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Preface to ”Challenges and Opportunities for the

Renewable Energy Economy”

Since the 2015 Paris Agreement to keep the average global temperature rise below 2 ◦C, investors,

consumers and regulators have no longer been able to turn their backs on the need to green the

economy in the face of the swelling tide of climate-related regulations and technological disruption.

While the transition to a low-carbon economy might potentially cause severe disruption and losses

for companies with business models that rely directly or indirectly on fossil fuels, it also brings new

investment opportunities for low-carbon and renewable-energy companies.

Renewable energy deployment as an alternative to traditional energy sources is the cornerstone

of emission-reduction energy policies that aim to facilitate the transition to a low-carbon economy.

However, the transition to renewable energies poses risks and opportunities for companies with

business models that rely directly or indirectly on renewables, and this, in turn, will be reflected

in the revaluation of assets and in the reallocation of private and public financial investments from

carbon-intensive to low-carbon energies.

In its nine independent chapters, this book addresses current challenges and opportunities for

renewable energies from the technological, economic and financial perspectives.

Chapter One examines how entry regulations, production subsidies, R&D subsidies and the

ethanol mandates impact the growth of the ethanol fuel industry in China, with specific attention

paid to the effectiveness of different policies in boosting ethanol production. Chapter Two evaluates

the technical and economic viability of capturing cold energy released during regasification processes

in Malaysian liquefied natural gas regasification terminals, documenting that a substantial amount of

cold energy could be generated with a high internal rate of return over the long term. Chapter Three

explores market interdependence and price spillovers between renewable-energy and low-carbon

assets so as to determine the potential diversification benefits of renewable energy investment in the

European and USA stock markets. Empirical evidence shows that renewable-energy and low-carbon

stock price dependence differs across markets, and this, in turn, has implications for the design

of carbon-resilient portfolios and risk management strategies, as well as for the implementation of

public funding policies to support the transition to a low-carbon economy. Chapter Four evaluates

the advantages of combining wind power with pumped hydro-energy storage and reports that,

from an economic, environmental and technical perspective, combining these two sources of energy

generation is more efficient than the conventional approach to power generation. Chapter Five,

considering the aim of achieving progressive decarbonization, assesses the role played by renewable

energies in the power generation portfolio, considering technological and environmental restrictions,

while confirming the relevance of small and large hydro and offshore wind projects as preferential

technologies in efficient and diversified portfolios. Chapter Six analyzes how the introduction of

sustainability-focused carbon trading projects in the Malaysian palm oil industry report beneficial

effects on sustainability, investment and economic growth. Chapter Seven addresses how heat

emissions from energy production contribute to the greenhouse effect by considering global heat

production compared with total solar energy. Chapter Eight presents an industrial application

of convective solar drying of pineapples as a circular economy device that verifies that fossil

fuel consumption can be considerably reduced with the application of convective solar pre-drying

processes. Finally, Chapter Nine, a simulation study that analyzes wind power forecasts and their

impact on market-clearing prices, shows that enhanced forecast precision has favorable effects on

ix



market participants and on the energy system.

This book intends to be a reference work for those who approach the economic and technological

features of renewable energy deployment from a research, practical or policy-making point of view.

My sincere gratitude is extended to all the contributing authors for their efforts in making this book

possible, with special thanks to MDPI for its continuous support and encouragement.

Juan Carlos Reboredo

Special Issue Editor
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Abstract: The interaction among the fuel ethanol industry, the technology system, and the market
system has a substantial effect on the growth of the fuel ethanol industry which plays a key role in the
formation of a sustainable energy system in China. However, we know little about the relationships
among them and it is difficult to explore the nexus using econometric method due to the lack of
statistics on China’s fuel ethanol industry. This paper develops a history-friendly coevolutionary
model to describe the relationships among the fuel ethanol industry, the technology system, and the
market system in China. Based on the coevolutionary model, we further assess the impacts of entry
regulations, production subsidies, R&D subsidies, and ethanol mandates on the growth of the fuel
ethanol industry in China using a simulation method. The results of historical replication runs show
that the model can appropriately reflect the multidirectional causalities between the fuel ethanol
industry, the technology system, and the market system. We also found that entry regulation is
conducive to weakening the negative economic impacts induced by the growth of the grain-based fuel
ethanol industry without affecting the long-term total output of the industry; production subsidies
to traditional technology firms are helpful for the expansion of the fuel ethanol industry, but they
also impede technology transfer in the industry; only when firms inside the industry are not in the
red can R&D subsidies promote technological progress and then further accelerate the growth of the
fuel ethanol industry; the ethanol mandate has a significant impact on industrial expansion only
when a production subsidy policy is implemented simultaneously. Our findings suggest that more
attention could be paid to consider the cumulative effects caused by coevolutionary mechanisms
when policymakers assess the effects of exogenous policies on the growth of the fuel ethanol industry.
More attention also could be paid to the conditions under which these policies can work effectively.

Keywords: coevolution; the fuel ethanol industry; history-friendly model; entry regulation; ethanol
mandate; production subsidy; R&D subsidy

1. Introduction

Fuel ethanol helps to reduce harmful emissions from vehicles, contributing to the fight against
climate change and the pursuit of clean mobility [1]. Moreover, as a kind of renewable energy made
from sustainable biomass materials, fuel ethanol is an ideal substitute for the non-renewable fossil
fuels [2]. Thus, fuel ethanol is expected to play a key role in the formation of a sustainable energy
system. China is the largest consumer of fossil fuels and attaches great importance of the development
of the fuel ethanol industry. In 2018, the fuel ethanol production capacity in China reached 3.22 million

Energies 2020, 13, 1034; doi:10.3390/en13051034 www.mdpi.com/journal/energies1
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tons. China has become the third-largest fuel ethanol consuming and producing country, following
Brazil and the United States [3]. However, China accounted for just over 3% of global production
in 2018. The development of the fuel ethanol industry in China still faces many challenges (e.g.,
technical uncertainty, demand uncertainty, and feedstock uncertainty) [4–6]. The Chinese government
announced a new nationwide ethanol mandate that will expand the mandatory use of E10 fuel (gasoline
containing 10% ethanol) from 11 trial provinces to the entire country by 2020. If China were to meet the
national mandate of E10, it would require an extra 12 million tons of fuel ethanol production capacity,
which is about four times that of its current production capacity. Therefore, exploring the nexus among
the fuel ethanol industry, the uncertain technology system, and the uncertain market demand will
be conducive to clarifying the growth mechanisms of the fuel ethanol industry and then improving
public policy to accelerate the growth of the fuel ethanol industry in China.

Many scholars have already analyzed the different factors that affect the development of the fuel
ethanol industry. These factors mainly include technology change [7–10], market demand [11–13],
feedstocks [8,14,15], renewable energy infrastructures [16,17], energy policies [18–21], and economic,
social, and environmental impacts [22–25]. These works mainly used case studies [8,10], econometric
methods [9,11,12,19], and simulation methods [7,13]. Although the existing literature provides
important information on the relationships between the fuel ethanol industry growth and its drivers,
there are still some limitations. Firstly, most studies do not consider the adverse impacts of the fuel
ethanol industry on its drivers and the interrelationships among the driving factors. The ignorance of
the above interactions may lead to a misunderstanding of the growth mechanisms of the fuel ethanol
industry [26]. Secondly, the fuel ethanol industry is an emerging industry in China. Therefore, the
econometric methods used in the existing studies could not be applied to analyze the development
of the fuel ethanol industry in China due to the lack of statistical data. Lastly, although simulation
is an ideal method to quantitatively analyze the development of emerging industries, such as the
fuel ethanol industry, this method is often questioned because of the subjectivity of its parameter
settings [27].

In addressing these limitations, this paper employs a history-friendly evolutionary model to
explore the interactions among the fuel ethanol industry and its driving factors and analyze the impacts
of different policies on the evolution of the fuel ethanol industry in China. The contributions of our
work are reflected in three aspects. First, we argue that there are multidirectional causalities among
the fuel ethanol industry, the technology system, and the market system. Therefore, we applied
a coevolutionary framework to model the above relationships. Under this framework, each party
exerts selective pressures on the others, thereby affecting each other’s evolution [28]. Second, we
developed a history-friendly model to depict the above coevolutionary relationships related to the fuel
ethanol industry in China. The parameters of the history-friendly model are set based on the historical
evolutionary characteristics of the industry but not on historical statistics. Therefore, this method can
be used to analyze the growth of the fuel ethanol industry, which lacks historical statistics in China.
At last, we further analyzed the impacts of entry regulation, production subsidy, R&D subsidy, and
ethanol mandate policy on the evolution of the fuel ethanol industry in China.

The rest of the paper is structured as follows. Section 2 reviews the driving factors that affect
the growth of the fuel ethanol industry. Section 3 features a history-friendly model based on the
coevolutionary framework, which describes the interactions among the fuel ethanol industry, the
technology system, and the market system. In Section 4, we first run the baseline simulation to select
the values of the parameters that can reflect the historical characteristics of the fuel ethanol industry
and then use this model to further analyze the impacts of several typical fuel ethanol industry policies,
while Section 5 contains concluding remarks and policy implications.
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2. Literature Review

2.1. The Effects of Technology Change on the Evolution of the Fuel Ethanol Industry

One of the most important factors limiting the scale of the fuel ethanol industry in the United States
is technological progress. Fuel ethanol could account for about 10% of total energy consumption if there
is no major technological advance, but if technological progress is significant, then this proportion could
rise to 20%. This proportion could further rise to 25% if the major usage of the land could be partly
converted to planting energy crops [7]. The success of the fuel ethanol industry was not only due to
resource advantages but also due to the advantage of technological progress [8]. In addition, the effect
of technological progress on the production of fuel ethanol is adjusted by mandatory consumption
policies [9].

There is no doubt that technological change has vital impacts on industry evolution. However,
the origin of the fuel ethanol industry’s technological progress remains controversial. One of the
hypotheses is that technological advantage is derived from the accumulation of knowledge, which is
one of the “learning by doing” types [29]. Another opinion is that technological progress is driven
by the new energy automobile industry, especially the development of flexible fuel vehicles that
began in 2003 [30,31]. In addition, agricultural output is believed to be the main source of the fuel
ethanol industry, so the progress of agricultural technology has had an important impact on the
development of the fuel ethanol industry [32]. Different actors (e.g., ethanol producers, public and
private research institutions, and government institutions) in the industrial chain could also affect
technological progress [7]. Some scholars found that more attention should be paid to scientific
progress, especially the impact of scientific progress on fuel ethanol technology in recent years [33].

The relationship between the progress of fuel ethanol technology and public policy is very
close. However, the focus of the scientific community is different than the focus of the government.
The scientific community is concerned about environmental protection and technology, while the
government is concerned more about geopolitics. This difference reveals that either the scientific
community needs to pay more attention to the knowledge demands of policymakers or that
policymakers need to focus more on scientific and technological knowledge [10].

2.2. The Effects of Renewable Energy Policy on the Evolution of the Fuel Ethanol Industry

The development of new technologies in the fuel ethanol industry still faces various barriers [34].
In many countries such as the United States [35], governments have adopted a wide range of policies
to support the development of their fuel ethanol industries, especially, to spur the new technologies.
These policies (e.g., subsidies, tax cuts, mandatory consumption, and tariff protections) have had
important impacts on the development of the fuel ethanol industry. If the government’s subsidy
policy is properly designed, it can effectively compensate for the risk difference caused by land quality
difference, and further, promote the greater use of marginal land with poor quality to produce energy
crops [36]. R&D support policies play an important role in the technological progress of the fuel
ethanol industry, and the quantity of public R&D funds directly affects the progress of fuel ethanol
technology [7].

Some scholars have investigated the impact of various renewable energy policies on industry
evolution. A vertically integrated market model, including fuel ethanol, by-products, and corn, was
used to analyze the social impact of the fuel ethanol industry’s subsidy policies, and the results
showed that subsidy policies may not lead to positive social benefits [18]. It is also found that the
tariff protection and tax-cut policies of biofuels in the United States may lead to the loss of total social
welfare [37].

Other scholars analyzed the distortion effect of fuel ethanol policy from the perspective of
international trade. If the U.S. government were to cancel tariff protection and reduce the scope of tax
cuts, ethanol imports would increase 130%, while domestic ethanol production would fall 9% [11]. The
current biofuel trade protection policy in the United States not only reduces the industrial competitive
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advantage of corn-based ethanol but also increases dynamic learning costs, which will also reduce
the international competitiveness of the future cellulosic ethanol industry [38]. No matter how high
the carbon tax rate is, a single carbon tax policy without additional subsidies will not promote the
evolution of the fuel ethanol industry [19].

Although many studies have noted the distortion effects of fuel ethanol policies, other scholars
maintain that subsidies can help to overcome market failure [20]. Gehlhar et al. (2010) evaluated
the long-term economic impact of fuel ethanol subsidies in the United States and concluded that the
development of the fuel ethanol industry is conducive to lowering the dependence on oil imports,
thereby contributing to the development of the overall economy. Further, the overall benefits induced
by the subsidy were greater than the welfare losses [21].

However, due to the characteristics of the emerging industry, the future direction of the fuel
ethanol industry policy is highly uncertain, which increases the uncertainty of the development of
the fuel ethanol industry [39]. The development of the fuel ethanol industry involves issues of food
security, energy security, and environmental protection. Therefore, in the process of formulating
supporting policies for the fuel ethanol industry, attention should be paid to the integration of these
policies [32,40].

2.3. The Effects of Market Factors on the Evolution of the Fuel Ethanol Industry

Since oil and biofuels are substitutes, and crops like corn and sugar cane are the main feedstocks
of biofuels, the price of oil, corn, and sugar cane will have an important impact on the evolution of
the biofuel industry. An empirical study showed that an increase in oil prices will lead to an increase
of biofuel production, while the increase of corn and sugarcane price will lead to a decrease of fuel
ethanol production [11]. Government subsidies for the fuel ethanol industry and biodiesel industry
should be increased because uncertainty in oil prices and crop yields would affect the evolution of the
fuel ethanol industry [12]. It is also found that a 30% drop in oil price would lead to a significant drop
in fuel ethanol demand, and, at the same time, fuel ethanol prices would also drop significantly [13].

The cost of feedstocks was found to be the main influencing factor affecting the short-term
evolution of the fuel ethanol industry. Therefore, the future R&D of the fuel ethanol industry should
focus on the low cost of decomposition from lignocellulose sugar and the comprehensive utilization of
lignocellulose [14]. It is also found that an insufficient understanding of feedstock cost is the main
reason for the slow progress in the commercial utilization of fuel ethanol in Africa [5].

The above literature sheds important light on the relationships between the fuel ethanol industry
and its driving factors. However, the ignorance of the industry’s multidirectional relationships may
lead to an inaccurate assessment of the relationship between the fuel ethanol industry and its drivers.
Therefore, in order to understand the growth mechanism of the fuel ethanol industry in China, this
paper will analyze the relationships among the fuel ethanol industry, the technology system, and
the market system using a history-friendly coevolutionary model. This paper will further assess
the impacts of several policies (i.e., entry regulation, production subsidy, R&D subsidy, and ethanol
mandates) on the growth of the fuel ethanol industry.

3. The Model

3.1. The History-Friendly Model

As an emerging industry in China, there are limited statistics of the fuel ethanol industry. Therefore,
it is difficult to analyze the mechanisms and factors affecting the fuel ethanol industry using a statistical
model. In order to explore the coevolutionary relationships between the fuel ethanol industry, the
technology system, and the market system, this paper employs a history-friendly evolutionary model
which has been applied to many industries, including computers, DRAM chips, pharmaceuticals,
semiconductors, synthetic dyes, and mobile phones and memory chips [41–46]. Scholars studying
industrial dynamics generally rely quite heavily on the appreciative theory which is a body of verbal

4



Energies 2020, 13, 1034

arguments representing causal explanations of observed patterns of economic phenomena [47,48].
Although the appreciative theory is an appropriate tool to characterize the main mechanisms at work, it
is difficult to verify the logical consistency of the theory due to its complexity and the lack of precision
of the verbal language [47]. The history-friendly model is a formal model of the appreciative theory and
can overcome the above limitations of the appreciative theory [41]. It aims to analyze, in a more formal
form, the influential factors and their influencing mechanisms in industry evolution, technological
progress, and institutional change that have been confirmed by appreciative theory [41,49].

The construction of the history-friendly model consists of three important steps [47]. The first step
is the selection of the stylized facts deserving attention from theoretical perspectives. These stylized
facts mainly refer to the history and evolution of the fuel ethanol industry such as specific institutions,
technological change, and market characteristics. Second, there is the choice of how to represent the
selected phenomena. In this respect, the history-friendly model adopts the same basic representations
used in evolutionary models. All reported models are built around four main blocks: firm behavior,
technological change, market demand, and industry dynamics [50,51]. The creation, entry, exit, and
technological change of the business firms affect the performance of the industry and further impact
industry evolution. The third step is the manipulation and implementation of the model designed in
the second step.

The history-friendly model is a type of agent-based simulation model dealing with the complexity
of the economic system [52]. A typical history-friendly model has many variables and parameters.
Under a wide range of parameter settings, some of the parameter settings will lead to the replication
of the industry history being modelled. Importantly, “replication” here mainly refers to qualitative
reproduction, not quantitative reproduction [53]. Once the model is built, there is room for wider
applications such as policy analysis. The history-friendly nature is threefold. Firstly, in the process of
model construction, stylized facts in industrial development are fully considered, and the relationship
between variables is constructed on this basis. Secondly, the initial values of variables in the model are
set based on the true values of industrial history. Thirdly, the selection of the parameters’ values can
qualitatively reproduce the stylized facts in industrial history.

There are two compelling reasons for using a history-friendly model in this paper. First, a
history-friendly model helps us better explore the causal mechanisms in the evolution of the fuel
ethanol industry. As a formal model, all the logic that drives model outcomes is explicitly represented
in a history-friendly model [27]. In addition, the mechanisms built into the model are transparent
which means that if the model does not work as expected, the analyst can adjust the settings of the
model until the model is able to qualitatively capture the stylized facts in the appreciative theory [54].
Developing and working through a history-friendly model could bring to mind mechanisms, factors,
and constraints of the industry evolution [41]. Therefore, compared with the appreciative theory, the
history-friendly model is conducive to analyzing the causal mechanism of the fuel ethanol industry.
Second, the model setting of the history-friendly model is transparent rather than arbitrary, so, it serves
as a good starting point for further policy analysis. Comparing the influence of different systems
and policy arrangements on industry evolution can provide a deep understanding of the influence
mechanism of the above factors and provide a basis for further policy selection and institutional
arrangement [41,55].

3.2. The Model Specification

The basic model is presented in this section. Given the complexity of the history-friendly model,
it is difficult to lay out all the details of all the equations without confusing the reader and obscuring
the basic logic of the model [41]. Therefore, we have tried to present only the equations which can
reflect the stylized facts of the fuel ethanol industry and put other related equations in the Appendix A.
Just like most of the other history-friendly models [50,51], our model is also built around four main
building blocks: firm, technology progress, market demand, and industrial dynamics. In selecting the
stylized facts to investigate, we considered their relevance on the selection of the variables and the
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relationships among these variables, which affect the model specification [47]. These stylized facts are
put at the beginning of each block. In addition, given that our model involves many subjects which are
further divided into different types, we use a lot of superscripts to minimize the number of variables
used in the model. The variables with superscripts b and f represent the variables associated with the
properties of fuel ethanol and fossil fuels, respectively. The variables with superscripts tf, nf, and rd
represent the variables associated with the properties of traditional technology firms, new technology
firms, and R&D firms, respectively. The variables with superscripts m and t represent the variables
associated with the properties of materials and traditional materials, respectively.

3.2.1. Firm

(1) R&D investment of the firm
As a typical emerging industry, the fuel ethanol industry is still faced with the urgent need for

continuous improvement of its related technologies. Therefore, one of the stylized facts is that almost
all firms in the fuel ethanol industry have research and development (R&D) investments. We assume
that the firm’s R&D investment consists of two parts. The first part is the fixed amount of R&D
investment. Whether the company is profitable or not, it will invest in R&D. The second part is that
when the firm has a positive profit, a fixed proportion of profit will be invested in R&D. Thus, R&D
investment can be expressed as:

Ri,t = Max{rd + σ ·πi,t, rd} (1)

where rd denotes the fixed amount of R&D investment; σ denotes the fixed proportion of profit invested
in R&D, and πit denotes firm’s profit which is defined by Equation (A7) in the Appendix A.

(2) Entry of firms
We assume that a firm’s entry decision is influenced by the industry’s profit to cost ratio. Let

ϕ(x) = Φ · exp(−ϕ · x), where ϕ and Φ are positive constants, and Φ ∈ (0, 1] is given a distribution
function ps, s = 1,2...,l; then, the number of latecomers in each period can be expressed by the following
equation:

γs =

{
0 with probabilityψ(x)
s with probability ps · (1−ψ(x)) (2)

where ψ(x) = ϕ(max[Γt, 0]).
In Equation (2), if Φ = 1 is set; then, ϕ(0) = 1, which represents when the incumbent firm loses

money, and no new firms enter this industry. That is to say, Φ = 1 indicates that the firm is completely
rational. If Φ < 1 is set, even if the incumbent firms have losses, there will still be latecomers. In other
words, this model can satisfy the theoretical hypothesis of rationality or incomplete rationality by
making different assumptions.

This study assumes that the initial size and technical efficiency of the latecomers are equal to the
average level of the whole industry.

(3) Adjustment rules of the firm
During each period, the firm can determine the optimal output, si,t, and the corresponding demand

of feedstock, mi,t, according to the feedstock price and product price. Due to the matching relationship
between the feedstock input and fixed assets, the required asset size should be mi,t/α. If the firm’s
own asset scale Fi,t−1 is smaller than mi,t/α, then the firm’s asset scale expands to Fi,t = mi,t/α, and the
corresponding firm’s capacity utilization ratio is ηi,t = 1. Otherwise, if the firm’s own asset scale Fi,t−1

is larger than mi,t/α, the firm’s asset scale remains unchanged, that is Fi,t = Fi,t−1, and the capacity
utilization rate is ηi,t = mi,t/(α · Fi,t).

(4) Exit rules of the firm
We assume that when the firm has losses for several consecutive periods, the firm will

withdraw production.
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3.2.2. Technology Progress

(1) Progress and Diffusion of Traditional Technology
There are four stylized facts of the technological progress in China’s fuel ethanol industry. First,

traditional production technology is relatively mature, so technological progress is mostly reflected in
the continuous improvement of the original technology. However, there are a few major technological
innovations. In other words, with an increase in the degree of technological progress, the occurrence
probability of technological progress rapidly decreases. Second, R&D investment will improve the
probability of technological progress. Third, the higher the original level of technology, the lower the
probability of major innovation. Finally, due to technology diffusion, the technological progress of a
specific firm is positively correlated with the most advanced technology level in the industry.

In this study, it is assumed that there is the highest level of technical efficiency boundary, denoted
as e0. Let Δei,t be the change of the firm’s technical level; then, the technology change will not exceed
the difference between the firm’s technical level and the highest level (e0 − ei,t). Therefore, the firm’s
technology change is

Δei,t+1 = θi,t+1 · (e0 − ei,t) (3)

where θi,t+1 is the random variable of the interval [0,1], in order to reflect the first stylized fact of
technological progress, that is, the larger the degree of technological progress, the smaller the occurrence
probability.

We construct variables k = 100 · θi,t+1 and assume Poisson distribution with parameters k and λ.
Then, there is

λ = λ0 ·Rλ1
i,t · (e0 − ei,t)

λ2 · (max
i
{ei,t}/ei,t)

λ3 (4)

where λ is the mean value of the random variable k. The larger the value, the higher the probability that
the technical efficiency will be greatly improved. The technology R&D investment, Ri,t, is positively
correlated with λ, which reflects the second stylized fact of the above mentioned technological progress.
The gap between the firm’s technical level and the highest technical level, e0 − ei,t, is positively related
to λ, which reflects the third stylized fact. max

i
{ei,t}/ei,t reflects the gap between the technological

level of the firm and the highest technological level in the industry. This value is positively correlated
with λ, which reflects the fourth stylized fact of technological progress—the diffusion of advanced
technologies in the industry. λ0,λ1,λ2, and λ3 are nonnegative constants.

Finally, when the technical level of the firm reaches its highest boundary value, the firm will stop
its R&D investment.

(2) Entry, Progress, and Exit of New Technology
Due to the insufficient supply of feedstock, another stylized fact of China’s fuel ethanol firms is

that firms need to constantly explore new feedstock and corresponding production technologies. Due
to the diversity of fuel ethanol feedstock, the corresponding production technology also shows diverse
characteristics. The adoption, progress, diffusion, and withdrawal of different production technologies
lead to the change of technological diversity in the industrial technology system, thus promoting the
evolution of the technology system.

The entry rules of new technology: This research focuses on the evolution of production technology,
which is closely related to industry evolution. Therefore, we use the innovative activities of an R&D
firm to describe the evolution of new technology. An R&D firm is a corporation whose output is new
technology while the R&D expenditure is its input. We assume that when the industry profit of using
traditional technology is negative, new R&D firms start to enter the industry, and the number of entries
is random. Among them, the number of R&D firms created by the incumbent firm γ1 and the number
of completely new R&D firms γ2 is both randomly selected from 0,1......, nt. Upon entry, all newly
created R&D firms are faced with the same initial technical efficiency level, and if an R&D firm already
exists in the technology system, the newly created R&D firms will search for the maximum technical
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efficiency in the existing R&D firms as its initial technical efficiency. The change in the technical
efficiency of R&D firms is expressed as follows:

Δei,t+1 = ςi,t ·Ri,t (5)

In this model, the entry of R&D firms is used to reflect the evolution characteristics of new
technologies in the industry. There are two forms of entry for R&D firms: one type of firm is newly
created by incumbent firms, and the other is a random start-up. The R&D output of these two kinds of
R&D firms is mainly determined by the efficiency of technical output and the amount of R&D input.
If the newly established R&D firms have the same total amount of R&D capital, B, and take a fixed
proportion of the R&D capital as the R&D investment in each period, the differences between the two
kinds of newly established R&D firms include two elements. First, since newly established R&D firms
are usually more flexible than incumbent firms, and the flexibility of the system is more conducive to
the formation of new technologies, newly established firms will have higher R&D productivity than
incumbent firms, which is mainly reflected in the difference between the two types of firms in terms
of value ςi,t [43]. Second, as mentioned above, new technology may replace old technology, which
will lead to a sunk cost loss for the incumbent firm. Therefore, the incumbent firm will reduce the
proportion of R&D investment, which is negatively correlated with the residual fixed assets of the
original firm. Its R&D investment is

Ri,t = t · d · δ · B (6)

and the newly established firms take a fixed amount as the R&D investment:

Ri,t = δ · B (7)

where δ is a constant. Equations (6) and (7) mean that before the depreciation of fixed assets is
completed, the R&D input of the incumbent firm will be less than the R&D input of the new firm.

New technology adoption rules: Firms will only adopt new technology when the average cost of
production using that new technology is lower than the average level of traditional technology. This
means that, before a firm is able to enter the market, it must go through a long R&D period. During this
period, it is difficult for the firm to generate profits and maintain survival. Therefore, in the start-up
stage of the new R&D firm, that firm must rely on external capital which is reflected as the initial
capital stock of the new R&D firm in this model.

Rules for R&D firms to withdraw from R&D activities: When the initial capital stock is all used
for R&D expenditures, and the production costs of new technology still do not reach the average
levels of those of traditional technology, the R&D firms will choose to withdraw, which means the
withdrawal of new technology.

3.2.3. Market Demand

There are three stylized facts in the production market of the fuel ethanol industry in China. First,
fuel ethanol is a typical emerging product whose market demand is gradually forming and expanding
or shrinking. Second, there is a competition between fuel ethanol and liquid fossil fuels. The market
demand for fuel ethanol comes from the substitution of the market demand for fossil fuels. Third, the
government can intervene in the fuel ethanol market through legal or administrative measurements.

In the production market, fuel ethanol is directly incorporated into the formal gasoline sales
network, which is an oligopoly market. This means that the price of fuel ethanol will be consistent
with gasoline prices, which are decided by the supplier as follows:

pb
t = (1 + ρ1)p

f
t (8)
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where pb
t denotes the price of fuel ethanol, p f

t denotes the price of gasoline, and ρ1 denotes the
markup percentage.

In pilot provinces, the demand for fuel ethanol will reach a larger scale in the short term after the
implementation of the pilot because the pilot consumers can only purchase E10 gasoline. On the other
hand, the output of fuel ethanol is relatively smaller in the early stages of the fuel ethanol industry.
This means that market demand is horizontal before reaching a specific value but becomes vertical
after reaching a specific value. Therefore, Equation (8) can be regarded as the demand function of the
fuel ethanol market.

Then, we need to consider the entry, adjustment, or exit of the consumer. As mentioned above, the
evolution of the fuel ethanol market is reflected in the entry of potential consumers and the adjustment
of consumption by incumbent consumers or the exit from the market.

Consumer Entry Rules: As the consumption of E10 is mandatory, new consumers of fuel ethanol
will enter into the market with the expansion of pilot areas.

Consumer Adjustment Rules: When the price of fuel ethanol remains constant, the changes in
demand only affected by the changes in consumer’s fuel spending. Therefore, consumers will increase
or decrease their demand for fuel ethanol based on changes in total fuel spending. The adjustment to
fuel ethanol purchases for specific consumers is

.
xb

j,t =
.

Mj,t (9)

where
.
xb

j,t denotes the percent change in fuel ethanol demand for consumer j in period t;
.

Mj,t denotes
the percent change in consumer j’s income in period t.

Consumer Exit Rules: Consumers who are not satisfied with the consumption of fuel ethanol will
choose to exit the market.

3.2.4. Industrial Dynamics

(1) Entry of Production Firms
Production firms in the fuel ethanol industry are divided into two types: one is the traditional

technology firm which mainly uses traditional production technology and the other is the new
technology firm which mainly uses new production technology. Let Δ1nt f

t denote the number of

traditional technology firms entering in period t. According to the previous section, it is related to Γt f
t−1

and nt f
t−1, which indicate the cost to revenue ratio of traditional technology firms and the number of

firms in the industry of the last period respectively, as well as the random distribution function ps. In
addition, in the fuel ethanol industry, the entry of traditional technology firms is also restricted by the
shortage of feedstocks. Then, we can describe the number of traditional technology firms as follows:

Δ1nt f
t = f1(Γ

t f
t−1, nt f

t−1, mt
t−1, ps) (10)

where mt
t−1 represents the demand for traditional feedstocks in the last period.

There are two kinds of new technology firms entering in period t in the fuel ethanol industry: one
is transformed from R&D firms, which is denoted by Δ1nn f

t ; the other includes newly established firms

that use new technology, denoted by the parameters’ values Δ2nn f
t . According to the above definition,

Δ1nn f
t is related to the number of R&D firms in the last period, nrd

t−1, its production costs in the last
period, crd

i,t−1, and the highest production cost in the last period, Max{ct
i,t−1}, which can be shown as:

Δ1nn f
t = f2(crd

i,t−1, Max{ct
i,t−1}, nrd

t−1) (11)
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Δ2nn f
t is related to the cost of new technology firms in the last period, Γn f

t−1, to the revenue rate,

the number of new technology firms in the industry, nn f
t−1, and random distribution function, ps, so:

Δ2nn f
t = f3(Γ

n f
t−1, nn f

t−1, ps) (12)

(2) Exit of Firms
According to the above rules, when a firm loses money in a continuous k-period, it will exit from

production. If the number of withdrawing traditional technology firms in period t is denoted by Δ2nt f
t ,

and the number of withdrawing new technology firms in period t is denoted by Δ3nn f
t , then there are

Δ2nt f
t = f4(n

t f
t−1, {πt f

i,t−1, · · · ,πt f
i,t−k }) (13)

Δ3nn f
t = f5(n

n f
t−1, {πn f

i,t−1, · · · ,πn f
i,t−k }) (14)

(3) Change in the Number of Firms in Production
Then, the number of traditional technology firms in period t is

nt f
t = nt f

t−1 + Δ1nt f
t + Δ2nt f

t
= f6(n

t f
t−1, Γt f

t−1, mt
t−1, ps, {πt f

i,t−1, · · · ,πt f
i,t−k })

(15)

The number of new technology firms in period t is

nn f
t = nn f

t−1 + Δ1nn f
t + Δ2nn f

t + Δ3nn f
t

= f7( nn f
t−1, crd

i,t−1, Max{ct
i,t−1}, nrd

t−1, Γn f
t−1, ps, {πn f

i,t−1, · · · ,πn f
i,t−k })

(16)

The total number of firms involved in the production in the industry at period t is

n f
t = nt f

t + nn f
t = f8( f6, f7) (17)

According to Equations (15) and (16), the entry or exit of firms in an industry is influenced not only
by the industrial system itself but also by the evolution of the market system and technology system.

4. Results and Discussion

4.1. History Replicating Runs

4.1.1. Baseline Scenario

The aim of the history replicating runs is to find a set of parameters values, based on which the
simulation results can reflect the historical stylized facts of the fuel ethanol industry in China [56]. This
kind of replicated history is also called the baseline scenario which could be used as a starting point for
further policy assessment [57]. Therefore, it is important to select the historical stylized facts that the
simulation results intend to capture. Given that the ultimate purpose of our paper is to understand
how the fuel ethanol industry has grown, we mainly focused on the following stylized facts about
the number of firms and the output of the fuel ethanol industry in China, which are derived from
a detailed analysis of the industrial history and from the existing appreciative literature on the fuel
ethanol industry in China [58,59].

(1). Once established, traditional technology firms would not withdraw even if they lost money,
because the government subsidized loss-making firms to foster the growth of new energy industry.

(2). There is a ceiling of the number of the traditional technology firms because the available raw
materials (i.e., expired corn and wheat) used by these firms are limited.

10



Energies 2020, 13, 1034

(3). All R&D firms established by the incumbent traditional technology firms failed to transform into
new technology firms.

(4). All new technology firms are derived from newly established firms with new production
technology rather than the firms transforming from R&D firms.

(5). The number of incumbent firms also has a ceiling because the maximum market capacity is fixed.
When the aggregated output of the fuel ethanol beyond the maximum market capacity, there
would be no new firms entering the industry.

(6). The total output increased faster before the number of traditional firms reached the ceiling because
the increasement of the total output is mainly caused by the entry of traditional technology firms.

(7). When the number of traditional technology firms reaches the ceiling, the growth rate of their
total output will decrease significantly, because the increasement of the total output is mainly
caused by the relatively small expansion of the incumbent firms.

(8). When the new technology firms start entering the industry, the total output will increase faster
again until there is no entry of the new technology firms.

In order to find the set of parameters values which can ‘reproduce’ the above-mentioned stylized
facts, the following steps used in most of the relevant literature were employed in this paper [46,51,60,61].
Firstly, we set the initial values of the variables in the system based on the historical data of the fuel
ethanol industry in China. These initial values are shown in Table A1 in Appendix A. Then, we divided
the parameters into two groups when setting the values of the parameters. The first group includes the
parameters (e.g., the rate of depreciation) which can be set based on the industry history. In these cases,
it is possible to fix the parameter to one value. The second group includes other parameters (e.g., the
degree of firm rationality) which could not be set to a fixed value for the lack of enough data to estimate
its exact value. Thirdly, for the second group of parameters, we did not attempt detailed quantitative
matching to historical data, reflecting our ignorance about their ‘true’ values. Alternatively, we chose
values randomly in the predetermined ranges of the parameters and then adjusted the values until the
simulation results could qualitatively capture the stylized facts. To adjust the values of the parameters
more efficiently, we assessed each parameter’s impact on the simulation results, respectively, through
keeping all parameters but one constant and then gave preference to adjusting the parameters which
had greater impacts. Once the simulation results about the output and the number of firms could
qualitatively reflect all the above eight stylized facts, we stopped the adjustment and chose this set of
values as the parameters’ values under the baseline scenario. Although ‘qualitatively reflect’ means
that there may be many sets of parameters values satisfying the above condition, we did not need to
judge which was the best one to reflect these stylized facts because the aim of the history-friendly model
was to explore the causal relationships rather than the magnitude of the effects between variables. The
final values of parameters are shown in Table A2 in the Appendix A. An additional constraint orienting
the choice of parameter values was provided by the time structure of the model, because the definition
of what ‘one period’ means in real-time (half a year in this model) is crucial for establishing which
actions take place at any one period. The simulation is implemented using Mathematica software
package. The results under the baseline scenario are shown in Figures 1–4.

Figure 1 shows the change in the number of firms in the fuel ethanol industry under the baseline
scenario, which can be divided into four stages. There were only traditional technology firms in the
first stage, and the number of firms kept increasing. The second stage starts after the 17th period,
during which the number of traditional technology firms was no longer increasing. At the same time,
R&D firms with new technology appeared, and their numbers increased gradually. However, after
the 22nd period, the number of R&D firms began to decline. On the one hand, some R&D firms
transformed into production firms and began to produce fuel ethanol. On the other hand, some R&D
firms failed to survive because they did not meet the expected innovation goals. The third stage starts
in the 26th period. New technology firms began to produce at this stage, and their number increased
gradually due to the establishment of the new technology firms and the transformation of R&D firms
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to new technology firms. According to the simulation results, all production firms transformed from
R&D firms are originated from the newly established R&D firms, while the R&D firms created by
traditional technology firms failed to transform into production firms, which is consistent with the
evolutionary history of the fuel ethanol industry in China. The fourth stage starts from the 31st period.
Due to the limitation of market capacity, the number of new technology firms is no longer increasing,
and the number of firms in the market remains stable.

Figure 1. Change in the number of firms.

Figure 2. Change in the output of the fuel ethanol industry.

Figure 3. Change of a firm’s average technical efficiency.
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Figure 4. Transformation of the firm’s production technology.

Figure 2 shows the change in the output of the fuel ethanol industry under the baseline scenario,
which is divided into four stages. In the first stage, the total output of the industry increased
continuously. The total output curve coincides with the output of traditional technology firms since
there are only traditional technology firms in the industry. The second stage starts from the 17th period
when the number of traditional technology firms was not increasing. Although the total output was
still increasing, the growth rate of the total output decreased significantly. The increase in output
mainly comes from the increase in the output of incumbent firms. The 25th period indicates the third
stage: with the entry of new technology firms, the total output began to increase rapidly until the
31st phase. Due to the limitation of market capacity in this period, the number of new technology
firms did not increase. The output growth of new technology firms significantly dropped again and
then entered the fourth stage. The total output growth is relatively low since there is no entry of new
firms. The increase of output in this stage mainly depends on the expansion of the production scale of
existing firms.

Figure 3 shows the change of the average technical efficiency of traditional technology firms, R&D
firms, and new technology firms under the baseline scenario. The average technical efficiency of all
three kinds of firms is increasing. However, the extent of this increase varies from firm to firm. The
average technical efficiency of traditional technology firms changes relatively slowly, while the average
technical efficiency of R&D firms improves relatively quickly. The average technical efficiency of new
technology firms improves rapidly in the initial stage of production but tends to be flat in later stages.
The main reason for the above difference is that the technological progress of R&D firms is significantly
faster than that of existing production firms. The average technical efficiency of all R&D firms improves
relatively quickly because the technical progress among R&D firms is cumulative, and new R&D firms
will absorb the experience of existing R&D firms. In the initial stages of production, new technology
firms usually adopt the most advanced technology, which significantly improves the average technical
efficiency of the whole industry. When the entry of new technology firms stagnates, the improvement
of average technical efficiency only depends on the technological progress of incumbent firms. As a
result, the rate of technological progress becomes relatively slow.

Figure 4 describes the technology transformation in the fuel ethanol industry under a baseline
scenario. Technology transformation refers to the transformation of the industry from traditional
production techniques to new production technology. The proportion of the output of new technology
firms to the total output of the industry is used to measure technology transformation. According
to Figure 4, the value of the technology transformation has rapidly increased since the 25th period
and reached about 32% in the 31st period. However, the growth rate of technology transformation
has declined rapidly because new technology firms have closed entry to the industry. This means
that technology transformation mainly depends on the continuous entry of new technology firms.
When there is no continuous entry of new technology firms, the competitive advantage of traditional
technology firms in incumbent firms is comparable to that of new technology firms, so, the market
share of traditional technology firms will not significantly decrease.
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4.1.2. Robustness Test

Simultaneous simulation of “History Replication” and “History Divergent” for the same industry
is a commonly used method to test the robustness of the setting of the parameters’ values [41,44,62].
The characteristics of the biodiesel industry under the baseline scenario are simulated by adjusting
the parameters and setting the initial values according to the stylized facts of the biodiesel industry
in China. The simulation results are shown in Figures 5 and 6. The characteristics of the biodiesel
industry evolution are significantly different from those of the fuel ethanol industry evolution. This
means that the simulation results of the coevolutionary model set in Section 3.2 are indeed affected by
the parameter settings. Therefore, the setting of the parameters’ values and the initial values under the
baseline scenario can be used for further policy analysis.

Figure 5. Production change in the biodiesel industry.

Figure 6. Change of the technical efficiency of the biodiesel industry.

4.2. Policy Impacts Simulation

4.2.1. The Impacts of Entry Regulation

Entry regulation is one of the most important industry regulation policies. The government often
uses this kind of policy to avoid overcapacity or other negative social or economic impacts due to
overheating industrial development. Entry regulation has also been used in the management of the
fuel ethanol industry. How effective is this policy? Does this policy have any other impacts on the
industry’s growth while achieving its policy objectives? These questions are essential for evaluating
the performance of regulation policy. To shed some light on the above questions, we analyzed the
impacts of entry regulation on the fuel ethanol industry’s evolution using the simulation method. The
simulation results are shown in Figures 7–9.
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Figure 7. Impact of entry regulation on the demand for feedstock.

Figure 8. Impact of entry regulation on the price of feedstock.

Figure 9. Impacts of entry regulation on fuel ethanol production.

In order to prevent the sharp rise in grain prices due to the rapid development of the traditional
grain-based fuel ethanol industry, the Chinese government has implemented an entry regulation that
restricts the new establishment of grain-based fuel ethanol firms. The results in Figure 7 show that this
regulation policy effectively suppresses the demand for traditional feedstock (e.g., corn and wheat).
However, an entry regulation has no significant impact on grain price (shown in Figure 8), because
the demand for grain as feedstock for the fuel ethanol industry is only a small part of the total grain
demand. Figure 9 shows that the growth of the fuel ethanol production decreases in the short term due
to entry regulations. However, in the long run, the restraint effect of entry regulation on production will
be eliminated due to the creation of new technology firms. Therefore, entry regulation is conducive to
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restricting the expansion of the grain-based fuel ethanol industry in the short term, while the long-term
impact on the fuel ethanol industry is not too large. Moreover, this policy is helpful in promoting new
technology and accelerating technology transformation.

4.2.2. The Impacts of Production Subsidy

A production subsidy is one of the most common policies for the government to promote the
development of an emerging industry. Whatever the form of the subsidy, the mechanism of the subsidy
is to avoid the losses caused by an immature technology and market in the early stages of the industry
so that incumbent firms can continue to produce and improve their technology. With the improvement
of technology and the market environment, firms will face competition in the market and make normal
profits. Figures 10 and 11 show the impacts of a production subsidy on the output and the number of
firms in the fuel ethanol industry, respectively.

Figure 10. Impact of the production subsidy on the output.

Figure 11. Impact of the production subsidy on the number of firms in the industry.

As shown in Figures 10 and 11, under no production subsidy scenario, firms will continue to enter
randomly, and some will withdraw because of losses. Therefore, the industry output and the number
of firms will remain at a low level for a long time. However, under the production subsidy scenario,
the number of firms entering production will continue to increase, and the output will also continue to
rise. The figures also show that the growth rate of the output declined significantly because of the entry
regulation on grain-based fuel ethanol firms after the 20th period. Only when new technology firms
enter the industry does the output increase significantly again. Therefore, although the simulation
results indicate that a subsidy promotes industry growth, this is not a general conclusion. A production
subsidy only promotes the growth of subsidized firms and the industries constituted by these firms.
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When there are different technological routes in the development of the fuel ethanol industry, the
implementation of a single subsidy policy may not promote—or even hinder—the development of
the industry.

4.2.3. The Impacts of R&D Subsidy

A subsidy for R&D activities helps to accelerate technological progress by increasing R&D
investment. Therefore, an R&D subsidy policy is widely used to promote industry growth. In terms of
the fuel ethanol industry, there are not only traditional technology firms but also new technology firms
and R&D firms in the industry. This section will analyze the differences in the policy effects of R&D
subsidy given to different types of firms. To reduce the influences of random factors, the impacts of
the R&D subsidy on average technical efficiency industry output were all simulated 10 times. The
simulation results are shown in Figures 12–15.

 
Figure 12. Impact of the R&D subsidy for traditional technology firms on average technical efficiency.

Figure 13. Impact of the R&D subsidy for R&D firms and new technology firms on average
technical efficiency.

The results in Figures 12 and 13 show that the R&D subsidy promotes the technical efficiency of
the fuel ethanol industry significantly, regardless of the R&D subsidy for traditional technology firms,
R&D firms, or new technology firms. However, in terms of industrial scale, the results in Figures 14
and 15 show that the R&D subsidies have no significant impact on industry output, regardless of the
subsidy to traditional technology firms or new technology firms. The reason for this result is that firms
in the fuel ethanol industry are all in the red and obtain their production subsidy from the government.
Therefore, the improvement of firms’ technical efficiency, which is partly caused by the R&D subsidy,
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has little influence on the output decisions of firms. This means that when firms are in the red, the
influence mechanism of the R&D subsidy to promote a firm’s output will be hindered.

Figure 14. Impact of the R&D subsidy for traditional technology firms on industry output.

Figure 15. Impact of R&D subsidies for new technology firms on industry output.

4.2.4. The Impacts of Ethanol Mandate

In order to accelerate the development of the fuel ethanol industry in its early stages, the Chinese
government implemented an ethanol mandate policy that required the gasoline sold in pilot cities
to contain 10% fuel ethanol. Will this policy help the development of the fuel ethanol industry? To
answer this question, we simulated the impacts of the ethanol mandate policy on the output of the fuel
ethanol industry. The simulation results are shown in Figure 16.

Figure 16. Impact of the ethanol mandate on the output of the fuel ethanol industry.
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The result in Figure 16 shows that when there is no production subsidy for losses of firms, the
ethanol mandate has no obvious impact on industry output. However, under the subsidy loss scenario,
the ethanol mandate will obviously accelerate the development of the fuel ethanol industry. The reason
for this phenomenon is that fuel ethanol firms are usually in the red while the industry remains in its
embryonic stage. Firms enter the industry randomly and then exit due to continuous losses, so the fuel
ethanol industry scale is relatively small. This means that the equilibrium output of the fuel ethanol
industry is mainly affected by the number of incumbent firms but not changes in market demand.
Therefore, the ethanol mandate has no obvious influence on the output of the fuel ethanol industry,
but when firms obtain a loss subsidy, the number of firms will continue to increase, and the industrial
output will increase rapidly and reach a larger scale. In this context, the equilibrium output will be
mainly affected by market demand. Therefore, an ethanol mandate policy will be helpful to promote
the expansion of the fuel ethanol industry.

5. Conclusions and Policy Implications

The interaction among the fuel ethanol industry, the technology system, and the market system
has a substantial effect on the growth of the fuel ethanol industry which plays a key role in the
formation of a sustainable energy system in China. However, we know little about the relationships
among them and it is difficult to explore the nexus using an econometric method due to the lack of
statistics on China’s fuel ethanol industry. In order to investigate the coevolutionary relationships
between the fuel ethanol industry system, technology system, and market system in China, this paper
developed a history-friendly simulation model. The setting of the initial values for the simulation
model is based on the historical values of the fuel ethanol industry system, technology system, and
market system in China. The parameter values of the model were acquired by adjusting the parameters’
values continuously until the simulation results could reflect the stylized facts of the fuel ethanol
industry. According to the baseline model, this paper further assessed the impacts of entry regulation,
production subsidy, R&D subsidy, and ethanol mandate on the growth of the fuel ethanol industry.
The results show that multidirectional causalities reflected by the coevolutionary model developed in
this paper can describe the relationships between the fuel ethanol industry, technology system, and
market system appropriately. This means that the evolution of the fuel ethanol industry interacts
with the evolution of the technology system and the market system. Meanwhile, the evolution of
the technology system also interacts with the evolution of the market system. Entry regulation is
conducive to weakening the negative economic impacts (e.g., rising grain prices and grain shortages)
of the expansion of the grain-based fuel ethanol industry without affecting the long-term total output
of the industry. A production subsidy for traditional technology firms is helpful to the expansion of
the fuel ethanol industry. However, this subsidy also impedes technology transfer in the industry. In
terms of R&D subsidy policy, only when the firms inside the industry are not in the red can an R&D
subsidy promote technological progress and further accelerate the growth of the fuel ethanol industry.
The ethanol mandate policy has a significant impact on industrial expansion only when a production
subsidy policy is implemented at the same time. This policy can also speed up the improvement of
new technology efficiency by advancing the creation of R&D firms and new technology firms.

According to the above conclusions, the policy suggestions are as follows: firstly, an assessment
of the effects of an exogenous factor on any one of these three systems must consider the cumulative
effects caused by the coevolutionary mechanisms. Secondly, in the context of this uncertain industry’s
economic and social impact in China, implementing an entry regulation would be helpful to promote
the steady growth of the fuel ethanol industry. Thirdly, when the optimal technology path has not
been determined in the Chinese fuel ethanol industry, it will be necessary to implement a production
subsidy combined with a new technology promotion policy to avoid technology lock-in. Fourthly,
considering that most firms in the fuel ethanol industry in China are still running under a deficit, an
R&D subsidy for production firms needs to be implemented along with a production subsidy for
unprofitable firms. Lastly, the Chinese government can accelerate the development of the fuel ethanol
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industry with the help of an ethanol mandate policy. Additionally, the ethanol mandate policy should
be implemented together with the production subsidy policy if a firm is running under a deficit.

6. Limitation and Future Research

One limitation of this study is that it does not check the robustness of the simulation results using a
statistical approach. It is difficult to estimate the values of the parameters in our model using a statistical
method for the lack of enough observations and the complex nonlinearity of the history-friendly model.
Alternatively, we employed a process used in most literature about the history-friendly model to
determine the values of the parameters in our model. The aim of the process is not the specification
of the model parameters as close as possible to their actual values, nor is to explain the quantitative
values observed in the historical episode under investigation. Rather, the objective is just to seek a set
of parameters’ values which can generate simulation results qualitatively capturing the stylized facts
of the industrial history, because the purpose of history-friendly modelling is to explore the causal
relationships and the mechanism between variables in the model [44]. This means there may be many
sets of parameters’ values that satisfy the requirement. Therefore, after determining a set of parameters’
values for the base case, it is necessary to check the robustness of the simulation results. There are
two commonly used approaches to test the robustness in the existing literature [41,47]. One is the
inspection of individual runs of the model and the analysis of sensitivity to specific parameter values.
The other is the running of a history divergent simulation. These two approaches are also used in this
study to check the robustness of the results. However, we suggest there should be a more intense
discussion of sensitivity analyses using a statistical method in future research because the above two
commonly used approaches could not completely reflect the impacts of stochastic components on the
simulation results. Some scholars have already made a bit of progress in this direction. For example,
Brenner and Murmann initially developed a process to define the values of the parameters that can be
observed with precision [61]. Landini et al. introduced a statistical method which can be used to check
the robustness of their results with different variation in the ranges of the parameters [46]. However,
both statistical methods have their own drawbacks. The first one turns out not to be immediately
comprehensible and could not be completely and clearly described due to the usual limits imposed on
the number of words for a paper [50]. The second is still arbitrary in the selection of the variation in
the range of parameters. Future research can further improve these two statistical methods and then
apply them to the testing of the robustness of the simulation results.
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Appendix A

A1. Modeling the Basic Characteristics of the Firms in the Fuel Ethanol Industry in China

(1) The Production Capacity and Output of the Firm
The production capacity of the firm is related to the fixed capital input of the firm Fi,t. The variable

input of the firm is denoted as
mi,t = ηi,t · (α · Fi,t) (A1)
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where ηi,t represents the capacity utilization rate of firm i at time t, and ηi,t ∈ [0, 1]. A value of ηi,t equal
to 0 indicates that the firm stops production. α represents the maximum variable input combined with
a one-unit fixed input.

We assume that the output of the firm is determined by the input and technical efficiency. The
output of the firm is

qi,t = ei,t · (mi,t)
z (A2)

where ei,t denotes the technical efficiency of firm i at time t, and parameter z (0 < z < 1) reflects
diminishing marginal productivity.

(2) Production Cost
The total cost of the firm, which consists of the fixed cost and variable cost, is

Ci,t = d · Fi,t + pm
t ·mi,t (A3)

where d represents the depreciation rate; d · Fi,t denotes fixed cost; pm
t is the price of feedstock; mi,t is

the input amount of the feedstock; pm
t ·mi,t is the variable cost. Considering the relationship between a

firm’s input and output described by Equation (A2), Equation (A3) can also be expressed as

Ci,t = d · Fi,t + pm
t · (ei,t)

−1
z · (qi,t)

1
z (A4)

The cost per unit of the firm is
ci,t = Ci,t/qi,t (A5)

The average per-unit cost of the industry is

ci,t =

nt∑
i=1

Ci,t/
nt∑

i=1

qi,t (A6)

where nt represents the number of firms in the industry.
(3) Profit of the Firm
Let pb

t be the price of fuel ethanol; then, the firm’s profit is denoted as:

πi,t = pb
t · qi,t −Ci,t (A7)

(4) Supply Function
We assume that a specific firm makes production decisions according to the profit maximization

principle; then, the supply function of the firm, which is obtained by taking the derivative of the profit
equation (Equation (A7)) with respect to output quantity, is

qi,t = (z · pb
t /pm

t )
z

1−z · ei,t
1

1−z (A8)

The supply function of the industry, which can be obtained by summing up the supply function
of all firms, is

qt = (z · pb
t /pm

t )
z

1−z ·
nt∑

i=1

(ei,t
1

1−z ) (A9)

(5) Feedstock demand function
Substitute the relationship between the firm output and the feedstock input of Equation (A2) into

Equation (A8); then, the feedstock demand function of the firm can be denoted as

mi,t = (z · pb
t · ei,t)

1
1−z · (pm

t )
−1
1−z (A10)
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The feedstock demand function of the industry, which can be obtained by summing up the
feedstock demand function of all firms, is

mt = (z · pb
t )

1
1−z ·

nt∑
i=1

(ei,t
1

1−z ) · (pm
t )

−1
1−z (A11)

(6) Average Size of the Firm and Technical Efficiency in the Industry
Let the firm’s size be denoted by the firm’s fixed input, so the average size of the firm in the

industry is

Ft =

nt∑
i=1

Fi,t/nt (A12)

The average technical efficiency of the industry is reflected by the average technical level of all
firms in the industry; then, the average technical efficiency of the industry is

et =

nt∑
i=1

ei,t/nt (A13)

The industry’s average profit to cost ratio is

Γt =

nt∑
i=1

πi,t/
nt∑

i=1

Ci,t (A14)

A2. The Initial Values of the Variables in the Coevolutionary Model of the Fuel Ethanol Industry

Table A1. The initial values of the variables in the coevolutionary model of the fuel ethanol industry
(baseline scenario).

Initial Values Description

n[[1]]=1 The total number of firms in the first period.

f[[1,1]][[1]]=0 Types of technology firm: 0 denotes traditional technology firms; 1 denotes
new technology firms.

f[[1,1]][[2]]=1 Production status of firms: 0 is no production; 1 is in production.
f[[1,1]][[3]]=0.3 Technical efficiency of firms.

f[[1,1]][[4]]=1000 Initial capital of firms.

f[[1,1]][[5]] = 1 Origin of the production firms: 0 denotes newly established firms; 1 denotes
traditional technology firms.

f[[1,1]][[9]] = 0 Production status of latecomers: 0 denotes production; 1 denotes stop
production.

pf[[1]] = 2000 Price of fossil fuel.
pnm[[1]] = 600 Price of new feedstock.

nf[[1]] = 1 The number of fuel ethanol firms in the first period.
nnf[[1]] = 0 The number of fuel ethanol firms using new technology in the first period.

nntf1[[1]] = 0 The number of R&D firms established by incumbent fuel ethanol firms in
the first period.

nntf2[[1]] = 0 The number of newly established R&D firms in the first period.
nntf[[1]] = 0 The number of new technology firms in the first period.
ntf[[1]] = 1 The number of traditional firms in the first period.
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A3. The Setting of the Parameters’ Values in the Coevolutionary Model of the Fuel Ethanol Industry

Table A2. The setting of the parameters’ values of the fuel ethanol industry (baseline scenario).

Parameter Settings Description

Φ = 0.6 The degree of firm rationality. Less than 1 denotes imperfect rationality.
ϕ = 50 The impact of profit on entry probability.
d = 0.1 Rate of depreciation.

α = 0.21 × 10−3 The amount of feedstock matched with the unit capital of traditional technology
firm.

β = 0.0002 The amount of feedstock matched with the unit capital of new technology firm.
z = 0.6 Output elasticity of input.
m0 = 3 The maximum supply of feedstock.
efficiency = 0.1 Initial technical efficiency of the first group of R&D firms.
assetn0 = 1000 The initial capital of the R&D firms.
δ = 0.2 The ratio of R&D expenditure to the capital in one period.
totalrd = 20 Total R&D investment of R&D firms.
σ = 0.3 The proportion of profit used for R&D.
ε = 0.3 Minimum boundary value for capacity utilization.
rdt = 1 Minimum R&D input in each period of the traditional technology firms.
rdn = 2 Minimum R&D input in each period of the incumbent new technology firms.
efftmax = 0.4 The efficiency boundary value of traditional technology firms.
effnmax = 0.4 The efficiency boundary value of new technology firms.
λ0 = 30 Parameter related to technological change.
λ1 = 1 Parameter related to technological change.
λ2 = 1 Parameter related to technological change.
λ3 = 1 Parameter related to technological change.
κ1 = 0.005 Output efficiency of R&D firms established by incumbent firms.
κ2 = 0.008 Output efficiency of newly established R&D firms.
ρ = 0 The markup rate of pricing.
b1 = 0 The growth rate of gasoline price
maxdemand = 2.5 The maximum demand in the market.
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Abstract: In order to cater for increased demand for natural gas (NG) by the industry, Malaysia is
required to import liquid natural gas (LNG). This is done through PETRONAS GAS Sdn Bhd. For LNG
regasification, two regasification terminals have been set up, one in Sungai Udang Melaka (RGTSU)
and another at Pengerang Johor (RGTPJ). RGTSU started operation in 2013 while RGTPJ began
operation in 2017. The capacities of RGTSU and RGTPJ are 3.8 (500 mmscfd) and 3.5 (490 mmscfd)
MTPA, respectively. RGTSU is an offshore plant and uses an intermediate-fluid-vaporization (IFV)
process for regasification. RGTPJ is an onshore plant and employs open-rack vaporization (ORV).
It is known that a substantial amount of cold energy is released during the regasification process.
However, neither plant captures the cold energy released during regasification. This techno economic
study serves to evaluate the technical and economic feasibility of the cold energy available during
regasification. It was estimated that approximately 47,214 and 88,383 kWh of cold energy could be
generated daily at RGTPJ and RGTSU, respectively, during regasification processes. Converting this
energy into RTh at 70% thermal efficiency, and taking the commercial rate of 0.549 Sen per RTh, for the
20-year project life, an internal rate of return (IRR) of up to 33% and 17% was estimated for RGTPJ
and for RGTSU, respectively.

Keywords: liquefied natural gas; cold energy; regasification; chilled water; techno economic

1. Introduction

The share of the liquefied natural gas (LNG) international trade has grown continuously in recent
years and LNG has become an important tool for gas security [1]. The traditional supply chain of
LNG includes gas production, liquefaction, shipping, storage, and regasification. The practical way
to transport natural gas (NG) across oceans is by liquefaction of NG to LNG [2]. This is done by
cooling the NG to −162 ◦C at atmospheric pressure. The LNG is then regasified back to NG at import
terminals [3]. Normally, during regasification, the cold energy during the regasification process is
discarded. This is also true for LNG regasification terminals in Malaysia. The Malaysian economy grew
at 5.51% for the period 2016–2017. Like many developing countries, economic growth has resulted in
increased populations in urban areas as well as increased income per capita to catch up with higher
living standards, all of which are driving the demand for energy. NG is one of the best choices of
primary energy mixes to meet the growing energy demand in modern society due to its clean burning
characteristic, high combustion efficiency, and low contribution to greenhouse gases emissions. It is
estimated that NG contributes about 24% of Malaysia’s energy requirements [4]. To meet the growing
demand, Malaysia imports LNG from other producing countries. Currently, two LNG regasification
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terminals have been built by PETRONAS Gas. The first regasification terminal in Malaysia was set up
in Sungai Udang, Melaka (RGTSU), and the second terminal was set up in Pengerang, Johor (RGTPJ).
RGTSU started its operation in 2013, and RGTPJ began its operations in the fourth quarter of 2017 [5].
Both terminals are connected to Peninsular Gas Utilization grid pipelines, and then distributed to
customers [6].

The RGTSU consists of floating storage and regasification units (FSRUs), and RGTPJ is an onshore
terminal. The FSRU is a terminal LNG carrier that has been altered for regasification. Meanwhile,
onshore terminals are usually located near the sea. These terminals have operating capacities of
3.8 (500 mmscfd) and 3.5 MTPA (490 mmscfd), respectively [7]. For vaporization, RGTSU employs
intermediate fluid vaporization (IFV) technology whereas RGTPJ employs open-rack vaporization
(ORV) technology. Table 1 summarizes the information on the terminals.

Table 1. Summary of terminals’ information.

No Item RGTSU RGTPJ

1 Facilities

Offshore Onshore

2 Jetty LNGC size:130,000–220,000 m3 LNGC size:5000–260,000 m3

Maximum unloading rate =
10,000 m3/h

Maximum unloading rate =
14,000 m3/h

3 Storage 2 units 130,000 m3 (FSRU) 2 units 200,000 m3 full
containment and LNG tank

4 Vaporization Scheme
IFV with propane as an

intermediate fluid and the
heating medium is seawater

ORV with sea water as the
heating medium

5 Capacity 3.8 MTPA (500 mmscfd) 3.5 MTPA (490 mmscfd)

2. Cold Energy Utilization and Regasification System

2.1. Cold Energy Utilization

He et al. [8] published a review on the current and future utilization of cold energy. A summary
of the review is provided in Table 2. In the context of this study, the focus is on the application of waste
cold energy for air-conditioning. Waste cold energy from regasification can be captured and stored
by using a thermal energy storage (TES) system with chilled water as a cooling medium. The chilled
water is used for air conditioning.

Table 2. Current and future utilization of cold energy [8].

System Specific Technology Function of LNG Cold Energy

Current

Cryogenic Power
Generation

Organic Rankine Cycle As heat sink of the cycle
Brayton Cycle Reduce the inlet gas temperature
Kalina Cycle As heat sink of the cycle

Combined with gas
turbine cycle Inlet air cooling and intercooling

Air Separation
Cool the air temperature and

replace the external refrigeration
cycle

Seawater Desalination Cool the seawater
Cryogenic Carbon
Dioxide Capture Cool and liquefy carbon dioxide
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Table 2. Cont.

Potential

System Concepts

Data Center Cooling
Using LNG cold energy as the source to produce the cooling

medium for data center cooling which can reduce energy
consumption and greenhouse emissions.

Clathrate Hydrate-based
Desalination

Using LNG cold energy to cool the seawater, hydrate the former,
and remove the reaction heat of the clathrate hydrate-based

desalination
Cold Chain for Food

Transportation
Using LNG cold energy as the cooling source of the cold

warehouse and trucks for storage and ease of transportation

Cold Energy Storage Transferring LNG cold energy into an appropriate energy form
for longer storage and to ease of transportation

Utilization of FSRU Recover LNG cold energy on FSRU by power generation or
utilize it for FSRU

2.2. Regasification System

Figure 1 shows the overall process of regasification at RGTSU and RGTPJ.

 
Figure 1. Regasification processes at Regasification Terminal Sungai Udang and Regasification Terminal
Pengerang Johor.

During the regasification process, the cold energy of LNG, which is approximately 830 kJ/kg, is
released into seawater by LNG vaporizers.

Several vaporization schemes are utilized in regasification technology, including submerged
combustion vaporizers (SCRs), ORV, IFV, and super ORVs. A literature survey found that 70% of the
regasification terminals used ORV and another 25% and 5% used SCR and IFV, respectively [9,10].
The RGTSU uses IFV (Figure 2). This system consists of two heat exchangers operating in series using
propane for intermediate heat transfer (HTF). Propane is used intentionally to prevent the seawater
from freezing. The vaporizer is arranged in series to allow the first evaporator exchanger to use the
latent heat of propane condensate to partially heat the LNG, and a second heat exchanger uses seawater
to further heat the LNG to the required final temperature.

Figure 2. Intermediate-Fluid-Vaporization [11].

The RGTPJ uses ORV (Figure 3). This process employs ribbed-shaped tubes as heat exchangers
and seawater as a heat source [11]. The process uses heat transfer between seawater and LNG. Seawater
ranging in temperature from 5 to 15 ◦C is used to heat the LNG from −162 or −163 ◦C to obtain NG at
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atmospheric temperature. Seawater temperatures below approximately 5 ◦C are usually not practical
because of seawater freezing [12]. ORV is a well-proven technology and has been widely used in Korea,
Europe, and Japanese LNG terminals [10]. Figure 3 shows a schematic diagram of the ORV system.

Figure 3. Open-Rack Vaporization [11].

A literature review found that many previous studies exist on LNG cold energy [13–19].
García et al. [20] reported that the regasification of LNG is the last step in the LNG supply chain
carried out at LNG terminal storage plants [20]. LNG regasification cold energy can be extensively
manipulated into useful energy, which can be applied to cold power generation, seawater desalination,
polygeneration, cold air separation, cryogenic crushing, frozen food storage, and carbonic acid
production [21]. Such applications can prevent vast stores of cold energy from being thrown away
during regasification.

The method for recovering the energy stored in LNG to produce power can be classified into
mechanical energy recovery and thermal energy recovery [22]. Mechanical energy recovery uses
turbines with LNG as a working fluid [23,24]. Thermal energy recovery uses cycles, such as Rankine,
Brayton, and Kalina, and combined forms of these cycles [18,19,25–29]. Despite efforts to utilize
this cold energy, approximately 80% of the cold energy from LNG imported globally is still being
wasted [30]. The current practice in Malaysia is for cold energy to be released from RGTPJ and RGTSU
into the environment via seawater. It is not utilized for any process, whether through mechanical or
thermal energy recovery.

Several review papers focused on utilizing LNG cold energy. These reviews mainly focused
on progress in power generation utilization without addressing potential applications in which an
emerging country, such as Malaysia, can venture. By definition, LNG cold energy utilization systems
refer to those requiring low-temperature operating conditions that can be integrated into the LNG
regasification process without drastically modifying the system. The potential applications for which
cold energy can be utilized without drastically modifying the system include NGL recovery, data
center cooling, clathrate hydrate-based desalination, cold chains for food transportation, cold energy
storage, and a floating storage regasification unit.

RGTPJ is a land-based regasification terminal that allows for better potential utilization of cold
energy for NGL recovery, data center cooling, cold chains for food transportation, and cold energy
storage. Meanwhile, RGTSU is best for FSRUs and clathrate hydrate-based desalination given its
location offshore. Because of the potential discoveries of these applications, data were gathered from
RGTSU and RGTPJ to determine how much cold waste energy can be recovered or potentially utilized
through an energy analysis. This study evaluated the potential of using the available cold energy for
space cooling by using a TES system.

3. Materials and Method

To evaluate the cold energy available from regasification, temperature, pressure, and flow rate data
were acquired for further analysis. These data were acquired at vaporizers and pumps to determine the
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net energy generated during evaporation. Figure 4 shows the process flow for vaporizers and pumps
at RGTSU and Figure 5 shows schematic diagrams of the vaporizers and pumps at RGTPJ. In both
flow schemes, LNG from storage at near-atmospheric pressure is sent out through a high-pressure
liquid pump to vaporizers. The boiled-off gas from storage is compressed and recondensed before
being pumped to the vaporizers.

Figure 4. Setup for vaporizers or evaporators and pumps at Regasification Terminal Sungai Udang [31].

 

Figure 5. Setup for vaporizers or evaporators and pumps at Regasification Terminal Pengerang
Johor [32].

3.1. Energy Models for RGTPJ and RGTSU

RGTPJ and RGTSU regasification processes were simplified as a block diagram, as shown in
Figure 6. LNG at −162 ◦C is heated to normal operating NG between 12 and 20 ◦C using seawater.
With reference to the first law of thermodynamics, the energy balances of the evaporators of RGTPJ
and RGTSU were modeled as free-body diagrams, as illustrated in Figure 7. Cold energy generated
during the vaporization process of converting LNG to NG is transformed into heat and work energy
through the vaporizers.
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For this ideal process, the energy available is freely released into the environment. The amount of
energy released is estimated using the first law of thermodynamics as per Equation (1):

Q = ṁsw Cpsw (Tswout − Tswin), (1)

where Q, ṁsw, Cpsw, Tswout, and Tswin are the total heat energy (kW), mass flow rate (kg/s), specific heat
capacity (kJ/kg ◦K), and inlet and outlet temperatures (◦C) of seawater, respectively.

Tswin

sw,

 

Tswout

TLNG
TNG

where: 
TLNG = LNG temperature inlet (°C) 

T NG = NG normal operating temperature (°C)  

Figure 6. Simplified free-body diagram of the regasification process Regasification Terminal Sungai
Udang and Regasification Terminal Pengerang Johor.

Tswin

sw,

 

Tswout

TLNG 

 LNG,

T NG

 NG

where: 

Q = Total heat energy of seawater (kW) 

 LNG = LNG mass flow rate 

 LNG =LNG mass flow rate 

Figure 7. Energy balanced model of regasification Regasification Terminal Sungai Udang and
Regasification Terminal Pengerang Johor.

3.2. Economic Models for RGTPJ and RGTSU

To evaluate the economic value of the available cold energy from LNG regasification, an economic
analysis was performed. For the analysis, it was assumed that the available waste cold energy is to
be converted to the cooling energy of chilled water (CW) at 70% thermal efficiency. A CW system
was adopted as the thermal energy storage system (TES) and the CW was used for space cooling.
An internal rate of return (IRR) based on the present worth (PW) was adopted for the analysis. IRR
was evaluated for a project life from year 1 to year 20 for both RGTPJ and RGTSU. Since the values of
the parameters used for evaluating the IRR were based on estimates, sensitivity analyses for IRR were
evaluated for years 5, 10, 15, and 20, respectively. Life cycle costing (LCC) for project life of 5, 10, 15,
and 20 years were also evaluated for both projects. The steps adopted for the economic analysis are as
shown in Figure 8.
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Acquire related data for IRR analysis: 

amount of chilled water, chilled water 

rates, CAPEX, OPEX, salvage value, 

Figure 8. Methodology for the economic analysis for Regasification Terminal Sungai Udang and
Regasification Terminal Pengerang Johor.

The steps adopted for the economic analysis were:

i Identified data required for the analysis. The data included the amount of CW that could be
generated from LNG regasification, estimated capital expenses (CAPEXs), operating expenses
(OPEXs), salvage value (Sal) of the equipment at the end of the project’s life, and the CW rate.
The estimated data for both RGTPJ and RGTSU are included in Table 2.

ii Developed the IRR models for both RGTSU and RGTPJ. The principle used to develop the IRR
models was a present worth (PW) analysis of the revenue and the PW of expenses. The PW
revenue was taken as being equal to the net annual revenue (NAR), which was equal to the
revenue generated from CW minus OPEX as per Equation (2):

PW of NAR + PW of salvage value = CAPEX, (2)

PW NAR = NAR (P/A, IRR, N) (3)

where:

NAR (nett revenue) = annual revenue – annual OPEX;
NAR (P/A, IRR, N) = PW component for the net revenue;
Sal = salvage value;
Sal (P/F, IRR, N) = PW component for the salvage value;
CAPEX = investment cost;
(P/A, IRR, N) = uniform series PW at discount rate IRR and year N of project life; and
(P/F, IRR, N) = single payment PW at discount rate IRR and year N of project life.
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iii The IRR for RGTPJ and RGTSU were evaluated for project life year 1 up to year 20.
iv Sensitivity analysis for both RGTPJ and RGTSU was done for the case of project life years 5,

10, 15, and 20 based on the evaluated IRR. Equations (4) and (5) were used for the sensitivity
analysis [33]:

PW(IRR) = 0 = -CAPEX(1 + x) + NAR (P/A, IRR,5) + 0.02 × CAPEX (P/F, IRR, N),

N = 5, 10, 15, and 20,
(4)

PW(IRR) = 0 == -CAPEX + (NAR (1 + y)) (P/A, IRR, N) + 0.02 × CAPEX (P/F, IRR, N),

N = 5, 10, 15, and 20,
(5)

where:

For CAPEX, x = percent change in CAPEX; and

For NAR, y= percent change in NAR.
v Evaluate LCC for the project life of 5, 10, 15, and 20 years.

The LCC models were based on the PW formula for 5, 10, 15, and 20 years. The general LCC
model was based on Equation (6).

The LCC models consist of three main components of CAPEX, NAR, and salvage values. The NAR
and salvage values were discounted to the current year using the PW formula. The main items that
influence the LCC are CAPEX, amount of chilled water, and project life. Hence, if the CAPEX, amount
of chilled water and project life change, the IRR will also change, leading to changes in the NAR and
salvage value components, and hence, the LCC model:

LCCN = -CAPEX + [RT × 24 × 300 × 0.549 × 0.8(P/A, IRRN, N)/1,000,000 − 0.3 × CAPEX] +

0.02 × CAPEX (P/F, IRRN, N),
(6)

where the term + [RT × 24 × 300 × 0.549 × 0.8 (P/A, IRRN, N)]/1,000,000 – 0.3 × CAPEX + 0.02 × CAPEX
(P/F, IRRN, N) represents the PW of NAR in RM million discounted to the current with the IRR for the
specific N, while the terms RT × 24 × 300 × 0.549 × 0.8(P/A, IRRN, N), 0.3 × CAPEX, and 0.02 × CAPEX
(P/F, IRRN, N) represent the revenue in million RM, annual operating expenses, and the PW of salvage
value at the end of year N, respectively.

4. Results and Discussion

4.1. Energy Availability and IRR for the Project Life from Years 1 to 20

The amount of energy availability was calculated using Equation (1) and the following assumptions:

- No losses on the flow rate of seawater from the evaporation process; and
- The amount of Q from seawater is 100% converted into energy availability.

Table 3 shows the estimated daily amount of waste cold energy that was available during
regasification processes at RGTPJ and RGTSU, respectively. The estimated available waste cold energy
daily during regasification are 47,214 and 88,383 kWh at RGTPJ and RGTSU, respectively. In terms
of RTh equivalent, the daily amount was 9398 and 17,592 RTh for RGTPJ and RGTSU, respectively.
This was based on an assumption of 70% thermal efficiency for the conversion of waste cold energy to
chilled water. Using the economic data from Table 4, at 7200 h per year operation, 80% availability, and
0.549RM per RTh, IRR for the project life from year 1 to year 20 were evaluated for RGTPJ and RGTSU.
The evaluated IRR for RGTPJ varies from –65% to 33% while for RGTSU, the IRR varies from –80% to
17%. The negative IRR values are IRR during the early years of project life. A Plot of IRR vs. years for
both RGTPJ and RGTSU is shown in Figure 9. Results from the IRR analysis indicate that the project
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could be a profitable venture. RGTPJ gives higher returns compared to RGTSU; the lower returns for
RGTSU are due to the higher CAPEX requirements for RGTSU.

Table 3. Energy availability at RGTPJ and RGTSU.

Seawater Inlet Seawater Outlet
Energy

Availability
(kW per hour)

RT/hr
(70% Thermal Efficiency

Conversion of Energy to CW)

RGTPJ mfsw = 5800 m3/h
Tswin = 30 ◦C

mfsw = 5800 m3/h
Tswo = 23 ◦C 47,214 9398

RGTSU mfsw = 7600 m3/h
Tswin = 30 ◦C

mfsw = 7600 m3/h
Tswo = 20 ◦C 88,383 17,592

Table 4. Economic analysis assumptions and data for RGTPJ and RGTSU.

TES Tank Capacity and
Auxiliary

Major Equipment
Cost/CAPEX (RM)

Annual Expenses
(OPEX), RM

Estimated Production Rate
and Cost

RGTPJ

• 2 Units: TES Tank @
capacity 10,000 RTh

• 2 Units: Heat
exchanger @
250 RT/unit

• High pressure pump
• Miscellaneous

39.9 M 12.0 M

• CW quantity @
9398 RT/h

• Working hours @
7200 h/year

• CW rates @ RM
0.549/RTh

• Availability factor @ 0.8

RGTSU

• 3 Units: TES Tank @
capacity 10,000 RTh

• 4 UnitsPlate heat
exchanger @
250 RT/unit

• 4 units: High
pressure pumps

• Miscellaneous

89.34 M 26.8 M

• CW quantity @
17,592 RT/h

• Working hours @
7200 h/year

• CW rates @ RM
0.549/RTh

• Availability factor @ 0.8

 

Figure 9. Internal rate of return vs. year for Regasification Terminal Sungai Udang and Regasification
Terminal Pengerang Johor.
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4.2. Sensitivity Analysis

Since all costs were based on estimates, it is possible that the estimates might not be accurate.
It is then essential to evaluate the breakeven points for both CAPEX and NAR. These values were
evaluated using Equations (4) and (5), adjusted for RGTSU and RGTPJ as follows:

For RGTSU:
The adjusted sensitivity equation for CAPEX:

PW(IRR) = 0 = −89.34(1 + x) + (Annual Revenue - OPEX)N (P/A, IRR, N) + 0.02(89.34)(P/F,

IRR, N), N = 5, 10, 15 and 20.
(7)

The adjusted sensitivity equation for net annual revenue (NAR):

PW(IRR) = 0 = −89.34 + (Annual revenue - OPEX)N (1 + y)) (P/A, IRR, N) + 0.02 × 89.34(P/F,

IRR, N), N = 5, 10, 15 and 20.
(8)

For RTJPJ:
The adjusted sensitivity equation for CAPEX:

PW(IRR) = 0 = −39.9(1 + x) + (Annual Revenue - OPEX)N (P/A, IRR,N) + 0.02(39.9)(P/F,

IRR, N), N = 5, 10, 15 and 20.
(9)

The adjusted sensitivity equation for net annual revenue (NAR):

PW(IRR) = 0 = −39.9 + (Annual revenue - OPEX)N (1 + y)(P/A, IRR, N) + 0.02 × 39.9(P/F,

IRR, N), N = 5, 10, 15 and 20.
(10)

Using Equations (7)–(10) and taking the forecasted annual revenue, OPEX, and the evaluated IRR
for the respective project life of 5, 10, 15, and 20 years, the values of x and y were calculated for both
RGTPJ and RGTSU, respectively. The evaluated results are included in Table 5.

Table 5. Sensitivity of Internal rate of return for Capital expenditure and Nett annual revenue

RGTPJ IRR x (CAPEX) y (Nett Revenue) Remarks

5 20 0.34 −1.75 If CAPEX increases by more than 0.34% project not viable
If NAR is lower by more than 1.75% project not viable

10 31 0.34 −1.75 If CAPEX increases by more than 0.34% project not viable
If NAR is lower by more than 1.75% project not viable

15 33 0.33 −1.75 If CAPEX increases by more than 0.34% project not viable
If NAR is lower by more than 1.75% project not viable

20 33 0.34 −1.74 If CAPEX increases by more than 0.34% project not viable
If NAR is lower by more than 1.74% project not viable

RGTSU IRR % x y Remarks

5 −3 NA −NA NA due to negative IRR

10 12 0.83 −1.54 If CAPEX increases by more than 0.83% project not viableIf
NAR is lower by more than 1.54% project not viable

15 16 0.8 −1.55 If CAPEX increases by more than 0.8% project not viableIf
NAR is lower by more than 1.55% project not viable

20 17 0.82 −1.55 If CAPEX increases by more than 0.82% project not viableIf
NAR is lower by more than 1.55% project not viable

For RGTPJ, the sensitivities for CAPEX are 0.34%, 0.34%, 0.34%, and 0.34% for years 5, 10, 15, and
20, respectively. For NAR, the sensitivities are −1.7%5, −1.75%, −1.75%, and −1.74% for years 5, 10, 15,
and 20, respectively.
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For RGTSU, the CAPEX sensitivities are NA, 0.83%, 0.8%, and 0.82% for years 5, 10, 15, and 20,
respectively. While for NAR, sensitivities are NA, −1.54%, −1.55%, and −1.55% for years 5, 10, 15, and
20, respectively.

4.3. LCC Models

Using Equation (6), the LCC models for RGTPJ and RGTSU were formulated. The LCC models
are included in Table 6.

Table 6. Life cycle cost models for Regasification Terminal Sungai Udang and Regasification Terminal
Pengerang Johor for year 5, 10, 15, and 20.

Project
Life

RGTPJ
LCCN = −CAPEX + [RT × 24 × 300 × 0.549 × 0.8(P/A, IRRN, N)/1,000,000 − 0.3 × CAPEX] + 0.02 ×

CAPEX(P/F, IRRN,N)

5 LCC5 = −39.9 + [9398 × 24 × 300 × 0.549 × 0.8(P/A, 20,5)/1,000000 − 0.3 × 39.9] + 0.02 × 39.9(P/F, 20,5)

10 LCC10 = −39.9 + [9398 × 24 × 300 × 0.549 × 0.8(P/A,31,10)/1,000,000 − 0.3 × 39.9] + 0.02 × 39.9(P/F, 31,10)

15 LCC15 = −39.39 + [9398 × 24 × 300 × 0.549 × 0.8(P/A, 33,15)/1,000,000 − 0.3 × 39.9] + 0.02 × 39.9(P/F, 33,15)

20 LCC20 = −39.9 + [9398 × 24 × 300 × 0.549 × 0.8(P/A, 33,20)/1,000,000 − 0.3 × 39.9] + 0.02 × 39.9(P/F, 33,20)

RGTSULCCN = −CAPEX + [RT × 24 × 300 × 0.549 × 0.8(P/A, IRRN, N)/1,000,000−0.3 × CAPEX] + 0.02 ×
CAPEX (P/F, IRRN,N)

5 LCC5 = −89.34 + [17592 × 24 × 300 × 0.549 × 0.8(P/A, −3,5)/1,000,000 − 0.3 × 89.34] + 0.02 × 89.34(P/F, −3,5)

10 LCC10 = −89.34 + [17592 × 24 × 300 × 0.549 × 0.8(P/A, 12,10)/1,000,000 − 0.3 × 89.34] + 0.02 × 89.34(P/F,12,10)

15 LCC15 = −89.34 + [17592 × 24 × 300 × 0.549 × 0.8(P/A, 16,15)/1,000,000 − 0.3 × 89.34] + 0.02 × 89.34(P/F, 16,15)

20 LCC20 = −89.34 + [17592 × 24 × 300 × 0.549 × 0.8(P/A, 17,20)/1,000,000 – 0.3 × 89.34] + 0.02 × 89.34(P/F, 17,20)

It is noted that the CAPEX, the present worth components for the revenue from chilled water,
operating cost, and to lesser extent, the salvage value influence the LCC.

Using the equations in Table 6, LCC for RGTSU and RGTPJ were evaluated. Results for both
RGTSU and RGTPJ are tabulated in Table 7.

Table 7. Evaluated Life cycle cost for Regasification Terminal Sungai Udang and Regasification Terminal
Pengerang Johor.

RGTSU

Project Life IRR
LCC Value

(million RM)
5 −3 NA due to negative IRR

10 12 198.74
15 16 194.22
20 17 197.01

RGGPJ

Project Life IRR
LCC Value

(million RM)
5 20 37.33
10 31 39.61
15 33 36.95
20 33 37.88

The LCC results for RGTSU vary from 197 to RM198.7 which are of higher values compared to
RGTPJ LCC values, which vary from RM37.3 million to RM39.6 million. This is due to higher CAPEX
value for RGTSU compared to RGTPJ.
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5. Conclusions

Currently, the two regasification terminals operated by PETRONAS Gas Sdn Bhd do not capture
waste cold energy during the regasification process. This study noted that substantial waste cold
energy is available during regasification at both RGTPJ and RGTSU. The estimated annual amount of
cold energy that could be captured daily during regasification at RGTPJ and RGTSU is 47,214 and
88,383 kWh, respectively. The study evaluated the commercial potential of using the available cold
energy for chilled water generation. The chilled water is to be used for space cooling. Assuming
70% thermal efficiency conversion of waste cold energy to chilled water, it was estimated that daily,
the amount of cold energy available hourly during regasification at RGTPJ and RGTSU is equivalent
to 9398 and 17,592 RTh amount of chilled water, respectively. From the economic feasibility study,
commercially, the revenue from the chilled water could give IRR greater than 20% for RGTPJ for a
project life of 5 to 20 years. For RGTSU, the IRR values are 12% to 17% for a project life of 10 to 20 years.
Hence, if the waste cold energy during regasification at RGTPJ and RGTSU is exploited, it would give
a profitable venture. In addition, the venture would also increase the efficiency of LNG regasification
at both terminals and the economic benefit of the LNG supply chain. Besides using the cold energy for
generating CW, the waste cold energy could also be used to cool intake air for the gas turbines. Since
RGTPJ is located near the vicinity of a cogeneration plant, the cold energy from regasification should
also be considered for use for cooling intake air for the gas turbines at the cogeneration plant. It is
therefore recommended that the owners of RGTPJ and RGTSU should consider installing systems able
to capture the waste cold energy during regasification of LNG at both terminals.
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Nomenclature

RGTSU Regasification terminal Sungai Udang Melaka
RGTPJ Regasification terminal Pengerang Johor
LNG Liquified natural gas
LNGC LNG Carrier
NG Natural gas
CW Chilled water
Q Total waste cold energy
ṁsw Seawater mass flow rate
Cpsw Seawater specific heat capacity
Tswout Seawater temperature outlet
Tswin Seawater temperature inlet
RTh Refrigeration ton hour
TES Thermal energy storage
CAPEX Capital cost
OPEX Operation expenses
NAR Nett annual revenue
PW Present worth
Sal Salvage value
IRR Internal rate of return
LCC Life cycle costing
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Abstract: In the transition to a low-carbon economy, climate-resilient investors may be inclined
to buy renewable-energy or other low-carbon assets. As the diversification benefits of investment
positions in those assets depend on interdependence between their market prices, we explore that
interdependence in the European and USA stock markets. We model the dependence structure using
bivariate copula functions and evaluate price spillovers between those markets using a conditional
quantile dependence approach that accounts for the reciprocal effects of price movements in those
markets under normal and extreme market scenarios. Our empirical evidence for the period
2010–2019 indicates that European renewable-energy and low-carbon stocks co-move; upward
and downward movements in low-carbon asset prices have sizeable effects on renewable-energy
asset prices, and vice versa, although effects are smaller. In contrast, for the USA we find evidence
of non-interdependence, with no significant upward or downward price spillover effects between
renewable-energy and low-carbon stocks. Our empirical findings provide useful insights for the
design of carbon-resilient portfolios and risk management strategies, and also for implementation of
public funding policies to support the transition to a low-carbon economy.

Keywords: renewables; low carbon; interdependence; copulas; conditional quantiles

JEL Classification: C22; C58; F30; G11; G15

1. Introduction

The transition to a low-carbon economy entails a vast amount of financial resources, which,
in turn, raises awareness among investors about opportunities and risks linked to that transition.
Renewable-energy and low-carbon assets are arguably the most suitable investment vehicles
to ensure private capital reallocation that meets the challenges posed by decarbonization. Therefore,
understanding interdependence between the prices of renewable-energy and low-carbon assets is
essential information for environmentally-friendly investors, as it determines the diversification
benefits of allocating private capital to climate-resilient portfolios and shapes private incentives
to deploy financial resources to clean energies and low-carbon industries. Moreover, interdependence
between renewable-energy and low-carbon assets is also of interest for policymakers, as low-carbon
investments could provide adequate incentives to invest in renewable energies and vice versa, thereby
determining public funds to be allocated to support the transition to a climate-resilient economy.

Energies 2019, 12, 4461; doi:10.3390/en12234461 www.mdpi.com/journal/energies41
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We examine dependence between renewable-energy and low-carbon stock prices using
a conditional quantile price dependence approach that allows price spillovers between those markets
to be explored under different market circumstances, including extreme upward and downward
movements in asset values ([1]). Specifically, to assess the impact of price movements of a particular size
in one market on stock prices in the other market, we characterize the bivariate dependence structure
between renewable-energy and low-carbon stock price returns through copulas, then we compute
conditional stock return quantiles and evaluate whether these differ from unconditional quantiles.

The extant literature on renewable-energy and low-carbon stock prices has developed along two
separate strands.

One strand has examined the relationship between clean-energy and oil prices. Some studies have
explored causality between oil prices and renewables, finding evidence of Granger causality that differs
across sample periods and time horizons ([2–6]). Other studies have examined oil price spillovers
to renewable stocks, documenting significant impacts from oil price oscillations to renewable stock
prices ([7–9]), volatility spillovers between oil and clean-energy stocks ([10–12]) and connectedness
between clean energy stocks, oil prices and financial variables ([13]). Likewise, a different set of
articles have explored dynamic correlations between renewable energy and stock prices ([14]) and the
contribution of energy prices to renewable asset prices and volatility ([15–17]).

The other strand has investigated the effects of carbon emissions on firm performance and on
investor portfolios. The authors of [18] find that firm value is negatively impacted by carbon emissions,
whereas [19] shows that the cost of capital increases with carbon emissions. The authors of [20,21]
find that firms with higher carbon emissions earn higher returns, whereas [22] show that higher
emissions are related with higher levels of downside risk. From an investor’s perspective, the authors
of [23] explores a dynamic investment strategy for passive investors to hedge climate risk without
sacrificing financial returns, finding that, even for low-carbon indexes with carbon footprints of 50%
less than the benchmark, the tracking error can be virtually eliminated; they also indicate that those
results could improve with the pricing of carbon dioxide emissions. Similarly, the authors of [24] shows
how bond investor portfolios can be hedged against climate risk with no introduction of unintended
exposure that could sacrifice a portfolio’s benchmark-tracking properties. More recently, in their
investigation of investor portfolio divestment from fossil fuels, the authors of [2] find that clean-energy
investments offer better returns, whereas [25], in comparing the financial performance of investment
portfolios with and without fossil fuel stocks, report that fossil fuel divestment does not seem to impair
portfolio performance, given that fossil fuel stocks do not outperform other stocks on a risk-adjusted
basis and that fossil fuel stocks provide relatively limited diversification benefits. Likewise, the authors
of [26] contend that socially responsible investing has not been costly in terms of forgone market
returns, as the return performance of a fossil-fuel-free portfolio surpasses the S&P 500 returns index
due to poor fossil fuel sector performance.

From the investors’ perspective, the above-mentioned strands in the literature provide useful
information on the impact of energy prices or carbon emissions on the value of low-carbon portfolios
composed of either renewable energy or low-carbon assets. However, this literature is silent about the
impact of changes in low-carbon asset values on renewable energy asset values and vice versa; such
information is crucial for climate-friendly investors as both renewable-energy and low-carbon assets are
alternative or complementary assets in terms of the design and risk diversification aims of low-carbon
portfolios. This paper fills this gap by analysing interdependence between renewable-energy and
low-carbon stock prices in a bivariate copula framework and computing how differently sized
stock price movements in one market impact on stock prices in the other market. We model price
changes in renewable-energy and low-carbon assets using a multifactor pricing model that includes
autoregressive components, with co-movement under different market circumstances modelled
through copulas taking into account the effect of common pricing factors in that co-movement. Our
empirical study covers the period January 2010 to July 2019 and the European and the USA markets,
with renewable-energy stocks represented by the European Renewable Energy and the Wilder Hill
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Clean Energy indexes, respectively, and low-carbon assets represented by the Euro STOXX Low Carbon
Select 50 and the USA STOXX Low Carbon Select 50 indexes, respectively. Our empirical results point
to dissimilarities in both stock markets. Specifically, while we observe interdependence between
renewable-energy and low-carbon markets in Europe, those markets do not co-move in the USA.
Furthermore, we find evidence of symmetric tail dependence in Europe but independence in the USA.
We consistently find evidence of symmetric downside and upside price spillover effects between the
European renewable-energy and low-carbon stock markets, differing, however, in that price spillovers
from low-carbon to renewable-energy stocks are greater than vice versa. Contrarily, for the USA,
we find no evidence of price spillovers.

These findings have implications for both investors and policymakers. Investors holding positions
in renewables can hedge such positions using low-carbon assets when they invest in the USA
market but should seek alternative hedging devices for the European market. As low-carbon and
renewable-energy stocks in the European markets behave as a similar asset class, raising funds for
renewables from environmentally-aware investors is more difficult as there are opportunities to invest
in other low-carbon assets. Finally, our evidence is informative for the design and funding of renewable
energy policies: boosting funding to renewables may have a detrimental effect on low-carbon industries
in Europe but only a minor effect in the USA.

The remainder of the paper is laid out as follows. In Section 2 we outline our methodology
to assess conditional quantile dependence using copula functions. In Section 3 we describe the main
features of our data for renewable-energy and low-carbon stock markets in Europe and the USA.
In Section 4 we discuss our results on dependence, the impact of price oscillations from/to low-carbon
assets and to/from renewable-energy stocks, and the main implications of those results. Finally,
Section 5 summarizes our results and concludes this study.

2. Empirical Methods

2.1. Quantile Dependence Between Renewable-Energy and Low-Carbon Markets

We measure price impacts between the renewable-energy and low-carbon markets using the
quantile copula dependence approach developed by [1], which allows the impact of quantile price
changes between markets to be assessed. The use of bivariate copula models offers modeling flexibility
in featuring bivariate distribution functions, as copulas account for particular data characteristics
in the marginal distribution functions, such as time-varying volatilities or leverage effects, and they
allow dependence to differ under different market circumstances, in particular in times of extreme
price oscillations.

To begin with, using copulas rather than quantile regression results in greater modeling flexibility;
this is because copulas enable heterogeneity in characterizing marginal distributions and also account
for specific data features such as conditional heteroskedasticity, volatility asymmetries, and leverage
effects. Moreover, our empirical setup allows for time-varying dependence, so the impact of oil
price changes on stock returns are allowed to differ in different moments of time depending on the
dependence and volatility features of the corresponding markets.

Let ret and lct be the (log) change in prices of renewable-energy and low-carbon stocks,
respectively. The impact of a change in the price of a low-carbon asset of a size given by its β-quantile
on the α-quantile of the renewable-energy market can be measured by the conditional -quantile of the
renewable return distribution at time t, qret|lct

α,β,t , as:

P
(

rt ≤ qret|lct
α,β,t |lct ≤ qlct

β,t

)
= α, (1)

where qlct
β,t is the unconditional β-quantile of the low-carbon price returns distribution: P

(
lct ≤ qlct

β,t

)
= β.

From this conditional quantile, we can quantify how price fluctuations in low-carbon stocks of different
sizes impact on renewable-energy stocks under different market scenarios as reflected by the quantiles
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of low-carbon stocks. Similarly, we can obtain the reverse impact, i.e., the impact of price fluctuations
in renewable-energy stock prices on the prices of low-carbon assets.

From [27]’s theorem on equality between the joint distribution function and a copula function C,
we can express Equation (1) in terms of the joint distribution function or the copula function as:

Fretlct

(
qret |lct

α,β,t , qlct
β,t

)
= C

(
Fret

(
qret|lct

α,β,t

)
, Flct

(
qlct

β,t

))
= αβ, (2)

where Fret(·) and Flct(·) denote the marginal distribution functions for the renewable-energy and
low-carbon price changes, respectively and where the second equality follows from the fact that
the joint distribution is the product of the conditional and marginal distributions, Fretlct

(
qret |lct

α,β,t , qlct
β,t

)
Fret

(
qlct

β,t

)
, with Fretlct

(
qret |lct

α,β,t , qlct
β,t

)
= α and Fret

(
qlct

β,t

)
= β. Hence, for given values for α and β and for

the copula model specification, we can compute qret |lct
α,β,t by inverting the copula function in Equation (2),

C
(

Fret

(
qret|lct

α,β,t

)
, β

)
= αβ, in order to obtain the value of F̂ret

(
qret|lct

α,β,t

)
; then, by inverting the marginal

distribution function of ret we obtain the conditional quantile as:

qret|lct
α,β,t = F−1

ret

(
F̂ret

(
qre|lct

α,β,t

))
. (3)

Note that if renewable-energy and low-carbon stock markets are independent, then
C
(

Fret

(
qre|lct

α,β,t

)
, β

)
= Fret

(
qret|lct

α,β,t

)
β, so qret|lct

α,β,t = qret
α,t . Hence, the difference between conditional and

unconditional renewable-energy return quantiles provides information on the impact of low-carbon
stock price changes on renewable-energy stock returns.

To compute the conditional quantile through copulas we need information on the marginal
distribution models and on dependence between renewable-energy and low-carbon market prices
as given by the copula function. Using copulas rather than the conditional marginal distribution
to compute conditional quantiles has the appeal of flexibility, in that copulas separate modeling of the
marginals and of the dependence structures, and they capture dependence in the case of sharp upward
(upper quantiles) or downward (lower quantiles) price movements.

2.2. Marginal and Copula Models

As the mean and variance of financial return series exhibit time-varying behavior and stock
returns depend on general pricing factors, we estimate the price dynamics of renewable-energy and
low-carbon stocks using an autoregressive moving average (ARMA) model with p and q lags and with
exogenous variables as given by the five pricing factors proposed by [28,29]:

yt = φ0 +
p

∑
j=1

φjyt−j +
q

∑
h=1

ϕjεt−h + β1MKTt + β2SMBt + β3HMLt + β4RMWt + β5CMAt + εt, (4)

where yt denotes the excess price returns in renewable-energy and low-carbon stocks and where
the pricing factors are as follows: MKTt is the excess return of the market portfolio; SMBt is the
difference between the returns of a diversified portfolio comprised of small and large assets; HMLt is
the difference between high book-to-market and low book-to-market portfolio returns; RMWt is the
difference between returns for a diversified portfolio of robust and weak profitability assets; and CMAt

is the difference between portfolio returns for low (conservative) and high (aggressive) investment
firms. εt is a stochastic component with zero mean and variance σ2

t , which has a dynamic described
by a threshold generalized autoregressive conditional heteroskedasticity (TGARCH) model:

σ2
t = ω +

r

∑
k=1

θkσ2
t−k +

m

∑
h=1

αhε2
t−h +

m

∑
h=1

λh1t−hε2
t−h, (5)
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where ω is a constant parameter and where the parameters θ and α account for the generalized
autoregressive conditional heteroskedasticity (GARCH) and autoregressive conditional heteroskedasticity
(ARCH) effects, respectively. 1t−h = 1 for εt−h < 0, then the parameter λ captures asymmetric effects:
when λ > 0 (λ < 0) negative shocks have more (less) impact on variance than positive shocks (note that
for λ = 0 we have symmetric effects as given by the GARCH model). Fat tails and asymmetries of the
stochastic component εt, and thus of yt, are captured by [30] skewed-t density distribution; this distribution
is characterized by parameters v (the degrees-of-freedom parameter, 2 < v < ∞ ) and η (the symmetric
parameter, −1 < η < 1).

We model dependence by considering different copula specifications for the variables x and
y, with u = Fx(x) and v = Fy(y). Specifically, we capture positive and negative dependence
using the bivariate Gaussian copula, given by CN(u, v; ρ) = Φ

(
Φ−1(u), Φ−1(v)

)
, where Φ is the

bivariate standard normal cumulative distribution function with correlation ρ and where Φ−1(u)
and Φ−1(v) are standard normal quantile functions. Similarly, positive and negative dependence
is captured by the student-t copula, which is given by CST(u, v; ρ, v) = T

(
t−1
v (u), t−1

v (v)
)
, where T

is the bivariate student-t cumulative distribution function with the degree-of-freedom parameter v
and dependence given by the correlation coefficient ρ and where t−1

v (u) and t−1
v (v) are the quantile

functions of the univariate student-t distribution. Gaussian and student–t copulas differ in terms
of their tail dependence: the former exhibit zero tail dependence while the latter show symmetric tail
dependence and converge to the Gaussian when the degrees of freedom go to infinity. We also consider
the Gaussian and student-t copulas with time-varying parameters, with a dynamic given by [31]:

ρt = Λ

(
ψ0 + ψ1ρt−1 + ψ2

1
q

q

∑
j=1

Φ−1 (ut−j
) · Φ−1 (vt−j

))
, (6)

where Λ(x) = (1 − e−x) (1 + e−x)
−1 is the modified logistic transformation that retains ρt in (−1,1).

As for the student-t copula, Φ−1(x) is replaced by t−1
v (x). We also use the symmetric Plackett copula,

which, like the Gaussian copula, exhibits tail independence although it displays more dependence for
large joint realizations. It is given by:

CP(u, v; θ) =
1

2(θ − 1)
(1 + (θ − 1)(u + v))−

√
(1 + (θ − 1)(u + v))2 − 4θ(θ − 1)uv. (7)

Furthermore, we capture asymmetric dependence using the Gumbel copula, given by

CG(u, v; δ) = exp
(
− (

(− log u)δ + (− log v)δ
)1/δ

)
, which has upper tail dependence and lower tail

independence. Moreover, we rotate the Gumbel copula 180o with parameter δ > 0: CRG180(u, v; δ) =

v− exp
(
− (

(− log(1 − u))δ + (− log v)δ
)1/δ

)
. Finally, we also consider time-varying dynamics of the

dependence parameter as given by:

δt = ω + βδt−1 + α
1
q

q

∑
j=1

∣∣ut−j − vt−j
∣∣ (8)

Finally, the parameters of the marginal and copula models are estimated using the inference
function for margins ([32]), which allows parameter estimation in two steps. First, the parameters
of the marginal models are first estimated using maximum likelihood. Next, the copula parameters
are estimated by maximum likelihood using, as pseudo-sample observations for the copulas,
the probability integral transformation of the standardized residuals from the marginals. The number
of lags in the mean and variance equations in the marginal models are selected using the Akaike
information criteria (AIC), whereas the adequate copula specification is selected using the AIC adjusted
for small-sample bias ([33]).
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3. Data

Our empirical analysis on quantile dependence between renewable-energy and low-carbon
stocks in the European and USA stock markets is based on the respective stock market indices.
Specifically, we consider the Europe STOXX Low Carbon Select 50 Index (LC-EU) and the USA
STOXX Low Carbon Select 50 Index (LC-USA) for the European and USA stock markets, respectively.
These indices, which exclude all companies involved in the coal sector, capture the performance
of low carbon emissions stocks with low volatility and high dividends selected from the universe
of companies included in the STOXX Europe 600 Index and in the STOXX Global 1800 index,
respectively. The 50 assets included in the index are weighted according to the inverse of their
volatility, with a cap at 10%, and the index is reviewed quarterly.

To account for the performance of renewable-energy stocks, we take the European Renewable
Energy index (ERIX) and the Wilder Hill Clean Energy index (ECO) for Europe and USA, respectively.
ERIX is comprised of the largest European renewable-energy companies with wind, solar, biomass,
and water energy generation as their main activities. ECO is an equal-dollar-weighted index of a set
of companies that develop activities related to clean energies and conservation.

The sample covered the period 1 January 2010 to 31 July 2019, with the start date of the sample
period determined by the availability of data for low-carbon indices. Data was sourced from Bloomberg
on a daily basis. Figure 1 displays the temporal dynamics of renewable-energy and low-carbon markets
in the European and USA markets, showing that these markets follow similar trends, with price changes
harmonized in Europe, but not synchronized in the USA. We computed daily price returns as the
first difference for the (log) value of those indices. Table 1 presents the main statistical features of the
daily returns. For all markets under study, average daily returns are close to zero and standard
deviations are greater for the renewable-energy stocks than for the low-carbon stocks. Higher
volatility in renewable-energy markets is also confirmed by the maximum and minimum values
of returns. All price returns exhibit negative skewness and the price return distributions have fat tails.
In fact, the Jarque–Bera (JB) test rejects normality. The evidence of serial dependence provided by the
Ljung–Box (LJ) statistic is mixed: although most of the series exhibit serial independence, low-carbon
series for Europe show serial dependence. Finally, the ARCH test points to the presence of conditional
heteroskedasticity in the series.

Panel A. EU Panel B. USA

Figure 1. Time series plot for daily renewable-energy and low-carbon indices.

Data for the pricing factors and the risk-free interest rates to compute excess returns
in renewable-energy and low-carbon markets in Europe and the USA were sourced from the Kenneth
French data library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html).
Table 2 presents descriptive statistics for those pricing factors in both markets, showing that their behaviors
differ across stock markets.
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Table 1. Descriptive statistics for renewable-energy and low-carbon indices.

LC-EU ERIX LC-USA ECO

Mean 0.015 0.003 0.042 −0.024
Maximum 4.966 6.622 4.454 8.239
Minimum −5.706 −7.978 −6.144 −10.21
Std. Dev. 0.823 1.492 0.773 1.673
Skewness −0.338 −0.301 −0.435 −0.27
Kurtosis 6.887 5.162 8.185 5.214
JB 1563.09 * 505.59 * 2775.70 * 521.49 *
ARCH 19.137 8.336 29.129 22.173

[0.000] [0.000] [0.000] [0.000]
Q(20) 45.322 28.632 33.629 41.855

[0.001] [0.095] [0.029] [0.003]

Note. The table presents descriptive statistics for price returns in low-carbon markets in the EU (LC-EU)
and the USA (LC-USA) and in the corresponding renewable-energy markets, ERIX and ECO, respectively.
Data cover daily periods from 1 January 2010 to 31 July 2019. JB denotes the Jarque–Bera statistic for the null
hypothesis of normality; an asterisk denotes rejection of the null hypothesis. Finally, ARCH denotes Engle’s
Lagrange multiplier test for conditional heteroskedasticity and Q(20) denotes Ljung–Box statistics for serial
correlation in the price return series. Both tests were computed with 20 lags and their p values are reported
in square brackets.

Table 2. Descriptive statistics for pricing factors.

Panel A. EU

MKT SMB HML RMW CMA

Mean 0.023 0.004 −0.011 0.017 0.000
Maximum 6.850 3.210 3.760 1.630 1.150
Minimum −8.800 −2.250 −2.130 −1.910 −1.070
Std. Dev. 1.098 0.443 0.443 0.296 0.245
Skewness −0.323 −0.084 0.329 −0.372 0.130
Kurtosis 7.741 5.949 6.407 5.299 4.014
JB 2298.54 * 876.03 * 1208.94 * 586.37 * 109.94 *
ARCH 16.393 11.621 10.14 3.428 8.021

[0.000] [0.000] [0.000] [0.000] [0.000]
Q(20) 41.574 41.41 33.372 37.808 33.017

[0.003] [0.003] [0.031] [0.009] [0.034]

Panel B. US

MKT SMB HML RMW CMA

Mean 0.052 −0.001 −0.01 0.006 0.000
Maximum 5.060 3.620 2.390 1.660 1.950
Minimum −6.970 −1.990 −1.83 −1.63 −1.320
Std. Dev. 0.963 0.518 0.497 0.342 0.303
Skewness −0.402 0.177 0.303 0.034 0.361
Kurtosis 7.410 4.639 4.494 4.567 4.952
JB 2018.24 * 282.48 * 261.03 * 246.89 * 434.88 *
ARCH 28.873 7.701 10.781 12.382 7.396

[0.000] [0.000] [0.000] [0.000] [0.000]
Q(20) 50.511 22.075 21.486 21.031 19.639

[0.000] [0.336] [0.369] [0.395] [0.481]

Note. The table presents descriptive statistics for pricing factors, MKT, SMB, HML, RMW and CMA, in the EU
and USA markets for the period 1 January 2010 to 31 July 2019. JB denotes the Jarque–Bera statistic for the null
hypothesis of normality; rejection of the null hypothesis is indicated with an asterisk. Finally, ARCH denotes
Engle’s Lagrange multiplier test for conditional heteroskedasticity and Q(20) denotes Ljung–Box statistics for
serial correlation in the price return series. Both tests were computed with 20 lags and their p values are reported
in square brackets.

4. Empirical Evidence

4.1. Results for Marginal and Copula Models

Parameter estimates and goodness-of-fit tests for the marginal models for renewable-energy and
low-carbon indices in the EU and the USA are presented in Table 3. We selected suitable lags for the
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mean and variance by considering lag values between 0 and 2, taking as the optimal values those
that minimized the AIC. Our estimates reflect serial dependence in all price return series, given the
significant autoregressive and moving average coefficients. Parameter estimates for the pricing factors
indicate that all return series are dependent on the market factor, with betas below one indicating
that renewable-energy and low-carbon stocks are defensive stocks, with the exception of the ECO
index. However, we find mixed evidence for the remaining pricing factors as the significance of those
factors differs across markets. Likewise, parameter estimates for the volatility dynamics indicate that
volatility displays persistence and no leverage effects, with the exception of the European low-carbon
market. The degrees-of-freedom parameter also indicates that the error terms are generally symmetric
and exhibit fat tails, whereas asymmetry is significant in the low-carbon markets.

The last six columns of Table 3 show results for goodness-of-fit tests for the estimated marginal
models. The LJ test indicates that there is no serial correlation in either the residual series or the
squared residual series, and the ARCH-Lagrange multiplier (ARCH-LM) statistic indicates that no
GARCH effects remain in the model residuals. In comparing the empirical and theoretical distribution
functions of the standardized residuals, the Kolmogorov–Smirnov (KS), Cramér–von Mises (CVM),
and Anderson–Darling (AD) tests all support the null hypothesis of correct specification of the
distribution models for all the series.

We estimate copula model parameters using the probability integral transform of the standardized
residuals from the estimated marginal models as pseudo-sample observations for the copula. Parameter
estimates for the static and time-varying copulas are reported in Table 4. Empirical estimates point to
relevant difference between the European and USA markets. Thus, while in the European market we
find evidence of positive dependence between renewable-energy and low-carbon stock markets, for the
USA we find that this dependence to be negative and small. Evidence on comparing copulas through
the AIC values indicates that the static student-t copula provides the best fit for the European markets
and the Plackett copula for the USA market. Furthermore, dependence between renewable-energy
and low-carbon stock markets is fundamentally static. We only find evidence of tail dependence in the
European market, so upward or downward movements in renewable-energy stock prices have impacts
on the low-carbon market and vice versa. In contrast, for the USA market we find evidence of no tail
dependence and weak negative average dependence, so abrupt price changes in renewable-energy
stock prices have negligible effects on low-carbon assets and vice versa.

4.2. Price Impact Results for the Renewable-Energy and Low-Carbon Stock Markets

We estimate conditional quantiles using information from the estimated marginal and copula
models, taking different values for the quantiles α and β given by 0.05, 0.10, 0.25, 0.5, 0.75, 0.9, and 0.95.
To assess the relative impact of low-carbon stock prices on renewable-energy prices and vice versa,
we also estimate the unconditional quantiles from the marginal models as qyt

β,t = μt + F−1
v,η (α)σt,

for yt = ret, lct, and μt and σt are given by the ARMA and GARCH components of the marginal model,
with F−1

v,η (α) denoting the value of the α-quantile of the skewed student-t distribution.
Figure 2 depicts the quantile dynamics of the upper and lower conditional and unconditional

renewable quantiles in the European and the USA markets, considering the impact of high (low) price
fluctuations in low-carbon stocks as given by the 0.9 (0.1) quantile on the high (low) renewable-energy
quantile as given by the 0.9 (0.1) quantile. Consistent with the evidence on tail dependence in the
European renewable-energy stock market, we found that differences between conditional and
unconditional quantiles in the upper and lower tails of the joint distribution were sizable and
of a similar size. Hence, sharp upward or downward movements in low-carbon stocks have an
impact on prices of renewable-energy stocks in the European markets. However, this effect is not
observed in the USA market, as there is near zero dependence, i.e., the impact of price oscillations
in low-carbon assets has no sizeable impact on renewable-energy stock prices, as reflected in Panel B
of Figure 2.
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As for the impact of price oscillations in renewable-energy stocks on low-carbon stock prices,
Figure 3 depicts upper and lower conditional and unconditional low-carbon quantiles in the European
and the USA markets, considering the impact of high (low) price fluctuations in renewable-energy
stocks as given by the 0.9 (0.1) quantile on the high (low) low-carbon quantile as given by the 0.9 (0.1)
quantile. Graphical evidence reflects that price impacts differ in both stock markets; in the European
market, price movements in renewable-energy stocks have a significant impact on low-carbon stock
prices, whose impact is smaller than in reverse, whereas in the USA market—consistently with near
independence—differences between conditional and unconditional quantiles are small.

Table 3. Maximum likelihood estimates.

LC-EU ERIX LC-USA ECO

Mean

φ0 0.001 −0.011 −0.001 −0.072 *
(0.119) (−0.499) (−0.208) (−3.807)

φ1 0.358 * 0.000 0.627 * 0.046 *
(2.353) (0.004) (5.616) (2.171)

φ2 0.048 * 0.042 *
(2.453) (1.964)

ϕ0 −0.320 * −0.622 *
(−2.083) (−6.010)

MKT 0.447 * 0.799 * 0.805 * 1.150 *
(21.150) (24.330) (85.140) (49.020)

SMB −0.553 * −0.115 −0.163 * 0.782 *
(−14.070) (−1.540) (−12.090) (20.130)

HML −0.186 * 0.186 0.014 0.081
(−4.248) (1.770) (0.800) (1.802)

RNW 0.036 0.005 0.250 * −0.433 *
(0.651) (0.036) (11.520) (−6.985)

CMA 0.056 −0.269 * 0.350 * −0.243 *
(1.086) (−2.411) (12.270) (−3.364)

Variance

ω 0.016 * 0.133 0.029 * 0.019
(2.958) (1.613) (2.333) (1.677)

α1 0.055 * (0.064 * 0.181 * 0.043 *
(2.897) (2.761) (3.428) (2.629)

β1 0.831 * 0.253 0.293 * 0.936 *
(19.820) (1.117) (2.394) (34.420)

β2 0.562 * 0.223
(2.234) (1.858)

λ 0.068 * 0.027 −0.049 −0.007
(1.966) (0.673) (−0.770) (−0.620)

Asymetry −0.111 * 0.028 −0.067 * 0.051
(−3.698) (0.935) (−2.100) (1.720)

Tail 9.314 * 6.296 * 7.140 * 7.728 *
(5.774) (7.729) (7.138) (6.532)

LogLik −1397.5 −3562.74 −396.486 −3039.77
LJ 16.590 29.485 23.019 20.784

[0.55] [0.05] [0.19] [0.29]
LJ(2) 10.464 14.456 21.975 16.065

[0.92] [0.63] [0.19] [0.59]
ARCH 0.522 0.746 1.118 0.749

[0.96] [0.78] [0.32] [0.78]
KS [0.90] [0.96] [0.86] [0.98]
CVM [0.99] [0.99] [0.88] [0.99]
AD [0.99] [0.99] [0.91] [0.99]

Note. The table presents parameter estimates and z-statistics (in brackets) for the marginal models described
in Equations (4) and (5). An asterisk (*) indicates significance at 5%. LogLik denotes the log-likelihood
value. LJ, LJ(2) and ARCH, respectively, denote the Ljung–Box statistic for serial correlation in the residual
model and the squared residual model and Engle’s Lagrange multiplier test for the ARCH effect in residuals
computed with 20 lags. KS, CVM, and AD, respectively, denote the Kolmogorov–Smirnov, Cramér–von Mises
and Anderson–Darling statistics for the null hypothesis of correct model specification. Rejection of the null
hypothesis is indicated with p values (in square brackets) below 0.05.
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Table 4. Estimates for the copula models.

Panel A. Parameter Estimates for Time-Invariant Copulas.

EU USA

Gaussian copula
ρ 0.377 * −0.075 *

(0.01) (0.02)
AIC −367.773 −11.515

Student−t copula
ρ 0.393 * −0.078 *

(0.02) (0.02)
v 7.228 * 43.210

(0.54) (49.14)
AIC −415.622 −11.287

Gumbel copula
δ 1.305 * 1.000 *

(0.02) (0.02)
AIC −344.293 2.002

Rotate Gumbel copula
δ 1.315 * 1.001 *

(0.02) (0.00)
AIC −381.959 1.842

Plackett copula
θ 3.461 * 0.780 *

(0.20) (0.05)
AIC −396.806 −14.940

Panel B. Parameter Estimates for Time-Invariant Copulas.

EU USA

TVP-Gaussian
ψ0 −0.029 −0.235 *

(0.02) (0.07)
ψ1 0.033 * 0.191

(0.02) (0.13)
ψ2 2.155 * −1.340 *

(0.07) (0.40)
AIC −378.553 −9.807

TVP−Student
ψ0 1.777 * −0.266 *

(0.10) (0.09)
ψ1 −0.010 0.061

(0.01) (0.08)
ψ2 −2.362 * −1.370 *

(0.04) (0.64)
v 7.264 * 20.000 *

(1.13) (4.81)
AIC −412.78 −5.978

TVP−Gumbel
ω̄ 0.932 0.000

(0.49) (1.00)
β̄ −0.212 0.000

(0.35) (1.00)
ᾱ −0.408 * 0.000

(0.2) (1.00)
AIC −346.097 6.042
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Table 4. Cont.

Panel B. Parameter Estimates for Time-Invariant Copulas.

EU USA

TVP−Rotate gumbel
ω̄ 1.031 * 5.000

(0.39) (473.32)
β̄ −0.281 −4.948

(0.31) (470.40)
ᾱ −0.398 * −0.045

(0.14) (5.61)
AIC −383.263 5.831

Note. The table presents parameter estimates for different copula models along with their standard errors
reported in brackets. An asterisk (*) indicates significance of the parameter at 5%. The best copula fit is given by
the copula model that attains the minimum Akaike information criterion (AIC) value adjusted for small-sample
bias, indicated in bold. For the time-varying parameter (TVP) copulas, the value of q was set to 10.

Panel A. EU Panel B. USA

Figure 2. Temporal dynamics for upper and lower conditional and unconditional quantiles of
renewable-energy stock returns.

Panel A. EU Panel B. USA

Figure 3. Temporal dynamics for upper and lower conditional and unconditional quantiles of low-carbon
stock returns.

Finally, Figures 4 and 5 summarize the relative impact of price changes in low-carbon assets
of specific sizes on renewable-energy stocks and vice versa, respectively. For different values, the plots
represent the average value of the conditional quantile over the unconditional quantile: values
greater than one, depicted in warm colours, indicate that stock price changes in one market affect the
corresponding unconditional quantile of the other market, whereas values in cold colours indicate the
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opposite. For the European markets, Panel A in Figures 4 and 5 confirms that renewables and low
carbon markets closely co-move, so upward or downward movements in one of the markets have
a positive and significant effect on the prices in the other market. Likewise, graphical evidence also
corroborates that opposite movements in renewable-energy and low-carbon prices are not related,
consistent with the idea that markets move in tandem. In contrast, for the US, graphical evidence
in Panel B reflects the fact that renewable-energy and low-carbon markets move independently,
i.e., price changes in one market are not reflected in price movements in the other market as indicated
by the equality between conditional and unconditional quantiles.

Panel A. EU Panel B. USA

Figure 4. Average value of conditional over unconditional quantiles for renewable-energy stocks.

Panel A. EU Panel B. USA

Figure 5. Average value of conditional over unconditional quantiles for low-carbon stocks.

5. Conclusions

Investing in renewable-energy and low-carbon assets is a straightforward way for investors
to align their portfolios with a low-carbon and more climate-resilient economy. However,
the diversification benefits of holding positions in such firms closely depends on the way both kinds
of assets co-move. Climate-friendly investors could take advantage of this information to build more
adequate portfolio investment strategies. We therefore explored interdependence between prices
of renewable-energy and low-carbon assets in the European and USA stock markets for the period
2010–2019. We use copula functions, which report information on dependence under different market
circumstances, even though we have no information on the causality effects.

Our empirical evidence documents that European, but not USA, renewable-energy and
low-carbon markets co-move and, likewise, we find evidence of symmetric tail dependence in Europe
but tail independence in the USA. Consistently, we find that upside or downside movements in the
prices of low-carbon assets impact on renewable-energy asset prices in Europe, while the reverse is also
notable, although smaller in size. In contrast, for the USA market we find that the impact of upward or
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downward price oscillations in low-carbon asset prices on the price of renewable-energy stocks is not
sizable as is the case with the reverse.

Our empirical findings have practical implications for investor decision-making and for
policy-makers as follows. First, evidence of positive co-movement between renewable-energy and
low-carbon asset prices in Europe indicates that, as both kind of assets move in the same direction under
different market scenarios, long positions in low-carbon assets cannot be hedged using long positions
in renewable-energy assets, and vice versa. In the USA market, in contrast, since renewable-energy
and low-carbon stock prices move independently, investors in either market could use one set of
assets to hedge financial positions in the other market. Second, in Europe, climate-friendly investors
cannot use renewable-energy assets to manage downside risks for long positions in low-carbon
assets, and vice versa, unlike investors in the USA. Third, our evidence on interdependence between
renewable-energy and low-carbon asset prices is useful for the design of energy policies to support
and fund renewable energy investments. Specifically, when renewable-energy and low-carbon asset
prices co-move—as happens in the European markets—public funding of renewables impact on
renewable-energy companies, and this impact leads to price externalities for low-carbon companies.
Likewise, the withdrawal of support policies for renewable energies (such as subsides) will have
negative effects on the price of renewable-energy stocks that will be transmitted to the price of
low-carbon assets. As a result, policy decisions regarding energy transition to a decarbonized
economy should take into account the effects on low-carbon companies, as also crucial in the transition
to a climate-resilient economy. However, when low-carbon and renewable-energy markets move
independently—as happens in the USA—such policy effects are irrelevant. Finally, in raising funds
for the transition to a low-carbon economy, the dependence between climate-friendly assets such as
renewable-energy and low-carbon stocks is such as to render them a similar asset class; therefore,
funds for renewable energies face competition in the demand for funds for other low-carbon industries
that may also be attractive to environmentally friendly investors—the case in Europe; in the USA,
however, the independence of the asset classes may spur investment incentives in climate-friendly
assets such as renewable-energy and low-carbon stocks.
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Abstract: A study combining wind power with pumped hydro energy storage for the Jordanian
utility grid is presented. Three solvers of the Matlab optimization toolbox are used to find the optimal
solution for the cost of energy in a combined on-grid system. Genetic algorithm, simulated annealing
(SA), and pattern search (PS) solvers are used to find the optimal solution. The GA solution of
0.0955388 $/kWh is economically feasible. This is 28.7% lower than the electricity purchased from the
conventional utility grid. The discounted payback period to recover the total cost is 10.271 years.
The suggested configuration is shown to be feasible by comparing it to real measurements for this
case and a previous wind-only case. It is shown that the indicators of the optimal solution are
improved. For instance, carbon dioxide emissions (ECO2) and conventional grid energy purchases are
reduced by 24.69% and 24.68%, respectively. Moreover, it is shown that the benefits of adding hydro
storage, combined with increasing the number of wind turbine units, reduces the cost of energy of
renewables (COERenewables). Therefore, combining hydro storage with wind power is economically,
environmentally, and technically a more efficient alternative to the conventional power generation.

Keywords: pumped hydro storage; wind farm; simulated annealing; genetic algorithm; pattern
search; Matlab optimization toolbox; economic and environment feasibility

1. Introduction

Hydro and wind powers are promising renewables. However, due to the stochastic nature of
the wind power, it is more efficient and reliable to combine it with another suitable energy system to
provide a stable operation for large utility grid systems. Pumped hydro storage (PHS) is a suitable
energy storage system that can be hybridized with wind power in order to overcome its variability and
provide real-time load following. Hydro power makes up around 19% of electrical power generated
worldwide [1]. It is one of the oldest methods of renewable energy generation [2]. Hydropower
originates from the sun, as its water cycle is driven by solar radiation. Approximately 22% of incoming
solar energy is captured to form precipitation, which is the source of hydropower [3]. Hydropower
stations can be categorized based on their output power. They are classified as small, mini, or micro
types when the maximum output power is 15 MW, 1 MW and 100 kW, respectively [4]. In this
paper, the maximum output of the PHS exceeds the small type, therefore, a large type is added to the
aforementioned category.

PHS plants are mainly used to serve demand during the peak load hours [3]. When wind
generation exceeds demand, excess power can be stored by pumping water into the upper reservoir of
the PHS system. Conversely, when the load exceeds the wind generation, the stored hydro energy can
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be used to supply the power deficit. In fact, PHS plants are considered to be one of the best utility-scale
energy storage solutions due to their ability to supply power in just one to three minutes [3].

In the published literature, the operation of the grid-connected PHS, combined with wind power,
has been extensively investigated. In [5], the authors suggested using pumped hydro storage as an
operating reserve ancillary service in order to mitigate the problems related to wind farm integration
with the grid. A probabilistic unit commitment using Lagrange relaxation was suggested to find
the optimal scheduling of the thermal generators when wind power was integrated into the system
while considering the uncertainty of the wind speed. It was found that pumped hydro storage could
be effectively employed to reduce operating and flying reserve costs. In [6], PHS application in
combination with a wind farm to increase profit in electricity markets was investigated. The results
showed that the revenue was a function of the type of hydro storage used and market characteristics.
The revenue increased by up to 11% by employing PHS. The authors in [7] proposed a deterministic,
dynamic programming, long-term generation expansion model to find the optimal generation mix,
total system cost, and total carbon dioxide emissions of a PHS system connected to a wind farm.
It was found that in order to gain financial benefit from building the capital-intensive PHS, the
exogenous market costs had to be very strong. In [8], a novel coordination strategy of a wind farm
combined with PHS for a faster, reliable self-healing process in the grid restoration phase was proposed.
The problem was formulated as a two-stage adaptive robust optimization and solved using the
column-and-constraint generation (C&CG) decomposition algorithm. The results proved that the
PHS could increase system reliability and reduce wind power curtailment. A combinatorial planning
model in order to maximize wind power utilization and reduce wind energy curtailment was studied
in [9]. A posterior multi-objective (MO) optimization approach was proposed to deal with wind energy
curtailment cost and the total social cost. The obtained results introduced an optimization approach
capability and efficiency regarding the planning of renewable-based power systems. In [10], a sizing
method for a wind–hydro system in the Canary Islands was proposed and its economic benefits
for the island’s electrical system were investigated. The contribution of this wind–hydro system to
satisfying electricity demand was 29% higher than wind-only, and the electrical energy generation cost
was reduced by 7.68 M€/year. In [11], the authors presented an improved probabilistic production
simulation method to facilitate the cost–benefit analysis of PHS. A case study on the IEEERTS79 system,
which was used to demonstrate the effectiveness of the proposed simulation method, helped the
industry move toward high penetration of the integrated wind energy power system.

In order for sustainable power generation to become universally adopted so that its planetary
benefits are realized, the economic and technical designs of these power plants must be locally
appropriate and optimal. This paper addresses this fundamental challenge for design engineers and
managerial decision-makers.

The scientific/technical problem that is addressed and solved in this case study is as follows.
In order to solve the global warming and cost of energy problems contributed to by electric power
generation, local renewable resources must be utilized, combined, and optimized in their overall
system design. This paper addresses these technical problems in a case study of combining wind
and hydro power generation in Jordan as a specific location. In addition, this paper investigates the
financial, environmental, and technical feasibility of wind farming and pumped hydro energy storage
in an oil-importing country to reduce the energy-producing burden. Three heuristic optimization
techniques are used from the Matlab optimization toolbox to verify the system design. Results show
that the proposed system may be notably beneficial for Jordan. The same methodology can be applied
in countries where this is relevant, such as Panama, a country which one of the authors visited for
this purpose.

The fundamental problem of global sustainable energy production is the optimal use of locally
specific renewable energy sources, such as wind and hydro energy resources, as laid out in this paper.
In other words, this global problem must be solved locally everywhere. This is an engineering design
optimization, which usually requires hybrid power plants. This paper presents a detailed case study
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of how this engineering problem is solved. In the process, it also sheds light on our concept of local
solutions to a global problem. This important concept is often lost on countries and companies that
attempt to build sustainable power generation projects.

In this paper, the Matlab optimization toolbox was used to find the optimal solution in terms of
technical, environmental, and economic considerations. Moreover, genetic algorithm (GA), simulated
annealing (SA), and pattern search (PS) techniques were used from the above toolbox to solve the
problem described in this paper. Furthermore, it was shown that the objective function, cost of energy,
of the on-grid, which was penetrated by the hydro–wind system (COEPS) was optimally minimized.
The economically feasible solution was considered to find detailed solutions. This work aims to
help decision-makers find the best technical solutions before actual implementation of the proposed
energy configuration.

2. Description of the Proposed System

This paper discusses the combination of a wind and hydropower system (See Figure 1), which is
integrated with the distribution grid in the country of Jordan, as a case study in an oil-importing country.

 

Figure 1. On-grid hydro–wind energy schematic.

The location was the same as one investigated in [12], where an on-grid wind power system was
studied in Aqaba, Jordan. However, in this paper, an on-grid wind farm combined with a PHS station
was investigated. Therefore, some data are the same, while others are updated for this more up-to-date
study. The location was considered to be geographically suitable to construct a PHS station.

Artificial intelligence techniques (GA, SA, and PS) provided by the Matlab optimization toolbox
were used to find the optimal solution of the objective function (COEPS). Then, based on the best
fitness, many indicating corresponding functions were computed, such as the wind and hydro fraction
(WHf), grid purchases, the footprint of the renewables, and carbon dioxide emissions (ECO2). This
procedure aimed to help design engineers replicate the same criteria to find optimal solutions for other
system configurations to be adopted based on these technical studies and negotiations between electric
utilities and investors. Economic, technical, and environmental feasibility impacts were also studied.

2.1. PHS Station Data

The information that was specified for the pumped hydro storage plant to be accurately modeled
is shown in Table 1. First, the roundtrip efficiency referred to the ratio of the energy out to the energy
in over a period of time [13]. It is difficult to separately measure the charging and discharging energies,
therefore, manufacturers usually determine the round-trip efficiency and consider it to be the charging
efficiency by assuming 100% discharging efficiency. Many authors have discussed this issue in the case
of battery systems. Thus, the charging efficiency was set to be equal to the round-trip efficiency, and
the discharging efficiency was assumed be in agreement in [14,15].
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Table 1. Values of parameters used for the pumped hydro storage (PHS) station.

Parameter Unit Value

Lifetime Years 50 [16]
Usable state of charge [1] % 85
Roundtrip efficiency (ζ) % 85 [17]

Capital cost $/kW 1651.04
Operation and maintenance cost (OMC) (%/Year of capital cost (CC)) 1.5

Gross head m 50
Mean water depth m 15

Second, the usable state of charge (SOC) [1] referred to the ratio of the usable energy that was
taken to the total energy of the PHS. In other words, the usable SOC was the energy left in the upper
reservoir compared with the amount of energy in a full reservoir. This gave an indication into how
long the PHS station could provide energy before a refill. In this study, it was assumed that a minimum
stored energy should remain, and this value was the complement of the usable SOC. The usable SOC
was assumed to be the same as the round-trip efficiency. Third, an initial PHS stored energy in the
upper reservoir was assumed [18]. The aforementioned parameters helped to determine the PHS
power generation capacity in kW, which could be used to supply the load as needed. This capacity
value was sized using the GA, SA, and PS of the Matlab optimization toolbox. The capital cost of the
PHS had an average value of 1651.04 $/kW [16]. The operation and maintenance costs (OMC) were
taken as percentages of the capital cost (CC) [16]. Table 1 shows the values that were assumed and
considered for the PHS plant. These plant data were used to compute the hourly energy generated.
There was an approximate ratio of ten between the rated power (in kW) and energy (in kWh) of the
PHS station, as stated in [19].

2.2. Wind Speed and Probability Distribution Function

Wind speed can change rapidly in any region. Its variation depends on several factors, such
as the surface and the local weather. Appropriate predictions of wind speed in a specific area are
necessary for wind power and energy estimations in that area. One of the models for characterizing
the wind power is a cubic function of the wind speed. Therefore, a small error in the prediction of
wind speed leads to huge variations in the wind energy estimation. Various methods are used to study
the characteristics of wind speed. Weibull and Rayleigh distributions are the most preferred methods,
as they are flexible and easy in terms of parameter determination.

The focus in this paper was on the Rayleigh distribution, which is a special form of the Weibull
distribution with a shape factor that is always equal to two. In the Rayleigh distribution, the mean
wind speed is sufficient to determine the wind characteristics. The Rayleigh distribution function
(fR(v)) is given by Equation (1) [20,21].

fR(v) =
(
π
2

)( v
v2

a

)
exp−

[
π
4

( v
va

)2]
(1)

where va is the average wind speed in a specific area in (m/s). The wind speed logarithmic law shown
in Equation (2) was used to model the variation of wind speed due to the difference in height between
the anemometers of the metrological station and the hub of the proposed wind turbine. In addition, it
considered the terrain roughness between two altitudes [12,22].

v
v0

=
ln(H/z0)

ln(H0/z0)
(2)

where v0 is the wind speed corresponding to the height (H0) and Z0 is the roughness coefficient. A case
study was conducted in Aqaba, which is the free Trade Area in Jordan. The wind speed was measured
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in a specific location using anemometer installed at 45 m above ground level, in which the output data
was taken on a monthly average basis. Then, Rayleigh distribution was used to obtain hourly data, as
shown in Figure 2. The roughness factor of the logarithm used for this case was 0.03 to adjust for the
wind speed of open terrain areas [22]. Also, the hub height of the proposed wind turbine was 80 m
(Table 2) which was also considered in the logarithm. The wind speed-based Rayleigh distribution
function in Aqaba for twelve months is shown in Figure 2.

Figure 2. Curves of Rayleigh distribution for all months.

Table 2. Manufacturer information of a C96–2.5 MW wind turbine.

Turbine

Manufacturer USA

Power

Rated power 2.5 MW
Cut-in wind speed 4.0 m/s
Rated wind speed 12.5 m/s
Cut-out wind speed 25.0 m/s
Survival wind speed 70.0 m/s

Rotor

Diameter 96.0 m
Swept area 7238 m2

Number of blades 3
Maximum rotor speed 15.5 U/min
Tip speed 78 m/s
Type 46.7
Material Fiberglass
Power density 345.4 W/m2

Gearbox

Type Spur
Stages 2.0

Tower

Hub height 80.0 m
Type Steel tube
Shape conical
Corrosion protection painted
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Other information that was determined for the wind farm to be precisely sized is shown in Table 3.
The financial input parameters were the same as the ones described in the wind-only investigation [12].
The project lifetime was assumed to be 50 years. Therefore, the wind turbine will be replaced twice,
with a cost that was assumed the same as the capital cost.

Table 3. Lifetime and spacing parameters of the wind farm.

Parameter Unit Value

Life-time per unit Years 20
Row spacing of the farm (RS) m 384

Column spacing of the farm (CS) m 672

The geographical area of the wind farm (AWF) was computed using Equation (3). L and W are the
dimensions of the wind farm, which was considered to have a rectangular shape. For the row spacing
(RS) and column spacing (CS) values shown in Table 3, Equations (4) and (5) were used to calculate L
and W.

AWF = L×W (3)

L = CS(Ncol − 1) + Dr (4)

W = RS(Nrow − 1) + Dr (5)

where Dr, Nrow, and Ncol are the rotor diameter, number of rows, and number of columns, respectively.
These helped to compute the maximum and minimum wind areas, i.e., the Amax and Amin. A footprint
cap limit of 20,000 Dunam was considered for the on-grid wind hydro energy system.

2.3. Load Demand Hourly Data

The load demand hourly values of Aqaba, Jordan in 2017 were prepared after tailoring the
supervisory control and data acquisition (SCADA) demand values in 2016 used in [12]. They were
obtained from the National Control Center of the National Electric Power Company, Jordan. A
percentage growth of 6% for a year is usually used in electric utilities in Jordan to obtain the annual
load demand for the following year, therefore, in this paper, the hourly load values in 2017, as shown
in Figure 3, were obtained by applying this percentage.

Figure 3. Load demand hourly values of the Aqaba Qasabah district in 2017.
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The minimum, maximum, and mean load demand values were 27.295 MW, 132.270 MW, and
85.073 MW, respectively, as shown in Figure 3.

3. Mathematical System Formulation

3.1. Modeling of the Hydro Station

The priority was to satisfy the load from the wind farm. If the wind power was not sufficient, then
energy deficit should be covered by the PHS station and, lastly, the energy purchased from the utility
grid. The Matlab code had the target of satisfying the entire load. Three cases were considered. First,
the load was satisfied by the wind farm, and if there was excess wind power and the reservoir was full,
the generation of the hybrid renewable energy system came only from the wind power plant. Second,
the load was satisfied by the wind farm, and there was excess wind power and the reservoir was not
full. Thus, we computed the excess wind power that could charge the PHS plant by comparing the
excess wind power value to the rated capacity of the PHS plant.

Third, when the generation of wind farm was less than what was required by the load demand,
we checked the availability of the PHS plant for this power deficit. Moreover, the PHS minimum
energy storage capacity was set, which was not exceeded during the discharge.

Once the rated power of the hydro station, Prated, in kW was optimized, the energy in kWh, Wrated,
was estimated based on the assumption made in Section 2.1. Then, the potential energy (in J/m3),
WJ, and (in kWh/m3), WkWh, of water in the upper reservoir were computed using Equation (6) and
Equation (7), respectively.

WJ = ρwatergH (6)

WkWh = 2.78× 10−7WJ (7)

where ρwater is the density of water (1000 kg/m3), g is the gravitational acceleration (9.81 m/s2), and H is
the actual head of the PHS station [12].

Then, the volume of the water in the upper reservoir (in m3), Vwater, was computed using Equation
(8). At this point, the area required for the PHS station, APHS, was computed using Equation (9) for a
given mean depth, D [12]. Furthermore, Equation (10) was used to compute the water flow (Fwater) in
the pipeline in (m3/s) [23].

Vwater =
Erated
ηWkWh

(8)

APHS =
Vwater

D
(9)

Fwater =
Prated
ηHg

(10)

3.2. Modeling of the Wind Turbine Power Curve

The wind turbine output power model can be typically presented in two main regions. Region 1
exists between the cut-in speed [1] and the rated wind speed (VR), while Region 2 exists between VR

and the cut-out wind speed [6], as shown in Figure 4. This shows the ideal model representation of a
wind turbine and the corresponding main regions.

To convert the hourly wind speed values, obtained before using Rayleigh distribution, into hourly
output wind turbine values, the mathematical model in Equation (11) is used to model Region 1 shown
in Figure 4. PR is the rated power generated by a wind turbine. Further, the corresponding A, B and C
parameters are given in Equations (12)–(14) [9,24,25]. This model is different from the ones described
in [12]. The output power in Region 1 runs smoothly between VI and VR with no protrusions at the
cut-in value, as shown in the models described in [12], see Figure 5. This will result in an accurate
computation of the output power extracted from the wind farm. This leads to precise computations in
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the output wind power and energy and thus in the number of units sizing, geographical footprint,
economic and environmental indicators.

P(v) =

⎧⎪⎪⎨⎪⎪⎩ PR
(
A + Bv + Cv2

)
, VI ≤ v ≤ VR

PR, VR ≤ v ≤ Vo

⎫⎪⎪⎬⎪⎪⎭ (11)

A =
1

(VI −VR)
2

[
VI(VI + VR) − 4VIVR

(VI + VR

2VR

)3]
(12)

B =
1

(VI −VR)
2

[
4(VI + VR)

(VI + VR

2VR

)3
− (3VI + VR)

]
(13)

C =
1

(VI −VR)
2

[
2− 4

(VI + VR

2VR

)3]
(14)
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Figure 4. Schematic of wind turbine output power model.

Figure 5. Output wind power of a C96–2.50 MW wind turbine.

3.3. Objective Function

The objective function in this study was selected to be the cost of energy of the penetrated system
(COEPS) to reflect the price of the energy supplied by the on-grid hybrid wind hydropower system, as
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designed and sized to cover the load demand shown in Figure 3. It was computed by dividing the
system’s cost by the system’s absorbed energy, as shown in Equation (15) [26].

COEPS =
System′s cost

System′s absorbed energy
(15)

The system cost was computed by first constructing nominal and discounted cost cash flows for
the project lifetime, i.e., 50 years. The nominal cash flow included the capital cost (CC), the replacement
cost [22], the operation and maintenance cost (OMC), and the salvage cost (SC). These costs were
discounted for the present in the discounted cash flow that represented the total current cost (TCC) of
the renewable power system. The system cost calculation criteria are described in detail in [26]. The
wind farm financial parameters are described in detail in [12]. The cost parameters of the PHS station
are given in Table 1. The cost of the energy from the utility grid had the last priority to satisfy the
load demand.

Thus, an economic comparison with one hour time steps was done to satisfy the load demand in
Figure 3. However, there were priorities built into the design code to satisfy the load demand; the
wind farm first, then the PHS plant, and, lastly, the necessity to purchase energy from the grid if the
load was still not satisfied. Moreover, the number of wind turbines (WTs) was computed based on the
rated power, as shown Figure 5.

3.4. Indicators of the Objective Function

There are technical, economic, and environmental indicators that were computed based on the
optimal value of the COEPS. These included the wind and hydro fraction (WHf), as shown in Equation
(16), and carbon dioxide emissions (ECO2).

WH f =
Renewable generation

System′s absorbed energy
(16)

The ECO2 was computed by summing up the hourly multiplied grid energy purchases with a grid
emission factor of 583.866667 gCO2/Wh.

4. Optimization Toolbox of Matlab

The optimization toolbox in Matlab is a collection of functions that implement Matlab’s numerical
capability and computing environment. This toolbox provides functions to find parameters which
minimize or maximize objectives to satisfy specific constraints. Therefore, the optimal solutions of
continuous and discrete problems can be obtained, tradeoff analyses can be achieved, and optimization
design tasks can be performed using this toolbox. In addition, parameter estimations and tuning can
be done using this toolbox. Moreover, solvers for linear programming (LP), quadratic programming,
nonlinear programming (NLP), constrained linear least squares, nonlinear least squares, and nonlinear
equations are included in this optimization tool box [27]. In this paper, the genetic algorithm
(GA), simulated annealing (SA), and pattern search (PS) optimization methods were used from the
Matlab toolbox.

GA, which is a search technique based on a principle of biological genetics and natural selection,
allows a composition of many individuals to evolve under specified selection rules to a state that
maximizes fitness under a specific objective function.

As a Matlab tool, GA is a powerful tool capable of providing robust approximation for systems
that may be subject to uncertainties [28,29]. Its research mechanism consists of the use of candidate
solutions represented in a binary form, called chromosomes. Several genetic operators, such as
crossover, mutation, and inversion, are used to adapt and fit the generated population of chromosomes
in each research step [29].

63



Energies 2019, 12, 4387

The flow of the genetic algorithm can be summarized by the following steps [30].

• Create initial population (usually a randomly generated string);
• Evaluate all the individuals (apply some function or formula to the individuals);
• Select a new population from the old population based on the fitness of the individuals and the

required objective function;
• Apply some genetic operators (mutation, crossover, and inversion) to the population members to

create new individuals;
• Evaluate the newly created individuals based on the required objective function.

Repeat the last three steps until the stopping criteria has been satisfied, where a certain fixed
number of generations is obtained.

In summary, the GA toolbox has four main modules: The optimization problem definition module,
the variables setting module, the generation of the initial population module, and the evolution module.
These modules interact with each other by exchanging information that enables the operation of the
algorithm. Before running the optimization algorithm, it is necessary to characterize the optimization
problem. Then, the type and the representation of the variables used by the algorithm must be defined.
GA works directly with real variables or with codified variables. Thus, depending on the type of
variable defined by the problem and the type of representation used by the GA, there is a necessity for
coding/decoding to pass from the actual workspace to the GA workspace.

Moreover, pattern search (PS), i.e., direct search or derivative-free search, is one of the Matlab
optimization methods used to optimize functions that are not continuous or differentiable. Optimization
attempts to find the best-match solution with the lowest error value in a multidimensional analysis
space of possibilities [27]. Furthermore, simulated annealing (SA) is a Matlab toolbox method used
to solve unconstrained and constrained optimization problems [31,32]. The models of this method
simulate the heating process of the materials. At each iteration step of the simulated annealing
algorithm, a new point is randomly generated. The distance of the new point from the current point
is based on a probability distribution with a scale proportional to the temperature. An annealing
schedule is selected to systematically decrease the temperature as the algorithm proceeds. As the
temperature decreases, the algorithm extends its search to finally reach an optimal solution. The SA
algorithm consists of two main options, namely, “AcceptanceFcn” and “TemperatureFcn”. The first
option accepts the worst case in order to achieve a global solution for the desired problem. The second
option selects the suitable algorithm uses to update the temperature. Two stopping criteria are used
for the SA algorithm, which are function tolerance and maximum iterations. In the first criterion, the
algorithm runs until the average change in value of the objective function is less than the value of
tolerance. In the second criterion, the maximum number of iterations can be determined [27].

5. Results and Discussion

Every component shown in Figure 1 was modeled and coded in Matlab along with the objective
function of the cost of energy of penetrated system (COEPS) and the rest of the corresponding indicators.
Table 4 shows the results obtained using the GA, SA, and PS solvers. Also, many data corresponding
to the optimal value of the COEPS are included in Table 4. The three aforementioned solvers of the
Matlab optimization toolbox were selected to solve the problem described in this paper. The SA and PS
solvers provided solutions that were 1.27634% and 1.98903% higher than the GA solution, respectively.
Therefore, the GA solution was found to be feasible compared with the other solutions.
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Table 4. Detailed results of the optimized system using genetic algorithm (GA), simulated annealing
(SA), and pattern search (PS) algorithms.

Parameter Value (GA) Value (SA) Value (PS)

COEPS ($/kWh) 0.0955388 0.0967582 0.0974391
ECO2 (kt/year) 198.9044 204.5988 207.5809
COERenewables ($/kWh) 0.0631 0.0637 0.0641
Number of WTs 47 45 44
Amax (m2) 9,676,800 7,142,400 8,506,368
Amax (Dunam) 9676.800 7142.400 8506.368
Amin (m2) 6,856,704 6,561,792 6,266,880
Amin (Dunam) 6856.704 6561.762 6266.880
Total cost (M$) 441.3 426.37 419.44
WHf (%) 56.1427 54.3791 53.4641
Grid purchases cost (M$) 45.649 46.956 47.641
Grid energy purchases (GWh) 340.67 350.42 355.53
Prated (PHS) (kW) 18,118.5 19,226.37 20,039.45
Erated (PHS) (kWh) 181,185 192,263.7 200,394.5
WJ (J/m3) 4.905 × 105

WkWh (kWh/m3) 0.136359
Vwater (m3) 1.56322 × 106 1.65880 × 106 1.72895 × 106

APHS (in m2) 104,214.902 110,586.803 115,263.501
APHS (in Dunam) 104.2149 110.5868 115.2635
Fwater (m3/s) 43.457 46.115 48.065

The GA solution of 0.0955388 $/kWh was economically feasible compared with the SA and PS
COEPS values. The optimal value of the COEPS, which was found using the GA, is shown in Figure 6.
This value was 28.7% less than the energy bought from the conventional electric network, which is an
excellent indication for the economic feasibility of this suggested configuration.

Figure 6. GA to optimize COEPS.
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Further, Figure 7 shows the current best point for the two decision variables found at the optimal
value of the objective function.

Figure 7. Corresponding decision variables of the optimal configuration.

Note that the area of the wind farm was assumed to be rectangular and was therefore computed
by incrementing the odd optimal number by one. Furthermore, the ECO2 in the suggested location was
634.645 kt/year [12], therefore, the emissions were mitigated by 68.66%, assuming that the renewable
configuration in Figure 1 was adopted. Also, the geographical area of renewable plants (ARenewables)
was increased. However, only 48.91% of the geographical area limit was used to install the designed
hydro-wind energy system. Thus, the rest of the area (51.09%) could be used in the future as load
demand and the system size grow.

The discounted payback period (DPP) is frequently used in renewable energy studies to find
the length of time needed to retrieve the initial investment [33–35]. This was done in this paper by
building the cumulative cash flow (CCF), as shown in Table 5. Note that the present value factor (PVF),
cash flow (CF), and the corresponding discounted cost values (CFdiscounted) were calculated. The CF
in Table 5 included the total cost found before in Table 4 using GA, and the energy savings of the
renewable energy system. These energy savings were computed by multiplying the yearly renewable
generation (436.438 GWh) by the energy purchased price of electric utilities in Jordan. Afterward, the
CCF values were computed by cumulatively adding the discounted cost values. Then, the time to get
back the total cost value was calculated using Equation (17). Note that Table 5 shows only 15 years of
the 50-year project life-time, because the aim was to obtain a positive cost value from the CCF, which
was held at the 11th year. This was just before the time when the total cost was retrieved. Table 5
shows that the DPP was computed to be around 10.271 years (10 years, 3 months, and 7 days).

DPP = nl +

∣∣∣CCF (nl)
∣∣∣

CFdiscounted(nl + 1)
(17)

where nl is the year number at the last negative cost value of the CCF.
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Table 5. Calculation of the discounted payback period.

Year (N) PVF CF (M$) CFdiscounted (M$) CCF (M$)

0 1.000 −441.300 −441.300 −441.300
1 0.944 58.483 55.234 −386.066
2 0.892 58.483 52.165 −333.901
3 0.842 58.483 49.267 −284.633
4 0.796 58.483 46.530 −238.103
5 0.751 58.483 43.945 −194.158
6 0.710 58.483 41.504 −152.654
7 0.670 58.483 39.198 −113.456
8 0.633 58.483 37.020 −76.436
9 0.598 58.483 34.964 −41.472

10 0.565 58.483 33.021 −8.451
11 0.533 58.483 31.187 22.736
12 0.504 58.483 29.454 52.190
13 0.476 58.483 27.818 80.008
14 0.449 58.483 26.272 106.280
15 0.424 58.483 24.813 131.093

DPP (Years) 10.27096862

The study performed in this paper, after adding the hydro storage system, was compared to a
previously studied scenario in [12] for a wind-only system connected to the utility grid at the same
location. Table 6 shows the percentage increase/decrease for the parameters computed in Table 4. For the
wind–hydro on-grid system, the COEPS and the grid purchases were reduced by 16.93% and 24.68%,
respectively, showing the importance of the storage system for wind power that fluctuates naturally.
These cost and emissions reductions are significant, especially for non-oil producing countries, such as
Jordan, which imports around 96% of its energy needs as oil and natural gas. The carbon emissions
reduction was improved compared with the wind-only system. Furthermore, renewable penetration
increased by 56.64% as a result of adding the PHS system, resulting in a more environmentally friendly
power system.

Table 6. On-grid wind farm with/without PHS comparison.

Parameter Percentage Increase (+) or Decrease (−) in %

COEPS −12.26
ECO2 −24.69

COERenewables −1.52
Number of WTs +104.35
ARenewables (max) +71.14
ARenewables (min) +21.79

Total cost +110.83
WHf +56.64

Grid purchases cost −24.69
Grid energy purchases −24.68

6. Conclusions

In this paper, every component shown in Figure 1 was modeled and coded in Matlab along
with the objective function (COEPS). A wind–hydro grid connected power system was proposed as
an adjunct to an existing power grid. This was mathematically modeled and then coded in Matlab.
The GA of the Matlab optimization toolbox was used to find the optimal feasible value of the COEPS,
which was 0.0955388 $/kWh. This was 28.7% less than the conventional energy from the power grid.
The discounted payback period was 10 years, 3 months, and 7 days. Furthermore, carbon emissions
were reduced by 68.66% compared with experimentally estimated data. As a result, the grid energy
purchases were also reduced. Specifically, comparing the system described in this study with the

67



Energies 2019, 12, 4387

formerly studied on-grid wind-only system showed that the COEPS, ECO2, COERenewables, and grid
energy purchases were reduced by 12.26%, 24.69%, 1.52%, and 24.68%, respectively. These are very
promising results, especially for oil-importing countries, such as Jordan, where imported energy is a
significant financial burden to the economy. The proposed wind power system with hydro storage is
recommendable for its clean and economical features, compared with the conventional fossil-fueled
grid or wind-only on-grid renewable configurations.

Finally, this paper is a case study to demonstrate the important point of local solutions to the global
problem of global warming. The paper is necessarily limited to the specific data and assumptions of
the local case study. Future work will include applying the above principle and the methodology of
this paper to many other local engineering boundary conditions.
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Abstract: Carbon mitigation is a major aim of the power-generation regulation. Renewable energy
sources for electricity are essential to design a future low-carbon mix. In this work, financial Modern
Portfolio Theory (MPT) is implemented to optimize the power-generation technologies portfolio.
We include technological and environmental restrictions in the model. The optimization is carried
out in two stages. Firstly, we minimize the cost and risk of the generation portfolio, and afterwards,
we minimize its emission factor and risk. By combining these two results, we are able to draw an
area which can be considered analogous to the Capital Market Line (CML) used by the Capital Asset
Pricing model (CAPM). This area delimits the set of long-term power-generation portfolios that can
be selected to achieve a progressive decarbonisation of the mix. This work confirms the relevant role
of small hydro, offshore wind, and large hydro as preferential technologies in efficient portfolios. It
is necessary to include all available renewable technologies in order to reduce the cost and the risk
of the portfolio, benefiting from the diversification effect. Additionally, carbon capture and storage
technologies must be available and deployed if fossil fuel technologies remain in the portfolio in a
low-carbon approach.

Keywords: energy planning; Modern Portfolio Theory (MPT); Capital Asset Pricing Model (CAPM);
low-carbon economy; renewable energy deployment; environmental efficiency

1. Introduction

Energy planning fosters decision-making from the political, social, and environmental
dimensions [1]. In addition to these dimensions, physical and technical variables complete a picture
characterized by the uncertainties, risks, and complexities around them [2–4]. In the core of this
problem, we find some questions such as how to satisfy the demand, how to minimize the generation
cost, and how to meet the emission objectives [5]. Decision-making inside energy planning is, thus, a
strategic process as it conditions the economic, social, and climate future through the selected energy
transition approach [6,7], so much so that the errors in energy planning can result in the overcapacity
either of the total power-generation system or of some technology; in higher tariffs for the households;
in higher costs for the support schemes; or in energy policy actions driving to situations of legal
uncertainty for technological investors [8].

Energy planning uses several techniques to solve a territory or country energy problem. The model
that we put forward in this work employs quadratic programming as it is based on the Financial
Portfolio Theory to design efficient power-generation real asset portfolios [9–22]. This proposal is in

Energies 2019, 12, 3599; doi:10.3390/en12193599 www.mdpi.com/journal/energies70



Energies 2019, 12, 3599

the line with other well-known optimisation models such as multi-period linear programming [1,5],
interval linear programming [3,23,24], or stochastic programming [2,25–27].

Energy planning can be seen as a long-term investment selection problem. The aim is to design the
composition of the generation mix by complying with the economic, social, and environmental criteria
set for a territory or region [10,14–17]. This approach is similar to that of the Energy Trilemma from
Stempien and Chan (2017) [28], which encompasses energy security, energy sustainability, and energy
equity. The proposal includes both the traditional energy planning approach about the minimisation
of cost of the future power-generation portfolio that satisfies the power demand [2,4,11,29] and the
current trends observed in the literature about the need of considering the risk and the uncertainty of
the energy and climate context [2–4].

We employ the Modern Portfolio Theory (MPT) methodology. It allows us to include some
fundamental matters in the analysis, like energy security [30–32]—through the study of the portfolio
diversification—and its positive effects on the power supply disruption [12–14,17,33]. Energy security
is a key element in the agenda of the energy-resource-importing countries [34]. Setting and managing
their energy policy objectives are essential for these countries to reduce the energy risk arisen from
importing resources [7,35]. Increasing the renewable energy sources (RES), improving the energy
efficiency, and reducing CO2 emissions [34] are objectives that empower the environmental aspect as
well as improve the level of energy security. The aim is to adjust the available resource consumption and
to give priority to indigenous technologies (renewable technologies) in power generation. This leads to
reducing the dependence on imported fossil combustibles, to decreasing the pollutant gas emission—as
these technologies are non-pollutant—and to using natural resources that are not constrained by a
future depletion of reserves [5,36,37]. Thus, we can conclude that energy planning and environmental
protection are two sides of the same coin [38,39].

Our approach falls within the research line aiming at including sustainable development principles
inside long-term environmental and energy planning [40–42]. Examples of this environmental
commitment are establishing objectives for the reduction of pollutant gases emission [14,17,31–33], for
including the externalities derived from power generation [10,41–45], or for taking into account the
CO2 emission costs [10,18,29,46–48] by establishing markets like the EU Emissions Trading System
(EU-ETS) [49–52]. Such a set of measures helps policy makers fix the “market failure” [44] and assign
resources in a way that is optimal and efficient [41,45]. In this context, renewable technologies appear
as a part of the solution due to their multiple positive features: they do not emit pollutant gases,
they do not depend on fossil fuels, and thus they are not subject to geopolitical risks; as they have an
autonomous character, they reduce the energy dependency [16,33,53–55].

Our proposal may improve the previous approach of Martinez et al. (2018) [56], employing and
developing the initial financial concept of the Capital Market Line to a realistic power portfolio case.
The process starts by characterizing the power-generation-emitting technologies according to their
emission and risk. The objective is to minimize the power-generation emission level. In other words,
we opted to minimize the emission amount (kg-CO2/MWh) instead of minimizing its monetary value.
This allows us to achieve a result that equalises the imbalance caused by the minimization of emission
costs [57]. The model solution results in the power-generation mix that minimizes CO2 emissions.
The model consists of a multi-stage MPT model of quadratic optimization.

Among the criticism of employing the MPT to implement power-generation optimization, we find
the original MPT being applied to fungible and almost infinitely divisible financial assets. As a matter
of fact, power-generation plants are neither fungible nor divisible assets. We commented that the MPT,
when applied to power generation, should be understood as a tool for decision-making in the medium-
and long-term and for a relatively vast territory (a country or region). Under these assumptions,
power-generation plants can be considered fungible and divisible assets. This study could be presented
as a case of the European Union, due to the definition of technological limitations in the proposed MPT
model. However, data on technological costs and emission factors belong to international institutions
(IEA), which could allow us to talk about a general case and not only a European one.
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It is important to highlight that the application of the MPT to power generation entails a supply
approach. An optimal energy mix is clearly dependent on the demand level, and that level is the one to
which the energy supply is matched. Nevertheless, the MPT approach does not deal with demand-side
issues and focuses uniquely on the optimization of the power-generation mix.

Two fundamental elements are in the basis of the contribution of our work. First, this
approach focuses on the environmental dimension of the power-generation portfolio. We modify
the objective function, which becomes an emission-minimization function instead of a cost—or cost
risk—minimization function. Hence, the model solution shows the minimum possible emission level
instead of the accomplishment of the emission reduction objectives [14,17,20,32]. The second element
is that the Capital Asset Pricing Model (CAPM) is employed coming from the financial field of yield
optimization. The following section is dedicated to briefly explaining the MPT and the CAPM.

2. Materials and Methods

2.1. The Modern Portfolio Theory and the Capital Asset Pricing Model

According to finance theory, given a portfolio of financial assets, it is assumed that their expected
yield and risk can be calculated. In the original model [57], the average of historical yields of every
asset is used as an estimator of the expected yield of that asset, while the variance of those historical
yields is used to assess the risk of every asset. The overall yield of a portfolio is a weighted average
of the yields of its components. Likewise, the risk of the portfolio can be calculated as a quadratic
weighted function of the risk of its components. MPT aims to calculate the asset participation shares
that minimize the risk of the portfolio subject to certain constraints: the participation shares must sum
up to one and, eventually, they must be positive, indicating that short positions are not allowed.

By solving the previous problem, we obtain the so-called efficient frontier. That is the line, in a
risk-return coordinate axis, on which every efficient portfolio lies. An efficient portfolio is a portfolio
that shows the minimum risk for a given return or the maximum return for a given level of risk.
The efficient frontier is concave, and it represents the upper-left limit of the feasible set: the part of the
plane on which every combination of risk and return lies.

MPT has not given the “best” portfolio among the efficient portfolios yet. If now we assume that
there is a riskless asset, an investor can spend part of their budget in this riskless asset and the other
part in an efficient portfolio [58]. The set of possible linear combinations define a line that connects
the point corresponding to the riskless asset yield (in the ordinate axis as its risk is zero) and the
efficient frontier. As the efficient frontier is concave, this line will be tangent to it. The tangency point
is known as the tangent portfolio or the market portfolio and represents the efficient portfolio that best
summarizes the market behaviour.

This tangent line is called the “Capital Market Line” or CML, and every investor should choose a
point on that line as it shows higher yields for any level of risk. In fact, this line can be drawn further
from the tangency point, indicating that the investor is borrowing money. The CML is a relevant
concept of the Capital Asset Pricing Model or CAPM [59]. Another important issue of the CAPM
focuses on a single asset in order to calculate its “Security Market Line” or SML. The slope of this
SML, on a market risk–return coordinate axis, defines how the asset behaves in relation to the market.
The slope of the SML is known as the beta of an asset. If the beta is less than one, the asset is less
volatile (less risky) than the market. If it is higher than one, the asset is more volatile (riskier) than
the market.

2.2. Applying MPT and CAPM Beyond Finance

The portfolio optimization approach can be classified inside risk-control management [60] and
focuses on minimizing the portfolio risk by its diversification [16,19,60,61]. A significant number of
works in the literature support the conclusion that it is a proven methodology for its application to
energy planning [16,17] and for optimizing the operation of demand response resources [62]. The MPT
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approach allows the joint inclusion of both cost and cost-risk of the different available technologies.
This duality allows that the objective function can be expressed both as a power-generation portfolio cost
minimization function and as a power-generation portfolio risk minimization function. By introducing
the binomial cost-risk in the energy planning optimization model, the approach (traditionally based on
the cost minimization [11,13,29]) is improved.

MPT applications are extensive in the literature. Particularly, it has been helpful to analyse different
environmental elements. Among the last works published about MPT applied to biodiversity, the one
from Yemshanov et al. (2014) [63] stands out. Their work deals with the pest surveillance problem
from a diversification point of view, and they study the optimal allocation of surveillance resources by
employing MPT. Later, Akter et al. (2015) [40] applies MPT analysis to asset-based biosecurity decision
support. These works underline the value of MPT as a valid and relevant tool against the uncertainty
derived from the lack of knowledge about species invasion dynamics. These authors’ approach is the
opposite of the one maintained by others like those of References [31,64–66], who point out that, in
contexts characterized by ignorance and uncertainty about the analysed assets, using historical data
as the only source to develop the MPT model can drive to non-robust results. To solve this pitfall,
Hickey et al. [31] employed, complementarily to MPT, other tools like diversification indexes or an
approach based in real options.

Regarding CAPM, recent studies applied it to the energy field. It is worth highlighting some of
these studies. Inside the power retailer portfolios management, Charwand et al. (2017) [67] studied
the maximization under uncertainty of the total expected rate of return of an electricity retailer. They
broadened the work of Karandikar et al. (2007) [68] who used CAPM to determine the retail electricity
price for end users. In this line, Rohlfs and Madlener (2013) [69] applied CAPM to calculate every
technology rate of return inside a stochastic NPV approach—they proposed a cost effectiveness model
to analyse different clean-coal technology pathways from the value of capture-readiness. Other
authors [70–72] confirmed the suitability of using discount models as assessment tools when valuing
investment projects under conditions of risk and uncertainty. In these models, one of the key variables
is the discount rate and the CAPM arises as an optimal tool for its estimation. Recently, Zhang and Du
(2017) [73] referred to the work of Broadstock et al. (2014) [74] as an example of CAPM application—in
this case, to investigate the possible relationship between the international oil prices and the energy
stock quotes in China. In a similar line, Schaeffer et al. (2012) [75] used CAPM to study the evolution of
different oil companies’ stock prices and to estimate their beta, which allows to foresee the behaviour
of every company in the face of changes in the market portfolio. Additionally, Mo et al. (2012) [76] put
forward a multifactor market model based on the CAPM theory to study the impact of the EU-ETS on
the corporate value of EU electricity firms.

2.3. Developing the Multi-Stage Model

Throughout this subsection, we are going to explain how to develop our model. This part is
divided in three main steps. In the first one, we will explain how to devise the instrumental model,
which considers all the power-generation technologies in order to draw a reference efficient frontier.
In the second step, we deal with non-pollutant power-generation technologies—nuclear, onshore wind,
offshore wind, hydro, small hydro and photovoltaic (PV)— to build a non-pollutant efficient frontier.
These two first steps constitute the first stage of our model.

Finally, in the third step, we will put forward the emission-risk model based on the CO2 emissions
of the pollutant technologies and in the risk or variability of the CO2 emission cost. This will give
us a pollutant-technology-efficient frontier which corresponds to the efficient-pollutant-generation
portfolios—those that offer the lowest emission level to a given level of risk or vice versa—that are to be
combined with the efficient non-pollutant generation portfolios obtained in the first stage of the model.
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2.3.1. The Cost-Risk Instrumental Model

Based on MPT, we devise a model to find the efficient frontier or the set of portfolio cost-risk pairs
that offers the lowest cost for a given level of risk or the lowest risk for a given level of cost. We will
work with twelve technologies: Six of them are non-pollutant—nuclear, onshore and offshore wind,
large and small hydro, and large photovoltaic (PV)—and the other six are pollutant—coal, coal with
carbon capture and storage (CCS), natural gas, natural gas with CCS, oil, and biomass.

In MPT, the cost risk of a specific technology is measured by its cost standard deviation. Table 1
shows the expected costs, the cost standard deviation, the expected emission factor, and the emission
cost standard deviation for every technology in our model. We used some information available in
the literature about the different categories of costs in a power-generation plant (capital expenditures
and operational expenditures, such as operation and maintenance costs, fuel costs, emission costs, and
dismantling costs) to calculate the average generation costs by technology, their standard deviation,
and the correlation among them. We also use the emission cost standard deviation as a proxy of
the real emission standard deviation, as we have no real emission data. It is important to underline
that we consider the nuclear generation technology as non-pollutant, even though it involves other
important environmental risks not related with carbon emission. Moreover, we decided to include
biomass generation in the pollutant set of technologies as it has carbon emissions, although it could be
considered testimonial. In fact, this decision (considering the biomass as a pollutant technology) will have
some effects on our results that will be conveniently explained. Another point to take into account is the
fact that the current emission factor can vary along time, but we do not consider this concern in this work.

Table 1. Cost, emission, and standard deviations by technology. Source: Authors’ own work, based on
data collected from DeLlano et al. (2014, 2015) [14,77].

Technology and Abbreviation
Used

Cost (€/MWh) Cost Variance
Emission

(kg-CO2/MWh)
Emission Cost

Variance

Nuclear (N) 30.04 8.07 - -
Wind (W) 60.69 41.69 - -

Offshore Wind (OW) 73.81 52.04 - -
Hydro (H) 38.62 105.79 - -

Small Hydro (SH) 42.95 12.92 - -
PV 212.03 110.27 - -

Biomass (B) 96.62 162.84 1.84 0.01
Coal (C) 52.23 31.51 734.09 4.77

Coal with CCS (C CCS) 78.44 46.27 101.00 0.66
Natural Gas (NG) 38.79 12.33 356.07 2.31

Natural Gas with CCS (NG CCS) 63.60 44.45 48.67 0.32
Oil (O) 93.17 155.83 546.46 3.55

A power-generation portfolio is a specific set of participation shares or weights of every technology
in the model. For technology i, with i = {1, 2, . . . , 12}, its participation share will be denoted
by wi. w ∈ R

12×1 represents the vector with twelve participation shares of a specific portfolio.
These participation shares are the unknown variables of which the values are to be determined.

With c ∈ R12×1, the vector containing the expected cost associated to every generation technology,
the cost of a portfolio P can be calculated by Equation (1), where the supraindex t indicates the
transposition operation.

cP = wt × c (1)

Now denote by V ∈ R12×12 the variance-covariance matrix of the twelve technologies in the model.
Thus, the portfolio risk, the standard deviation of the portfolio cost, will be as shown in Equation (2).
Table 2 contains the cost variances-covariances used in the model.

σP = (wt ×V ×w)
1
2 (2)
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Table 2. Cost variance-covariance matrix. Source: Authors’ own work, based on data collected from
DeLlano et al. (2014, 2015) [14].

Technology N C
C

CCS
NG

NG
CCS

O W H SH OW B PV

N 8.07 3.84 5.07 3.54 4.26 15.32 −0.07 −0.42 −0.46 −0.10 −6.40 0.20

C 3.84 31.51 7.04 4.02 4.81 20.82 −0.21 0.03 0.03 −0.31 −14.1 -0.21

C CCS 5.07 7.04 46.27 5.43 6.60 27.16 −0.45 0.06 0.07 −0.68 −18.5 -0.46

NG 3.54 4.02 5.43 12.33 6.55 15.44 0.00 −0.08 −0.08 0.00 −3.16 0.05

CCS NG 4.26 4.81 6.60 6.55 44.45 18.33 0.00 −0.16 −0.17 0.00 −3.38 0.11

O 15.32 20.82 27.16 15.44 18.33 155.8 −4.02 −1.95 −2.11 −6.07 −86.4 -0.16

W −0.07 −0.21 −0.45 0.00 0.00 −4.02 41.69 0.94 1.01 4.68 −0.31 0.09

H −0.42 0.03 0.06 −0.08 −0.16 −1.95 0.94 105.8 3.64 1.41 −0.33 0.56

SH −0.46 0.03 0.07 −0.08 −0.17 −2.11 1.01 3.64 12.92 1.53 −0.36 0.60

OW −0.10 −0.31 −0.68 0.00 0.00 −6.07 4.68 1.41 1.53 52.04 −0.48 0.13

B −6.40 −14.1 −18.5 −3.16 −3.38 −86.4 −0.31 −0.33 −0.36 −0.48 162.8 0.25

PV 0.20 −0.21 −0.46 0.05 0.11 −0.16 0.09 0.56 0.60 0.13 0.25 110.3

The problem of minimising the risk can be expressed in terms of a constrained quadratic
optimization problem: minσP, subject to a set of constraints that are described hereunder.

When applying MPT to power-generation planning, there are some technical constraints to keep in
mind. First, the total sum of every participation share wi must be equal to one. Also, every participation
share wi must be 0 or positive, and from the first constraint, it must also comply with wi ≤ 1.

The use of technologies for power generation is usually limited for the sake of the necessary power
supply security, one of the main objectives of a country or territory power policy. Diversification of
power-generation technologies leads inarguably to a more secure power supply. Moreover, another
aim of a country or territory power policy is to preserve the environment and this can be reached by
imposing stricter limits to the most pollutant technologies. Hence, our model has a set of technological
and environmental constraints, imposing an upper limit on those weights wi. These limits come from
some diverse institutional forecasts (IEA, EU-IPTS, and the European Union Commission) and should
be taken as reference limits as they can be adapted to specific country demands and as they are subject
to changes over time. Table 3 details these limits.

Table 3. Limits by generation technology. Source: Authors’ own work, based on data collected from
DeLlano et al. (2015) [14].

Technology Maximum Participation

Nuclear 29.80%
Wind 20.30%

Offshore Wind 2.00%
Hydro 10.80%

Small Hydro 1.50%
PV 5.5%

Biomass 8.50%
Coal with and without CCS 23.40%

Natural Gas with and without CCS 27.60%
Oil 0.80%

CCS technologies as a whole 18% of the non-CCS coal and
natural gas, and oil participations

Just by using the aforementioned constraints—technical, technological, and environmental
constraints—we are able to obtain a unique portfolio called the global minimum variance portfolio or
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GMV portfolio. This portfolio shows the least risk level of every possible portfolio. As we want to
obtain not only the GMV portfolio but also the set of efficient portfolios or efficient frontier, we must
add an additional constraint to our model: the cost constraint. As a matter of fact, the GMV portfolio
is the portfolio with the least risk but it is also an efficient portfolio with the highest cost. On the
opposite end of the efficient frontier, we will find a portfolio with the lowest cost of all the efficient
portfolios—but also with the highest risk of all the efficient portfolios. We can easily find this global
minimum cost (GMC) portfolio by solving a linear programming problem of which the objective is
to minimise the portfolio cost, mincP = minwt × c, subject to the same constraints described above,
except the cost constraint. This constraint is added to the quadratic model as cP = c∗, with c∗ as an
objective cost for the portfolio. Iterating the quadratic model by changing this objective cost between
the GMV cost and the GMC cost, we are able to draw the efficient frontier.

The model can then be expressed as in Equation (3).

minσP = min(w×V×wt)
1
2 , subject to :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi ≥ 0, ∀i, i = {1, 2, . . . , 12}
12∑

i=1

wi = 1

Technological and environmental constraints
[cP = wt × c = c∗]

(3)

Solving this model, we obtain the efficient frontier shown in Figure 1, where we also draw the
extreme points of this frontier—the GMV portfolio and the GMC portfolio—along with their cost and
risk values. In the graph, we also represent the cost-risk points corresponding to those technologies
that fit into the graph’s limits—nuclear, natural gas, and small hydro.

Figure 1. Instrumental model’s efficient frontier.

76



Energies 2019, 12, 3599

Figure 2 represents the participation shares of the different technologies in the efficient frontier
portfolios of the instrumental model. As we can see, the GMV portfolio, the one on the left side of the
figure, shows a higher diversification—its Herfindahl–Hirschman index is 18.40%, less than the GMC
portfolio with a Herfindahl–Hirschman index of 23.64%, which is considered good for energy security.

Figure 2. Technology participation in the instrumental mode.

Moreover, the nuclear, the small hydro, as well as the offshore wind technologies participate in
the GMV portfolio at their maxima. On the other hand, in the GMC portfolio, the nuclear, the coal, the
natural gas, the hydro, the small hydro, and the offshore wind technologies play a part at their maxima.
Therefore, nuclear, small hydro, and offshore wind are regarded as highly efficient technologies in
terms of cost and risk by the model.

The next step will be to classify the different generation technologies into two different subsets:
one for the pollutant technologies—coal, coal with CCS, natural gas, natural gas with CCS, oil,
and biomass—and another one for the non-pollutant technologies—nuclear, wind, offshore wind,
hydro, small hydro, and PV. For the first subset, we are going to set out a model quite similar to the
instrumental one just exposed. For the second subset, we will consider an emission-risk model instead
of a cost-risk model.

2.3.2. The Non-Pollutant Technology Efficient Frontier

Using the same data shown in Tables 1 and 2 but considering only those non-pollutant technologies,
we will adapt the technological and environmental constraints of the instrumental model to obtain
the constraints pertinent to this non-pollutant technologies model. To adapt the technological and
environmental constraints of the instrumental model to the non-pollutant technologies, we decided
to work on the basis of the non-pollutant technology’s participation shares in the efficient frontier
calculated in the previous section. Briefly, we raised the participation share of every non-pollutant
technology relative to the total non-pollutant technologies participation shares in every efficient
portfolio and took the maximum by technology, resulting in the limits presented in Table 4, where
the column “Maximum Weight” refers to the maximum weight reached in the efficient frontier of the
previous model and the column “Maximum Participation” refers to this maximum weight considering
only the non-pollutant technologies.
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Table 4. Non-pollutant technological and environmental limits. Source: Authors’ own work, based on
data collected from DeLlano et al. (2015) [14].

Technology Maximum Weight Maximum Participation

Nuclear 29.80% 60.82%

Wind 12.66% 23.86%

Offshore Wind 2.00% 3.92%

Hydro 10.80% 22.04%

Small Hydro 1.50% 3.06%
PV 4.16% 7.86%

Thus, the non-pollutant model is presented in Equation (4); keep in mind that the cost restriction
is used to calculate the efficient frontier as described in the previous section.

minσP = min(w×V×wt)
1
2 , subject to :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi ≥ 0, ∀i, i = {1, 2, . . . , 6}∑6
i=1 wi = 1

wNuclear ≤ 60.82%
wWind ≤ 23.86%
wOffshore Wind ≤ 3.92%
wHydro ≤ 22.04%
wSmall Hydro ≤ 3.06%
wPV ≤ 7.86%
[cP = wt × c = c∗]

(4)

Solving this model, we obtain the efficient frontier shown in Figure 3. Note that the dashed grey
line shown is the instrumental model efficient frontier from the previous section. Comparing both
efficient frontiers, the one from the instrumental model and the one from the non-pollutant technology
model, we can observe that the instrumental model shows higher costs but lower risks—as its efficient
frontier is displaced upward and toward the left.

Figure 3. Non-pollutant technology model’s efficient frontier.

78



Energies 2019, 12, 3599

Analysing the weights in the GMV and GMC portfolios, we see that nuclear and small hydro
participate again at their maxima in both portfolios. In particular, in the GMV portfolio, the offshore
wind also participates at its maximum, while in the GMC portfolio, it is the hydro technology that also
enters at its maximum.

Not surprisingly, the Herfindahl–Hirschman index is worse than in the instrumental model,
the non-pollutant technology model has fewer technologies, and again, the GMV portfolio is more
diversified than the GMC portfolio.

2.3.3. The Emission-Risk Pollutant Technology Efficient Frontier

We will replace our cost-risk orientation with an emission-risk orientation in this second stage
of the model presented in this work. As stated, we have no emission data, apart from the emission
average shown in Table 1, and hence, we use the CO2 cost standard deviation as a proxy for the
emission standard deviation. According to this information, we simulated 100,000 normal distributed
values to calculate the variance-covariance matrix shown in Table 5.

Table 5. Emission variance-covariance matrix.

Technology Coal
Coal with

CCS
Natural

Gas
Natural Gas

with CCS
Oil Biomass

Coal 22.846215 −0.014355 −0.020952 −0.003395 −0.004446 0.000102

Coal with CCS −0.014355 0.436912 0.004161 0.000500 0.007233 0.000058

Natural Gas −0.020952 0.004161 5.298606 −0.001473 0.002642 −0.000033

Natural Gas
with CCS

−0.003395 0.000500 −0.001473 0.102033 0.002162 −0.000014

Oil −0.004446 0.007233 0.002642 0.002162 12.594664 0.000114

Biomass 0.000102 0.000058 −0.000033 −0.000014 0.000114 0.000100

The pollutant technology emission-risk model presented in this section is highly similar to the
instrumental model except for the following two aspects. Firstly, we are not using costs in the
current model but emission factors for the six pollutant technologies—coal, coal with CCS, natural
gas, natural gas with CCS, oil, and biomass. Secondly, we will show five different adaptations
of the current model, four of them without constraints other than the model technical constraints.
In the other model adaptation, we include technological constraints for the pollutant technologies.
The limits of these constraints were built in a quite similar manner as that for the non-pollutant
technology model presented in Section 2.3.2., i.e., raising every pollutant technology participation in
the instrumental model efficient frontier portfolios relative to the total pollutant technologies in those
portfolios and getting the maximum participation as the limit. A problem arises as the oil technology
is not participating in any of the calculated portfolios. To fix it, its technological and environmental
limits in the instrumental model are relatively raised to the limits set for the pollutant technologies.

2.3.4. Model Adaptation with All the Non-Pollutant Technologies

For the six pollutant technologies, we solved the model presented in Equation (5), in which eP ∈ R
is the emission factor of the portfolio and e ∈ R6×1 is the emission vector of which the elements can be
found in Table 1:

minσP = min(w×V×wt)
1
2 , subject to :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

wi ≥ 0, ∀i, i = {1, 2, . . . , 6}∑6
i=1 wi = 1

[eP = wt × e = e∗]

(5)
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In this model we substituted the cost constraint for an emission constraint as we are working with
emission-risk pairs instead of cost-risk pairs.

The results of this model are trivial because, in the GMV portfolio, 99.88% of the power generation
is assigned to biomass and, in the global minimum emission portfolio (GME), biomass captures 100%
of the power generation. The efficient frontier is hence insignificant and practically indistinguishable
from a portfolio with 100% biomass generation. These results were expected as biomass shows a very
low level of CO2 emission as compared to the rest of pollutant technologies and a negligible level of
risk. In fact, this result is completely in line with the optimization features of the model.

A single-technology generation portfolio, or a generation portfolio in which one single technology
is responsible for such a big part of the power generation, is quite far from being an acceptable solution
from the point of view of energy planning. Next, we develop some model adaptations to deal with
this circumstance.

2.3.5. Model Adaptations without CCS Technologies and without Biomass Technology

The first adaptation is similar to the previous one, but CCS technologies, both coal and natural gas,
are removed to prevent the possibility of these technologies not being able to reach a feasible commercial
availability. The results are therefore similar: biomass hoards 99.99% of the generation in the GMV
portfolio and 100% of the generation in the GME portfolio because of the reasons exposed above.

In the second model adaptation, biomass technology is removed from the model. The results offer
a bit more information than in the previous models. Figure 4 shows the weights of the five considered
technologies from the GMV portfolio—first column on the left—to the GME portfolio—last column.
The GMV portfolio allows entry of every technology to the generation mix although natural gas with
CCS takes the lion’s share—the Herfindahl–Hirschman index is 65.96% for this portfolio. As we move
from the GMV portfolio to the GME portfolio, it is clear that natural gas with CCS is increasing its
participation share until it reaches 100% in the GME portfolio.

Figure 4. Non-pollutant technology model’s efficient frontier.

The third model adaptation shows what happens if neither CCS technologies nor biomass are
available to generate power. Again, natural gas, in this case without CCS, is the dominant generation
technology. Surprisingly, oil takes the second place. This is due to the correlations between oil and
the other two technologies in this model adaptation. Figure 5 shows the weights of the considered
technologies in the efficient frontier portfolios—from the GMV portfolio on the left to the GME portfolio
on the right.
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Figure 5. Model adaptation without both carbon capture and storage (CCS) and biomass technologies.

2.3.6. Model Adaptation with Technological Constraints

In this model adaptation, the problem to solve will be the one presented in Equation (6).

minσP = min(w×V×wt)
1
2 , subject to :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wi ≥ 0, ∀i, i = {1, 2, . . . , 6}
6∑

i=1

wi = 1

wCoal + wCoal with with CCS ≤ 54.84%
wNatural gas + wNatural gas with CCS ≤ 66.40%
wOil ≤ 1.33%
wBiomass ≤ 12.56%
[eP = wt × e = e∗]

(6)

As stated, the limits were taken from the instrumental model efficient frontier participation shares
of the pollutant technologies, except for the oil technology limit that was taken from the instrumental
model technological limits of the pollutant technologies.

Solving this model adaptation, the results shown in Figure 6 are achieved. As expected, in light
of the precedent results, biomass is participating at its maximum in every efficient frontier portfolio.
When they participate in the less risky portfolios, coal, natural gas, and oil have participation shares
around 1%. In the GME portfolio, natural gas with CCS participates at the maximum set for natural
gas with and without CCS. The little variation in participation shares due to the imposed constraints
will give us a short efficient frontier.

Figure 6. Model adaptation with technological constraints.
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3. Results

In this section, we present our main results related to cross-drawing the instrumental model and
the pollutant-technology model. Additionally, we will discuss how this model can help policy makers
make their decisions.

3.1. Cross-Drawing the Cost-Risk and Emission-Risk Models and Selecting an Adequate Combination of
Non-Pollutant and Pollutant Technologies

So far, we have one instrumental model that includes all the technologies and constraints, a
non-pollutant efficient frontier that shows higher risk but lower cost than the instrumental efficient
frontier, and a set of several adaptations of a model with pollutant-technologies. Figure 7 represents
some of the efficient frontiers calculated in an emission-risk coordinate axis. Specifically, we depict the
instrumental model numbered with 0 and with a dot-dash line, the model adaptations without biomass
numbered as 2.c, those without biomass and CSS technologies numbered as 2.d, and those with all the
pollutant technologies and with technological constraints numbered as 2.e. It is important to note that
the first two adaptations were practically 100% biomass participated, and for this reason, we are not
showing them in the graph—they would be located practically where the biomass technology is drawn.

Figure 7. Efficient frontiers in an emission-risk plane.

Regarding the pollutant models, the traditional pollutant technologies—coal, natural gas, and
oil—show higher levels of emission and risk; model 2.d efficient frontier appears on the top right side
of the figure. If CCS technologies are included, both the emission and the risk levels are drastically
reduced; see model 2.c in the figure. In fact, models 2.a and 2.b would be represented over the biomass
point in Figure 6. Moreover, the technological constraints are able to lower even more the risk, keeping
a similar level of emission—model 2.e.

By representing in the same emission-risk plane our instrumental model, model 0, it is worth
comparing it with the pollutant models—the non-pollutant model would be drawn on the coordinate
origin. The instrumental model shows a higher level of emission and risk, in terms of emission, than
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those models allowing biomass and CCS technologies because coal and natural gas participate largely
in it, as shown in Figure 2. When approaching the GMC portfolio, these technologies reach their
technological limit and, actually, they participate at their maxima in the GMC portfolio.

The efficient frontier of our models is drawn in a cost-risk coordinate axis in Figure 8. Both the
instrumental model, model 0, and the pollutant models, models 2.e and 2.d, present smaller levels of
risk with similar or lower levels of cost. As stated, pollutant models with biomass, models 2.a and 2.b,
would be drawn on the point corresponding to biomass technology that is far out of the graph’s limits
with a cost variance of 162.84 (standard deviation: 12.76 €/MWh) and with a cost of 96.62 €/MWh.

Figure 8. Efficient frontiers in a cost-risk plane.

3.2. The CML-Analogous Area

So far, we have a pollutant-technology efficient frontier from an emission-risk perspective and a
point of the emission-risk coordinate axis origin representing all the non-pollutant efficient portfolios.
A policy maker could compile a portfolio from the pollutant-technology efficient frontier with the point
in the origin to determine a power-generation portfolio with the whole set of technologies. Therefore,
it is possible to set the best portfolio given a desired emission factor or a risk limit.

The limits of the pollutant-technology efficient frontier are the GMV and the GME portfolios.
The efficient frontier itself connects them together. Combinations of either the GMV or the GME
portfolio with any of the non-pollutant efficient portfolios in the origin will fall inside an area delimited
by these three portfolios: the GMV portfolio, the GME portfolio, and the non-pollutant efficient portfolio
chosen. In Figure 9, this area is the shaded area below and to the left of the pollutant-technology
efficient frontier.

Being under the efficient frontier reflects that any point inside that area shows a lower emission
factor than the point on the frontier with the same level of risk. This was expected as we are combining
a pollutant portfolio with a non-pollutant one. On the other hand, the fact of being to the left of the
pollutant efficient frontier indicates that the risk is lower for any emission factor considered. A portfolio
inside the CML-analogous area (CML-A) is then more efficient than a portfolio in the efficient frontier
with the same emission factor or level of risk.
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Figure 9. A Capital Market Line (CML)-Analogous analysis.

Focusing on the CML-A, the problem is to determine the best portfolio for a given emission factor
or for a given level of risk. It is easy to conclude that the answer must be found on the CML-A borders.
Indeed, when determining the best portfolio in the CML-A for a given level of risk, the solution must
be that one located on the segment joining the coordinate axis origin and the GME portfolio that
shows that level of risk. Likewise, if we want to determine the best portfolio in the CML-A for a given
emission factor, we must find it on the intersection of the segment joining the GMV portfolio with the
coordinate axis origin and the line representing the desired emission factor. In the next section, we
present a brief example of these ideas.

4. Discussion

In this section, there is a brief explanation of how a policy maker could employ this model to
design power-generation portfolios. In Figure 9, we draw one of our pollutant efficient frontiers,
specifically model 2.e, with all the pollutant technologies and with technological constraints in an
emission-risk coordinate axis. In this graph, the non-pollutant model portfolios will be all of them on
the coordinate origin; they have no emission and, consequently, no emission risk.

A policy maker can choose any combination: any linear combination between any portfolio on
the pollutant efficient frontier and on the non-pollutant efficient frontier which, from an emission point
of view, lays on the coordinate origin. In Figure 9, the shaded area delimited by the coordinate origin
and the pollutant efficient frontier of model 2.e represents these combinations. We can see that the area
allows the policy maker to lower the risk for a given level of emission or the emission for a given level
of risk. For instance, given the emission and risk values for GMV and GME portfolios of model 2.e
shown in Table 6, it is easy to calculate the portfolio proportions needed to reach an emission risk of
0.10 kg/MWh. Obviously, the policy maker will prefer the lowest emission possible for that level of
risk and so they will choose the pollutant GME portfolio for the combination, resulting in point A in
Figure 9. Point A can be reached by combining the pollutant GME portfolio and the non-pollutant
portfolio in a proportion of 39.39–60.61%. Also, the policy maker could want to set the emission of
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the resultant portfolio, say, at 30 kg/MWh. In this case, they would like to reach a minimum risk
combination for that level of emission. For this reason, they will want to combine the pollutant GMV
portfolio with the non-pollutant portfolio, resulting in point B, which corresponds to a 47.44–52.56%
proportion of pollutant GMV and non-pollutant portfolios.

Table 6. Emission and risk of the global minimum variance (GMV) and global minimum emission
(GME) portfolios of model 2.e.

Portfolio Emission (kg-CO2/MWh) Risk (kg-CO2/MWh)

GMV2.e 63.24 0.2502
GME2.e 53.79 0.2539

In the last example, it is easy to see that the combination B’ with a 46.75% GME portfolio and a
53.25% non-pollutant portfolio has the same risk value as combination B but with a lower emission
of 25.15 kg/MWh. It does not seem reasonable to lose the opportunity to lower emissions without
increasing the risk. This is why the lower segment of the shaded area is more efficient in the sense used
in this work than the rest of the points in the area when the aim is to adapt the generation portfolio
to a predetermined risk. This insight is similar to the financial CML, but in our case and due to the
convexity of the efficient frontier, instead of having a tangency or market portfolio, we propose to use
the corresponding GME portfolio instead.

5. Conclusions

Throughout the present work, we proved that it is possible to separate the generation technologies
into two different sets and to proceed to a double optimization of the generation mix. When we
compare the non-pollutant-technology efficient frontier with the efficient frontier of the instrumental
model, we are able to generate at a lower cost but at a higher risk using only non-pollutant technologies
(nuclear, wind, offshore wind, hydro, small hydro, and PV).

When analysing the sharing weights in the non-pollutant efficient frontier, nuclear energy,
defending its position as a base-load generation technology, and small hydro participate at their
maxima in both the minimum-risk GMV and the minimum-cost GMC portfolios:

• Nuclear and small hydro are preferential technologies that act as if it intends to obtain the
minimum cost or to get the minimum risk of the portfolio.

• In a complementary way, offshore wind technology participates at its maximum share if the
minimum risk is searched, while large hydro technology is the third technology to enter its
maximum in the minimum cost portfolio.

Replacing the cost-risk perspective with emission-risk perspective pollutant technologies allows to
highlight the important role of biomass and CCS technologies in an efficient portfolio. Their commercial
development is crucial in order to achieve low-carbon emission portfolios.

Oil generation is not included in the power-generation mix in the instrumental model, highlighting
its excessive cost and risk. In the emission-risk models, it is only considered when we take out the
biomass or when we set upper limits to the participation shares of the technologies. These limits cause
the preferred technologies to participate at their maxima in almost every efficient portfolio.

Solar PV generation takes part only in the efficient portfolios close to the GMV portfolio. Its
participation is needed in order to achieve a highly diversified and lower risk portfolio.

The cross-drawing approach proposed between the pollutant and non-pollutant efficient frontiers
calculated in both cost-risk and emission-risk coordinate axes leads to relevant conclusions:

• A pollutant-only generation mix shows a higher cost than a complete generation technology
portfolio and even in relation to the non-pollutant-only efficient frontier.

• A highly diversified portfolio makes it possible to achieve the lowest risk (instrumental model).
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• Renewable energy sources are needed to reduce portfolio cost and risk.
• Pollutant-generation-efficient frontiers show a higher risk mainly because of the fuel cost risk.

Finally, drawing an analogy with the CML from CAPM, we presented the CML-A area that could
helpful a policy maker design the long-term generation mix in a decarbonisation scenario.
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Abstract: Palm oil’s utilization as a renewable energy (RE) source has led the government to
intervene by introducing emission reduction projects. Carbon trading projects are part of the strategic
direction adopted within the climate mitigation plan and sustainability drive in the palm oil industry.
The perquisites and opportunities encountered within emissions trading are expected to aid palm
oil producers economically, environmentally, and socially. This study addresses and analyses how
the carbon trading projects’ targets in Malaysia can be achieved, the problematic, and pressing
issues around their implementation and whether these projects are sustainable and create a positive
impact. This paper is based on literature reviews and semi-structured interviews with expert palm oil
producers in Malaysia. The findings have revealed that carbon trading implementation in Malaysia
has delivered new insights towards the international climate policy approach on the feasibility
and impact of long-term sustainability goals. However, the impact of the implementation needs
support from the government for further development. In conclusion, the major contribution of
this study is that the carbon trading implementation in Malaysia complies with the objectives and
principles of sustainable development and creates a significant influx in investment for Malaysia’s
economic growth.

Keywords: carbon trading; palm oil producer; renewable energy; economy; sustainable development;
clean development mechanism; Sustainable Development Goals (SDGs); Malaysia

1. Introduction

In recent years, the literature on emissions trading regulation has expanded rapidly. This is due
to the awareness relating to environmental change and a sustainable future gaining more attention
worldwide. The global debates on climate change and mitigation strategies have led policymakers to
address the government concerns about promulgating and implementing regulations to overcome the
challenges of mitigating carbon emissions [1] and be more resilient in overcoming climate impacts.
Malaysia has ratified the United Nations Framework Convention on Climate Change (UNFCCC) under
the Kyoto Protocol since 2002. Malaysia’s commitment to the carbon market is also closely related
to, and affected by, overall climate change policy developments. Since the Paris Agreement in 2015,
the UNFCCC has annually improved the climate policy standard, which also directs the international
carbon market.

The carbon trading implementation review has changed drastically post-Kyoto and has developed
into the new sustainable development mechanism (SDM) and sustainable development goals (SDGs).
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The United Nations (UN) SDGs have set out a vision for future sustainability principles and Malaysia
is one of the countries that has committed to engage in their implementation. Malaysia’s national
economic development policies, which were put into practice more than forty years ago, reflected several
UN SDGs even before the introduction of the initiative in 2016 [2]. For example, the ambitious goals
and targets that Malaysia set have been indicated through sustainable and systematic efforts by
putting into practice the mechanism for the SDGs. Despite the desired sustainable goals, the palm
oil industry in Malaysia plays a significant role in influencing growth towards trade and industry
globalization business environments [3]. Moreover, Malaysia has acted on various strategies to invest
in sustainability projects, as well as complying with sustainable practices in the palm oil business.

The clean development mechanism (CDM) is one example of a carbon trading project.
The mechanism involves value-added investments that can generate carbon credits from environmental
projects that have a monetary value. It is reviewed under the UN SDGs initiatives and its main aims are,
first, to achieve sustainable development and productive environmental practices for present and future
generations; second, to conserve the country’s uniqueness and diverse cultural and natural heritage
with effective participation by all sectors of society; third, to achieve sustainable living and strategies
in sustainable production [4,5]. The CDM serves not only as an instrument to fight climate change
issues but also as an important tool to achieve rapid economic growth for sustainable development
and a strategy that can provide a constant source of business opportunities for corporations. CDM is
designed to support foreign direct investment and clean technology transfers, leading to a reduction in
greenhouse gas (GHG) emissions.

The palm oil industry in Malaysia has taken the necessary steps to respond to technological
advancements as well as having carried out research. The growing upstream sector has had a rising
impact on the whole value chain [6]. Based on various studies, as indicated, the carbon market plays a
distinct role in bringing together various concerns across the globe and growth between developed
countries and underdeveloped nations, reflecting opportunities that might result in a win-win situation
and the achievement of the carbon market instrument [7,8]. However, few studies have been conducted
to understand the challenges that have led to a decrease in carbon trading implementation in Malaysia.
Furthermore, carbon trading ought to result in sustainable development and lead to benefits, such as
investment, technology transfers, poverty relief, development of rural areas, and the provision of new
opportunities for developing expertise and knowledge [9,10], more so in developing nations, but there
has been a lack of further research indicating the impact of carbon trading on sustainable development.

A number of lessons can be learned from the CDM experience in the new policy framework’s
development. As in Figure 1, Malaysia is one of the biggest palm oil producers in the world, thus,
the review of the findings suggests that the government needs to view the role played by the markets
in a new way. The policy formulated must not simply be a repetition of past practices and must also be
given time to make proper contributions to achieve the projects’ goals. In other words, there must be a
shift from offsetting and there should be greater concentration to be issued for financial verification,
as well as an integration of human rights, public consultations, and transparency, as the mechanism’s
core principles. This mitigation action on emission reduction will provide useful recommendations
that can facilitate the achievement of an efficient and robust SDM in the future.

In analyzing the possible future of palm oil sustainability and carbon trading, the significant
benefits for the development in rural areas and biodiversity need to be examined in order to identify
the projects’ challenges and their sustainable development impact. The challenges and factors that
have previously confused palm oil producers have continued to concern the palm oil industry in recent
years. Despite this challenge, the engagement level and follow-up actions have continued to rise.
However, with the European Union’s (EU) threat of banning palm oil use in biofuels being perceived
as trade discrimination, the carbon trading scheme appears to have an uncertain future.
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Figure 1. Palm oil production by country, 2017 [11].

The paper aims is to discover the challenges that have led to the conundrum of carbon trading
projects and whether the palm oil companies that have engaged with carbon trading have achieved
sustainable development from the projects. This research is intended to facilitate an incisive
understanding of future development in palm oil companies in Malaysia to ensure a better standard of
practices relating to climate change mitigation strategies and would contribute to the SDGs and national
development. In addition, based on the qualitative research in this study and the analysis of the palm
oil companies that are engaged with carbon trading in Malaysia, this research unpicks the carbon
trading policy towards developing better strategies to allow palm oil to meet the sustainability goals.

2. Literature Review

2.1. Carbon Trading in Malaysia

The biomass renewable energy (RE) project’s implementation in the carbon market is a cooperative
mechanism that depicts high innovation under the bioenergy policy agenda. The implementation is
planned with the intention of providing aid to developing countries to achieve sustainable development
and to comply with climate change mitigation strategies [1]. The implementation is also aimed at
assisting the developed world to comply with their commitment to reducing GHG emissions [12] and
provide new opportunities in investments, technology transfer, building skills, and knowledge to
create a sustainable future in Malaysia.

The CDM project activities have become one of the mitigation and emission reduction strategies
in Malaysia and other countries in Southeast Asian regions, such as Singapore, Thailand, Indonesia,
and the Philippines [12]. These countries are also engaged in carbon emission policies relating to the
SDG standard and are focused not only on the energy sector but also on the agricultural and forestry
sectors. In the Association of Southeast Asian Nations (ASEAN) countries, the CDM has been very
successful in engaging with RE project application and GHG reduction [13]. As the carbon trading
mechanism can be employed in separate projects, its effectiveness in encouraging RE use in developing
nations, particularly in Asia, has a great potential impact on the energy industry.

In the palm oil industry, the Malaysia Palm Oil Board (MPOB) has continually prioritized research
and development (R&D) to enhance sustainability in relation to palm oil. Moreover, the issues related
to sustainability and productivity are core elements of consideration for the MPOB, consisting of
various strategies to maximize the connection between economic development and environmental
sustainability. Hence, the palm oil industry’s future growth is based on a sustainable framework and
the adoption of innovative technologies.

Malaysia’s government has put considerable efforts into RE’s development in the palm oil industry
and into finding an alternative approach through various support and promotion programs to address
the new carbon pricing instruments. The Nationally Appropriate Mitigation Actions (NAMAs) is
one of the alternatives for supporting the CDM activities’ continuity. Malaysia’s palm oil industry
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has endeavored to implement projects that are relevant to RE production, such as RE supply, biofuel,
biomass, biodiesel, and other bio-related production [14]. RE is known as the most adaptable type of low
carbon and sustainable power source because it can contribute towards long-term emission reduction
within the energy usage of electricity, transportation, and energy intensity [15]. The ratification in the
UNFCCC discusses and implements the strategy for reducing carbon emissions [16] and one of the
strategies noted was to have businesses innovate and invest in carbon trading projects that can be
applied in the country’s palm oil industry.

2.2. CDM in the Palm Oil Industry

As [17] mentions, the palm oil industry in Malaysia has great potential to be engaged in carbon
trading projects. The amount of biomass and palm oil production has been noted to increase from time
to time [18] and, therefore, it assumes a strategic role in enhancing RE consumption and delivering
a sustainable future. The RE production from palm oil mill effluent (POME), biomass, composting,
and bioenergy residues can prove beneficial for different sectors in moving forward to a new market
mechanism. This goal is one of the directions for carbon trading project implementation.

As of 2015, there were registered CDM projects with a total investment of approximately
USD1,530 million in certified emission reductions (CER) transactions and holdings in Malaysia’s
pending account, with 2,789,528 CER [5]. The biomass production accounted for 80.1% of Malaysia’s
CDM pipeline or 76.9% of all registered projects [14]. The data on the CDM project undertakings
in Malaysia shows a massive biomass production volume from milling and plantation activity [19].
The data for 2015 indicates that project activities involved processing oil palm excesses, biofuel, biomass,
methane capture, and co-composting using either solid or liquid waste collectively. Table 1 provides a
breakdown of the projects’ undertakings and their distribution in the palm oil industry according to
project type.

Table 1. 2015. Project undertakings (clean development mechanism (CDM)) and their distribution in
palm oil producers by project type [5,14].

Type Subtype Total
Registered
Projects

Registered Projects
with Issuance

At
Validation

Biomass energy

Palm oil solid biomass 33 31 11 2
Agricultural residues 5 5 2 -

Wood waste 4 4 - -
Gasification 1 1 - -

CH4 Avoidance
POME 60 54 18 6

Composting 36 27 6 9
Total 139 122 37 17

* POME = Palm oil mill effluent.

The CDM projects’ status in Malaysia has been given due consideration due to the sharp decline in
the carbon market following uncertainty in the future global carbon market [14]. According to the data
by the Ministry of Natural Resources and Environment (MNRE) [14], 35.8% of Malaysia’s RE-based
CDM project pipelines are from biomass energy. Most of the palm oil mills generated biomass by
capturing methane gas from POME treatment and used it as a fuel source for generating electrical
and thermal energy for either on or off-site consumption. The Palm Oil National Key Economic Areas
(NKEAs) plan, for instance, targets achieving 100% compliance by all the mills that have implemented
biogas recovery projects by 2020. Moreover, this initiative has put in place a policy designed to
re-operationalization all CDM methane avoidance projects in the palm oil sector [14]. In addition,
the relevant public policies, including the National Renewable Energy Policy Action Plan (2010) and
the Economic Transformation Programme (ETP), are focused on enhancing the utilization of local
renewable energy sources as a way of contributing towards the security of the nationwide supply of
electricity and to sustainable socio-economic development.
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According to the 2015 Malaysian government report [20], the nationally determined mitigation
contributions (NDCs) demonstrate the government’s commitments to minimize the intensity of GHG
emissions by 45% by 2030 relative to the intensity of emission of gross domestic product (GDP) in 2005.
The amount of GHG emissions is made up of 35% on a non-restricted basis and an additional 10% as
the condition upon proof of payment of climate funding, transfer of technology, and capacity building
from developed countries [20]. As indicated in Table 2, the biennial report [21] made available by the
MNRE gives a summary of the reduction of emissions as of 2013 and possible emission reduction
in 2020. The comparison in emission reductions between 2013 and 2020 shows a huge reduction in
emissions with the palm oil industry mitigation action. The statistics suggest that specific mitigation
actions have been put in place to ensure the nation meets it’s target in the NDCs report to the UNFCCC.

Table 2. List of achieved emissions reductions in 2013 and projected for 2020 [21].

Sector Mitigation Action

Emission
Reduction

Achieved in
2013

(ktCO2eq)

%

Potential
Emission

Reduction in
2020(ktCO2eq)

%

Energy RE implementation through the FiT mechanism 252.78 1.36 5458.09 16.96
RE electricity generation by FiT regulated public and private

licensees and other mechanisms 948.77 5.1 2179.29 6.77

Blended petroleum diesel in biodiesel (palm-based) 719.74 3.87 1802.49 5.60
Green technology application 94.81 0.5 1426.35 4.43

Green building rating scheme implementation 60.40 0.3 858.40 2.67
Efficient electricity consumption in all Federal Government

ministry buildings (baseline established in 2013) - - 98.21 0.30

Development and usage of energy-efficient vehicles (EEVs) in
emissions reduction 40.96 0.22 199.74 0.62

Compressed natural gas (CNG) use in motor vehicles 154.62 0.83 217.57 0.68
Rail-based public transport 214.93 1.16 977.51 3.03

LULUCF Sustainable forest management 13,797.37 74.26 13,800.00 42.88
Waste Wastepaper recycling 1993.47 10.72 2159.45 6.71

Biogas captured from palm oil mill effluent (POME) treatment 300.95 1.62 3001.89 9.32
Total 18,578.80 32,178.99

* FiT= Feed-in Tariff.

With the potential development in carbon trading projects, the CDM projects’ CER in Malaysia
have contributed a total of 9,844,435 CER issued as of April 2015 [14]. However, the CER oversupply has
reduced its price and it is unable to meet the high transaction costs incurred in verification. As discussed
in the Conference of Parties 21 (COP 21) in Paris, carbon trading projects require longer-term outcomes
to ensure optimal growth in sustainability; hence, developing countries can grow economically and
achieve their respective emission targets with a low economic cost. Other studies have focused on
how well carbon trading projects function; however, the numerous prospects for initiating CDM
project activities in the palm oil industry will demonstrate significant achievements in the future [13].
Furthermore, the subsidies provided for the CDM’s financial allocation have received criticism from
many organizations who have contended that the allocation has been subject to unethical and unsuitable
implementation in reducing carbon emissions. Based on various sources and the detailed exploration
by the Standards and Industrial Research Institute of Malaysia (SIRIM) and the Malaysian Palm Oil
Council (MPOC) [22], the slow-moving carbon trading and engagement in Malaysia within the palm
oil industry is because of the lack of knowledge and uncertain development within the carbon market
and trading opportunities [23,24], which have led to various questions and dilemmas in the carbon
market system involving the palm oil industry in Malaysia. However, as presented in Table 3 below,
the total CER issued are higher within the palm oil industry. The development towards the SDGs
aims to enhance renewable energy development in Malaysia and would bring material and positive
outcomes to the palm oil industry [14].
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Table 3. Potential and certified emission reductions in Malaysia’s CDM pipeline in the palm oil
industry [14].

Type Sub-type
Registered Projects

(ktCO2eq/year)

Projects at
Validation

(ktCO2eq/year)

Total
(ktCO2eq/year)

Annual
ER

Expected
Accumulated
ER up to 2012

Total
CER

Issued
Annual ER Annual ER

Biomass Energy Palm oil solid biomass 2547.431 8642.982 5604.858 349.551 2896.982
Agricultural residues 615.834 3456.930 114.472 - 615.834

Wood waste 110.777 163.896 0.000 - 110.777
Gasification 26.983 35.968 0.000 - 26.983

CH4 Avoidance
POME 2249.808 4511.034 1411.135 205.425 2455.233

Composting 770.107 2756.419 203.207 808.732 1578.839

3. Research Methodology

As described above, this study focuses on capturing the outlook of critical factors in carbon
trading implementation in the palm oil industry. The issues of carbon trading challenges are crucial
yet problematic. As such, a qualitative study was conducted to understand these issues, adopting
one-to-one interviews and discussions. This methodology developed as a qualitative approach and a
connecting strategy for scientific research and local knowledge [25].

3.1. Data Collection

As identified by [26], the quantity of data that can be utilized that is gathered from the interviewees
and the number of participants required for the interviews has a converse relationship. The criterion
for selection for the interviewees was purposive suitable sampling. After the selection of the various
experts in carbon trading in the palm oil industry, information seeking the prospective interviewees’
permission to engage in semi-structured interviews was channeled through email or telephone
messages. As highlighted above, due to the limitations in some carbon trading experts, a small number
of them were interested in taking part in a follow-up study via an interview. The researcher deliberately
included carbon trading firms in the palm oil industry to accomplish the research objectives in terms of
size and segment.

In particular, the interview questions explored the respondents’ perception of the challenges and
dilemmas that could affect the carbon trading implementation growth. The data collected was based
on literature reviews, current status, growth, challenges and trends, and government and private
sector reports were considered as the secondary data collection process determinants. The primary
interview data collection was proposed in this study to provide an explanation of how the respondents
replied to the carbon trading project issues in the palm oil context. Semi-structured interviews were
conducted and they offered a more in-depth understanding of the focus subject. These interviews
were directed by the researcher and were digitally recorded after the interviewees gave their verbal
agreement. Furthermore, the researcher took notes required at the time of interview.

A total of seven company representatives were interviewed for data collection for this study.
The sampling frame was drawn from the UNFCCC database, totalling 49 palm oil companies in
Malaysia. The interviews were conducted with professionals among carbon trading experts and
institutional theory was adopted to structure the interview questions. This theory informs the
combination of deductive and inductive logic. The analyzed data was compared and developed
further based on the data collected from the interviews. The researcher applied thematic analysis for
the purpose of identifying a variety of restricted themes under every category, which could adequately
reflect the data that has been collected. Thematic analysis is the qualitative data encoding procedure
under a variety of themes. The two main ways through which themes can be identified in the thematic
analysis include the inductive and deductive methods [27]. The inductive method is strongly linked
with the data itself during the process of identification [28], while the deductive method entails the
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use of themes that are guided by the theoretical or analytical interest in the area, as well as a more
explicitly analyst-driven approach.

In the current research, an investigation of four main categories was carried out, namely the legal
dimension, the financial conditions, the green resources and capabilities and the positive impacts on
SDM. Under each group, a few themes were generated inductively based on the raw information
obtained from the subjects. A compilation of the identified themes is available in the research
findings section.

3.2. Data Analysis

In this paper, the focus on the palm oil companies is according to the detailed content development
and data analysis information presented in the companies’ sustainability reports or other equivalent
corporate publications. The following sections introduce and discuss the analysis of the respective
evaluation forms from the supplementary literature reviews, desktop reviews, and interviews. Table 4
shows the profile of the firms that took part in the data collection, consisting of the distribution in years
of establishment, location, and the respondents/interviewees’ positions as representatives of Malaysian
palm oil companies.

Table 4. Respondent’s profiles.

Company(Code) Years of Establishment Geographical Location Position

A 30 Perak Manager
B 25 Penang Senior Manager
C 42 Pahang Manager
D 24 Johor General Manager
E 36 Selangor General Manager
F 46 Perak Manager
G 32 Kedah Researcher

A transcription of the interviews was then carried out and the coded data was further analyzed
through the thematic analysis. As illustrated by [29], qualitative analysis is often conducted through
reviewing the subjects’ answers to every question and then carrying out a selection of the most relevant
parts to the question asked. The participants had expressed various conditions that are perceived to be
significant in facilitating their views on carbon trading based on the experiences they have. The factors
were grouped into four broad themes and were subsequently mapped to the four forms of assessment
for pressure from institutions that were anticipated in this research. Table 5 below presents the four
themes and their relevant descriptions.

This study has explored the positive impacts of CDM implementation within palm oil
companies in Malaysia. Its findings have supported the significant factors on the legal dimensions,
financial conditions, green resources, and capabilities, and highlighted the more important criteria that
could encourage the palm oil industry to implement CDM, which has positive impacts on sustainable
development. Based on the follow-up interviews’ exploratory investigation, some palm oil companies
have confirmed that the majority of Malaysian palm oil producers have considered implementing CDM
as their future option in relation to sustainability and can engage in long-term investment. However,
there are some limitations in relation to its achievement as the future carbon market development has
an effect on global policy and, at some points, education, skills, technology, and cost factors interfere
with the decisions.
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Table 5. Interview findings on crucial factors and positive sustainable development impacts.

Categories Sub-Categories Companies

A B C D E F G
Legal dimension Not compatible with national regulations * * *

Difficult to engage with international policy * * *
Strict additionally in emissions projects * * * *

Financial conditions Low confidence level in financial returns * * * *
The carbon market’s uncertainty * * * * * *

Lack of financial investment * *
Difficult CER sales and higher consultancy costs * * *

Green resources and
capabilities

Lack of green resources in clean technology
infrastructures *

A requirement for new technical skills *
Positive impacts the on

Sustainable Development
impact in palm oil Industry

Environmental, social, and economic * * * * * *

* Supported findings.

4. Discussion

This section aims to discuss the results obtained in this work and to describe the main contribution
of this research. As can be observed in Table 5, many of the factors show the challenges and crucial
factors in carbon trading projects within the palm oil industry in Malaysia. Elaborating on these crucial
factors is important in addressing the developed research is necessary to verify the challenges of carbon
trading implementation.

4.1. Legal Dimension

The existing CDM framework is seen to be lacking in terms of guidelines for improving
sustainability performance [30]. Most of the CDM projects involved in development or positioning in
RE technologies have been criticized for their negative impact on the environment and social fields.
Supported by the results in Table 5 from the palm oil companies, the Malaysian palm oil industry
particularly offers a promising platform for CDM projects. However, proper monitoring needs to be
performed in order to ensure the projects’ positive impact. Furthermore, a set of sustainability criteria
should be developed to promote the achievement of sustainable development and the criteria should
reflect the local context in which the projects are carried out. In other words, the effort must be holistic
in order to reach an equilibrium state for sustainability.

The legal dimension factor’s results showed that three out of seven respondents indicated
“not compatible with national regulations.” In Malaysia, there are no regulations to dictate that the
palm oil industry should implement carbon trading. Carbon trading implementation, such as CDM,
was made as a result of climate negotiations and, therefore, governments with different views on
carbon trading’s commodification influence the outcome [31].

The analysis of the collected data revealed that the majority of the interviewees on carbon trading
implementation in Malaysia considered the “legal dimension” as the crucial factor in implementing
carbon trading. As argued by a representative from Company A, the regulatory constraints hinder the
implementation of CDM and the development of the carbon market, which indicates the perception of
the crucial legal dimension factors in carbon trading implementation (Company A, 2018).

However, Companies B, C, E, and G considered the legal dimension as one of the incentives
to meet the sustainable palm oil standard and development in palm oil plantation areas. As stated
by [32], the firms respond to the institutional pressure that emphasizes the importance of the regulatory,
normative, and cognitive factors that have affected the firms’ decisions to adopt some environmental
practices. Beyond the institutional pressures’ perspective, perhaps more symbolic actions have been
a long-standing priority for palm oil companies to provide emission-related investments and to
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participate in voluntary initiatives that allow them to demonstrate their commitment to the government
as core corporate strategy elements on climate change [33].

The results relating to the “difficulty to engage with international policy” show that Companies D,
E, and G have affected the management decisions to continue in CDM projects. The representative from
Company E (2018) argued that the project developers and consultants are essentially dependent on
each other and, if they don’t comply with each other and there is a problem, then the consultant needs
to be changed. This was explained further by the representative from Company G (2017), “There are a
lot of problems, and they don’t want to share the loan equally. You are the industrialized country, I am
also the industrialized country, the ratio that we want to split is not agreeable.”

There are many arguments that have advocated carbon trading implementation related to the
environmental market and policies governance. While governance is important in policy formation,
the critical factor on strict additionality in implementing carbon emission projects has contributed
to confusion in continuing with the projects. From the findings, “strict additionality in emissions
projects” shows that four of the seven palm oil companies agreed with the problem. As stated
by representatives from Company B (2018), “Review the entire procedures of the data monitoring,
collections and compilation and documentations . . . once wrong, another problem will start . . . typical
accounting procedures.”

Moreover, when climate change became a big issue, there were two different sorts of arguments
that economists used to explain efficient methods for reducing emissions [34]. Although the world
has recognized Malaysia as being ready to replace non-renewable energy with renewable fuels,
the implementation of various policies and programs by the Malaysian government has increased the
awareness of the important role of RE in sustainable energy systems [35]. The existing policy, however,
appears to not be indicative of such progress.

The ongoing revision from the Malaysian perspective has contributed to the development
of a mechanism that complies more sustainably with the palm oil industry. More importantly,
the enhancement of carbon market policies has shown a positive impact. This analysis provides
links between the legal dimension perspectives with the current Malaysian policies. The challenge
of addressing carbon trading stresses the palm oil industry’s potential to contribute to several SDGs,
especially for sustainable palm oil, RE, waste management, and water treatment of palm oil waste,
which appear to be beneficial for promoting sustainable development.

4.2. Financial Conditions

Carbon trading projects in Malaysia have shown a downturn since 2015 [14]. Project developers
have shown less interest and confidence in this project’s implementation. According to the MNRE
Consultancy Report [14], the issues hampering the continuity is that there has been a lack of demand but
an increase in the CER supply. The findings identified that the “low confidence level and uncertainty of
the carbon market” has contributed to the growth of financial flows and resources. There is also a low
commitment to further investment to continue the current depressed market situation. Nevertheless,
the challenge must be met in order to persist with Malaysia’s pledge to voluntarily reduce its emissions
by up to 45% by 2030.

For the palm oil companies, one of the barriers to investing in carbon trading projects is the high
costs of CER consultation and verification. The weakening of the local currency (consultancy and
verification fees are generally quoted in €), paired with the drop in CER value, has made CDM projects
a costly endeavor (Company B, 2018).

Furthermore, as highlighted by representatives of Companies E and F, the challenge in the
current carbon trading implementation, specifically in the Malaysian palm oil industry, concerns the
registration and certification costs. For palm oil producers, GHG reduction projects are implemented to
reduce the overall carbon footprint of the palm oil production itself. Hence, the trading of any carbon
credits defeats this purpose (from a carbon accounting position) unless it has exceeded sustainability
targets (Company F, 2018).
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As mentioned, Malaysia has benefited from the investment in GHG emissions reduction projects
through the ratification in the UNFCCC. As the representative from Company B (2018) pointed out,
“ . . . investment in renewable energy is costly and political support for the adoption of renewable
energy has been inconsistent and unfair.” When the regulators removed the subsidies, the carbon
market’s inconsistencies caused the carbon prices to fluctuate [14] and affected the demand for carbon.
Therefore, CDM projects can only earn the return on investment (ROI) by continuance to invest in the
longer term despite focusing on the uncertainties on the mechanism and other new mechanisms.

The representative from Company C (2017) argued that there was a “lack of financial investment
primarily influenced by demand and supply . . . and low-prices due to low-demand.” As mentioned
by [31], there was a drop in CDM prices because, after Kyoto, the markets were demanding fewer
credits and the financial crisis caused problems. The issues of concern are that “difficulty of CER sales
are higher in consultancy” generate an additional cost for the project developers. As pointed out
by [36], the cost is related to the environmental projects’ formalization and validation, the monitoring
process and the implementation verification process. However, costing and CER sales are dependent
on the size of the project and requires a huge investment of the project development. Companies A, C,
E, and G disagree on the “difficulty of CER sales and higher consultancy costs” because the credits
received met their expectations and satisfied the financial additionality criteria of CDM.

The financial benefits from the sale of carbon credits have been viewed as being potentially
positive and economically profitable. Therefore, environmental practices create advantages for palm
oil companies to benefit from emissions reduction and reduced energy intensity or by switching to
relatively cheaper fuels as part of the operational costs.

4.3. Green Resources and Capabilities

In Malaysia, many options under green technology projects could create significant co-benefits in
this country. The strategies are able to address local and regional environmental problems and advance
social goals [37]. For developing countries that might otherwise give priority to their immediate
economic and environmental needs, the prospect of significant additional benefits should provide a
strong inducement to participate in carbon trading projects.

In this study, the terms of green resources and capabilities have been identified as being able
to minimize energy and resource dependence and to make economic trends more sustainable with
resource-efficient manufacturing [38]. In order to meet the growing demand for palm oil in the future,
the palm oil producers must co-exist with new skills development and green resources to move
towards sustainability.

In theory, irrespective of the allocation of the rights to trade in the carbon market, Malaysia benefits
from a transaction that is designed to contribute towards sustainable development. Similar to other
foreign investments, the RE projects in Malaysia could promote technology transfer and the adoption
of similar strategies and policies for emissions reduction planning. In contrast, green resources
and capabilities do not support the “lack of green resources in green technology” and “need new
technical skills.”

From the findings, the representative from Company C (2017) stated that “The carbon trading
project presents an opportunity for channelling of resources towards projects that are most likely to
be accessed for further national sustainable development.” In addition, new skills development is
needed to move forward towards sustainability as one of the emerging knowledge and new skills
(Company A, 2018). The analysis suggests that, if the management systems and skills development
are not well developed, the external pressures on sustainability issues will be relatively weak and
unresponsive [33]. Thus, responding to sustainability-related projects, such as carbon trading, limits a
company’s ability to move forward.

Consistent with the findings in this study, carbon trading promotes green resources and capabilities,
which were significant in the previous study by [39]. One of the CDM objectives was to promote
green technology and increase local skills and equipment content [39]. Carbon trading can also
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provide employment, new knowledge skills and business opportunities in less developed countries
(Company B, 2018).

There are high expectations amongst palm oil producers in Malaysia due to the potential of carbon
trading to deliver sustainable benefits and its ability to attract foreign investments, technology transfer,
and possible contributions to poverty alleviation [40]. With initiatives in energy sectors and bioenergy
production, the palm oil carbon emission projects’ activities have already produced the benefits of
sound progress that can contribute to sustainable development. Carbon trading projects can lower the
cost of compliance with the emissions reduction initiative projects for developed countries.

4.4. Sustainability in the Palm Oil Industry

The primary purpose of carbon trading is to reduce overall global carbon emissions. The concept
behind carbon trading is simple: if total global emissions are reduced, it does not matter from which
country or organization the reduction comes. Thus, this concept will benefit developed nations and
organizations by enabling them to purchase CER to meet their NDC targets (Company B, 2018).

Based on the findings for the sustainable development’s positive impact, it is shown that six of
the seven palm oil companies have stated a positive sustainable impact. The representative from
Company C argued (2017), “In certain countries, there has been criticism that carbon trading does not
promote sustainable development because the activities act as an enabler for developed countries to
maintain and increase their emission levels as long as they have the means to pay in order to meet
their set targets.”

Furthermore, despite the issues associated with carbon trading in the palm oil industry, sustainable
palm oil’s evolution [41] in Malaysia should be perceived as being more effect in contributing ideas to
more sustainable reductions in carbon emissions. However, in relation to Malaysia’s economic growth,
it can be concluded that the growth of new palm oil estates in the tropical rainforest will soon no longer
be achievable [9].

In the mitigation’s development process, it is vital to consider the quality of the environment.
In practice, there exists a significant strain between financial and environmental targets in fulfilling the
carbon emissions projects. An ethical concern faced in this industry is that the production of palm oil
affects the environment, wildlife, and native communities. Despite the arguments about sustainability
issues concerning carbon trading, Malaysia has established policies related to sustainability that
ensure economic development and ecological biodiversity. By considering an alternative approach
and supplying the economic and technological undertakings, numerous issues could be removed [5].
Additionally, the resources that are already on-going are more advanced and are using technologies
with good practices; however, the resources need to be scaled up and used in other appropriate
ways [42].

The SDGs are influential, long-term prospects that can provide the direction and unlimited
framework for businesses driven towards sustainability to release their powers of transforming and
developing solutions for the world. In short, the SDGs are driving businesses to become an even
stronger force for good. A recent report by [43] has compared the potential of implementing carbon
trading projects and has asserted that most companies are defined by carbon reduction benefits, as well
as the social benefits that are associated with the palm oil sector. As discussed, sustainable development
benefits the reduction of air and water pollution through the minimized usage of fossil fuel, as well as
extending to improving water availability, reducing soil erosion, and the protection of biodiversity.
From the perspective of social benefits, many projects would result in employment opportunities in
the different regions or income groups that are targeted and would result in local energy self-reliance
promotion. The goals of carbon reduction and sustainable development can, therefore, be pursued on
a long-term basis.

Carbon trading projects also have an impact on funding channels in achieving economic, social,
environmental, and sustainable development targets, including clean water and atmosphere, that sit
alongside social development, such as growth in rural areas, creation of job opportunities, alleviation of
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poverty, and often reduce the reliance on the use of imported fossil fuels [44]. Alongside green
investment opportunities in developing nations, the voluntary carbon trading projects in the palm oil
industry also improve climate and future developments, as well as environmental issues within local
areas. The prospect of such benefits ought to provide a strong inducement for developing countries
that are anxious about immediate economic and social development to engage in palm oil carbon
emissions and sustainable future projects.

5. Limitations and Future Research

This paper acknowledges that there are limitations to this study as it focuses only on palm oil
producers in Malaysia and the findings illustrate the challenges and sustainable development impact
within the palm oil industry. However, these findings are important in determining how palm oil
producers will enhance the strategies and future policies in this field. In another context, the alternatives
in carbon trading project implementation should be implemented locally and lead to the improvement
in future carbon emissions projects.

The second limitation pertains to palm oil producers in the country which have conventionally
struggled to come to terms with the ban on biofuels produced using palm oil as well as the deforestation
ban phenomena which began in the early part of 2018. For this reason, the number of participants was
limited, and the majority of producers rejected the invitation of the interview. Moreover, earlier on
in 2019, the trade war that broke out with palm oil producers curtailed the producers’ ability for
participation. Furthermore, the involvement in this study was both subjective and voluntary; for this
reason, it is difficult to reach the subject matter expert in carbon trading and CDM.

It is necessary to broaden the scope of this study to encompass other divergent viewpoints,
including economic dimensions, stakeholders’ perspectives, international relations, social responsibility,
as well as competitiveness in future research. Finding novelty in other perspectives and industries
could also help improve the level of understanding and be in alignment with aspirations relating to
Malaysia’s SDGs. This approach could also be used for a quantitative method or mixed methods in
future order to gather detail for future studies. Furthermore, studies in the future must undertake
research on the energy industry, which could turn out to be one of the most promising sectors to
enforce carbon trading as well as contributing toward sustainable development.

Malaysia has been proactive in accelerating the adoption of the 2030 Agenda and SDGs nationally.
The country began preparing for the SDGs since 2014 in order to incorporate the SDGs into the national
planning framework with a view to reduce the emissions target by 2030. The CDM or carbon trading
was the tool that was used previously. Currently, there is no encouragement to continue with the
projects and it is just business-as-usual. Through the implementation of carbon trading, Malaysia can
maintain its flexibility in adjusting and realigning strategies based on the achievements, challenges,
and lessons learned during the previous phase, while also assessing emerging trends and circumstances
that may affect the desired development outcomes [43]. It also provides an opportunity for feedback
and greater participation from various stakeholders as they gradually align themselves with the 2030
Agenda as well as the SDGs.

However, the research work for future studies would yield better results with an evaluation
and examination of the study model in other industries so that comparisons can be made with the
existing research work. Hence, value would be added concerning the insight to find the appropriate
enforcement regulations in carbon trading, as well as the completion level and market demand for the
local market with carbon trading implementation.

6. Conclusions

In recent years, sustainability has been promoted by the addition of carbon trading as a vital
strategy for an agricultural business. Palm oil is one of the biggest traded commodities and has
provided many benefits to health, society, the economy, and the environment. Many policies have
emerged in Malaysia with regard to achieving the SDGs’ agenda. The palm oil industry’s potential in
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carbon trading project utilisation in Malaysia could be improved with government encouragement in
the carbon market post-2020.

This paper has explored carbon trading implementation challenges in Malaysia that will assist
in leading the opinions on problems and solutions for a better transition. In the struggle over palm
oil’s sustainability, Malaysia has shown a strong desire to promote itself as a significant palm oil
hub in the South-East Asia region, with extra payback from carbon trading implementation. Thus,
the government has to play a more active role. The government can improve conditions for local
development by providing funding opportunities and policies that could increase carbon trading’s
competitiveness. Supportive policies need to be developed to enhance the implementation and
investment from the private sector in the agricultural sector, particularly in the palm oil industry.
The new trend of business opportunities has accelerated the palm oil sector’s development towards a
sustainable future and improved process efficiencies. Despite the challenges to be solved, the on-going
R&D into palm oil carbon trading projects are expected to promote a more advanced generation of
palm oil bioenergy and biotechnology, where high value-added products and bio-based chemicals
are produced, and technology enhancements are provided for the palm oil producers. In this study,
carbon trading projects’ positive sustainability impacts have contributed to new intervention in the
palm oil industry towards more sustainable production, with improvements in procedures and policies,
alongside the SDGs agenda. Through technology transfer and engagement in carbon trading projects,
Malaysia might meet its target in reducing the regional temperature to 1.5 degree Celsius, in accordance
with the Paris Agreement pledge that the targeted carbon emissions would be reduced.

This paper offers an original contribution to the research field in carbon trading within the palm
oil industry. It aims to improve the understanding of palm oil producers and policymakers for future
developments in carbon trading and its impact through contributing to a sustainable future with
opportunities to drive sustainable development and the climate change mitigation strategies in order
to achieve SDGs. By understanding the challenges in carbon trading implementation, this study
hopes to further develop and enhance new approaches and to encourage continuous improvement
in environmental projects that soon will become the new period of future development. Moreover,
the challenges relating to the difficulty in implementing the CDM will help policymakers, practitioners,
and other industries to understand and manage future climate mitigation strategies.

The concept of sustainability has pinned a promising outlook for the palm oil industry to continue
the development and growth of palm oil use. Despite the challenges with the legal dimension,
the financial conditions and the green resources and capabilities, the palm oil industry still shows
a significant inflow of investments and has been following Malaysia’s extensive economic growth.
Furthermore, Malaysia will be able to utilize its substantial green potential by developing a robust
supply network for proper palm oil supply and demand connections in the carbon market. The potential
of the mitigation action objectives will enhance the sustainability performance in the palm oil industry
in Malaysia, in line with the SDGs.
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Abstract: The global warming phenomenon is commonly associated with the emission of greenhouse
gases. However, there may be other factors related to industry and global energy production which
cause climate change—for example, heat emission caused by the production of any useful form of
energy. This paper discussed the importance of heat emission—the final result of various forms
of energy produced by our civilization. Does the emission also influence the climate warming
process, i.e., the well-known greenhouse effect? To answer this question, the global heat production
was compared to total solar energy, which reaches the Earth. The paper also analyzed the current
global energy market. It shows how much energy is produced and consumed, as well as the
directions for further development of the energy market. These analyses made it possible to verify
the assumed hypothesis.

Keywords: global heat production; energy market; energy conversion; electricity

1. Introduction

Our daily life on Earth requires the production of large amounts of energy. The energy is
produced mainly in the forms of electrical energy and mechanical energy as a result of liquid fuels
and gases combustion in engines in various types of vehicles. Unfortunately, the various types of
useful energy also cause the production of a huge amount of heat. Moreover, these useful energies
are eventually converted to heat energy in machines, vehicles, and devices. An important question
arises here—whether this release of a large amount of thermal energy is comparable to solar energy
and can it significantly affect the global temperature and climate change. In this paper, the thesis was
verified whether the heat emission, which is the final result of energy generated by our civilization,
has an effect comparable to that of greenhouse warming. The greenhouse effect is well known and is
comprehensively presented in many papers—among others [1–4]. However, the effect and greenhouse
gas emission have not been discussed in the presented work so far.

Nuclear and fossil fuel power plants are thermal power stations and have a maximum efficiency
of around 40%. It means that during the production of electrical energy, around 60% of nuclear or
chemical energy in fossil fuel is converted to heat energy and is emitted directly into the atmosphere
and water (seas, lakes, rivers). Thus, most of the energy contained in any fuel is lost, but there is
currently no technically more efficient way to generate electricity. Unfortunately, that also applies to
the combustion of biofuels. Wind and water power plants have much higher energy efficiency, and the
production of electricity is accompanied by a low heat emission. Much more information about the
energy conversion efficiency in thermal power stations is presented in the papers [5–7].

However, regardless of the way how electricity is produced, almost all electricity is ultimately
turned into heat. It may seem surprising, but the following analysis proves this thesis. Electrical energy
is distributed to different electricity consumers—factories, buildings, hospitals, railway electrification
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systems, etc. For example, any computer consumes electrical power and uses it to perform calculations,
which is accompanied by heat production in semiconductor components (microprocessors, transistors,
diodes, resistors). In practice, considering the field of physics, all the electric power in any computer is
finally converted to heat. In a fridge, an electric motor drives a heat pump, which pumps out heat
from inside the fridge to the outside. According to the principle of energy conservation, the heat
energy released into the atmosphere (outside) is equal to the sum of heat energy collected from the
fridge interior and the consumed electricity. A very similar situation occurs in any device. While an
electrical train moves, electric motors cause acceleration driving at a constant velocity and partial
energy recovery during braking. When the velocity of the vehicle is constant, all the consumed
electrical energy compensates the work of friction forces in mechanical components (in bearings, etc.)
and of air resistance forces. The friction in the components causes their heating, and air resistance
causes the heating of the train’s surface and air. The same situation occurs in cars. In a modern petrol
engine, the chemical energy in the fuel is converted to heat (about 60%) and useful mechanical energy
(about 40%). All mechanical energy is used to compensate friction forces and air resistance, so always
a heat is produced. Thousands of various devices and machines can be considered in which the energy
would finally be converted into heat—similar to what it is shown in Figure 1.

Figure 1. Electrical energy changes into other forms of energy and makes useful work, but almost 100%
is finally converted to heat energy (own study).

Consequently, sooner or later, almost 100% of electrical energy or chemical energy in fuels is
finally converted to heat energy. To determine the global heat production, it is necessary to calculate
the global production of electricity and petrol fuels.
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2. Energy Market

The right energy structure and the increase in energy efficiency are the key issues on the way to
the transformation in the field of energy, which is to ensure a safe future for all [8–11]. The current way
of generating energy is associated with high greenhouse gas emissions because it is based mainly on
fossil fuels and the inefficient use of traditional bioenergy, especially in developing countries [12–16].
Besides, the world’s demand for energy is growing, which is largely due to the economic growth that
drives global energy consumption. Rapid growth occurs in developing countries, such as China and
India, while in countries belonging to the OECD (The Organisation for Economic Co-operation and
Development), for example, Germany or Italy, energy consumption is beginning to stabilize but is still
at a high level. These tendencies are in line with the assumptions of the Singer report [17], and this
can also be confirmed by analyzing current trends, both in consumption and in energy production, as
shown in Figure 2.

 

Figure 2. Total energy consumption and production, source: own elaboration based on data [18].

Let us first take a look at how global energy production has changed from a long-term perspective,
both in terms of quantity and sources (Figure 3).
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Figure 3. Global primary energy consumption 1800–2017 [19].

In the 1800s, almost all of the world’s energy was produced by burning wood and other organic
matter [19]. Oil consumption started in the 1870s [19]. Twenty years later, there were natural gas
and hydroelectricity in the energy mix. Since 1900, coal consumption has increased significantly, and,
now, it constitutes almost half of the world’s energy [19]. In the 20th century, the energy mix changed
significantly, coal took over traditional biofuels, and oil constituted up to around 20% of the energy
market, and since 1960, the world has had nuclear electricity [18]. Today, on the energy market, we
have renewable energy sources—RES, not appearing until the 1980–1990s [19].

Besides, apart from analyzing the total consumption of primary energy, we could also compare
the contribution of different energy sources. As shown in Figure 4, changes in the energy mix are slow,
so, mainly, fossil fuels dominate [19]. Except for the emergence of nuclear electricity, the energy mix
was fairly stable for at least fifty years [18].

Changes in the structure of the energy mix began after 1997 [20,21] when the first EU regulations
on energy from renewable sources appeared [22–25]. They were stated in the European Commission’s
White Paper Energy for the Future—Renewable Energy Sources RES (December 1997). In 2001, the
European Parliament and the Council adopted Directive 2001/77/EC on the promotion of electricity
production from RES on the internal market, which determined the share of RES in total electricity
consumption by 2010 (replaced by Directive 28/2009/IN). A breakthrough in the development of RES
took place in March 2006, after the publication of the Green Book [26].
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Figure 4. Primary energy consumption by source, European Union [19].

Figure 5 shows primary energy consumption from 1965–2017 in continental regions [19].

 

Figure 5. Global energy consumption by region [19].

In 1965, most of the total energy was consumed in North America, Europe, and Eurasia. In total,
they accounted for over 80% of global energy consumption. Consumption in other parts of the world
has been increasing, most dramatically in the Asia Pacific. In 2015, Asia Pacific was by far the largest
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regional consumer. The total consumption (about 43%) was the same as in North America, Europe,
and Eurasia combined [19]. The Middle East used 7%, Latin America 5%, and Africa 3% [18,19].

In 2017, the production of energy from coal increased due to China. Higher energy prices in the
world had caused a drop in oil and gas production in the United States. Energy production in the
European Union decreased due to moderate growth in energy consumption, lower primary energy
production (nuclear and hydro), depletion of oil and gas resources, and climate policy, which ultimately
means giving up coal. Large oil and gas exporting countries, such as Russia, Iran after international
sanctions, Canada or Nigeria, as well as fast-developing countries (India, Indonesia, Turkey, and
Brazil), were the main energy donors. In 2017, total consumption was at 567 EJ (EJ = exajoule = 1018

joules), and it is forecast that by 2020, there would be a 10% increase [19].
Prices can have a big impact on the choice of energy sources. While comparing costs between

sources, it is important to have relative prices [19]. In the literature, the levelized cost of electricity
(LCOE) is used [27]. The concept of LCOE is defined in the following way:

• it measures the cost of living divided by energy production,
• it calculates the current value of the total cost of construction and operation of the plant during

the assumed period of use,
• it allows comparison of different technologies (e.g., wind, solar, natural gas) with uneven life span,

project size, different capital costs, risk, return, and capacity [27].

Figure 6 shows the levelized cost of electricity (LCOE). The cost range is represented on the
column chart for each technology. The white line in each of them represents the global cost of each
technology. The average range of fossil fuel costs is shown as a gray column. In this chart, it is
shown that, in 2016, most renewable technologies were in a competitive range to fossil fuels. The
key exception was the thermal solar radiation, which remained about twice as expensive, but began
to decrease [19]. Hydropower is the oldest renewable source. In this technology, the price is low.
Analyzing how the average cost of technology changed in the years 2010–2016, we can see that the cost
of solar photovoltaic system dropped significantly [19]. This reduction of cost in photovoltaic cells has
been deep over the past few decades. The price of solar photovoltaic modules has decreased more
than 100 times since 1976 [19].

Figure 6. Levelized cost of electricity (LCOE) in 2010 and 2016 [19].
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Measuring the number of people with electricity access is a very important social and economic
indicator. We think that the growth of population has caused an increase in energy consumption.
Figure 7 shows that the percentage of people with access to electricity has increased at a global level [19].

Figure 7. Share of the population with access to electricity [19].

In 1990, about 73% of the population had access to electricity, and this level increased to 85% in
2014 [19]. High-income countries typically have access between 95–100% [19]. The growing global
share was, therefore, driven by increased access in low- and middle-income economies. In many
countries, this trend has developed, for example, access in India has increased from 45% to 80%, and in
Indonesia, it has increased to 97% from 60% in 1990 [19]. While the trend is upward for most countries,
there are some countries where this access is very low, for example, only 8.8% of Chad’s population
has electricity access. Therefore, we can assume that this factor will increase, and thus also energy
consumption, in the future.

3. Materials and Methods

The structures of the energy market and total energy production are important to determine the
global heat emission. While producing useful energy, as it is shown in the introduction, heat energy is
emitted (as an adverse side effect)—Equation (1). Moreover, sooner or later, almost 100% of that useful
energy—electrical energy or chemical energy in fuels—is finally converted to heat energy. Because
average efficiency of a thermal electric plant is about 40% [5–7], most of the primary energy (chemical
energy in coal or natural gas, nuclear energy in nuclear fuel, etc.) is converted directly to heat. Engines
in cars, where chemical energy in petrol is converted to mechanical energy, have similar efficiency.
The results in Figure 2 show that the values of global energy production and energy consumption are
very similar—they are approximately the same. Because the global annual useful energy production is
known (Figures 2 and 3), taking the efficiency about 40%, total annual energy produced on the Earth
could be written by Equations (1) and (2). Unfortunately, as it is shown in Figure 3, the amount of
energy produced by renewable sources is still very low on a global scale. Therefore, it is reasonable
to adopt the average efficiency of the energy production process at 40%, as in thermal power plants,
because this dominates. The total power produced by our civilization on the Earth is determined by
Equation (3).

Etotal = Eheat + Euse f ul (1)

Euse f ul ≈ 0.4× Etotal (2)
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Ptotal =
Etotal

3600× 24× 365
(3)

where Euseful—annual useful energy production (electricity, motion, etc.)—it is given in Figures 2
and 3, Etotal—total annual energy, which is converted to heat (as an adverse side effect) and useful
energy, Eheat—annual heat energy production, Ptotal—total power produced on the Earth (in Watts).
All energies are in joules per year.

Based on the global energy production of useful energy (Euseful), it is possible to estimate the
total energy (heat energy and useful energy), which is also finally converted to heat in consumers.
At this point, the question arises whether the value of the calculated Etotal (in global terms) is high, low,
significant, or insignificant. To answer this question, the total power produced on the Earth would
be compared to the total solar irradiation reaching the Earth’s surface. It is presented by factor n in
Equation (4).

n =
Ptotal
PGND

(4)

where n—the ratio of total power produced on the Earth to the power of solar irradiation hitting the
Earth’s surface, PGND—solar irradiation power hitting the Earth’s surface (the ground).

The heat produced on the Earth combines with the energy supplied from the Sun. Consequently,
these two energies together cause the energetical effect as if the Earth was a little closer to the Sun.
To illustrate this effect, we imagined the Earth before the industrial revolution (before the 19th century)
in orbit with a radius of r0—Figure 8. Nowadays, additional heat emission causes an effect of the
seeming shortening of the Earth’s orbit to a radius of r1.

Figure 8. Global heat emission causes the seeming energetical effect as if the Earth was a little closer to
the Sun.

The seeming shortening of the Earth’s orbit is given by Equation (5).

s = r0 − r1 (5)

Sun radiance, it means the radiant power per unit area emitted over all wavelengths and all
directions (watts per square meter) of the Sun’s surface area, is given by the Stefan-Boltzmann
law [8]—Equation (6). The total power emitted by the Sun is given in Equation (7).

R∗ = σ× T4 (6)

PSun = R∗ ×ASun (7)

where:

112



Energies 2019, 12, 3069

R*—Sun radiance—power emitted by one square meter of the Sun’s surface area (W/m2)
PSun—total power emitted by the Sun (Watts)
ASun—Sun’s surface area (m2)
T—the temperature of the Sun’s surface
σ—Stefan-Boltzmann constant 5.67·10−8 (W m−2K−4)

The sunrays are emitted over all directions from the Sun. As we move away from the Sun (the
distance from the Sun increases), the intensity of light decreases. For the distance “r” from the Sun,
the solar radiation strikes the surface (sphere) whose area is equal to 4πr2. The surface power density
(called also solar constant, flux density) for the distance “r” is represented by Equations (8)–(11).

Pd(r) =
PSun

4×π× r2 (8)

Pd(r) =
ASun × σ× T4

4×π× r2 (9)

introducing the constant “k”, we obtain:

k =
ASun × σ× T4

4×π (10)

Pd(r) = k× 1
r2 (11)

where Pd—power density, solar constant, power per unit of surface reached to place at a distance of “r”
from the Sun in a unit of W/m2, r—distance from the center of the Sun (in meters)

Finally, the surface power density for the point at a distance of “r“ from the Sun is inversely
proportional to the square of the distance. Because the mean distance of the Earth from the Sun is about
149.6 × 106 km [9], the surface power density above the atmosphere of the Earth is about 1380 W/m2,
theoretically based on Equation (9), and about 1366 W/m2 in reality [10].

4. Results and Discussions

Global useful energy produced on the Earth (Figure 2) in 2000 was equal 10,016 Mtoe
(419.35 × 1018 J), and in 2017 was equal 14,080 Mtoe (589.50 × 1018 J). Total produced energy (heat +
useful energy) is given in Equation (12) (transforming Equation (2)).

Etotal ≈
Euse f ul

0.4
(12)

The Sun always illuminates the surface of the Earth seen as a wheel. Total power of the solar rays
reaching the top of the Earth’s atmosphere (Equation (13)) can be computed by multiplying the surface
power density (Equation (9)) and illuminated Earth’s surface—the wheel with a radius of 6378 km [9].
Very rare phenomena, such as the solar eclipse, are omitted.

PSE = Pd ×π×R2
Earth ≈ 1.7× 1017, W (13)

where REarth—radius of the Earth, PSE—the power of the solar irradiation reaching the top of the
Earth’s atmosphere.

This result is confirmed by the Authors in work [11]. Around 8.1 × 1016 W of solar radiation
passes through the atmosphere and arrives at the surface of the Earth, which accounts for 47% of the
solar energy that reaches the Earth [11]—Equation (14).

PGND ≈ 0.47× PSE (14)
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where PGND—solar irradiation power hitting the Earth’ surface (the ground).
The “n” ratio (total power produced on the Earth to the power of the solar irradiation ratio) is

obtained in Table 1.

Table 1. Calculated values of Ptotal and “n” ratio. PGND = 8.1 × 1016 W.

Year Etotal, J/Year Ptotal, W n= Ptotal
PGND

2000 1048.37 × 1018 3324 × 1010 0.414 × 10−3

(0.0414%)

2017 1473.75 × 1018 4673 × 1010 0.577 × 10−3

(0.0577%)

Taking Equations (11) and (14), (15) could be written as:

PGND(r) = 0.47× k×π×R2
Earth ×

1
r2 (15)

where PGND(r)—solar irradiation power hitting the Earth’s surface (the ground) as a function of the
distance between the Earth and the Sun.

Next, we introduced the radius r0 of the actual (real) orbit of the Earth and the hypothetical
radius r1 of the orbit, which is shorter and corresponds to a little higher solar power. It means the heat
emission causes the effect of the seeming shortening of the Earth’s orbit to a radius of r1. Because the
PGND is inversely proportional to the square of the distance (Equation (16)), it is possible to determine
the hypothetical radius r1 (Equations (17)–(19)). Finally, the seeming shortening of the radius of the
Earth’s orbit is given by Equation (20).

PGND ∼ 1
r2 (16)

PGND1 = PGND0 + Ptotal = PGND0 + n× PGND0 (17)

r1 = r0 ×
√

PGND0

PGND1
(18)

r1 = r0 ×
√

PGND0

PGND0 × (1 + n)
=

r0√
n + 1

(19)

s = r0 − r0√
n + 1

(20)

where r0—radius of the actual (real) orbit of the Earth, r1—radius of a hypothetical orbit where the
little higher solar power is the equivalence of the total energy produced on the Earth, s—seeming
shortening of the radius of the Earth’s orbit.

In conclusion, the heat emission as a consequence of energy production on the Earth gives the
same effect as shortening the radius of the Earth’s orbit by about 31,000 km in 2000 and about 43,300 km
in 2017 with respect to the time directly before the industrial revolution (before the 19th century).

5. Conclusions

Total energy produced by our civilization on the Earth consists of the useful energy (electricity,
mechanical energy, etc.) and heat, as an adverse side effect. Unfortunately, the various types of useful
energy are finally converted to heat in machines, vehicles, and devices. The estimated calculations
presented in this work prove that the total power produced by us was 0.0414% in 2000 and 0.0577% in
2017 of the global solar power reaching the Earth’s surface—it means reaching the lowest layers of the
atmosphere, almost the ground. A significant increase in the “n” factor between 2000 and 2017 results
from the increase in global energy production.
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A few questions arise here—are these values high or low? Are they important? A very good
determiner of the importance of these values is the value of cyclic, annual changes of the Earth’s orbit.
The orbits of planets are not circles; they are ellipses. The eccentricity of planets is a very well-known
natural phenomenon in the solar system. As a result of the elliptical trajectory of the Earth around the
Sun, the solar light power density varies about 3.3% [11], and that is over 50 times more than the “n”
factor in Table 1. After inserting data into Equation (20), the total heat produced on the Earth causes an
effect like a seeming shortening of the radius of the Earth’s orbit around the Sun by about 31,000 km in
the year 2000, and about 43,300 km in the year 2017. Consequently, the seeming radius shortening
(“s” in Equation (5), Figure 8) is about 2.4 (for 2000) and 3.4 (for 2017) times bigger in comparison to
the Earth’s diameter (12,756 km). These distances are significant compared to the Earth’s dimensions,
but, in the field of astronomy, they are very small. Taking into account that the average Earth-Sun
distance is about 1496 × 105 km, the seeming shortening “s” is 3455 times smaller (in 2017). However,
the key factor in assessing the importance of the heat emitted during the global energy production in
terms of climate impact is the comparison of the parameter “n” to the natural changes of the solar light
power density reaching the Earth. That power density varies about 3.3% cyclically during every year
(the “n” is about 50 times smaller), and this is why the total heat energy produced by our civilization
has a small impact on the global warming in the time horizon of several dozen years. We can say that
there would be a one-year increase of supplied energy by about 3.3% of the average solar energy once
every 50 years. It would probably have significance over several hundred years. Therefore, the use
of renewable energy sources makes sense regardless of their energy efficiency because the emitted
heat during the generation of electric power in such sources does not significantly affect the climate.
For example, photovoltaic solar cells have a low energy efficiency—a dozen or so percent [28]. The fact
that more than 80% of solar energy is converted into heat in photovoltaic panels should not be a
limitation in their widespread use.
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Abstract: This study investigates the industrial-scale application of a simple convective solar drying
process of pineapples as part of a circular economy strategy for developing countries. A renewable
energy concept is presented, which follows the circular economy aims by effectively employing a
simple system for biogas production and a two-stage drying system. Both these systems meet the
requirements for implementation in the specific conditions of developing countries, of which Togo,
where pineapple is a major crop, is taken as an example. With respect to earlier findings available in
the literature, the paper focuses on the solar drying process, which is critical to the proposed strategy.
A portable solar dryer working in indirect heating mode was built and later also modified to enhance
its performance. Three main factors influencing the convective drying process, namely, drying time
(270 min, 480 min), solar radiation intensity (650 W/m2, 1100 W/m2), and slice thickness (6–8 mm,
12–14 mm), were considered. The statistical Design of Experiments (DOE) method was applied to
reduce the number and scope of experiments. In the best case, the moisture content was reduced from
87.3 wt % in fresh samples to 29.4 wt % in dried samples, which did not meet the quality requirements
for dried fruit. An additional conventional post-solar drying procedure would, therefore, still be
necessary. Nonetheless, the results show that in the case of pineapple drying the consumption of
fossil fuels can be decreased significantly if convective solar pre-drying is employed.

Keywords: drying; solar energy; sustainable processing; energy efficiency

1. Introduction

Sustainable food processing is becoming an increasingly important issue in developing countries.
To improve the local living conditions and redress global inequalities, a system-oriented approach in
food production considering the whole value chain, including the economic, environmental, and social
impacts, is essential. Moreover, future economic development depends particularly on how processing
capacities in the agricultural sector can successfully be improved instead of exporting agricultural
products unprocessed, and with no value added, to foreign markets. In this way, new quality jobs can
be created at the same time.

Pineapple, after banana and citrus, is the third most important tropical fruit in international
trade [1]. The seasonal pineapple processing in Togo, where pineapple is a major crop, was selected
for the present study. According to [2], in 2016, Togolese farmers grew pineapples on a cultivation
area of 237 ha and the annual production was 1908 t. The main commercial pineapple products are
currently canned pineapple slices and chunks, juice and nectar, and frozen and dried fruit. Of these,
the most common are dried fruit and juice, usually in organic quality, which are exported primarily to
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European countries. The processing itself takes place in various decentralized small- and medium-sized
enterprises. As described in [3], a typical such enterprise processes 1–2 t/d of fresh fruit, while the
resulting pineapple waste (peels, cores, stems, and crowns) is about 40% of this amount. Other sources
give even higher figures up to 75% [4]. The waste, together with discarded fruits with high moisture
content and various other farm production wastes (cow dung, etc.) can be efficiently utilized for
energy recovery via biogas production, and the resulting sludge can be used as fertilizer. While
sophisticated biogas production technologies are employed in the developed countries, the technologies
in developing countries must be tailored to the local conditions. Both the adaptation of European
biogas production technologies to the specific requirements of pineapple waste processing in Togo and
the corresponding experimental results were discussed by the authors of the present paper in [3].

1.1. Key Role of the Drying Process

Drying—that is, a continuous or intermittent process associated with heat and mass
transfer—significantly influences the shelf life, appearance, composition, taste, shape, structure,
and other characteristics of the product. With respect to the fact that this process is probably the most
energy-intensive one in the food processing industry [5], any small increase in energy efficiency will
contribute to sustainable development in the respective industrial sector. It is obvious that moisture
content in fresh fruit (generally about 85 wt % [1]) is of crucial importance. Water activity, that is, the
ratio of vapor pressure to saturation vapor pressure at a given temperature, must also be considered,
because it too affects the shelf life of a food product [6]. This ratio should be around 20% to reduce
physical, chemical, and biochemical reactions and to minimize microbiological growth in a food
product [7].

Recent developments in drying technologies of agricultural produce in general were discussed
in [8], while another study [9] focused solely on fruits and vegetables. Comprehensive reviews of
various drying technologies used in Africa [10] or just the sub-Saharan zone [11], but without any
special focus on the feasibility of (semi-)industrial-scale indirect solar drying of pineapples, are also
available. Similarly, reviews focusing on the drying of single fruit (e.g., fig [12], mango [13], or
mulberry [14]) or vegetable varieties (e.g., chili peppers [15]) have been published as well.

Hot air dryers have been addressed abundantly in the literature, mainly with respect to the
properties of the dried produce. One can find studies discussing color change [16], shrinkage [17],
remaining bioactive compounds [18], microstructure [19], effective moisture diffusivity [20], surface
polyphenol accumulation [21], or even shear strength [22]. Apart from those mentioned above, there are
also papers focusing on the optimum hot air dryer setup [23], real-time monitoring of the properties of
the product being dried [24], the effects of pre-treatments [25], low-temperature drying [26], or various
combined drying processes such as, for example, freezing-hot air drying [27], ultrasound-assisted hot
air drying [28], or pressure drop-assisted hot air drying [29].

Considering the solar drying process in particular, one can encounter review articles covering both
solar drying in specific African countries [30] and regions outside of Africa [31]. Analogously, there are
papers focusing on the solar drying of banana [32], date [33], apple [34], coconut [35], Moroccan sweet
cherry [36], grapes [37], blackberry [38], cocoa beans [39], tomato [40], potato [41], black turmeric [42],
lemon balm leaves [43], medicinal plants [44], ber fruit [45], or algae [46]. Studies discussing in detail
the solar drying of pineapple, however, are relatively rare, and they involve prohibitively long drying
times [47] (which are not really feasible if the process is to be implemented (semi-)industrially), focus
more on product shelf life and sensorial and bromatological analysis [48] than on the actual drying
process, discuss a specific dryer chamber design in terms of a Computational Fluid Dynamics (CFD)
simulation of air flow therein [49], or address drying of thin pineapple slices pre-treated with a sucrose
solution of various concentrations [50] or coated with different edible coatings [51]. Other studies
focus on drying in a ventilated tunnel [52] instead of in a drying chamber into which hot air is supplied
from a solar thermal collector, or employ various mixed mode [53] or hybrid [54] dryers, where both
direct and indirect solar radiation is in effect or different hot media are used instead of air, respectively.
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1.2. Circular Economy Strategy for Pineapple Processing in Togo

Togolese pineapple processing companies currently use conventional dryers, where the heat
required for drying is generated by the combustion of liquefied gases (e.g., propane or butane) [55].
The fuel is bought in gas cylinders and thus the process is very demanding in terms of operating cost.
Moreover, the liquefied gas supply is not sufficiently decentralized, and, therefore, at least a partial
shift to renewable energy sources would be desirable. Following the findings presented in [3], the
current paper proposes a circular economy strategy for pineapple processing in Togo, which is shown
in Figure 1. This strategy, being somewhat similar to the one presented in [56] which involves cattle
market wastes in Nigeria, lies in the efficient utilization of pineapple processing wastes. The starting
point is fresh pineapple (as highlighted in Figure 1), from which two cycles are originating—the
production cycle and the waste cycle. The production cycle involves the preparation of slices, which
are then pre-dried in the solar dryer and, as an intermediate product, continue to the conventional
dryer. There, the final product (dried pineapple fruit) is obtained. The waste cycle begins with the
wastes, which are inoculated with cow dung and enter the digester, where biogas is produced. This
gas, being the primary product of the cycle, is then used as a fuel in the conventional dryer. The
secondary waste cycle product (sludge) is utilized as fertilizer in pineapple cultivation, and thus the
circular economy cycle is closed.

 

Figure 1. The circular economy principle presented for the example of pineapple processing in Togo.

For the strategy in Figure 1 to fully work, the biogas production (as discussed in [3]) must cover
the fuel consumption in the conventional dryer. Therefore, the amount of fuel needed is decreased by
pre-drying the pineapple slices in the solar dryer and, consequently, operating parameters of the dryer
are essential for the optimal setup of the entire system. This is why the remaining portion of the present
paper discusses in detail the solar drying process and the results of the corresponding pineapple
drying experiments. The study’s aim was to establish whether the industrial-scale application of an
indirect convective solar dryer, implemented as indicated in Figure 1, would be feasible in the West
African region. Further objectives were to determine the main parameters influencing the drying
process and their optimal values, and to quantify the resulting decrease in the consumption of fossil
fuels. The discussed energy-saving drying process, which preserves the nutritional quality of dried
pineapple fruit, would then provide farmers with limited access to fossil fuels an option to process
their agricultural products locally in a simple yet reliable manner.
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2. Materials and Methods

For this initial feasibility study, a laboratory-scale solar dryer for pineapple processing was built
and tested. The regional conditions (i.e., the temperature and solar radiation availability in Togo)
were reproduced using an indoor test facility for solar thermal collectors and photovoltaic panels.
A two-level factorial design was used to evaluate the main factors affecting the drying process and
their interactions. The experimental work was conducted at Augsburg University of Applied Sciences,
Laboratory of Energy and Process Engineering, Germany.

2.1. Experimental Device and Measuring Devices

The newly built experimental device used was a convective solar dryer consisting of a
1.5 × 0.8 m solar thermal collector and a drying chamber with the dimensions of 0.47 × 0.37 × 0.6 m.
The non-concentrating solar thermal collector for low-thermal applications adopted a modified flat
plate format with a zig-zag geometry of the aluminum absorber, resulting in a surface area of 1.49 m2

(Figure 2a). The bottom of the collector was insulated using a 20 mm thick expanded polystyrene
panel (EPS; thermal conductivity: 0.034 W/(m K)). The wooden drying chamber was equipped with
three drying trays with wire meshing, each having a net surface area of 0.11 m2 (Figure 2b). The
collector and the drying chamber were connected using a flexible aluminum tube insulated using a
25 mm thick, foil-faced polyethylene foam layer (thermal conductivity: 0.400 W/(m K), see Figure 3).
The air flow around the material to be dried was ensured by the presence of a 2 W axial fan (type
EE92251S1-000U-A99, Sunonwealth Electric Machine Industry Co. Ltd., Kaohsiung, Taiwan; flow rate
up to 87.4 m3/h) at the solar collector outlet. Power was supplied to the fan by a small photovoltaic
module with a capacity of 5 Wp. The experimental device was designed using inexpensive materials
which are readily available in Togo. The total cost amounted to 377 EUR [57].

 

Figure 2. Main parts of the solar dryer: (a) the experimental solar collector (without collector cover)
and (b) the drying chamber.

 

Figure 3. Indoor test facility with the solar collector, drying chamber, and relevant measuring points:
(1) solar collector inlet, (2) solar collector outlet, and (3) drying chamber outlet.
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The working principle of the solar drying system is based on the conversion of solar radiation
to thermal energy in the black-coated aluminum absorber shown in Figure 2a. The absorber itself
features a high absorption factor of more than 90% and a high thermal conductivity of 215 W/(m K).
A transparent acrylic glass cover with high transmittance of 90% and high mechanical resistance
reduces thermal losses to the surroundings. Simultaneously, the acrylic glass cover lets through only
very little long-wave radiation emitted by the absorber. The air that acts as the heat transfer medium
flows through and is heated up in the space between the absorber and the cover. The heated air is
then passed through the drying chamber, where it circulates around the dried material by means of
forced convection. This results in a gentle drying process without direct contact of the product with
solar radiation.

The solar thermal collector was placed in the indoor test facility (Figure 3) containing 28 mercury
vapor lamps and 27 halogen lamps. The distance between the source of radiation and the collector
was variable between 0.05 m and 0.99 m so that different radiation intensities could be simulated.
The respective drying experiments were carried out with two different solar radiation intensities,
650 W/m2 and 1100 W/m2. Eight laterally arranged fans were used for wind simulation. The test
unit was equipped with Testo 635 sensors (Testo SE & Co. KGaA, Titisee-Neustadt, Germany) to
measure temperature (range: −20 ◦C to +70 ◦C, resolution: 0.1 ◦C, accuracy: ±0.3 K) and relative
humidity (0–100%, 0.1%, ±2%) of the air at the inlet and outlet of the solar collector and at the
drying chamber outlet as shown in Figure 3. It was assumed that the temperature and relative
humidity at the solar collector outlet were approximately equivalent to the conditions at the drying
chamber inlet. A pyranometer type 8101/8102 (Philipp Schenk GmbH, Vienna, Austria) was used to
measure solar radiation (measuring range: 0–1500 W/m2, spectral range: 0.3–3 μm, resolution: 1 W/m2,
accuracy: ±3%). To obtain the air volumetric flow rate, a hot wire anemometer type FV A915 S120
(Ahlborn Mess- und Regelungstechnik GmbH, Holzkirchen, Germany) was used (measuring range:
0.1–25 m/s, resolution: 0.01 m/s, accuracy: ±5%). Weight of the samples was measured using a Mettler
PM 4600 electronic scale (N.V. Mettler-Toledo S.A., Zaventem, Belgium; accuracy: ±0.02 g).

2.2. Preparation of Samples

Pineapples were peeled, cored, trimmed, and cut into slices in a single step using a pineapple slicer
(Figure 4). The diameter of the prepared slices was 90–100 mm. In order to identify the effects of slice
thickness on drying, two varying thicknesses, 6–8 mm and 12–14 mm, were considered. In addition,
the rings were cut into eighths in order to examine the drying kinetics. The initial moisture content
(87.3 ± 1.2 wt %) was determined according to DIN EN 322 [58] and DIN EN 15414-3 [59], that is, the
samples were weighed before being placed in an oven at 105 ± 2 ◦C for 24 h to be fully dried, and then
they were weighed again.

 

Figure 4. Preparation of samples: (1) fresh pineapples, (2) cutting of leaf crown, (3) cutting by means of
rotational motion, (4) removing of the flesh, and (5) final spiral of flesh without core.
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Commercially produced dried pineapple fruit served as a reference product and its moisture
content (13.7 ± 0.67 wt %) was obtained in the same manner. This was then used to evaluate the
performance of the solar dryer.

2.3. Experimental Parameters

To reduce the number and the scope of experiments and to discover the relationships between
the factors affecting the drying process, the statistical Design of Experiments (DOE) method was
applied [60]. The most significant factors influencing the drying process identified as controllable input
factors were the drying time, solar radiation intensity, and slice thickness. The effect of air flow rate
was not investigated in this preliminary feasibility study, but was selected according to the available
axial fan performance and cost, fan characteristic curve, and the total pressure drop in the solar drying
system (42.1 m3/h, corresponds to roughly half the maximum fan throughput). Other controllable
input factors such as mean wind velocity of 1.8 m/s, the angle of incidence of solar radiation of 90◦,
and the diameter of pineapple slices were always the same as well. Uncontrollable input factors were
temperature and relative humidity of the ambient air and the moisture content in the fresh pineapple.
The moisture content in the dried pineapple was the output used for validating the solar drying
process. The controllable input factors were varied in this experimental design at two levels, low (−)
and high (+), as shown in Table 1.

Table 1. Two-level factorial design of controllable input factors and their associated levels.

Factor Name Low Level (−) High Level (+)

A Drying time 270 min 480 min
B Solar radiation intensity 650 W/m2 1100 W/m2

C Slice thickness 6–8 mm 12–14 mm

As for the drying time, this was varied with respect to the minimum and maximum usable daily
sunshine duration in Togo in the months of June to October and November to May (the primary
pineapple processing periods in this country). The selected solar radiation intensities corresponded to
the respective prevailing minimum and maximum values. All the relevant climate data were taken
from the software Meteonorm 7 (Meteotest AG, Bern, Switzerland) [61]. A full factorial design with k
factors attaining two levels was chosen [62]. The number of experiments was therefore given by n = 2k,
that is, for k = 3 the experimental design comprised eight tests as shown in Table 2. This experimental
design was carried out in a random order twice to determine the influence of input factors on the
output more accurately and to mitigate the effect of scattering.

Table 2. Setting of input factors according to the full factorial design.

Test Number Factor A Factor B Factor C

1 − − −
2 + − −
3 − + −
4 + + −
5 − − +
6 + − +
7 − + +
8 + + +

The moisture content in the dried pineapple was not influenced by only the individual input
factors, A, B, and C. Therefore, the effects of all possible interactions of two factors, and of all three
factors mentioned above, also had to be investigated using analysis of variance. For an experiment
design comprising 2k experiments, 2k − 1 effects could be identified with positive or negative signs as
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presented in Table 3. The signs of individual input factors were equal to their levels from Table 2. In
each row, the signs of interactions, AB, AC, BC, and ABC, correspond to the products of signs of the
respective input factors. The effects can then be estimated as follows:

effect =
2
n

∑n

i=1
(sign·yi), (1)

where i denotes the test number and yi is the mean of the respective experimental results.

Table 3. Design matrix and signs for seven effects in the 23 full factorial design.

Test Number
Factors Interactions

A B C AB AC BC ABC

1 − − − + + + −
2 + − − − − + +
3 − + − − + − +
4 + + − + − − −
5 − − + + − − +
6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

2.4. Drying Process

In a typical medium-sized Togolese company, around 1.5 t/d of fresh pineapples are processed, of
which roughly 900 kg/d are dried at 50–60 ◦C for 20 h. The remaining 600 kg/d leave the production
process as waste. For the conventional drying process, the daily butane consumption is around
49.5 kg which corresponds to a daily cost of 39.20 EUR [55]. Assuming a calorific value of butane of
12.72 kWh/kg at 25 ◦C, the daily energy consumption required for drying is 629.6 kWh or 0.7 kWh per
kilogram of fresh fruit.

For the experiments, the indoor test facility was switched on and the drying chamber was preheated
without the trays for 15 min. Then, six prepared pineapple slices were placed at different locations on
each tray, and the trays were placed into the drying chamber. Subsequently, continuous drying tests
were run with the parameters being set according to Table 2. The temperature and relative humidity of
air were measured and recorded every two minutes during the entire experimental period. Afterwards,
the pineapple slices were crushed, and their moisture content was determined. The moisture content in
the product to be dried was expressed on total material basis as W = mW/(mDM + mW), where mW is
the mass of water contained in the pineapples and mDM is the respective dry solid mass. The moisture
content can also be expressed on the dry basis,

X =
mW

mDM
, (2)

where the mass of the dry solid, mDM, remains constant during the entire drying process. Both values
of product moisture can be converted between each other using X = W/(W − 1).

The ambient air entering the solar collector was characterized by the temperature of 25 ◦C, relative
humidity of 30 wt %, and pressure of 1.012 bar. The simplified equation,

.
mair =

Δ
.

mW

xout − xin
, (3)

assuming a continuous, steady-state dryer operation, can be used for the calculation of drying air
consumption. Here, the moisture removed from a product to be dried is defined as Δ

.
mW =

.
mV,out− .

mV,in

and the absolute air humidity is defined as x = mV/mA. In these equations,
.

mV,in and
.

mV,out denote
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the vapor inlet and outlet mass flow rates, respectively, mV is the mass of vapor, and mA is the mass of
dry air. The enthalpy of moist air is then given by the following equation:

h = hA + xhV = cp,At + x
(
L + cp,Vt

)
, (4)

where hA denotes the enthalpy of dry air, hV is the enthalpy of vapor, cp,A and cp,V are the specific
heat capacities of dry air and vapor, respectively, t is the temperature, and L is the specific heat of
vaporization. The corresponding absolute humidity can be calculated using the following equation:

x =
RA

RV

(
ϕpS

p−ϕpS

)
, (5)

where ϕ denotes the relative air humidity, RA = 0.2871 kJ/(mol K) and RV = 0.4614 kJ/(mol K) are the
specific gas constants of dry air and vapor, respectively, pS is the saturation pressure, and p is the actual
pressure. The energy required by the drying process is then calculated as

.
QD =

.
mair(hin − hout) =

.
mair·hD, where hin and hout denote the enthalpies of air at drying chamber inlet and outlet, respectively,
and ΔhD is the change in air enthalpy in the drying chamber.

The source of heat in the solar thermal collector was the radiation generated by the lamps in
the indoor test facility. The input power is usually the solar radiation received by the surface of the
collector, absorbed and transferred to the drying air. This must be heated from ambient conditions at
around 25 ◦C to conditions required at the inlet of the drying chamber (at least 55 ◦C). The heat flux to
the drying air is therefore given by the following equation:

.
QC =

.
mair(hin − hamb) =

.
mair·hC, (6)

where hamb denotes the enthalpy of ambient air and ΔhC is the change in air enthalpy in the solar thermal
collector. The same heat flux can be written in terms of quantities representing the energy irradiated
to the thermal collector and the losses,

.
Qloss, as

.
QC = η0EAC −

.
Qloss, where η0 denotes the optical

efficiency of the solar thermal collector and AC is its area. The overall efficiency of the solar thermal
collector, including optical and thermal losses, can then be obtained using the following equation:

ηC = η0 − a(tC − tamb)

E
, (7)

where η0 and a are constants to be evaluated either analytically or experimentally, while tC denotes
the mean collector temperature and tamb is the ambient temperature. According to [63], the typical
experimental coefficients in efficiency correlations for air collectors operating between 20 ◦C and 50 ◦C
are η0 = (0.75–0.80) and a = (8–30) W/(m2 K). The required collector area then follows from the general
definition of the overall efficiency of the solar thermal collector, that is,

AC =

.
QC

ηCE
. (8)

3. Results and Discussion

The overall performance and efficiency of the solar collector used to provide hot air to the drying
process were considered first. With respect to the proposed experimental design, the residual moisture
of dried pineapple fruit was used as the metric. The drying kinetics were determined for both slice
thicknesses. Finally, the impact of local climatic conditions on the drying process performance was
estimated together with the expected fossil fuel savings, and the design of the solar thermal collector
was improved.
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3.1. Solar Thermal Collector Performance

Initially, the solar thermal collector was designed for the worst-case scenario, that is, the required
drying time of 4 h and low radiation intensity of 650 W/m2, obtained via Equations (3) and (5) for a
minimum air flow rate of 33.4 m3/h. Under these assumptions, the collector heat flux calculated using
Equations (4)–(6) was 280.12 W. The necessary solar thermal collector area, AC, was then determined
using Equations (7) and (8) to be 1.49 m2 for η0 = 0.75, a = 20 W/(m2 K), and (tC − tamb) = 15 K.

To determine the overall performance and efficiency of the solar thermal collector for each test,
temperature and relative humidity of air at the collector inlet and outlet were recorded. In total,
16 tests at radiation intensities of 650 W/m2 and 1100 W/m2 were carried out. Figure 5 shows an
example of typical measured values at the high solar radiation intensity of 1100 W/m2 over the period
of 480 min. For further consideration, the respective average temperatures and relative humidities
after the warm-up phase of 50 min were used.

Table 4 summarizes for each test the increases in drying air temperature, tin − tamb. Using the
corresponding mean value, the air temperature at the solar collector outlet was 46.8 ◦C at 650 W/m2,
whereas at 1100 W/m2 it was 56.8 ◦C. This means that the required temperature of about 55 ◦C at the
drying chamber inlet can only be guaranteed at the high solar radiation intensity level.

Table 4. Air temperature changes, tin − tamb (K), between the solar collector inlet and outlet.

E, W/m2
Test Number

1 2 3 4 5 6 7 8 Mean

650 20.81 20.66 20.49 20.48 19.90 21.38 20.50 20.04 20.53
1100 29.78 28.84 29.43 29.15 29.71 29.26 30.23 28.51 29.36

Given the air flow rate of 42.1 m3/h and mean air density of 1.12 kg/m3, the overall efficiency of the
solar thermal collector was calculated using Equations (4)–(6) and (8). The results are listed in Table 5.

 

Figure 5. Typical dependence of air temperatures at the inlet and outlet of the solar thermal collector, and
the corresponding air relative humidities, on drying time at the solar radiation intensity of 1100 W/m2.
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Table 5. Overall performance and efficiency of the solar thermal collector.

E, W/m2 ΔhC, kJ/kg
.

QC, W ηC, −
650 20.90 269.58 0.298
1100 30.85 391.00 0.255

3.2. Results of the Experiments

The experiments were compared on the basis of moisture content in the pineapple fruit before
and after the drying process. The eight tests of full factorial design as given in Tables 1 and 2 carried
out twice yielded 16 moisture content values shown in Table 6. The data indicate that the best drying
performance was reached in test number 4 with the drying time of 480 min, radiation intensity of
1100 W/m2, and slice thickness of 6–8 mm (Figure 6a). Significant shrinkage was apparent in the case
of the corresponding dried pineapple slice. The second-best result was obtained in test number 2.
In contrast, test number 5 with the drying time of 270 min, solar radiation intensity of 650 W/m2, and
slice thickness of 12–14 mm showed the least satisfactory outcome with the highest residual moisture
content (Figure 6b). Compared to a fresh pineapple slice, here there was only a slight change in
appearance due to the removal of moisture just from the surface.

Table 6. Residual relative moisture content (wt %) for the eight tests comprising the full factorial design.

Test Number Test Run 1 Test Run 2 Mean Variance Standard Deviation

1 63.48 68.52 66.00 12.70 3.56
2 49.18 47.51 48.35 1.40 1.18
3 66.11 55.15 60.63 60.06 7.75
4 26.33 32.52 29.42 19.15 4.38
5 78.69 78.08 78.38 0.19 0.43
6 69.56 71.79 70.68 2.49 1.58
7 74.49 77.10 75.80 3.41 1.85
8 67.43 62.99 65.21 9.82 3.13

 

Figure 6. Visual comparison of the dried pineapple slices obtained using (a) the best combination of
input factors and (b) the worst combination of input factors.

Using the factor signs from Table 3 and the means in Table 6, the means for the two levels, (−)
and (+), can be calculated by column for each input factor and each combination of input factors. The
results are shown in Figure 7. The greater the deviation between the two means, (−) and (+) (i.e., the
steeper the line connecting both means), the greater the influence of a factor or a factor interaction
on the drying process. It is obvious from Figure 7 that the moisture content in the dried pineapple
fruit is most affected by slice thickness (factor C) and drying time (factor A). In comparison, solar
radiation intensity (factor B), as well as all interactions of individual factors, influence the process
output significantly less. Furthermore, the effects of the individual input factors as well as of the
combinations of factors can be expressed quantitatively using Equation (1), as shown in Table 7.
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Figure 7. Effects of individual input factors, A, B, and C, and their interactions, AB, AC, BC, and ABC.

Table 7. Estimates of factor effects (wt %).

A B C AB AC BC ABC

16.79 8.09 −21.42 4.11 −7.64 −4.06 −2.67

The widths of the overall 95%, 99%, and 99.9% confidence intervals obtained using the data in
Table 6 and other relevant values were ±4.26 wt %, ±6.20 wt %, and ±9.31 wt %, respectively. These are
plotted in Figure 8 against the corresponding factor effects from Table 7. It is obvious that factors A
and C are statistically highly significant, factor B and interaction AC are statistically significant, and
the remaining interactions are statistically insignificant.

 

Figure 8. The overall 95%, 99%, and 99.9% confidence intervals (CI) plotted against the effects of the
individual factors, A, B, and C, and their interactions, AB, AC, BC, and ABC.

The conclusions of the drying experiments are that the slice thickness of prepared fresh pineapples
should not exceed 8 mm. The available daily sunshine duration limited by the climatic conditions
should be utilized as much as possible. The solar drying process is affected by the variation of the
annual solar radiation intensity to a lesser degree and, therefore, the solar thermal dryer can be used in
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the respective locality over the entire year. Performance of the drying process, however, also depends
on the local climatic conditions, particularly on the temperature and humidity of the ambient air. In the
case of Togo, the performance was verified as shown in Table 8. Table 9 then lists for Togo the air
enthalpies, hin, from Equation (6), temperatures, tin, from Equation (4), and absolute humidities, xin,
from Equation (5) at the solar collector outlet corresponding to the two solar radiation intensity levels
(i.e., the constant collector outputs of 270 W and 391 W).

In any case, the best drying result, characterized by a product moisture content of 29.4 wt %, still
does not meet the quality of the reference product having the residual moisture content of 13.7 wt %.
The solar thermal drying process must, therefore, be extended for a further 10–12 h period or another
suitable post-solar drying procedure must be implemented.

Table 8. Climatic conditions in the laboratory and in Togo (average).

Parameter Laboratory Togo (Average)

Ambient air temperature 27 ◦C 28 ◦C
Relative humidity 0.27 0.85
Absolute humidity 5.89 g/kg 20.43 g/kg

Air pressure 1012 mbar 1008 mbar
Saturation vapor pressure 35.57 mbar 37.71 mbar

Ambient air enthalpy 42.03 kJ/kg 79.48 kJ/kg

Table 9. Calculated data for the average climatic conditions in Togo.

Parameter E = 650 W/m2 E = 1100 W/m2

Solar collector outlet enthalpy 99.85 kJ/kg 109.02 kJ/kg
Solar collector outlet temperature 49.11 ◦C 57.86 ◦C

Relative humidity 0.27 0.18
Absolute humidity 20.43 g/kg 20.43 g/kg

Saturation vapor pressure 117.43 mbar 182.02 mbar

3.3. Drying Kinetics

The drying kinetics were determined by measuring the dry basis moisture content, X, according
to Equation (2) and varying with time, for both pineapple slice thicknesses of 6–8 mm and 12–14 mm.
The total drying time of 480 min was chosen together with the solar radiation intensity of 1100 W/m2.
Moisture content was measured every 30 min.

Figure 9 shows the drying kinetics for both slice thicknesses. The drying curve progressions can
each be divided into two parts. In the case of the lower slice thickness of 6–8 mm (Figure 9a), the first
part is characterized by a high constant drying rate, dX/dτ, and the moisture content decreasing nearly
linearly until the critical time τc = 350 min is reached. Then, the drying process transitions from the
external convective heat and mass transfer to the second part. where the drying rate is decreasing and
is controlled by the internal diffusive mass transfer. For the slice thickness of 12–14 mm (Figure 9b),
the drying curve is similar with the critical time being τc = 100 min. In both cases, however, the lowest
possible residual moisture content in the dried pineapple is limited by the equilibrium water content
in the material at a given temperature characterized by the moisture sorption isotherm [64].

128



Energies 2019, 12, 2841

 

Figure 9. Drying kinetics of pineapple slices with the thickness of (a) 6–8 mm and (b) 12–14 mm.

3.4. Consumption of Fossil Fuels in the Post-Solar Drying Procedure

As stated in Section 2.4, for a typical pineapple processing rate of approximately 900 kg/d and
conventional drying time of 20 h, the butane consumption is around 49.5 kg/d. Should the pineapple
fruit be pre-dried using the solar dryer to the moisture content of 29.4 wt %, then the necessary
post-solar drying time to reach the target moisture content of 13.7 wt % would be approximately 6.7 h.
This translates to the butane consumption of 16.6 kg and, consequently, significant daily savings of
32.9 kg of butane, or 66%.

3.5. Modification of the Solar Collector Design

As can be seen from Table 9, nearly the same outlet temperatures of drying air are reached with
both solar radiation intensities. However, higher absolute air humidity in Togo requires a higher air
flow rate. The original solar thermal collector was therefore modified [65]. This entailed changes to the
absorber and the thermal insulation to ensure a higher air temperature at the solar collector outlet as
well as increased overall efficiency of the solar collector. The modified absorber was built from empty
aluminum beverage cans with a commercial black acrylic varnish being applied (Figure 10). Mineral
wool insulation (thermal conductivity: 0.040 W/(m K)) was used instead of expanded polystyrene
due to higher air temperatures. The bottom insulation panel of the collector was twice as thick than
before (40 mm) and the sides contained 10 mm thick insulation layers. In addition, the axial fan was
equipped with a control system to regulate the outlet air temperature. The additional cost of all the
modifications made amounted to 120 EUR.

 

Figure 10. Comparison of the (left) original and (right) improved designs of the solar thermal collector.

The modified solar thermal collector was tested under the same conditions as mentioned in
Section 3.1. With the solar radiation intensity of 1100 W/m2, the resulting air temperature at the
collector outlet was markedly higher (83.4 ◦C instead of the original 56.8 ◦C). The overall performance
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and efficiency of the modified solar thermal collector were also improved. The corresponding main
results are summarized in Table 10.

Table 10. Main technical parameters of the modified solar thermal collector.

E, W/m2 tin − tamb, K tin, ◦C
.

QC, W ηC, −
650 43.60 70.70 416.56 0.389
1100 54.10 83.40 884.94 0.489

4. Conclusions

This study investigated the feasibility of an industrial-scale application of indirect solar thermal
drying of pineapples as part of a Togo-specific pineapple processing circular economy strategy, and the
main factors affecting the respective drying process. Drying time and pineapple slice thickness proved
to be significant, whereas the solar radiation intensity was found to affect the drying process to a lesser
extent. As part of the experiments, drying kinetics were also determined for both slice thicknesses
of 6–8 mm and 12–14 mm. The corresponding drying curves were characterized by two parts with
different drying rates, which were delimited by the critical times of 350 min and 100 min, respectively.

Considering the best obtained residual moisture content in the dried pineapple fruit of 29.4 wt %
and that of the reference product (13.7 wt %), the performance of the solar dryer alone was deemed
insufficient. In order to meet the required product quality, either the solar thermal drying process had
to be extended for a further 10–12 h period (which may not be feasible with respect to the local climatic
conditions) or another post-solar drying procedure had to be added. Nevertheless, solar pre-drying of
the pineapple fruit followed by a conventional drying process resulted in significant fossil fuel savings
of around 66%. This lays the groundwork for the successful implementation of the proposed circular
economy strategy.

A modification of the solar thermal collector to increase its efficiency was also briefly discussed.
The improved design of the absorber, changes to the thermal insulation, and the addition of a fan
control system resulted in a considerable increase in the drying air temperature at the collector outlet
(83.4 ◦C instead of the original 56.8 ◦C).

Ultimately, the combination of the solar thermal drying process with post-solar drying based
on the combustion of biogas produced from agricultural wastes leads to improved environmental
sustainability and also supports the circular economy in the agricultural sector. The proposed strategy,
therefore, could help farmers in developing countries to meet the growing demand for the sustainable
processing of tropical fruit or other agricultural products.
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Nomenclature

Roman Symbols:
A surface area, m2

a constant in the collector efficiency correlation, –
cp specific heat capacity, kJ/(kg K)
E solar radiation intensity, W/m2

h specific enthalpy, kJ/kg
k number of controllable input factors, –
L specific heat of vaporization, kJ/kg
m mass, kg
.

m mass flow rate, kg/h
n number of experiments, –
p air pressure, Pa
ps saturation air pressure, Pa
.

Q heat flux, energy consumption, W
.

Qloss energy losses from the solar thermal collector, W
R specific gas constant, kJ/(mol K)
t temperature, K
W moisture content on total material basis, kg water/kg total matter, %
X moisture content on dry matter basis, kg water/kg dry matter, %
x absolute air humidity, kg water/kg dry air, –
y mean of the experimental results
Greek Symbols:
Δ

.
mW moisture removed from pineapples, kg/h

τ time, min
τc critical time, min
η0 optical efficiency of the solar collector, –
ηC overall efficiency of the solar collector, –
ϕ relative air humidity, –
Subscripts:
A dry air
air drying air
amb ambient (at 25 ◦C, 30 wt % rel. humidity, 1.012 bar), kJ/kg
C in/of the solar thermal collector
D in the drying chamber, of the drying process
DM dry matter
i test number
in at drying chamber inlet
out at drying chamber outlet
V water vapor
W water
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Abstract: Currently, in most European electricity markets, power bids are based on forecasts
performed 12 to 36 hours ahead. Actual wind power forecast systems still lead to large errors,
which may strongly impact electricity market outcomes. Accordingly, this article analyzes the impact
of the wind power forecast uncertainty and the change of the day-ahead market gate closure on
both the market-clearing prices and the outcomes of the balancing market. To this end, it presents a
simulation-based study conducted with the help of an agent-based tool, called MATREM. The results
support the following conclusion: a change in the gate closure to a time closer to real-time operation
is beneficial to market participants and the energy system generally.

Keywords: day-ahead market; balancing market; gate closure; forecast uncertainty; wind power
forecast; agent-based simulation; the MATREM system

1. Introduction

Electricity market (EMs) are a complex and continuously evolving reality—new players are
emerging and new strategic behaviors are gaining more active roles, meaning that researchers and
practitioners did not yet solve the problems associated with this new reality [1,2]. Chief among these
problems are the ones related to the increase in non-dispatchable renewable generation, or variable
renewable energy (VRE), such as solar and wind power. VRE is characterized by substantial investment
costs, but near-zero marginal costs, and great variability, thus increasing the uncertainty of the net
load. VRE is normally the marginal resource, since it is operated at maximum capacity (taking into
account the weather conditions). These characteristics have a strong influence on the outcomes of
energy markets, reducing market-clearing prices [3]. Accordingly, existing market designs should be
analyzed to determine if they are still efficient to deal with high levels of VRE (see, e.g., [4–6]).

The question of a suitable day ahead market design for a better integration of VRE has been
the subject of a great deal of research (see, e.g., [7–10]). For the particular case of an effective gate
closure, the potential solution discussed by the research community involves its adjustment to a time
closer to the first hour of delivery. The main reason behind this adjustment is related to the forecast
of renewable generation, which typically presents large errors for long time horizons, due to the
stochastic nature of the atmosphere. Since the day-ahead market (DAM) closes typically at 12:00 p.m.
(CET), the bids of wind power producers need to be performed through power forecasts computed at
least 12 to 36 h ahead. Consequently, the adjustment of the gate closure is very important to enable
a fair participation of VRE in EMs, since all energy producers (dispatchable and non-dispatachable)
participate in the day-ahead market under the same rules. In case the energy production differs from
the commitments resulting from the DAM, the differences should be balanced in the intraday market
and/or the balancing market.

In 2014, the International Agency of Energy (IEA) presented a report about energy markets and
renewable generation [11], scoring key EM features according to eight dimensions: non-VRE dispatch,
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VRE dispatch, dispatch interval, last schedule update, grid representation, interconnector management
and system services definition and market. Half of these dimensions are directly related to the
improvement of forecasts, namely dispatch interval, grid representation, interconnector management
and last schedule update. IEA considers that all physical transactions should be performed through
implicit auctions in a centralized pool without feed-in-tariffs (FiTs) or other incentives to renewable
energy sources (RES), with an interval up to 10 min using updates up to 30 min before real-time
operation. In addition, the reserve requirements should be computed stochastically, taking into
account different scenarios for the share of VRE, and be remunerated through marginal pricing.
Furthermore, dispatch intervals should be reduced—that is, should be as short as possible—to enable
VRE producers to perform high accurate forecasts. Such market modifications can contribute to a
new paradigm—a paradigm of VRE integration without FiTs, where VRE investors do not have a
guaranteed return, being remunerated by the market price, and subject to the payment of penalties for
their deviations.

In 2016, the European Union (EU) presented the “Clean Energy for all Europeans”, a package
of measures to promote the integration of renewable generation and to harmonize the European
markets. In 2017, the EU presented a new proposal for regulating the pan-European market [12].
Article 7 considers that market operators should trade as close as possible to real-time operation,
and no later than the gate closure of the intraday cross-zonal market. In [13], we presented an overview
of the potential effects of the new EU proposal on the integration of renewable generation. In [14–16],
we analyzed the impact of both high levels of renewable generation and significant forecast errors on
the outcomes of the DAM. As a preliminary result, we conclude that a gate-closure closer to real time
operation is beneficial to wind power producers.

This article builds on our previous work on market design. It considers a specific market design
element, namely the gate closure, and investigates how changes in this element can better accommodate
the increasing levels of renewable generation. Specifically, this article analyzes the impact of both
wind power forecast uncertainty and a change in the gate closure of the DAM, from 12:00 p.m. to
2:00 p.m. (CET), on the day-ahead market prices and also on the outcomes of the balancing market.
The proposed gate closure encompasses two perspectives. The first is related to technical requirements.
In a power system with a significant number of conventional power plants, there is a need of a certain
lead-time to adjust generation levels in a cost efficient manner [17]. The second perspective is related
to the most reliable meteorological information to feed the wind power forecast systems.

This article presents a simulation-based study conducted with the help of an agent-based tool.
Multi-agent systems (MAS) are a somewhat new area of study (see, e.g., [2,18]). MAS are fundamentally
coupled networks of computational agents that cooperate to resolve issues that are over their individual
competence. Theoretically, MAS are an optimal fit for the distributed structure of liberalized energy
markets. Accordingly, the work presented here makes use of a multi-agent simulator for competitive
energy markets, called MATREM [19,20] (MATREM stands for Multi-agent Trading in Electricity
Markets). The following aspects are examined in the paper, in order to assess the benefits of postponing
the gate closure of the day-ahead market:

• The influence of the forecast accuracy on the day-ahead market, namely on the level of prices,
and price volatility;

• The influence of the forecast accuracy on the balancing reserve requirements.

In addition, the following questions are addressed in the paper:

• How can forecast improvements possibly reduce the total balancing reserve requirements?
• Which parts of the system cause the need for a balancing demand? In addition, what is the

associated energy quantity?

The remainder of the article is structured as follows. Section 2 discusses the role of wind power
forecasts in energy markets. Section 3 presents an overview of the MATREM system, focusing on the
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day-ahead and the balancing markets. Section 4 describes the method considered in the experimental
work, highlighting the main tasks and the relationships between them. Section 5 presents the case
study and discusses the simulation results. Lastly, in Section 6, some conclusions are drawn.

2. The Role of Wind Power Forecast in Day-Ahead and Balancing Markets

In order to maintain high standards of service quality, in particular in what regards the security of
supply and the system robustness, the system operator must be aware of the current and future values
of wind power for each area and connection points of the grid [21]. Currently, an efficient and safe
operation of power systems [21,22] requires that wind power production be well forecasted, and, when
coupled with a load forecast system, both should enable the reduction of the need to balance the energy
in the reserve markets, usually at high costs. During the past few years, numerous approaches have
been developed for wind power forecast based on numerical weather prediction (NWP) models.
Comprehensive reviews are presented in the literature (see, e.g., [23,24]). NWP models, as the
Fifth-Generation Penn State/NCAR Mesoscale Model (MM5) [25], resolve the formulations that
rule the state of the atmosphere using numerical methodologies.

Notwithstanding the advances on NWP, systematic errors still persist due to the inherent chaotic
behaviour of the atmosphere, in which minor errors, at an early stage, will increase in the deterministic
chaotic system. For a long time horizon, this situation could result in a large deviation of the
forecast when compared with the observation [26,27]. This drawback can be partly explained by
the physical formulation and parametrization of the atmosphere processes, the initial and boundary
conditions (IC), among others. In fact, as indicated by several authors, one of the main sources
of error and uncertainty, when numerical mesoscale models are applied, is derived from the ICs
that feed the model, which are essentially atmospheric information provided by analysis/forecast
products. Indeed, several authors have shown that these data have a crucial impact on the mesoscale
model outcomes [28–30]. ICs are a three-dimensional set of meteorological data to force the boundary
conditions of the model, and together with a terrain and roughness database, enable for conducting
numerical physical simulations, for the region under analysis, in a time horizon comprising the
day-ahead market. The ICs are obtained from global atmospheric models, such as the global forecast
model system (GFS), with both a low time (6 h: at 12:00 a.m., 6:00 a.m., 12:00 p.m. and 6:00 p.m. UTC)
and low spatial resolutions (e.g., 50 km) [31].

With the increasing levels of VRE generation in EMs, the underlying impact of wind power
forecast into the power system has been explored by several authors. For instance, in [27], the authors
studied the certainty gain effect of a wind power producer that participates in the day-ahead market,
by delaying the forecasts according to NWP data availability. The results obtained demonstrate
that NWP data availability determines the wind power forecast accuracy in the day-ahead market.
In [6], by using a case study where wind parks are allowed to participate in the Portuguese tertiary
reserve, the authors concluded that changing the market time unit from 1 h to 15 min reduces their
imbalances about 10%. Thus, schedule updates as close as possible to real-time operation may strongly
reduce the effect of forecast errors. However, the majority of the physical transactions of energy are
performed in the day-ahead market (around 90% in Europe [32]), meaning that intraday markets
(in Europe) and real-time markets (in the United States and Australia) have been less attractive,
despite the fact that they allow schedule updates closer to real-time operation. Balancing markets
operate essentially in real time and have attractive prices, when compared to spot markets, but have
less liquidity (smaller trading quantities). A study conducted in Denmark [33] concluded that the
participation of wind power producers in balancing markets increases the wind energy value [34] only
4.5%. However, some preliminary results (see, e.g., [35]) indicated that a suitable day-ahead market
design can contribute to a large increase in the wind energy value, mainly by reducing the penalties
paid with deviations.

This article explores the adjustment of the DAM gate-closure considering wind power forecasts
according to the typical availability of the IC meteorological data. Currently, the Portuguese wind
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farm producers may participate in the Iberian day-ahead market by considering forecasts based on
meteorological information obtained 18 h before the first trading hour (see Figure 1). To accomplish
the technical requirements, such as the unit commitment and the time needed to perform all the
steps necessary to obtain the wind power forecasts, the proposed new gate closure time is set to
2:00 p.m. (considering the 12:00 p.m. IC conditions). This adjustment can be favourable to deal with
the variability of stochastic energy sources [36–38].

Figure 1. Global Forecast System (GFS) data availability and DAM design: (top)—actual; (bottom)—
proposed in this work.

3. The MATREM Simulator

The major components of the MATREM system include a day-ahead market, an intra-day market,
a futures market, a balancing market, and a marketplace for negotiating the terms and conditions of
“tailored” bilateral contracts [19,20]. The system supports seven types of market entities: generating
companies (GenCos), retailers (RetailCos), aggregators of VRE, coalitions of consumers, traditional
consumers, market operators and system operators. All entities are modeled as software agents.

GenCo agents may own one power plant or a set of power plants with different technologies.
Typically, they sell energy in the day-ahead market and the intra-day market—that is, the centralized
markets—as well as in the bilateral market—the futures market. RetailCo agents buy energy from
GenCos in the centralized markets as well as in the futures market, and subsequently, re-sell that
energy to private consumers (by signing bilateral contracts with them). Aggregators of VRE allow the
participation of wind power produces and other types of VRE producers in the centralized markets.
Coalitions of consumers are essentially alliances of end-use consumers with the goal of reducing their
energy cost, typically by increasing their bargaining power. Large traditional consumers can trade
energy in the centralized markets and the bilateral market, while small traditional consumers may ally
into coalitions or establish private bilateral contracts with retailers.

The day-ahead market is cleared one day in advance—that is, in day D for each of the 24 h
of the next day (D + 1), as illustrated in Figure 1. The intraday market is a short-run market
involving several auction sessions. Typically, both markets operate according to the system marginal
pricing algorithm, although MATREM also supports locational marginal pricing. Supply-side agents
compete by submitting offers to sell energy while demand-side agents submit offers to buy energy.
The system ranks the selling offers by increasing price and the buying offers by decreasing price,
obtaining the supply and demand curves, respectively. Next, the market operator computes the
market-clearing prices and sends the results to the system operator, who checks (in a preliminary way)
the security constraints.

The stability of the power system is a task associated with the system operator. To this end,
this agent needs to take access to reserve capacity for the provision of system services.
MATREM considers three different types of reserve capacity: primary reserve (or frequency control
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reserve), secondary reserve (or fast active disturbance reserve), and tertiary reserve (or slow active
disturbance reserve). Tertiary reserve has to be available within 15 min and its activation is carried out
manually—this type of reserve is the most important for the work described here.

Tertiary reserve is traded by the system operator in a day-ahead tender. This agent defines
the needs for up and downregulation, receives the offers from the balance responsible parties,
and computes the market-clearing prices by using a simplified version of the system marginal pricing
algorithm. Two different simulations are performed, one for computing the upregulation price,
and another for determining the downregulation price. Following the clearing process, the system
operator can perform an imbalance settlement process.

The futures market is an organized market for trading standard bilateral contracts. Such contracts
are agreements by which the parties take on the obligation to buy or to sell electricity, in a
standardized quantity and quality, on a predefined date and place, at a price agreed in the present.
The bilateral marketplace allows private parties to negotiate the terms and conditions of tailored
(or customized) long-term contracts, specifically forward contracts [39] and contracts for difference [40].
To this end, market participants are equipped with a model that handles two-party and multi-issue
negotiation [41,42].

4. Method

This work makes use of a diverse range of models and involves a set of tasks. Figure 2 depicts a
flowchart of the approach considered, highlighting the main tasks and the relationships between them.

Figure 2. Overview of the methodology considered in this work, specifically the method and the main
tasks related to the definition of the bids of the wind power producer (green) and the other market
participants (light orange), as well as the procedure associated with the operation of the day-ahead
market and the imbalance management process (light yellow).

4.1. Wind Power Forecast Approach

In the last few years, one of the key scientific research topics is the development of reliable
forecasting systems. These systems are being widely employed in different fields, such as the prediction
of consumer comfort based on temperature and humidity, electricity demand, wind speed and direction
for onshore wind power, and also metocean conditions for offshore wind power, and irradiation for
solar power (see, e.g., [43–46]).

For the particular case of wind power forecast systems, several techniques have been proposed in
the literature (see, e.g., [47–52]). To support the participation of wind power producers in the DAM,
existing wind power forecast systems are generally based on statistical post processing approaches
coupled with mesoscale NWP outputs [23]. In this article, a K-nearest neighbour (K-NN) methodology
is applied to provide the wind power forecasts. This statistical approach, also known as analogous
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forecast, has been applied by several authors due to its simplicity, effectiveness and non-parametric
features [53,54].

The K-NN methodology is considered a lazy learning methodology, since there is no need to
(previously) build a model or a function. Instead, the methodology uses only similar situations from
the historical data to forecast. This characteristic is especially suitable to forecast weather dependent
variables, such as wind power. The K-NN methodology considers that atmospheric flow releases
the same local impact. Consequently, and taking into account the atmospheric flow characteristics,
where the meteorological weather patterns have a tendency to repeat over certain regions, from time
to time, the wind power forecast production for a determined hour can be determined from a similar
meteorological weather pattern from historical events. The K-NN technique has shown a high efficiency
in forecasting phenomena where the synoptic variability is predominant, such as precipitation [55]
and wind speed [56]. Currently, this technique has already been explored by several authors for
forecasting wind power, showing good performance [57–59]. To estimate the degree of similarity with
each historical event, the Euclidean distance, with a trajectory matrix providing information regarding
the state of the atmosphere on the preceding times, is the most common metric used in the wind
forecast sector [59].

Due to a large number of degrees of freedom of the atmosphere, it is usual to apply a principal
component analysis (PCA) approach to the input data. This procedure allows to filter atmospheric
perturbation that represents only background noise [27]. To assist in this filtering process, the North
criterion [60] was applied, allowing to identify the appropriate number of principal components (PCs)
to be used in each meteorological parameter input.

Figure 3 depicts the flowchart of the K-NN methodology applied in this work. In order to calibrate
the forecasting methodology, sensitivity studies were performed, using two years of real wind power
data from a set of wind parks located in the central region of Portugal. These sensitive tests comprise
the suitable number of K nearest neighbours, the size of the trajectory matrix and the selection of the
most adequate meteorological parameters. After some tests, the most adequate configuration of the
forecast methodology was to set K to 10 using a trajectory matrix with a lag of 3 h, composed by the
first three PCs of the longitudinal component of the wind, wind speed, and atmospheric pressure.
Thus, the deterministic wind power forecast is based on the average value of the ten historic events.

The normalized root mean square error (NRMSE) represents the quadratic difference between the
estimated value (based on the proposed methodologies), and was normalized by the nominal capacity
of wind park: Pnom. The correlation r is used in statistics to measure how strong the relationship is
between two variables, in this case, the observed power Pobs

t and the forecast power P f or
t . The F Test

is used to verify the statistical significance between the deviations associated with the two different
gate-closures considered in this work. Mathematically, the previous parameters are defined by the
following equations:
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Figure 3. Wind power forecasts methodology based on NWP data coupled with a K-NN approach.

4.2. Selection of Representative Days

The underlying goal of choosing representative days is to statistically detect the most typical
wind power daily patterns and, at the same time, clustering together days that exhibit identical
patterns. This procedure allows for: (i) feeding the MATREM simulator without resorting to extensively
time-consuming simulations, and (ii) assessing, for instance, the typical profiles that can jeopardize
the wind power producer revenues enabling for adopting measures to mitigate their risk exposure.
The identification of representative days is a suitable approach widely employed to increase the
knowledge of a determined parameter allowing the creation of decision support systems (e.g., the
classification of the type of profile of electricity customers [61]). A K-medoids clustering algorithm [62]
is used in this work to find the representative days based on the daily observed wind power profile for
the wind parks considered. This technique allows arranging the input data with similar characteristics
into clusters in order to achieve the most representative daily profile. With this step, it is possible to
identify (in a statistical way) statistically independent patterns from the data that can be related to
physical processes. Clustering algorithms are unsupervised learning processes typically applied to
find and split the data according to the similarity among the observations, in a way that is always
closer to the elements of the same cluster, and dissimilar among the remaining clusters [62,63].

The main advantages of the K-medoids algorithm, when compared to others non-hierarchical
clustering algorithms (e.g., the K-means algorithm) are: (1) to be more robust to noise and outliers
by using the median values, and (2) to allow for selecting data points as centres (medoids) [63].
The K-medoids technique used in this work is classified as a non-hierarchical clustering algorithm,
allowing to group the data into K clusters. The suitable K, i.e., the number of clusters, is predetermined
through the Calinski–Harabasz (CH) criterion [64].

The wind power input matrix (Xd,t) for the clustering algorithm is defined as follows:
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Xd,t =

∣∣∣∣∣∣∣∣∣∣

Z1,1 Z1,2 · · · Z1,t
Z2,1 Z2,2 · · · Z2,t

...
...

...
...

Zd,1 Zd,2 · · · Zd,h

∣∣∣∣∣∣∣∣∣∣
(4)

where t represents the wind power observed during a predetermined hour of day d during the
period 2009–2010.

4.3. Measures of Economic Results

In this section, the formulation used to compare the results between the 12:00 p.m. scenario
(hereafter designated as the base case) and 2:00 p.m. scenario (hereafter designated as the upgraded case)
is presented. The total remuneration (per hour) of the wind power producers is as follows:
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t Cdayahead
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(
Pobs

t − Pbid
t

)
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t(
Pobs
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Cdowndeviation

t , for Pbid
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t

(5)

where:

• Cdayahead
t is the day-ahead price at hour t;

• Cupdeviation
t and Cdowndeviation

t are the up and down deviation costs, respectively.

It is important to note that Pbid
t Cdayahead

t is the part consisting of the remuneration obtained from
the day-ahead. The other part consists of the remuneration obtained from the deviations. Therefore, the
total remuneration Rd and average remuneration R̄d for a specific day d are as follows:

Rd =
23

∑
t=0

Rt (6)

R̄d =
Rd

∑23
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(7)

The average remuneration obtained in the day-ahead market R̄dayahead
d is defined as follows:
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(8)

In addition, the average remuneration obtained by considering the deviations R̄deviation
d is as follows:
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With these formulae, it is possible to compute the average wind power value, the energy transacted
in the tertiary reserve market, and the tertiary reserve cost for both scenarios. Both the reserve cost
and the electric system levelized cost are computed by taking into account the occurrence of each
representative day and the traded energy. In order to assess the gain effect regarding the proposed
adaptation of the gate closure of the day-ahead market, several key performance indicators (KPIs) are
defined (see Table 1).

142



Energies 2019, 12, 2765

Table 1. KPIs considered in this work.

KPI Objective Formulation

Increase in the wind Increase the remuneration

Equation (7)power value to of wind power producers
the market in the market

Increase in the forecast
Reduce the forecast error Equation (3)accuracy

Reduction of total control Reduce the balance

Equations (1) and (2)reserve by wind power needs of the
forecast improvements tertiary reserve

Reduction of the tertiary Reduce the balance costs Tertiary reserve
reserve costs of the tertiary reserve simulation

Reduction of total Reduce the system costs Day-ahead market
operating costs in the with the day-ahead market and
electricity system by and the tertiary reserve tertiary reserve
forecast improvements simulations

5. The Case Study

This section describes a case study to analyse the effect of wind power forecasts errors on the
outcomes of the DAM. The following two scenarios are considered: (i) a base scenario, where the DAM
closes at 12:00 p.m. (the bids of the wind power producers are based on a wind forecast performed
18 to 42 h ahead), and (ii) an updated scenario, where the DAM closes at 2:00 p.m. (the bids of WPPs
are based on an updated forecast performed 12 to 36 h ahead).

5.1. Software Agents and Wind Power Profiles

This study makes use of data published by the Iberian electricity market (MIBEL) and involves the
simulation of the day-ahead market prices as well as the balancing market prices. Market participants
are modeled as software agents, defined with the help of the MATREM system. Since the normal
operation of the daily market of MIBEL involves a number of bids on the order of thousands for a
particular hour, there is a need to make some simplifications related to the number of software agents,
in order to avoid a large computational complexity. Accordingly, the main agents considered in the
study are as follows: a market operator (S1), a system operator (S2), twelve producers (supply-side
agents) and four retailers (demand-side agents). Table 2 presents the characteristics of the supply-side
agents. The wind aggregator (agent P1) represents the Portuguese wind farms.

Table 2. Producer agents (software agents) and their key characteristics.

Agent Country Technology
Maximum Marginal
Capacity (MW) Cost (e/MWh)

P1 Portugal Wind 2500 0
P2 Portugal Renewable mix 2000 0
P3 Portugal Hydroelectricity 4500 [30; 60]
P4 Portugal Coal 1800 ≈30
P5 Portugal Combined Cycle Gas 3000 ≈55
P6 Portugal Fuel oil 2000 ≈70
P7 Spain Renewable mix 30,000 0
P8 Spain Hydroelectricity 16,500 [30; 60]
P9 Spain Coal 10,000 ≈30
P10 Spain Nuclear 7500 ≈30
P11 Spain Combined Cycle Gas 22,000 ≈55
P12 Spain Fuel oil 4000 ≈70
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It is important to note that the detection of violations related to the interconnection constraints
between Portugal and Spain leads to a process of market splitting, resulting in different price areas for
Portugal and Spain. After a careful examination, we concluded that this situation applies for some
hours of the days under consideration. In practice, this means two sets of simulation for each hour of
operation, one for Portugal and another for Spain. However, for convenience, and in the interests of
simplicity, the day-ahead market is cleared for Portugal only.

The forecast methodology is deterministic and uses the following: (i) numerical weather prediction
data outputs (see Section 4), and (ii) observed data for a set of wind farms during the period 2009–2010.
The wind farms have a nominal capacity of 250 MW (10% of the Portuguese installed capacity, in 2010).
This value is upscaled to 2500 MW to obtain a meaningful impact on the market results. The observed
wind power profiles are depicted in Figure 4a. The representability of each wind power profile is also
shown in Figure 4b.

(a) (b)

Figure 4. Wind energy typical profile (a) and representability of each wind power profile during the
2-year period of the study (b).

The analysis of Figure 4 supports the consideration that the Portuguese wind farms are located in
a mountain region, since several wind power profiles show the typical features of wind speed in such a
region (although with different intensity)—that is, due to the thermal stratification and local effects [65],
the highest wind speed is associated with the nocturnal period. Moreover, the most common wind
power profile shows a reduced production during all day. On the other hand, profile 2 is associated
with a high level of wind power production, which occurs during the passage of severe meteorological
phenomena, as the cyclone systems [66]. This profile shows the lowest number of occurrences.

5.2. Wind Power Forecast Deviations

Figure 5 depicts the wind power forecast deviations (forecast minus observed production) for the
seven representative days, at 12:00 p.m. (base case, left) and 2:00 p.m. (updated case, right). The figure
shows that the wind power forecast deviations at 12:00 p.m. have an absolute value that is almost
twice that of the deviations at 2:00 p.m. Moreover, wind power fluctuations are considerably higher in
the base scenario. For instance, the uncertainty in profile 2 ranges between −200 and 1700 MW.
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Figure 5. Wind power forecast deviations at 12:00 p.m. (base case, left) and at 2:00 p.m.
(updated case, right).

Table 3 depicts the forecast results regarding both the NRMSE and the correlation values between
the two scenarios. The most significant improvement was observed in profile 2. This profile, usually
associated to extreme weather conditions, shows a strong improvement in the correlation and the
NRMSE values. The link between wind power variability as well as the uncertainty with extreme
weather conditions was described by several authors [23,66–69], who demonstrated that larger errors in
the wind power forecast are expected to occur during severe weather conditions with strong dynamics
(e.g., storms and cold fronts) when compared with weather conditions associated with stationary
systems (e.g., anticyclonic systems). For a 0.05 significance level, the critical value is 2.01, which means
that comparing both deviations (see Figure 5), exist statistically differences in all profiles, except in
profile 6 (see Table 3).

Profile 4 also shows a strong improvement in the wind power forecast for the upgrade scenario.
Profile 5 shows the lowest NRMSE amelioration that can be explained with the capabilities to obtain
a reliable forecast during calm wind speed conditions [67,69]. Consequently, results from Table 3
highlighted the fact that the data considered about the ICs strictly define the wind power forecast
errors. Thus, as expected, since the most up-to-date information on the state of the atmosphere is
used, postponing the gate closure can strongly reduce the uncertainty of the bids that the wind power
producers submit to the day-ahead market.

Table 3. Correlation and NRMSE between the observed and forecasted wind power and F value of the
wind power deviations for each scenario and wind power profile.

Parameter Difference Simulation
Wind Power Profile

1 2 3 4 5 6 7

Correlation
Base Scenario 0.91 −0.35 0.72 0.54 0.79 0.78 0.47

Upgrade Scenario 0.95 0.27 0.89 0.86 0.92 0.88 0.71

NRMSE (%)
Base Scenario 4.23 19.46 10.72 12.45 2.73 5.99 8.94

Upgrade Scenario 2.87 12.85 3.93 5.52 2.10 3.90 5.61

F Both Scenario 2.07 3.39 2.61 2.81 2.37 1.94 3.85

5.3. Simulation Results

5.3.1. Impact of Wind Power Forecast on Market Outcomes

In a preliminary attempt to understand the relation of the aforementioned wind power forecast
uncertainty results with the market outcomes, we observed that the deviations are essentially positive
in most of the representative days (day seven is the exception), meaning that the forecasts normally
underestimate the wind power values. From the point-of-view of wind power producers, this situation
(underestimation) can be profitable, since wind power is offered at a price around 0 e in the day-ahead
market, and thus an underestimation forecast will increase the market price. On the other hand,
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an overestimation forecast can decrease the day-ahead market price, decreasing the wind energy
value. Therefore, it can be concluded that an underestimation of the wind power production in the
day-ahead market (shortage forecast) overestimates the importance of the wind power and also gives
an extra amount to the supply-side agents (by increasing the market-clearing price). On the other
hand, an overestimation of the wind power production (excess forecast) undervalues the wind power
value. Moreover, due to the payment of penalties in the balancing market, the latter situation can lead
to a drastic reduction in the revenues of wind power producers. Thus, an underestimation of wind
power production can be more profitable for wind power producers.

The results of the simulations for both the base scenario (12:00 p.m.) and the updated scenario
(2:00 p.m.) are presented in Tables 4 and 5, respectively. In both tables, details regarding the outcomes
of postponing the market closing time by two hours are also provided. As mentioned previously,
the sum of the wind power deviations at 12:00 p.m. is almost twice the deviations associated with
2:00 p.m., and on some days it is more than twice the amount, such as the 3rd and 4th representative
days. The results also show that the underestimation of wind power production can increase the
market price and, as discussed previously, can overvalue the wind power. This conclusion takes into
account the fact that the average day-ahead remuneration is higher at 12:00 p.m., in almost all days,
excluding the 7th representative day. In this representative day, the overestimation of wind power
production leads to an undervaluation of the wind power value. This behavior can also be observed
in the revenue deviations results. In fact, when both day-ahead and revenue deviations are positive,
an underestimation of wind power is obtained. Consequently, power producers receive a positive
revenue for the extra energy at the real-time operation (normally less than in the day-ahead market,
due to penalties). When the revenue deviations are negative, this normally means an overestimation
of wind power production when compared with the forecast, so there will be a need to pay a value
higher than the day-ahead price.

Table 4. Key results for the base scenario (12:00 p.m. scenario).

Profile
Power Forecast 12 h (Base Scenario)

1 2 3 4 5 6 7

Day-ahead

22.01 25.93 22.18 14.37 10.58 8.06 12.61energy bid
(GWh)

Day-ahead

767.21 951.6 885.58 529.22 389.25 317.03 525.92Remuneration
(ke)

Average

34.85 36.7 39.93 36.82 36.81 39.31 41.72Day-ahead Rem.
(e/MWH)

Real time

4.45 21.86 11.61 13.26 2.55 5.5 8.78deviations
(MWh)

Deviations

−143.6 460.33 226.29 317.29 9.94 98.66 −527.7Revenue
(ke)

Average

29.94 30.03 32.91 30.63 33.75 31.75 −0.46Remuneration
(e/MWh)

Total

623.62 1411.9 111.19 846.51 399.19 415.69 −1.77Remuneration
(ke)
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One of the key parameters that can be used to compare the base scenario with the updated
scenario is the average remuneration of the wind power producers. Considering both tables, it can
be seen that, in the updated scenario, the wind value (average remuneration of the wind power) is
always higher, and the proposed market design element seems even more relevant when a wind power
forecast overestimation occurs. For instance, for the 7th representative day, the average remuneration
of the wind power producer is negative, in the base case. Therefore, if hypothetically wind power
producers are active players in the market, with the current market design, when the day-ahead market
prices are lower than the deviation prices, the producers who have an energy shortage (when compared
to their energy forecast bids) may have a negative average remuneration.

Table 5. Key results for the updated scenario (2:00 p.m. scenario).

Profile
Power Forecast 2:00 p.m. (Updated Scenario)

1 2 3 4 5 6 7

Day-ahead
20.62 32.48 30.83 22.59 13.41 10.26 9.83energy bid

(GWh)

Day-ahead
699.61 1173.3 1187.7 784.42 488.76 400.31 414.5Remuneration

(ke)

Average
33.93 36.12 38.53 34.73 36.44 39.03 42.17Day-ahead Rem.

(e/MWh)

Real-time
2.76 14.59 3.78 5.2 1.75 3.82 6.01deviations

(MWh)

Deviations
−45.3 330.82 48.19 124.78 −81.56 43.28 −355.6Revenue

(ke)

Average
31.42 31.99 36.58 32.9 34.43 33.88 15.41Remuneration

(e/MWh)

Total
654.31 1504.1 123.59 909.2 407.2 443.6 58.94Remuneration

(ke)

Now, taking into account the representability of each wind power profile during the two years of
data, it is possible to compute the average wind energy value, the energy transacted in the tertiary
reserve market, and the tertiary reserve costs, among other key parameters, for both the 12:00 p.m.
and the 2:00 p.m. scenarios (see Table 6). The results in the Table show that the upgraded case leads to
better results in almost all key indicators (the exception is the reserve cost).

Also, the results suggest that a reduction in the day-ahead market prices, due to a reduction in
the forecast errors (NRMSE), leads to an increase in the wind power producers revenues, by allowing
for reducing their losses associated with the deviation penalties. With a reduction of forecast errors,
the quantity of reserve required to compensate the deviations decreases. However, both the reserve
levelized cost and the reserve cost increased. These results are associated with a decrease in the system
requirements for down reserve (see the reserve direction parameter). In this way, the system operator
receives an inferior remuneration from the down reserve, which leads to an increase of the down
reserve price. This increase, together with a decrease in the down reserve utilization and the day-ahead
market prices, will negatively affect the revenue of the power plants that bid at the tertiary reserve
market. This behavior is associated with a reduction of the remuneration of wind power producers
from the day-ahead market since they need to pay a high price for the down reserve, for a small
quantity of energy.
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Table 6. Average values of the key parameters under evaluation per day.

Key Parameters

Simulations

12:00 p.m. 2:00 p.m.
(Base Scenario) (Updated Scenario)

Wind Energy Value (e/MWh) 28.46 31.69
Forecast NRMSE (%) 8.03 4.52
Reserve Use (GWh) 11.1 6.23
Reserve Direction (GWh) −7.44 −3.83
Reserve Costs (Me) −0.1 −0.04
Reserve Levelized Cost (e/MWh) −7.26 −3.83
Down Reserve Price (e/MWh) 20.07 25.7
Day-ahead Market Cost (Me) 18.75 18.63
Day-ahead Market Prices (e/MWh) 38.6 37.97
Day-ahead Market Energy (GWh) 487.71 491.31
Electric System Cost (Me) 18.65 18.58
Electric System Lev. Cost (e/MWh) 38.84 38.12

5.3.2. Quantifying the Gain Effect of the Proposed Market Design Change

The KPIs defined in Section 4 enable for quantifying the gain effect by setting the gate closure of
the day-ahead market to 2:00 p.m., instead of 12:00 p.m. (see Table 7). The change of the day-ahead
market closing time brings benefits to the system in general, with a reduction around 16.5% in the
total costs. As stated before, the wind power producers and the demand-side players benefit from this
change. Wind power producers gain from selling the same quantity at a higher net price (market price
with fewer penalties). The demand-side players gain from buying a similar quantity of electricity at a
lower price. The system operator benefits from using less the reserve market to balance the system
(a reduction around 44%) and also receives the lowest revenue (less 56%) from the down reserve
market (part of the tertiary reserve market), which means that the agents that deviate will pay higher
penalties. Notwithstanding, the power producers that buy energy from the tertiary reserve market
(down reserve) decrease their revenues, by having less energy to buy at a higher price.

A comparison of the results shown in Table 7 with the main results presented by the literature
(see Section 2) allows us to conclude that postponing the gate-closure of the day-ahead market only two
hours seems to be a change of market design that can bring large benefits to power systems generally.

Table 7. Key performance indicators (KPIs).

KPIs (%) Changing from 12:00 p.m. to 2:00 p.m.

Increase in the wind power value to the market 11.34

Increase in the forecast accuracy 43.71

Reduction of total control reserve by forecast 43.87
improvements in wind power

Reduction of the tertiary reserve costs −56.25

Reduction of total operating costs in the 16.46
electricity system by forecast improvements
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6. Conclusions

The article analyzed a change in the gate closure of the day-ahead market to deal with the
uncertainty of variable generation. Specifically, it considered the adjustment of the day-ahead market
closing time from 12:00 p.m. (currently in use in most of the European electricity markets) to 2:00 p.m.
(CET). To test this adjustment, a case study based on real data from a set of aggregated wind parks in
Portugal, and also data from the supply-side (producers) and demand-side (retailers buying electricity
for the end-use consumers) of the Iberian Market (MIBEL), as an approximation of the entire system,
was established.

Wind power forecast data were obtained using a K-NN approach based on data from a NWP
model. The day-ahead market was simulated using the system marginal pricing algorithm for seven
representative days, taking into account two scenarios: gate closure of the day-ahead market set
to 12:00 p.m. (base case) and to 2:00 p.m. (updated case). The seven representative wind power
production days enable: (i) to simulate only the most common typical wind power production days in
the region under study, and (ii) to identify the wind power profiles that can jeopardise the revenues of
the wind power producers or can pose serious challenges to transmission system operators.

From a wind power forecast perspective, the results show that some wind power profiles clearly
benefit from a change in the market design. Regarding the electricity market perspective, the results
show that the change of the day-ahead market closing time to 2:00 p.m. benefits the wind power
producers at both a technical and financial level by decreasing the forecast errors and increasing
the revenues. The consumers can also potentially take advantage of this change due to a potential
reduction in the overall system costs, which may allow a reduction of the electricity tariffs. The system
operator benefits from a reduction in the wind park forecast errors, by reducing the requirements to
maintain the production/demand balance (technical benefit), requiring less energy from the tertiary
reserve market. However, they also receive less money from the downregulation (financial loss), which
means that the agents that deviate will need to pay higher penalties to compensate this loss. The power
producers that bid at the down reserve market have a loss due to a decrease in the system requirements
for this type of reserve, i.e., the system operator requires less down reserve quantity to balance the
system, which increases the price of this market.

The results presented in this work highlight that electricity markets with high shares of VRE
could benefit from DAMs with a gate closure closer to real-time operation, due to improvements in
the forecast accuracy. The full integration of wind power in markets can be possible with substantial
changes to the current market designs, especially in power systems with a high share of VRE integration,
as expected in the forthcoming years with the society decarbonization.
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Abbreviations

CH Calinski–Harabasz
EM Electricity market
EU The European Union
GenCos Generating companies
GFS Global Forecast System
IC Initial and boundary conditions
K-NN K-nearest neighbour
KPI Key performance indicator
MAS Multi-agent system
MATREM The Multi-agent Trading in Electricity Markets
MIBEL The Iberian electricity market
MM5 The Fifth-Generation Penn State/NCAR Mesoscale Model
MO Market operator
NRMSE Normalized root mean square error
NWP Numerical weather prediction
PC Principal component
PCA Principal component analysis
RetailCos Retailers
SMP System marginal pricing
TSO Transmission system operator
VRE Variable renewable energy

Indices

d Day
t Time period (hour)

Parameters

Pnom Nominal capacity
Variables

Cdayahead
t Day-ahead price

Cdowndeviation
t Down deviation cost

Cupdeviation
t Up deviation cost

Pbid
t Bidding power

Pdown
t Down reserve power

Pdown,re f
t Down reserve power for the reference case

P f or
t The wind power forecast

Pobs
t The hourly observed wind power production

Pre f
t Reference bidding power

Pup
t Up reserve power

Pup,re f
t Reference up reserve power

R Remuneration
Xd,t Wind power input matrix
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