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Abstract

This paper provides an exact algorithm for efficient computation of the time se-

ries of conditional variances, and hence the likelihood function, of models that have

an ARCH(∞) representation. This class of models includes, e.g., the fractionally in-

tegrated generalized autoregressive conditional heteroskedasticity (FIGARCH) model.

Our algorithm is a variation of the fast fractional difference algorithm of Jensen and

Nielsen (2014). It takes advantage of the fast Fourier transform (FFT) to achieve an

order of magnitude improvement in computational speed. The efficiency of the algo-

rithm allows estimation (and simulation/bootstrapping) of ARCH(∞) models, even

with very large data sets and without the truncation of the filter commonly applied in

the literature. We also show that the elimination of the truncation of the filter sub-

stantially reduces the bias of the quasi-maximum-likelihood estimators. Our results

are illustrated in two empirical examples.

JEL codes: C22, C58, C63, C87.
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1 Introduction

Many autoregressive conditional heteroskedasticity (ARCH) models have a so-called ARCH(∞)

representation, which is similar to the linear representation for time series models for the con-

ditional mean. The ARCH(∞) representation, or model, appears to be introduced by Boller-

slev (1986). An example is the very popular fractionally integrated GARCH (FIGARCH)

model of Baillie, Bollerslev, and Mikkelsen (1996); see below for additional examples.

In ARCH(∞) models, the sequence of conditional variances is a linear combination of all

previous squared innovations, specifically a linear convolution, where the weights are simple

functions of the parameters of the model. By standard methods, the calculation of the se-

quence of conditional variances, and hence of the likelihood function, requires O(T 2) arith-

metic operations. Evaluating the likelihood function of an ARCH(∞) model requires calcu-

lation of the sequence of conditional variances, and optimizing the likelihood for parameter

estimation in the model typically requires many iterations and hence many calculations of

the sequence of conditional variances based on different parameter values. Thus, for large

sample sizes, the O(T 2) computational cost can be prohibitive for estimation of the model.

Even if it is not prohibitive for a given sample size, it may render bootstrap inference or

simulation methods infeasible.

To speed up computation it has been standard in the literature, at least since Baillie

et al. (1996), to truncate the convolution at a fixed truncation number such as 1, 000. That

is, only a part of the time series of innovations is used to calculate the entire sequence of

conditional variances. Of course, this is an approximation which implies that the calculation

is no longer exact.

In this paper, we discuss efficient computation of the sequence of conditional variances,

and hence the likelihood function, for any model that has an ARCH(∞) representation. We

make two separate contributions.

First, we show how to apply the fast Fourier transform (FFT) of Cooley and Tukey

(1965) and the circular convolution theorem to reduce the required number of arithmetic

operations from O(T 2) to O(T log T ). Our proposed algorithm is a variation of an algorithm

recently proposed by Jensen and Nielsen (2014) for the calculation of fractional differences.

The algorithm is exact and does not rely on any approximation device. The increase in

computational speed can easily be a factor of 10 or even much more for sample sizes that can

be encountered in practical applications, and is sufficient to make bootstrap and simulation

methods for ARCH(∞) models feasible, even with very large sample sizes.

Second, in a small Monte Carlo simulation, we quantify the estimation bias introduced

by using a fixed truncation number. We show that, for truncation numbers typically applied
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in the literature, the bias can be substantial. However, because our algorithm is exact and

sufficiently fast to eliminate the need for truncation, it does not suffer from this bias.

In an empirical application we apply our algorithm to two data sets of exchange rates.

These highlight the differences obtained with and without the truncation number, and also

emphasize the very different computational time achieved with the new FFT-based algorithm

compared with standard linear convolution.

Recently, Klein and Walther (2017) also proposed an application of the FFT and circular

convolution theorem, based on Jensen and Nielsen (2014), to calculate the sequence of con-

ditional variances for FIGARCH models. Their method and algorithm is closely related to

ours. However, Klein and Walther (2017) maintain the fixed truncation number throughout

and do not consider exact algorithms. They also do not consider the bias associated with

the application of a fixed truncation number. We include some comparisons with their algo-

rithm, which show that, in the absence of the fixed truncation number, it is not much faster

than the standard linear convolution algorithm.

Many conditional heteroskedasticity models proposed in the literature have an ARCH(∞)

representation, going back to the GARCH model of Bollerslev (1986). However, the condi-

tional variance of the GARCH model is a sum of a fixed number of terms (in the same way

that an ARMA model is a sum of a fixed number of terms, but it has an MA(∞) represen-

tation), and consequently it will not benefit noticeably from our method. In contrast, our

method will be of great benefit to models where the conditional variance is not a sum of a

fixed number of terms. In particular, this covers all the long-memory-type conditional vari-

ance models in the ARCH(∞) class, e.g., the FIGARCH model of Baillie et al. (1996), the

long-memory GARCH model of Karanasos, Psaradakis, and Sola (2004), and the hyperbolic

GARCH model of Davidson (2004). Finally, our method also applies to some models that are

not even in the ARCH(∞) class. For example, it applies to the fractionally integrated asym-

metric power ARCH model of Tse (1998) and the linear ARCH model of Robinson (1991) and

Giraitis, Robinson, and Surgailis (2000), and it partly applies to the fractionally integrated

exponential GARCH model of Bollerslev and Mikkelsen (1996); see Section 2.2 for details.

The next section defines the class of ARCH(∞) models and explains our proposed FFT-

based algorithm for calculation of the sequence of conditional variances. Section 3 presents

results on the computational time for the new algorithm and compares with the standard

linear convolution algorithm and the Klein and Walther (2017) algorithm. An analysis of the

effects on computational time of using a fixed truncation number is also given. In Section 4

we present the results of a small simulation study that examines the estimation bias that

results from truncation. Section 5 illustrates our results with two empirical applications.

Finally, in Section 6 we give some concluding remarks.
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2 FFT algorithm for ARCH(∞) models

We consider the following generic conditional variance model for the series (ǫt)
T
t=1, which is

either an observable series (such as asset returns) or the error term from a (regression) model,

ǫt = σtzt, Et−1(ǫ
2
t ) = σ2

t , and zt ∼ i.i.d.(0, 1). (1)

Here, (zt)
T
t=1 is an independently and identically distributed (i.i.d.) innovation series with

mean zero and variance normalized to one, (σ2
t )T

t=1 is the conditional variance series, and

Et−1 represents the expectation conditional on the information available at time t − 1.

The ARCH(∞) model (or representation) for the conditional variance is

σ2
t = c +

∞
∑

j=0

λjǫ
2
t−j, (2)

where c and λj are the corresponding constant and coefficients, respectively. Of course, in

practical applications, the series (ǫt) will be available only for t = 1, . . . , T , where T denotes

the sample size. Thus, the summation in (2) will need to be truncated at j = t − 1, thus

setting pre-sample values of ǫt equal to their (conditional) mean of zero. This results in the

feasible ARCH(∞) model,

σ2
t = c +

t−1
∑

j=0

λjǫ
2
t−j. (3)

The summation in (3) is a linear convolution. By a standard linear convolution algorithm,

for given series (ǫt)
T
t=1 and (λj)

T −1
j=0 , and a given value of t, the calculation (3) requires 2t

arithmetic operations (t multiplications and t additions). Thus, the calculation of the series

(σ2
t )T

t=1 requires
∑T

t=1 2t = T 2 + T arithmetic operations.

When the sample size, T , is large, the computational burden of T 2 arithmetic operations

can make the calculation of the conditional variance series (σ2
t )T

t=1 very slow. This can render

optimization of a likelihood function, and certainly simulations and bootstrapping, infeasible.

To overcome the computational burden of the calculation in (3), Baillie et al. (1996) suggested

truncating the summation in (3) at a fixed number, say n, which is typically chosen to be

1, 000. This truncation has become the standard in the literature. The resulting model is thus

σ2
t = c +

min{t−1,n}
∑

j=0

λjǫ
2
t−j. (4)

The required number of arithmetic operations to calculate the series (σ2
t )T

t−1 in (4) is only

of order nT . Importantly, for a fixed truncation number n, the number of operations grows

only linearly with the sample size and hence avoids the squared growth required for the

calculation in (3).

While the introduction of the truncation number, n, in (4) allows for much faster calcu-
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lation of the conditional variance series (σ2
t )T

t=1, it also introduces an approximation. It is no

longer an exact algorithm to calculate the desired series given in (3). In Section 4 we present

the results of some Monte Carlo simulations to illustrate and quantify the bias in parameter

estimation resulting from this approximation.

We now introduce an alternative method to calculate the conditional variance series

(σ2
t )T

t=1 in (3) without truncation using frequency domain techniques. Specifically, we will

apply the fast Fourier transform (FFT) combined with the so-called circular convolution

theorem. As discussed in Jensen and Nielsen (2014) in the context of calculating fractional

differences, this method reduces the number of arithmetic operations to order T log T . To

describe this method, we will need the following two definitions.

Definition 1. The discrete Fourier transform (DFT), f = (fj)
T
j=1, of a series a = (at)

T
t=1 is

the solution to

a = T −1Ff,

where F is the Fourier matrix given by Fjk = w
(j−1)(k−1)
T with wT = e2πi/T and i =

√−1. �

Definition 2. Let aj and bj be two periodic sequences, meaning that aj+NT = aj and

bj+NT = bj for N = ±0, ±1, ±2, . . . . Then the circular convolution of (aj)
T
j=1 and (bj)

T
j=1 is

defined as

(a ⊛ b)t =
T
∑

j=1

ajbt−j+1 =
t
∑

j=1

ajbt−j+1 +
T
∑

j=t+1

ajbT +t−j+1, t = 1, . . . , T. �

We next present two theorems. The first is a finite version of the circular convolution

theorem, which shows how the circular convolution in Definition 2 can be calculated using the

DFT in Definition 1. For periodic integrable functions, this result can be found in Zygmund

(2003, Thm. 1.5, p. 36). The finite version has appeared in the early engineering literature

as an application of the FFT; e.g. Stockham (1966, p. 230) and Cooley, Lewis, and Welch

(1969, p. 32). Our version, presented in Theorem 1, is taken from Jensen and Nielsen (2014)

and the proof can be found there.1

Theorem 1. Let a = (at)
T
t=1 and b = (bt)

T
t=1 be two sequences. Then

a ⊛ b = T −1F (F̄ a ◦ F̄ b), (5)

where ◦ denotes element-wise multiplication.

To apply the result in Theorem 1 in our context, we need to transform the linear con-

volutions in (3) and (4) into circular convolutions. To economize on notation, we consider

only (4), but allow the possibility that n = T − 1, in which case we obtain (3).

1In Jensen and Nielsen (2014) there is a small typo in the fifth and sixth lines of the proof, where (t−1)(s−
1) should be (t−1)(u−1) in the exponents. However, since the last equality sets s = u the result is the same.
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Our second theorem shows that the sequence of conditional variances in (3) or (4) (where

the former is obtained by setting n = T − 1 in the latter) can be calculated by extending the

sequences with zeros and applying the result in Theorem 1. Specifically, we extend the vector

of errors, (ǫt)
T
t=1, and the vector of coefficients, (λj)

n
j=0, with zeros to length 2T − 1. Thus,

let the extended vectors be denoted ǫ̃ = [ǫ′, O′
T −1] and λ̃ = [λ′, O′

2T −1−(n+1)], respectively,

where Om denotes an m × 1 vector of zeros. We then prove in Theorem 2 that the linear

convolution of (ǫt)
T
t=1 and (λj)

n
j=0 in (4) can be found as the first T elements of the circular

convolution of (ǫ̃t)
2T −1
t=1 and (λ̃j)

2T −2
j=0 .

Theorem 2. Let ǫ̃ and λ̃ denote the (2T − 1) × 1 extended vectors of errors and coefficients,

respectively. Then the vector of conditional variances, (σ2
t )T

t=1, in (3) or (4) can be calculated

as the first T elements of the (2T − 1) × 1 vector c + T −1F (F̄ λ̃ ◦ F̄ ǫ̃).

Because of the truncation number, n, the result in Theorem 2 is different from the

corresponding result in Theorem 2 of Jensen and Nielsen (2014), which deals with fractional

differencing without a truncation number. We therefore give a short proof of Theorem 2.

Proof. From Theorem 1 we know that λ̃ ⊛ ǫ̃ = T −1F (F̄ λ̃ ◦ F̄ ǫ̃). Therefore, it only remains

to be shown that (λ̃ ⊛ ǫ̃)t =
∑min{t−1,n}

j=0 λjǫ
2
t−j for t = 1, . . . , T . From Definition 2, noting

that the extended sequences have 2T − 1 elements and that the λ̃j sequence starts at index

j = 0, we find that

(λ̃ ⊛ ǫ̃)t =
t
∑

j=1

λ̃j−1ǫ̃
2
t−j+1 +

T +t−1
∑

j=t+1

λ̃j−1ǫ̃
2
2T +t−j +

2T −1
∑

j=T +t−1

λ̃j−1ǫ̃
2
2T +t−j. (6)

When j = t + 1, . . . , T + t − 1 we have 2T + t − j = T + 1, . . . , 2T − 1, so that ǫ̃2
2T +t−j = 0

by definition. Similarly, when j = T + t + 1, . . . , 2T − 1 and t = 1, . . . , T we have λ̃j−1 = 0

by definition. This leaves only the first term on the right-hand side of (6). When t − 1 ≤ n,

this term is equal to
∑min{t−1,n}

j=0 λ̃j ǫ̃
2
t−j, which is what we needed to show. When t − 1 > n,

we split the first term on the right-hand side of (6) as

t
∑

j=1

λ̃j−1ǫ̃
2
t−j+1 =

n
∑

j=0

λ̃j ǫ̃
2
t−j +

t−1
∑

j=n+1

λ̃j ǫ̃
2
t−j.

For j = n + 1, . . . , t − 1 and t = 1, . . . , T we have λ̃j = 0 by definition, so that the last

summation is zero, which proves the desired result.

Theorem 2 shows that the linear convolution of (ǫt)
T
t=1 and (λj)

n
j=0 in (4) can be found as

the first T elements of the circular convolution of (ǫ̃t)
2T −1
t=1 and (λ̃j)

2T −2
j=0 , which in turn can

be calculated using the DFT. The power of this result lies in the fact that the required DFTs

can be calculated extremely efficiently by the FFT. Indeed, the latter requires only an order
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Listing 1: Matlab code to calculate ARCH(∞) conditional variances by LC method

1 function [sigma2_arch] = arch_lc(cst, epsilon, lambda)

2 sigma2_arch = cst + filter(lambda, 1, epsilon.^2);

3 end

T log T arithmetic operations, as shown by Cooley and Tukey (1965). This implies that, not

only can the conditional variances be calculated an order of magnitude faster than using the

standard linear convolution method, but also that the order of magnitude is the same with

and without truncation. That is, there is no need to introduce a truncation number to speed

up computation as in (4).

Most standard implementations of the FFT requires the length of the vectors to be a

power of two.2 This is easily accommodated by further extending the vectors with zeros.

Thus, to apply the FFT in the calculations, the vectors ǫ and λ must be extended with zeros

such that the number of elements in the vectors is equal to the smallest power of two that

is at least 2T − 1. This ensures that both Theorem 2 and the FFT can be applied.

The implementation described in the previous paragraph implies that conditional variance

series for a range of sample sizes can be calculated in the same amount of time. For example,

consider T = 1, 025 and T = 2, 048. In both cases, the smallest power of two that is at least

2T −1 is 11, and consequently one must extend with 3, 071 zeros when T = 1, 025 and 2, 048

zeros when T = 2, 048. In both situations, the extended vectors have 4, 096 elements, and

thus it will take the same amount of time to compute the conditional variances using the

FFT-based method in Theorem 2.

In Listings 1 and 2 we present our Matlab codes to implement the standard linear convo-

lution algorithm and the FFT-based algorithm in Theorem 2, respectively. The former is a

simple application of Matlab’s filter function. Implementations of the FFT-based method

in Theorem 2 for R and Ox can be found in Listings 3 and 4, respectively. All codes are

downloadable from the authors’ websites.

2.1 Example: FIGARCH model

We now consider an example that we will apply extensively in the remainder. The most

well-known ARCH(∞) model for the conditional variance is probably the FIGARCH(p, d, q)

model of Baillie et al. (1996). For that model, the conditional variance specification is

β(L)σ2
t = ω +

(

β(L) − φ(L)(1 − L)d
)

ǫ2
t , (7)

2Some modern implementations require only that the length is a product of powers of small prime num-
bers, such as 2k3l5m, and the subsequent discussion is easily adapted to such cases.
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Listing 2: Matlab code to calculate ARCH(∞) conditional variances by FFT method

1 function [sigma2_arch] = arch_fft(cst, epsilon, lambda)

2 T = size(epsilon, 1);

3 np2 = 2.^nextpow2(2*T−1);

4 sigma2_arch = ifft(fft(epsilon.^2, np2).*fft(lambda, np2));

5 sigma2_arch = cst + sigma2_arch(1:T);

6 end

Listing 3: R code to calculate ARCH(∞) conditional variances by FFT method

1 arch_fft <− function(cst, epsilon, lambda){

2 iT <− length(epsilon)

3 np2 <− nextn(2*iT−1, 2)

4 sigma2_arch <− fft(fft(c(lambda, rep(0, np2−iT))) * fft(c(epsilon^2,

rep(0, np2−iT))), inverse = T) / np2;

5 sigma2_arch <− cst + sigma2_arch[1:iT]

6 return(Re(sigma2_arch))

7 }

where β(L) = 1−∑p
i=1 βiL

i and φ(L) = 1−∑max{p,q}
i=1 φiL

i are polynomials in the lag operator,

L, whose roots all lie outside the complex unit circle. The fractional difference operator

(1 − L)d is defined in terms of the fractional coefficients πj(u) = u(u + 1) . . . (u + j − 1)/j!

from the binomial expansion of (1 − z)−u, so that, for a generic series (xt)
T
t=1, we have

(1 − L)dxt =
∑t−1

j=0 πj(−d)xt−j.

The specification (7) can be rearranged to get an ARCH(∞) representation. For sim-

plicity, suppose p = q = 1, so that β(L) = 1 − βL and φ(L) = 1 − φL. This is the most

commonly applied variant of the FIGARCH model. Then (7) can be written in the form (2)

Listing 4: Ox code to calculate ARCH(∞) conditional variances by FFT method

1 arch_fft(const cst, const epsilon, const lambda)

2 {

3 decl T, sigma2_arch;

4 T = rows(epsilon);

5 sigma2_arch = fft(cmul(fft(lambda'~zeros(1,T)), fft((epsilon.^2)'~zeros

(1,T)), 2);

6 return cst + sigma2_arch'[0:T−1];

7 }

8



Listing 5: Matlab code to calculate λj coefficients of FIGARCH(1, d, 1) by LC method

1 function [lambda] = lambda_lc(phi, beta, d, nTrunc)

2 lambda = zeros(nTrunc+1,1);

3 k = (1:nTrunc)';

4 pij = cumprod((k(1:end)−d−1)./(k(1:end)));

5 g = zeros(nTrunc,1);

6 g(1) = phi − beta + d;

7 g(2:end) = phi*pij(1:end−1) − pij(2:end);

8 lambda(1) = 0;

9 lambda(2:end) = filter(beta.^(0:nTrunc−1), 1, g);

10 end

with c = ω/(1 − β) and

λj =























0 for j = 0,

φ − β + d for j = 1,

βλj−1 + φπj−1(−d) − πj(−d) for j ≥ 2;

(8)

see Baillie et al. (1996) for details. Let g1 = φ − β + d and gj = φπj−1(−d) − πj(−d) for

j ≥ 2. Then the λj coefficients in (8) can be rewritten as

λj =











0 for j = 0,
∑j−1

i=0 βigj−i for j ≥ 1.
(9)

The last term in (9) is clearly a linear convolution. To speed up computation, the series of

λj coefficients should also be calculated using our FFT-based algorithm.

It follows that efficient calculation of the conditional variances in the FIGARCH(1, d, 1)

model should use our FFT-based algorithm twice: once to calculate the conditional variances

given the λj coefficients, and once to calculate the λj coefficients given the model parameters.

The former calculation is described in detail in Theorem 2. Similarly, (λj)
n
j=1 can be found

as the first n elements of the (2n − 1) × 1 vector n−1F (F̄ β̃ ◦ g̃), where β̃ and g̃ denote the

vectors (βj)n−1
j=0 and (gj)

n
j=1 extended with zeros to length of the smallest power of two that is

at least 2n − 1. Matlab implementations of the calculation of (λj)
n
j=0 are shown in Listings 5

and 6 for the linear convolution algorithm and the FFT-based algorithm, respectively.

2.2 Application to non-ARCH(∞) models

Our FFT-based methodology can also be applied with great benefit to some models that are

not even in the class of ARCH(∞) models. In particular, the linear ARCH model of Robinson

(1991) and Giraitis et al. (2000) is given by σt = c +
∑∞

j=1 λjǫt−j, c.f. (2). Clearly, our FFT-

9



Listing 6: Matlab code to calculate λj coefficients of FIGARCH(1, d, 1) by FFT method

1 function [lambda] = lambda_fft(phi, beta, d, nTrunc)

2 lambda = zeros(nTrunc+1,1);

3 k = (1:nTrunc)';

4 pij = cumprod((k(1:end)−d−1)./(k(1:end)));

5 g = zeros(nTrunc,1);

6 g(1) = phi − beta + d;

7 g(2:end) = phi*pij(1:end−1) − pij(2:end);

8 np2 = 2.^nextpow2(2*nTrunc−1);

9 lambda(1) = 0;

10 tmp = ifft(fft(beta.^(0:nTrunc−1)', np2).*fft(g, np2));

11 lambda(2:end) = tmp(1:nTrunc);

12 end

based algorithms described above and presented in Listings 2 and 6 can easily be adopted

to this model by simply replacing σ2
t and ǫ2

t−j with σt and ǫt−j, respectively. Similarly, the

fractionally integrated asymmetric power ARCH model of Tse (1998) is given as in (7), but

with σ2
t and ǫ2

t replaced by σδ
t and h(ǫt), respectively, where h(ǫ) = (|ǫ| − γǫ)δ and δ > 0.

Again, our FFT-based algorithms apply with minimal changes to this model.

Finally, the popular fractionally integrated exponential GARCH (FIEGARCH) model of

Bollerslev and Mikkelsen (1996) is given as in (7), but with σ2
t replaced by log(σ2

t ) and ǫ2
t

replaced by h(ǫt/σt), where h(z) = γ1z + γ2(|z| −E|z|). Thus, because σt enters non-linearly

on the right-hand side of the conditional variance equation, the sequence of conditional

variances for the FIEGARCH model cannot be written as a convolution and our methodology

does not apply to the calculation of the conditional variance sequence. However, the λj

coefficients for this model are identical to those for the FIGARCH model, and the calculation

of these can therefore take advantage of our FFT-method as in Listing 6. At least this will

reduce the computational time of calculating the λj coefficients for this model from O(T 2)

to O(T log T ) compared with standard linear convolution.

3 Computational time

In this section, we compare the computational time of our new algorithm in Theorem 2 and

Listings 2,6 with the algorithm in Klein and Walther (2017) as well as the standard linear

convolution implementation in Listings 1,5. All computations were performed in Matlab on

a desktop with an Intel Core i5 (5250U) 1.6 GHz processor running macOS Mojave 10.14.6.

In our first numerical experiment, we compare the difference in computational time for

standard linear convolution and our FFT-based algorithm as a function of sample size.
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Figure 1: Computational time (logarithmic scale)

Specifically, for a given vector of coefficients, [β, φ, d, ω]′, we calculate the conditional vari-

ances for the FIGARCH(1, d, 1) model using the method in Listings 1,5 (blue line) and the

FFT-based algorithm in Listings 2,6 (red line). That is, we calculate the λj coefficients in

(9) followed by the conditional variances in (3), i.e. without truncation, with random num-

bers for ǫt. This is done a large number of times (10, 000 for T < 4, 096 and 1, 000 for

T ≥ 4, 096), and the median time in milliseconds across repetitions is reported in Figure 1

as a function of sample size. Note that the axes are logarithmic. In particular, the figure

clearly shows the different orders of magnitude of the computational time for the two meth-

ods (T 2 vs. T log T ). The figure also demonstrates how the computational time for the FFT-

based algorithm is essentially a step function of the sample size, because of the padding to

the smallest power of two that is at least 2T − 1.

We also notice from Figure 1 that for T = 500 to T = 1, 000, the two methods perform

equally well, while linear convolution does better for smaller sample sizes and the FFT-

based algorithm does better for larger sample sizes. Thus, to obtain the fastest possible

algorithm across all sample sizes, we recommend implementing the linear convolution method

for smaller sample sizes and the FFT-based algorithm for larger sample sizes. This can easily

be achieved by combining the implementations in Listings 1 and 2 using an if statement,

and similarly for Listings 5 and 6.

11



Table 1: Computational time for different sample sizes and truncation numbers

n = 1, 000 n = 2, 000

T KW LC FFT KW LC FFT

5,000 0.76 0.98 0.66 1.58 2.41 0.81
10,000 1.45 1.84 1.27 2.26 4.17 1.43
15,000 1.52 2.69 1.26 3.89 5.96 1.45
20,000 3.07 3.54 2.79 4.00 7.72 3.01
30,000 3.19 5.25 2.81 4.14 11.2 3.08
40,000 6.80 6.97 6.37 7.70 14.8 6.49

100,000 16.6 17.5 15.6 17.6 36.0 15.3

n = 3, 000 n = 4, 000

T KW LC FFT KW LC FFT

5,000 4.00 7.02 0.98 7.59 10.5 1.04
10,000 4.68 12.9 1.61 7.67 18.3 1.70
15,000 6.45 18.8 1.73 9.31 26.1 1.71
20,000 6.39 24.6 3.23 9.38 33.9 3.17
30,000 10.4 36.4 3.27 12.8 49.5 3.23
40,000 10.6 48.1 7.20 13.1 65.2 6.80

100,000 19.9 119 15.5 22.3 159 15.8

n = 5, 000 n = T − 1

T KW LC FFT KW LC FFT

5,000 11.0 14.0 1.35 11.0 14.1 1.45
10,000 11.0 23.9 2.04 35.3 51.1 2.79
15,000 12.5 33.7 2.09 70.0 110 3.10
20,000 12.6 43.6 3.56 122 201 6.40
30,000 16.3 63.2 3.59 294 530 7.09
40,000 16.4 82.8 7.08 550 1, 005 15.4

100,000 26.2 201 15.9 3, 420 6, 612 36.2

Notes: Median computational time in milliseconds across 10,000 repetitions (fixed n) or 1,000 repetitions

(n = T − 1) for different sample sizes and truncation numbers. KW is the algorithm of Klein and Walther

(2017), LC is linear convolution (Listings 1,5), and FFT is our proposed algorithm (Listings 2,6). The fastest

algorithm for each (T, n) pair is highlighted in bold.

In our next experiment, we focus on the effect of truncation, and compare linear convolu-

tion (LC), our FFT-based algorithm, and the algorithm of Klein and Walther (2017, hence-

forth KW).3 The setup is the same as in Figure 1, except for the introduction of the trun-

cation number. We consider a range of sample sizes from T = 5, 000 to T = 100, 000 and

truncation numbers from n = 1, 000 to n = 5, 000, as well as no truncation, n = T − 1. For

3The Klein and Walther (2017) Matlab code was downloaded from the publisher’s website.
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each (T, n) pair, we repeated the calculation 10, 000 times (for fixed n) or 1, 000 times (for

n = T −1). In Table 1 we report the resulting median time across repetitions in milliseconds.

In Table 1 we first note that our FFT-based method is faster than the other methods for

all sample sizes and truncation numbers considered. While the computational times of both

the KW and LC algorithms are very sensitive to the choice of truncation number, the FFT-

based method is much less so. For example, from n = 1, 000 to n = T −1, the computational

time of the KW and LC algorithms increase by a factor of 15 for T = 5, 000 and several

hundred for T = 100, 000. On the other hand, the computational time of the FFT-based

method only slightly more than doubles. Hence, with our FFT-based algorithm, there is

really no need for the truncation number and the associated approximation.

Using the exact filter to calculate the conditional variances, i.e. without truncation (n =

T − 1), the difference in computational time between the KW and LC algorithms on the one

hand and our FFT-based algorithm on the other hand is very substantial. For T = 5, 000,

which is a rather common sample size in finance, the FFT-based algorithm is nearly 10 times

faster than the KW and LC algorithms. For the largest sample size considered, T = 100, 000,

the FFT-based algorithm is nearly 100 times faster than the KW algorithm and over 180

times faster than the standard LC algorithm.

4 Estimation bias

Since we are able to compute the sequence of conditional variances, and hence the likelihood

function, of any model with an ARCH(∞) representation very quickly using our FFT-based

algorithm, we can explore the effects of approximating the calculations on the estimators.

That is, we can simulate the estimation bias that results from using a fixed truncation

number in the calculation of the conditional variances in (4). Specifically, in this section we

simulate the bias of the estimated coefficients in the baseline FIGARCH(1, d, 1) model for a

range of sample sizes and truncation numbers, including no truncation.

We consider sample sizes T ∈ {10, 000; 25, 000; 50, 000} and truncation numbers n ∈
{100; 1, 000; t−1}. For each sample size, we simulate 10, 000 samples from the FIGARCH(1, d, 1)

model given by (1) and (7) with d = 0.4, φ = 0.2, β = 0.6, ω = 0.0001, and zt ∼ N (0, 1).

We collect the parameters in the vector θ = [d, φ, β, ω]′. Given observations (ǫt)
T
t=1 and

the truncation number n, the quasi-maximum-likelihood estimator is

θ̂ = arg max
θ

log L(θ) with log L(θ) = −1

2

T
∑

t=1

(

log(σ2
t ) +

ǫ2
t

σ2
t

)

, (10)

where σ2
t is calculated from (4) and (9), and where the maximization is subject to the

parameter constraints ω > 0, 0 ≤ d ≤ 1 − 2φ, 0 ≤ β ≤ d + φ to guarantee non-negativity of

the conditional variances; see Baillie et al. (1996, footnote 19).
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Table 2: Simulations for a FIGARCH(1, d, 1) model

T = 10, 000 n = 100 n = 1, 000 n = T − 1

Parameter Bias MCSE Bias MCSE Bias MCSE

d 0.1391 0.0124 0.0122 0.0001 −0.0018 0.0011
φ −0.0327 0.0028 0.0006 0.0005 −0.0022 0.0006
β 0.1014 0.0043 0.0125 0.0012 −0.0035 0.0014
ω 5.2 × 10−5 2.9 × 10−9 2.0 × 10−5 6.5 × 10−10 5.6 × 10−6 5.1 × 10−10

T = 25, 000 n = 100 n = 1, 000 n = T − 1

Parameter Bias MCSE Bias MCSE Bias MCSE

d 0.1379 0.0121 0.0119 0.0001 −0.0020 0.0011
φ −0.0321 0.0027 0.0008 0.0005 −0.0019 0.0006
β 0.1008 0.0042 0.0123 0.0012 −0.0036 0.0013
ω 5.2 × 10−5 2.9 × 10−9 2.0 × 10−5 6.6 × 10−10 5.7 × 10−6 5.0 × 10−10

T = 50, 000 n = 100 n = 1, 000 n = T − 1

Parameter Bias MCSE Bias MCSE Bias MCSE

d 0.1562 0.0088 0.0244 0.0003 −0.0003 0.0002
φ −0.0353 0.0020 0.0019 0.0001 −0.0006 0.0001
β 0.1146 0.0026 0.0250 0.0003 −0.0008 0.0003
ω 1.4 × 10−4 4.7 × 10−9 6.9 × 10−5 6.2 × 10−10 2.5 × 10−6 1.5 × 10−10

Notes: Simulated bias and Monte Carlo standard error (MCSE) of the parameters of a FIGARCH(1, d, 1)

model for different sample sizes and truncation numbers.

The Monte Carlo simulation results can be found in Table 2. For each sample size and

truncation number, we report the bias and Monte Carlo standard error (MCSE) for the four

parameters.

We can see from Table 2 that for any sample size, the bias of the estimated coefficients

decreases as the truncation number increases. This is expected since a larger truncation

number implies a smaller approximation. The parameters d and β seem particularly affected

by the truncation. The biases in these estimators are about 0.10 to 0.15 for n = 100 and

about 0.012 to 0.025 when n = 1, 000, whereas the untruncated estimators are essentially

unbiased (the largest bias for n = T − 1 in the table is only 0.0036 in absolute value).

The biases when n = 100 are obviously very substantial, and such a small truncation

number is rarely used in practice, except maybe for some bootstrap or simulation purposes.

It is clear from Table 2 that using n = 100 is a very bad idea. Although the bias when

n = 1, 000 is much smaller than when n = 100, it is still substantial in the former case. In

particular, it is likely several parameter standard errors in magnitude. Moreover, the bias

does not diminish when the sample size increases. In fact, it doubles from T = 25, 000 to

14



Figure 2: Daily DEM-USD exchange rate 3/15/1979–12/31/1998

(a) spot rate (b) return

T = 50, 000 for the estimators of both d and β.

In conclusion, the results of our small Monte Carlo simulation in Table 2 clearly illustrate

the consequences of the approximation implied by truncating the convolution as in (4).

The resulting bias in the estimators is substantial, and it is worse for larger sample sizes.

Importantly, however, this bias is easily avoidable by application of our proposed FFT-based

algorithm, which is exact and does not rely on any approximation or truncation.

5 Empirical illustrations

The presence of persistence in the volatility of nominal exchange rates has been well-

documented in the literature, and exchange rates are often modeled using FIGARCH-type

models. Indeed, a daily time series of Deutsche Mark-US dollar (DEM-USD) exchange rates

was used as the empirical example in Baillie et al. (1996). An updated data set, covering un-

til the end of the DEM era and start of the Euro, was subsequently analyzed in Baillie, Ce-

cen, and Han (2000). In our first empirical illustration, we consider this data set. As a sec-

ond empirical illustration, we consider a longer time series of daily US Dollar-British Pound

(USD-GBP) exchange rates.

5.1 Deutsche Mark-US Dollar exchange rate from 1979 to 1998

In this subsection, we analyze the daily DEM-USD exchange rate from March 14, 1979 to

December 31, 1998, for a total of 4, 974 spot rate observations.4 In Figure 2(a) we plot

4The Euro was introduced on January 1, 1999. Our data set was downloaded from the Federal Reserve
H.10 historical data website, and covers the same time period as that analyzed in Baillie et al. (2000), but
has a slightly different number of observations.
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Table 3: FIGARCH models for DEM-USD exchange rate (1979–1998)

n = 100 n = 1, 000 n = T − 1

(p, d, q) (1, d, 1) (1, d, 0) (1, d, 1) (1, d, 0) (1, d, 1) (1, d, 0)

µ 0.0034 0.0033 0.0037 0.0033 0.0039 0.0035
(0.0086) (0.0087) (0.0086) (0.0086) (0.0086) (0.0086)

ω 0.0318 0.0957 0.0190 0.0613 0.0162 0.0511
(0.0035) (0.0078) (0.0043) (0.0090) (0.0047) (0.0100)

β 0.6467 0.2224 0.6367 0.2026 0.6499 0.2130
(0.0149) (0.0231) (0.0143) (0.0224) (0.0143) (0.0221)

φ 0.2792 0.2882 0.2660
(0.0203) (0.0191) (0.0187)

d 0.4340 0.2904 0.4230 0.2741 0.4586 0.2854
(0.0166) (0.0155) (0.0150) (0.0142) (0.0150) (0.0136)

b3 −0.10 −0.10 −0.11 −0.10 −0.11 −0.10
b4 4.44 4.45 4.59 4.57 4.64 4.63
Q(20) 53.58 51.28 53.86 51.62 54.64 52.50
Q2(20) 7.98 29.63 11.25 29.81 12.06 31.37
log L −4, 867 −4, 890 −4, 867 −4, 886 −4, 870 −4, 889
Time FFT 218 277 308 268 319 362
Time LC 163 219 304 285 1,617 1,422

Notes: Quasi-maximum-likelihood estimates for FIGARCH(p, d, q) models for the DEM-USD percentage re-

turns from March 15, 1979 to December 31, 1998 for different truncation numbers and T = 4, 973 observa-

tions. Standard errors are reported in parentheses, and b3, b4 are the skewness and kurtosis of the standard-

ized residuals, respectively. The Ljung-Box portmanteau tests for up to 20th-order serial correlation are re-

ported for the standardized residuals, Q(20), and the squared standardized residuals, Q2(20). Finally, log L

is the log-likelihood value at the maximum, and the computing time is reported in milliseconds using the

FFT-based method and the linear convolution (LC) method.

the spot rate and in Figure 2(b) we plot the continuously compounded percentage returns.

It is clear from the figure that the spot exchange rate is nonstationary. Indeed, standard

arbitrage arguments would dictate that the spot rate should be a Martingale, which justifies

modeling the returns as serially uncorrelated as in (1).

We estimate two different FIGARCH(p, d, q) specifications, namely (1, d, 1) and (1, d, 0),

for different truncation numbers. The results for these models can be found in Table 3.

For all models, the estimates are obtained as in (10) using the relevant conditional variance

specification and ǫt = rt − µ, where rt is the observed return series and the parameter µ is

the mean return (which is included in the vector θ).

Table 3 reports the quasi-maximum-likelihood estimates for the FIGARCH(1, d, 1) and

FIGARCH(1, d, 0) models and truncation numbers n ∈ {100; 1, 000; t−1}. Several interesting
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Figure 3: Daily USD-GBP exchange rate 1/5/1971–9/27/2019

(a) spot rate (b) return

findings appear from these results. First of all, regardless of the truncation number, the

additional parameter in the (1, d, 1) specification compared with the (1, d, 0) specification is

highly significant, whether measured via a t-test or likelihood ratio test. Thus, we consider

mainly the FIGARCH(1, d, 1) model. Secondly, for this model, we note that the parameter

estimates for d do vary with the truncation number. In particular, d changes from 0.43 to

0.46 for n = 100 to n = T − 1, which is about two standard errors for this parameter. Of

course, this is expected based on the simulation results in Section 4. Thirdly, the computing

times for the FFT-based method and LC method are about the same with n = 100 and

n = 1, 000, but without truncation (n = T − 1) the computing time for our FFT-based

method is about five times faster than for the LC method.

5.2 US Dollar-British Pound exchange rate from 1971 to 2019

In this subsection, we analyze the daily USD-GBP spot exchange rate from January 4, 1971

to September 27, 2019, for a total of 12,229 observations. The data series was downloaded

from the FRED database and is plotted in Figure 3. As in the previous subsection, the spot

exchange rate is nonstationary and we model the continuously compounded returns.

The estimation results for the USD-GBP data set are presented in Table 4, which is laid

out precisely as Table 3. The results are qualitatively quite similar, except they are more

pronounced in Table 4 because of the longer sample.

First of all, the FIGARCH(1, d, 1) specification is again statistically much superior to the

FIGARCH(1, d, 0) specification, regardless of truncation number. Secondly, the estimates

for several parameters are now dramatically different with and without truncation. With

truncation at n = 100, the difference in most parameter estimates are many standard errors
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Table 4: FIGARCH models for USD-GBP exchange rate (1971–2019)

n = 100 n = 1, 000 n = T − 1

(p, d, q) (1, d, 1) (1, d, 0) (1, d, 1) (1, d, 0) (1, d, 1) (1, d, 0)

µ 0.0010 0.0022 0.0034 0.0038 0.0046 0.0049
(0.0049) (0.0044) (0.0056) (0.0050) (0.0066) (0.0059)

ω 0.0115 0.0374 0.0077 0.0211 0.0058 0.0137
(0.0033) (0.0064) (0.0033) (0.0080) (0.0038) (0.0107)

β 0.7131 0.3430 0.6300 0.2699 0.5956 0.2458
(0.0155) (0.0159) (0.0139) (0.0161) (0.0142) (0.0172)

φ 0.2076 0.2753 0.2755
(0.0148) (0.0163) (0.0180)

d 0.5844 0.4028 0.4433 0.3362 0.4124 0.3183
(0.0135) (0.0108) (0.0191) (0.0133) (0.0228) (0.0160)

b3 −0.12 −0.14 −0.15 −0.15 −0.15 −0.14
b4 9.56 8.00 10.95 9.30 12.32 10.89
Q(20) 67.47 68.29 68.96 71.15 72.66 75.92
Q2(20) 12.31 25.83 9.32 18.76 8.97 15.71
log L −9, 584 −9, 663 −9, 541 −9, 594 −9, 528 −9, 570
Time FFT 390 319 459 429 926 711
Time LC 251 272 601 500 13,546 9,604

Notes: Quasi-maximum-likelihood estimates for FIGARCH(p, d, q) models for the USD-GBP percentage

returns from January 5, 1971 to September 27, 2019 for different truncation numbers and T = 12, 228

observations. Standard errors are reported in parentheses, and b3, b4 are the skewness and kurtosis of the

standardized residuals, respectively. The Ljung-Box portmanteau tests for up to 20th-order serial correlation

are reported for the standardized residuals, Q(20), and the squared standardized residuals, Q2(20). Finally,

log L is the log-likelihood value at the maximum, and the computing time is reported in milliseconds using

the FFT-based method and the linear convolution (LC) method.

compared with no truncation. Even comparing truncation at n = 1, 000, which is standard

in the literature, with no truncation, we find that the estimates of d and β both differ by 1–2

standard errors. The parameters µ and ω, which are often not of primary importance, differ

even more. Again, these results are expected based on the simulation findings in Section 4.

For the computing time using the FFT-based method and the LC method, we find that

the FFT-based method is now somewhat faster than the LC method even with truncation

at n = 1, 000. Without truncation, the FFT-based method is about 14 times faster than

the LC method. As an order of magnitude, 999 bootstrap or Monte Carlo replications for

the FIGARCH(1, d, 1) model would require nearly 4 hours for the LC method and only 15

minutes for our FFT-based algorithm. This result confirms those found in Section 3, and

could certainly be the difference between bootstrap inference being feasible or not.
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6 Conclusion

In this paper we have considered the computation of the time series of conditional vari-

ances for models in the ARCH(∞) class. This class is very large and contains many com-

monly applied models in empirical finance such as the FIGARCH model. For models in the

ARCH(∞) class, we have provided an exact algorithm for efficient computation of the con-

ditional variances, and hence of the likelihood function. Our algorithm is based on the fast

Fourier transform (FFT) and achieves an order of magnitude improvement in computational

speed from O(T 2) to O(T log T ). The efficiency of the algorithm allows estimation, as well

as simulation and/or bootstrapping of ARCH(∞) models, even with very large data sets.

Furthermore, to speed up computation, it has been completely standard in the literature

to resort to a truncation of the ARCH(∞) model at a fixed truncation lag. With our proposed

algorithm, this is not needed. As a second contribution, we also showed that the elimination

of the truncation substantially reduces the bias of the quasi-maximum-likelihood estimators.

We illustrated our results with two empirical examples that highlighted both the differ-

ences in the computational speed and in the parameter estimates for our FFT-based algo-

rithm and the standard algorithm with and without truncation.

As sample sizes in economics and finance have become longer in recent years, efficient

computation has become increasingly more important. As we have shown, this is certainly

true for daily time series, and when the models discussed in this paper are applied to

high-frequency data this becomes crucially important. Furthermore, the gaining popularity

of computationally intensive methods of inference, based on simulation, bootstrapping, or

machine-learning techniques, that require estimation of (variations of) each model a large

number of times, emphasizes these points even more.
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