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Abstract

Inference using di�erence-in-di�erences with clustered data requires care. Previous

research has shown that, when there are few treated clusters, t-tests based on cluster-

robust variance estimators (CRVEs) severely overreject, and di�erent variants of the

wild cluster bootstrap can either overreject or underreject dramatically. We study two

randomization inference (RI) procedures. A procedure based on estimated coe�cients

may be unreliable when clusters are heterogeneous. A procedure based on t-statistics
typically performs better (although by no means perfectly) under the null, but at

the cost of some power loss. An empirical example demonstrates that alternative

procedures can yield dramatically di�erent inferences.
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1 Introduction

Inference for estimators that use clustered data, which in practice are very often di�erence-in-
di�erences estimators, has received considerable attention in the past decade. Cameron and
Miller (2015) provides a comprehensive survey. While much progress has been made, there
are still situations in which reliable inference is a challenge. It is particularly challenging
when there are very few treated clusters. Past research, including Conley and Taber (2011),
has shown that inference based on cluster-robust t-statistics greatly overrejects in this case.
MacKinnon and Webb (2017b, 2018) explain why this happens and why the wild cluster
bootstrap of Cameron, Gelbach and Miller (2008), which yields reliable inferences in many
other cases, does not solve the problem.

Several authors have considered randomization inference (RI) as a way to obtain tests
with accurate size when there are few treated groups (Barrios, Diamond, Imbens and Kolesár
2012; Conley and Taber 2011; Ferman and Pinto 2019; Canay, Romano and Shaikh 2017).
These are designed to handle various situations. We focus on procedures like the one pro-
posed by Conley and Taber that use OLS estimates and are designed for samples with very
few treated clusters, many control clusters, and clustering at the �state� level.

We are motivated by the many studies that use individual data, in which there is variation
in treatment across both groups and time periods. This variation may arise either from
randomization induced by the research design or from quasi-experimental policy changes.
Such studies often use a classic �di�erence-in-di�erences� (or �DiD�) regression that can be
written as

yigt = α + Tigtγ +Digtη + β TREATigt + εigt, (1)

i = 1, . . . , Ng, g = 1, . . . , G, t = 1, . . . , T.

Here i indexes individuals, g indexes groups, t indexes time periods, Tigt is a row vector
of time dummies, Digt is a row vector of group dummies, and TREATigt is equal to 1 for
observations that were in a treated group during a treated period and zero otherwise. Since
there is a constant term, one group dummy and one time dummy must be omitted, and
there may of course be other regressors as well.

The coe�cient of interest in (1) is β, which shows the e�ect on treated groups in periods
when there is treatment. The G groups are divided into G1 treated groups and G0 control
groups in which no observations are treated, so that G = G0 +G1. We are concerned with
cases in which G1 is small and G0 is not too small. For example, the procedures we discuss
might be viable for G1 = 2 and G0 = 21, but not for G1 = 3 and G0 = 3. Why this is so
will become apparent in Subsection 3.1.

RI procedures necessarily rely on strong assumptions about the comparability of the
control and treated groups. We show that, for procedures based on estimated coe�cients,
these assumptions fail to hold in certain commonly-encountered cases. In particular, they
fail to hold when the treated groups have either more or fewer observations than the control
groups. As a consequence, such procedures can overreject or underreject quite severely if
the treated groups are substantially smaller or larger than the controls.

Section 2 discusses cluster-robust variance estimation, and Subsection 2.1 shows why
it fails when there are few treated clusters. Section 3 introduces randomization inference.
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Subsection 3.1 describes the coe�cient-based approach to RI, and Subsection 3.2 discusses
some of the underlying assumptions. Subsection 3.3 discusses the design of our Monte Carlo
experiments, and Subsection 3.4 explores the performance of coe�cient-based RI with and
without cluster heterogeneity. Subsection 3.5 then proposes an alternative RI procedure
based on cluster-robust t-statistics. Simulations suggest that the t-based RI procedure
does not provide reliable inferences when only one group is treated and groups vary in
size. When two or more groups are treated and the errors are homoskedastic, however, it
tends to underreject, thus yielding conservative tests. Not surprisingly, there is a cost to
basing inference on t-statistics. Subsection 3.6 shows that coe�cient-based RI can have
substantially more power than t-based RI, or than existing bootstrap procedures. Section 4
presents results for an empirical example based on Bailey (2010), and Section 5 concludes.
There are also �ve online appendices.

2 Inference with Few Treated Clusters

A linear regression model with clustered errors may be written as

y ≡


y1
y2
...
yG

 = Xβ + ε ≡


X1

X2
...
XG

β +


ε1
ε2
...
εG

, E(εε′) = Ω, (2)

where each of the G clusters, indexed by g, has Ng observations. The matrix X and the

vectors y and ε have N =
∑G

g=1Ng rows, X has k columns, and the parameter vector β has
k elements. OLS estimation of equation (2) yields estimates β̂ and residuals ε̂. As usual in
the literature on cluster-robust inference, we assume that

E(εgε
′
g) = Ωg and E(εgε

′
h) = 0 for g 6= h,

where the εg are vectors with typical elements εig, and the Ωg are Ng ×Ng positive de�nite
covariance matrices. The N ×N covariance matrix Ω is then

Ω =


Ω1 O . . . O
O Ω2 . . . O
...

...
...

O O . . . ΩG

.
Because the elements of the εg are in general neither independent nor identically dis-

tributed, both classical OLS and heteroskedasticity-robust standard errors for β̂ are invalid.
As a result, conventional inference can be seriously unreliable. It is therefore customary to
use a cluster-robust variance estimator, or CRVE. There are several of these, of which the
earliest may be the one proposed in Liang and Zeger (1986). The CRVE we investigate,
which we call CV1, is de�ned as:

G(N − 1)

(G− 1)(N − k)
(X ′X)−1

(
G∑
g=1

X ′gε̂gε̂
′
gXg

)
(X ′X)−1, (3)
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where ε̂g is the subvector of ε̂ that corresponds to cluster g. It yields reliable inferences
when the number of clusters is large (Cameron, Gelbach and Miller 2008) and the number
of observations per cluster does not vary too much (Carter, Schnepel and Steigerwald 2017;
MacKinnon and Webb 2017b). This is the estimator that is used when the cluster com-
mand is invoked in Stata. However, Conley and Taber (2011) and MacKinnon and Webb
(2017b) show that t-statistics based on (3) overreject severely when the parameter of interest
is the coe�cient on a treatment dummy and there are very few treated clusters. Rejection
frequencies can be over 80% when only one cluster is treated, even when the t-statistics are
assumed to follow a t(G − 1) distribution, which is commonly done (it is the default for
Stata) and can be justi�ed by results in Bester, Conley and Hansen (2011).

2.1 Cluster-Robust Variance Estimation

It is important to understand precisely why inference based on the CRVE (3) fails when
there are few treated clusters. The analysis in this subsection extends the one in MacKinnon
and Webb (2017b, Section 6), which applies to the pure treatment case, by allowing only
some observations in the treated clusters to be treated. Consider the following simpli�ed
version of regression (2), in which the only regressor is a treatment dummy:

y = αι+ βd+ ε, (4)

where y, ι, d, and ε are N -vectors with typical elements yig, 1, dig, and εig, respectively.
The treatment dummy dig equals 1 for at least some of the observations in the �rst G1

clusters, 0 for the remaining observations in those clusters, and 0 for all observations in the
last G0 = G−G1 clusters. Then the OLS estimate of β is

β̂ =
(d− d̄ι)′y

(d− d̄ι)′(d− d̄ι) =
(d− d̄ι)′ε
N(d̄− d̄ 2)

, (5)

where the second equality holds under the null hypothesis that β = 0, and d̄ denotes the
sample mean of the dig, that is, the proportion of treated observations.

The variance of β̂, conditional on d, is evidently

Var(β̂) =
(d− d̄ι)′Ω(d− d̄ι)(
(d− d̄ι)′(d− d̄ι)

)2 =
(d− d̄ι)′Ω(d− d̄ι)
N2d̄ 2(1− d̄)2

, (6)

where Ω is an N×N block diagonal matrix with the Ng×Ng covariance matrices Ωg forming
the diagonal blocks. From expression (3), the corresponding CRVE is

V̂ar(β̂) =
c

N2d̄ 2(1− d̄)2

G∑
g=1

(dg − d̄ιg)′ε̂gε̂′g(dg − d̄ιg), (7)

where c ≡ G(N−1)/
(
(G−1)(N−k)

)
, dg is the subvector of d that corresponds to cluster g,

and ιg is an Ng-vector of 1s. Thus expression (7) should provide a good estimate of Var(β̂)
if the summation provides a good estimate of the quadratic form in (6). But this is not the
case when there are few treated clusters.
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The summation in expression (7) can be written as the sum of two summations, one for
the treated clusters and one for the controls. In both cases, a typical term is

d̄ 2(ι′gε̂g)
2 + (d′gε̂g)

2 − 2d̄ι′gε̂gε̂
′
gdg. (8)

However, since dg = 0 for the control clusters, the second and third terms in (8) must vanish
for those clusters. Thus the summation in (7) becomes

G1∑
g=1

(
d̄ 2(ι′gε̂g)

2 + (d′gε̂g)
2 − 2d̄ι′gε̂gε̂

′
gdg
)

+ d̄ 2

G∑
g=G1+1

(ι′gε̂g)
2. (9)

This expression is supposed to estimate the quadratic form in expression (6), which can be
written as

G1∑
g=1

(
d̄ 2ι′gΩgιg + d′gΩgdg − 2d̄ι′gΩgdg

)
+ d̄ 2

G∑
g=G1+1

ι′gΩgιg. (10)

Unfortunately, expression (9) estimates expression (10) very badly when G1 is small,
because the �rst summation in the former severely underestimates the �rst summation in
the latter. Consider the extreme case in which G1 = 1. The treatment dummy must
be orthogonal to the residuals. Since dig = 0 for g > 1, this implies that ε̂′1d1 = 0.
Therefore, the second and third terms in the �rst summation in expression (9) vanish. All
that remains is d̄ 2(ι′1ε̂1)

2. The terms that are supposed to estimate the last two terms in
the �rst summation in expression (10) are missing.

This might not matter much if the last two terms in the �rst summation in (10) were
small. But, in most cases, the opposite must be the case. Both the remaining term in the
�rst summation and the entire second summation involve factors of d̄ 2, that is, the square
of the proportion of treated observations. Unless the �rst cluster is much larger than any of
the other clusters, and most of the observations in it are treated, d̄ will typically be much
less than one-half when G1 = 1, and these terms will tend to be quite small. This analysis
explains why the CRVE (3) often produces standard errors that are too small by a factor of
�ve or more when there is just one treated cluster.

When two or more clusters are treated, the residuals for the treated observations will not
sum to zero for each treated cluster, but they must sum to zero over all the treated clusters.1

In consequence, the �rst summation in expression (9) must underestimate the corresponding
summation in (10). The �rst two terms in the former do not actually vanish, but they tend
to be much too small when G1 is small. The problem evidently goes away as G1 increases,
provided the sizes of the treated and control clusters are not changing systematically, and
simulation results in MacKinnon and Webb (2017b) suggest that it does so quite quickly.

In this discussion, we have ignored the presence of �xed e�ects and other regressors in
the regression of interest. Taking these into account would greatly complicate the analysis.
However, it clearly would not change the basic result. The standard error of β̂ is severely
underestimated because the residuals sum to zero over all the treated observations, and that
must be the case no matter how many other regressors there may be.

1See equation (A.2) and surrounding discussion in the online appendix of MacKinnon and Webb (2017b),
which studies a pure treatment model rather than a DiD model.
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As we discuss in Appendix B, expression (3) is not the only available CRVE, and other
procedures may well work better; see Bell and McCa�rey (2002), Imbens and Kolesár (2016),
and Young (2016). However, there appears to be no way to avoid severely underestimat-
ing the standard error of β̂ when G1 is small. This provides the motivation to consider
alternative approaches, including randomization inference.

3 Randomization Inference

Randomization inference (RI) was �rst proposed by Fisher (1935) as a procedure for perform-
ing exact tests in the context of experiments. Rosenbaum (1996) mentions the possibility of
using randomization inference for group-level interventions. Monte Carlo tests are closely
related to randomization inference; see Dufour (2006). A formal theoretical treatment of RI
may be found in Lehmann and Romano (2008, Chapter 15). A more accessible discussion
focused on individual-level data is provided in Imbens and Rubin (2015, Chapter 5).

Using the potential outcomes framework, let Di represent the treatment assignment sta-
tus of an individual, where Di = 1 indicates treatment, and Di = 0 indicates no treatment.
Each individual then has two potential outcomes for Yi, one when they receive treatment,
Yi(Di = 1), and one when they do not, Yi(Di = 0). Of course, only one of these outcomes
is observed. Imagine that we are interested in testing the sharp null hypothesis

H0 : E
(
Yi(Di = 1)− Yi(Di = 0)

)
= 0 ∀ i.

Under this null hypothesis, the missing potential outcome is equal to the observed outcome
for each individual. That is, if there were no treatment e�ect, each individual would have
the same outcome with or without treatment: Yi(Di = 1) = Yi(Di = 0) ∀ i. We could then
calculate a test statistic for our original sample as

τ = Ȳi(Di = 1)− Ȳi(Di = 0), (11)

where Ȳi(Di = 1) and Ȳi(Di = 0) are the average outcomes for treated and untreated
individuals, respectively.

We can also calculate the test statistic (11) for any other random assignment of treat-
ments to individuals. The outcomes in such a re-randomization have not actually changed,
but we pretend that the treatment assignments were di�erent. For any re-randomization r,
the test statistic is

τ ∗r = Ȳi(D
r
i = 1)− Ȳi(Dr

i = 0), (12)

where Dr
i denotes the re-randomized treatment assignment. We can repeat this process for

all possible re-randomizations, or for a subset of them. If it is reasonable to believe that
treatment was assigned at random, then it makes sense to compare τ with the τ ∗r . If the
null hypothesis of no treatment e�ect is true, then τ and the τ ∗r must be drawn from the
same distribution. A randomization test simply compares τ with the empirical distribution
of the τ ∗r . If τ̂ is in one of the tails of that empirical distribution, then this is evidence
against the null hypothesis of no treatment e�ect.

In the context of cluster-robust inference for DiD models, to be discussed in Subsections
3.1 and 3.5 below, we will randomize at the group-period level rather than the individual
level, because treatment a�ects all individuals for certain groups and certain time periods.
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As above, we let G denote the number of groups and G1 the number of treated groups. The
number of possible re-randomizations is then GCG1 , that is, the number of ways to choose
G1 out of G groups without replacement. One of these randomizations corresponds to the
original sample. If we omit it, we have S = GCG1 − 1 re-randomizations that can be used
to compute the τ ∗r .

Suppose that we wish to reject the null hypothesis when τ is large in absolute value.
Then we must compare |τ | with the |τ ∗r |. It is natural to sort the latter from smallest to
largest and see how extreme |τ | is relative to the sorted list. Equivalently, we can calculate
a P value based on the empirical distribution of the |τ ∗r |:

p∗ =
1

S

S∑
r=1

I
(
|τ ∗r | > |τ |

)
, (13)

which is the proportion of re-randomizations for which τ ∗r is more extreme in absolute value
than τ . The test rejects at level α whenever p∗ ≤ α. Of course, if the null hypothesis were
that the treatment does not have a positive e�ect, we could instead use a one-tailed test.
There is another way to compute p∗, discussed in Appendix A, in which the original sample
is included in the set of |τ ∗r |. This usually yields slightly more conservative inferences than
(13), and it never leads to less conservative ones.

RI procedures are valid only when the distribution of the test statistic is invariant to the
realization of the re-randomizations across permutations of assigned treatments (Lehmann
and Romano 2008, Section 15.2). It is therefore important to incorporate all available
information about treatment assignment in conducting the re-randomization (Yates 1984).
For example, if the investigator knows that treatment was only assigned to units with
particular characteristics, then any re-randomization should also assign treatment only to
units with those characteristics. Of course, that may or may not feasible, depending on how
many such units there are and how much information about unit characteristics is available.

3.1 Randomization Inference based on Coe�cients

Classic RI procedures were designed for treatment assigned randomly at the observation
level, as in the case of agricultural experiments. Extending them to DiD models with few
treated groups was �rst proposed in Conley and Taber (2011), which suggests two procedures
called Γ and Γ∗. These procedures use β̂ from the regression of interest as the test statistic.
It is compared with an estimate of the distribution of the treatment parameter based on
residuals from the control groups. Of the two procedures, Γ∗ is more attractive, because it
can be used whether or not G0 > G1 and because it often has better size properties in the
Monte Carlo experiments reported in the paper.

Up to this point, we have not said much about the test statistic τ on which randomization
inference is based. We now propose a simple coe�cient-based RI procedure, which we call
RI-β, for the DiD model (1). It is not identical to the Γ∗ procedure of Conley and Taber
(2011), but it is much simpler to describe, and it seems to yield very similar results. The
principal di�erence between the RI-β and Γ∗ procedures is that, instead of using residuals
to estimate the distribution of the treatment parameter, the former explicitly uses OLS
estimates of β̂ from equation (1) based on re-randomized samples to obtain the τ ∗r .

The RI-β procedure works as follows:
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1. Estimate the DiD regression model (1) to calculate β̂, the coe�cient of interest.

2. Generate a (preferably large) number of β∗r statistics to compare β̂ with.

• When G1 = 1, assign a group from the G0 control groups as the �treated� group
g∗ for each re-randomization, re-estimate the model using the observations from
all G groups, and calculate a new coe�cient, β∗r . Repeat this process for all G0

control groups. Thus the empirical distribution of the β∗r will have G0 elements.

• When G1 > 1, sequentially treat every set of G1 groups except the set actually
treated, re-estimate equation (1), and calculate a new β∗r . There are potentially

GCG1 − 1 sets of groups to compare with. When this number is not too large,
obtain all of the β∗r by enumeration.2 When it exceeds an upper limit B with
the property that α(B + 1), picked on the basis of computational cost, choose
the comparators randomly, without replacement, from the set of potential ones.
Thus the empirical distribution will have min(GCG1 − 1, B) elements.

3. Compute either the P value p∗ de�ned in (13) or the one discussed in Appendix A.

In the context of the DiD model (1), one important practical issue is how to assign
treatment years for the re-randomizations. The treated clusters are numbers 1 through G1,
for which treatment begins in periods t11, t

1
2,. . ., t

1
G1
, respectively.3 Let the clusters chosen

for treatment in each re-randomization be numbered 1∗, 2∗, . . . , G∗1. For example, 1∗ might
denote cluster 11, 2∗ might denote cluster 8, and so on. It is natural to assign starting year
t1j to cluster j∗. However, since both orderings are arbitrary, there is more than one way to
do this. We considered two of them.

In the �rst procedure, the original clusters are ordered from smallest to largest, so that
N1 ≤ N2 . . . ≤ NG1 , and the clusters chosen for each re-randomization are ordered in the
same way, so that N1∗ ≤ N2∗ . . . ≤ NG∗

1
. Thus the smallest cluster for each re-randomization

is �treated� for the same years as the smallest actual treated cluster, the second-smallest
for the same years as the second-smallest actual treated cluster, and so on. In the second
procedure, the re-randomized clusters are not ordered in any way, so the assignment of years
of treatment is random. In several experiments, we �nd very little to choose between the
two procedures. All the results we report below are for the �rst procedure, because it is
slightly easier to implement.

3.2 Assumptions Underlying Randomization Inference

When considering whether to perform a hypothesis test using randomization inference, it is
important to think about three things:

1. Whether there was random assignment.

2The number of comparators can easily be too large. For example, if G = 50 and G1 = 4, there are
230,299 possible re-randomizations.

3Here we implicitly assume that, for all treated clusters, treatment begins at some point in time and
never ends. This is also what we assume in our simulation experiments. However, it is easy to extend the
procedures we discuss to handle situations in which treatment has an end date as well as a start date.
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2. Whether the groups are homogeneous.

3. Whether the investigator knows which groups were assigned to treatment.

Whether there was indeed random assignment is knowable for an actual experiment. It is
perhaps a maintained assumption for a DiD analysis. When there is not random assignment,
then it is not appropriate to use randomization inference.

RI procedures evidently depend on the strong assumption that τ and the τ ∗r follow
the same distribution. Recall that, under the sharp null, there is no treatment e�ect for
any individual. When treatment is randomly assigned at the individual level, there will
seldom be any di�erences in inference based on the choice of test statistic. Speci�cally,
using either the conventional test statistic τ = Ȳi(Di = 1) − Ȳi(Di = 0) or its regression
analog β̂, the invariance of the distributions under re-randomization follows naturally. How-
ever, if treatment is instead assigned at the group level, which is almost always the case for
di�erence-in-di�erences, the choice of test statistic can matter.

When treatment is assigned at the individual level, the homogeneity assumption is rather
weak. When it assigned at the group level, however, the homogeneity assumption is much
stronger. Several types of heterogeneity can substantially a�ect the reliability of inference
based on RI-β. The most readily observable type of heterogeneity is variation in cluster sizes.
Since this is very likely to occur with individual data in a wide variety of contexts, we focus
on it.4 With heterogeneous cluster sizes, the coe�cients for some clusters are estimated more
e�ciently than for others. This means that β̂ and the β∗r can follow di�erent distributions.

Knowledge of which groups are treated, even with the maintained assumption of ran-
dom assignment, is particularly important when the groups are heterogeneous. When all
groups are homogeneous, the RI procedures yield a rejection frequency equal to α regardless
of treatment assignment.5 Things are more complicated when groups are heterogeneous,
however. With heterogeneous groups, the expected rejection frequency is still equal to α
before treatment is assigned. But once the outcome of the random assignment is realized,
the rejection frequency can be either larger or smaller than α, even with random assignment.
When assignment is random but the probabilities of treatment are not equal for all groups,
the rejection frequencies will also di�er from α when the groups are heterogeneous.

As an analogy, consider the following two-stage game. Stage 1 randomly determines,
with equal probability, whether to play game A or game B in the second stage. Game A
results in a loss of $X or a loss/gain of $0 with equal probability. Game B results in a gain
of $X or a loss/gain of $0 with equal probability. Clearly, a risk-neutral person would be
willing to pay $0 to play this game before the start of stage 1, because at this point the
game has an expected value of $0. However, once stage 1 has concluded, the expected values
are quite di�erent.

Random assignment can be thought of as equivalent to stage 1 and the randomization
inference procedure as equivalent to stage 2. Before treatment is assigned, the P values from
the experiment (across all possible treatment assignments) are uniformly distributed between

4Another damaging type of heterogeneity is heteroskedasticity at the cluster level; see Appendix C.
5Here and elsewhere in this section, we are implicitly assuming that α(S + 1) is an integer. When S is

small and that is not the case, the rejection frequency may noticeably exceed α if (13) is used to obtain p∗.
Ways to avoid this are discussed in Appendix A.
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0 and 1. Therefore, the expected rejection frequency is equal to α. However, the distribution
of P values for any given treatment assignment (stage 2) can be quite di�erent from uniform.
Therefore, the expected rejection frequency conditional on treatment assignment can di�er
from α. Just as a gambler would be wise to revise their expectation of the value of the
game after stage 1, a researcher would be wise to revise their expectation of rejecting the
null hypothesis after treatment has been assigned. This distinction is often referred to as
conditional versus unconditional inference. In this case, failing to condition on the outcome
of the random assignment can lead to poor test size. A nice discussion of the issue of
conditional inference in an RI setting can be found in Ferman and Pinto (2015).6

One could perhaps interpret the P value resulting from the RI-β procedure described
in Subsection 3.1 as testing the joint null hypothesis of no treatment e�ect and random
assignment. However, since treatment status is observed, it seems more natural to make
conditional inferences about the e�ect of treatment. Even when treatment is randomly
assigned, the RI-β procedure is potentially either oversized or undersized conditional on the
clusters that were actually treated. In Subsection 3.4, we provide some evidence about just
how serious these size distortions are likely to be.

Conley and Taber (2011) originally suggested their Γ∗ procedure, which is similar to
RI-β, for use either with aggregate data or with individual data that have been aggregated
into time-cluster cells. It seems to be a weaker assumption that β̂ and the β∗r follow the
same distribution in those cases than in the case of individual data. Nevertheless, this
assumption is still a very strong one. Variations across clusters in the number of underlying
observations per cell, in the values of other regressors, or in the variances of the error terms
may all invalidate this crucial assumption. Ferman and Pinto (2019) shows that aggregation
of unbalanced clusters introduces heteroskedasticity in the aggregate data. When either large
or small clusters are treated, this causes problems for randomization inference that are very
similar to the ones with individual data. In Appendix C, we study the performance of RI
procedures when there is heteroskedasticity.

3.3 Design of the Monte Carlo Experiments

In the next subsection, several later ones, and Appendices B through D, we report results of
a number of Monte Carlo experiments that study the performance of various inferential pro-
cedures, including ones not based on randomization inference, when the number of treated
clusters is small and clusters are heterogeneous. In this subsection, before we report any
results, we describe the model and experimental design.

The model we use is a simpli�ed version of the DiD model (1) with no group �xed e�ects.
In the data generating process, the εigt are normally distributed and generated by a random
e�ects model at the group level. The correlation between any two error terms that belong
to the same cluster is ρ.7 Each observation is assigned to one of 20 �years�, and the starting
year of �treatment� is randomly assigned to years between 6 and 16. The null hypothesis,
which was maintained in most of the experiments, is that β = 0.

6Note that this discussion is not in Ferman and Pinto (2019), a later version of the same paper.
7We did not include group �xed e�ects in the model partly to save computer time and partly because, if

they were included, they would completely explain the random e�ects, e�ectively eliminating intra-cluster
correlation. Because the model did include time �xed e�ects, the DGP did not include time random e�ects.
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Figure 1: Conditional and Unconditional Distributions of β̂
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Notes: Based on 1,999,999 samples with G = 40, G1 = 1 or 3, γ = 2, and ρ = 0.05

We assign N total observations unevenly among G clusters using the following formula:

Ng =

[
N

exp(γg/G)∑G
j=1 exp(γj/G)

]
, g = 1, . . . , G− 1, (14)

where [x] means the integer part of x. The value of NG is then set to N−∑G1

g=1Ng. The key
parameter here is γ, which determines how uneven the cluster sizes are. When γ = 0 and
N/G is an integer, equation (14) implies that Ng = N/G for all g. As γ increases, however,
cluster sizes vary more and more. Many of our experiments have 4000 observations, 40
clusters, and γ = 2. In these experiments, the cluster sizes range from 32 to 246. For
randomization inference procedures with G = 40, the number of randomizations is 39 for
G1 = 1, 40C2 − 1 = 779 for G1 = 2, and 999 for G1 ≥ 3. For most experiments, the number
of Monte Carlo replications is 100,000, and we report rejection frequencies at the 5% level.

3.4 Performance of RI-β when Cluster Sizes Vary

As we saw in Subsection 3.1, the RI-β procedure cannot be expected to work perfectly if
the treated and control clusters have di�erent characteristics. We focus initially on what
happens when cluster sizes di�er systematically. Speci�cally, we treat either 1 or 3 clusters
from a set of 40 unbalanced clusters, withN = 4000 and cluster sizes determined by equation
(14) with γ = 2. In each case, we plot three distributions of β̂, which were obtained by
kernel density estimation using 1,999,999 replications. One of these is the unconditional
distribution, for which the treated clusters are selected at random from all 40 clusters. The
other two are conditional distributions, for which the treated clusters are selected at random
either from clusters 1-10 (the smallest clusters) or from clusters 31-40 (the largest clusters).

Panel (a) of Figure 1 shows densities for G1 = 1, and panel (b) shows densities for
G1 = 3. In both cases, the two conditional distributions di�er from the unconditional one.
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When small clusters are treated, the distribution has a lower peak and is more spread out.
When large clusters are treated, it has a higher peak and is less spread out. Although all
distributions are less spread out when G1 = 3 than when G1 = 1, the di�erences between
the conditional and unconditional ones are essentially the same in both cases.

Figure 1 highlights the importance of whether we know which clusters were treated; see
the discussion of point 3 in Subsection 3.2. Imagine conducting an experiment in which
treatment was randomly assigned to a single cluster. This is the setting of panel (a) in
Figure 1. Imagine also that you were given the values of β̂ and the β∗r , but did not know
which cluster was actually treated. In this case, both β̂ and all the β∗r are drawn from the �all
clusters� distribution in the �gure. Therefore, even if the clusters were quite heterogeneous,
the expected rejection frequency of the RI-β test for the null of no treatment e�ect would
be α, because any particular cluster has an equal chance of being treated.

The thought experiment of the previous paragraph is not realistic. Even if an experiment
is designed so that treatment is genuinely random, researchers always know the sizes, and
usually the identities, of the clusters that are treated. With heterogeneous clusters, the
expected rejection frequency conditional on the cluster that is actually treated will not
be α. In the experiment considered in panel (a) of Figure 1, imagine that the treated
cluster happens to be one of the 10 smallest ones. In this case, β̂ will be drawn from the
corresponding conditional distribution (the red dashed line in the �gure). However, the 39
β∗r coe�cients will be drawn from the unconditional distribution (the solid blue line in the
�gure), but with the treated cluster omitted. These distributions are clearly not the same.

Both panels of Figure 1 strongly suggest that, conditional on the assignment of cluster(s)
to treatment, the RI-β procedure will generally not yield a test that rejects α% of the time
when cluster sizes vary. The β∗r are always drawn from the unconditional distribution.
However, unless treatment really is assigned at random and nothing is known about the
treated clusters, β̂ may actually be drawn from a conditional distribution like the ones in
Figure 1. This suggests that RI-β will overreject when the treated clusters tend to be small
and underreject when they tend to be large.

To investigate this phenomenon, we perform 40 experiments, with G = 40, N = 4000,
and γ = 2. In eight of the experiments, the treated clusters are drawn at random from all
40 clusters. In the other 32 experiments, they are drawn from clusters 1-10, 11-20, 21-30,
or 31-40. This is equivalent to assigning treatment randomly across all 40 clusters and then
performing RI only for cases in which the treated clusters happen to be drawn from one of
the four bins. In each case, the number of treated clusters, G1, varies from 1 to 8. Of course,
under random assignment, it would be increasingly unlikely for all treated clusters to fall
into one bin as G1 increases. The point of the experiments is to show that the problems
of inference with heterogeneous clusters are due to the heterogeneity and are not limited to
very small values of G1.

Figure 2 shows rejection frequencies for tests at the .05 level based on the RI-β procedure
for these 40 experiments. As expected, the procedure works perfectly in the unconditional
case where the treated clusters are chosen at random from the entire set of clusters, subject
to the small experimental errors to be expected with 100,000 replications. However, it
overrejects noticeably conditional on the treated clusters being in the range of 1-10, and
slightly for the range 11-20. In contrast, it underrejects moderately for the range 21-30,
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Figure 2: Rejection Frequencies for RI-β Tests
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and quite noticeably for the range 31-40. Thus the smaller/larger the treated clusters are
relative to the entire set, the more prone is the procedure to overreject/underreject.

One interesting feature of these experiments is that the performance of RI-β varies only a
little with G1. This contrasts sharply with asymptotic and bootstrap procedures for cluster-
robust inference, which typically perform extremely badly when G1 = 1 but then improve
rapidly as G1 increases, whether or not cluster sizes vary. Figure 3 presents a few results
for the same experiments as Figure 2 to highlight the di�erences between the RI-β test, on
the one hand, and existing tests, on the other. The vertical axis has been subjected to a
nonlinear transformation in order to accommodate rejection frequencies that vary greatly.

The most commonly used procedure for testing whether β2 = 0 is to compare a t-statistic
based on the CRVE (3) with the t(G − 1) distribution. As the analysis in Subsection 2.1
implies, this procedure overrejects very severely when G1 = 1, because the CRVE standard
error for β̂ is much too small. The overrejection becomes less severe as G1 increases, but
the test rejects at least 8.5% of the time even when G1 = 8. In sharp contrast to RI-β, the
rejection frequencies are a little larger when the smallest clusters are treated than when the
largest clusters are treated, but the di�erence is always fairly small.

Figure 3 also shows rejection frequencies for two forms of wild cluster bootstrap test,
which are discussed in Appendix B. One of these (WCR, where the bootstrap DGP is based
on restricted estimates) was proposed in Cameron, Gelbach and Miller (2008). The other
(WCU, where the bootstrap DGP is based on unrestricted estimates) is less widely used.
Both WCR and WCU are shown to be asymptotically valid in Djogbenou, MacKinnon and
Nielsen (2018). However, MacKinnon and Webb (2017b) shows theoretically that WCR
will underreject very severely when G1 is small and that WCU will overreject very severely.
That is exactly what is observed in Figure 3. Cluster sizes have only a small e�ect on the
rejection frequencies for WCU, but they have a large e�ect on WCR when G1 is small.
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Figure 3: Rejection Frequencies for Asymptotic and Bootstrap Tests
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For clarity, Figure 3 only shows results for the relatively extreme cases in which the
treated clusters are chosen from numbers 1-10 and numbers 31-40. Except for WCR, where
for 2 ≤ G1 ≤ 4 the omitted results lie between the ones shown in the �gure, the omitted
results are very similar to the ones that are shown.

It is evident from Figures 2 and 3 that RI-β always works very much better than any
of the other procedures when G1 ≤ 2. This is true even for the extreme cases in which the
treated clusters are drawn from numbers 1-10 or 31-40 and RI-β does not work particularly
well. For G1 ≥ 4, however, WCR typically works better than RI-β, except of course for the
case in which all clusters are potentially treated, where RI-β works perfectly. For G1 ≥ 5,
even WCU works better for the extreme cases than RI-β does.

The DGP used in this section has normally distributed error terms. Additional results
for a DGP with lognormally distributed error terms, which display a great deal of positive
skewness, are presented in Appendix D. It will be seen that the distribution of the error
terms matters, but none of the principal �ndings is overturned.

Two important features of the DGP are the distribution of cluster sizes and the positions
of the treated cluster(s) within that distribution. The next set of experiments deals with
these issues. It focuses on the cases of G1 = 1 and G1 = 2, where methods other than
RI work badly. Because computation is relatively cheap in these cases, we use 400,000
replications. Figure 4 shows rejection frequencies for the RI-β procedure when N = 5000
and G = 20, conditional on the clusters that are actually treated. The �ve curves in each
panel correspond to �ve values of γ from 0 to 4. When γ = 4, the variation in cluster sizes
is quite extreme: The smallest cluster has 20 observations, and the largest has 935. Smaller
values of γ are probably more realistic.

In panel (a), just one cluster is treated, and the horizontal axis shows its rank, ordered
from smallest to largest. Since S = 19, the condition that .05(S+1) be an integer is satis�ed.
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Figure 4: Rejection Frequencies for RI-β tests when G1 = 1 and G1 = 2
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In panel (b), pairs of adjacent clusters are treated. There are 19 such pairs (1 & 2, 2 & 3,
3 & 4, and so on). The horizontal axis now shows the average rank of each pair (1.5, 2.5,
and so on). Since G = 20 and G1 = 2, the value of S for these experiments is 189, so that
.05(S+1) is not an integer. We therefore report the average of two rejection frequencies, one
based on equation (13) and one based on equation (A.3). The former is always somewhat
larger than the latter; see Appendix A.

When γ = 0, the RI-β tests work perfectly, except for simulation error.8 This must be
the case, because the clusters are homogeneous when γ = 0, so that the distributions of
β̂ and the β∗r must be the same. When γ > 0, however, the rejection frequencies depend
on the treated cluster(s). As expected, the tests overreject for small treated clusters and
underreject for large ones. Both overrejection and underrejection become more severe as γ
increases. Interesting, the results are actually somewhat worse for G1 = 2 than for G1 = 1.

Figure 5 performs two similar exercises with G1 = 1 and γ = 2.5. The ratio of the largest
to the smallest cluster sizes is nearly 11. As in Figure 4, the horizontal axis shows the rank
of the treated cluster. In panel (a), N is �xed at 5000, and ρ varies across the curves. In
this case, the problem of poor test size becomes less severe as ρ becomes larger. In panel
(b), ρ = 0.05, and N varies across the curves. In this case, the problem of poor test size
becomes less severe as N increases. Both of these results re�ect the facts that, for the model
we are using, the standard deviation of β̂ varies less across the rank of the treated cluster
as either ρ or N increases. It is illuminating to see why this is the case.

For simplicity, we study the simpli�ed DiD model (4) with G1 = 1. We assume that N
is proportional to G, that Ng/N is O(1/G) for all g, and that NT, the number of treated
observations, is proportional to N1. Thus NT is either �xed, if cluster sizes are constant,

8Sharp-eyed readers may notice that this is not quite true in panel (b). That is because .05× 190 is not
an integer. The test based on equation (13) overrejects, and the one based on equation (A.3) underrejects.
The average of the two rejection frequencies, which we report, is apparently biased upwards very slightly.
The two RI tests yield identical rejection frequencies at the .10 level, because .10 × 190 = 19, and these
appear to di�er from .10 only because of simulation error when γ = 0.
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Figure 5: Rejection Frequencies for RI-β tests when G1 = 1
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or growing more slowly than N at the same rate as all the clusters, if cluster sizes are
increasing. Under the null hypothesis, the parameter estimate β̂ is given in equation (5),
which, when G1 = 1, can be rewritten as

β̂ =
1

Nd̄(1− d̄)

(
d′1ε1 − d̄

G∑
g=1

ι′gεg

)
. (15)

The scalar d′1ε1 is the sum of NT random variables ε1i, each with mean 0. If they were
uncorrelated, the variance of this sum would be Op(NT). When they are correlated, however,
the sum involves NT variances and NT(NT − 1)/2 covariances. Thus there are two terms,
one that is Op(NT) and one that is Op(N

2
T). If, as is typically the case, the correlations

are fairly small, the �rst term will be larger than the second when NT is small. However,
because the second term is of higher order, it will eventually become the dominant one as
NT becomes large; see Djogbenou, MacKinnon and Nielsen (2018). Thus, for �nite N, the

standard deviation of d′1ε1 is bounded by Op(N
1/2
T ) and Op(NT).

The second term inside the large parentheses in (15) is d̄ = NT/N times a summation of
G uncorrelated quantities. By exactly the same argument as for the �rst term, the variance
of each of these quantities is between Op(N/G) and Op

(
(N/G)2

)
. To �nd the standard

deviation of the second term, we multiply these variances by G, take the square root, and
then multiply by NT/N . When there is no intra-cluster correlation, the standard deviation
of this summation is Op(NTN

−1/2), and, when there is, it is Op(NTG
−1/2). In both cases,

the leading-order term within the large parentheses in (15) is the �rst one, because, for N

and G large and NT small relative to N, N
1/2
T > NTN

−1/2, and NT > NTG
−1/2.

Since 1−d̄ = O(1), the leading factor in (15) must be O(N−1T ). Multiplying the �rst term
by this leading factor, and recalling that NT is proportional to N1, we �nd that the standard
deviation of β̂ must be between Op(N

−1/2
1 ), when there is no intra-cluster correlation, and

Op(1), when the treated cluster is large and there is a lot of intra-cluster correlation.
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This result helps to explain both panels of Figure 5. For the simulations reported in
that �gure, there is correlation among all the elements within each εg vector. Nevertheless,
when ρ and N/G are both small, the standard deviation of β̂ is fairly well approximated
by Op(N

−1/2
1 ). As either or both of them become larger, however, this standard deviation

becomes closer to being Op(1). Thus we expect to see the standard deviations depend more
on the size of the treated cluster when ρ and N/G are both small than when either or both
of them is large. In consequence, as the �gure shows, the rejection frequencies for RI-β tests
become less variable across the rank of the treated cluster as either ρ or N/G increases.

The argument above can be extended to the more general case in which G1 > 1. The
expression for β̂ is almost the same as the one in equation (15), except that d′1ε1 is replaced
by
∑G1

g=1 d
′
gεg. Provided d̄ is small, which requires that not too many observations are

treated, the leading-order term is still the �rst one. Its variance is the sum of G1 variances,
which will depend on the numbers of treated observations in each of the G1 clusters in the
same way that the variance of d′1ε1 depends on NT when G1 = 1.

The key message from this analysis, and from Figures 4 and 5, is that RI-β can overreject
or underreject much more severely than it does in Figure 2. This is most likely to happen
when the treated cluster(s) are very much smaller or larger than the average cluster, when
there is not much intra-cluster correlation, and when the sample size is fairly small.

3.5 Randomization Inference based on t-statistics

Randomization inference does not have to be based on coe�cient estimates. It can instead
be based on any sort of test statistic, including conventional t-statistics, as Imbens and
Rubin (2015, Chapter 5) points out. A natural alternative to RI-β is an RI procedure
based on cluster-robust t-statistics. Instead of comparing β̂ to the empirical distribution of
the β∗r , we compare tβ, which equals β̂ divided by the square root of the appropriate diagonal
element of the CRVE in Eq. (3), to the empirical distribution of the corresponding t∗r. This
is similar to one of the procedures studied in Young (2019). We will refer to this procedure
as �cluster-robust t-statistic randomization inference,� or RI-t for short.

When testing equality of means in a two-sample problem (sometimes called the Behrens-
Fisher problem), randomization inference based on coe�cients does not yield tests with the
correct size unless either the sample sizes are the same or the variances of the two populations
are the same (Lehmann and Romano 2008, pp. 642�643). However, randomization inference
based on (ordinary) t-statistics does yield asymptotically valid tests even when neither of
these conditions holds (Romano 1990). Since testing for β = 0 in Eq. (1) can be thought of
as a generalization of the problem of testing the equality of two means, it seems plausible
that randomization inference should perform better under the null hypothesis when it is
based on cluster-robust t-statistics than when it is based on coe�cients.

Djogbenou, MacKinnon and Nielsen (2018) proves formally that tβ is asymptotically
distributed as N(0, 1) under the null hypothesis. The proof requires regularity conditions
that allow cluster sizes to vary substantially, but not too much, as G → ∞. Since the
asymptotic distribution of the t∗r must likewise be N(0, 1), this implies that RI-t yields
asymptotically valid tests under these conditions. This argument does not imply that there
is any sort of asymptotic re�nement, however. Indeed, there is no reason to believe that
inferences based on RI-t improve any faster than inferences based on other procedures.
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The key regularity conditions in Djogbenou, MacKinnon and Nielsen (2018) concern
what happens as the sample becomes large. For the DiD model, these conditions imply that
G and G1 must both tend to in�nity together. Thus the asymptotic theory does not apply
when G1 is small and �xed. In fact, as we saw in Subsection 2.1, the CRVE (7) estimates
the variance of β̂ very poorly when G1 is small, because the second and third terms in the
�rst summation in expression (9) vanish. This suggests that the distribution of tβ may be
far from standard normal in that case. However, the performance of the variance estimator
(7) apparently improves quite quickly as G1 increases; see MacKinnon and Webb (2017b).
Thus we would expect the distributions of tβ and the t∗r to become closer as G1 increases for
given G, at least up to a point, depending on the sizes of the treated and control clusters.

In Subsection 3.4, we studied the relationship between β̂ and the number of treated
observations, NT, when G1 = 1. This analysis can easily be extended to tβ. From (7) and
(9), the denominator of tβ is simply

1

Nd̄(1− d̄)

(
G∑
g=1

(ι′gε̂g)
2

)1/2
. (16)

The �rst factor here is relatively large when d̄ is small and decreases with d̄ up to d̄ = 1/2.
In contrast, the second factor in (16) can be expected to vary little across re-randomizations.
The residual vectors ε̂g change when the treated cluster does, but only because the parameter
estimates change. The underlying error vectors εg are identical across re-randomizations.
The residuals for the treated observations may di�er sharply when di�erent clusters are
treated, but the ones for other observations change only because the estimated constant
term changes. With d̄ small, there are far more untreated residuals than treated residuals.

We saw in Subsection 3.4 that the standard deviation of β̂ decreases as NT increases,
albeit at a rate that is di�cult to pin down. We have just seen that expression (16) tends
to decrease with NT. By itself, this would cause the standard deviation of tβ to increase
with NT. Thus there are two opposing forces. Which of them is dominant will depend
on the values of d̄ = NT/N and on the rate at which β̂ is decreasing, which, as we have
seen, depends on the cluster sizes and intra-cluster correlations. It is quite possible that the
standard deviation of tβ may decrease with NT over some range of cluster sizes and increase
with it over another range. We conclude that the standard deviations of the t∗r may vary
across re-randomizations quite di�erently from the way in which those of the β∗r vary.

Figure 6 plots conditional and unconditional distributions of tβ using results from the
same simulations as Figure 1. Results for G1 = 1 are again shown in panel (a) and results for
G1 = 3 in panel (b). When G1 = 1, the two conditional distributions are once again quite
di�erent from the unconditional distribution. Indeed, apart from scale, panel (a) of Figure 1
and panel (a) of Figure 6 look remarkably similar. This suggests that we will encounter the
same inference problems as before, with RI-t overrejecting when small clusters are treated
and underrejecting when large clusters are treated.

In contrast to Figure 1, however, panel (b) of Figure 6, in which G1 = 3, does not look
much like panel (a). There are still some di�erences between the unconditional distribution
and the conditional ones, but they are much less evident than they were in panel (b) of
Figure 1. Moreover, and this is somewhat surprising, both of the conditional distributions are
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Figure 6: Conditional and Unconditional Distributions of tβ
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less spread out than the unconditional one. This suggests that RI-t may tend to underreject
for G1 > 1 even when the treated clusters are relatively large.

To compare the performance of RI-t and RI-β, we perform two sets of experiments. First,
the experiments of Figure 2 are repeated for RI-t in Figure 7. As must be the case, RI-t
works perfectly (except for experimental error) when all clusters are potentially treated. It
overrejects somewhat when the smallest clusters are treated and G1 = 1, but not as much as
RI-β. It also overrejects slightly in that case when G1 = 2. However, as Figure 6 suggests, it
actually underrejects in every other case. RI-t clearly outperforms RI-β conditional on either
the smallest or the largest clusters being treated, but there is not much to choose between
the two procedures when intermediate clusters (numbers 11�20 or 21�30) are treated.

Figure 4 reported rejection frequencies for RI-β when either one or two clusters are
treated. Figure 8 reports them for RI-t for the same experiments. When G1 = 1, the RI-t
procedure works perfectly when all clusters are the same size (γ = 0). When cluster sizes
di�er, however, the rejection frequencies in panel (a) are U-shaped and look very di�erent
from the ones for RI-β in panel (a) of Figure 4. Depending on the value of γ, the RI-t test
tends to overreject when the treated cluster is very small or very large, and to underreject
for some intermediate values. This is consistent with the analysis following expression (16).

In panel (b) of Figure 8, we report rejection frequencies for RI-t when pairs of adjacent
clusters are treated. Somewhat surprisingly, RI-t always underrejects when γ > 0, although
only to a limited extent when the very smallest clusters are treated. Even with just two
treated clusters, RI-t generally works much better than RI-β; compare panel (b) of Figure 4.
Its principal defect is that it can underreject quite noticeably when γ is large and the treated
clusters are not among the smallest ones.

3.6 Power of Alternative Procedures

One possible drawback of RI-t, and of every other procedure based on t-statistics, is that
the denominator of the t-statistic adds noise, and noise inevitably reduces power. Because
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Figure 7: Rejection Frequencies for RI-t Tests
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the CRVE (3) can be a rather ine�cient estimator when G is small, the loss of power is
potentially substantial. In this subsection, we investigate this issue by conducting a set of
Monte Carlo experiments in which G = 20, 40, or 80 with G1 = 3, 6, or 12 treated clusters,
respectively. All clusters are the same size, with Ng = 50 for all g. This ensures that the RI
procedures have the correct size under the null.

We vary the true value of β between 0 and 1 and plot the power functions of RI-β, RI-t,
and the WCR bootstrap in Figure 9. As expected, the power of all procedures increases with
the number of clusters, and the di�erences among them diminish. However, RI-β evidently
has substantially higher power than RI-t. Its power advantage is clearly evident even when
G = 80, which is a relatively large number of clusters. In cases where RI-β overrejects under
the null, it will appear to have an even greater power advantage than it does in Figure 9.
However, even when RI-β underrejects under the null, it may have more power than RI-t
for large enough values of β. We found this in some experiments that we do not report.

The WCR bootstrap underrejects quite severely when G = 20 and G1 = 3, so it is not
surprising that it has substantially less power than RI-t in that case. However, it performs
very well under the null in the other two cases, and it still has slightly less power than RI-t.
This suggests that there may be an advantage to using RI-t rather than WCR even when
G1 is not particularly small.

4 Empirical Example

In this section, we consider an empirical example for which G1 = 2, so that randomization
inference may be expected to work well if the treated clusters are not atypical, but other
methods can be expected to work poorly.

Bailey (2010) examines the relationship between the introduction of the birth control pill
and the decrease in fertility in the United States since about 1957. The paper uses state-by-
state variation in �Comstock laws,� which prohibited, among other things, the advertising
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Figure 8: Rejection Frequencies for RI-t Tests when G1 = 1 and G1 = 2
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and sale of the birth control pill. The practice of using these laws to restrict the sale of
birth control pills was essentially ended by the U.S. Supreme Court's 1965 Griswold v.
Connecticut decision. Part of the analysis in Bailey (2010) shows that women in states with
sales restrictions on the birth control pill were indeed less likely to have taken the pill by
1965. The analysis employs a DiD regression using data on married, white women from the
National Fertility Surveys for the years 1965 and 1970. The women come from 47 states,
and clustering is done at the state level.

Bailey estimates a probit regression in which the dependent variable is an indicator
variable that equals 1 in 1965 or 1970 if the respondent had ever taken the birth control
pill by that year. The key regressors are an indicator variable Salesban that equals 1 if
the state had a sales ban on the birth control pill in 1960, and Salesban interacted with
a dummy variable D1970 for observations from 1970. Estimated coe�cients and standard
errors for these two regressors are presented in her Table 2, Column 1. Other regressors
include D1970, three regional dummies, an indicator variable equal to 1 if the state had a
physician exemption to the sales ban, and each of these variables interacted with D1970.

There is no real need to use a probit model in this case. Because all regressors are
indicator variables, and the mean of the dependent variable (which is 0.515) is far from
the limits of 0 and 1, using OLS inevitably produces results almost identical to the probit
ones. In fact, the probit t-statistics for Salesban and Salesban×D1970 are −2.76 and
1.46, and the OLS ones are −2.71 and 1.37; these are all based on cluster-robust standard
errors. Although we attempted to use the same sample as Bailey, our sample has 6929
observations, and hers has 6950. We are unable to explain this minor discrepancy. Bailey
does not explicitly report t-statistics. Calculating them from coe�cients and standard errors
reported to only two decimal places, her t-statistics are similar enough to our probit ones
that they could actually be equal.

Prior to the �Griswold� decision, several states repealed their previously existing sales
bans. In particular, Illinois and Colorado repealed their Comstock laws in 1961. It is of
interest to ask whether women in these early-repeal states were more or less likely to use
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Figure 9: Power of Alternative Tests with Equal-Sized Clusters

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0


.................................

..........................
.......................
.....................
.....................
..................
..................
...................
................
................
................
................
.................
...............
................
................
................
...............
...............
...............
................
...............
...............
...............
...............
................
...............
...............
...............
...............
..................
.................
................
..................
..................
..................
..................
......................
.....................
........................
........................
.............................

.....................................
.................................................

......................................................................................................
............................................................................

......................................................
.........................
.....................
.................
.................
................
.................
...............
...............
...............
..............
..............
...............
..............
..............
..............
.............
..............
..............
.............
.............
..............
.............
.............
.............
..............
..............
..............
...............
.............
..............
...............
..............
..............
...............
...............
................
...............
...............
..................
...................
...................
......................
.........................
.......................................

.........................................................................
..............................................................................................................................................................................................................................................................................................................................................

........................................
...................
.................
................
...............
..............
...............
.............
..............
.............
.............
..............
.............
..............
.............
.............
..............
.............
............
..............
............
..............
.............
............
.............
............
............
.............
.............
............
..............
.............
.............
..............
.............
..............
.............
..............
.............
...............
................
................
....................
......................
..............................

................................................................................................
...................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........................................................................................RI-β

20

40
80

..........................................................
......................

.....................
..............

.................
..............
..............
.............
...........
...........
...........
..........
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
.............
.............
.............
...............

.................
..............

.................
....................

......................
........................

...............................
.........................................

........................................
...............

.................
............
............
............
............
............
............
............
............
............
...........
.......
............
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
...........
.......
............
............
............
............
............
............
............
............
............
............
.............
.................

..................
.......................

............................
...............................................................

............................................................................................................................................................

..............................
............
............
............
............
...........
.......
...........
.......
..........
........
..........
........
..........
........
.........
.........
..........
........
..........
........
..........
........
.........
.........
..........
........
..........
........
..........
........
..........
........
..........
........
..........
........
...........
.......
...........
.......
............
............
............
..............
....................

..................................
........................................................................................................................................................................................................................................................................................................................................

..................................................................RI-t

.................
.......

......
.....

....
....
....
....
....
....
...
...
...
...
...
...
...
...
...
...
....
....
....
....
....
....
.....

.....
.....

......
........

......

..........
.....

....
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
....
.....

.....
.......

...............
............................

.......
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
....
.......

.....................................................................

.............WCR

Values of G are shown near curves for RI-β

β

Rej. Rate

Notes: Based on 100,000 replications with N = 50G, G1/G = 0.15, ρ = 0.05, and B = 999

the pill than women in other states with a sales ban. We therefore created an indicator
variable rep61 equal to 1 for those two states and added rep61×D1965 and rep61×D1970
to the base speci�cation. Results for the four coe�cients of interest are shown in Table 1.

Taken at face value, the cluster-robust t-statistic for rep61×D1965 in column 3 of Table 1
appears to be telling us that living in an early-repeal state very signi�cantly lowered the
probability of using the pill in 1965. However, because there are only two such states,
the analysis of Section 2.1 suggests that this t-statistic is probably much too large. In
contrast, the WCR bootstrap (based on B = 99,999) yields a P value of about 0.55, which
the analysis of MacKinnon and Webb (2017b) suggests is probably much too conservative.
Thus the cluster-robust t-statistic and the bootstrap P value yield wildly contradictory
results, which could have been expected before even computing them, and are therefore of
no real use in this case.

We also compute two randomization inference P values for each regressor involving
rep61. Because G = 47, the value of S is (47 · 46)/2 − 1 = 1080. We report RI P values
computed using equation (A.3), because they are slightly more conservative than ones based
on equation (13). For rep61×D1965, the two RI procedures yield results that are very similar
to each other, with P values just a little greater than .05. Although the RI P values do not
entirely resolve the uncertainty about whether the coe�cient on rep61×D1965 is signi�cant,
they at least yield sensible results that could not have been predicted in advance.

P values for other procedures discussed in Appendix B are also reported. The ones for the
procedure of Young (2016) and the ones based on the e�ective degrees of freedom proposed
in Carter et al. (2017) give broadly similar results. Moreover, these P values are quite similar
to the ordinary wild bootstrap (WR) P values and to the RI P values (where they exist).
Speci�cally, all of the P values for rep61×D1965 are below 0.10 (except for WCR), while
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Table 1: E�ects of Sales Ban and Early Repeal, Full Sample
Coef. Std. Err. CR t-stat RI-β p∗ RI-t p∗

Salesban −0.042 0.016 −2.677
Salesban×D1970 0.029 0.027 1.059

rep61×D1965 −0.125 0.023 −5.432 0.063 0.056
rep61×D1970 −0.043 0.029 −1.488 0.615 0.445

Young p CSS p IM Coef. IM p WR p∗ WCR p∗

Salesban 0.019 0.034 0.035 0.028
Salesban×D1970 0.184 0.318 0.366 0.320

rep61×D1965 0.028 0.059 −0.338 0.221 0.021 0.546
rep61×D1970 0.315 0.322 0.338 0.221 0.638 0.458

Notes: Outcome variable is whether respondent had ever taken the birth control pill. The sample is women

from 47 states, 23 of which had a sales ban. rep61 = 1 for individuals in Illinois and Colorado. Standard

errors are clustered at the state level.

all of the P values for rep61×D1970 are well above 0.10. We also calculate P values and
coe�cient estimates using the procedure in Ibragimov and Müller (2016). One limitation of
this procedure is that, although standard di�erence-in-di�erences analysis allows for year-
speci�c treatment e�ects, the IM procedure always estimates these coe�cients to be the
negative of one another when there are only two periods.

Although the results in Table 1 are not entirely de�nitive, randomization inference cer-
tainly yields results that are much more plausible, and much less predictable, than using
either cluster-robust t-statistics or the wild cluster bootstrap. Moreover, the RI P values
are reasonably consistent with those from the Young and CSS procedures, and from the
ordinary wild bootstrap.

In Appendix E, we present results for another empirical example taken from Conley and
Taber (2011). In this case, the RI-β and RI-t procedures yield di�erent conclusions, with
the latter providing somewhat stronger evidence against the null hypothesis.

5 Conclusion

We study two methods based on randomization inference (RI) for di�erence-in-di�erences
estimation with few treated clusters, and we compare them with other methods. With
random assignment, unconditional inference based on any form of RI would always be valid.
This is true even with heterogeneous clusters. In practice, however, empirical economists
observe their samples after treatment has been assigned and outcomes realized. Because
the characteristics of the treated and control clusters often di�er, they generally wish to
make inferences conditional on the clusters that were actually treated. In particular, the
numbers of observations may di�er between treated and control clusters. As we have seen,
this causes the distributions of coe�cient estimates and, to a lesser extent, of cluster-robust
t-statistics to depend on which clusters are treated. In consequence, with heterogeneous
clusters, randomization inference conditional on the sample may not be valid.

There are �ve main �ndings. Some of these were obtained theoretically for a simple model
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in Subsections 3.4 and 3.5. Others were obtained by Monte Carlo simulation methods in
Subsections 3.4, 3.5, and 3.6 and in Appendices B, C, and D.

The �rst result is that none of the procedures we study works well when there is just
one treated cluster and it is atypical in terms of either the number of observations or the
variance of the error terms. In particular, the procedure based on coe�cient estimates,
RI-β, can overreject severely when the treated cluster is unusually small and underreject
severely when it is unusually large. This can also happen when there are several treated
clusters and they are all atypical in the same way.

The second result is that both RI procedures actually work quite well when the clusters
are approximately homogeneous, even when G1 is extremely small. They tend to work far
better than the wild cluster bootstrap when G1 ≤ 2.

The third result is that, as the number of treated clusters G1 increases, holding the total
number G constant, the performance of the procedure based on cluster-robust t-statistics,
RI-t, initially improves quite rapidly. In contrast, the performance of RI-β may or may not
improve as G1 increases. RI-t asymptotically yields valid inferences under suitable regularity
conditions when G1 and G increase together, but RI-β does not. However, G may have to
be quite large for RI-t to perform really well.

The fourth result is that both the sample size and the extent of intra-cluster correlation
matter when clusters are heterogeneous. The theory in Subsection 3.4 and the simulation
results in Figure 5 both suggest that the performance of RI-β for atypical treated clusters
improves as the number of observations per cluster increases and as the extent of intra-cluster
correlation increases. These will also a�ect the performance of RI-t, but the relationship is
more complicated; see Subsection 3.5.

The �nal result is that RI-β tends to have substantially more power than RI-t or other
procedures based on cluster-robust standard errors. This is predictable, but the extent of
the power gain may be surprisingly large.

The performance of all the procedures we study depends in a complicated way on the
numbers and sizes of the treated and control clusters, the cluster-level covariance matrices
of the error terms, and the numbers of treated observations within the treated clusters. This
suggests that the best procedure to use will depend on the speci�c dataset under analysis.
Accordingly, prudent empirical researchers would bene�t from conducting their own small-
scale Monte Carlo experiments using the values of G, G1, and the Ng for their dataset, in
addition to the actual exogenous variables, if any, and plausible values of the intra-cluster
correlation coe�cient ρ.
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Appendix A: Alternative Approaches to Randomization Inference

Calculating a P value as in (13) is not the only way to perform a test based on a statistic
|τ | and S re-randomizations |τ ∗r |. In fact, an alternative approach is more common in the
theoretical literature. In this approach, the actual sample is included in the set of re-random-
izations. Thus the total number of test statistics is R ≡ S + 1 = GCG1 . When these are

sorted from smallest to largest, they may be denoted |τ (j)r |, j = 1, . . . , R.
Now de�ne c as R−[αR], where [·] denotes the largest integer no larger than its argument.

Then |τ (c)r |, which is element number c of the sorted list, can be thought of as a critical value.
The RI test is then de�ned as

φ(Y ) =


0 if |τ | < |τ (c)r |
a = αR−∑R

r=1 I
(
|τ ∗r | > |τ |

)
if |τ | = |τ (c)r |

1 if |τ | > |τ (c)r |,
(A.1)

where Y denotes the sample, φ(Y ) = 1 denotes rejection, and φ(Y ) = 0 denotes non-
rejection. The expectation of the RI test φ(Y ) de�ned in (A.1) across all randomizations is
equal to the level of the test. The test is therefore exact.

Since 0 < a ≤ 1, the middle outcome in (A.1), which occurs whenever |τ | and |τ (c)r |
coincide, can be interpreted as a probability. It is included because, otherwise, E(φ(Y )) 6= α
unless we make further assumptions about R. This outcome does not directly tell us either
to reject or not to reject, which seems unsatisfactory. However, we can decide whether or
not to reject by drawing a random number η from the U(0, 1) distribution. If we reject
whenever η ≤ a, the test always gives an answer and is still exact, but now it depends on
the random value of η, which is also not entirely satisfactory. Because the middle outcome
occurs with probability 1/R, it can safely be ignored when R is large.1

There is also an important special case in which the middle outcome does yield a de�nitive
result. Suppose that αR is an integer. Then c = (1−α)R, and the summation in the middle
outcome equals αR − 1, because that is the number of |τ ∗r | that exceed number (1 − α)R
in the sorted list. This implies that the middle outcome is simply equal to 1 in this case.
Thus, when αR is an integer, the test in (A.1) simpli�es to

φ(Y ) =

{
0 if |τ | < |τ (c)r |
1 if |τ | ≥ |τ (c)r |.

(A.2)

It is easy to see that this test must yield exactly the same result as a test based on (13),
because |τ ∗r | > |τ | if and only if |τ | ≥ |τ (c)r |.

Writing the RI test as (A.2) suggests another way to compute the P value:

p∗′ =
1

R

(
1 +

R∑
r=1

I
(
|τ ∗r | > |τ |

))
. (A.3)

1In writing (A.1), we have implicitly assumed that there can never be more than one value of |τ∗r | that
equals |τ (c)r |. The expression for the middle outcome would be more complicated without that assumption.
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When (1 − α)R is an integer, rejecting whenever p∗′ ≤ α must yield exactly the same
outcome as rejecting whenever p∗ < α. However, when (1− α)R is not an integer, the two
tests will yield di�erent results. The one based on p∗ will overreject, and the one based on
p∗′ will underreject. If rejection frequencies are plotted as a function of S (or R) for, say,
α = 0.05, they will form two sawtooth patterns, which meet at 0.05 for S = 19, S = 39,
and so on. The test based on p∗′ never rejects for S < 19 and never rejects more than 5% of
the time for any S, while the test based on P ∗ never rejects less than 5% of the time. See
Racine and MacKinnon (2007, Figure 1). A variant of randomization inference that makes
use of additional bootstrap samples was proposed in MacKinnon and Webb (2019) in part
to increase S in settings where GCG1 is small.

Appendix B. Other Inferential Procedures

It has been known for some time that detecting treatment e�ects reliably when very few
clusters are treated is extremely di�cult unless one is willing to make uncomfortably strong
assumptions about the error terms (for example, that they are uncorrelated within each
cluster). Many procedures for tackling this di�cult problem have therefore been proposed.
In this section, we brie�y discuss a number of these procedures, and then present some
simulation evidence.

B.1 Bootstrap Methods

The wild cluster bootstrap was proposed in Cameron, Gelbach and Miller (2008) and shown
to be asymptotically valid in Djogbenou, MacKinnon and Nielsen (2018). The key feature of
this bootstrap method is that there is one drawing of an auxiliary random variable for each
cluster, instead of one per observation as for the ordinary wild bootstrap. Every residual
in cluster g is multiplied by the same auxiliary random variable, say v∗g , when generating
each bootstrap sample. The v∗g are usually drawn from the Rademacher distribution, which
takes the values −1 and +1 with equal probability.

MacKinnon and Webb (2017b, Section 6) explains why the wild cluster bootstrap fails
when the number of treated clusters is small. The WCR bootstrap, which imposes the null
hypothesis on the bootstrap DGP, leads to severe underrejection. In contrast, the WCU
bootstrap, which does not impose the null hypothesis, leads to severe overrejection. For
both cases, see Figure 3. When just one cluster is treated, WCU overrejects almost as much
as using CRVE t-statistics with the t(G − 1) distribution. This is unfortunate, because it
is easy to use WCU to form studentized bootstrap con�dence intervals, but they tend to
under-cover severely when there are few treated clusters.

Recently, MacKinnon and Webb (2018) suggested using the ordinary wild bootstrap to-
gether with cluster-robust standard errors, and Djogbenou, MacKinnon and Nielsen (2018)
proved that doing so is asymptotically valid. The WR (for restricted) and WU (for unre-
stricted) versions of this procedure can work remarkably well when cluster sizes are equal.
In addition, they are essentially una�ected by heteroskedasticity at the cluster level. How-
ever, like RI-β, they are very sensitive to variable cluster sizes and to the number of treated
observations per cluster.

A very di�erent bootstrap procedure, usually called the pairs cluster bootstrap, was
suggested in Bertrand, Du�o and Mullainathan (2004). In this procedure, each bootstrap
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sample is obtained by resampling all of the data at the cluster level. Thus each bootstrap
sample containsG clusters, some of them repeats, and the sample size varies across bootstrap
samples unless all clusters are the same size. The number of treated clusters also varies
across bootstrap samples and may even be zero for some of them when G1 is small for the
actual sample. Simulation results for this procedure are presented in MacKinnon and Webb
(2017a). When G1 = 1, the pairs cluster bootstrap overrejects extremely severely, about
the same as WCU, but it can perform quite well when neither G nor G1 is too small.

B.2 Bias Correction and Degrees-of-Freedom Methods

Carter, Schnepel and Steigerwald (2017) discusses the asymptotic properties of the CRVE
(3) when the number of observations per cluster is not constant. It shows that, when clusters
are unbalanced, a sample typically has an e�ective number of clusters, G∗, which is less than
G (sometimes very much less). Simulations in MacKinnon and Webb (2017b) show that
using critical values based on G∗ can work fairly well when intermediate numbers of clusters
are treated. However, when very few clusters are treated in the DiD context, it can either
overreject or underreject. We consider the performance of what we call the t(G∗) procedure
in some of the simulation experiments in Subsection B.4.

Alternative degrees-of-freedom corrections, in some cases based on alternative CRVEs,
have also been proposed in Bell and McCa�rey (2002), Imbens and Kolesár (2016), and
Young (2016). The �rst two of these papers propose procedures that use an alternative
CRVE, which we call CV2, that is analogous to the HC2 HCCME discussed in MacKinnon
and White (1985). It requires �nding the inverse symmetric square-root matrix M

−1/2
gg for

each of the Ng ×Ng diagonal blocks Mgg of the N ×N matrix MX ≡ I−X(X ′X)−1X ′.
The Ng-vector of residuals for each cluster is then premultiplied by M

−1/2
gg . Doing so has

the e�ect of in�ating the residuals, thereby increasing the cluster-robust standard errors.
However, this is computationally demanding. Simply computing CV2 can be much more
costly than using either randomization inference or the wild cluster bootstrap.

As we illustrate in Subsection B.4, using CV2 rather than CV1 leads to substantially
less overrejection when G1 is small. However, it still yields rejection rates that are much
too high. The procedures of Bell and McCa�rey (2002) and Imbens and Kolesár (2016)
combine CV2 with estimated degrees-of-freedom parameters, the computation of which can
be extremely demanding.2 When G1 is small, these parameters also tend to be small. In
consequence, the critical values can be very much larger than the ones from the t(G − 1)
distribution that are conventionally used.

A much less computationally demanding procedure is proposed in Young (2016). It starts
with the CV1 CRVE (3), then in�ates each diagonal element by a factor (which is di�erent
for every coe�cient) that is designed to o�set its downward bias, and �nally computes an
alternative degrees-of-freedom parameter that is conceptually similar to the one in Bell and
McCa�rey (2002). In MacKinnon and Webb (2018), we �nd that Young's procedure tends

2We ran into computational di�culties when we attempted to compute these parameters for G1 = 1.
We were able to compute them for G1 > 1, but at great computational cost. Even for the rather modest
sample sizes in our experiments (often just 4000), the procedure of Imbens and Kolesár (2016) was many
times more expensive than any of the randomization inference or bootstrap procedures. MacKinnon and
Webb (2018) provides evidence on how the cost of this procedure, and others, varies with the sample size.
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to yield rejection frequencies that are quite similar to the ones from the Imbens-Kolesár
procedure. We present a number of results for it in Subsection B.4.

B.3 Methods that Use Di�erent Estimates of β

We consider a large number of inferential procedures in this paper. In order to keep the
results manageable, we restrict our experiments to methods based on OLS estimation of
equation (2). However, several methods that use other estimates have also been proposed.

Building o� results in Donald and Lang (2007), Ibragimov and Müller (2016) studies the
generalized Behrens-Fisher problem of comparing the means of two groups with di�erent
unknown covariance matrices. The paper focuses on di�erences in means for treated and
control groups and proves that appropriately constructed t-tests for these di�erences follow
asymptotic distributions with degrees of freedom equal to min(G0, G1)− 1. When G1 = 1,
this number is 0, which implies that the Ibragimov-Müller procedure is inapplicable when
there is only one treated group. The procedure is primarily designed for the pure treatment
case, but the paper also discusses how to extend it to a DiD model with a common treatment
start date. However, it does not explain how to deal with models in which treatment starts
at di�erent dates, as in all of our experiments. We therefore do not attempt to study the
performance of this procedure.

Canay, Romano and Shaikh (2017) proposes a related procedure which requires a match-
ing of treated clusters to control clusters. In their general framework, G1 is small and G0 is
large. When both G0 and G1 are small, the required matching is not easily accomplished,
and the paper recommends the procedure of Ibragimov and Müller (2016). The former pro-
cedure has power at the 5% level that is always strictly less than one when the minimum
of G0 and G1 is less than 5, because there are too few re-randomizations. Since the RI-β
and RI-t procedures are most attractive for cases with G1 ≤ 4, and do provide consistent
tests even when G1 = 1, it is not interesting to compare them with the procedure of Canay,
Romano and Shaikh (2017).

A very di�erent procedure is proposed in Abadie, Diamond and Hainmueller (2010). Like
the RI procedures, it bases inference on an empirical distribution generated by perturbing
the assignment of treatment. However, the procedure di�ers substantially from the ones
considered in this paper, because it constructs a �synthetic control� as a weighted average of
potential control groups, based on the characteristics of the explanatory variables for these
groups. This results in both a di�erent estimate of the �treatment e�ect� and a di�erent P
value. For this reason, we do not study the synthetic controls approach in this paper.

Two other procedures that we do not investigate require much stronger assumptions
about the error terms than the assumptions in (2). Ferman and Pinto (2019) proposes a form
of RI procedure, which requires users to estimate a pattern of cross-cluster heteroskedasticity.
Brewer, Crossley and Joyce (2018) proposes a feasible GLS procedure, which requires users
to estimate the parameters of an autoregressive process.

B.4 Simulation Results for Additional Methods

In this section, we present simulation results for several of the procedures discussed above.
Figure B.1 reports additional results for three of the �ve experiments initially reported in
Figures 2 and 3. To keep the �gure readable, rejection frequencies are shown only for the
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Figure B.1: Rejection Frequencies for Alternative Procedures
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case in which all groups are treated and for the two extreme cases in which we condition on
groups 1-10 (the smallest ones) and groups 31-40 (the largest ones) being treated.

The left panel of Figure B.1 deals with the restricted wild cluster bootstrap (WCR) and
the ordinary restricted wild bootstrap (WR). It is evident that WCR almost never rejects
when G1 ≤ 2 and underrejects severely for G1 = 3, except when the largest clusters are
treated. These results are explained in MacKinnon and Webb (2017b, Section 6). They are
caused by dependence between the actual t-statistic and the bootstrap t-statistics. Because
this dependence is very much less for the ordinary wild bootstrap, WR works considerably
better than WCR for G1 ≤ 4, except when G1 = 1 and the smallest clusters are treated.
However, its performance is far from perfect, and for G1 ≥ 5, WCR works a bit better than
WR. For larger values of G1, the results for WR appear to be much more sensitive to the
size of the treated clusters than the results for WCR. Broadly similar results are reported
in MacKinnon and Webb (2018).

The right panel of Figure B.1 reports rejection frequencies for two procedures that use
standard errors which di�er from the usual ones based on CV1 and also use critical values
based on calculated degrees of freedom that are smaller (often very much smaller) than
G−1. The procedure called tY in the �gure is due to Young (2016), and the one called tIK is
due to Imbens and Kolesár (2016); see Subsection B.2. The former procedure is inexpensive
to compute, but the latter is extremely expensive. Results for it (which are not available
for G1 = 1 because it cannot be computed) are therefore based on only 20,000 replications.
In the �gure, the performance of tY is usually a bit better than that of tIK. For G1 ≥ 4, the
tY procedure generally works quite well.

If we compare the results in Figure B.1 with those in Figures 2 and 3, we see that,
for G1 ≥ 4, all of the alternative procedures outperform RI-β when either the smallest or
largest groups are treated. Several of them also outperform RI-t for some or all of the same
cases. Of course, both RI procedures work perfectly when all groups are treated, and they
typically work better than most of the alternative procedures when G1 ≤ 2.
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Figure B.2: Rejection Frequencies for Alternative Procedures
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Figure B.2 shows rejection frequencies for two procedures that are less sophisticated
than the ones in the right panel of Figure B.1. One of these uses standard errors based
on CV2 together with the usual t(G − 1) critical values, and the other uses CV1 standard
errors together with critical values based on the e�ective degrees of freedom G∗ suggested
in Carter, Schnepel and Steigerwald (2017). Note that the vertical axis has been subjected
to a square-root transformation. CV2 does not overreject as severely as CV1 (compare
Figure 3), but it still overrejects substantially even for the largest values of G1. In contrast,
using t(G∗) critical values works remarkably well, especially when all groups or the largest
ones are treated and G1 ≥ 4.

Appendix C. RI Procedures with Heteroskedasticity

In the experiments reported in the body of the paper, the distributions of β̂ and the corre-
sponding β∗r , and of tβ and the corresponding t∗r, can only di�er across clusters when cluster
sizes vary. However, this is not the only possible reason for those distributions to di�er.
Another possibility is that the error terms of the treated clusters may have larger or smaller
variances than those of the controls.

For simplicity, suppose there are just two variances, with the ratio of those for the treated
and control clusters equal to λ2. Then, from equation (10), it is evident that the larger is
the variance of the error terms for the treated clusters, the larger will be the variance of β̂.
This follows from the fact that the �rst summation, which depends on those error terms, is
proportional to λ2. The variance of tβ must also be increasing in λ in this case, at least when
G1 is small, because the �rst summation in (10) is precisely what the CRVE underestimates.
Thus, the more λ di�ers from 1, the worse we expect both RI procedures to perform.

To investigate this phenomenon, we perform an additional set of experiments in which
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Figure C.1: Rejection Frequencies with Heteroskedasticity
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the standard deviation of the errors for the treated clusters is λ times the standard deviation
of the errors for the controls. We would expect overrejection when λ > 1 and underrejection
when λ < 1. As G1 increases, we expect the problem to go away for RI-t but not for RI-β.

Figure C.1 shows rejection frequencies for the RI-β and RI-t procedures for a DiD model
with 40 equal-sized clusters and 4000 observations. Results are shown for three values of λ,
namely, λ = 2.0, λ = 1.25, and λ = 0.5. As expected, both procedures overreject when
λ > 1 and underreject when λ < 1. When G1 = 1, both the overrejection for λ = 2.0 and
the underrejection for λ = 0.5 are very severe. In this case, they are identical for RI-β and
RI-t for all three values of λ.

As G1 increases, the performance of RI-t initially improves quite quickly, while that of
RI-β improves very slowly. However, the rate of improvement for RI-t slows down greatly
as G1 increases. It still overrejects noticeably for G1 = 8 when λ = 2.0, and it underrejects
noticeably when λ = 0.5.3 The size distortions in Figure C.1 are much more severe than
in previous �gures, which suggests that heteroskedasticity associated with treatment sta-
tus may be a serious impediment to valid randomization inference. This might occur, for
example, if treatment caused individual outcomes to become more or less variable.

In Figure C.2, we report results of the same experiments for the two restricted bootstrap
tests. The ordinary wild bootstrap (WR) works very much better than the wild cluster
bootstrap (WCR) in these simulations. Moreover, WR always performs very much better
than the two RI procedures. Its only defect is that it underrejects moderately when G1 = 1,
as the theory of MacKinnon and Webb (2018) predicts.

3Using a di�erent experimental design, Canay, Romano and Shaikh (2017, Appendix) studies the perfor-
mance of the Conley and Taber (2011) Γ procedure (and several other tests) when the treated clusters have
greater variance than the untreated ones. They �nd even more severe overrejection for λ = 2.0 than we do.
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Figure C.2: Rejection Frequencies for Wild Bootstrap Procedures with Heteroskedasticity
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Figure C.3: Rejection Frequencies for Alternative Procedures With Heteroskedasticity
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Figure D.1: Rejection Frequencies for RI Procedures With Lognormal Errors
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In Figure C.3, we report results of the same experiments for tY and t(G∗). These pro-
cedures perform much less well with heteroskedasticity and constant cluster sizes than they
do in Figures B.1 and B.2 with homoskedasticity and variable cluster sizes. Note that the
vertical axis has been subjected to a square-root transformation. We do not report results
for tIK because it is extremely expensive to compute.4 When G1 is small, there are con-
siderable di�erences between the performance of tY and t(G∗). With G1 = 1 and λ = 2.0,
both procedures severely overreject. With G1 = 1 and λ = 0.5, both procedures severely
underreject. Interestingly, when G1 = 2 and λ = 1.25, the t(G∗) procedure rejects nearly
11% of the time, while the tY procedure rejects only 0.4% of the time. Neither of these
procedures o�ers an improvement over RI-t for G1 ≤ 2.

Appendix D: Simulation Results with Lognormal Errors

For all of our experiments up to this point, the error terms have been normally distributed.
Here we report some additional results in which they are instead lognormal, rescaled to have
mean 0 and variance 1. These errors are strongly skewed to the right. Not surprisingly, this
a�ects the performance of all the procedures.

Figure D.1 shows rejection frequencies for RI-β and RI-t for the extreme cases in which
either groups 1-10 or groups 31-40 are treated. RI-t performs more or less the same as it did
in Figure 7, but RI-β performs noticeably worse that it did in Figure 2, at least for larger
values of G1. Of course, when all groups are potentially treated, both procedures continue
to work perfectly, and we do not show those results.

Figure D.2 shows rejection frequencies for the two restricted wild bootstrap tests in the

4For a di�erent DGP that also involves heteroskedasticity, MacKinnon and Webb (2018, Figure 13)
reports results for both tY and tIK, and they are quite similar.
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Figure D.2: Rejection Frequencies for Alternative Procedures With Lognormal Errors
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left panel and for tY and t(G∗) in the right panel. These may be compared with the results
in Figure B.1. There are a number of di�erences between the two �gures. Notably, WCR
now rejects between about 5.7% and 5.9% of the time even for the largest values of G1,
and WR rejects noticeably more than that. However, the overall shapes of the rejection
frequency curves as functions of G1 are quite similar in the two �gures.

All of the tests that we examine in this paper are two-tailed. If we had studied one-tailed
tests, we would have found the e�ect of skewed error terms to be much greater. When the
error terms are heavily right-skewed, upper-tail tests tend to reject much less often than
symmetric tests, and lower-tail tests much more often.

Appendix E. Merit Scholarships

In this appendix, we consider an empirical example studied in Conley and Taber (2011). It
deals with the impact of state-level merit scholarships initiated during the 1989-2000 period.
These programs generally o�ered scholarships for students to attend college in their home
state conditional on being above some academic threshold. The details di�er state by state,
but they are not important for our purposes.

Conley and Taber (2011) attempts to determine whether the 10 merit scholarships that
were in operation by the end of 2000 had any impact on college enrollment by estimating
the following DiD regression using data from 1989-2000:

collegeist = β0 + β1meritst + β2maleist + β3blackist + β4asianist

+
51∑
j=2

γj statejs +
12∑
k=2

δkyearkt + εist.

Here collegeist is the outcome of interest, a binary indicator for whether individual i in
state s and year t was enrolled in college, and the treatment variable meritst equals 1 if
state s o�ered a merit scholarship in year t. The remaining variables are all binary indicator
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variables. The state dummies equal 1 when j = s, and the year dummies equal 1 when
k = t. The dataset has N = 42,161 observations taken from all states, including the District
of Columbia, so that G = 51.

Conley and Taber (2011), hereafter referred to as CT, presents estimates of β1, along
with several di�erent con�dence intervals, in Column C of Table II. The table reports that
β̂1 = 0.034, along with a 95% CRVE con�dence interval of [0.008, 0.059]. Using a method
that essentially inverts RI-β P values, the paper estimates a 95% con�dence interval for β1
of [−0.003, 0.093].5 Thus, unlike the conventional CRVE con�dence interval, the CT 95%
con�dence interval contains 0.

Table 2: E�ect of Merit Scholarships on College Enrollment
Coef. Std. Err CR t-stat RI β p∗ RI t p∗

merit 0.034 0.013 2.654 0.117 0.034
t(50) p Young p CSS p WR p∗ WCR p∗

merit 0.010 0.018 0.071 0.030 0.021

Notes: The outcome variable is whether an individual had ever enrolled in college. The sample is 42,161

individuals from all 50 states and DC. Merit = 1 for individuals in the 10 states with merit scholarships in

the relevant treatment years. Standard errors are clustered at the state level.

We calculate several alternative P values and present the results in Table 2. We calculate
both RI-β and RI-t using the CT data and a modi�ed version of their Stata code.6 With
9999 randomizations and symmetric P values, we obtain an RI-t P value of 0.032 and an
RI-β P value of 0.117. Like the CT con�dence interval, the RI-β P value fails to reject
the null at the 5% level. In contrast, our RI-t P value of 0.032 suggests that there is a
statistically signi�cant e�ect at the 5% level.

We also calculate the WCR P value for β1 = 0, based on B = 99, 999 bootstraps. It is
0.021, which is quite similar to the RI-t P value. With 10 treated states, the WCR P value
should be quite reliable. The WR P value, which should also be reliable, is very similar.
We also calculate Young and CSS P values. The former rejects the null at the 5% level,
and the latter rejects it at the 10% level.7 In view of these results and the fact that, in
all our Monte Carlo experiments, the RI-t procedure tended to be slightly undersized, but
quite close to 5%, we conclude that the merit scholarship programs did have a statistically
signi�cant impact.

5The procedure searches separately for both the upper and lower limit of the con�dence interval, by
re-randomizing treatment among 10 of the 51 states.

6We thank the authors for making their code and data easily available.
7We are unable to calculate IM P values here because treatment starts in di�erent years.
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