τ
∗). ♦

5 Multiple Level Breaks

In this section we briefly discuss how the single level break model in (1) can be extended

to allow for the (possible) presence of multiple level breaks. As we will show, the resulting

semiparametric LM- and score-type statistics still satisfy the same large sample properties

given in Theorem 2 for the case of up to one level break.

To that end, we can generalise (1) to allow for (up to) k level breaks, viz,

yt = β1 + β′
2DU t(τ

∗) + ut,

where DU t(τ
∗) := (DUt(τ

∗
1 ), . . . , DUt(τ

∗
k ))

′. Here τ ∗ := (τ ∗1 , . . . , τ
∗
k )

′ is the vector of

(unknown) putative level break fractions and β2 := (β2,1, . . . , β2,k)
′ the associated break

magnitude parameters, such that a level break occurs at time ⌊τ ∗i T ⌋ when β2,i 6= 0 for

i = 1, . . . , k. The break fractions are assumed to be such that τ ∗i ∈ Λ for all i = 1, . . . , k.

A standard assumption in such a model is that |τ ∗i − τ ∗j | ≥ λ > 0 for all i 6= j, such that

the DGP admits (up to) k level breaks occurring at unknown points across the interval

Λ, with at least ⌊λT ⌋ observations between breaks (note that k and λ must satisfy the

relation k ≤ 1 + ⌊(τU − τL)/λ⌋).
Provided that the k possible break locations are estimated using the obvious k-

dimensional analogue of (9), a precise formula for which is given in (16) of Lavielle and

Moulines (2000, p. 38), yielding the vector of estimates, τ̂ := (τ̂1, . . . , τ̂k)
′ say, then it

can be shown that the corresponding semiparametric statistics, LMm(δ0, τ̂ ) and tm(δ0, τ̂ )

say, will have precisely the same properties as LMm(δ0, τ̂) and tm(δ0, τ̂), respectively, in

Theorem 2. That is, LMm(δ0, τ̂ )
d→ χ2

1(4c
2) and tm(δ0, τ̂ )

d→ N(2c, 1) under Hc, and

LMm(δ0, τ̂ )
d→ χ2

1 and tm(δ0, τ̂ )
d→ N(0, 1) under H0, in both cases irrespective of whether

β2,i = 0 or β2,i 6= 0 for any particular i = 1, . . . , k. The demonstration of this result is a

straightforward but tedious extension of the proof of the results stated in Theorem 2 for

the k = 1 case. In particular, the result follows using the key results that: (a) for those

of the k locations where a break does occur, i.e. for those values of i = 1, . . . , k such that

β2,i 6= 0, Lavielle and Moulines (2000) demonstrate that τ̂i
p→ τ ∗i and at the same rate

as τ̂
p→ τ ∗ in the k = 1 case, and (b) for the remaining locations where no break occurs,

i.e. for those values of i = 1, . . . , k such that β2,i = 0, analogous uniformity arguments to

those made in the proof of Theorem 2 for the k = 1 case hold.

6 Monte Carlo Evidence

We begin this section by investigating how well the large sample predictions of Theorem 2

hold in finite samples. To that end, Figures 1 and 2 graph simulated finite sample power

functions of the the feasible LM-type test, LMm(δ0; τ̂), proposed in Section 4 and the
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Figure 1: Rejection frequencies, δ0 = 0 and β2 = 0

(a) T = 512,m = ⌊T 0.65⌋
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(b) T = 512,m = ⌊T 0.80⌋
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(c) T = 1024,m = ⌊T 0.65⌋
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(d) T = 1024,m = ⌊T 0.80⌋
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corresponding Lobato and Robinson (1998) test, LMm(δ0), that does not allow for the

possibility of a level break. In the context of the LMm(δ0; τ̂) statistic we set the trimming

parameters to be τL = 0.15 and τU = 0.85. Also graphed are the power functions of

the corresponding infeasible tests, LMm(δ0; τ
∗), defined just under (8), and LM∗

m(δ0)

defined in (5). The former assumes knowledge of the true break location, τ ∗, but not the

innovations, ut, and the latter assumes knowledge of the innovations.

The simulated data used to construct the power curves in Figures 1 and 2 were gener-

ated according to the DGP in (1)–(2) for T = 512 and T = 1024 with ηt ∼ NIID(0, 1),

and where β1 was set equal to zero with no loss of generality. All of the reported tests are

for testing H0 : δ = 0 at the nominal asymptotic 5% level. The graphs depict the simu-

lated power functions of the tests under the local alternative Hc : δ = cm−1/2 for a range

of values of c and with the corresponding values of δ shown on the horizontal axes. Results

are reported for two bandwidth choices, namely m = ⌊T 0.65⌋ and m = ⌊T 0.8⌋. The results
in Figure 1 relate to the case considered in part (i) of Theorem 2 with no level break, i.e.

β2 = 0, while the results in Figure 2 relate to part (ii) of Theorem 2 for the specific case of

a level break with β2 = 2 at τ ∗ = 0.5, i.e. a break equal to two standard deviations of the

innovation process occurring midway through the sample. The simulated power curves

were computed using 10,000 Monte Carlo replications using the RNDN function of Gauss 20.

As a benchmark, we also include in each graph the corresponding asymptotic local power

curves obtained directly from the non-central χ2
1(4c

2) distribution, where c = δ
√
m.

Consider first the results in Figure 1 for the no break case. Here, given knowledge
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that no level break was present, the best possible test to use among the three considered

would be the basic Lobato and Robinson (1998) test, LMm(δ0) = LM∗
m(δ0). Against

positive values of δ this test has power closest to the asymptotic local power function

and is somewhat more powerful than the infeasible LMm(δ0; τ
∗) test, which in turn is

more powerful than the feasible LMm(δ0; τ̂) test. These differences are, however, reduced

for T = 1024 vis-à-vis T = 512 and for m = ⌊T 0.8⌋ vis-à-vis m = ⌊T 0.65⌋; indeed for

T = 1024 and m = ⌊T 0.8⌋ the differences between the three tests are quite small with all

three lying close to the asymptotic local power curve. For negative values of δ there are

only very slight differences between the three tests. Overall, the large sample predictions

from part (i) of Theorem 2 appear to hold reasonably well in finite samples, particularly

so for the larger bandwidth considered.

Consider next the the results in Figure 2 for the case where a level break of magnitude

β2 = 2 occurs. Here the infeasible LM∗
m(δ0) test no longer coincides with the feasible

Lobato and Robinson (1998) test, LMm(δ0). In this case the divergence of the LMm(δ0)

test is clearly seen, regardless of whether the null hypothesis holds or not, with the test

rejecting essentially 100% of the time even for the smaller sample size considered. The

power functions of the infeasible LMm(δ0; τ
∗) and feasible LMm(δ0; τ̂) tests essentially

coincide regardless of the sample size or bandwidth considered, suggesting that τ ∗ is very

accurately estimated by τ̂ in this case. As with the results for the no break case in Figure 1,

for positive values of δ the power curve of the feasible LMm(δ0; τ̂) test lies only slightly

below that of the infeasible LM∗
m(δ0) test, which in turn lies close to the asymptotic local

power curve, with the differences between the power curves reducing as T and/or m is

increased. For negative values of δ the power curves of the LMm(δ0; τ̂) and LM
∗
m(δ0) tests

are almost indistinguishable regardless of m or T . Again the large sample predictions

from part (ii) of Theorem 2 would appear to hold reasonably well in finite samples.

In the remainder of this section we summarise the results from an large set of Monte

Carlo experiments designed to investigate the finite sample size and power properties of

the semiparametric long memory tests proposed in Section 4. Specifically, we compare

the empirical size and power properties of the LMm(δ0; τ̂), LMm(δ0; τ
∗) and LMm(δ0)

tests featured in Figures 1 and 2 along with the corresponding t-type tests, tm(δ0; τ̂),

tm(δ0; τ
∗) and tm(δ0), respectively. Comparison is also made with the KPSS stationarity

test, denoted KPSS, together with the generalisations thereof proposed in Busetti and

Harvey (2001, 2003) which allow for a level break at either a known or unknown location,

denoted KPSS(τ ∗) and KPSS(τ̂), respectively. The full set of results together with

details of the experimental design can be found in the supplementary appendix.

We considered DGPs for {yt} of the form given in (1) testing H0 : δ = 0; both where

δ = 0 (empirical size) and where δ ∈ {−0.15, 0.15} (empirical power). The empirical size

properties of tests for H0 : δ = 0.3 and H0 : δ = −0.3 were also explored. The DGP

had either no level break or a level break at the sample midpoint with magnitude β2 ∈
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Figure 2: Rejection frequencies, δ0 = 0 and β2 = 2

(a) T = 512,m = ⌊T 0.65⌋
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(b) T = 512,m = ⌊T 0.80⌋
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(c) T = 1024,m = ⌊T 0.65⌋
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(d) T = 1024,m = ⌊T 0.80⌋
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{0.5, 1, 2}. For the empirical size results the error process ηt was allowed to follow either an

IID process, an AR(1) process or an ARCH(1) process, while for empirical power IID and

ARCH(1) processes were considered. Again we set the search set as Λ = [0.15, 0.85]. All

of the tests were implemented for both a range of fixed bandwidths and using data-driven

bandwidth rules. The principal findings of our Monte Carlo results can be summarised

as follows:

(i) As with the findings in Lobato and Robinson (1998) our results demonstrate that

the bandwidthm has a significant impact on the finite sample properties of the tests,

with a clear trade-off seen between size and power. In particular, for a given sample

size, excluding those tests which are non-similar (i.e., excluding the LMm(δ0) and

tm(δ0) tests when β2 6= 0), we observe the following general patterns: (a) for a given

pattern of weak dependence and a given bandwidth, m, the observed distortions

from the nominal (asymptotic) significance level are greater the larger is m, and

(b) empirical power against a given fixed alternative increases as the bandwidth, m,

increases. Generally, a range of bandwidths between m = ⌊T 0.5⌋ and m = ⌊T 0.65⌋
provides reasonable finite sample size control across the cases considered.

(ii) Our results suggest that the automatic bandwidth, mLR, of Lobato and Robinson

(1998) delivers a reasonable trade-off between finite sample size and power consider-

ations, at least when the data are conditionally homoskedastic. In the conditionally

heteroskedastic ARCH(1) case, the empirical size of tests based on mLR do not im-

prove, other things equal, as the sample size is increased. This is perhaps not surpris-
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ing given that themLR bandwidth rule is not consistent with the bandwidth rate im-

posed onm by Assumption 2, and we therefore recommend caution in using themLR

bandwidth rule with data which are suspected to display conditional heteroskedas-

ticity. For the KPSS-type tests, the automatic bandwidth rule recommended in Lo-

bato and Robinson (1998) also appears to deliver a reasonable size-power trade-off.

(iii) Overall, our results suggest that it may be helpful in practice to consider the auto-

matic bandwidth, mLR, together with a range of bandwidths between m = ⌊T 0.5⌋
and m = ⌊T 0.65⌋. This is what we will do in the empirical examples in Section 7.

(iv) As expected, where a level break occurs (β2 6= 0), the non-similar LMm(δ0), tm(δ0)

and KPSS tests are highly unreliable displaying severe oversize (excepting the left-

tailed tm(δ0) test which is correspondingly undersized), and hence spurious evidence

of long memory. The observed size distortions seen with these tests are higher, other

things equal, the larger is the sample size or the level break magnitude.

(v) Although asymptotically equivalent under both the null and local alternatives (cf.

Theorem 2), differences are observed between the finite sample size and power prop-

erties of the pairs of tests LMm(δ0; τ̂) and LMm(δ0; τ
∗), and tm(δ0; τ̂) and tm(δ0; τ

∗).

The LMm(δ0; τ
∗) and tm(δ0; τ

∗) tests are based on knowledge of whether a level

break occurs or not (i.e. whether β2 = 0 or β2 6= 0) and, where a break occurs, also

knowledge of the level break location τ ∗, while LMm(δ0; τ̂) and tm(δ0; τ̂) do not as-

sume knowledge of either. The differences between the finite sample properties of

these pairs of tests are seen to diminish as either the sample size or, in the case where

a level break occurs, the break magnitude increases; indeed, for the largest magni-

tude considered, β2 = 2, these differences are largely eliminated even for the smaller

of the two sample sizes considered. The observed differences between the empirical

power properties of these pairs of tests are seen to be slightly larger, other things

equal, in the case where the errors are ARCH(1) vis-à-vis the IID case. Moreover,

the finite sample differences between the pairs of tests are smallest for the tests of

H0 : δ = −0.3 and largest for the tests of H0 : δ = 0.3. Where no level break

is present, the finite sample differences between the LMm(δ0; τ̂) test and LMm(δ0)

(which assume no level break is present) are again relatively small, other things

equal, particularly for the larger sample size considered. This is also broadly true

for a comparison between the tm(δ0; τ̂) and tm(δ0) tests, although the differences are

larger than for the LM-type tests. Overall, the asymptotic theory presented in The-

orem 2 appears to provide a reasonable prediction of the finite sample behaviour of

the LMm(δ0; τ̂) and tm(δ0; τ̂) tests.

(vi) For a given DGP, the one-sided t-tests have more power (in the correct tail) than

the corresponding two-sided LM -type tests, as would be expected. Moreover, and

consistent with both the discussion concerning theoretical power rates against lo-
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cal alternatives in Shao and Wu (2007a) and the simulation findings in Lobato and

Robinson (1998), the KPSS-type tests have considerably lower power to detect de-

partures from short memory than do the corresponding LM - and t-based fractional

integration tests discussed in this paper, at least provided reasonable bandwidths

m are chosen.

7 Empirical Examples

7.1 Bitcoin Returns

We apply the semiparametric long memory tests described in this paper to the daily

returns of Bitcoin over the period 17 September 2014 to 31 December 2019, giving a total of

T = 1932 daily observations. The data were retrieved from Yahoo Finance. The logarithm

of the closing price of Bitcoin in USD is graphed in Figure 3 along with the returns series,

defined as first differences of the (log) closing price series. A visual inspection of the data

suggests the plausibility of changes in slope, implying changes in level at the same point

in the returns series, with the most obvious case being at around the beginning of 2018.

The red line on the graphs shows the fitted deterministic trend/level of the series allowing

for two breaks, the locations of which are estimated by applying the RSS-based estimator

discussed in Section 5 to the returns data setting k = 2. The estimated break dates are

24 March 2017 and 16 December 2017.

Here, and throughout the empirical examples reported in this section, we set the trim-

ming parameters equal to the same values as were used in the Monte Carlo experiments

in Section 6, that is τL = 0.15 and τU = 0.85. Where multiple breaks were estimated, we

set the minimum spacing parameter λ defined in Section 5 to λ = 0.10.

Evidence of long memory in returns would of course be in strong violation of the

efficient market hypothesis, and so it is of interest in the context of the Bitcoin return data

to testH0 : δ = 0 against the alternativeH1 : δ > 0. We do so using both the test based on

the tm(0) statistic of Lobato and Robinson (1998), which does not allow for a level break,

and the analogues of this test based on the tm(0; τ̂) and tm(0; τ̂ ) statistics allowing for the

presence of either one or two level breaks, respectively, in each case occurring at unknown

points in the sample. Following the recommendations from our Monte Carlo study we

computed the statistics for a range of values of the bandwidth parameter,m, lying between

⌊T 0.5⌋ = 43 and ⌊T 0.65⌋ = 137, inclusive, as well as for the automatic bandwidth rule,

mLR of Lobato and Robinson (1998) with the value that this takes reported in parentheses

below the outcome of the statistics. The results are summarised in Table 1. Here, and also

in Tables 3 and 4, the superscripts ∗, ∗∗ and ∗∗∗ denote outcomes which are statistically

significant at the 10%, 5% and 1% level, respectively.

Using Lobato and Robinson’s tm(0) test we can reject H0 at the 10% level when using

the data-dependent bandwidth rule, mLR, and for all but the smallest and largest of the

other bandwidths considered. The null can also be rejected at the 5% level form = 75 and
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Figure 3: Bitcoin daily data 9/17/2014 to 12/31/2019
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Table 1: Tests of H0 : δ = 0 versus H1 : δ > 0 in Bitcoin returns data

tm(0) tm(0; τ̂) tm(0; τ̂ )
m k = 0 k = 1 k = 2

⌊T 0.50⌋ 43 1.19 0.80 −0.30
50 1.34∗ 0.94 −0.21

⌊T 0.55⌋ 64 1.45∗ 1.02 −0.11
75 1.99∗∗ 1.51∗ 0.31

⌊T 0.60⌋ 93 2.02∗∗ 1.54∗ 0.33
100 1.38∗ 0.91 −0.27
125 1.57∗ 1.08 −0.13

⌊T 0.65⌋ 137 1.09 0.60 −0.59

mLR 1.62∗ 1.37∗ 0.13
(m = 510) (m = 510) (m = 510)

Note: ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% level, respectively.

m = 93. On balance we surmise from the results for the standard Lobato and Robinson

test that the short memory null hypothesis is rejected in favour of long memory in the

Bitcoin returns data. On the other hand, for the test based on tm(0; τ̂), which fits a

level break to the data, the evidence against the null hypothesis is considerably weaker

and, in particular, H0 can only be rejected at the 10% level for the set of bandwidths

m ∈ {75, 93,mLR}. Allowing for two breaks, no choice of bandwidth results in a rejection

at even the 10% level for the tm(0; τ̂ ) test. These results suggest that the finding of long

memory in Bitcoin returns by the standard Lobato and Robinson (1998) test is likely

attributable to the presence of at least one level break in the returns data.

7.2 VIX Market Volatility

In the next example we consider market volatility, measured by VIX, using daily data

from 1 January 2000 to 31 December 2019 for a total of T = 5031 observations. The data

were downloaded from Yahoo Finance and are graphed in Figure 4. The red step function

on the graph shows the fitted deterministic level of the series allowing for 5 level breaks.

It has been argued by several authors that long memory in volatility is an important
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Figure 4: VIX daily data 1/1/2000 to 12/31/2019
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Table 2: Tests of H0 : δ = 0 versus H1 : δ > 0 in VIX volatility data

tm(0) tm(0; τ̂) tm(0; τ̂ ) tm(0; τ̂ ) tm(0; τ̂ ) tm(0; τ̂ )
m k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

⌊T 0.50⌋ 70 13.39 11.35 10.71 6.01 4.86 4.74
75 14.39 12.27 11.60 6.74 5.54 5.42
100 18.98 16.51 15.63 10.06 8.61 8.47

⌊T 0.55⌋ 108 20.44 17.86 16.94 11.14 9.62 9.48
125 23.43 20.63 19.61 13.32 11.66 11.51
150 27.52 24.40 23.17 16.30 14.48 14.31

⌊T 0.60⌋ 166 30.08 26.79 25.45 18.24 16.31 16.14
175 31.49 28.10 26.71 19.29 17.30 17.13
200 35.40 31.76 30.25 22.30 20.18 19.99
225 39.17 35.30 33.68 25.23 22.96 22.76
250 42.75 38.65 36.91 27.98 25.57 25.36

⌊T 0.65⌋ 254 43.30 39.17 37.40 28.39 25.95 25.74

mLR 10.38 8.63 8.18 4.07 3.04 2.93
(m = 54) (m = 54) (m = 54) (m = 54) (m = 54) (m = 54)

Note: All statistics in this table are significant at the 1% level.

stylized fact; see e.g. Andersen et al. (2001) and references therein. Furthermore, long

memory in volatility is relevant in asset pricing. For example, Baillie et al. (1996) use

asset pricing as motivation for their FIGARCH model, and Christensen and Nielsen (2007)

discuss implications of long memory in volatilty in the context of stock pricing. Other

authors, however, suggest volatility might be a short memory process with the statistical

evidence for long memory disappearing once level shifts in the data are accounted for;

see, among others, Granger and Hyung (2004).

To investigate this further, we test the short memory null hypothesis H0 : δ = 0

against the long memory alternative H1 : δ > 0 in the VIX data. We report the outcomes

of the tm(0) statistic, the tm(0; τ̂) statistic which allows for the presence of up to one level

break, and the tm(0; τ̂ ) statistic which allows for up k level breaks and do this for each

of k = 2, . . . , 5. In view of the theoretical results in Phillips (1998) we stop at k = 5.
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We again computed these statistics for a range of values of the bandwidth parameter, m,

between ⌊T 0.5⌋ = 70 and ⌊T 0.65⌋ = 254, inclusive, together with the automatic bandwidth

rule, mLR. The results are summarised in Table 2. Following Andersen et al. (2001), we

also conducted the analysis using logarithmically transformed VIX data, and the results

were nearly identical to those reported in Table 2.

It is seen from the results in Table 2 that the short memory null hypothesis is easily

rejected at the 1% significance level for all bandwidths considered and regardless of how

many level breaks we fit to the data. The results of these tests therefore strongly suggest

that long memory is a feature of the VIX data, and that this would not appear to be

spurious long memory due to unmodelled level breaks.

7.3 U.S. CPI Inflation

We next consider U.S. CPI inflation, defined as the first differences of the logarithm of

the price index. Specifically, we used the series CPIAUCSL from the FRED database,

which is the CPI for all items, Urban consumers, seasonally adjusted, base year 1984.

We used monthly observations spanning January 1970 to December 2019, for T = 599

observations on the first differences. The log-CPI data along with the inflation data,

the latter multiplied by 1200 to return a measure that is compatible with the commonly

reported inflation rate, are both plotted in Figure 5. U.S. inflation is widely argued to

have gone through several different policy regimes over the sample period considered here,

most notably the Great Inflation period of the 1970s, the subsequent Volcker-Greenspan

era of inflation rate targeting by the U.S. Federal Reserve starting in the early 1980s, and

the response to the financial crisis of 2008. Figure 5 is indeed suggestive of the possibility

of several level breaks in the inflation data. The red step line on the graphs again shows

the fitted deterministic trend/level of the series allowing for up to four breaks. The

estimated break dates are August 1977, July 1982, January 1991, and July 2008, broadly

consistent with the regimes discussed above.

We again test the short memory null hypothesis, H0 : δ = 0, against the alternative

of (positive) long memory in the U.S. inflation data. We consider both the test based on

the tm(0) statistic of Lobato and Robinson (1998), and the corresponding tests based on

the tm(0; τ̂) and tm(0; τ̂ ) statistics allowing for the presence of up to k = 1, . . . , 4 level

breaks, in each case at unknown points in the sample. The results are reported in Table 3

again for a range of values of the bandwidth parameter, m, lying between ⌊T 0.5⌋ = 24

and ⌊T 0.65⌋ = 63, inclusive, and the data-dependent bandwidth rule, mLR.

Lobato and Robinson’s tm(0) test overwhelmingly rejects short memory at any con-

ventional significance level for all of the bandwidths considered. Allowing for the pres-

ence of level breaks considerably reduces the magnitude of the test statistics. The test

outcomes are generally still strongly significant when allowing for one or two level breaks,

but when three level breaks are allowed for, the null cannot be rejected at the 5% level
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Figure 5: U.S. CPI monthly data Jan. 1970 to Dec. 12/2019
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Table 3: Tests of H0 : δ = 0 versus H1 : δ > 0 in U.S. monthly CPI inflation data

tm(0) tm(0; τ̂) tm(0; τ̂ ) tm(0; τ̂ ) tm(0; τ̂ )
m k = 0 k = 1 k = 2 k = 3 k = 4

⌊T 0.50⌋ 24 6.59∗∗∗ 2.80∗∗∗ 1.56∗ 0.50 0.15
30 8.05∗∗∗ 3.55∗∗∗ 2.18∗∗ 1.04 0.67

⌊T 0.55⌋ 33 8.76∗∗∗ 4.00∗∗∗ 2.57∗∗∗ 1.41∗ 1.02
40 9.96∗∗∗ 4.32∗∗∗ 2.67∗∗∗ 1.50∗ 1.08

⌊T 0.60⌋ 46 10.96∗∗∗ 4.80∗∗∗ 3.08∗∗∗ 1.89∗∗ 1.44∗

50 11.72∗∗∗ 5.22∗∗∗ 3.43∗∗∗ 2.22∗∗ 1.75∗∗

60 13.04∗∗∗ 5.66∗∗∗ 3.69∗∗∗ 2.41∗∗∗ 1.93∗

⌊T 0.65⌋ 63 13.40∗∗∗ 5.78∗∗∗ 3.78∗∗∗ 2.48∗∗∗ 1.98∗∗

mLR 7.66∗∗∗ 4.46∗∗∗ 2.99∗∗∗ 2.05∗∗ 1.62∗

(m = 28) (m = 41) (m = 45) (m = 47) (m = 48)

Note: ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% level, respectively.

for bandwidths up to m = 40. When allowing for four level breaks only the tests based

on bandwidths of m = 50 and m = 63 are significant at the 5% level. Consequently, while

the standard Lobato and Robinson (1998) test presents very strong evidence in favour

of long memory in the U.S. inflation rate, tests which allows for different policy regimes

within the sample period are more suggestive that U.S. inflation is a short memory series.

7.4 Real U.S. GDP Growth Rate

Finally we consider U.S. GDP growth rates obtained as the first difference of the logarithm

of real U.S. quarterly GDP (seasonally adjusted) over the period 1947Q1 to 2019Q4

obtained from the FRED database (series GDPC1), for a total of T = 292 quarterly

observations. The data for U.S. (log) GDP and the GDP growth rates are both graphed in

Figure 6. The red line on the graphs again shows the fitted deterministic trend/level of the

series allowing for up to three breaks. The estimated break dates are 1973Q2, 1982Q3 and

2000Q2, broadly consistent with the first oil crisis, changes in the Fed policy (discussed

in the context of the U.S. CPI data in Section 7.3) and the end of the dot-com bubble.

In particular we will test the null hypothesis that growth rates are short memory,
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Figure 6: U.S. GDP quarterly data 1947Q1 to 2019Q4
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Table 4: Tests of H0 : δ = 0 versus H1 : δ < 0 in U.S. quarterly growth rates

tm(0) tm(0; τ̂) tm(0; τ̂ ) tm(0; τ̂ )
m k = 0 k = 1 k = 2 k = 3

⌊T 0.50⌋ 17 −0.12 −1.07 −1.47∗ −1.10
20 0.04 −0.90 −1.32∗ −0.89

⌊T 0.60⌋ 22 0.02 −0.89 −1.30∗ −0.89
25 0.30 −0.63 −1.05 −0.66

⌊T 0.60⌋ 30 0.19 −0.70 −1.09 −0.73
35 −0.52 −1.33∗ −1.66∗∗ −1.43∗

⌊T 0.65⌋ 40 0.02 −0.82 −1.17 −0.93

mLR 0.10 −0.83 −1.70∗∗ −1.47∗

(m = 31) (m = 32) (m = 33) (m = 34)

Note: ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% level, respectively.

H0 : δ = 0, such that the log-level of GDP follows an I(1) process, against the alternative

of negative long memory (antipersistence) in growth rates, H1 : δ < 0, such that the log-

level of GDP is less persistent than an I(1) process. As in the previous examples, we

consider the test of Lobato and Robinson (1998) based on the tm(0) statistic, and the

corresponding tests based on the tm(0; τ̂) and tm(0; τ̂ ) statistics allowing for up to k =

1, 2, 3 level breaks, in each case at unknown points in the sample. The results are reported

in Table 4 again for a range of values of the bandwidth parameter, m, lying between

⌊T 0.5⌋ = 17 and ⌊T 0.65⌋ = 40, inclusive, and the data-dependent bandwidth rule, mLR.

With only a few exceptions, the tests reported are unable to reject the null hypothesis

that GDP growth rates are short memory against H1 : δ < 0 at conventional significance

levels. The results from these tests do not therefore appear to support the conjecture of

Perron (1989) that U.S. GDP is I(0) about a broken linear trend, particularly when re-

calling that our test is of the null hypothesis that U.S. GDP is I(1) around a broken trend.

8 Conclusions

We have developed semiparametric tests, based on the score and Lagrange multiplier test-

ing principles, for the fractional order of integration of a univariate time series which may
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be subject to the presence of level breaks. This is of significant practical importance as it

is well known that long memory and level breaks can be mistaken for one another, with

unmodelled level breaks rendering standard fractional integration tests highly unreliable.

Our approach generalises the tests for the null hypothesis of weak dependence (I(0)) de-

veloped in Lobato and Robinson (1998). These tests are based on the local Whittle ap-

proach, and therefore do not require the user to specify a parametric model for any weak

autocorrelation present in the data, which is a considerable practical advantage where the

confounding effects of long memory and level breaks are present. We also show how, as

conjectured in Lobato and Robinson (1998, p. 478), their testing approach can be gener-

alised to develop tests of the null hypothesis that a series is I(δ) for any δ lying in the

usual stationary and invertible region of the parameter space, not just δ = 0. In spite of

these generalisations, our tests are shown to attain the same standard asymptotic null dis-

tributions and asymptotic local power functions as the corresponding tests in Lobato and

Robinson (1998); hence, there is no loss of asymptotic local power from allowing for level

breaks, even where no level breaks are present. Monte Carlo simulations suggest that the

tests perform well and that the predictions from the asymptotic theory appear to hold

reasonably well in finite samples. The practical relevance of our proposed tests was high-

lighted with a number of empirical examples relating to macroeconomics and finance.

Appendix A Mathematical Proofs

In this appendix we provide proofs of Theorems 1 and 2.

A.1 Proof of Theorem 1

We use the notation δc := cm−1/2, so that, under Hc, we have δ = δ0 + δc.

Consider first the proof under Assumption 1. We re-write t∗m(δ0) in (4) as

t∗m(δ0) =
−m−1/2G−1

∑m
j=1 νjλ

2δ
j j

−2δcIu(λj)

m−1G−1
∑m

j=1 λ
2δ
j j

−2δcIu(λj)
. (10)

The numerator of t∗m(δ0) in (10) is

−m−1/2

m∑

j=1

νjG
−1λ−2δc

j λ2δj Iu(λj) = −m−1/2

m∑

j=1

νjj
−2δc

(
G−1λ2δj Iu(λj)− 2πIε(λj)

)
(11)

−m−1/2

m∑

j=1

νj2πIε(λj) (12)

−m−1/2

m∑

j=1

νj(j
−2δc − 1)2πIε(λj). (13)

Letting Iε(λj) denote the periodogram of εt, (4.8) of Robinson (1995b) shows that, for
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r ≤ m,

r∑

j=1

(
Iu(λj)

Gλj
−2δ

− 2πIε(λj)

)
= Op

(
r1/3(ln(r))2/3 + r3T−2 + r1/2T−1/4

)
. (14)

Then, letting bj := νjj
−2δc and proceeding as in Robinson (1995b) it follows that the

remainder term (11) is op(1). This involves using summation by parts, (14), and the

bound |bj − bj+1| = O(j−1), which follows by elementary calculations. From (4.11) of

Robinson (1995b) it follows directly that (12) converges in distribution to N(0, 1).

Next, by a Taylor series expansion and by definition of δc, j
−2δc = 1− 2cm−1/2(ln j) +

2c2m−1(ln j)2j−2δmvt for |δmvt| ≤ |δc|, so that (13) is

2cm−1

m∑

j=1

νj(ln j)2πIε(λj) + 2c2m−3/2

m∑

j=1

νj(ln j)
2j−2δmvt2πIε(λj). (15)

Writing ln j = νj +m−1
∑m

k=1 ln k, the first term of (15) is

2cm−1

m∑

j=1

ν2j 2πIε(λj) + 2cm−1

(
m−1

m∑

k=1

ln k

)
m∑

j=1

νj2πIε(λj).

Noting that 2cm−1
∑m

j=1 ν
2
j 2πE(Iε(λj)) = 2cm−1

∑m
j=1 ν

2
j → 2c, the first term converges

in probability to 2c by a law of large numbers. Using the result for (12) and the fact

that m−1
∑m

k=1 ln k = O(lnm), the second term is Op(m
−1/2 lnm) = op(1). Next, the

expectation of the absolute value of the second term of (15) is

O

(
m−3/2

m∑

j=1

νj(ln j)
2j2|δc|

)
= O

(
m−1/2(lnm)3m2|δc|) = o(1),

where the last equality follows because m1/2 ≥ lnm, which implies m2|δc| ≤ m2|c|/ lnm =

e2|c|. This shows that the second term of (15) converges to zero in L1-norm and hence in

probability.

The denominator of t∗m(δ0) in (10) may be analyzed in the same way to establish the

result that m−1
∑m

j=1 λ
2δ
j j

−2δc2πIu(λj) →p G. The claim of Theorem 1 under Assump-

tion 1 follows by combining these results.

Next, we prove the theorem under Assumption 2. Instead of the bound (14) from (4.8)

of Robinson (1995b), we let αT (λ) := (1− eiλ)−(δ0+δc) and use Lemma 4 of Shao and Wu

(2007a), where it is shown that, under Assumption 2,

r∑

j=1

(
Iu(λj)

|αT (λj)|2f(λj)
− Iη(λj)

f(λj)

)
= Op

(
r1/4(ln r)1/2 + r1/2T−1/4

)
. (16)

Denoting α(λj) := (1− eiλ)−δ0 and αc(λj) := (1− eiλ)−δc , so that αT (λj) = α(λj)αc(λj),

23



the (scaled negative) numerator of t∗m(δ0) in (4) is

G−1

m∑

j=1

νjλ
2δ0
j Iu(λj) =

m∑

j=1

νjG
−1λ−2δc

j λ2δj Iu(λj)

=
m∑

j=1

νjG
−1λ−2δc

j |αc(λj)|−2f(λj)
−1|αc(λj)|2f(λj)|αT (λj)|2|αT (λj)|−2λ2δj Iu(λj)

=
m∑

j=1

νj|αc(λj)|2|αT (λj)|−2f(λj)
−1Iu(λj) + op(m

1/2), (17)

where the last equality follows by using bounds for the low-frequency approximation of the

ratio of f(λj) to G, see Assumption 2(iii), and of |αT (λj)|2 to λ−2δ
j as in Robinson (1995b).

For the leading term in (17), we let bj := νj|αc(λj)|2 (with slight abuse of notation),

and re-write it as

m∑

j=1

bj
(
|αT (λj)|−2f(λj)

−1Iu(λj)− f(λj)
−1Iη(λj)

)
(18)

+
m∑

j=1

bjf(λj)
−1Iη(λj). (19)

As in the analysis of (11) it holds that (18) is op(1) using (16). The term (19) is asymp-

totically normal as shown in Shao and Wu (2007a). As in the previous case, the same

arguments also give m−1
∑m

j=1 λ
2δ
j 2πIu(λj) →p G, and the claim of Theorem 1 under As-

sumption 2 follows combining these results.

A.2 Proof of Theorem 2

Let W (τ ; d) denote a type I fractional Brownian motion; that is, with E(W (τ ; d)2) =

τ 2(d−1/2), andW (τ ; 0) a standard brownian motion. Also let κ(d) := A(d)
Γ(d+1)

, where A(d) :=
(

1
1+2δ

+
∫∞
0
((1 + s)d − sd)2ds

)1/2
. Then we have the following result.

Lemma 1. Under Hc and either Assumption 3 or Assumption 4, T−(1/2+δ0)
∑⌊τT ⌋

t=1 ut ⇒
κ(δ0)(2πf(0))

1/2W (τ ; δ0) as a càdlàg process indexed by τ ∈ Λ.

Proof of Lemma 1. Given that δ0 < 1/2, for m large enough there is δ = 1/2− ǫ such

that δ0 < δ and δ < δ. Using a mean value theorem expansion,

ut = ∆−δηt = ∆−δ0ηt + (cm−1/2)(− ln∆)∆−δ0ηt

+ 1/2(cm−1/2)2(− ln∆)2∆−δ0ηt + . . .+ 1/(k!)(cm−1/2)k(− ln∆)k∆−δmvtηt, (20)

where |δmvt − δ0| < |δ − δ0| and k is an integer to be chosen.

From the fractional FCLT, the first term on the right-hand side of (20) satisfies

T−(1/2+δ0)

⌊τT ⌋∑

t=1

∆−δ0ηt ⇒ κ(δ0)(2πf(0))
1/2W (τ ; δ0)
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in the Skorohod metric; see, e.g., Hosoya (2005) and Wu and Shao (2006). Moreover,

because the jumps in the partial sums take place at fixed points in time, and the limit

W (τ ; δ) is a.s. continuous, the weak convergence also takes place in the uniform metric.

By the same argument, including a slowly varying function, it follows that

1

ln(T )
T−(1/2+δ0)

⌊τT ⌋∑

t=1

(− ln∆)∆−δ0ηt = Op(1),

and hence cm−1/2T−(1/2+δ0)
∑⌊τT ⌋

t=1 (− ln∆)∆−δ0ηt = op(1); in both cases uniformly in τ .

The k−2 remaining terms in the expansion of ∆−δηt in (20) can be analyzed the same way.

For the last term on the right-hand side of (20), notice that

E((− ln∆)k∆−δmvtηt)
2 =

∫ π

−π

|1− eiλ|−2δmvt(ln |1− eiλ|)2kf(λ)dλ

≤
∫ π

−π

|1− eiλ|−2δ(ln |1− eiλ|)2kf(λ)dλ <∞,

where we recall that f(λ) is the spectral density of ηt, which is bounded, uniformly in λ,

under either Assumption 3 or Assumption 4. Then, by the Cauchy-Schwarz inequality,

⌊τT ⌋∑

t=1

(− ln∆)k∆−δmvtηt ≤
(

T∑

t=1

((− ln∆)k∆−δmvtηt)
2

)1/2

T 1/2 = Op(T ),

and note that this is uniform in τ . So, upon choosing k finite but sufficiently large,

T−(1/2+δ0)m−k/2T → 0 by Assumption 3(iv) or Assumption 4(iv), and consequently

T−(1/2+δ0)
(cm−1/2)k

k!

⌊τT ⌋∑

t=1

(ln∆)k∆−δmvtηt = op(1).

Combining these arguments we obtain the desired result.

In what follows, results for stochastic of functionals of τ are to be considered as uniform

in τ , unless otherwise specified. We omit the the reference to uniformity in τ for brevity.

A.2.1 Proof of Theorem 2(i)

We prove that, when β2 = 0, tm(δ0; τ)− t∗m(δ0) = op(1) uniformly in τ . It is sufficient to

show that

m−1/2

m∑

j=1

νjλ
2δ0
j Iû(τ)(λj)−m−1/2

m∑

j=1

νjλ
2δ0
j Iu(λj) = op(1), (21)

m−1

m∑

j=1

λ2δ0j Iû(τ)(λj)−m−1

m∑

j=1

λ2δ0j Iu(λj) = op(1). (22)

We give only the proof of (21). The proof of (22) is almost identical leaving out the factor

νj and noting the different normalization.
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We first note that

wû(τ)(λj) = (β − β̂(τ))′wx(τ)(λj) + wu(λj) = −β̂2(τ)wDU(τ)(λj) + wu(λj),

Iû(τ)(λj) = β̂2(τ)
2IDU(τ)(λj) + Iu(λj)− 2Re

(
wDU(τ)(λj)wu(−λj)

)
β̂2(τ).

The absolute value of the left-hand side of (21) is then

∣∣∣∣∣m
−1/2

m∑

j=1

νjλ
2δ0
j IDU(τ)(λj)β̂2(τ)

2 − 2m−1/2

m∑

j=1

νjλ
2δ0
j Re

(
wDU(τ)(λj)wu(−λj)

)
β̂2(τ)

∣∣∣∣∣

≤ m−1/2

m∑

j=1

|νj|λ2δ0j IDU(τ)(λj)β̂2(τ)
2 (23)

+ Cm−1/2

m∑

j=1

|νj|λ2δ0j

∣∣Re
(
wDU(τ)(λj)wu(−λj)

)∣∣ |β̂2(τ)|. (24)

From Iacone (2010) we have the bound

IDU(τ)(λj) ≤ C(j/T )−1j−1, (25)

and the bound β̂2(τ) = Op(T
−1/2+δ0) follows from an application of Lemma 1 to the

regression estimate. Applying also the simple bound |νj| = O(lnm), the term (23) is

m−1/2

m∑

j=1

|νj|λ2δ0j IDU(τ)(λj)β̂2(τ)
2 = Op

(
(lnm)m−1/2

m∑

j=1

(
j

T

)2δ0 ( j
T

)−1

j−1T−1+2δ0

)

= Op

(
(lnm)m−1/2

m∑

j=1

j2δ0−2

)
= Op

(
(lnm)m−1/2

)
= op(1).

For the term (24), first note that E
∣∣λ2δj Iu(λj)

∣∣ < C, see Lemma 3 of Shao and Wu

(2007a), the proof of which also applies under Assumption 3. Thus, (24) is bounded by

Cm−1/2

m∑

j=1

|νj|λ2δ0j

∣∣Re
(
wDU(τ)(λj)wu(−λj)

)∣∣ |β̂2(τ)|

= Op

(
(lnm)m−1/2

m∑

j=1

(
j

T

)2δ0 ( j
T

)−1/2

j−1/2

(
j

T

)−δ

T−1/2+δ0

)

= Op

(
(lnm)m−1/2T δ−δ0

m∑

j=1

j(δ0−1)+(δ0−δ)

)
.

Note that, by mean value expansion, T δ−δ0 = 1+cm(−1/2)(lnT )T δmvt−δ0 , where |δmvt−δ0| ≤
|δ− δ0|. Thus, for T large enough, |T δ0−δ − 1| < cm(−1/2)(lnT )T ǫ for any ǫ > 0 arbitrarily

small. Thus, T δ0−δ → 1 = O(1). The term j(δ0−1)+(δ0−δ) can be discussed in the same
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way. Therefore, the stochastic order of (24) is

Op

(
(lnm)m−1/2

m∑

j=1

j(δ0−1)

)
= Op

(
(lnm)2m−1/2mmax(δ0,0)

)
,

which is op(1) recalling that δ0 < 1/2.

A.2.2 Proof of Theorem 2(ii)

We prove that, when β2 6= 0, tm(δ0; τ̂) − t∗m(δ0) = op(1). Because β2 6= 0, we have to

account for the difference between τ̂ and τ ∗. We first notice that Assumption H1 of

Lavielle and Moulines (2000) holds both under Assumption 1 and under Assumption 2,

in view of the stationarity of ut. Following Theorem 7 of Lavielle and Moulines (2000),

for any |δ| < 1/2,

τ̂ − τ ∗ = Op(T
−1). (26)

Proceeding as Bai (1994) and Iacone et al. (2019), we also establish β2−β̂2(τ̂) = Op(T
δ0−1/2).

Notice here that the key step of the proof in Iacone et al. (2019) exploits the rate in (26),

the Hájek-Rényi-type inequality in (8) of Lavielle and Moulines (2000), and the fractional

FCLT.

We now re-write

ût(τ̂) = β1 + β2DUt(τ
∗) + ut − β̂1(τ̂)− β̂2(τ̂)DUt(τ̂)

= β1 + β2DUt(τ
∗)− β̂2(τ̂)DUt(τ

∗) + β̂2(τ̂)DUt(τ
∗) + ut − β̂1(τ̂)− β̂2(τ̂)DUt(τ̂)

= (β1 − β̂1(τ̂)) + (β2 − β̂2(τ̂))DUt(τ
∗) + ut + β̂2(τ̂)(DUt(τ

∗)−DUt(τ̂)),

and thus

Iû(τ̂)(λj) = Iu(λj) + (β2 − β̂2(τ̂))
2IDU(τ∗)(λj) + β̂2(τ̂)

2I(DU(τ∗)−DU(τ̂))(λj)

+ 2Re
(
wDU(τ∗)(λj)wu(−λj)

)
(β2 − β̂2(τ̂))

+ 2(β2 − β̂2(τ̂)) Re
(
wDU(τ∗)(λj)wDUt(τ∗)−DUt(τ̂)(−λj)

)
β̂2(τ̂)

+ 2Re
(
wu(λj)wDUt(τ∗)−DUt(τ̂)(−λj)

)
β̂2(τ̂).

Proceeding as in the proof of part (i), we need to show that

m−1/2(lnm)
m∑

j=1

λ2δ0j

∣∣∣(β2 − β̂2(τ̂))
2IDU(τ∗)(λj)

∣∣∣ = op(1), (27)

m−1/2(lnm)
m∑

j=1

λ2δ0j

∣∣∣2Re
(
wDU(τ∗)(λj)wu(−λj)

)
(β2 − β̂2(τ̂))

∣∣∣ = op(1), (28)
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and

m−1/2(lnm)

∣∣∣∣∣

m∑

j=1

β̂2(τ̂)λ
2δ0
j I(DU(τ∗)−DU(τ̂))(λj)

∣∣∣∣∣ = op(1), (29)

m−1/2(lnm)
m∑

j=1

|β2 − β̂2(τ̂)|λ2δ0j

∣∣Re
(
wDU(τ∗)(λj)wDUt(τ∗)−DUt(τ̂)(−λj)

)∣∣ |β̂2(τ̂)| = op(1),

(30)

m−1/2(lnm)
m∑

j=1

λ2δ0j

∣∣Re
(
wu(λj)wDUt(τ∗)−DUt(τ̂)(−λj)

)∣∣ |β̂2(τ̂)| = op(1). (31)

The bounds in (27) and in in (28) follow as in the discussion of (23) and (24), respectively.

Next, assuming without loss of generality that τ̂ < τ ∗,

w(DU(τ∗)−DU(τ̂))(λ) =
1√
2πT

⌊τ∗T ⌋+1∑

t=⌊τ̂T ⌋
eiλ,

∣∣w(DU(τ∗)−DU(τ̂))(λ)
∣∣ ≤ 1√

2πT
(⌊τ ∗T ⌋ − ⌊τ̂T ⌋) = Op(T

−1/2),

and hence IDU(τ∗)−DU(τ̂)(λj) = Op(T
−1). Thus, since β̂2(τ̂) →p β2, (29) is of order

Op

(
m−1/2(lnm)

m∑

j=1

j2δ0T−2δ0T−1

)
= Op

(
m−1/2(lnm)T−2δ0−1m2δ0+1

)
= op(1).

The term (30) is, using (25),

Op

(
m−1/2(lnm)T δ0−1/2

m∑

j=1

j2δ0T−2δ0(T 1/2j−1T−1/2)

)

= Op

(
m−1/2(lnm)T−δ0−1/2

m∑

j=1

j2δ0−1

)
= Op

(
m−1/2(lnm)2T−δ0−1/2mmax(2δ0,0)

)
,

which is op(1).

Finally, (31) is of order

Op

(
m−1/2(lnm)

m∑

j=1

jδ0+(δ0−δ)T−δ0−(δ0−δ)T−1/2

)
= Op

(
mδ0+1/2(lnm)T−δ0−1/2

)
= op(1).
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Abstract

This supplementary appendix contains a Monte Carlo simulation study investigating
the finite sample performance of the tests discussed in the main paper. Section S.1
provides details of the Monte Carlo simulation designs considered. Sections S.2
and S.3 provide details of the DGPs used to investigate empirical size and power,
respectively. All results are discussed in Section 6 in the main paper.

Equation references (S.n) for n ≥ 1 refer to equations in this supplementary ap-
pendix and other equation references are to the main paper. Additional biblio-
graphic references are included at the end of the supplement.

S.1 Monte Carlo Design

We conducted a Monte Carlo simulation study to investigate the finite sample perfor-

mance of our proposed tests based on the LMm(δ0; τ̂) and tm(δ0; τ̂) statistics, explor-

ing cases where no trend break occurs and where a trend break occurs. We investigate

both finite sample size under the null hypothesis and finite sample power. As bench-

marks for comparison, we also simulate the tests of Lobato and Robinson (1998), based

on the LMm(δ0) and tm(δ0) statistics, neither of which allows for the presence of a level

break; recall that, strictly speaking, Lobato and Robinson (1998) only considered tests

of the short memory null hypothesis, H0 : δ = 0, based on the LMm(0) and tm(0) statis-

tics. The behaviour of these tests in the no break case where β2 = 0 may be viewed as

∗Correspondence to: Robert Taylor, Essex Business School, University of Essex, Colchester, CO4 3SQ,
U.K. E-mail: robert.taylor@essex.ac.uk
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important benchmarks to compare the LMm(δ0; τ̂) and tm(δ0; τ̂) tests against. Notice,

moreover, that the results given for LMm(δ0) and tm(δ0) for β2 = 0 coincide with the re-

sults that would obtain for the infeasible LM∗

m(δ0) and t∗m(δ0) tests for any value of β2

and so the results given for LMm(δ0) and tm(δ0) for β2 = 0 also provide a useful bench-

mark to compare the LMm(δ0; τ̂) and tm(δ0; τ̂) tests against for cases where β2 6= 0. As

further benchmarks, we also include the intermediate, and infeasible, tests based on the

LMm(δ0; τ
∗) and tm(δ0; τ

∗) statistics; these statistics assume knowledge of the location of

the level break, τ ∗, but not of its magnitude, β2. For tests based on the tm(δ0), tm(δ0; τ
∗)

and tm(δ0; τ̂) statistics, results are reported for both left- and right-tailed tests.

Comparison is also made with the stationarity test of KPSS, which does not allow for

the presence of a level break. Although designed for testing the null hypothesis of short

memory against a unit root alternative, as discussed in the introduction this test does have

power against positive long memory alternatives. To account for a level break (β2 6= 0),

Busetti and Harvey (2001, 2003) recommend computing the KPSS statistic using the

OLS residuals obtained from a regression on (1, DUt(τ
∗))′ or (1, DUt(τ̂))

′; we also include

these tests in our comparisons, denoting them by KPSS(τ ∗) and KPSS(τ̂), respectively.

Notice that, in contrast to what happens in the case of the LM-type statistics discussed

in this paper, the additional regressor DUt(τ
∗), alters the limiting null distribution and,

hence, the critical value of the KPSS tests.

All reported experiments are run over 10,000 Monte Carlo replications using the RNDN

function of Gauss 20. Our simulation DGP is given by (1) with β1 = 0 (without loss of

generality) and β2 ∈ {0, 0.5, 1, 2}, with the break location set as τ ∗ = 0.5. Notice that

LMm(δ0; τ
∗), tm(δ0; τ

∗) and KPSS(τ ∗) are exact invariant with respect to β2. For those

tests involving the RSS-based break location estimate, τ̂ , we set Λ = [0.15, 0.85]. All

reported results relate to a nominal asymptotic 0.05 level using the relevant critical value

from the χ2
1 or N(0, 1) distribution as appropriate. Results are reported for samples of

size T = 512 and T = 1024.

To make the LM-type tests discussed in this paper operational we need to specify a

bandwidth, m. The finite sample behaviour of these tests is strongly dependent on the

choice of m, as shown in Lobato and Robinson (1998) in the context of the LMm(0)

and tm(0) tests. Like Lobato and Robinson (1998) we will explore the behaviour of our

proposed tests for both a range of fixed bandwidths and for a data-driven rule. For the

former we will consider m = ⌊T a⌋ for a ∈ {0.40, 0.45, . . . , 0.80}. For the latter we will

consider an automatic bandwidth of the type developed by Lobato and Robinson (1998)

in the context of the LMm(0) and tm(0) tests. This is based on the assumption that ηt

follows an AR(1) process, and is given by

mLR :=

(
3T

4π

)4/5
∣∣∣∣∣

−φ̃

(1− φ̃)2

∣∣∣∣∣

−2/5

, (S.1)
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where φ̃ is the first-order sample autocorrelation of yt, with mLR set equal to ⌊0.06T 0.8⌋

if it falls below this lower bound and equal to ⌊1.2T 0.8⌋ if it lies above this upper bound.1

The mLR automatic bandwidth in (S.1) does not account for the possibility of a level

break in (1), as would be needed for use with the LMm(δ0; τ̂) and tm(δ0; τ̂) tests and the

LMm(δ0; τ
∗) and tm(δ0; τ

∗) tests. This can be accommodated simply by estimating φ̃ from

the residuals of the regression of yt on (1, DUt(τ
∗))′ for the LMm(δ0; τ

∗) and tm(δ0; τ
∗)

tests, or on (1, DUt(τ̂))
′ for the LMm(δ0; τ̂) and tm(δ0; τ̂) tests.

Furthermore, the mLR rule in (S.1) is designed for tests of the null hypothesis H0 :

δ = 0. For the generic null hypothesis, H0 : δ = δ0, it needs to be modified as follows.

Introduce the operator ∆δ0
+ , such that for a generic series ζt, ∆

δ0
+ ζt :=

∑t
s=1

πt−sζs, where

πt denotes the term t of the binomial expansion of ∆δ0 . The mLR automatic bandwidth

for generic δ0 is then given by (S.1), where φ̃ is the first-order autocorrelation of ∆δ0
+ ξt

and ξt denotes the residuals from a regression of yt on 1 for the LMm(δ0) and tm(δ0)

tests, on (1, DUt(τ
∗))′ for the LMm(δ0; τ

∗) and tm(δ0; τ
∗) tests, or on (1, DUt(τ̂))

′ for the

LMm(δ0; τ̂) and tm(δ0; τ̂) tests.

The KPSS-type tests require an estimate of the long-run variance of ηt. As is standard,

we adopt a sums-of-covariances based estimator using the Bartlett kernel with bandwidth

M . Regarding the latter, we follow Lobato and Robinson (1998) and use

MLR := min

(⌊
1.1447

(
4φ̃2T (1− φ̃)−2(1 + φ̃)−2

)1/3
⌋
,
⌊
12 (T/100)1/5

⌋)
,

where φ̃ is defined in the same way as for the corresponding mLR bandwidth. We also

report results for the deterministic bandwidth choice, Me := ⌊4(T/100)2/9⌋, which is the

default setting in EViews if the automatic bandwidth option is not used; see EViews 10

User’s Guide 2, Equation (39.43). This is also the default starting setting in the automatic

bandwidth selection in Newey and West (1994).

S.2 Simulation DGPs: Empirical Size

We investigate the empirical size properties of the tests, generating ut in (1) as an

ARFIMA(1,δ,0) process; that is, ut = ∆−δηt, ηt = φηt−1 + εt, with εt generated as either

an NIID(0,1) sequence of variables or as an ARCH(1) process.

Specifically, results are reported in Tables S.1–S.10 for the following cases:2

• Tables S.1 and S.2, NIID: δ = 0, φ = 0, εt ∼ NIID(0, 1).

1We also considered the automatic bandwidth rule of Delgado and Robinson (1996) which does not
assume that ηt follows an AR(1) process. We found that the tests based on this performed far worse than
those based on mLR, regardless of whether ηt was an AR(1) process or not. Consequently these results
are not reported.

2We considered a much wider set of simulation DGPs for both size and power than are reported here,
including higher-order ARFIMA processes; the broad conclusions drawn from these additional results
were qualitatively similar to those drawn from the simulation DGPs reported here.
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• Tables S.3 and S.4, AR(1): δ = 0, φ = 0.5, εt ∼ NIID(0, 1).

• Tables S.5 and S.6, ARCH(1): δ = 0, φ = 0, εt = σtzt, zt ∼ NIID(0, 1), σ2
t =

1/(1− 0.5) + 0.5ε2t−1.

• Tables S.7 and S.8, ARFIMA(0,0.3,0): δ = 0.3, φ = 0, εt ∼ NIID(0, 1).

• Tables S.9 and S.10, ARFIMA(0,−0.3,0): δ = −0.3, φ = 0, εt ∼ NIID(0, 1).

In the case of the ARCH(1) model in Tables S.5 and S.6, the process was initiated at

σ2
1 = 1 such that the unconditional variance of εt is unity as in the NIID(0,1) case. The

results reported in Tables S.1–S.6 relate to tests of the null hypothesis H0 : δ = 0, while

the results in Tables S.7 and S.8 relate to tests of the null hypothesis H0 : δ = 0.3, and

the results in Tables S.9 and S.10 relate to tests of the null hypothesis H0 : δ = −0.3.

Notice that results for the KPSS-type tests are not reported in Tables S.7–S.10 as these

are only appropriate for testing the null hypothesis H0 : δ = 0.

S.3 Simulation DGPs: Empirical Power

We investigate the empirical power properties of the tests by generating ut = ∆−δεt in (1)

with εt being either an NIID(0,1) process or an ARCH(1) process. Results are reported

in Tables S.11–S.18 for the following cases:

• Tables S.11 and S.12, NIID: δ = −0.15, εt ∼ NIID(0, 1).

• Tables S.13 and S.14, NIID: δ = 0.15, εt ∼ NIID(0, 1).

• Tables S.15 and S.16, ARCH(1): δ = −0.15, εt = σtzt, zt ∼ NIID(0, 1), σ2
t =

1/(1− 0.5) + 0.5ε2t−1.

• Tables S.17 and S.18, ARCH(1): δ = 0.15, εt = σtzt, zt ∼ NIID(0, 1), σ2
t =

1/(1− 0.5) + 0.5ε2t−1.

In each case we consider tests of the null hypothesis H0 : δ = 0. The KPSS-type tests

are only reported in the DGPs with positive long memory, δ = 0.15; in the DGPs with

negative long memory, δ = −0.15, no rejections are observed, as would be expected. For

the same reason, only right-tailed t-tests are reported for δ = 0.15 and only left-tailed t-

tests for δ = −0.15.

Moreover, results for the LMm(δ0), tm(δ0) and (where relevant) KPSS tests that do

not estimate a break, are reported only for β2 = 0, as these tests are not size controlled

(even asymptotically) when β2 6= 0.

Additional References
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Table S.1: Empirical null rejection frequencies. DGP ut = εt, εt ∼ NIID(0, 1). Tests of
H0 : δ = 0. T = 512. Nominal asymptotic 5% level tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.007 0.852 1.000 1.000 0.003 0.001 0.002 0.003 0.003
⌊T 0.45⌋ = 16 0.010 0.908 1.000 1.000 0.004 0.003 0.003 0.005 0.005
⌊T 0.50⌋ = 22 0.015 0.935 1.000 1.000 0.007 0.005 0.005 0.007 0.007
⌊T 0.55⌋ = 30 0.016 0.953 1.000 1.000 0.008 0.009 0.009 0.009 0.008
⌊T 0.60⌋ = 42 0.021 0.957 1.000 1.000 0.014 0.014 0.013 0.014 0.015
⌊T 0.65⌋ = 57 0.027 0.956 1.000 1.000 0.021 0.022 0.019 0.020 0.021
⌊T 0.70⌋ = 78 0.029 0.951 1.000 1.000 0.025 0.028 0.023 0.026 0.024
⌊T 0.75⌋ = 107 0.034 0.942 1.000 1.000 0.029 0.032 0.029 0.029 0.029
⌊T 0.80⌋ = 147 0.036 0.930 1.000 1.000 0.030 0.036 0.030 0.029 0.030

mLR 0.029 0.916 1.000 1.000 0.025 0.029 0.027 0.026 0.026
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 12 0.002 0.000 0.000 0.000 0.003 0.006 0.003 0.003 0.003
⌊T 0.45⌋ = 16 0.003 0.000 0.000 0.000 0.007 0.012 0.008 0.008 0.008
⌊T 0.50⌋ = 22 0.006 0.000 0.000 0.000 0.013 0.024 0.014 0.012 0.012
⌊T 0.55⌋ = 30 0.010 0.000 0.000 0.000 0.016 0.031 0.020 0.017 0.017
⌊T 0.60⌋ = 42 0.014 0.000 0.000 0.000 0.023 0.043 0.029 0.025 0.023
⌊T 0.65⌋ = 57 0.020 0.000 0.000 0.000 0.030 0.056 0.038 0.032 0.030
⌊T 0.70⌋ = 78 0.025 0.000 0.000 0.000 0.034 0.061 0.043 0.035 0.034
⌊T 0.75⌋ = 107 0.028 0.000 0.000 0.000 0.039 0.066 0.049 0.042 0.038
⌊T 0.80⌋ = 147 0.034 0.000 0.000 0.000 0.044 0.074 0.057 0.047 0.044

mLR 0.027 0.000 0.000 0.000 0.038 0.065 0.047 0.040 0.038
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 12 0.017 0.919 1.000 1.000 0.006 0.002 0.004 0.007 0.007
⌊T 0.45⌋ = 16 0.025 0.950 1.000 1.000 0.010 0.003 0.007 0.010 0.010
⌊T 0.50⌋ = 22 0.028 0.964 1.000 1.000 0.013 0.004 0.010 0.012 0.012
⌊T 0.55⌋ = 30 0.030 0.973 1.000 1.000 0.013 0.005 0.012 0.013 0.014
⌊T 0.60⌋ = 42 0.038 0.976 1.000 1.000 0.018 0.006 0.012 0.017 0.018
⌊T 0.65⌋ = 57 0.039 0.973 1.000 1.000 0.021 0.008 0.014 0.021 0.021
⌊T 0.70⌋ = 78 0.045 0.970 1.000 1.000 0.026 0.010 0.018 0.026 0.026
⌊T 0.75⌋ = 107 0.047 0.964 1.000 1.000 0.030 0.013 0.020 0.029 0.030
⌊T 0.80⌋ = 147 0.048 0.954 1.000 1.000 0.031 0.013 0.021 0.029 0.031

mLR 0.042 0.945 1.000 1.000 0.028 0.011 0.018 0.024 0.027
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.051 0.999 1.000 1.000 0.049 0.038 0.042 0.046 0.048
MLR 0.048 0.998 1.000 1.000 0.047 0.045 0.042 0.045 0.046

Note: tm,L denotes alternative H1 : δ < 0 ; tm,R denotes alternative H1 : δ > 0.
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Table S.2: Empirical null rejection frequencies. DGP ut = εt, εt ∼ NIID(0, 1). Tests of
H0 : δ = 0. T = 1024. Nominal asymptotic 5% level tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 16 0.008 0.999 1.000 1.000 0.004 0.003 0.004 0.004 0.004
⌊T 0.45⌋ = 22 0.015 1.000 1.000 1.000 0.009 0.006 0.008 0.008 0.009
⌊T 0.50⌋ = 32 0.021 1.000 1.000 1.000 0.014 0.013 0.013 0.014 0.015
⌊T 0.55⌋ = 45 0.023 1.000 1.000 1.000 0.016 0.017 0.015 0.016 0.016
⌊T 0.60⌋ = 63 0.025 1.000 1.000 1.000 0.020 0.020 0.019 0.019 0.020
⌊T 0.65⌋ = 90 0.031 1.000 1.000 1.000 0.024 0.027 0.024 0.023 0.024
⌊T 0.70⌋ = 127 0.034 1.000 1.000 1.000 0.030 0.030 0.031 0.030 0.030
⌊T 0.75⌋ = 181 0.035 1.000 1.000 1.000 0.032 0.035 0.033 0.033 0.032
⌊T 0.80⌋ = 256 0.037 0.999 1.000 1.000 0.034 0.038 0.035 0.035 0.034

mLR 0.035 0.998 1.000 1.000 0.033 0.037 0.034 0.033 0.033
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 16 0.004 0.000 0.000 0.000 0.009 0.013 0.008 0.008 0.008
⌊T 0.45⌋ = 22 0.007 0.000 0.000 0.000 0.013 0.022 0.014 0.013 0.013
⌊T 0.50⌋ = 32 0.012 0.000 0.000 0.000 0.019 0.035 0.020 0.019 0.019
⌊T 0.55⌋ = 45 0.016 0.000 0.000 0.000 0.025 0.044 0.028 0.026 0.026
⌊T 0.60⌋ = 63 0.019 0.000 0.000 0.000 0.028 0.050 0.030 0.029 0.028
⌊T 0.65⌋ = 90 0.026 0.000 0.000 0.000 0.038 0.060 0.043 0.039 0.038
⌊T 0.70⌋ = 127 0.028 0.000 0.000 0.000 0.040 0.065 0.046 0.041 0.040
⌊T 0.75⌋ = 181 0.031 0.000 0.000 0.000 0.041 0.068 0.050 0.043 0.041
⌊T 0.80⌋ = 256 0.034 0.000 0.000 0.000 0.045 0.074 0.056 0.050 0.046

mLR 0.033 0.000 0.000 0.000 0.045 0.070 0.053 0.047 0.045
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 16 0.022 0.999 1.000 1.000 0.010 0.003 0.009 0.009 0.010
⌊T 0.45⌋ = 22 0.029 1.000 1.000 1.000 0.013 0.005 0.013 0.014 0.014
⌊T 0.50⌋ = 32 0.034 1.000 1.000 1.000 0.018 0.006 0.016 0.018 0.018
⌊T 0.55⌋ = 45 0.036 1.000 1.000 1.000 0.021 0.006 0.018 0.021 0.020
⌊T 0.60⌋ = 63 0.038 1.000 1.000 1.000 0.022 0.008 0.020 0.023 0.023
⌊T 0.65⌋ = 90 0.043 1.000 1.000 1.000 0.027 0.011 0.023 0.027 0.027
⌊T 0.70⌋ = 127 0.045 1.000 1.000 1.000 0.030 0.014 0.026 0.029 0.030
⌊T 0.75⌋ = 181 0.044 1.000 1.000 1.000 0.030 0.014 0.026 0.029 0.030
⌊T 0.80⌋ = 256 0.047 0.999 1.000 1.000 0.033 0.017 0.027 0.031 0.032

mLR 0.041 0.999 1.000 1.000 0.029 0.015 0.024 0.028 0.029
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.052 1.000 1.000 1.000 0.046 0.042 0.045 0.046 0.047
MLR 0.053 1.000 1.000 1.000 0.045 0.045 0.044 0.043 0.045

Note: tm,L denotes alternative H1 : δ < 0 ; tm,R denotes alternative H1 : δ > 0.
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Table S.3: Empirical null rejection frequencies. DGP ut = φut−1 + εt, φ = 0.5, εt ∼
NIID(0, 1). Tests of H0 : δ = 0. T = 512. Nominal asymptotic 5% level tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.008 0.205 0.862 1.000 0.003 0.001 0.001 0.002 0.003
⌊T 0.45⌋ = 16 0.012 0.274 0.921 1.000 0.005 0.003 0.002 0.003 0.005
⌊T 0.50⌋ = 22 0.020 0.333 0.954 1.000 0.008 0.004 0.004 0.005 0.007
⌊T 0.55⌋ = 30 0.030 0.405 0.976 1.000 0.014 0.007 0.008 0.012 0.014
⌊T 0.60⌋ = 42 0.072 0.523 0.990 1.000 0.040 0.015 0.019 0.031 0.038
⌊T 0.65⌋ = 57 0.191 0.693 0.997 1.000 0.128 0.064 0.078 0.104 0.122
⌊T 0.70⌋ = 78 0.539 0.899 1.000 1.000 0.448 0.311 0.345 0.399 0.434
⌊T 0.75⌋ = 107 0.939 0.994 1.000 1.000 0.910 0.846 0.864 0.890 0.902
⌊T 0.80⌋ = 147 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000

mLR 0.042 0.432 0.976 1.000 0.022 0.010 0.011 0.017 0.021
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 12 0.001 0.000 0.000 0.000 0.002 0.006 0.004 0.003 0.003
⌊T 0.45⌋ = 16 0.002 0.000 0.000 0.000 0.006 0.010 0.009 0.006 0.006
⌊T 0.50⌋ = 22 0.004 0.000 0.000 0.000 0.008 0.015 0.012 0.009 0.008
⌊T 0.55⌋ = 30 0.003 0.000 0.000 0.000 0.006 0.013 0.011 0.007 0.006
⌊T 0.60⌋ = 42 0.002 0.000 0.000 0.000 0.003 0.007 0.005 0.004 0.003
⌊T 0.65⌋ = 57 0.001 0.000 0.000 0.000 0.001 0.002 0.001 0.001 0.001
⌊T 0.70⌋ = 78 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
⌊T 0.75⌋ = 107 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
⌊T 0.80⌋ = 147 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mLR 0.002 0.000 0.000 0.000 0.005 0.010 0.008 0.006 0.005
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 12 0.019 0.310 0.926 1.000 0.007 0.002 0.003 0.005 0.007
⌊T 0.45⌋ = 16 0.029 0.376 0.959 1.000 0.012 0.003 0.005 0.008 0.011
⌊T 0.50⌋ = 22 0.040 0.430 0.976 1.000 0.017 0.005 0.008 0.013 0.016
⌊T 0.55⌋ = 30 0.063 0.502 0.987 1.000 0.031 0.010 0.015 0.025 0.029
⌊T 0.60⌋ = 42 0.123 0.621 0.993 1.000 0.075 0.033 0.041 0.059 0.071
⌊T 0.65⌋ = 57 0.291 0.775 0.999 1.000 0.209 0.114 0.137 0.173 0.200
⌊T 0.70⌋ = 78 0.653 0.939 1.000 1.000 0.572 0.436 0.468 0.526 0.558
⌊T 0.75⌋ = 107 0.969 0.997 1.000 1.000 0.952 0.913 0.924 0.942 0.947
⌊T 0.80⌋ = 147 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000

mLR 0.081 0.531 0.987 1.000 0.045 0.017 0.024 0.038 0.045
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.111 0.820 1.000 1.000 0.124 0.092 0.083 0.103 0.119
MLR 0.064 0.728 0.999 1.000 0.062 0.052 0.048 0.054 0.058

Note: tm,L denotes alternative H1 : δ < 0 ; tm,R denotes alternative H1 : δ > 0.
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Table S.4: Empirical null rejection frequencies. DGP ut = φut−1 + εt, φ = 0.5, εt ∼
NIID(0, 1). Tests of H0 : δ = 0. T = 1024. Nominal asymptotic 5% level tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.008 0.205 0.862 1.000 0.003 0.001 0.001 0.002 0.003
⌊T 0.45⌋ = 16 0.012 0.274 0.921 1.000 0.005 0.003 0.002 0.003 0.005
⌊T 0.50⌋ = 22 0.020 0.333 0.954 1.000 0.008 0.004 0.004 0.005 0.007
⌊T 0.55⌋ = 30 0.030 0.405 0.976 1.000 0.014 0.007 0.008 0.012 0.014
⌊T 0.60⌋ = 42 0.072 0.523 0.990 1.000 0.040 0.015 0.019 0.031 0.038
⌊T 0.65⌋ = 57 0.191 0.693 0.997 1.000 0.128 0.064 0.078 0.104 0.122
⌊T 0.70⌋ = 78 0.539 0.899 1.000 1.000 0.448 0.311 0.345 0.399 0.434
⌊T 0.75⌋ = 107 0.939 0.994 1.000 1.000 0.910 0.846 0.864 0.890 0.902
⌊T 0.80⌋ = 147 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000

mLR 0.042 0.432 0.976 1.000 0.022 0.010 0.011 0.017 0.021
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 12 0.001 0.000 0.000 0.000 0.002 0.006 0.004 0.003 0.003
⌊T 0.45⌋ = 16 0.002 0.000 0.000 0.000 0.006 0.010 0.009 0.006 0.006
⌊T 0.50⌋ = 22 0.004 0.000 0.000 0.000 0.008 0.015 0.012 0.009 0.008
⌊T 0.55⌋ = 30 0.003 0.000 0.000 0.000 0.006 0.013 0.011 0.007 0.006
⌊T 0.60⌋ = 42 0.002 0.000 0.000 0.000 0.003 0.007 0.005 0.004 0.003
⌊T 0.65⌋ = 57 0.001 0.000 0.000 0.000 0.001 0.002 0.001 0.001 0.001
⌊T 0.70⌋ = 78 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
⌊T 0.75⌋ = 107 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
⌊T 0.80⌋ = 147 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

mLR 0.002 0.000 0.000 0.000 0.005 0.010 0.008 0.006 0.005
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 12 0.019 0.310 0.926 1.000 0.007 0.002 0.003 0.005 0.007
⌊T 0.45⌋ = 16 0.029 0.376 0.959 1.000 0.012 0.003 0.005 0.008 0.011
⌊T 0.50⌋ = 22 0.040 0.430 0.976 1.000 0.017 0.005 0.008 0.013 0.016
⌊T 0.55⌋ = 30 0.063 0.502 0.987 1.000 0.031 0.010 0.015 0.025 0.029
⌊T 0.60⌋ = 42 0.123 0.621 0.993 1.000 0.075 0.033 0.041 0.059 0.071
⌊T 0.65⌋ = 57 0.291 0.775 0.999 1.000 0.209 0.114 0.137 0.173 0.200
⌊T 0.70⌋ = 78 0.653 0.939 1.000 1.000 0.572 0.436 0.468 0.526 0.558
⌊T 0.75⌋ = 107 0.969 0.997 1.000 1.000 0.952 0.913 0.924 0.942 0.947
⌊T 0.80⌋ = 147 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000

mLR 0.081 0.531 0.987 1.000 0.045 0.017 0.024 0.038 0.045
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.111 0.820 1.000 1.000 0.124 0.092 0.083 0.103 0.119
MLR 0.064 0.728 0.999 1.000 0.062 0.052 0.048 0.054 0.058

Note: tm,L denotes alternative H1 : δ < 0 ; tm,R denotes alternative H1 : δ > 0.
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Table S.5: Empirical null rejection frequencies. DGP ut = εt = σtzt, zt ∼ NIID(0, 1),
σ2
t = 1/(1 − 0.5) + 0.5ε2t−1. Tests of H0 : δ = 0. T = 512. Nominal asymptotic 5% level

tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.007 0.848 0.999 1.000 0.003 0.000 0.002 0.003 0.003
⌊T 0.45⌋ = 16 0.010 0.899 1.000 1.000 0.004 0.002 0.003 0.004 0.004
⌊T 0.50⌋ = 22 0.015 0.931 1.000 1.000 0.008 0.004 0.006 0.008 0.008
⌊T 0.55⌋ = 30 0.016 0.945 1.000 1.000 0.010 0.008 0.009 0.010 0.011
⌊T 0.60⌋ = 42 0.022 0.948 1.000 1.000 0.014 0.016 0.012 0.014 0.014
⌊T 0.65⌋ = 57 0.033 0.945 1.000 1.000 0.025 0.026 0.023 0.024 0.027
⌊T 0.70⌋ = 78 0.043 0.939 1.000 1.000 0.038 0.041 0.035 0.037 0.037
⌊T 0.75⌋ = 107 0.065 0.930 1.000 1.000 0.058 0.065 0.057 0.058 0.058
⌊T 0.80⌋ = 147 0.096 0.910 1.000 1.000 0.092 0.101 0.091 0.091 0.090

mLR 0.071 0.895 1.000 1.000 0.069 0.075 0.068 0.067 0.068
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 12 0.001 0.000 0.000 0.000 0.003 0.005 0.003 0.003 0.003
⌊T 0.45⌋ = 16 0.002 0.000 0.000 0.000 0.005 0.011 0.007 0.006 0.006
⌊T 0.50⌋ = 22 0.008 0.000 0.000 0.000 0.013 0.022 0.014 0.013 0.012
⌊T 0.55⌋ = 30 0.011 0.000 0.000 0.000 0.018 0.029 0.020 0.018 0.018
⌊T 0.60⌋ = 42 0.016 0.000 0.000 0.000 0.025 0.041 0.030 0.026 0.026
⌊T 0.65⌋ = 57 0.026 0.000 0.000 0.000 0.037 0.057 0.043 0.038 0.037
⌊T 0.70⌋ = 78 0.037 0.000 0.000 0.000 0.049 0.075 0.055 0.051 0.049
⌊T 0.75⌋ = 107 0.054 0.000 0.000 0.000 0.069 0.098 0.079 0.072 0.067
⌊T 0.80⌋ = 147 0.078 0.001 0.000 0.000 0.096 0.132 0.108 0.100 0.095

mLR 0.068 0.001 0.000 0.000 0.083 0.113 0.094 0.087 0.083
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 12 0.016 0.911 1.000 1.000 0.007 0.002 0.005 0.006 0.007
⌊T 0.45⌋ = 16 0.023 0.942 1.000 1.000 0.010 0.003 0.008 0.009 0.010
⌊T 0.50⌋ = 22 0.028 0.958 1.000 1.000 0.012 0.004 0.009 0.012 0.013
⌊T 0.55⌋ = 30 0.030 0.962 1.000 1.000 0.015 0.005 0.012 0.015 0.016
⌊T 0.60⌋ = 42 0.037 0.967 1.000 1.000 0.020 0.007 0.015 0.019 0.019
⌊T 0.65⌋ = 57 0.044 0.964 1.000 1.000 0.025 0.011 0.018 0.023 0.025
⌊T 0.70⌋ = 78 0.052 0.961 1.000 1.000 0.033 0.016 0.025 0.031 0.032
⌊T 0.75⌋ = 107 0.065 0.952 1.000 1.000 0.047 0.025 0.038 0.044 0.047
⌊T 0.80⌋ = 147 0.085 0.935 1.000 1.000 0.065 0.042 0.054 0.061 0.064

mLR 0.061 0.923 1.000 1.000 0.044 0.025 0.034 0.042 0.044
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.051 0.996 1.000 1.000 0.050 0.042 0.041 0.046 0.049
MLR 0.047 0.995 1.000 1.000 0.047 0.050 0.040 0.043 0.046

Note: tm,L denotes alternative H1 : δ < 0 ; tm,R denotes alternative H1 : δ > 0.
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Table S.6: Empirical null rejection frequencies. DGP ut = εt = σtzt, zt ∼ NIID(0, 1),
σ2
t = 1/(1− 0.5) + 0.5ε2t−1. Tests of H0 : δ = 0. T = 1024. Nominal asymptotic 5% level

tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 16 0.009 0.997 1.000 1.000 0.004 0.003 0.004 0.004 0.004
⌊T 0.45⌋ = 22 0.014 0.998 1.000 1.000 0.008 0.005 0.007 0.009 0.008
⌊T 0.50⌋ = 32 0.021 0.999 1.000 1.000 0.013 0.010 0.012 0.013 0.013
⌊T 0.55⌋ = 45 0.022 0.999 1.000 1.000 0.016 0.015 0.016 0.015 0.015
⌊T 0.60⌋ = 63 0.024 0.999 1.000 1.000 0.020 0.021 0.019 0.019 0.019
⌊T 0.65⌋ = 90 0.033 0.999 1.000 1.000 0.029 0.030 0.028 0.028 0.029
⌊T 0.70⌋ = 127 0.044 0.999 1.000 1.000 0.041 0.044 0.042 0.042 0.042
⌊T 0.75⌋ = 181 0.065 0.998 1.000 1.000 0.062 0.068 0.063 0.061 0.063
⌊T 0.80⌋ = 256 0.097 0.994 1.000 1.000 0.093 0.100 0.094 0.094 0.094

mLR 0.086 0.993 1.000 1.000 0.084 0.092 0.085 0.086 0.085
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 16 0.004 0.000 0.000 0.000 0.007 0.012 0.008 0.007 0.007
⌊T 0.45⌋ = 22 0.005 0.000 0.000 0.000 0.009 0.019 0.010 0.010 0.009
⌊T 0.50⌋ = 32 0.009 0.000 0.000 0.000 0.018 0.034 0.019 0.018 0.018
⌊T 0.55⌋ = 45 0.014 0.000 0.000 0.000 0.023 0.042 0.025 0.023 0.023
⌊T 0.60⌋ = 63 0.018 0.000 0.000 0.000 0.029 0.050 0.032 0.030 0.029
⌊T 0.65⌋ = 90 0.029 0.000 0.000 0.000 0.038 0.060 0.041 0.040 0.037
⌊T 0.70⌋ = 127 0.039 0.000 0.000 0.000 0.052 0.077 0.058 0.054 0.052
⌊T 0.75⌋ = 181 0.056 0.000 0.000 0.000 0.069 0.096 0.074 0.070 0.070
⌊T 0.80⌋ = 256 0.076 0.000 0.000 0.000 0.094 0.124 0.102 0.095 0.095

mLR 0.078 0.000 0.000 0.000 0.093 0.125 0.103 0.096 0.093
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 16 0.019 0.998 1.000 1.000 0.008 0.002 0.007 0.009 0.008
⌊T 0.45⌋ = 22 0.029 0.999 1.000 1.000 0.015 0.005 0.012 0.014 0.015
⌊T 0.50⌋ = 32 0.033 0.999 1.000 1.000 0.018 0.006 0.015 0.017 0.019
⌊T 0.55⌋ = 45 0.036 0.999 1.000 1.000 0.019 0.007 0.016 0.019 0.019
⌊T 0.60⌋ = 63 0.038 0.999 1.000 1.000 0.023 0.009 0.019 0.022 0.023
⌊T 0.65⌋ = 90 0.043 0.999 1.000 1.000 0.026 0.011 0.024 0.026 0.026
⌊T 0.70⌋ = 127 0.053 0.999 1.000 1.000 0.035 0.018 0.030 0.035 0.034
⌊T 0.75⌋ = 181 0.063 0.999 1.000 1.000 0.047 0.028 0.041 0.046 0.048
⌊T 0.80⌋ = 256 0.083 0.996 1.000 1.000 0.067 0.045 0.060 0.065 0.067

mLR 0.069 0.995 1.000 1.000 0.053 0.035 0.047 0.053 0.054
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.054 1.000 1.000 1.000 0.048 0.043 0.043 0.046 0.048
MLR 0.051 1.000 1.000 1.000 0.045 0.047 0.042 0.043 0.045

Note: tm,L denotes alternative H1 : δ < 0 ; tm,R denotes alternative H1 : δ > 0.
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Table S.7: Empirical null rejection frequencies. DGP ut = ∆−δεt, δ = 0.3, εt ∼
NIID(0, 1). Tests of H0 : δ = 0.3. T = 512. Nominal asymptotic 5% level tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.008 0.043 0.210 0.807 0.002 0.001 0.001 0.001 0.002
⌊T 0.45⌋ = 16 0.011 0.061 0.280 0.902 0.003 0.003 0.002 0.001 0.003
⌊T 0.50⌋ = 22 0.018 0.073 0.334 0.949 0.006 0.005 0.005 0.004 0.004
⌊T 0.55⌋ = 30 0.020 0.085 0.366 0.968 0.009 0.011 0.009 0.007 0.007
⌊T 0.60⌋ = 42 0.024 0.087 0.381 0.977 0.013 0.017 0.014 0.012 0.012
⌊T 0.65⌋ = 57 0.029 0.093 0.393 0.980 0.020 0.028 0.023 0.019 0.019
⌊T 0.70⌋ = 78 0.032 0.091 0.389 0.979 0.025 0.035 0.031 0.025 0.024
⌊T 0.75⌋ = 107 0.035 0.086 0.358 0.979 0.031 0.043 0.040 0.034 0.030
⌊T 0.80⌋ = 147 0.040 0.071 0.303 0.969 0.040 0.066 0.061 0.049 0.042

mLR 0.029 0.058 0.278 0.963 0.029 0.051 0.046 0.037 0.032
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 12 0.001 0.000 0.000 0.000 0.003 0.009 0.007 0.005 0.004
⌊T 0.45⌋ = 16 0.003 0.002 0.000 0.000 0.007 0.018 0.016 0.013 0.009
⌊T 0.50⌋ = 22 0.005 0.002 0.000 0.000 0.012 0.031 0.028 0.019 0.014
⌊T 0.55⌋ = 30 0.009 0.003 0.000 0.000 0.017 0.042 0.037 0.026 0.020
⌊T 0.60⌋ = 42 0.012 0.005 0.001 0.000 0.023 0.056 0.049 0.036 0.027
⌊T 0.65⌋ = 57 0.022 0.009 0.001 0.000 0.034 0.073 0.064 0.049 0.037
⌊T 0.70⌋ = 78 0.024 0.013 0.002 0.000 0.039 0.082 0.072 0.056 0.043
⌊T 0.75⌋ = 107 0.033 0.017 0.002 0.000 0.050 0.094 0.085 0.069 0.055
⌊T 0.80⌋ = 147 0.053 0.029 0.004 0.000 0.072 0.128 0.121 0.101 0.078

mLR 0.045 0.024 0.004 0.000 0.062 0.114 0.104 0.087 0.070
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 12 0.019 0.080 0.314 0.898 0.005 0.001 0.001 0.001 0.003
⌊T 0.45⌋ = 16 0.027 0.103 0.379 0.950 0.007 0.001 0.002 0.002 0.005
⌊T 0.50⌋ = 22 0.032 0.118 0.435 0.973 0.010 0.001 0.002 0.004 0.007
⌊T 0.55⌋ = 30 0.037 0.126 0.464 0.984 0.013 0.002 0.003 0.006 0.010
⌊T 0.60⌋ = 42 0.041 0.133 0.480 0.986 0.017 0.003 0.005 0.007 0.013
⌊T 0.65⌋ = 57 0.042 0.137 0.482 0.989 0.020 0.005 0.007 0.009 0.015
⌊T 0.70⌋ = 78 0.047 0.131 0.476 0.988 0.023 0.006 0.008 0.011 0.019
⌊T 0.75⌋ = 107 0.044 0.123 0.445 0.988 0.023 0.007 0.009 0.013 0.018
⌊T 0.80⌋ = 147 0.036 0.097 0.388 0.981 0.018 0.005 0.007 0.009 0.014

mLR 0.029 0.083 0.360 0.978 0.015 0.005 0.005 0.007 0.012

Note: tm,L denotes alternative H1 : δ < 0.3 ; tm,R denotes alternative H1 : δ > 0.3.
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Table S.8: Empirical null rejection frequencies. DGP ut = ∆−δεt, δ = 0.3, εt ∼
NIID(0, 1). Tests of H0 : δ = 0.3. T = 1024. Nominal asymptotic 5% level tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 16 0.010 0.080 0.374 0.968 0.004 0.004 0.003 0.003 0.003
⌊T 0.45⌋ = 22 0.017 0.097 0.439 0.987 0.007 0.007 0.005 0.005 0.006
⌊T 0.50⌋ = 32 0.024 0.109 0.486 0.994 0.013 0.015 0.012 0.012 0.011
⌊T 0.55⌋ = 45 0.027 0.114 0.514 0.996 0.016 0.020 0.019 0.014 0.014
⌊T 0.60⌋ = 63 0.029 0.116 0.525 0.997 0.019 0.024 0.021 0.018 0.018
⌊T 0.65⌋ = 90 0.033 0.117 0.513 0.997 0.024 0.033 0.029 0.023 0.023
⌊T 0.70⌋ = 127 0.037 0.110 0.489 0.998 0.030 0.038 0.035 0.032 0.031
⌊T 0.75⌋ = 181 0.036 0.103 0.445 0.997 0.032 0.046 0.041 0.035 0.033
⌊T 0.80⌋ = 256 0.039 0.082 0.379 0.993 0.041 0.067 0.060 0.051 0.044

mLR 0.038 0.072 0.338 0.989 0.041 0.066 0.062 0.054 0.042
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 16 0.004 0.001 0.000 0.000 0.008 0.018 0.015 0.011 0.009
⌊T 0.45⌋ = 22 0.007 0.002 0.000 0.000 0.013 0.032 0.025 0.019 0.014
⌊T 0.50⌋ = 32 0.012 0.004 0.000 0.000 0.020 0.045 0.038 0.027 0.021
⌊T 0.55⌋ = 45 0.015 0.005 0.000 0.000 0.025 0.056 0.047 0.035 0.028
⌊T 0.60⌋ = 63 0.017 0.006 0.000 0.000 0.029 0.061 0.053 0.037 0.031
⌊T 0.65⌋ = 90 0.025 0.010 0.001 0.000 0.039 0.074 0.063 0.050 0.041
⌊T 0.70⌋ = 127 0.029 0.012 0.001 0.000 0.042 0.083 0.072 0.058 0.045
⌊T 0.75⌋ = 181 0.037 0.015 0.002 0.000 0.051 0.097 0.084 0.068 0.055
⌊T 0.80⌋ = 256 0.053 0.026 0.004 0.000 0.073 0.128 0.118 0.097 0.077

mLR 0.057 0.030 0.004 0.000 0.077 0.131 0.119 0.099 0.082
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 16 0.024 0.128 0.490 0.986 0.006 0.001 0.002 0.003 0.005
⌊T 0.45⌋ = 22 0.033 0.145 0.546 0.995 0.012 0.003 0.005 0.006 0.010
⌊T 0.50⌋ = 32 0.040 0.158 0.584 0.997 0.016 0.004 0.007 0.010 0.014
⌊T 0.55⌋ = 45 0.043 0.165 0.602 0.998 0.019 0.004 0.006 0.011 0.016
⌊T 0.60⌋ = 63 0.045 0.171 0.613 0.998 0.021 0.006 0.007 0.012 0.018
⌊T 0.65⌋ = 90 0.049 0.168 0.602 0.999 0.026 0.006 0.009 0.015 0.022
⌊T 0.70⌋ = 127 0.049 0.160 0.575 0.999 0.028 0.008 0.011 0.018 0.026
⌊T 0.75⌋ = 181 0.043 0.143 0.532 0.999 0.026 0.008 0.011 0.016 0.023
⌊T 0.80⌋ = 256 0.033 0.111 0.466 0.996 0.020 0.007 0.008 0.013 0.018

mLR 0.030 0.095 0.424 0.994 0.018 0.006 0.007 0.011 0.016

Note: tm,L denotes alternative H1 : δ < 0.3 ; tm,R denotes alternative H1 : δ > 0.3.
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Table S.9: Empirical null rejection frequencies. DGP ut = ∆−δεt, δ = −0.3, εt ∼
NIID(0, 1). Tests of H0 : δ = −0.3. T = 512. Nominal asymptotic 5% level tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.011 1.000 1.000 1.000 0.007 0.007 0.014 0.011 0.009
⌊T 0.45⌋ = 16 0.017 1.000 1.000 1.000 0.012 0.011 0.019 0.018 0.015
⌊T 0.50⌋ = 22 0.021 1.000 1.000 1.000 0.015 0.015 0.025 0.020 0.019
⌊T 0.55⌋ = 30 0.025 1.000 1.000 1.000 0.017 0.020 0.031 0.026 0.022
⌊T 0.60⌋ = 42 0.030 1.000 1.000 1.000 0.022 0.023 0.035 0.030 0.028
⌊T 0.65⌋ = 57 0.035 1.000 1.000 1.000 0.027 0.026 0.042 0.038 0.036
⌊T 0.70⌋ = 78 0.041 1.000 1.000 1.000 0.035 0.033 0.046 0.047 0.042
⌊T 0.75⌋ = 107 0.050 1.000 1.000 1.000 0.042 0.041 0.053 0.053 0.050
⌊T 0.80⌋ = 147 0.057 1.000 1.000 1.000 0.050 0.047 0.063 0.065 0.061

mLR 0.055 1.000 1.000 1.000 0.044 0.043 0.056 0.058 0.055
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ̂)
⌊T 0.40⌋ = 12 0.001 0.000 0.000 0.000 0.002 0.001 0.001 0.001 0.001
⌊T 0.45⌋ = 16 0.003 0.000 0.000 0.000 0.005 0.002 0.004 0.004 0.004
⌊T 0.50⌋ = 22 0.005 0.000 0.000 0.000 0.007 0.005 0.006 0.006 0.006
⌊T 0.55⌋ = 30 0.008 0.000 0.000 0.000 0.012 0.009 0.009 0.009 0.010
⌊T 0.60⌋ = 42 0.011 0.000 0.000 0.000 0.016 0.013 0.013 0.013 0.015
⌊T 0.65⌋ = 57 0.017 0.000 0.000 0.000 0.022 0.019 0.018 0.018 0.019
⌊T 0.70⌋ = 78 0.019 0.000 0.000 0.000 0.022 0.023 0.019 0.018 0.019
⌊T 0.75⌋ = 107 0.019 0.000 0.000 0.000 0.024 0.023 0.022 0.021 0.021
⌊T 0.80⌋ = 147 0.015 0.000 0.000 0.000 0.019 0.021 0.017 0.017 0.017

mLR 0.012 0.000 0.000 0.000 0.015 0.016 0.013 0.013 0.014
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 12 0.024 1.000 1.000 1.000 0.016 0.020 0.025 0.022 0.019
⌊T 0.45⌋ = 16 0.034 1.000 1.000 1.000 0.024 0.026 0.036 0.033 0.028
⌊T 0.50⌋ = 22 0.040 1.000 1.000 1.000 0.025 0.032 0.042 0.038 0.032
⌊T 0.55⌋ = 30 0.044 1.000 1.000 1.000 0.032 0.036 0.052 0.046 0.039
⌊T 0.60⌋ = 42 0.055 1.000 1.000 1.000 0.039 0.039 0.058 0.054 0.048
⌊T 0.65⌋ = 57 0.055 1.000 1.000 1.000 0.042 0.043 0.061 0.058 0.054
⌊T 0.70⌋ = 78 0.062 1.000 1.000 1.000 0.048 0.049 0.066 0.068 0.060
⌊T 0.75⌋ = 107 0.073 1.000 1.000 1.000 0.059 0.058 0.076 0.077 0.073
⌊T 0.80⌋ = 147 0.093 1.000 1.000 1.000 0.077 0.073 0.094 0.101 0.093

mLR 0.084 1.000 1.000 1.000 0.073 0.069 0.088 0.092 0.088

Note: tm,L denotes alternative H1 : δ < −0.3 ; tm,R denotes alternative H1 : δ > −0.3.
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Table S.10: Empirical null rejection frequencies. DGP ut = ∆−δεt, δ = −0.3, εt ∼
NIID(0, 1). Tests of H0 : δ = −0.3. T = 1024. Nominal asymptotic 5% level tests.

β2 0 0.5 1 2 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 16 0.014 1.000 1.000 1.000 0.011 0.016 0.016 0.014 0.013
⌊T 0.45⌋ = 22 0.022 1.000 1.000 1.000 0.017 0.021 0.024 0.023 0.019
⌊T 0.50⌋ = 32 0.028 1.000 1.000 1.000 0.023 0.025 0.033 0.030 0.027
⌊T 0.55⌋ = 45 0.031 1.000 1.000 1.000 0.026 0.028 0.039 0.034 0.030
⌊T 0.60⌋ = 63 0.034 1.000 1.000 1.000 0.029 0.030 0.041 0.039 0.033
⌊T 0.65⌋ = 90 0.040 1.000 1.000 1.000 0.034 0.034 0.047 0.045 0.039
⌊T 0.70⌋ = 127 0.044 1.000 1.000 1.000 0.041 0.041 0.054 0.053 0.047
⌊T 0.75⌋ = 181 0.047 1.000 1.000 1.000 0.044 0.042 0.056 0.056 0.051
⌊T 0.80⌋ = 256 0.059 1.000 1.000 1.000 0.052 0.050 0.065 0.064 0.058

mLR 0.055 1.000 1.000 1.000 0.046 0.049 0.058 0.059 0.055
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ
∗)

⌊T 0.40⌋ = 16 0.004 0.000 0.000 0.000 0.006 0.003 0.004 0.005 0.005
⌊T 0.45⌋ = 22 0.006 0.000 0.000 0.000 0.008 0.004 0.006 0.007 0.007
⌊T 0.50⌋ = 32 0.010 0.000 0.000 0.000 0.013 0.009 0.011 0.011 0.012
⌊T 0.55⌋ = 45 0.015 0.000 0.000 0.000 0.018 0.013 0.016 0.016 0.017
⌊T 0.60⌋ = 63 0.016 0.000 0.000 0.000 0.021 0.017 0.017 0.017 0.019
⌊T 0.65⌋ = 90 0.021 0.000 0.000 0.000 0.026 0.024 0.022 0.022 0.023
⌊T 0.70⌋ = 127 0.023 0.000 0.000 0.000 0.028 0.024 0.024 0.024 0.025
⌊T 0.75⌋ = 181 0.022 0.000 0.000 0.000 0.026 0.024 0.024 0.023 0.024
⌊T 0.80⌋ = 256 0.016 0.000 0.000 0.000 0.020 0.020 0.019 0.017 0.018

mLR 0.014 0.000 0.000 0.000 0.017 0.017 0.016 0.016 0.016
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ̂)
⌊T 0.40⌋ = 16 0.031 1.000 1.000 1.000 0.022 0.032 0.029 0.028 0.025
⌊T 0.45⌋ = 22 0.040 1.000 1.000 1.000 0.031 0.040 0.043 0.038 0.033
⌊T 0.50⌋ = 32 0.048 1.000 1.000 1.000 0.039 0.044 0.052 0.046 0.044
⌊T 0.55⌋ = 45 0.053 1.000 1.000 1.000 0.041 0.047 0.059 0.054 0.049
⌊T 0.60⌋ = 63 0.051 1.000 1.000 1.000 0.041 0.046 0.061 0.056 0.048
⌊T 0.65⌋ = 90 0.060 1.000 1.000 1.000 0.049 0.054 0.066 0.066 0.058
⌊T 0.70⌋ = 127 0.064 1.000 1.000 1.000 0.053 0.057 0.073 0.069 0.063
⌊T 0.75⌋ = 181 0.072 1.000 1.000 1.000 0.061 0.063 0.080 0.079 0.072
⌊T 0.80⌋ = 256 0.090 1.000 1.000 1.000 0.078 0.082 0.096 0.096 0.089

mLR 0.090 1.000 1.000 1.000 0.078 0.079 0.097 0.096 0.088

Note: tm,L denotes alternative H1 : δ < −0.3 ; tm,R denotes alternative H1 : δ > −0.3.
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Table S.11: Empirical power. DGP ut = ∆−δεt, δ = −0.15, εt ∼ NIID(0, 1). Tests of
H0 : δ = 0. T = 512. Nominal asymptotic 5% level tests.

β2 0 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.001 0.001 0.001 0.002 0.001 0.001
⌊T 0.45⌋ = 16 0.004 0.006 0.007 0.005 0.006 0.005
⌊T 0.50⌋ = 22 0.013 0.020 0.030 0.019 0.019 0.019
⌊T 0.55⌋ = 30 0.040 0.054 0.073 0.052 0.051 0.051
⌊T 0.60⌋ = 42 0.107 0.129 0.165 0.126 0.125 0.125
⌊T 0.65⌋ = 57 0.220 0.255 0.312 0.259 0.247 0.247
⌊T 0.70⌋ = 78 0.392 0.426 0.489 0.436 0.419 0.418
⌊T 0.75⌋ = 107 0.597 0.626 0.685 0.639 0.621 0.618
⌊T 0.80⌋ = 147 0.789 0.808 0.845 0.820 0.809 0.803

mLR 0.639 0.666 0.717 0.679 0.663 0.659
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ
∗)

⌊T 0.40⌋ = 12 0.006 0.010 0.013 0.009 0.009 0.010
⌊T 0.45⌋ = 16 0.024 0.036 0.046 0.032 0.032 0.034
⌊T 0.50⌋ = 22 0.065 0.085 0.108 0.080 0.079 0.081
⌊T 0.55⌋ = 30 0.126 0.156 0.201 0.153 0.150 0.153
⌊T 0.60⌋ = 42 0.243 0.281 0.343 0.280 0.273 0.276
⌊T 0.65⌋ = 57 0.396 0.436 0.504 0.440 0.425 0.428
⌊T 0.70⌋ = 78 0.577 0.611 0.672 0.623 0.607 0.604
⌊T 0.75⌋ = 107 0.761 0.786 0.828 0.798 0.784 0.780
⌊T 0.80⌋ = 147 0.895 0.907 0.927 0.914 0.907 0.904

mLR 0.796 0.817 0.853 0.826 0.814 0.813

Note: tm,L denotes alternative H1 : δ < 0.
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Table S.12: Empirical power. DGP ut = ∆−δεt, δ = −0.15, εt ∼ NIID(0, 1). Tests of
H0 : δ = 0. T = 1024. Nominal asymptotic 5% level tests.

β2 0 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.005 0.006 0.008 0.006 0.006 0.006
⌊T 0.45⌋ = 16 0.015 0.020 0.027 0.021 0.020 0.020
⌊T 0.50⌋ = 22 0.052 0.067 0.086 0.064 0.065 0.066
⌊T 0.55⌋ = 30 0.130 0.156 0.195 0.148 0.151 0.154
⌊T 0.60⌋ = 42 0.263 0.295 0.354 0.291 0.286 0.293
⌊T 0.65⌋ = 57 0.489 0.524 0.583 0.524 0.516 0.517
⌊T 0.70⌋ = 78 0.731 0.758 0.798 0.761 0.751 0.752
⌊T 0.75⌋ = 107 0.913 0.922 0.940 0.924 0.919 0.919
⌊T 0.80⌋ = 147 0.986 0.987 0.990 0.988 0.987 0.987

mLR 0.944 0.949 0.961 0.951 0.948 0.947
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ
∗)

⌊T 0.40⌋ = 12 0.022 0.032 0.041 0.030 0.031 0.032
⌊T 0.45⌋ = 16 0.064 0.082 0.104 0.078 0.079 0.083
⌊T 0.50⌋ = 22 0.150 0.181 0.222 0.178 0.176 0.178
⌊T 0.55⌋ = 30 0.276 0.314 0.377 0.307 0.307 0.311
⌊T 0.60⌋ = 42 0.453 0.492 0.559 0.484 0.481 0.487
⌊T 0.65⌋ = 57 0.679 0.705 0.756 0.705 0.699 0.700
⌊T 0.70⌋ = 78 0.863 0.877 0.904 0.878 0.872 0.874
⌊T 0.75⌋ = 107 0.966 0.971 0.978 0.971 0.970 0.969
⌊T 0.80⌋ = 147 0.995 0.996 0.997 0.996 0.996 0.995

mLR 0.978 0.982 0.987 0.982 0.981 0.981

Note: tm,L denotes alternative H1 : δ < 0.
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Table S.13: Empirical power. DGP ut = ∆−δεt, δ = 0.15, εt ∼ NIID(0, 1). Tests of
H0 : δ = 0. T = 512. Nominal asymptotic 5% level tests.

β2 0 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.054 0.017 0.004 0.005 0.012 0.017
⌊T 0.45⌋ = 16 0.101 0.038 0.012 0.018 0.029 0.036
⌊T 0.50⌋ = 22 0.169 0.079 0.024 0.041 0.063 0.075
⌊T 0.55⌋ = 30 0.257 0.142 0.055 0.082 0.118 0.136
⌊T 0.60⌋ = 42 0.384 0.248 0.119 0.165 0.214 0.240
⌊T 0.65⌋ = 57 0.526 0.386 0.219 0.278 0.344 0.376
⌊T 0.70⌋ = 78 0.669 0.548 0.365 0.433 0.502 0.539
⌊T 0.75⌋ = 107 0.804 0.713 0.550 0.615 0.677 0.703
⌊T 0.80⌋ = 147 0.906 0.851 0.736 0.784 0.828 0.843

mLR 0.699 0.585 0.421 0.484 0.549 0.577
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ
∗)

⌊T 0.40⌋ = 12 0.100 0.036 0.013 0.015 0.026 0.034
⌊T 0.45⌋ = 16 0.161 0.070 0.023 0.037 0.058 0.069
⌊T 0.50⌋ = 22 0.244 0.129 0.050 0.075 0.108 0.124
⌊T 0.55⌋ = 30 0.351 0.212 0.095 0.136 0.182 0.206
⌊T 0.60⌋ = 42 0.488 0.341 0.183 0.240 0.302 0.330
⌊T 0.65⌋ = 57 0.624 0.489 0.310 0.376 0.445 0.479
⌊T 0.70⌋ = 78 0.750 0.645 0.472 0.538 0.606 0.636
⌊T 0.75⌋ = 107 0.866 0.792 0.652 0.709 0.761 0.785
⌊T 0.80⌋ = 147 0.940 0.904 0.816 0.854 0.886 0.899

mLR 0.783 0.684 0.536 0.593 0.648 0.677
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.293 0.313 0.193 0.206 0.272 0.304
MLR 0.189 0.179 0.118 0.114 0.152 0.173

Note: tm,R denotes alternative H1 : δ > 0.
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Table S.14: Empirical power. DGP ut = ∆−δεt, δ = 0.15, εt ∼ NIID(0, 1). Tests of
H0 : δ = 0. T = 1024. Nominal asymptotic 5% level tests.

β2 0 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.098 0.038 0.011 0.019 0.030 0.037
⌊T 0.45⌋ = 16 0.165 0.075 0.027 0.047 0.063 0.071
⌊T 0.50⌋ = 22 0.270 0.151 0.064 0.103 0.135 0.147
⌊T 0.55⌋ = 30 0.409 0.266 0.134 0.194 0.244 0.262
⌊T 0.60⌋ = 42 0.572 0.430 0.258 0.341 0.403 0.423
⌊T 0.65⌋ = 57 0.740 0.628 0.456 0.547 0.605 0.624
⌊T 0.70⌋ = 78 0.875 0.809 0.681 0.746 0.793 0.804
⌊T 0.75⌋ = 107 0.962 0.936 0.870 0.908 0.927 0.935
⌊T 0.80⌋ = 147 0.994 0.987 0.968 0.979 0.985 0.987

mLR 0.919 0.873 0.775 0.830 0.861 0.869
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ
∗)

⌊T 0.40⌋ = 12 0.158 0.068 0.023 0.041 0.058 0.066
⌊T 0.45⌋ = 16 0.240 0.123 0.049 0.083 0.109 0.120
⌊T 0.50⌋ = 22 0.368 0.227 0.107 0.161 0.203 0.222
⌊T 0.55⌋ = 30 0.508 0.365 0.204 0.279 0.340 0.358
⌊T 0.60⌋ = 42 0.667 0.537 0.357 0.448 0.510 0.533
⌊T 0.65⌋ = 57 0.813 0.723 0.567 0.651 0.701 0.717
⌊T 0.70⌋ = 78 0.918 0.869 0.769 0.823 0.856 0.865
⌊T 0.75⌋ = 107 0.978 0.961 0.919 0.942 0.956 0.960
⌊T 0.80⌋ = 147 0.997 0.994 0.983 0.990 0.993 0.994

mLR 0.953 0.921 0.850 0.890 0.914 0.918
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.345 0.382 0.252 0.288 0.358 0.379
MLR 0.226 0.235 0.152 0.165 0.212 0.233

Note: tm,R denotes alternative H1 : δ > 0.
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Table S.15: Empirical power. DGP ut = ∆−δεt, δ = −0.15, εt = σtzt, zt ∼ NIID(0, 1),
σ2
t = 1/(1 − 0.5) + 0.5ε2t−1. Tests of H0 : δ = 0. T = 512. Nominal asymptotic 5% level

tests.

β2 0 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.001 0.001 0.001 0.001 0.001 0.001
⌊T 0.45⌋ = 16 0.003 0.005 0.005 0.005 0.004 0.004
⌊T 0.50⌋ = 22 0.015 0.020 0.024 0.019 0.019 0.020
⌊T 0.55⌋ = 30 0.041 0.052 0.063 0.050 0.049 0.052
⌊T 0.60⌋ = 42 0.109 0.132 0.156 0.129 0.126 0.130
⌊T 0.65⌋ = 57 0.230 0.260 0.300 0.262 0.254 0.256
⌊T 0.70⌋ = 78 0.403 0.434 0.480 0.436 0.429 0.427
⌊T 0.75⌋ = 107 0.593 0.615 0.661 0.624 0.616 0.611
⌊T 0.80⌋ = 147 0.747 0.761 0.788 0.770 0.764 0.759

mLR 0.614 0.635 0.670 0.639 0.632 0.631
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ
∗)

⌊T 0.40⌋ = 12 0.006 0.010 0.011 0.011 0.010 0.010
⌊T 0.45⌋ = 16 0.024 0.034 0.039 0.031 0.032 0.033
⌊T 0.50⌋ = 22 0.063 0.086 0.098 0.080 0.082 0.083
⌊T 0.55⌋ = 30 0.123 0.155 0.179 0.148 0.150 0.151
⌊T 0.60⌋ = 42 0.244 0.283 0.321 0.276 0.272 0.278
⌊T 0.65⌋ = 57 0.402 0.444 0.492 0.442 0.433 0.436
⌊T 0.70⌋ = 78 0.579 0.611 0.656 0.611 0.602 0.602
⌊T 0.75⌋ = 107 0.738 0.757 0.791 0.762 0.754 0.753
⌊T 0.80⌋ = 147 0.839 0.851 0.870 0.856 0.852 0.850

mLR 0.747 0.768 0.794 0.773 0.767 0.762

Note: tm,L denotes alternative H1 : δ < 0.
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Table S.16: Empirical power. DGP ut = ∆−δεt, δ = −0.15, εt = σtzt, zt ∼ NIID(0, 1),
σ2
t = 1/(1− 0.5) + 0.5ε2t−1. Tests of H0 : δ = 0. T = 1024. Nominal asymptotic 5% level

tests.

β2 0 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.003 0.006 0.007 0.005 0.006 0.006
⌊T 0.45⌋ = 16 0.012 0.016 0.021 0.016 0.016 0.016
⌊T 0.50⌋ = 22 0.052 0.066 0.080 0.063 0.062 0.065
⌊T 0.55⌋ = 30 0.129 0.153 0.182 0.145 0.148 0.152
⌊T 0.60⌋ = 42 0.265 0.296 0.334 0.290 0.288 0.291
⌊T 0.65⌋ = 57 0.496 0.531 0.575 0.523 0.519 0.525
⌊T 0.70⌋ = 78 0.728 0.750 0.781 0.746 0.738 0.743
⌊T 0.75⌋ = 107 0.886 0.895 0.909 0.896 0.892 0.891
⌊T 0.80⌋ = 147 0.952 0.956 0.961 0.956 0.955 0.954

mLR 0.907 0.914 0.927 0.914 0.912 0.911
m tm,L(δ0) tm,L(δ0; τ

∗) tm,L(δ0; τ
∗)

⌊T 0.40⌋ = 12 0.022 0.032 0.037 0.030 0.032 0.031
⌊T 0.45⌋ = 16 0.059 0.081 0.091 0.076 0.077 0.081
⌊T 0.50⌋ = 22 0.143 0.175 0.204 0.167 0.171 0.173
⌊T 0.55⌋ = 30 0.276 0.312 0.352 0.301 0.302 0.310
⌊T 0.60⌋ = 42 0.447 0.488 0.538 0.479 0.477 0.486
⌊T 0.65⌋ = 57 0.680 0.710 0.749 0.703 0.699 0.704
⌊T 0.70⌋ = 78 0.852 0.866 0.888 0.864 0.861 0.861
⌊T 0.75⌋ = 107 0.941 0.946 0.955 0.947 0.944 0.944
⌊T 0.80⌋ = 147 0.974 0.975 0.978 0.976 0.975 0.975

mLR 0.953 0.957 0.963 0.957 0.955 0.954

Note: tm,L denotes alternative H1 : δ < 0.
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Table S.17: Empirical power. DGP ut = ∆−δεt, δ = 0.15, εt = σtzt, zt ∼ NIID(0, 1),
σ2
t = 1/(1 − 0.5) + 0.5ε2t−1. Tests of H0 : δ = 0. T = 512. Nominal asymptotic 5% level

tests.

β2 0 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.049 0.017 0.005 0.006 0.012 0.016
⌊T 0.45⌋ = 16 0.097 0.037 0.011 0.018 0.029 0.035
⌊T 0.50⌋ = 22 0.165 0.074 0.023 0.042 0.060 0.071
⌊T 0.55⌋ = 30 0.261 0.138 0.056 0.084 0.118 0.132
⌊T 0.60⌋ = 42 0.381 0.247 0.121 0.170 0.214 0.237
⌊T 0.65⌋ = 57 0.522 0.382 0.222 0.287 0.343 0.371
⌊T 0.70⌋ = 78 0.659 0.540 0.375 0.439 0.502 0.530
⌊T 0.75⌋ = 107 0.779 0.690 0.543 0.603 0.656 0.680
⌊T 0.80⌋ = 147 0.864 0.805 0.697 0.743 0.783 0.798

mLR 0.670 0.554 0.400 0.466 0.524 0.546
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ
∗)

⌊T 0.40⌋ = 12 0.097 0.034 0.011 0.017 0.026 0.032
⌊T 0.45⌋ = 16 0.161 0.070 0.022 0.036 0.057 0.067
⌊T 0.50⌋ = 22 0.241 0.128 0.051 0.076 0.108 0.123
⌊T 0.55⌋ = 30 0.355 0.215 0.098 0.137 0.184 0.205
⌊T 0.60⌋ = 42 0.486 0.339 0.185 0.249 0.302 0.328
⌊T 0.65⌋ = 57 0.616 0.487 0.314 0.383 0.448 0.477
⌊T 0.70⌋ = 78 0.741 0.635 0.476 0.538 0.602 0.625
⌊T 0.75⌋ = 107 0.841 0.768 0.641 0.694 0.741 0.759
⌊T 0.80⌋ = 147 0.902 0.860 0.773 0.809 0.842 0.853

mLR 0.752 0.649 0.508 0.567 0.620 0.642
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.293 0.313 0.193 0.206 0.272 0.304
MLR 0.188 0.174 0.123 0.119 0.151 0.168

Note: tm,R denotes alternative H1 : δ > 0.
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Table S.18: Empirical power. DGP ut = ∆−δεt, δ = −0.15, εt = σtzt, zt ∼ NIID(0, 1),
σ2
t = 1/(1− 0.5) + 0.5ε2t−1. Tests of H0 : δ = 0. T = 1024. Nominal asymptotic 5% level

tests.

β2 0 0 0.5 1 2
m LMm(δ0) LMm(δ0; τ

∗) LMm(δ0; τ̂)
⌊T 0.40⌋ = 12 0.094 0.036 0.010 0.020 0.028 0.035
⌊T 0.45⌋ = 16 0.160 0.074 0.024 0.046 0.062 0.071
⌊T 0.50⌋ = 22 0.268 0.151 0.063 0.106 0.132 0.146
⌊T 0.55⌋ = 30 0.402 0.266 0.135 0.198 0.240 0.260
⌊T 0.60⌋ = 42 0.568 0.428 0.263 0.348 0.401 0.422
⌊T 0.65⌋ = 57 0.735 0.627 0.452 0.546 0.603 0.619
⌊T 0.70⌋ = 78 0.866 0.798 0.670 0.741 0.780 0.792
⌊T 0.75⌋ = 107 0.947 0.918 0.847 0.887 0.908 0.915
⌊T 0.80⌋ = 147 0.979 0.967 0.939 0.954 0.964 0.966

mLR 0.906 0.856 0.759 0.811 0.843 0.851
m tm,R(δ0) tm,R(δ0; τ

∗) tm,R(δ0; τ
∗)

⌊T 0.40⌋ = 12 0.156 0.065 0.020 0.043 0.054 0.064
⌊T 0.45⌋ = 16 0.236 0.120 0.047 0.082 0.105 0.117
⌊T 0.50⌋ = 22 0.360 0.222 0.107 0.163 0.201 0.219
⌊T 0.55⌋ = 30 0.508 0.363 0.206 0.281 0.332 0.356
⌊T 0.60⌋ = 42 0.664 0.535 0.357 0.455 0.505 0.527
⌊T 0.65⌋ = 57 0.810 0.723 0.568 0.651 0.702 0.717
⌊T 0.70⌋ = 78 0.911 0.860 0.760 0.812 0.845 0.855
⌊T 0.75⌋ = 107 0.964 0.945 0.896 0.926 0.939 0.944
⌊T 0.80⌋ = 147 0.988 0.980 0.960 0.971 0.976 0.979

mLR 0.939 0.903 0.833 0.875 0.895 0.902
M KPSS KPSS(τ ∗) KPSS(τ̂)
Me 0.345 0.382 0.252 0.288 0.358 0.379
MLR 0.230 0.231 0.159 0.167 0.208 0.228

Note: tm,R denotes alternative H1 : δ > 0.
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