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Abstract

We study large-sample properties of likelihood ratio tests of the unit root hypothesis

in an autoregressive model of arbitrary, finite order. Earlier research on this testing

problem has developed likelihood ratio tests in the autoregressive model of order one,

but resorted to a plug-in approach when dealing with higher-order models. In contrast,

we consider the full model and derive the relevant large-sample properties of likelihood

ratio tests under a local-to-unity asymptotic framework. As in the simpler model, we

show that the full likelihood ratio tests are nearly efficient, in the sense that their

asymptotic local power functions are virtually indistinguishable from the Gaussian

power envelopes.
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1 Introduction

In their seminal contribution, Elliott, Rothenberg, and Stock (1996, henceforth ERS) de-

rived Gaussian power envelopes for the unit root testing problem in autoregressive models,

and demonstrated how to construct tests that are “nearly efficient” in the sense that their

asymptotic local power functions are virtually indistinguishable from the Gaussian power

envelopes. In particular, they showed that GLS-detrended versions of the well-known Aug-

mented Dickey-Fuller (ADF) tests (Dickey and Fuller, 1979, 1981) are nearly efficient. More

recently, Jansson and Nielsen (2012, henceforth JN) demonstrate that (quasi-) likelihood ra-

tio tests in the ERS model are also nearly efficient in the autoregressive model of order one.

For higher-order autoregressive models, the method of proof employed by JN forces them to

use a “two-step”/“plug-in” approach, where the nuisance parameters arising from the lag-

augmentation are replaced with consistent estimators when defining the criterion function

used to construct the test.

Although nearly efficient, the tests of JN therefore do not admit a (quasi-) likelihood

ratio interpretation in the higher-order case. In fact, even after several decades of intense

research into this testing problem, it would appear that a likelihood ratio test of the unit

root hypothesis in an autoregressive model of arbitrary order has still not been developed

and investigated. In this paper, we fill this apparent hole in the literature. Our analysis is

motivated partly by a desire to make the theory of univariate unit root testing more complete

by developing (quasi-) likelihood ratio tests in the workhorse model of the literature, and

showing that these tests belong to the class of nearly efficient tests. Moreover, and perhaps

just as importantly, with an eye towards other non-standard testing problems it is of interest

to understand the consequences of (and demonstrate the feasibility of) handling all nuisance

parameters in a unified way in this canonical non-standard testing problem.

The remainder of the paper is organized as follows. In the next section, we present the

model, derive the test statistics, and characterize their large sample properties. In Section 3,

we present the results of a small simulation study of the finite-sample properties of the

likelihood ratio test and compare with some existing tests. Section 4 offers some concluding

remarks. Finally, the proof of our main result in given in the appendix.

2 Model and Quasi-Likelihood Ratio Test Statistic

Our goal is to develop unit root tests that are of quasi-likelihood ratio type, are easy to

implement, and enjoy good size and power properties in a model of the type considered in

ERS. To this end, suppose the observed time series {yt : 1 ≤ t ≤ T} is generated as

yt = β′dt + ut, (1)
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where dt = 1 or dt = (1, t)′, β is an unknown parameter, and where the error term ut is

generated by the AR(p+ 1) model

(1− ρL) γ (L) ut = εt, (2)

with ρ ≤ 1 a scalar parameter of interest, γ (L) = 1− γ1L− . . .− γpL
p a lag polynomial of

order p satisfying min|z|≤1 |γ (z)| > 0. When developing formal results, we will complete the

specification of the model by assuming that max (|u0| , . . . , |u−p|) = op(
√
T ) and that the εt

form a conditionally homoskedastic martingale difference sequence with (unknown) variance

σ2 and supt E (|εt|r |εt−1, εt−2, . . .) < C < ∞ for some r > 2.

In the model characterized by (1) and (2), the unit root testing problem is the problem

of testing

H0 : ρ = 1 versus H1 : ρ < 1.

A quasi-likelihood ratio test statistic associated with this testing problem can be based on

the Gaussian quasi-likelihood corresponding to the model with u0 = . . . = u−p = 0. In terms

of the parameter of interest ρ and the nuisance parameters β, γ = (γ1, . . . , γp)
′, and σ2, the

Gaussian quasi-log likelihood function corresponding to the model given by (1) and (2) with

initial conditions u0 = . . . = u−p = 0 can be expressed, up to a constant, as

LT

(
ρ, β, γ, σ2

)
= −T

2
log σ2 − 1

2σ2
(Yρ,γ −Dρ,γβ)

′ (Yρ,γ −Dρ,γβ) ,

where, setting y0 = . . . = y−p = 0 and d0 = . . . = d−p = 0, Yρ,γ andDρ,γ are matrices with row

t = 1, . . . , T given by (1− ρL) γ (L) yt and (1− ρL) γ (L) d′t, respectively. The corresponding

quasi-likelihood ratio test statistic associated with the problem of testing H0 versus H1 is

LRT = max
ρ≤1,β,γ∈Γ,σ2>0

LT

(
ρ, β, γ, σ2

)
− max

β,γ∈Γ,σ2>0
LT

(
1, β, γ, σ2

)
,

where Γ =
{
γ : min|z|≤1 |γ (z)| > 0

}
.

Up to a constant, the profile quasi-log likelihood obtained by maximizing LT (ρ, β, γ, σ2)

with respect to (β, σ2) is given by

LT (ρ, γ) = −T

2
log

(
Y ′Y − Y ′D(D′D)−1D′Y

)∣∣
Y=Yρ,γ ,D=Dρ,γ

.

As a consequence, the statistic LRT admits the representation

LRT = max
ρ≤1,γ∈Γ

LT (ρ, γ)−max
γ∈Γ

LT (1, γ) . (3)

Incorporating the constraint γ ∈ Γ on the nuisance parameter γ is computationally cum-
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bersome. Fortunately, the model (2) can be embedded in a model that is locally equivalent

to it in a suitable sense, yet makes a quasi-likelihood ratio test statistic easier to compute.

To be specific, the model (2) can be embedded in a model of ADF type, namely

η (L)∆ut = πut−1 + εt, (4)

where π ≤ 0 and η (L) = 1− η1L− . . .− ηpL
p is an unrestricted lag polynomial of order p,

and where {ut} and {εt} are as before.

An important advantage of working with the parameterization (4) is that, even without

restricting η = (η1, . . . , ηp)
′, the key implication of the constraint min|z|≤1 |γ (z)| > 0, namely

γ (1) > 0, is incorporated in the sign restriction π ≤ 0 on π. To be specific, when (2)

is satisfied, the parameter π in (4) is given by (ρ− 1) γ(1) ≤ 0, where the inequality is a

consequence of the facts that ρ ≤ 1 and γ(1) > 0. The problem of testing H0 versus H1 in

the model characterized by (1) and (2) is therefore subsumed in the problem of testing

HADF
0 : π = 0 versus HADF

1 : π < 0

in the model characterized by (1) and (4). As it turns out, the quasi-likelihood ratio test

statistic associated with the problem of testingHADF
0 versusHADF

1 in the more general model

(4) is asymptotically equivalent to the quasi-likelihood ratio test statistic (3) associated with

the problem of testing H0 versus H1 in the model (2).

Following the derivation of (3), we next derive the quasi-likelihood ratio test statistic

associated with the problem of testing HADF
0 versus HADF

1 . The parameter of interest is

now π, while (β, η, σ2) is a nuisance parameter. The Gaussian quasi-log likelihood function

corresponding to the model given by (1) and (4) with initial conditions u0 = . . . = u−p = 0

can be expressed, up to a constant, as

LADF
T

(
π, β, η, σ2

)
= −T

2
log σ2 − 1

2σ2

(
Y ADF
π,η −DADF

π,η β
)′ (

Y ADF
π,η −DADF

π,η β
)
,

where, setting again y0 = . . . = y−p = 0 and d0 = . . . = d−p = 0, we now define

Y ADF
π,η and DADF

π,η as the matrices with row t = 1, . . . , T given by (η(L) (1− L)− πL) yt and

(η(L) (1− L)− πL) d′t, respectively. The corresponding quasi-likelihood ratio test statistic

for testing HADF
0 versus HADF

1 is

LRADF
T = max

π≤0,β,η,σ2>0
LADF
T

(
π, β, η, σ2

)
− max

β,η,σ2>0
LADF
T

(
0, β, η, σ2

)
.
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As before, the profile quasi-log likelihood for (π, η) is given, up to a constant, by

LADF
T (π, η) = −T

2
log

(
Y ′Y − Y ′D(D′D)−1D′Y

)∣∣
Y=Y ADF

π,η ,D=DADF
π,η

,

so that the statistic LRADF
T admits the representation

LRADF
T = max

π≤0,η
LADF

T (π, η)−max
η

LADF
T (0, η) . (5)

Unlike (3), both terms on the right-hand side of (5) are relatively easy to evaluate numerically.

In addition, LRADF
T turns out to have attractive large sample properties.

As alluded to above, the main difference between (2) and (4) lies in the restrictions im-

posed on the parameters. Without any parameter restrictions, these two models are equiva-

lent in the sense that one is a reparametrization of the other. However, when the parameter

restrictions mentioned in the text are imposed, there is a substantive “global” difference be-

tween the two models. In particular, (2) can only generate I(0) and I(1) processes, whereas

(4) can in fact generate I(d) models for d = 0, 1, 2, . . .. However, the models (2) and (4) are

fortunately “locally” equivalent in a neighborhood of the null hypothesis ρ = 1. Specifically,

(2) imposes many restrictions on the parameters, but the only asymptotically relevant re-

striction can be more elegantly formulated in (4).

In other words, without restrictions on γ, the test statistic in (3) behaves like a “two-

sided” test in the sense that its limiting distribution is maxc̄ Λc (c̄), i.e. the maximum without

a sign-restriction on c̄; c.f. Theorem 1. For example, when p = 1, ρ and γ are not separately

identified in (2), so that maximizing the likelihood with a restriction on ρ but not on γ is

equivalent to maximizing with a restriction on γ but not on ρ. The latter statistic corresponds

to a two-sided test. An important property of the model (4) is that, although (2) implies

restrictions on η(L), there is a sense in which those restrictions do not bind asymptotically.

We can therefore achieve asymptotic optimality without imposing restrictions on η(L), which

is computationally advantageous. In contrast, of course, the restriction on π does bind

asymptotically and it is important to impose it.

Because of the advantages of LRADF
T relative to LRT described above, we analyze the

limiting behavior of the former in the following theorem.

Theorem 1 Suppose {yt} is generated by (1) and (2) and that c = T (ρ− 1) is held fixed

as T → ∞. Let Wc (r) =
∫ r

0
exp (c (r − s)) dW (s), where W is a standard Wiener process.

(a) If dt = 1, then LRADF
T →d maxc̄≤0 Λc (c̄), where

Λc (c̄) = c̄

∫ 1

0

Wc (r) dWc (r)−
1

2
c̄2
∫ 1

0

Wc (r)
2 dr.
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Table 1: Quantiles of the distribution of LRADF
T

T 80% 85% 90% 95% 97.5% 99% 99.5% 99.9%
Panel A: constant mean case, dt = 1

100 0.81 1.07 1.45 2.14 2.84 3.74 4.42 5.93
250 0.78 1.02 1.36 1.99 2.65 3.56 4.25 5.86
500 0.77 1.00 1.33 1.93 2.56 3.44 4.11 5.70
1000 0.77 0.99 1.32 1.91 2.52 3.36 4.01 5.57
∞ 0.76 0.98 1.31 1.88 2.48 3.29 3.92 5.40

Panel B: linear trend case, dt = (1, t)′

100 2.50 2.86 3.34 4.14 4.91 5.89 6.60 8.17
250 2.47 2.82 3.29 4.09 4.88 5.89 6.65 8.38
500 2.46 2.80 3.28 4.07 4.85 5.86 6.63 8.36
1000 2.46 2.80 3.27 4.05 4.83 5.84 6.59 8.31
∞ 2.45 2.79 3.26 4.05 4.82 5.82 6.57 8.29

Notes: This table is taken from JN, Table 1. Entries for finite T are simulated quantiles of LRADF
T with

known (γ, σ2) and with εt ∼ i.i.d.N(0, 1). Entries for T = ∞ are simulated quantiles of maxc̄≤0 Λ0(c̄) and

maxc̄≤0 Λ
τ
0
(c̄), respectively, where Wiener processes are approximated by 104 discrete steps with standard

Gaussian innovations. All entries are based on 107 Monte Carlo replications.

(b) If dt = (1, t)′, then LRADF
T →d maxc̄≤0 Λ

τ
c (c̄), where

Λτ
c (c̄) = Λc (c̄) +

1

2

(
(1− c̄)Wc (1) + c̄2

∫ 1

0
rWc (r) dr

)2

1− c̄+ c̄2/3
− 1

2
Wc (1)

2 .

A proof of the theorem is provided in the appendix. As further discussed below, the same

method of proof can be used to analyze LRT .

The asymptotic distributions obtained in the theorem coincide with those obtained by

JN for their statistic L̂R
d

T . As a consequence, LRADF
T shares with L̂R

d

T the property that a

test based upon it is nearly efficient in the sense that its asymptotic local power function is

indistinguishable from the Gaussian power envelope. Moreover, the critical values obtained

by JN are applicable to LRADF
T as well. For completeness, we reproduce these in Table 1.

In the spirit of JN, one can obtain statistics asymptotically equivalent to LRADF
T by

replacing judiciously chosen nuisance parameters with estimators and then maximizing the

resulting plug-in version of the quasi-likelihood under HADF
0 and HADF

1 . To be specific, a

natural ADF version of the statistic L̂R
d

T of JN is given by

max
π≤0,β

LADF
T

(
π, β, η̃T , σ̃

2
T

)
−max

β
LADF
T

(
0, β, η̃T , σ̃

2
T

)
,

where η̃T and σ̃2
T are estimators of η and σ2, respectively. It can be shown that under the

assumptions of Theorem 1, this statistic is asymptotically equivalent to LRADF
T if η̃T and σ̃2

T
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are consistent. Likewise, the statistic

max
π≤0

LADF
T (π, η̃T )− LADF

T (0, η̃T )

is asymptotically equivalent to LRADF
T if η̃T is consistent.

Conversely, it stands to reason that a counterpart of JN’s statistic, L̂R
d

T , that does not

replace any nuisance parameters with estimators will be asymptotically equivalent to L̂R
d

T .

In the notation of this paper, L̂R
d

T can be represented as

L̂R
d

T = max
ρ≤1,β

LT

(
ρ, β, γ̃T , σ̃

2
T

)
−max

β
LT

(
1, β, γ̃T , σ̃

2
T

)
,

where γ̃T and σ̃2
T are (consistent) estimators of γ and σ2. In other words, L̂R

d

T is a plug-

in version of LRT and as one would expect it can be shown that the two statistics are

asymptotically equivalent under the assumptions of Theorem 1.

A direct proof of the fact that LRT has the same limiting distribution as L̂R
d

T and LRADF
T

can be obtained by slightly modifying the proof of Theorem 1. The proof of Theorem 1 first

shows that π̂T = Op(T
−1), η̂T = η +Op(T

−1/2), and η̃T = η +Op(T
−1/2), where

(π̂T , η̂T ) = arg max
π≤0,η

LADF
T (π, η) and η̃T = argmax

η
LADF

T (0, η) ,

and then obtains the limiting distribution of a centered and localized empirical process.

Similarly, LRT can be analyzed by first showing that ρ̂T = 1+Op(T
−1), γ̂T = γ+Op(T

−1/2),

and γ̃T = γ +Op(T
−1/2), where

(ρ̂T , γ̂T ) = arg max
ρ≤1,γ∈Γ

LT (ρ, γ) and γ̃T = argmax
γ∈Γ

LT (1, γ) ,

and then obtaining the limiting distribution of a centered and localized empirical process.

Indeed, the empirical processes in question are the same in both cases, and incorporating

the restriction γ ∈ Γ does not affect the argument we use to obtain convergence rates, so

analyzing LRT involves no additional conceptual difficulties.

The ADF test and the DF-GLS test of ERS are both asymptotically equivalent to tests

based on a statistic of the form

max
π≤0,η,σ2>0

LADF
T (π, β̃T , η, σ

2)− max
η,σ2>0

LADF
T (0, β̃T , η, σ

2),

where β̃T is an estimator of β. This statistic differs from LRADF
T (only) because the nuisance

parameter β has been replaced by the estimator β̃T . The ADF test employs an OLS estimator

of β while the DF-GLS test employs an estimator of GLS type, but irrespective of the choice
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of β̃T the displayed statistic turns out be asymptotically distinct from LRADF
T when dt =

(1, t)′. In other words, although η and/or σ2 can be replaced with well-behaved estimators

without any asymptotic consequences, a plug-in version of LRADF
T in which β has been

replaced by an estimator turns out to be distinct from LRADF
T , even in the limit. Similarly,

the point optimal test statistic of ERS is asymptotically distinct from LRADF
T , being of the

form

max
β

LADF
T

(
T−1c̄ERS, β, 0, ω̃

2
T

)
−max

β
LADF
T

(
0, β, 0, ω̃2

T

)
,

where c̄ERS is a negative constant and where ω̃2
T is an estimator of the long-run variance

γ (1)−2 σ2. For additional details and further discussion, see Section 3 of JN.

3 Monte Carlo Simulations

To assess the finite sample properties of LRADF
T and some of its rivals, we conduct a small

Monte Carlo simulation experiment. For specificity, we consider data generating processes

(DGPs) of the form (1) and (2) with β = 0, p = 3, u0 = u−1 = . . . = u−3 = 0, and

εt ∼ i.i.d.N (0, 1). For each of 105 replications, we simulate data from the model with sample

size T ∈ {300, 1000} and the parameter of interest ρ either equal to one or belonging to a grid

chosen to ensure that the rejection rates of the various tests are around 0.5, 0.75, and 0.9,

respectively. Regarding the nuisance parameter γ, we employ a parameterization of the form

γ (L) =
∏3

i=1 (1− φiL), where φi are the inverse roots of the polynomial γ(L). A range of

values of φ = (φ1, φ2, φ3) was considered, but to conserve space we only report results for some

representative cases, where φ equals (0, 0, 0), (0.2, 0.4, 0.6), (0.4, 0.4, 0.4), and (0.6, 0.6, 0.6),

respectively. These all correspond to roots that are all well outside the unit circle.

For each DGP, we implement four tests. The first of these is the test based on LRADF
T

using a lag length selected by applying the Modified Akaike Information Criterion (MAIC)

of Perron and Qu (2007), see also Ng and Perron (2001), to the ADF model characterized

by (1) and (4). The remaining three are the test based on LRADF
T , the test based on the

statistic L̂R
d

T of JN, and the DF-GLS test of ERS, respectively, each using the lag length

chosen by the MAIC applied to the DF-GLS regression. Table 2 reports rejection rates of

tests with nominal size 5% for the constant mean case, while the corresponding results for

the linear trend case are reported in Table 3.

When LRADF
T is implemented using a lag length selected by applying the MAIC to the

ADF model (4), the test exhibits excellent size and power properties across all cases con-

sidered. The other tests also have good power properties, but tend to exhibit size dis-

tortions, especially so in the model with the largest degree of persistence, namely when

φ1 = φ2 = φ3 = 0.6. Also, even in cases where it exhibits size inflation, the DF-GLS test

does not dominate the LRADF
T test in terms of power.
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Table 2: Rejection frequencies of unit root tests, constant mean case

DGP T = 300 T = 1000

φ1, φ2, φ3 ρ LRADF
T LRADF

T,gls L̂R
d

T DF-GLS ρ LRADF
T LRADF

T,gls L̂R
d

T DF-GLS

0, 0, 0 1.000 0.043 0.043 0.040 0.048 1.000 0.048 0.048 0.047 0.049
0.970 0.568 0.566 0.544 0.599 0.993 0.475 0.471 0.464 0.480
0.950 0.862 0.861 0.842 0.869 0.990 0.719 0.713 0.706 0.722
0.930 0.944 0.944 0.928 0.938 0.985 0.943 0.939 0.935 0.941

0.2, 0.4, 0.6 1.000 0.035 0.077 0.042 0.101 1.000 0.045 0.088 0.076 0.097
0.970 0.461 0.515 0.408 0.581 0.993 0.438 0.534 0.498 0.557
0.950 0.767 0.762 0.679 0.809 0.990 0.676 0.713 0.682 0.730
0.930 0.905 0.895 0.846 0.917 0.985 0.918 0.915 0.900 0.923

0.4, 0.4, 0.4 1.000 0.034 0.061 0.035 0.086 1.000 0.045 0.067 0.058 0.076
0.970 0.459 0.477 0.386 0.545 0.993 0.442 0.470 0.439 0.493
0.950 0.773 0.763 0.690 0.810 0.990 0.681 0.675 0.646 0.695
0.930 0.914 0.905 0.862 0.925 0.985 0.919 0.910 0.895 0.918

0.6, 0.6, 0.6 1.000 0.038 0.156 0.056 0.159 1.000 0.047 0.149 0.133 0.150
0.970 0.435 0.604 0.446 0.635 0.993 0.442 0.615 0.586 0.622
0.950 0.698 0.712 0.593 0.752 0.990 0.673 0.738 0.707 0.747
0.930 0.839 0.815 0.726 0.848 0.985 0.906 0.879 0.857 0.886

Notes: Rejection frequencies for the likelihood ratio test (LRADF
T , and LRADF

T,gls ), the plug-in likelihood ratio

test of JN, and the DF-GLS test of ERS. Simulations are based on 105 replications of the autoregressive
DGP, allowing for a constant mean only in the regression model. The lag orders are chosen by minimization
of the MAIC of Perron and Qu (2007) applied to the ADF model (4) for the first test (LRADF

T ), and to the
DF-GLS regression for the other three tests.

Results for other values of φ are qualitatively similar and are omitted to conserve space.

Also omitted are results for models outside the AR class, notably the notoriously difficult case

of an MA(1) process with a negative root, where all tests exhibit size distortions. Overall,

the simulation results are consistent with the theory developed in this paper, suggesting in

particular that the test based on LRADF
T is competitive with (if not weakly superior to) its

natural rivals also in samples of moderate size.

4 Concluding Remarks

This paper has developed and analyzed quasi-likelihood ratio test statistics in an autoregres-

sive model of arbitrary, finite order, whose deterministic components and short-run dynam-

ics are governed by unknown nuisance parameters. Previous work, notably that of ERS and

JN, has developed tests that can be interpreted as “plug-in” versions of quasi-likelihood ra-

tio test statistics, developed under the counterfactual assumption that nuisance parameters

governing either deterministic components or short-run dynamics are known. In particular,

our work generalizes that of JN by allowing the nuisance parameters that are “profiled out”

to include those of a finite-order autoregressive process governing short-run dynamics. Our

main theoretical result shows that this generalization can be achieved without sacrificing an-
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Table 3: Rejection frequencies of unit root tests, linear trend case

DGP T = 300 T = 1000

φ1, φ2, φ3 ρ LRADF
T LRADF

T,gls L̂R
d

T DF-GLS ρ LRADF
T LRADF

T,gls L̂R
d

T DF-GLS

0, 0, 0 1.000 0.038 0.038 0.033 0.028 1.000 0.046 0.045 0.043 0.032
0.940 0.612 0.612 0.563 0.527 0.985 0.554 0.547 0.528 0.452
0.920 0.795 0.798 0.750 0.725 0.980 0.802 0.793 0.775 0.703
0.860 0.928 0.921 0.880 0.876 0.970 0.980 0.973 0.962 0.938

0.2, 0.4, 0.6 1.000 0.028 0.129 0.021 0.111 1.000 0.040 0.137 0.096 0.109
0.940 0.407 0.468 0.257 0.411 0.985 0.474 0.569 0.489 0.483
0.920 0.590 0.603 0.398 0.536 0.980 0.714 0.741 0.667 0.650
0.860 0.854 0.844 0.733 0.793 0.970 0.953 0.945 0.913 0.893

0.4, 0.4, 0.4 1.000 0.027 0.102 0.020 0.091 1.000 0.040 0.107 0.075 0.084
0.940 0.409 0.440 0.255 0.382 0.985 0.481 0.514 0.442 0.429
0.920 0.600 0.603 0.416 0.536 0.980 0.718 0.714 0.645 0.621
0.860 0.870 0.861 0.765 0.810 0.970 0.953 0.944 0.915 0.893

0.6, 0.6, 0.6 1.000 0.027 0.251 0.003 0.231 1.000 0.043 0.223 0.163 0.205
0.940 0.303 0.519 0.092 0.472 0.985 0.470 0.610 0.535 0.554
0.920 0.422 0.553 0.181 0.493 0.980 0.689 0.725 0.643 0.656
0.860 0.669 0.702 0.474 0.635 0.970 0.929 0.886 0.834 0.827

Notes: Rejection frequencies for the likelihood ratio test (LRADF
T , and LRADF

T,gls ), the plug-in likelihood ratio

test of JN, and the DF-GLS test of ERS. Simulations are based on 105 replications of the autoregressive
DGP, allowing for a constant mean and linear trend in the regression model. The lag orders are chosen by
minimization of the MAIC of Perron and Qu (2007) applied to the ADF model (4) for the first test (LRADF

T ),
and to the DF-GLS regression for the other three tests.

alytical tractability or statistical efficiency. In addition, the resulting test is attractive from

a practical point of view, being simple to compute and enjoying good properties in a simu-

lation experiment.

Although doing so is beyond the scope of this paper, it would be of both theoretical

and practical interest to allow for more general short-run dynamics than those considered

here. In particular, it would be of interest to explore whether one can accommodate either

sieve-type autoregressive approximations involving a growing value of p or more complicated

finite-dimensional parametric models than the AR(p) model.

It would also be of interest to develop and analyze quasi-likelihood ratio tests for unit

roots in more complicated settings such as panel data models. Important progress on under-

standing optimal unit root testing in such models has been made by, among others, Moon,

Perron, and Phillips (2007, 2014) and Becheri, Drost, and van den Akker (2015), but to the

best of our knowledge it is still an open question whether optimality can be achieved by tests

admitting a quasi-likelihood ratio interpretation.
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A Proof of Theorem 1

Because LADF
T (·) is invariant under transformations of the form yt → yt+b′dt, we can assume

without loss of generality that β = 0. Also, the proof of part (a) is a special case of the proof

of part (b), so we only give the proof of part (b).

Let the process ΛADF
c be given by

ΛADF
c (c̄, h) = Λτ

c (c̄) + h′Z − 1

2
h′Ξh,

where

Ξ = E (v̆tv̆
′
t) , v̆t = σ−1γ (L)−1 (εt, . . . , εt−p+1)

′ ,

and where Z ∼ N (0,Ξ) is independent of Wc. Also, define

σ̃2
T =

1

T

(
Y ′Y − Y ′D(D′D)−1D′Y

)∣∣
Y=Y ADF

0,γ ,D=DADF
0,γ

= T−1

T∑

t=1

ε2t + op (1) →p σ
2,

and for any (c̄, h), let

λADF
T (c̄, h) = λADF,0

T (c̄, h) + λADF,d
T (c̄, h),

where

λADF,0
T (c̄, h) =

1

2σ̃2
T

Y ′Y |Y=Y ADF
0,γ

− 1

2σ̃2
T

Y ′Y |Y=Y ADF
γ(1)c̄/T,γ+h/

√
T

and

λADF,d
T (c̄, h) =

1

2σ̃2
T

(
Y ′D(D′D)−1D′Y

)∣∣
Y=Y ADF

γ(1)c̄/T,γ+h/
√
T
,D=DADF

γ(1)c̄/T,γ+h/
√

T

− 1

2σ̃2
T

(
Y ′D(D′D)−1D′Y

)∣∣
Y=Y ADF

0,γ ,D=DADF
0,γ

.

Because

LADF
T (γ (1) c̄/T, γ + h/

√
T )− LADF

T (0, γ) = GT (λ
ADF
T (c̄, h)),

where

GT (x) = −T

2
log

(
1− 2

T
x

)
, x <

T

2
,

is monotonically increasing in x, the statistic LRADF
T admits the representation

LRADF
T = GT

(
max
c̄≤0,h

λADF
T (c̄, h)

)
−GT

(
max

h
λADF
T (0, h)

)
.
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Suppose

(
max
c̄≤0,h

λADF
T (c̄, h),max

h
λADF
T (0, h)

)
→d

(
max
c̄≤0,h

ΛADF
c (c̄, h),max

h
ΛADF

c (0, h)

)
. (6)

Then

LRADF
T = max

c̄≤0,h
λADF
T (c̄, h)−max

h
λADF
T (0, h) + op (1)

→d max
c̄≤0,h

ΛADF
c (c̄, h)−max

h
ΛADF

c (0, h)

= max
c̄≤0

Λτ
c (c̄) +

1

2
Z ′Ξ−1Z − 1

2
Z ′Ξ−1Z =max

c̄≤0
Λτ

c (c̄) ,

where the first equality uses the facts that (i) the left-hand side of (6) is Op (1) and (ii)

limT→∞ sup|x|≤M |GT (x)− x| = 0 for any 0 ≤ M < ∞. The proof can therefore be completed

by verifying (6). We shall do so by showing that

(ĉT , ĥT ) = argmax
c̄≤0,h

λADF
T (c̄, h) = Op (1) and h̃T = argmax

h
λADF
T (0, h) = Op (1) , (7)

and that λADF
T converges to ΛADF

c in the topology of uniform convergence on compacta.

Define YT = Y ADF
0,γ and DT = DADF

0,γ diag(1, 1/
√
T ), and let ẎT and ḊT be matrices with

row t = 1, . . . , T given by

(
T−1γ (1) yt−1, T

−1/2∆yt−1, . . . , T
−1/2∆yt−p

)

and (
T−1γ (1) d′t−1, T

−1/2∆d′t−1, . . . , T
−1/2∆d′t−p

) (
Ip+1 ⊗ diag(1, 1/

√
T )

)
,

respectively. Because

Y ADF
γ(1)c̄/T,γ+h/

√
T
= YT + ẎT (c̄, h

′)′

and

DADF
γ(1)c̄/T,γ+h/

√
T
diag(1, 1/

√
T ) = DT + ḊT ((c̄, h′)′ ⊗ I2) ,

the function λADF
T admits a representation of the form

λADF
T (c̄, h) = F (c̄, h,ST ) ,

where

ST =
(
Y ′

T ẎT , Ẏ ′
T ẎT ,Y ′

TDT ,Y ′
T ḊT , Ẏ ′

TDT , Ẏ ′
T ḊT ,D′

TDT ,D′
T ḊT , Ḋ′

T ḊT

)
= Op (1)

by standard results (e.g., Chan and Wei, 1987; Phillips, 1987) and where F is a continuous
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function. Moreover, the function F satisfies (with probability one, for every T ) that

lim
‖(c̄,h′)′‖→∞

1

‖(c̄, h′)′‖2
|F (c̄, h,ST )− F ∗ (c̄, h,ST )| = 0,

where, letting µ̇T denote the smallest eigenvalue of Ẏ ′
T ẎT − Ẏ ′

T ḊT (Ḋ′
T ḊT )

−1Ḋ′
T ẎT ,

F ∗ (c̄, h,ST ) = − 1

2σ̃2
T

(c̄, h′)
(
Ẏ ′

T ẎT − Ẏ ′
T ḊT θ(θ

′Ḋ′
T ḊT θ)

−1θ′Ḋ′
T ẎT

)
(c̄, h′)′

∣∣∣∣
θ=(c̄,h′)′⊗I2

= − 1

2σ̃2
T

min
B∈R2

∥∥∥ẎT (c̄, h
′)′ − ḊT θB

∥∥∥
2
∣∣∣∣
θ=(c̄,h′)′⊗I2

≤ − 1

2σ̃2
T

min
B∈R2(p+1)

∥∥∥ẎT (c̄, h
′)′ − ḊTB

∥∥∥
2

= − 1

2σ̃2
T

(c̄, h′)
(
Ẏ ′

T ẎT − Ẏ ′
T ḊT (Ḋ′

T ḊT )
−1Ḋ′

T ẎT

)
(c̄, h′)′

≤ − µ̇T

2σ̃2
T

‖(c̄, h′)′‖2 .

Using σ̃2
T →p σ2 > 0, ST = Op (1), and the fact that µ̇T > 0 with probability approaching

one, it can be shown that every δ > 0 admits compact sets K0 ⊆ {0} × R
p, K1 ⊆ R− × R

p,

and K satisfying

lim sup
T→∞

Pr [ST /∈ K] ≤ δ,

max
(c̄,h)∈{0}×Rp\K0,S∈K

F (c̄, h,S) ≤ 0 = F (0, 0,S) ≤ max
(c̄,h)∈K0,S∈K

F (c̄, h,S) ,

and

max
(c̄,h)∈R−×Rp\K1,S∈K

F (c̄, h,S) ≤ 0 = F (0, 0,S) ≤ max
(c̄,h)∈K1,S∈K

F (c̄, h,S) .

As a consequence,

lim sup
T→∞

Pr

(
max

(c̄,h)∈K0

λADF
T (c̄, h) < max

h
λADF
T (0, h)

)
≤ lim sup

T→∞
Pr (ST /∈ K) ≤ δ

and

lim sup
T→∞

Pr

(
max

(c̄,h)∈K1

λADF
T (c̄, h) < max

c̄≤0,h
λADF
T (c̄, h)

)
≤ lim sup

T→∞
Pr (ST /∈ K) ≤ δ,

implying in particular that (7) holds.

Next, it follows from Prohorov’s Theorem (e.g., Kallenberg, 2002, Theorem 16.5) that

λADF
T converges to ΛADF

c in the topology of uniform convergence on compacta if λADF
T con-

verges to ΛADF
c in the sense of weak convergence of finite-dimensional projections and if the

process
{
λADF
T (c̄, h) : (c̄, h′)′ ∈ K

}
is tight for any compact set K. For any fixed (c̄, h), it
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follows from standard results (e.g., Chan and Wei, 1987; Phillips, 1987) that

λADF,0
T (c̄, h) = c̄T−1

T∑

t=1

y̆t−1

(
ε̆t + cT−1y̆t−1

)
− 1

2
c̄2T−2

T∑

t=1

y̆2t−1

+ h′T−1/2

T∑

t=1

v̆t−1ε̆t −
1

2
h′T−1

T∑

t=1

v̆t−1v̆
′
t−1h+ op (1)

→d Λc (c̄) + h′Z − 1

2
h′Ξh,

and

λADF,d
T (c̄, h) =

1

2

(
T−1/2

∑T
t=1 (1− c̄T−1t) (ε̆t + cT−1y̆t−1 − c̄T−1y̆t−1)

)2

1− c̄+ c̄2/3

− 1

2

(
T−1/2

∑T
t=1 (ε̆t + cT−1y̆t−1)

)2

1
+ op (1)

→d
1

2

(
(1− c̄)Wc (1) + c̄2

∫ 1

0
rWc (r) dr

)2

1− c̄+ c̄2/3
− 1

2
Wc (1)

2

jointly, where ε̆t = σ−1εt and y̆t = σ−1γ (1) yt. Therefore,

λADF
T (c̄, h) →d Λ

ADF
c (c̄, h)

for fixed (c̄, h) and the Cramér-Wold device can be used to show that λADF
T converges

to ΛADF
c in the sense of weak convergence of finite-dimensional projections. Finally, be-

cause F is continuous, it follows from the Arzelà-Ascoli Theorem (Dudley, 2002, Theorem

2.4.7) that for any compact sets K and K, the set {F (·,S) |K : S ∈ K} is relatively com-

pact (i.e., has compact closure), where F (·,S) |K is the restriction of F (·,S) to K. As

a consequence, the fact that ST is tight implies that, for any compact set K, the process{
λADF
T (c̄, h) : (c̄, h′)′ ∈ K

}
= {F (c̄, h,ST ) : (c̄, h

′)′ ∈ K} is tight.
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