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Preface to “Applications of Stochastic Optimal 
Control to Economics and Finance” 

In a world dominated by uncertainty, the modeling and understanding of the optimal 
behavior of agents are of the utmost importance. Many problems in economics, finance, and 
actuarial science naturally require decision-makers to undertake choices in stochastic 
environments. Examples include optimal individual consumption and retirement choices, 
optimal management of portfolios and risk, hedging, optimal timing issues in pricing American 
options, or in investment decisions. Stochastic control theory provides the methods and results 
to tackle all such problems. This book collects the papers published in the 2019 Special Issue of 
Risks “Applications of Stochastic Optimal Control to Economics and Finance” and contains 7 
peer-reviewed papers dealing with stochastic control models motivated by important questions 
in Economics and Finance. Each model is mathematically rigorously funded and treated, and 
numerical methods are also possibly employed to derive the optimal solution. The topics of the 
book’s chapters range from optimal public debt management, to optimal reinsurance, real 
options in energy markets, and optimal portfolio choice in partial and complete information 
setting, just to mention a few. From a mathematical point of view, techniques and arguments 
from dynamic programming theory, filtering theory, optimal stopping, one-dimensional 
diffusions, and multi-dimensional jump processes are used. 

The paper by Anquandah and Bogachev deals with unemployment insurance and 
proposes a simple model of optimal agent entrance in a scheme. The paper analyzes individual 
decisions regarding optimal entry time, the dependence of the optimal solution on 
macroeconomic variables, and individual preferences. 

In the second paper of the Special Issue, Rotondi documents a bias that may arise when 
American options are monetarily valued using the traditional least square method. The 
estimates on which this method is based utilize a regression run of the in-the-money paths of 
the Monte Carlo simulation. Therefore, large biases may occur if, for instance, the option is far 
out of the money. The paper proposes two approaches that completely overcome this problem 
and evaluates their performance, using the standard least square method. 

In the third paper, Ceci and Brachetta study optimal excess-of-loss reinsurance problems 
when both the intensity of the claims’ arrival and the claims’ size are influenced by an 
exogenous stochastic factor. The model allows for stochastic risk premia, which takes into 
account risk fluctuations. Using stochastic control theory, based on the Hamilton–Jacobi–
Bellman equation, the authors analyze the optimal reinsurance strategy under the criterion of 
maximizing the expected exponential utility of terminal wealth. 

In the fourth paper, Moriarty and Palczewski study a real option problem arising in the 
context of energy markets. They assess the real option value of an arrangement under which an 
autonomous energy-limited storage unit sells incremental balancing reserve. The problem is set 
as a perpetual American swing put option with random refraction times. 

In the fifth paper, Palmowski, Stettner, and Sulima study a portfolio selection problem in 
a continuous-time Itô–Markov additive market, where the prices of financial assets are 
described by the Markov additive processes that combines Lévy processes and regime-
switching models. The model takes into account two sources of risk: the jump-diffusion risk and 
the regime-switching risk. The resulting market is incomplete and the authors give conditions 



under which the market is asymptotic arbitrage-free. The portfolio selection problem is 
explicitly solved in the case of power and logarithmic utility function. 

The work by De Franco, Nicolle, and Pham considers the Markowitz portfolio problem in 
a setting in which the drift of the underlying asset prices is uncertain. The authors use a 
Bayesian learning approach to solve the problem and provide a simple and practical procedure 
to implement the optimal policy. The strategy obtained via the Bayesian learning approach is 
then compared in three different investment universes to a naive non-learning strategy in which 
the drift is kept constant at all times. 

The last paper in our Special Issue proposes a control-theoretic model for the optimal 
reduction of debt-to-GDP ratio. In particular, Cadenillas and Huamán-Aguilar consider a 
government that has limited ability in generating primary surpluses to optimally reduce the 
level of the stochastic time-dependent debt ratio. The authors explicitly solve the resulting 
stochastic control problem and identify the endogenous debt ceiling at which a reduction policy 
should be implemented. A detailed study of the effects of the model’s parameters on the 
optimal policy is also provided. 

We hope that the contents of this book might be helpful for senior scholars working in 
mathematical economics and finance, practitioners of the financial industry, and for younger 
researchers approaching this exciting field of research. We would once more like to thank all the 
authors of this book’s chapters and we hope that our readers find this work both enjoyable and 
useful.  

 
Salvatore Federico, Giorgio Ferrari, Luca Regis 

Special Issue Editors 
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Abstract: Managing unemployment is one of the key issues in social policies. Unemployment
insurance schemes are designed to cushion the financial and morale blow of loss of job but also to
encourage the unemployed to seek new jobs more proactively due to the continuous reduction of
benefit payments. In the present paper, a simple model of unemployment insurance is proposed with
a focus on optimality of the individual’s entry to the scheme. The corresponding optimal stopping
problem is solved, and its similarity and differences with the perpetual American call option are
discussed. Beyond a purely financial point of view, we argue that in the actuarial context the optimal
decisions should take into account other possible preferences through a suitable utility function.
Some examples in this direction are worked out.

Keywords: insurance; unemployment; optimal stopping; geometric Brownian motion; martingale;
free boundary problem; American call option; utility

MSC: primary 97M30; secondary 60G40, 91B16, 91B30

1. Introduction

Assessing the risk in financial industries often aims at finding optimal choices in decision-making.
In the insurance sector, optimality considerations are crucial primarily for the insurers, who have
to address monetary issues (such as how to price the insurance policy so as not to run it at a loss
but also to keep the product competitive) and time issues (e.g., when to release the product to the
market). Less studied but also important are optimal decisions on behalf of the insured individuals,
related to monetary issues (e.g., how profitable is taking up an insurance policy and the right portion
of wealth to invest), consumption decisions (e.g., whether to maximize or optimize own consumption),
or time-related decisions (such as when it is best to enter or exit an insurance scheme).

In this paper we focus on the particular type of products related to unemployment insurance (UI),
whereby an employed individual is covered against the risk of involuntary unemployment (e.g., due to
redundancy). Various UI systems are designed to help cushion the financial (as well as morale) blow of
loss of job and to encourage unemployed workers to find a new job as early as possible in view of the
continued reduction of benefits. The protection is normally provided in the form of regular financial
benefits (usually tax free) payable after the insured individual becomes unemployed and until a new
job is found, but often only up to a certain maximum duration and with payments gradually decreasing
over time. Many countries have UI schemes in place (Holmlund 1998; Kerr 1996), which are often run
and funded by the governments, with contributions from employers and workers, but also by private
insurance companies (GoCompare 2018). For example, the governmental UI systems administered
in France and Belgium in the 1990s provided benefits decreasing with time according to a certain
schedule; the amount of the benefit was determined by the age of the worker, their final wage/salary,
the number of qualifying years in employment, family circumstances, etc.

Risks 2019, 7, 94; doi:10.3390/risks7030094 www.mdpi.com/journal/risks1
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In this work we introduce and analyze a simple UI model focusing on the optimal time for the
individual to join the scheme. Before setting out the model formally, let us describe the situation in
general terms. Consider an individual currently at work but who is concerned about possible loss
of job, which may be a genuine potential threat due to the fluidity of the job market and the level of
demand in this employment sector. To mitigate this risk, the employer or the social services have an
unemployment insurance scheme in place, available to this person (perhaps after a certain qualifying
period at work), which upon payment of a one-off entry premium would guarantee to the insured
a certain benefit payment proportional to their final wage and determined by a specified declining
benefit schedule, until a new job is found (see Figure 1).

0 τ τ0 τ0+τ1

Xt

Figure 1. A time chart of the unemployment insurance scheme. The horizontal axis shows (continuous)
time; the vertical axis indicates the pay rate (i.e., income receivable per unit time). The origin t = 0
indicates the start of employment. Two pieces of a random path Xt depict the dynamics of the
individual’s wage whilst in employment. The individual joins the UI scheme at entry time τ (by paying
a premium P). When the current job ends (at time τ0 > τ), a benefit proportional to the final wage Xτ0

is payable according to a predefined schedule (e.g., see Example 1), until a new job is found after the
unemployment spell of duration τ1.

The decision the individual is facing is when (rather than if ) to join the scheme. What are the
considerations being taken into account when contemplating such a decision? On the one hand,
delaying the entry may be a good idea in view of the monetary inflation over time—since the entry
premium is fixed, its actual value is decreasing with time. Also, it may be reasonably expected that the
wage is likely to grow with time (e.g., due to inflation but also as a reward for improved skills and
experience), which may have a potential to increase the total future benefit (which depends on the final
wage). Last but not least, some savings may be needed before paying the entry premium becomes
financially affordable. On the other hand, delaying the decision to join the insurance scheme is risky,
as the individual remains unprotected against loss of job, with its financial as well as morale impact.

Thus, there is a scope for optimizing the decision about the entry time—probably not too early
but also not too late. Apparently, such a decision should be based on the information available to
date, which of course includes the inflation rate and also the unemployment and redeployment rates,
all of which should, in principle, be available through the published statistical data. Another crucial
input for the decision-making is the individual’s wage as a function of time. We prefer to have the
situation where this is modeled as a random process, the values of which may go up as well as
down. This is the reason why we do not consider salaries (which are in practice piecewise constant
and unlikely to decrease), and instead we are talking about wages, which are more responsive to
supply and demand and are also subject to “real-wage” adjustments (e.g., through the consumer price
index, CPI). Besides, loss of job is more likely in wage-based employments due to the fluidity of the

2



Risks 2019, 7, 94

job market. For simplicity, we model the wage dynamics using a diffusion process called geometric
Brownian motion.1

To summarize, the optimization problem for our model aims to maximize the expected net present
value of the UI scheme by choosing an optimal entry time τ∗. We will show that this problem can
be solved exactly by using the well-developed optimal stopping theory (Peskir and Shiryaev 2006;
Pham 2009; Shiryaev 1999). It turns out that the answer is provided by the hitting time of a suitable
threshold b∗, that is, the first time τb∗ when the wage process Xt will reach this level. Since the value of
b∗ is not known in advance, this leads to solving a free-boundary problem for the differential operator
(generator) associated with the diffusion process (Xt). In fact, we first conjecture the aforementioned
structure of the solution and find the value b∗, and then verify that this is indeed the true solution to
the optimal stopping problem.

In the insurance literature, there has been much interest towards using optimality considerations,
including optimal stopping problems. From the standpoint of insurer seeking to maximize their
expected returns, the optimal stopping time may be interpreted as the time to suspend the current
trading if the situation is unfavorable, and to recalculate premiums; see, e.g., Jensen (1997); Karpowicz
and Szajowski (2007); Muciek (2002); and further references therein. Insurance research has also focused
on optimality from the individual’s perspective. One important direction relevant to the UI context was
the investigation of the job seeking processes, especially when returning from the unemployed status
(Boshuizen and Gouweleeuw 1995; McCall 1970; Wang and Wirjanto 2016). This was complemented
by a more general research exploring ways to optimize and improve the efficacy of the UI systems
(also in terms of reducing government expenditure), using incentives such as a decreasing benefit
throughout the unemployment spell, in conjunction with sanctions and workfare; see Fredriksson
and Holmlund (2006); Hairault et al. (2007); Hopenhayn and Nicolini (1997); Kolsrud et al. (2018);
Landais et al. (2017), to cite but a few. A related strand of research is the study of optimal retirement
strategies in the presence of involuntary unemployment risks and borrowing constraints (Choi and
Shim 2006; De Angelis and Stabile 2019; Gerrard et al. 2012; Jang and Rhee 2013; Stabile 2006).

To the best of our knowledge, optimal stopping problems in the UI context (such as the optimal
entry to/exit from a UI policy) have not received sufficient research attention. This issue is important,
because knowing the optimal entry strategies is likely to enhance the motivation for individuals to
join the UI scheme, thus ensuring better societal benefits through the UI policies; see analysis and
discussion in Rebollo-Sanz and García-Pérez (2015). Knowledge of the optimal entry time for insured
individuals, which has impact on the amount and duration of benefits to be claimed, will also help the
insurers (both state and private) to optimize their financial practices; see a discussion in Landais and
Spinnewijn (2017). Thus, our present work attempts to fill in the gap by addressing the question of the
optimal timing to join the UI scheme.

It is interesting to point out that our optimal stopping problem and its solution have a lot in
common with (but are not identical to) the well-known American call option in financial mathematics,
where the option holder has the right to exercise it at any time (i.e., to buy a certain stock at an agreed
price), and the problem is to determine the best time to do that, aiming to maximize the expected
financial gain. However, unlike the American call option setting based on purely financial objectives,
the optimal stopping solution obtained in our UI model is not entirely satisfactory from the individual’s
point of view, because the (optimal) waiting time τb∗ may be infinite with positive probability (at least
for some values of the parameters), and even if it is finite with probability one, the expected waiting
time may be very long.

Motivated by this observation, we argue that certain elements of utility should be added to the
analysis, aiming to quantify the individual’s “impatience” as a measure of purpose and satisfaction.

1 For technical convenience, we choose to work with continuous-time models, but our ideas can also be adapted to discrete
time (which may be somewhat more natural, since the wage process is observed by the individual on a weekly time scale).
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We suggest a few simple ideas of how utility might be accommodated in the UI optimal stopping
framework. Despite the simplicity of such examples, in most cases they lead to much harder optimal
stopping problems. Not attempting to solve these problems in full generality, we confine ourselves to
exploring suboptimal solutions in the class of hitting times, which nonetheless provide useful insight
into possible effects of inclusion of utility into the optimal stopping context.

The general concept of utility in economics was strongly advocated in the classical book by
von Neumann and Morgenstern (1953), whose aim was in particular to overcome the idealistic
assumption of a strictly rational behavior of market agents.2 These ideas were quickly adopted
in insurance, dating back to Borch (1961), and soon becoming part of the insurance mainstream,
culminating in the Expected Utility Theory (see a recent book by Kaas et al. 2008) routinely used as a
standard tool to price insurance products. In particular, examples of use of utility in the UI analysis
are ubiquitous; see, e.g., Acemoglu and Shimer (2000); Baily (1978); Fredriksson and Holmlund
(2006); Hairault et al. (2007); Holmlund (1998); Hopenhayn and Nicolini (1997); Kolsrud et al. (2018);
Landais et al. (2017); Landais and Spinnewijn (2017). There have also been efforts to combine optimal
stopping and utility (Chen et al. 2019; Choi and Shim 2006; Henderson and Hobson 2008; Karpowicz
and Szajowski 2007; Muciek 2002; Wang and Wirjanto 2016). However, all such examples were limited
to using utility functions to recalculate wealth, while other important objectives and preferences such
as the desire to buy the policy or to reduce the waiting times have not been considered as yet, as far as
we can tell.

The rest of the paper is organized as follows. In Section 2, our insurance model is specified and
the optimization problem is set up. In Section 3, the optimal stopping problem is solved using a
reduction to a suitable free boundary problem, including the identification of the critical threshold b∗.
This is complemented in Section 4 by an elementary derivation using explicit information about the
distribution of the hitting times for the geometric Brownian motion. Section 5 addresses various
statistical issues and also provides a numerical example illustrating the optimality of the critical
threshold b∗. In Section 6, we carry out the analysis of parametric dependence in our model upon two
most significant exogenous parameters, the unemployment rate and the wage drift, and also give an
economic interpretation thereof. In Section 7, we make a useful comparison of our problem and its
solution with the classical American call option, which leads us to the discussion of the necessity of
utility-based considerations in the optimal stopping context. Finally, Section 8 contains the summary
discussion of our results, including suggestions for further work. Throughout the paper, we use the
standard notation a ∧ b := min{a, b}, a ∨ b := max{a, b}, and a+ := a ∨ 0.

2. Optimal Stopping Problem

2.1. The Model of Unemployment Insurance

Let us describe our model in more detail. Suppose that time t ≥ 0 is continuous and is measured
(in the units of weeks) starting from the beginning of the individual’s employment. We assume
without loss of generality that the unemployment insurance policy is available immediately (although
in practice, a qualifying period at work would normally be required for eligibility). Let Xt > 0
denote the individual’s wage (i.e., payment per week, paid in arrears) as a function of time t ≥ 0,
such that X0 = x. We treat X = (Xt, t ≥ 0) as a random process defined on a filtered probability
space (Ω,F , (Ft), P), where Ω is a suitable sample space (e.g., consisting of all possible paths of (Xt)),
the filtration (Ft) is an increasing sequence of σ-algebras Ft ⊂ F , and P is a probability measure
on the measurable space (Ω,F ), which determines the distribution of various random inputs in the
model, including (Xt). It is assumed that the process (Xt) is adapted to the filtration (Ft), that is, Xt is

2 Impact of individualistic (not always rational) perception in economics and financial markets is the subject of the modern
behavioral economics (see, e.g., a recent monograph by Dhami 2016).
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Ft-measurable for each t ≥ 0. Intuitively, Ft is interpreted as the full information available up to time
t, and measurability of Xt with respect to Ft means that this information includes knowledge of the
values of the process Xt.

Furthermore, remembering that Xt is positive valued, we use for it a simple model of geometric
Brownian motion driven by the stochastic differential equation

dXt

Xt
= μ dt + σ dBt, X0 = x, (1)

where Bt is a standard Brownian motion (i.e., with mean zero, E(Bt) = 0; variance, Var(Bt) = t; and
with continuous sample paths), and μ ∈ R and σ > 0 are the drift and volatility rates, respectively.
The Equation (1) is well known to have the explicit solution (Shiryaev 1999, chp. III, §3a, p. 237)

Xt = x exp
{
(μ− 1

2 σ2) t + σBt

}
(t ≥ 0). (2)

Note that
Ex(Xt) = x eμt, Varx(Xt) = x2e2μt(eσ2t − 1

)
, (3)

where Ex and Varx denote expectation and variance with respect to the distribution of Xt given the
initial value X0 = x.

Let us now specify the unemployment insurance scheme. An individual who is currently
employed may join the scheme by paying a fixed one-off premium P > 0 at the point of entry.
If and when the current employment ends (say, at time instant τ0), the benefit proportional to the
final wage Xτ0 is payable according to the benefit schedule h(s); that is, the payout at time t ≥ τ0 is
given by Xτ0 h(t− τ0). However, the payment stops when a new job is found after the unemployment
spell of duration τ1. For simplicity, we assume that both τ0 and τ1 have exponential distribution (with
parameters λ0 and λ1, respectively); as mentioned in the Introduction, this guarantees a Markovian
nature of the corresponding transitions. These random times are also assumed to be statistically
independent of the process (Xt).

Possible transitions in the state space of our insurance model are presented in Figure 2, where
symbols “0” and “1” encode the states of being employed and unemployed, respectively, whereas
suffixes “+” and “–” indicate whether insurance is in place or not, respectively. Note that all transitions,
except from 0– to 0+ (which is subject to optimal control based of observations over the wage process
(Xt)), occur in a Markovian fashion; that is, the holding times are exponentially distributed (with
parameters λ0 if in states 0– and 0+, or λ1 if in states 1– and 1+).

��
��

0+ 1+��
��

0– 1–��
��

��
��

�

�
�

�
�

�
�

�
��

�

�
�

(τ < τ0)

(Xt) � τ

λ0

λ1

λ0

(τ ≥ τ0)

λ1

Legend:
0 (employed)
1 (unemployed)
+ (with insurance)
– (without insurance)

Figure 2. Schematic diagram of possible transitions in the unemployment insurance scheme. Here,
τ0 and τ1 are the (exponential) holding times in states 0 and 1, with parameters λ0 and λ1, respectively,
whereas τ is the entry time (i.e., from state 0– to state 0+), which is subject to optimal control based on
observations over the wage process (Xt).
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The individual’s decision about a suitable time to join the scheme is based on the information
available to date. In our model, this information encoded in the filtration (Ft) is provided by ongoing
observations over the wage process (Xt). Thus, admissible strategies for choosing τ must be adapted
to the filtration (Ft); namely, at any time instant, t ≥ 0, it should be possible to determine whether τ

has occurred or not yet, given all the information in Ft. In mathematical terms, this means that τ is a
stopping time, whereby for any t ≥ 0 the event {τ > t} belongs to the σ-algebra Ft (see, e.g., Yeh 1995,
chp.1, §3, p. 25).

Remark 1. In general, a stopping time τ is allowed to take values in [0, ∞] including ∞, in which case waiting
continues indefinitely and the decision to join the scheme is never taken. In practice, it is desirable that the
stopping time τ be finite almost surely (a.s.) (i.e., Px(τ < ∞) = 1), but this may not always be the case
(see Section 4.1).

2.2. Setting the Optimal Stopping Problem

As was explained informally in the introduction, there is a scope for optimizing the choice of
the entry time τ, where optimality is measured by maximizing the expected financial gain from the
scheme. Our next goal is to obtain an expression for the expected gain under the contract. First of
all, conditional on the final wage Xτ0 , the expected future benefit to be received under this insurance
contract is given by

Xτ0 E
(∫ τ1

0
e−rs h(s)ds

)
= β Xτ0 , (4)

where r is the inflation rate and

β :=
∫ ∞

0
λ1e−λ1t H(t)dt, H(t) :=

∫ t

0
e−rs h(s)ds. (5)

Note that the expectation in formula (4) is taken with respect to the (exponential) random waiting
time τ1 (with parameter λ1), and that the expression inside integration involves discounting to the
beginning of unemployment at time τ0.

Example 1. A specific example of the benefit schedule h(s) is as follows,

h(s) =

{
h0, 0 ≤ s ≤ s0,

h0 e−δ(s−s0), s ≥ s0,
(6)

where 0 < h0 ≤ 1, 0 ≤ s0 ≤ ∞, and δ > 0. Thus, the insured receives a certain fraction of their final wage
(i.e., h0Xτ0 ) for a grace period s0, after which the benefit is falling down exponentially with rate δ. This example
is motivated by the declining unemployment compensation system in France (Kerr 1996).3 Having specified
the schedule function, all calculations can be done explicitly. In particular, the constant β in (4) is calculated
from (5) as

β =
h0
(
1− e−(r+λ1)s0

)
r + λ1

+
h0 e−(r+λ1)s0

r + λ1 + δ
.

3 More specifically, according to the French UI system back in the 1990s (Kerr 1996, p. 8), a worker aged 50 or more, with
eight months of insurable employment in the last twelve months, was entitled to full benefits equal to 57.4% of the
final wage payable for the first eight months, thereafter declining by 15% every four months; however, the payments
continued for no longer than 21 months overall. This leads to choosing the following numerical values in (6): h0 = 0.574,
s0 = 8 (52/12) .

= 34.7 (weeks) and δ = −(3/52) ln (1− 0.15) .
= 0.0094 = 0.94% (per week). The restriction of the

benefit term by 21 (52/12) = 91 weeks can be taken into account in our model by adjusting the parameter λ1 from the
condition E(τ1) = 91, giving λ1

.
= 0.0110. A more conservative choice is to use a tail probability condition, for example,

P(τ1 > 91) = 0.10, yielding λ1 = − ln (0.10) /91 .
= 0.0253 (with E(τ1)

.
= 39.5).
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In the extreme cases s0 = 0 or s0 = ∞, this expression simplifies to

β =

⎧⎪⎪⎨⎪⎪⎩
h0

λ1

(
1− r + δ

r + λ1 + δ

)
, s0 = 0,

h0

λ1

(
1− r

r + λ1

)
, s0 = ∞.

Here, the first factor has a clear meaning as the product of pay per week (h0) and the mean duration of the benefit
payment (E(τ1) = 1/λ1), whereas the second factor takes into account the discounting at rates r and δ.

Returning to the general case, if the contract is entered immediately (subject to the payment
of premium P), then the net expected benefit discounted to the entry time t = 0 is given by the
gain function

g(x) := Ex
(
e−rτ0 β Xτ0

)
− P, (7)

where x = X0 is the starting wage and the symbol Ex now indicates expectation with respect to both
τ0 and Xτ0 . Recall that the random time τ0 is independent of the process (Xt) and has the exponential
distribution with parameter λ0. Using the total expectation formula (Shiryaev 1996, §II.7, Definition 3,
p. 214, and Property G*, p. 216) and substituting the expression (3), the expectation in (7) is computed
as follows,

Ex
(
e−rτ0 Xτ0

)
= Ex

(
e−rτ0 Ex(Xτ0 |τ0)

)
= Ex

(
e−rτ0(x eμτ0)

)
= x

∫ ∞

0
e(μ−r)tλ0 e−λ0 t dt

=
λ0x

r + λ0 − μ
. (8)

Thus, substituting (8) into (7) and denoting

r̃ := r + λ0, β1 :=
βλ0

r̃− μ
, (9)

the gain function is represented explicitly as

g(x) = β1x− P. (10)

Of course, the computation in (8) is only meaningful as long as

μ < r + λ0 = r̃. (11)

Assumption 1. In what follows, we always assume that the condition (11) is satisfied.

Remark 2. In real-life applications, the wage growth rate μ is rather small (but may be either positive or
negative). It is unlikely to exceed the inflation rate r, but even if it does, then it is hardly possible economically
that it is greater than the combined inflation–unemployment rate r̃ = r + λ0. Thus, the condition (11) is
absolutely realistic.

To generalize the expression (10), consider a delayed entry time τ > 0 (tacitly assuming that
τ < ∞). Discounting first to the entry time τ when the deduction of the premium P is activated, and
then further down to the initial time moment t = 0, yields the expected net present value of the total
gain as a function of the initial wage x,

eNPV(x; τ) := Ex
[
e−rτ

(
e−r(τ0−τ)β Xτ0 − P

)
�{τ<τ0}

]
, (12)

7
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where the expectation on the right now also includes averaging with respect to τ, which is a functional
of the path (Xt). Note that the indicator function under the expectation specifies that the entry time τ

must occur prior to τ0, for otherwise there will be no gain.

Remark 3. The notation (12) emphasizes that the expected net present value depends on the specific entry
time τ. As was intuitively explained in the Introduction, there is a scope for optimizing the choice of τ, where
optimality is measured by maximizing eNPV(x; τ).

Formula (12) indicates that the decision time τ has a finite (random) expiry date τ0 (using the
terminology of financial options). However, the expectation in (12) involves averaging with respect to
τ0. Moreover, taking advantage of exponential distribution of τ0, the expression (12) can be rewritten
without any expiry date (i.e., as a perpetual option).

Lemma 1. The expected net present value defined by formula (12) can be expressed in the form

eNPV(x; τ) = Ex

[
e−r̃τg(Xτ)�{τ<∞}

]
, (13)

where the function g(·) is defined in (7) and r̃ = r + λ0 (see (9)).

Proof. Since the distribution of τ0 is exponential, the excess time τ̃0 := τ0 − τ conditioned on {τ < τ0}
is again exponentially distributed (with the same parameter λ0) and independent of τ. Hence,
conditioning on τ (restricted to the event {τ < ∞}) and using the total expectation formula as
before, together with the (strong) Markov property of the process (Xt), we get from (12)

eNPV(x; τ) = Ex

(
Ex
[
e−rτ(e−r(τ0−τ)β Xτ0 − P)�{τ0>τ}

∣∣τ
])

= Ex

(
e−rτEx

[
(e−rτ̃0 β Xτ+τ̃0 − P) |τ

]
· Ex

(
�{τ0>τ}

∣∣τ
))

= Ex

(
e−rτ EXτ (e

−rτ̃0 β X̃τ̃0 − P) · Px(τ0 > τ |τ)
)

, (14)

where X̃t := Xτ+t (t ≥ 0) is a shifted wage process starting at X̃0 = Xτ . Substituting Px(τ0 > τ|τ) =
e−λ0τ and recalling notation (7), formula (14) is reduced to (13).

Finally, without loss we can remove the indicator from the expression (13) by defining the value
of the random variable under expectation to be zero on the event {τ = ∞}. This definition is consistent
with the limit at infinity. Indeed, observe using (2) and (8) that

e−r̃tg(Xt) = e−r̃t
(

β1x e(μ−σ2/2)t+σBt − P
)

= β1x exp
{
−t (r̃− μ + 1

2 σ2 + σ t−1Bt)
}
− Pe−r̃t. (15)

Due to the condition (11), r̃− μ + 1
2 σ2 > 1

2 σ2 > 0. In addition, by the (strong) law of large numbers for
the Brownian motion (see, e.g., Durrett 1999, Exercise 6.4, p. 265, or Shiryaev 1999, chp. III, §3b, p.246),

lim
t→∞

t−1Bt = 0 (P-a.s.).

Thus, the limit of (15) as t → ∞ is zero (Px-a.s.). Hence, the event {τ = ∞} does not contribute to the
expectation (13), so that, substituting (8), we get

eNPV(x; τ) = Ex
(
e−r̃τ g(Xτ)

)
. (16)

8
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To summarize, identification of the optimal entry time τ = τ∗, in the sense of maximizing the
expected net present value eNPV(x; τ) as a function of strategy τ (see (16)), is reduced to solving the
following optimal stopping problem,

v(x) = sup
τ

Ex
(
e−r̃τ g(Xτ)

)
, (17)

where the function g(x) is given by (10) and the supremum is taken over the class of all admissible
stopping times τ (i.e., adapted to the filtration (Ft)). The supremum v(x) in (17) is called the value
function of the optimal stopping problem.

2.3. Allowing for Mortality

The simple model of unemployment insurance set out in Section 2.1 can be easily extended to
include mortality. Following (Merton 1971, pp. 399–401), suppose that the individual who contemplates
taking out the unemployment insurance policy may die (say, at a random time τ2 from zero),
independently of employment-related events and subject to a constant force of mortality λ2. That is to
say, given that the individual is alive at current age t ≥ 0, the residual lifetime τ2 − t is an independent
random variable exponentially distributed with parameter λ2,

P (τ2 − t > s | τ2 > t) = e−λ2 s (s ≥ 0).

The necessary modifications to the unemployment insurance model of Section 2.2 start by
adjusting the formula for the expected future benefit (see (4)). Assuming that death does not occur
prior to the time τ0 of losing the job (i.e., τ2 > τ0, so that τ̃2 := τ2 − τ0 is exponentially distributed with
parameter λ2), the benefit payments cease at τ1∧ τ̃2 (i.e., when a new job is found or at death, whichever
occurs first). Since τ1 and τ̃2 are independent and both have exponential distributions, the random
variable τ1 ∧ τ̃2 has the exponential distribution with parameter λ1 + λ2. Hence, the constant β from
(5) is now written as

β =
∫ ∞

0
(λ1 + λ2) e−(λ1+λ2) t H(t)dt.

Next, we need to take into account the effect of death in service, that is, if τ2 ≤ τ0. To be specific, it is
reasonable to assume that the lump sum to be paid by the employer in this case is proportional to the
final wage, say a†Xτ2 . Then, separating the cases where death occurs after or prior to loss of job, it is
easy to see that the definition (7) of the gain function (i.e., net expected benefit discounted to the policy
entry time) takes the form

g(x) = Ex
(
e−rτ0 β Xτ0�{τ0<τ2}

)
+ Ex

(
e−rτ0 a†Xτ2�{τ2≤τ0}

)
− P. (18)

The first expectation in (18) is computed using conditioning on τ0 and the total expectation
formula (cf. (8)),

Ex
(
e−rτ0 Xτ0�{τ0<τ2}

)
= Ex

[
e−rτ0 Ex

(
Xτ0�{τ0<τ2}

∣∣ τ0
)]

= Ex
[
e−rτ0 Ex(Xτ0 | τ0) · Px(τ2 > τ0 | τ0)

]
= Ex

(
e−rτ0 x eμτ0 e−λ2τ0

)
= x

∫ ∞

0
e(μ−r−λ2)t λ0 e−λ0 t dt

=
λ0 x

r + λ0 + λ2 − μ
, (19)

where in the second line we used conditional independence of Xτ0 and τ2 given τ0. Similarly,
by conditioning on τ2 the second expectation in (18) is represented as

9
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Ex
(
e−rτ0 Xτ2�{τ2≤τ0}

)
= Ex

[
Xτ2 Ex

(
e−rτ0�{τ0≥τ2}

∣∣ τ2
)]

= Ex

[
Xτ2

∫ ∞

τ2

e−rt λ0 e−λ0 t dt
]

=
λ0

r + λ0
Ex
(
Xτ2 e−(r+λ0)τ2

)
. (20)

Again conditioning on τ2, the last expectation is computed as follows,

Ex
(
Xτ2 e−(r+λ0)τ2

)
= Ex

[
e−(r+λ0)τ2 Ex(Xτ2 |τ2)

]
= Ex

(
e−(r+λ0)τ2 x eμτ2

)
= x

∫ ∞

0
e−(r+λ0−μ)tλ2 e−λ2 t dt

=
λ2x

r + λ0 + λ2 − μ
. (21)

Finally, substituting the expressions (19)–(21) into the definition (18), we obtain explicitly

g(x) =
λ0 x

r + λ0 + λ2 − μ

(
β +

λ2 a†

r + λ0

)
− P.

This expression has the same form as (10) but with the parameters r̃ and β1 redefined as follows
(cf. (9)),

r̃ := r + λ0 + λ2, β1 :=
λ0

r̃− μ

(
β +

λ2 a†

r + λ0

)
.

In addition, the inequality (11) of Assumption 1 is updated accordingly. Subject to this reparameterization,
all subsequent calculations leading to the optimal stopping problem (17) remain unchanged.

For the sake of clarity and in order not to distract the reader by unnecessary technicalities, in the
rest of the paper we adhere to the original version of the model (i.e., with no mortality, λ2 = 0);
however, see the discussion at the end of Section 6.4 indicating an important regularizing role of
mortality, helping to avoid undesirable inconsistencies of the model at small unemployment rates λ0.

2.4. A Priori Properties of the Value Function

The next lemma shows that the optimal stopping problem (17) is well posed.

Lemma 2. The value function x �→ v(x) of the optimal stopping problem (17) has the following properties:

(i) v(0) = 0 and, moreover, v(x) ≥ 0 for all x ≥ 0;
(ii) v(x) < ∞ for all x ≥ 0.

Proof. (i) If x = 0 then, due to (2), Xt ≡ 0 (P0-a.s.) and the stopping problem (17) is reduced to

v(0) = sup
τ

E0(−Pe−r̃τ),

which has the obvious solution τ = ∞ (P0-a.s.), with the corresponding supremum value v(0) = 0.
Furthermore, by considering τ = ∞ (Px-a.s.) it readily follows from (17) that v(x) ≥ 0 for all x ≥ 0.

(ii) Recalling that μ < r̃ (see Assumption 1), observe that the process e−r̃tXt is a supermartingale;
indeed, for 0 ≤ s ≤ t we have, using (2) and (3),

Ex(e−r̃tXt |Fs) = e−r̃tXs E
(
eσ(Bt−Bs)+(μ− 1

2 σ2)(t−s))
= e−r̃tXs eμ(t−s) ≤ e−r̃sXs (Px-a.s.).

10
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In particular,
Ex(e−r̃tXt) ≤ Ex(X0) = x.

Hence, by Doob’s optional sampling theorem for non-negative, right-continuous supermartingales
(Yeh 1995, Theorem 8.18, pp.140–41), we have

Ex(e−r̃τXτ) ≤ Ex(X0) = x,

and it follows that the supremum in (17) is finite.

2.5. The Optimal Stopping Rule

For the wage process (Xt), consider the hitting time τb of a threshold b ∈ R, defined by

τb := inf{t ≥ 0 : Xt ≥ b} ∈ [0, ∞].

(As usual, we make a convention that inf∅ = ∞.) Clearly, τb is a stopping time, that is, {τ ≤ t} ∈ Ft

for all t ≥ 0. Since the process Xt has a.s.-continuous sample paths, on the event {τb < ∞} we have
Xτb = b (Px-a.s.).

As we will show, the optimal strategy for the optimal stopping problem (17) is to wait until the
random process Xt hits a certain threshold b∗ (see Figure 3). More precisely, the solution to (17) is
provided by the following stopping rule,

τ∗ =

{
τb∗ if x ∈ [0, b∗],

0 if x ∈ [b∗, ∞).
(22)

That is to say, if x ≥ b∗ then one must stop and buy the policy immediately, or else wait until the
hitting time τb∗ ≥ 0 occurs and buy the policy then. (Of course, these two rules coincide when x = b∗.)
However, if it happens so that τb∗ = ∞, then, according to the above rule, one must wait indefinitely,
and therefore never buy the policy.

b∗

τ∗

Figure 3. Simulated wage process Xt (left) and Yt = ln Xt (right) according to the geometric Brownian
motion model (2), with X0 = 346 (euros) and parameters μ = 0.0004 and σ = 0.02 (see Example 3).
The dashed horizontal line in the left plot indicates the optimal threshold b∗ .

= 352.37 (euros) first
attained in this simulation at τ∗= 54 (weeks). The dashed line in the right plot shows the estimated
drift of the log-transformed data (see Section 5.2).
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The specific value of the critical threshold b∗ is given by

b∗ =
Pq∗

β1(q∗ − 1)
, (23)

where

q∗ =
1
σ2

(
−(μ− 1

2 σ2) +
√
(μ− 1

2 σ2)2 + 2r̃σ2
)

. (24)

It is straightforward to check, using condition (11), that q∗ > 1 (see also Section 3.2). Finally,
the corresponding value function (17) is specified as

v(x) =

⎧⎨⎩(β1b∗ − P)
( x

b∗
)q∗

, x ∈ [0, b∗],

β1x− P, x ∈ [b∗, ∞).
(25)

Equivalently, substituting the expression (23), formula (25) is explicitly rewritten as

v(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P

q∗ − 1

(
β1(q∗ − 1)x

Pq∗

)q∗
, 0 ≤ x ≤ Pq∗

β1(q∗ − 1)
,

β1x− P, x ≥ Pq∗
β1(q∗ − 1)

.
(26)

In particular, the function x �→ v(x) is strictly increasing for x ≥ 0, with v(0) = 0 (cf. Lemma 2).
These results will be proved in Section 3.

2.6. Deterministic Case

For orientation, it is useful to consider the simple baseline case σ = 0, where the random process
Xt (see (2)) degenerates to the deterministic function

Xt = x eμt (t ≥ 0).

Hence, any stopping time τ is nonrandom, say τ = t, and the optimal stopping problem (17) is
reduced to

v(x) = sup
t≥0

[
e−r̃t(β1x eμt − P)

]
. (27)

The problem (27) is easily solved, with the maximizer t∗ given by

t∗ = inf
{

t ≥ 0 : x eμt ≥ b∗0
}
∈ [0, ∞], (28)

where

b∗0 =

⎧⎪⎪⎨⎪⎪⎩
P r̃

β1(r̃− μ)
, μ > 0,

P
β1

, μ ≤ 0.
(29)

The expression (29) is consistent with the general formula (23), noting that, in the limit as σ ↓ 0, the
quantity (24) is reduced to (cf. (11))

q∗ =

⎧⎨⎩
r̃
μ
> 1, μ > 0,

∞, μ ≤ 0.

With this convention, it is easy to check that the value function (27) is given by the general formula (25).
In particular, if μ ≤ 0 and x < b∗0 , then, according to (28), t∗ = ∞ and from (27) we get v(x) = 0;

12
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indeed, the function t �→ x eμt is nonincreasing, so it never attains the required threshold b∗0 > x.
In contrast, if x ≥ b∗0 , then by (28) t∗ = 0 (for any μ), and (27) readily yields v(x) = β1x− P.

3. Solving the Optimal Stopping Problem

The optimal stopping problem (17) involves two tasks: (i) evaluating the value function v(x) and
(ii) identifying the maximizer τ = τ∗. A standard approach is to try and guess the solution and then to
verify that it is correct.

3.1. Guessing the Solution

Let us look more closely at the nature of the value function v(x) that we are trying to identify.
Observe that by picking τ = 0 in (17) yields the lower estimate

v(x) ≥ g(x). (30)

Clearly, if v(x) > g(x) then we have not yet achieved the maximum payoff available, so we should
continue to wait. On the other hand, if v(x) = g(x) then the maximum has been attained and we
should stop. This motivates the definition of the two regions, C (continuation) and S (stopping),

C := {x ≥ 0 : v(x) > g(x)}, S := {x ≥ 0 : v(x) ≤ g(x)}.

By virtue of the Markov property of the process Xt, the same argument can be propagated to
any time t ≥ 0, provided that stopping has not yet occurred. Namely, if Xt = x′ (and τ ≥ t) then the
problem (17) is updated with the new (residual) stopping time τ′ = τ − t and with the initial value x
replaced by x′.

Thus, it is natural to expect that the optimal strategy prescribes to continue as long as the current
wage value Xt belongs to the region C (i.e., v(Xt) > g(Xt)), but to stop when Xt first enters the region S
(i.e., v(Xt) ≤ g(Xt)). That is to say, the optimal stopping time should be given by4

τ∗ = inf{t ≥ 0 : Xt ∈ S} = inf{t ≥ 0 : v(Xt) ≤ g(Xt)} ∈ [0, ∞]. (31)

To clarify the plausible structure of the stopping set, S, recall (see the proof of Lemma 2(i)) that
a zero value of the stopping problem (17) is achieved by simply using the strategy τ ≡ ∞, that
is, by never joining the scheme. Thus, if the initial wage X0 = x is small (e.g., such that g(x) =

β1x− P < 0) then, in order to secure a positive payoff, we should wait for a sufficiently high wage Xt.
This suggests that the stopping rule (31) is reduced to the first hitting time for a certain set on the plane
{(t, x) : t ≥ 0, x ≥ 0}. Furthermore, noting that the definition (31) is time homogeneous, in that it does
not change in the course of time t, we also hypothesize the simplest situation whereby the regions C
and S are determined by a constant threshold y = b∗ > 0,

C = [0, b∗), S = [b∗, ∞). (32)

In other words, the conjectural hitting boundary does not depend on time.
Hence, we are led to the reduced optimal stopping problem over the subclass of hitting times,

u(x) = sup
b≥0

Ex
(
e−r̃τb g(Xτb)

)
. (33)

4 This conclusion is in accord with the general optimal stopping theory (Peskir and Shiryaev 2006, §2.2).
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In particular, formula (31) specializes to

τb∗ = inf{t ≥ 0 : Xt ≥ b∗} = inf{t ≥ 0 : u(Xt) ≤ g(Xt)} ∈ [0, ∞]. (34)

Our first task is to identify the value function u(x) in (33) and the corresponding maximizer b = b∗

by solving the corresponding free-boundary problem (Section 3.2). After that, we will have to show
that this solution is optimal in the general class of stopping times, that is, u(x) = v(x) for all x ≥ 0
(Section 3.3).

3.2. Free-Boundary Problem

According to general theory of optimal stopping (Peskir and Shiryaev 2006, chp. IV), in the
continuation region C = [0, b) (see (32)) the value function u(x) from (33) must be harmonic with respect
to the underlying process X̃t generated by Xt. More precisely, due to the discounting exponential
factor in the optimal stopping problem (33), the process X̃t is obtained from Xt by independent killing
(or discounting) with rate r̃ (Peskir and Shiryaev 2006, §§ 5.4, 6.3). Thus, if b is a suitable threshold and
τb is the corresponding hitting time, then for any x ≥ 0 the following condition must hold,

Ex
[
e−r̃(τb∧t)u(Xτb∧t)

]
= u(x) (t ≥ 0). (35)

Note that the geometric Brownian motion Xt determined by the stochastic differential Equation (1)
is a diffusion process with the infinitesimal generator

L := μx
d

dx
+ 1

2 σ2x2 d2

dx2 (x > 0). (36)

The generator of the killed process X̃t is then given by (Peskir and Shiryaev 2006, § 6.3, p.127)

L̃ = L− r̃ I, (37)

where I is the identity operator. Then the harmonicity condition (35) can be reduced to the differential
equation L̃u = 0, that is, Lu− r̃u = 0 (see (37)).

On the boundary x = b of the set C = [0, b), due to the stopping rule (34) we have u(b) = g(b).
Moreover, according to the smooth fit principle (Peskir and Shiryaev 2006, §9.1), we must also satisfy
the condition u′(b) = g′(b). Finally, in view of the equality v(0) = 0 (see Lemma 2(i)), we add a
Dirichlet boundary condition at zero, u(0+) = limx↓0 u(x) = 0. Thus, we arrive at the following
free-boundary problem, ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lu(x)− r̃u(x) = 0, x ∈ (0, b),
u(b) = g(b),
u′(b) = g′(b),
u(0+) = 0,

(38)

where both b > 0 and u(x) are unknown.
Substituting (10) and (36), the problem (38) is rewritten explicitly as⎧⎪⎪⎪⎨⎪⎪⎪⎩

μx u′(x) + 1
2 σ2x2u′′(x)− r̃u(x) = 0, x ∈ (0, b),

u(b) = β1b− P,
u′(b) = β1,
u(0+) = 0.

(39)

Let us look for a solution of (39) in the form u(x) = xq (x > 0), with a suitable parameter q ∈ R. Then
the differential equation in (39) yields

1
2 σ2q (q− 1) + μq− r̃ = 0. (40)
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This quadratic equation has two distinct roots,

q1,2 =
1
σ2

(
−(μ− 1

2 σ2)±
√
(μ− 1

2 σ2)2 + 2r̃σ2
)

,

where q2 < 0 < q1 = q∗ (see (24)). Also note that, due to the condition (11), the left-hand side of (40)
is negative at q = 1, therefore q1 > 1. Thus, the general solution of the differential Equation (39) is
given by

u(x) = Axq1 + Bxq2 , x ∈ (0, b), (41)

with arbitrary constants A and B. However, since q2 < 0, the condition u(0+) = 0 implies that B = 0.
Hence, (41) is reduced to u(x) = Axq1 ≡ Axq∗ (0 < x < b). Furthermore, the boundary conditions
in (39) yield {

Abq∗ = β1b− P,
Aq∗bq∗−1 = β1,

whence we find
A =

β1b− P
bq∗

, b =
Pq∗

β1(q∗ − 1)
. (42)

Thus, the required solution to (39) is given by

u(x) =

⎧⎨⎩ (β1b− P)
( x

b

)q∗
, x ∈ [0, b],

β1x− P, x ∈ [b, ∞)
(43)

where the threshold b is defined in (42) and q∗ > 1 is the positive root of the Equation (40), given
explicitly by formula (24).

3.3. Verification of the Found Solution

Using (42) and (43), it is easy to see that

u(x) = g(x), x ∈ [b, ∞),

u(x) > g(x), x ∈ [0, b),
(44)

in accord with the heuristics outlined in Section 3.1 (see (32)). However, there is no need to check that
the function u(x) defined in (43) solves the reduced optimal stopping problem (33), because we can
verify directly that u(x) provides the solution to the original optimal stopping problem (17), that is,
u(x) = v(x) for all x ≥ 0.

Remark 4. Since u(0) = 0 by formula (43) and v(0) = 0 according to Lemma 2(i), in what follows it suffices
to assume that x > 0.

The proof of the claim above (commonly referred to as verification theorem) consists of two parts.

(i) Let us first show that u(x) ≥ v(x) (x > 0). If the map x �→ u(x) was a C2-function (i.e., with
continuous second derivative), then the classical Itô formula (Øksendal 2003, Theorem 4.1.2, p. 44)
applied to e−r̃tu(Xt) would yield, on account of (1) and (36),

e−r̃tu(Xt) = u(x) +
∫ t

0
e−r̃s(Lu(Xs)− r̃u(Xs)

)
ds + Mt (Px-a.s.), (45)

where

Mt :=
∫ t

0
e−r̃su′(Xs) σXs dBs (t ≥ 0). (46)

15



Risks 2019, 7, 94

However, for the function u(x) given by (43), its C2-smoothness breaks down at the point x = b,
where it is only C1. However, u(x) is strictly convex on (0, b) (i.e., u′′(x) > 0) and linear on (b, ∞),
and we can define the action Lu(x) at x = b by using the one-sided second derivative, say,

u′′(b−) = Pq∗b−2. (47)

In this situation, a generalization of the Itô formula holds, known as the Itô–Meyer formula (see
(Shiryaev 1999, chp. VIII, §2a, p.757)), which ensures that the representation (45) is still valid.

Recall that by construction (see the differential equation in (38)), we have

Lu(x)− r̃u(x) = 0, x ∈ (0, b). (48)

Moreover, it is easy to check using (47) that the equality (48) also extends to x = b. On the other
hand, on account of the condition (11) and the definition of b in (42), for x > b we get

Lu(x)− r̃u(x) = μβ1x− r̃ (β1x− P)

= β1x(μ− r̃) + r̃P

< β1b(μ− r̃) + r̃P

=
P (μq∗ − r̃)

q∗ − 1
< 0, (49)

because, due to the Equation (40) and the inequality q∗ > 1,

μq∗ − r̃ = − 1
2 σ2q∗(q∗ − 1) < 0.

Thus, combining (48) and (49) we obtain

Lu(x)− r̃u(x) ≤ 0 (x > 0). (50)

Substituting the inequality (50) into formula (45), we conclude that, for any x > 0 and all t ≥ 0,

u(x) + Mt ≥ e−r̃tu(Xt) (Px-a.s.). (51)

According to formula (46), (Mt) is a continuous local martingale (Shiryaev 1999, chp. II, §1c,
p. 101). Let (τn) be a localizing sequence of bounded stopping times, so that τn ↑ ∞ (Px-a.s.) and
the stopped process (Mτn∧t) is a martingale, for each n ∈ N.

Now, let τ be an arbitrary stopping time of (Xt). From (51) we get

u(x) + Mτn∧τ ≥ e−r̃(τn∧τ)u(Xτn∧τ)

≥ e−r̃(τn∧τ)g(Xτn∧τ) (Px-a.s.), (52)

using that u(x) ≥ g(x) for all x ≥ 0 (see (44)). Taking expectation on both sides of the inequality
(52) gives

u(x) ≥ Ex
[
e−r̃(τn∧τ) g(Xτn∧τ)

]
, (53)

since by Doob’s optional sampling theorem (Yeh 1995, Theorem 8.10, p.131)

Ex(Mτn∧τ) = Ex(M0) = 0.
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By Fatou’s lemma (Shiryaev 1996, §II.6, Theorem 2(a), p.187), from (53) it follows

u(x) ≥ Ex

(
lim inf

n→∞
e−r̃(τn∧τ) g(Xτn∧τ)

)
= Ex

(
e−r̃τ g(Xτ)

)
. (54)

Finally, taking in (54) the supremum over all stopping times τ, we obtain

u(x) ≥ sup
τ

Ex
(
e−r̃τ g(Xτ)

)
= v(x) (x > 0),

as claimed.

(ii) Let us now prove the opposite inequality, u(x) ≤ v(x) (x > 0). According to (30) and (44),
we readily have u(x) = g(x) ≤ v(x) for x ∈ [b,+∞). Next, fix x ∈ (0, b) and consider the
representation (45) with t replaced by τn ∧ τb, where (τn) is the localizing sequence of stopping
times for (Mt) as before. Then, by virtue of the identity (48) (which, as has been explained, is also
true for x = b), it follows that

u(x) + Mτn∧τ = e−r̃(τn∧τb)u(Xτn∧τb) (Px-a.s.). (55)

Similarly as above, taking expectation on both sides of the equality (55) and again applying Doob’s
optional sampling theorem to the martingale (Mτn∧t), we obtain

u(x) = Ex
[
e−r̃(τn∧τb)u(Xτn∧τb)

]
. (56)

Note that, for 0 < x < b, we have 0 ≤ u(x) ≤ u(b) and 0 ≤ Xτn∧τb ≤ b (Px-a.s.), hence

0 ≤ e−r̃(τn∧τb)u(Xτn∧τb) ≤ u(b) (Px-a.s.).

Using that τn ↑ ∞, observe that, Px-a.s.,

lim
n→∞

e−r̃(τn∧τb)u(Xτn∧τb) = e−r̃τb u(Xτb)�{τb<∞} + lim
n→∞

e−r̃τn u(Xτn)�{τb=∞}

= e−r̃τb u(b)�{τb<∞}, (57)

because Xτb = b on the event {τ < ∞}, while 0 ≤ u(Xτn) ≤ u(b) on the event {τ = ∞}.
Hence, letting n → ∞ in (56) and using the dominated convergence theorem (Shiryaev 1996, §II.6,
Theorem 3, p.187), we get, on account of (57),

u(x) = Ex
(
e−r̃τb u(b)�{τb<∞}

)
= Ex

(
e−r̃τb g(b)�{τb<∞}

)
= Ex

(
e−r̃τb g(Xτb)�{τb<∞}

)
≤ v(x),

according to (17). That is, we have proved that u(x) ≤ v(x) for all 0 < x < b, as required.

Thus, the proof of the verification theorem is complete.

4. Elementary Solution of the Reduced Problem

4.1. Distribution of the Hitting Time

In view of the formula (2), the hitting problem for the process Xt is reduced to that for the
Brownian motion with drift,

τb := inf{t ≥ 0 : Xt = b} ≡ inf{t ≥ 0 : Bt + μ̃t = b̃}, (58)
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where

μ̃ =
μ− 1

2 σ2

σ
, b̃ =

1
σ

ln
b
x

. (59)

Suppose that x ≤ b, so that b̃ ≥ 0. The explicit expression for the Laplace transform of the hitting
time (58) is well known (see, e.g., Durrett 1999, Exercises 6.29 and 6.31, p. 268, or Etheridge 2002,
Proposition 3.3.5, p. 61).

Proposition 1. For x ≤ b and any θ > 0, set

Φx,b(θ) := Ex(e−θτb) ≡ Ex

(
e−θτb�{τb<∞}

)
. (60)

Then

Φx,b(θ) = exp
{
−b̃

(√
μ̃2 + 2θ − μ̃

)}
, θ > 0, (61)

where μ̃ and b̃ are defined in (59).

Substituting the expressions (59), the formula (61) is rewritten as

Φx,b(θ) =
( x

b

)q1(θ)
, θ > 0, (62)

where q1(θ) is given by (cf. (24))

q1(θ) =
1
σ2

(
−(μ− 1

2 σ2) +
√
(μ− 1

2 σ2)2 + 2θσ2
)

. (63)

As usual, it is straightforward to extract from the Laplace transform (60) some explicit
information about the distribution of the hitting time τb. First, by the monotone convergence theorem
(Shiryaev 1996, §II.6, Theorem 1(a), p.186) we have

lim
θ↓0

Φx,b(θ) = Ex(�{τb<∞}) = Px(τb < ∞).

Hence, noting from (63) that

q1(0) =

⎧⎨⎩ 0 if μ− 1
2 σ2 ≥ 0,

1− 2μ

σ2 if μ− 1
2 σ2 < 0,

(64)

we obtain

Px(τb < ∞) =
( x

b

)q1(0)
=

⎧⎨⎩ 1, μ− 1
2 σ2 ≥ 0,( x

b

)1−2μ/σ2

, μ− 1
2 σ2 < 0.

(65)

Remark 5. The result (65) shows that hitting the critical threshold b = b∗, as required by the stopping rule,
is only certain when the wage growth rate is large enough, μ ≥ 1

2 σ2. Thus, the “dangerous” case is when
μ < 1

2 σ2, whereby relying only on the optimal stopping recipe may not be practical. This observation may serve
as a germ of the idea to connect the optimality problem in the insurance context with the notion of utility (cf. the
discussion in Section 7.1 below).

Via the Laplace transform Φx,b(θ), we can also obtain the mean hitting time Ex(τb) in the case
μ ≥ 1

2 σ2, where τb < ∞ (Px-a.s.). Namely, again using the monotone convergence theorem we have

lim
θ↓0

∂Φx,b(θ)

∂θ
= − lim

θ↓0
Ex(τb e−θτb) = −Ex(τb).
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Hence, differentiating formula (62) at θ = 0 and noting from (63) that q1(0) = 0 (cf. (64)) and

q′1(0) =

⎧⎪⎨⎪⎩
∞, μ = 1

2 σ2,
1

μ− 1
2 σ2

, μ > 1
2 σ2,

we get

Ex(τb) = − ln
( x

b

) ( x
b

)q1(0)
q′1(0) =

⎧⎪⎨⎪⎩
∞, μ = 1

2 σ2,
ln(b/x)
μ− 1

2 σ2
, μ > 1

2 σ2.
(66)

4.2. Alternative Derivation

An alternative (and more direct) method to derive the formulas (65) and (66) is based on general
theory of Markov processes by solving the suitable boundary value problems (Øksendal 2003, §9).
Namely, the hitting probability π(x) := Px(τb < ∞) as a function of x > 0 satisfies the Dirichlet
problem (Øksendal 2003, §9.2) {

Lπ(x) = 0 (0 < x < b),

π(b) = 1.
(67)

The differential equation in (67) reads

1
2 σ2x2π′′(x) + μxπ′(x) = 0 (0 < x < b),

which is easily solved to give
π(x) = c1x1−2μ/σ2

+ c2.

If 1− 2μ/σ2 < 0 (i.e., μ− 1
2 σ2 > 0) then c1 = 0 (since π(x) is bounded), and due to the boundary

condition π(b) = 1 it follows that c2 = 1 and π(x) ≡ 1. A similar argument shows that π(x) ≡ 1 in
the case 1− 2μ/σ2 = 0. Finally, if 1− 2μ/σ2 > 0 then, noting that π(0) = 0, we conclude that c2 = 0
and, due to the boundary condition, c1 = b−1+2μ/σ2

. Thus, formula (65) is proved.
Similarly, the mean hitting time m(x) := Ex(τb) (with μ− 1

2 σ2 > 0) satisfies the Poisson problem
(Øksendal 2003, §9.3) {

Lm(x) = −1 (0 < x < b),

m(b) = 0.
(68)

As usual, to solve the problem (68), it is convenient to approximate it with a two-sided boundary
problem by adding an auxiliary Neumann (reflection) condition at ε > 0,⎧⎪⎪⎨⎪⎪⎩

Lmε(x) = −1 (ε < x < b),

mε(b) = 0,

m′ε(ε) = 0,

(69)

and then taking the limit of mε(x) as ε ↓ 0. This procedure will produce the correct solution m(x) since
limε↓0 Px(τε < ∞) = Px(τ0 < ∞) = 0 (for any x > 0).

A particular solution to the inhomogeneous differential equation

1
2 σ2x2m′′ε (x) + μxm′ε(x) = −1 (ε < x < b)

can be sought in the form m0(x) = c0 ln x, which gives c0 = −1/(μ− 1
2 σ2). Thus, the general solution

of (69) can be expressed as

mε(x) = − ln x
μ− 1

2 σ2
+ c1x1−2μ/σ2

+ c2. (70)
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Now, using the boundary conditions in (69) it is straightforward to check that

lim
ε↓0

c1 = 0, lim
ε↓0

c2 =
ln b

μ− 1
2 σ2

.

Hence, from (70) we get

m(x) = lim
ε↓0

mε(x) =
ln (b/x)
μ− 1

2 σ2
,

which retrieves the result (66).

Remark 6. The same method applied to the killed process X̃t with generator L̃ = L− r̃ I (see (37)) provides
a neat interpretation of the value function u(x) as given by (43). Namely, rewrite the expectation in (33)
(i.e., eNPV(x; τb)) in the form Ẽx(g(X̃τb)), where Ẽx denotes expectation with respect to the killed process (X̃t),
and note that, for b ≥ 0,

Ẽx
(

g(X̃τb)
)
=

{
g(b) P̃x(τb < ∞), x ∈ [0, b],

g(x), x ∈ [b, ∞).

In turn, the hitting probability π̃(x) := P̃x(τb < ∞) can be easily found by solving the corresponding Dirichlet
problem (cf. (67)), {

L̃π̃(x) = 0 (0 < x < b),

π̃(b) = 1.

Indeed, repeating the calculations in Section 3.2, it is straightforward to get π̃(x) = (x/b)q∗ .

4.3. Direct Maximization

Using the results of the previous sections, we can easily solve the optimal stopping problem (17),
at least in the subclass of hitting times τ = τb (see (33)),

u(x) = sup
b≥0

eNPV(x; τb) = sup
b≥0

Ex
(
e−r̃τb(β1Xτb − P)

)
. (71)

Observe that if x ≥ b then τb = 0 and Xτb = x (Px-a.s.), so that eNPV(x; τb) ≡ β1x − P for all
b ∈ [0, x]. Let now b ∈ [x, ∞). As already noted, on the event {τb < ∞} we have Xτb = b (Px-a.s.),
hence, according to (17) and (62),

eNPV(x; τb) = (β1b− P)Ex(e−r̃τb) = (β1b− P)
( x

b

)q∗
(b ≥ x), (72)

where q∗ = q1(θ)|θ=r̃ (cf. (24) and (63)). It is straightforward to find the maximizer for the function (72).
Indeed, the condition (∂/∂b)eNPV(x; τb) ≥ 0, equivalent to

β1b−q∗ − q∗(β1b− P)b−q∗−1 ≥ 0,

holds for all b ∈ [0, b∗], where

b∗ =
Pq∗

β1(q∗ − 1)
, (73)

which is the same optimal threshold as before (cf. (23)). Thus, the supremum of eNPV(x; τb) over
b ≥ x is attained at b = b∗ if x ≤ b∗ or at b = x if x ≥ b∗.
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The corresponding value function u(x) is then calculated as (cf. (25))

u(x) =

⎧⎨⎩(β1b∗ − P)
( x

b∗
)q∗

, x ∈ [0, b∗],

β1x− P, x ∈ [b∗, ∞).
(74)

Finally, substituting (73) into (74), we obtain explicitly (cf. (26))

u(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P

q∗ − 1

(
β1(q∗ − 1)x

Pq∗

)q∗
, 0 ≤ x ≤ Pq∗

β1(q∗ − 1)
,

β1x− P, x ≥ Pq∗
β1(q∗ − 1)

.
(75)

5. Statistical Issues and Numerical Illustration

5.1. Specifying the Model Parameters

From the practical point of view, in order to exercise the stopping rule (22), the individual
concerned needs to be able to compute the critical threshold b∗ expressed in (23), for which the
knowledge is required about β1 (defined in (9)) and therefore about the parameters r, λ0, μ and β

(see (5)); furthermore, to evaluate the quantity q∗ defined in (24), one needs to estimate μ− 1
2 σ2 and σ2

itself. Specifically,

• The loss of job rate λ0 can be extracted from the publicly available data about the mean length at
work, which is theoretically given by E(τ0) = 1/λ0.

• Likewise, the inflation rate r is also in the public domain.
• To specify the wage growth rate μ, a simple approach is just to set μ = r as a crude version of a

“tracking” rule. However, it may be possible that the individual’s wage growth rate μ is, to some
extent, stipulated by the job contract—for example, that it must not exceed the inflation rate r by
more than 1% per annum (applicable, e.g., to civil servants) or, by contrast, that it must be no less
than r minus 0.5% per annum (more realistic in the private sector). In practical terms, this would
often mean that the actual growth rate μ is kept on the lowest predefined level.

• More generally, the wage growth rate μ can be estimated by observing the wage process Xt. This
can be implemented by first using regression analysis on Yt = ln Xt and estimating the regression
line slope μ− 1

2 σ2 (see (2)). In addition, the volatility σ2 can be estimated by using a suitable
quadratic functional of the sample path (Yt).

• Finally, knowing the benefit schedule (which should be available through the insurance policy’s
terms and conditions), it is in principle possible to calculate, or at least estimate the value β.

To summarize, certain estimation procedures need to be carried out along with the online
observation of the sample path (Xt). More details (most of which are quite standard) are provided in
the next two subsections.

5.2. Estimating the Drift and Volatility

Denote for short a := μ− 1
2 σ2. According to the geometric Brownian motion model (2), we have

Yt := ln Xt = ln x + σBt + at, Y0 = ln x.

Suppose the process Xt is observed over the time interval t ∈ [0, T] on a discrete-time grid ti = iT/n
(i = 0, . . . , n), and consider the consecutive increments

Zi := Yti −Yti−1 = σ(Bti − Bti−1) + a (ti − ti−1) (i = 1, . . . , n). (76)
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Note that the increments of the Brownian motion in (76) are mutually independent and have normal
distribution with zero mean and variance ti − ti−1 = T/n, respectively. Therefore, (Zi) is an
independent random sample with normal marginal distributions,

Zi ∼ N
(

aT
n

,
σ2T

n

)
(i = 1, . . . , n).

Then, it is standard to estimate the parameters via the sample mean and sample variance,

ân :=
n
T
· Z̄ =

Z1 + · · ·+ Zn

T
=

YT −Y0

T
, (77)

σ̂2
n :=

n
T
· 1

n− 1

n

∑
i=1

(Zi − Z̄)2. (78)

These estimators are unbiased,

E(ân) = a = μ− 1
2 σ2, E(σ̂n

2) = σ2,

with mean square errors

Var(ân) =
σ2

T
, Var(σ̂2

n) =
2σ4

n− 1
.

In turn, the parameter μ is estimated by

μ̂n = ân +
1
2 σ̂2

n ,

with mean E(μ̂n) = E(ân) +
1
2 E(σ̂2

n) = a + 1
2 σ2 = μ and mean square error

Var(μ̂n) = Var(ân) +
1
4 Var(σ̂2

n) =
σ2

T
+

σ4

2(n− 1)

(due to independence of the estimators ân and σ̂2
n).

Note that the estimator ân in (77) only employs the last observed value, YT ; in particular, its mean
square error is not sensitive to the grid size Δti = T/n, and only tends to zero with increasing
observational horizon, T → ∞. This makes the estimation of the drift parameter a difficult in the
sense that very long observations over Yt are required to achieve an acceptable precision (Ekström
and Lu 2011, Example 2.1, p. 3). For instance, let μ = 0.004 and σ = 0.02 (per week), then a = 0.0038;
if T = 25 (weeks) then the 95%-confidence bounds for a are given by â± 1.96 σ/

√
T = â± 0.00784,

so the margin of error is about twice as big as the value of a itself. To reduce it, say to 0.5a, one needs
T ≈ 425 (weeks), which exemplifies slow convergence.

In contrast, the mean square error of the estimator σ̂2
n in (78) tends to zero as n → ∞, with T fixed.

Thus, estimation of the parameter σ2 can be made asymptotically precise.
A numerical example illustrating the estimation of μ and σ2 using simulated data will be given

at the end of Section 5.4. A brief discussion of practical choices of μ, based on sensitivity analysis,
is provided at the end of Section 6.3.

5.3. Hypothesis Testing

In view of the drawback in the general solution of the optimal stopping problem in that the
stopping time τb∗ may be infinite, that is, Px(τb∗ = ∞) > 0, which occurs when a = μ− 1

2 σ2 < 0
(see Section 4.1), a reasonable pragmatic approach to decision-making in our model may be based on
testing the null hypothesis H0 : a ≥ 0 versus the alternative H1 : a < 0 (at some intuitively acceptable
significance level, e.g., α = 0.05). Namely, as long as H0 remains tenable, one keeps waiting for the
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hitting time τb∗ to occur, but once H0 has been rejected, it is reasonable to terminate waiting and buy
the policy immediately.

The corresponding test is specified as follows. Again, suppose that the process Yt is observed on a
discrete time grid ti = iT/n, and set Zi = Yti −Yti−1 (i = 1, . . . , n). Let z(α) be the upper α-quantile of
the standard normal distribution N (0, 1), that is, 1−Φ(z(α)) = α, where Φ(x) = 1√

2π

∫ x
−∞ e−u2/2 du.

Then the null hypothesis H0 : a ≥ 0 is to be rejected at significance level α whenever

Z1 + · · ·+ Zn ≤ inf
a≥0

{
aT − z(α)σ

√
T
}

,

that is,
YT −Y0 ≤ −z(α)σ

√
T. (79)

This test is uniformly most powerful among all tests with probability of error of type I not exceeding α,
that is, P(reject H0 |H0 true) ≤ α.

The normal test (79) assumes that the variance σ2 is known. As mentioned before, this presents
no real restriction if the process Yt is observable continuously (i.e., if the grid (ti) can be refined
indefinitely). If this is not the case (e.g., because the wage process can only be observed on the weekly
basis) then the test (79) is replaced by the t-test,

YT −Y0 ≤ −tn−1(α) σ̂
√

T,

where σ̂2 is the sample variance (see (78)) and tn−1(α) is the upper α-quantile of the t-distribution with
n− 1 degrees of freedom.

In practice, the hypothesis testing is carried out sequentially (e.g., weekly) as the observational
horizon T increases. The advantage of this approach is that the resulting stopping time is finite with
probability one (i.e., Px-a.s.); indeed, it is the minimum between the optimal stopping time τb∗ (which
is finite Px-a.s. under the null hypothesis H0 : a ≥ 0) and the first time of rejecting H0 (which is finite
Px-a.s. if H0 is false).

5.4. Numerical Examples

To be specific, we use euro as the monetary unit. First of all, the value of the constant β, which
encapsulates information about the benefit schedule as well as the rate λ1 of finding new job (see (5)),
is chosen to be

β = 30.

Thus, the overall expected benefit payable over the lifetime of the policy (and projected to the beginning
of unemployment) is taken to be equal to 30 weekly wages; that is, if the final wage is 400 (euro per
week) then the total to be received is

400.00× 30 = 12 000.00 (euro).

Further, we set
λ0 = 0.01, r = 0.0004.

This means that the expected time until loss of job is 1/λ0 = 100 (weeks), that is, about 1 year and 11
months, whereas the annual inflation rate is

e(365/7)·0.0004 − 1 = 0.02107617 ≈ 2.11%,

which is quite realistic.
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Next, we need to specify the premium P and the parameters of the wage process Xt, First, choose
the initial value x = X0 as

x = 346.00 (euro).

This is motivated by the French labour legislation, whereby the current minimum pay rate is set as
9.88 euro per hour (WageIndicator 2018), with a 35-hour workweek (Estevão and Sá 2008; Gubian et al.
2004), giving

9.88× 35 = 345.80 (euro per week).

As for the premium, it is set at the value

P = 9 000.00 (euro),

which equates to about 26 minimum weekly wages (i.e., income over about half a year). For simplicity,
we also choose

μ = r = 0.0004, (80)

so that the wage growth rate is the same as inflation r (in reality, it could be slightly less). Then from (9),
using (80), we get

β1 =
λ0 β

r̃− μ
= β = 30.

For the volatility σ, we will illustrate two opposite cases, μ < 1
2 σ2 and μ > 1

2 σ2.

Example 2. Set σ = 0.04, then μ − 1
2 σ2 = −0.0004 < 0. From (24) we calculate q∗ = 3.864208,

then (42) yields
b∗ = 404.7410 = 404.74 (euro).

Using (65), the hitting probability is calculated as

Px(τb∗ < ∞) = 0.9245906.

Finally, using (43), we obtain the value of this contract,

v(346) = 1714.2780 = 1714.28 (euro).

Example 3. Now, set σ = 0.02, then μ − 1
2 σ2 = 0.0002 > 0. Furthermore, using (24) we calculate

q∗ = 6.728416, and from (42)
b∗ = 352.3705 = 352.37 (euro).

Hence, using (66), the expected hitting time is found to be

E(τb∗) = 91.22197 = 91.2 (weeks).

Finally, according to formula (25), the value of this contract is calculated as

v(346) = 1389.6190 = 1389.62 (euro).

In the simulation of the process Xt shown in Figure 3, the drift a = μ− 1
2 σ2 is estimated using formula (77)

as â .
= 0.0005994. Estimation of the variance σ2 according to formula (78) (on a weekly time grid) gives

σ̂2 .
= 0.0003723, while the true value is σ2 = 0.0004. Hence, the parameter μ is estimated by μ̂

.
= 0.0007855;

recall that the true value is μ = 0.0004.
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6. Parametric Dependencies

In this section, we aim to explore the parametric dependencies of the solution of our insurance
problem, that is, of the optimal threshold b∗ given by (23) and the value function v = v(x) given
by (25). In particular, it is helpful to analyze different asymptotic regimes as well as (the sign of)
appropriate partial derivatives, so as to ascertain the direction of changes under small perturbations
and to understand their economic meaning. This is a key ingredient of sensitivity analysis and of the
so-called comparative statics (Merton 1969, Section VII).

In what follows, we confine ourselves to a discussion of the two most important exogenous
parameters—the wage drift μ and the unemployment rate λ0. The constraint (11) implies that the
range of the parameters μ and λ0 is specified as follows,

−∞ < μ < r̃ = r + λ0, 0∨ (μ− r) < λ0 < ∞.

Remark 7. The next two technical subsections are elementary but rather tedious, and the reader wishing to
grasp the results quickly may just inspect the plots in Figures 4 and 5.

6.1. Monotonicity

By virtue of the quadratic Equation (40), the formula (23) can be conveniently rewritten as

b∗ =
P( 1

2 σ2q∗+ r̃)
βλ0

. (81)

First, fix λ0 and consider the function μ �→ b∗. Differentiating the Equation (23) and then again
using (23) to eliminate μ, we obtain

∂q∗
∂μ

= − q∗
1
2 σ2(2q∗ − 1) + μ

= − q2
∗

1
2 σ2q2∗ + r̃

< 0. (82)

Hence, using (81) and (82),

db∗

dμ
=

∂b∗

∂μ
+

∂b∗

∂q∗
· ∂q∗

∂μ
= − P ( 1

2 σ2q2
∗)

βλ0 (
1
2 σ2q2∗ + r̃)

< 0. (83)

and, therefore, b∗ is a decreasing function of μ (see Figure 4a).
Similarly, the Equation (40) yields

∂q∗
∂λ0

=
1

1
2 σ2(2q∗ − 1) + μ

=
q∗

1
2 σ2q2∗ + r + λ0

> 0. (84)

From (81) and (84), after some rearrangements we obtain

db∗

dλ0
=

∂b∗

∂λ0
+

∂b∗

∂q∗
· ∂q∗

∂λ0

= −P( 1
2 σ2q∗+ r)

βλ2
0

+
P ( 1

2 σ2q∗)
βλ0 (

1
2 σ2q2∗ + r + λ0)

= −
P
[
( 1

2 σ2q∗+ r)( 1
2 σ2q2

∗ + r) + λ0r
]

βλ2
0 (

1
2 σ2q2∗ + r + λ0)

< 0, (85)

and it follows that the function λ0 �→ b∗ is decreasing (see Figure 4b).

25



Risks 2019, 7, 94

r

x

I

II

III

IV

V

I : λ0 = 0.007
II : λ0 = 0.01

III : λ0 = 0.015
IV: λ0 = 0.025
V: λ0 = 0.055

(a) μ �→ b∗

x

P/β
V

IV

III

II

I I : μ = −0.001
II : μ = 0.0004 (= r)

III : μ = 0.002
IV: μ = 0.005
V: μ = 0.012

(b) λ0 �→ b∗

Figure 4. Graphs illustrating parametric dependencies of the optimal threshold (23): (a) on the wage
drift μ < r̃ and (b) on the unemployment rate λ0 > 0 ∨(μ − r), for selected values of λ0 and μ,
respectively. The values of other model parameters used throughout are as in Example 3: r = 0.0004,
P = 9 000, β = 30, and σ = 0.02. The dashed horizontal line in both plots indicates the initial
wage x = 346. The dashed vertical line in (a) indicates μ = r. The lower dashed horizontal line in (b)
shows the asymptote P/β = 300 (see (99)).

(a) μ �→ v(x)

v∗

r

I II

III

IV

V

I : λ0 = 0.005
II : λ0 = 0.01

III : λ0 = 0.016
IV: λ0 = 0.025
V: λ0 = 0.055

(b) λ0 �→ v(x)

v∗

λ∗

I

II
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VI

I : μ = 0.0006
II : μ = 0.0004 (= r)

III : μ = 0.0003
IV: μ = 0.00022
V: μ = 0.0001

VI: μ = −0.0001

Figure 5. Graphs illustrating parametric dependencies of the value function (25): (a) on the wage drift
μ < r̃ and (b) on the unemployment rate λ0 > 0∨(μ− r), for selected values of λ0 and μ, respectively.
The values of other model parameters used throughout are as in Example 3: r = 0.0004, P = 9000,
β = 30, σ = 0.02, and x = 346. The dashed horizontal lines in both plots correspond to the value
v∗ := βx− P = 1380. The dashed vertical line in (a) indicates μ = r; in this case, shown as curve II in
plot (b), v(x) ≡ v∗ for all λ0 ≥ λ∗

.
= 0.012420 (see (92)). That is why curves III, IV and V in plot (a) all

intersect at μ = r.

Let us now turn to the value function v = v(x). First, consider v as a function of μ, thus keeping
λ0 fixed. Using the expression (23), we can rewrite the first line of the formula (25) (i.e., for x ≤ b∗) as

v =
P

q∗ − 1

( x
b∗
)q∗

. (86)
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Differentiating (86), we get

∂v
∂q∗

= − P
(q∗ − 1)2

( x
b∗
)q∗

(
1 + (q∗ − 1) ln

(
b∗

x

))
< 0, (87)

∂v
∂b∗

= − Pq∗
(q∗ − 1)b∗

( x
b∗
)q∗

< 0. (88)

Hence, on account of the inequalities (82), (84), (87) and (88),

dv
dμ

=
∂v
∂μ

+
∂v
∂q∗

· ∂q∗
∂μ

+
∂v
∂b∗

· db∗

dμ
> 0. (89)

If x ≥ b∗, then from the second line of (25) we readily obtain

dv
dμ

=
βλ0x

(r̃− μ)2 > 0. (90)

Thus, in all cases dv/dμ > 0, which implies that the function μ �→ v is increasing (see Figure 5a).
Finally, fix μ and consider the function λ0 �→ v. If x ≥ b∗, then v is given by the second line of (25),

that is,

v =
βλ0x

λ0 + r− μ
− P. (91)

In particular, if μ = r, then (91) is reduced to v ≡ v∗ := βx− P. From (91) it follows that

dv
dλ0

=
βx(r− μ)

(λ0 + r− μ)2

⎧⎪⎪⎨⎪⎪⎩
< 0, μ > r,

= 0, μ = r,

> 0, μ < r.

Due to monotonicity of the function λ0 �→ b∗ (see (85)), v is given by (91) as long as λ0 ≥ λ∗, for some
critical value λ∗ ≡ λ∗(μ) ≤ ∞. It will be shown below (see (99)) that limλ0→∞ b∗ = P/β, so λ∗ < ∞
if and only x > P/β. Clearly, λ∗ is determined by the condition b∗ = x (see (23)) together with the
Equation (40). In the special case μ = r (assuming that x > P/β), these equations can be solved to yield

λ∗ =
P

βx

(
1
2 σ2βx
βx− P

+ r

)
. (92)

In particular, in Example 3 this gives λ∗
.
= 0.012420. From the consideration above, it also follows that

if x > P/β, then (see (91))
lim

λ0→∞
v = v∗ = βx− P. (93)

In the case x ≤ b∗, we use formula (86). Similarly to (89),

dv
dλ0

=
∂v

∂λ0
+

∂v
∂q∗

· ∂q∗
∂λ0

+
∂v
∂b∗

· db∗

dλ0
. (94)

Substituting the expressions (82), (84), (87), and (88) into (94), canceling immaterial factors and recalling
formula (81), the condition dv/dλ0 < 0 is reduced to(

1
2

σ2q∗ + r
)(

1
2

σ2q2
∗ + r

)
+ λ0r <

(
1

q∗ − 1
+ ln

(
b∗

x

))(
1
2

σ2q2
∗ + r + λ0

)
. (95)

It can proved that if μ ≥ r, then the inequality (95) holds for all λ0 < λ∗, but the analysis becomes
difficult for μ < r. Numerical plots (see Figure 5b) suggest that in the latter case the function λ0 �→ v
may be non-monotonic, with the derivative dv/dλ0 possibly vanishing in up to two points, provided
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that r− ε < μ < r with ε > 0 small enough. To be more specific, the plots in Figure 5b illustrate the
case x > P/β, with the common asymptote (93). For x ≤ P/β, the plots look similar (not shown here)
but with limλ0→∞ v = 0 (see (102) below), so the derivative dv/dλ0 may vanish in at most one point.

6.2. Limiting Values

Let us investigate the functions b∗ and v in the limits (i) μ → −∞ or μ ↑ r̃, and (ii) λ0 → ∞ or
λ0 ↓ 0 (μ < r), λ0 ↓ μ− r (μ ≥ r). Start by observing, using Equation (40), that

lim
μ→−∞

q∗ = ∞, lim
μ↑r̃

q∗ = 1, (96)

and moreover,

q∗ − 1 ∼ r̃− μ
1
2 σ2+ r̃

(μ ↑ r̃). (97)

Similarly, limλ0→∞ q∗ = ∞; on the other hand, if μ < r then limλ0↓0 q∗ = q∗|λ0=0 > 1, while if μ ≥ r
then

q∗ − 1 ∼ λ0 − (μ− r)
1
2 σ2+ μ

(λ0 ↓ μ− r). (98)

Hence, from (81) and (96) it readily follows that b∗ → ∞ (μ → −∞) and

b∗ → P( 1
2 σ2+ r̃)
βλ0

(μ ↑ r̃).

Also, using that q∗ → ∞ (λ0 → ∞), from (23) we get

b∗ → P
β

(λ0 → ∞). (99)

In the opposite limit, if μ > r then, according to (81) and (98),

b∗ → P ( 1
2 σ2+ μ)

β(μ− r)
(λ0 ↓ μ− r), (100)

while if μ ≤ r then limλ0↓0 b∗ = ∞; in particular, for μ = r

b∗ ∼ P( 1
2 σ2 + r)
βλ0

(λ0 ↓ 0). (101)

For the value function v = v(x), from formula (86) we get, using (96) and (97),

lim
μ→−∞

v = 0, lim
μ↑r̃

v = ∞.

Furthermore, according to (93), if x > P/β, then v → v∗ = βx− P as λ0 → ∞. In the opposite case,
due to monotonicity of b∗ (see (85)) and the limit (99) we have b∗ > P/β ≥ x, so using formula (86)
and recalling that q∗ → ∞, we get

v ≤ P
q∗ − 1

→ 0 (λ0 → ∞). (102)

Now, consider the limit of v as λ0 approaches the lower edge of its range. If μ < r then (86) implies
that limλ↓0 v = 0, since b∗ → ∞ and q∗ → q∗|λ0=0 > 1. If μ = r then, using (98) and (101) (with μ = r),
we obtain

v ∼ βxλ
q∗−1
0 = βx exp

{
(q∗ − 1) ln λ0

}
→ βx (λ0 ↓ 0). (103)
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Finally, if μ > r, then from (86) it readily follows, according to (98) and (100),

v ∼ βx(μ− r)
λ− (μ− r)

→ ∞ (λ0 ↓ μ− r). (104)

6.3. Comparative Statics and Sensitivity Analysis

The goal of comparative statics is to understand how varying values of exogenous parameters
affect a target function of interest. For instance, consider the optimal threshold b∗ as a function of
both unemployment rate λ0 and wage drift μ. Rather then fixing one of these parameters and then
plotting b∗ against the remaining parameter (as was done in Figure 4), it is useful to plot a family of
comparative statics plots showing the isolines (or level curves) for different values (levels) of the function,
that is, b∗(λ0, μ) = const (see Figure 6a). As may be expected from Figure 4, the plots of the function
λ0 = λ0(μ) (determined implicitly by the level condition) behave as monotone decreasing graphs.
Analogous plots for the value function are presented in Figure 6b; the plots become non-monotonic for
v large enough. If λ0 is fixed then the value v grows with μ, in agreement with (89) and (90). Similarly,
if μ > r is fixed then v decreases with λ0, converging to the limit v∗ = βx− P as λ0 → ∞ (see (93)),
represented by curve II in Figure 5b. If v > v∗ then there are up to two different values of λ0 (and
common μ) producing the same value v, while for v smaller than but close enough to v∗, the number
of such roots may increase to three (see the discussion in Section 6.4).

(a) Isolines of b∗

I

II
IIIIV

I : b∗ = 330
II : b∗ = 340

III : b∗ = 355
IV: b∗ = 385

(b) Isolines of v = v(x)

r

λ∗
V

IV

III

II

I

I : v = 1510
II : v = 1380

III : v = 1250
IV: v = 1100
V: v = 900

Figure 6. Isolines (level curves) of the optimal stopping problem solution on the (λ0, μ)-plane:
(a) b∗(λ0, μ) = const (optimal threshold (23)); (b) v(λ0, μ) = const (value function (25)). The values
of other parameters used throughout are as in Example 3: r = 0.0004, P = 9 000, β = 30, σ = 0.02,
and x = 346. The slanted dashed lines in both plots show the boundary μ = λ0 + r (see (11)).
In plot b, the horizontal dashed line indicates μ = r and the vertical dashed line shows λ∗

.
= 0.012420

(cf. Figure 5b).

Let us also comment on the sensitivity of our numerical examples presented in Section 5.4.
The question here is, how much the output values (say, the optimal threshold b∗and the value v) would
change under a small variation of one of the background parameters. In the linear approximation,
the change factor is given by the corresponding partial derivative. As in the previous sections,
we address the sensitivity with regard to the wage drift μ (around the set value μ = 0.0004) and the
unemployment rate λ0 (around λ0 = 0.01). Other model parameters are fixed as in Section 5.4, that is,
r = 0.0004, P = 9 000, β = 30, and x = 346. As for the volatility parameter σ, it is set to be σ = 0.04 as
in Example 2 or σ = 0.02 as in Example 3. The required partial derivatives of b∗ and v can be computed
using the formulas derived in Section 6.1; the results are presented in Table 1a.
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Table 1. Sensitivity check of numerical results for the functions b∗ and v in Examples 2 and 3:
(a) parametric derivatives and (b) increments in response to a 1%-change in the background parameters.

(a) Derivatives

Derivative Example 2 Example 3

db∗/dμ −16 037.57 −13 962.43
dv/dμ 842 062.30 993 991.20

db∗/dλ0 −6 323.813 −3 161.906
dv/dλ0 −46 485.530 −8 768.435

(b) Increments (euro)

Increment Example 2 Example 3

Δb∗ (μ) −0.06415 −0.05585
Δv (μ) 3.36825 3.97597

Δb∗ (λ0) −0.63238 −0.31619
Δv (λ0) −4.64855 −0.87684

Numerical values in Table 1a may seem quite big, but they should be offset by small background
values of the parameters, μ = 0.0004 and λ0 = 0.01. If we increase them by a small amount, say by 1%,
then the absolute increments would be

Δμ = 0.0004/100 = 4 · 10−6, Δλ0 = 0.01/100 = 10−4.

Hence, using Table 1a, we obtain the corresponding approximate increments of the target functions b∗

and v (see Table 1b), which look more palatable. One interesting observation is that the value v reacts
about 5 times stronger to the change of the unemployment rate λ0 when the volatility σ gets 2 times
bigger (from σ = 0.02 in Example 3 to σ = 0.04 in Example 2); in contrast, the change of v in response
to an increase of the wage drift is much less pronounced. This highlights the primary significance of
the unemployment rate, which is of course only natural.

Sensitivity analysis with regard to the wage drift μ is also useful in the light of the difficulty
in estimation of μ from the data, mentioned in Section 5.2. The results in Table 1b suggest that a
reasonably small error in selecting μ has only a minor effect on the identification of the optimal
threshold b∗ and the value v; for instance, overestimating it by 1% will decrease b∗ by just 0.01 euro,
while the value v will be up by about 0.60 euro. Thus, an individual using a moderately inflated
value of their wage rate would take a slightly overoptimistic view about the timing of joining the
insurance scheme and its expected benefit. On the other hand, a risk-averse individual may take a
more conservative view and prefer to underestimate their wage drift μ, which will raise the threshold
b∗ resulting in a longer waiting time. For the insurance company though, it may be reasonable to
try and avoid underestimation of the wage drift of potential customers, so as to reduce the risk of
overpaying the benefits.

6.4. Economic Interpretation

Monotonic decay of the optimal threshold b∗ with an increase of the unemployment rate λ0

(see (85) and Figure 4b) has a clear economic appeal: a bigger unemployment rate λ0 means a higher
risk of losing the job, which demands a lower target threshold b∗ in order to expedite joining the
insurance scheme. The economic rationale for the monotonicity of b∗ as a function of μ (see (83) and
Figure 4a) is different—a bigger wage drift μ makes it more likely to reach a higher final wage Xτ0 by
the time of loss of job, so lowering the threshold b∗ adds incentive to an earlier entry.

Monotonic growth of the value v as a function of the wage drift μ (see (89), (90), and Figure 5a) is
also meaningful—indeed, when the wage drift μ gets bigger, there is more potential to reach a higher
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final wage Xτ0 by the time of loss of job, which increases the expected benefit β1 (see (9)) and, therefore,
the value v = v(x) of the insurance policy.

The behavior of the value function v = v(x) in response to a varying unemployment rate λ0 is
more interesting, as indicated by the plots in Figure 5b. In the case μ < r, it is satisfactory to see that
the value v, vanishing in the limit as λ0 ↓ 0, starts growing with λ0, thus reflecting a good efficiency
of the insurance policy against an increasing risk of unemployment. On the other side of the policy,
this may present a growing risk for the insurance company which will have to finance an increasing
number of claims. But with the unemployment rate λ0 getting ever bigger, the value v should stay
bounded, so must converge to a limit as λ0 → ∞, given by v∗ = βx − P if x > P/β (see (93)) or
v∗ = 0 otherwise (see (102)). In particular, Figure 5b shows that, for a certain range of μ, the value v
achieves its maximum at some λ0. However, the graphs also reveal that if μ keeps increasing then
the value plots may have a more complicated non-monotonic behavior, which is harder to interpret
economically.

On the other hand, as is evident from Figure 5b, in the case μ ≥ r our model produces a
counter-intuitive increase of the value v as λ0 approaches the left edge of its range—it is hard to believe
that the value may grow as the risk of unemployment falls. Moreover, as was computed in (104), for
μ > r the corresponding limit of v is infinite! But perhaps the most striking example emerges in the
borderline case μ = r, whereby formally setting λ0 = 0 we would get, according to (101), that the
threshold b∗ is infinite (unlike the case μ > r, see (101)), so that the wage process (Xt) never reaches it;
therefore, we never buy the insurance policy (understandably so, as there is no risk of losing the job),
and nonetheless its value is positive in this limit (see (93)). The explanation of this paradox lies in the
way how the optimal stopping is exercised for small λ0 > 0: here, the threshold b∗ is high and there is
only a very small probability that it is ever reached; before this happens, we stay idle, but if and when
the threshold is hit then the expected payoff is rather big, which contributes enough to the expected
net present value to keep it positive in the limit λ0 ↓ 0 (see (103)).

Thus, the artefacts in our model as indicated above are caused by not putting any constraint on
the waiting times. This can be rectified, for example, by introducing mortality, as was sketched in
Section 2.3; in particular, such a regularization should restore a zero limit of v at the lower edge of λ0.

7. Including Utility Considerations

7.1. Perpetual American Call Option

Our model (and its solution) resembles that of the optimal stopping problem for the (perpetual)
American call option (see a detailed discussion in Shiryaev 1999, chp. VIII, §2a). More specifically,
the holder of a call option may exercise the right to buy an asset (e.g., one unit of stock) at any time for
a predetermined strike price K, where the decision is based on observations over the random process
of stock prices (St), assumed to follow a geometric Brownian motion model. The term perpetual is used
to indicate that there is no expiration date, so the right to buy extends indefinitely.

The optimal time instant τ = τ∗ to buy, bearing in mind a purely financial target of maximizing
the profit Sτ − K, is the solution of the following optimal stopping problem,

V(x) = sup
τ

Ex
(
e−rτ(Sτ − K)+

)
, (105)

where St is a geometric Brownian motion with parameters μ < r and σ > 0, the supremum is taken
over all stopping times τ adapted to the filtration associated with (St). The positive truncation (·)+
corresponds to the constraint that the option holder is not in a position to buy at the price K higher
than the current spot price St. The solution to (105) is well known (Shiryaev 1999, chp. VIII, §2a) to be
given by the hitting time τ∗ = τb∗ , with the optimal threshold

b∗ =
Kq∗

q∗ − 1
,
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where q∗ is given by formula (24) but with r̃ = r + λ0 replaced by r. The corresponding value function
is given by

V(x) =

⎧⎨⎩(b∗ − K)
( x

b∗
)q∗

, x ∈ [0, b∗],

x− K, x ∈ [b∗, ∞).

Observe that our optimal stopping problem (17) can be rewritten as

v(x) = β1 sup
τ

Ex
(
e−r̃τ(Xτ − K̃)

)
, K̃ := P/β1, (106)

which makes it look very similar to the perpetual American call option problem (105). However,
there are several important differences. Firstly, unlike the gain function in the American call option
problem (105), no truncation is applied in (106), because the financial gain is not the sole priority in this
context and therefore the individual is prepared to tolerate negative values of β1Xτ − P (despite the
fact that, under the optimal strategy, the value function v(x) is always non-negative, see Lemma 2(i)
and formula (25)).5 In addition, as was mentioned in Remark 5 and in Section 5.3, the hitting time τb∗

may be infinite with a positive probability (i.e., when μ < 1
2 σ2), which may be deemed impractical in

the insurance context, but is considered to be acceptable for exercising the American call option. This
simple observation helps to realize the fundamental conceptual difference between the two problems;
indeed, the insurance optimal stopping does not focus only on the financial gain, but also places
an ultimate priority on acquiring an insurance cover per se. Hence, a more realistic formulation of
the optimal stopping problem in the UI model should involve a certain utility, which specifies the
individual’s weighted preferences for satisfaction; for example, impatience against waiting for too
long before joining the UI scheme.

7.2. Heuristic Optimal Stopping Models with Utility

Here, we present a few informal thoughts about the possible inclusion of utility in the optimality
analysis. As already mentioned, in the case μ < 1

2 σ2 the probability of hitting the critical threshold b∗

is less than 1, so there is a probability that the individual will never join the insurance scheme if the
optimal stopping rule is strictly followed. This is of course not desirable, as the individual puts high
priority on getting insured at some point in time (hopefully, prior to loss of job).

One simple way to take these additional requirements into account is to extend the optimal
stopping problem (17) as follows:

v†(x) = sup
τ

[
κ Px(τ < ∞) + eNPV(x; τ)

]
= sup

τ
Ex

(
κ�{τ<∞}+ e−r̃τ g(Xτ)

)
, (107)

where the supremum is again taken over all stopping times τ adapted to the process (Xt), and the
coefficient κ ≥ 0 is a predefined weight representing the individual’s personal attitude (preference)
towards the two contributing terms. If Px(τ < ∞) = 1 then the first term in (107) is reduced to a
constant (κ), leading to a pure optimal stopping problem as before; however, if Px(τ < ∞) < 1 then
the first term enhances the role of candidate stopping times τ that are less likely to be infinite.

The problem (107) can be rewritten in a more standard form by pulling out the common
discounting factor under expectation,

v†(x) = sup
τ

Ex
(
e−r̃τ G(τ, Xτ)

)
, (108)

5 The equivalence of the problems (105) and (106), which we have established directly, is not a coincidence: it is known
(Villeneuve 2007, Proposition 3.1, p.185) that, under mild assumptions, the solution of the general optimal stopping problem
v(x) = supτ Ex(e−rτ g(Xτ)) does not change with the positive truncation of g(·).
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with
G(t, x) := κ er̃t+ g(x), (t, x) ∈ [0, ∞]× [0, ∞). (109)

Unfortunately, the optimal stopping problem (108) is not amenable to an exact solution as before,
because the gain function (109) depends also on the time variable (Peskir and Shiryaev 2006, chp. IV).
In this case, the problem (108) may again be reduced to a suitable (but more complex) free-boundary
problem, but the hitting boundary (of a certain set on the (t, x)-plane) is no longer a straight line.

More generally, our optimal stopping problem can be modified by replacing the indicator in (107)
with the expression e−ρτ (ρ > 0),

v†(x) = sup
τ

Ex
(
κ e−ρτ+ e−r̃τ g(Xτ)

)
, (110)

which retains the flavour of progressively penalizing larger values of τ, including τ = ∞. Here, the
gain function (109) takes the form

G(t, x) = κ e(r̃−ρ)t+ g(x).

In particular, by choosing ρ = r̃ the problem (110) is transformed into

v† = sup
τ

Ex
(
e−r̃τ(β1Xτ + κ − P)

)
,

which is the same problem as (17) but with the premium P replaced by P− κ.
Another, more drastic approach to amending the standard optimal stopping problem (17) stems

from the observation that even if τ < ∞ (Px-a.s.), it may take long to wait for τ to happen—for instance,
if Ex(τ) = ∞. In other words, it is reasonable to take into account the expected value of τ, leading to
the combined optimal stopping problem

v†(x) = sup
τ

[
κ Px(τ < ∞) + κ exp{−Ex(τ)}+ eNPV(x; τ)

]
. (111)

If Px(τ < ∞) < 1 then Ex(τ) = ∞ and the problem (111) is reduced to (107), whereas if Px(τ < ∞) = 1
then, effectively, only the term with the expectation remains in (111). However, a disadvantage of the
formulation (111) is that it cannot be expressed in the form (108). Trying to amend this would take us
back to the version (110).

It is interesting to look at how the value function depends on the preference parameter κ. The next
property is intuitively obvious.

Proposition 2. For each x > 0, the value function v†(x) of the optimal stopping problem (110) is a strictly
increasing function of κ. The same is true for the problem (111).

Proof. We use the notation v†(x; κ) to indicate the dependence of the value function on the parameter κ.
For κ1 < κ2 and any stopping time τ �≡ ∞, we have

Ex
(
κ1 e−ρτ+ e−r̃τ g(Xτ)

)
< Ex

(
κ2 e−ρτ+ e−r̃τ g(Xτ)

)
≤ v†(x; κ2). (112)

Suppose that τ∗ is a maximizer for the optimal stopping problem (110) with κ = κ1. Then, according
to (112),

v†(x; κ1) = Ex
(
κ1 e−ρτ∗+ e−r̃τ∗g(Xτ∗)

)
< v†(x; κ2),

that is, v†(x; κ1) < v†(x; κ2) as claimed. Similar arguments apply to the problem (111).
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7.3. Suboptimal Solutions

As already mentioned, the optimal stopping problems outlined in Section 7.2 are difficult to solve
in full generality. To gain some insight about the qualitative effects of the added utility-type terms,
it may be reasonable to restrict our attention to solutions in the subclass of hitting times τb. Despite
such solutions will only be suboptimal, the advantage is that the reduced problems can be solved
using that all the ingredients are available explicitly (see Section 4.1).

For example, the original problem (107) is replaced by

u†(x) = sup
b≥0

[
κ Px(τb < ∞) + eNPV(x; τb)

]
. (113)

Similarly as in Section 4.3, we only need to maximize the functional in (113) over b ≥ x. Indeed, if
b ≤ x then τb = 0 (Px-a.s.) and, according to (7) and (16),

sup
b≤x

[
κ Px(τb < ∞) + eNPV(x; τb)

]
= κ + eNPV(x; 0) = κ + β1x− P,

whereas

sup
b≥x

[
κ Px(τb < ∞) + eNPV(x; τb)

]
≥
[
κ Px(τb < ∞) + eNPV(x; τb)

]
b=x

= κ + β1x− P.

Assume that μ − 1
2 σ2 < 0 (for otherwise Px(τb < ∞) = 1, thus leading to the same optimal

stopping problem as before). Then, according to (65), the probability Px(τb < ∞) becomes a strictly
decreasing function of b ∈ [x, ∞), and so the maximum in (113) is achieved by a different stopping
strategy, with a lower optimal threshold b†. More precisely, by virtue of formulas (65) and (72),
the problem (113) is explicitly rewritten as

u†(x) = sup
b≥x

[
κ
( x

b

)1−2μ/σ2

+ (β1b− P)
( x

b

)q∗
]

, (114)

where q∗ > 1 is defined in (24). Differentiating with respect to b, it is easy to check that the maximizer
for the problem (114) is given by

b† = min

{
b ≥ x : aκ

(
b
x

)q∗−a
+ (q∗ − 1)β1b ≥ Pq∗

}
,

where a := 1− 2μ/σ2 < 1 < q∗.
The following (slightly artificial) version of the utility keeps the spirit of (113) but is amenable to

the exact analysis:

u†(x) = sup
b≥0

[
κ
{

Px(τb < ∞)
}q∗/(1−2μ/σ2)

+ eNPV(x; τb)

]
. (115)

Indeed, using the same substitutions (65) and (72) as before, (115) is reduced to (cf. (114))

u†(x) = sup
b≥x

[
(β1b + κ − P)

( x
b

)q∗]
, (116)

which is the same problem as (71) but with P replaced by P− κ (cf. (72)). Therefore, from (73) we
immediately obtain the maximizer

b† =
(P− κ)q∗
β1(q∗ − 1)

= b∗− κq∗
β1(q∗ − 1)

≤ b∗. (117)
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This is a strictly decreasing (linear) function of κ; in particular, b† = b∗ if κ = 0 and b† = 0 if κ = P. The
corresponding value function is given by (cf. (74))

u†(x) =

⎧⎨⎩(β1b† + κ − P)
( x

b†

)q∗
, x ∈ [0, b†],

β1x + κ − P, x ∈ [b†, ∞),
(118)

or more explicitly (cf. (75))

u†(x) =

⎧⎪⎪⎨⎪⎪⎩
P− κ

q∗ − 1

(
β1(q∗ − 1)x
(P− κ)q∗

)q∗
, 0 ≤ x ≤ (P− κ)q∗

β1(q∗ − 1)
,

β1x + κ − P, x ≥ (P− κ)q∗
β1(q∗ − 1)

.
(119)

If x is fixed then the problem value u†, as a function of κ, is given by the first or the second line in (119)
according as κ ∈ [0, κ†] or κ ∈ [κ†, ∞), respectively, where

κ† := P− β1(q∗ − 1)x
q∗

. (120)

The dependence of b† and u†(x) upon the utility parameter κ ∈ [0, P] is illustrated in Figure 7, while
Figure 8 demonstrates the functional dependence of the hitting probability Px(τb < ∞) and the mean
hitting time Ex(τb) upon the variable threshold b ≥ 0, along with the corresponding plots of the
expected net present value eNPV(x; τb).

†

κ†

x

(a) κ �→ b†

†

κ†

u†(x)|κ=κ†

(b) κ �→ u†(x)

Figure 7. Functional dependence on the preference weight κ in the reduced optimal stopping
problem (115): (a) the optimal threshold b† (see (117)) and (b) the value function u†(x) (see (119)).
Numerical values of the parameters used are as in Example 3: r = μ = 0.0004, P = 9 000,
β = 30, σ = 0.02, and x = 346. In particular, if κ = 0 then b† coincides with b∗ .

= 352.3705 and
u†(x) coincides with v(x) .

= 1389.6190. The dashed vertical lines on both plots indicate the value
κ† .

= 162.7108 (see (120)) separating different regimes for u†(x) according to (119). When κ = κ†,
we have b† = x = 346, shown as a dashed horizontal line in plot a; the corresponding value function
is given by u†(x) = β1x + κ†− P .

= 1542.7110 (see (118)), shown as a dashed horizontal line in plot b.
Note that the graph of u†(x) in plot b looks almost linear for κ ∈ [0, κ†], because the ratio κ/P is
quite small, 0 ≤ κ/P ≤ κ†/P .

= 0.01808; the slope here is approximately v(x)(q∗ − 1)/P .
= 0.88448,

as compared to slope 1 of the linear graph for κ ≥ κ†.
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x
b∗

(a) b �→ Px(τb < ∞) (μ < 1
2 σ2)

x
b∗

(b) b �→ Ex(τb) (μ > 1
2 σ2)

x
b∗

(c) b �→ eNPV(x; τb) (μ < 1
2 σ2)

x
b∗

(d) b �→ eNPV(x; τb) (μ > 1
2 σ2)

Figure 8. Theoretical graphs for functionals of the hitting time τb versus threshold b ≥ 0. Upper row:
(a) the hitting probability Px(τb < ∞) (see (65)) and (b) the mean hitting time Ex(τb) (see (66)). Bottom
row: the expected net present value eNPV(x; τb) (see (72)) with μ < 1

2 σ2 (c) or μ > 1
2 σ2 (d). The values

of parameters used throughout are as in Section 5.4: x = 346, P = 9 000, β1 = 30, μ = 0.0004, and
σ = 0.04 (left) or σ = 0.02 (right). The dashed vertical lines in each plot indicate x and b∗ .

= 404.7410
(left) (see Example 2) or b∗ .

= 352.3705 (right) (see Example 3).

Remark 8. Note that u†(x) is a strictly increasing function of κ ∈ [0, P], in accord with Proposition 2.
In particular, u†(x) coincides with the original value function u(x) given by (75), but with the premium P
replaced by P− κ. This can be interpreted as the individual’s consent to convert additional satisfaction, gained
by virtue of pursuing the optimal stopping problem (115) instead of (17), into a higher premium, P† = P + κ.
Such an effect is characteristic of the use of risk-averse utility functions under the Expected Utility Theory
(Kaas et al. 2008); see also a discussion below in Section 7.4.

In the case μ > 1
2 σ2, instead of (111) we may consider the simplified problem

u†(x) = sup
b≥0

[κ exp{−Ex(τb)}+ eNPV(x; τb)] . (121)

Upon the substitution of formulas (66) and (72), it is rewritten in the form (cf. (114))

u†(x) = sup
b≥x

[
κ

ln(b/x)
μ− 1

2 σ2
+ (β1b− P)

( x
b

)q∗
]

. (122)
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Again, the maximization problem (122) can be solved (at least, numerically). For an analytic solution,
it is convenient to modify the problem (121) as follows,

u†(x) = sup
b≥0

[
κ exp

(
− q∗

μ− 1
2 σ2

Ex(τb)

)
+ eNPV(x; τb)

]
.

Similarly to (122), this leads to the maximization problem that coincides with (116) and, therefore,
has the same solution (117) and (118) (or, equivalently, (119)).

7.4. Connections to Expected Utility Theory

The considerations above can be linked to the standard Expected Utility Theory (Kaas et al. 2008).
In the usual setting, it is assumed that an individual uses (perhaps, subconsciously) a certain utility
U(w), as a function of financial wealth w, to assess losses, gains and the resulting satisfaction.
Generically, given the current wealth w and some random future loss Y, the expected loss (measured
via utility U(·)) may be expressed as E

[
U(w−Y)

]
. The individual is inclined to pay a premium P and

buy the insurance policy as long as the expected utility without insurance is no more than U(w− P),

E [U(w−Y)] ≤ U(w− P). (123)

The balance condition
E [U(w−Y)] = U(w− P) (124)

determines the maximum premium Pmax the customer is prepared to pay (in fact, at this point it makes
no difference whether to buy the insurance or not).

In the baseline case with U(w) ≡ w, the conditions (123) and (124) are reduced to

P ≤ Pmax = E(Y). (125)

However, choosing a different utility function may well change this threshold. For instance, if the
random loss Y has exponential distribution with parameter θ = 0.001, then according to (125) we have
Pmax = E(Y) = 1/θ = 1000. In contrast, let the utility function be chosen as U(w) = 1− exp

(
− 1

2 θw
)
.

Here, the utility is between 0 and 1 if the wealth w is positive, but it becomes increasingly negative for
a negative wealth; that is, strong weight is placed against negative wealth, which may be characteristic
of a risk-averse individual. In this case, it is easy to check that

Pmax =
2 ln 2

θ
= 1386.294 > 1000.

Thus, the individual is happy to pay more than before to protect themselves from the perceived
risk of significant losses. That is to say, an additional amount of satisfaction is convertible into an
extra premium.

In our case, if the UI was to be entered immediately, at time t = 0, then the value of this decision
would be eNPV(x; 0) = β1x− P (see (8) and (16)). Clearly, in order for this to be non-negative, the
premium P must satisfy the condition

P ≤ Pmax = β1x.

For instance, in the setting of the numerical example in Section 5.4, we get Pmax = 30× 346 = 10 380,
while the set premium is P = 9 000.

Similarly, if the decision was taken at a stopping time τ, then, conditional on the wage Xτ ,
the maximum premium payable would be given by Pmax = β1Xτ . Thus, the value of Pmax goes up or
down together with the current wage. However, in our setting the entry time is not decided in advance,
being subject to the stopping rule based on observations over (Xt). As a result, the value function v(x)
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(x > 0) of the optimal stopping problem is always positive for any premium P, no matter how high
(see formula (26)). Apparently, this is manufactured by selecting the threshold b∗high enough, which
guarantees that, in the (rare) event of hitting it, the mean value of this strategy will be positive.

This may not be satisfactory from the standpoint of the Expected Utility Theory; however, there is
no contradiction, because in its standard version this theory does not allow for an optional stopping.
Adding utility terms to the gain function in the spirit of Sections 7.2 and 7.3 helps to amend the
situation (see Remark 8), but the maximum premium payable still remains indeterminate.

The explanation of this paradox lies in the simple fact that the gain function in the optimal
stopping problems considered so far does not include any losses. A simple way to account for such
losses is to include consumption in the model. Namely, suppose for simplicity that the consumption
rate c is constant; for instance, the net present value of consumption over time interval [0, t] is given by

∫ t

0
e−rsc ds =

c (1− e−rt)

r
.

It is natural to assume that the wage Xt is sufficient to finance the consumption, so that Ex(Xt) =

x eμt ≥ c for all t ≥ 0 (see (3)). In turn, for this to hold it suffices to assume that X0 = x ≥ c and μ ≥ 0.
Hence, we need to take into account consumption only over the unemployment spell [τ0, τ0 + τ1],
where the wage is replaced by the UI benefit. The expected net present value of this consumption is
given by

γ := E
(

e−rτ0

∫ τ1

0
e−rsc ds

)
= E(e−rτ0) · E

(
c (1− e−rτ1)

r

)
=

λ0c
(r + λ0)(r + λ1)

,

using independence of τ0 and τ1 and their exponential distributions (with parameters λ0 and λ1,
respectively). Thus, our basic optimal stopping problem (17) is modified to

v‡(x) = sup
τ

Ex
(
[e−r̃τ g(Xτ)− γ

)
,

which has the same solution as before (see Section 2.5) but with the new value function
v‡(x) = v(x)− γ, that is (cf. (25)),

v‡(x) =

⎧⎨⎩(β1b∗ − P)
( x

b∗
)q∗− γ, x ∈ [0, b∗],

β1x− P− γ, x ∈ [b∗, ∞).

Now, the inequality v‡(x) ≥ 0 can be easily solved for P to yield

P ≤ P‡
max :=

⎧⎪⎨⎪⎩β1b∗ − γ

(
b∗

x

)q∗
, x ∈ [0, b∗],

β1x− γ, x ∈ [b∗, ∞).
(126)

Note that P‡
max in (126) is a decreasing function of γ, but an increasing function of x. Thus, as could be

expected, the maximum affordable premium gets lower with the increase of consumption, but becomes
higher with the increase of the wage.

Remark 9. Of course, consumption can also be incorporated into the optimal stopping models involving utility
(see Sections 6.3 and 7.2), but we omit technical details.
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8. Concluding Remarks

In this paper, we have set up and solved an optimal stopping problem in a stylized UI model.
The model and its solution are useful by illustrating approaches to optimal strategy of an individual
seeking to get insured. By including consumption in the model, we have also demonstrated how a fair
premium can be calculated, which makes our UI model usable also from the insurer’s perspective.

An explicit closed-form solution of the corresponding optimal stopping problem was possible
due to some simplifying assumptions—in particular, exponential distribution of time τ0 to loss of job
and constant inflation rate r. The analysis also strongly relied on the simplest model for the wage
process (Xt), that is, geometric Brownian motion with constant drift μ and volatility σ2.

Let us indicate a few directions of making our UI model more realistic. Firstly, indefinite term of
UI insurance could be replaced by a finite expiration term for the benefit schedule (akin to American
call option with finite horizon), which would lead to a harder (time-dependent) optimal stopping
problem (cf. Peskir and Shiryaev 2006, §25.2). Also, the assumption of exponential distribution of
τ0 needs to be tested on the basis of real unemployment data. Note, however, that fitting a different
distribution for τ0 will invalidate the expression (13) for the expected net present value eNPV(x; τ)

and, therefore, will change the gain function in the optimal stopping problem (17), making it more
difficult to solve.

The parameters of the model may also need to be made time-dependent, causing obvious
complications to the model. On the other hand, the implicit assumption of passive waiting for a
new job during the unemployment spell may not be realistic, or at least not desirable as individuals
would rather be expected to seek jobs more proactively. Thus, it may be interesting to combine our UI
model with job-seeking models such as in Boshuizen and Gouweleeuw (1995).

The inclusion of utility terms in the optimal setting is novel in this context, and illuminates
significant changes in the individual’s behavior when driven by utility considerations. In particular,
the value of the optimal stopping problem (110) is an increasing function of the preference coefficient
κ (see Proposition 2). This result is intuitively appealing, as it conforms with the usual impact of
utility function (under the Expected Utility Theory), allowing one to convert extra satisfaction into
extra premium. This is confirmed by our analysis of suboptimal solutions in Section 7.3 (see Figure 7).
Finally, it would be interesting to study the optimal stopping problem (110) in more detail.
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Abstract: I document a sizeable bias that might arise when valuing out of the money American
options via the Least Square Method proposed by Longstaff and Schwartz (2001). The key point of
this algorithm is the regression-based estimate of the continuation value of an American option. If this
regression is ill-posed, the procedure might deliver biased results. The price of the American option
might even fall below the price of its European counterpart. For call options, this is likely to occur
when the dividend yield of the underlying is high. This distortion is documented within the standard
Black–Scholes–Merton model as well as within its most common extensions (the jump-diffusion, the
stochastic volatility and the stochastic interest rates models). Finally, I propose two easy and effective
workarounds that fix this distortion.
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1. Introduction

Whereas most of the exchange-traded options on global financial indexes can be exercised only at
maturity, thus being European-style options, the vast majority of equity options are American-style,
as they can be exercised at any time up to their maturity. Evaluation of American-style options is,
therefore, of crucial relevance in the financial industry.1

The fair pricing of this kind of claims is tricky even within simple market models due to their
embedded optimization problem. In fact, since the holder of an American option has the right to
exercise it at any time up to maturity, she will do so at the moment in which the expected payoff of
the option is maximum. Therefore, virtually at each instant in time, she has to compare what she
would get by the immediate exercise of the option to what she would get in the future if she waits
and exercises the option later on. In turns, what she would get in the future depends on her future
decisions: this recursive structure of the decision problem makes the evaluation of American claims
quite complicated. See, e.g., Detemple (2014) for an extensive review of the main pricing methods of
American-style derivatives.

Longstaff and Schwartz (2001) proposed the Least Square Methods (LSM henceforth), an interesting,
fast and flexible Monte Carlo-based algorithm to price American options. The key point of the LMS is a
regression-based approximation of the continuation value for the American option, which overcomes
the well known issue of recursively estimating the conditional expectation of future optimal exercises.

1 See, e.g., the CBOE Market Statistics annual report released by the Chicago Board Options Exchange, the largest trading
market for derivatives. In 2016, the overall dollar value of all the equity options traded at the CBOE was roughly equal
to $66 billion with an average of 1.35 million equity options traded daily corresponding to 205 million call options and
135 million put through the year.
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At maturity, the option is exercised whenever in the money. Then, the optimal policy is retrieved
going backward by comparing the immediate exercise payoff with the continuation value, which is
approximated by the fitted values of a pathwise regression of all future payoffs on the immediate payoff.
Since this regression is run on the paths along which the option is in the money, if there are too few of
them, the regression is ill-posed and produces biased estimates of the continuation value. This propagates
recursively and the final estimate of the price of the American option might be biased. Such bias might be
so large that the American option price falls below the price of its European counterpart, delivering a
price that violates the no arbitrage assumption as American options are always worth more than their
European counterparts due to the early exercise premium.

If the option starts even mildly out of the money, the probability that the underlying reverts back
to the in the money region depends on the drift of the risky asset. This drift depends in turns on
the risk-free interest rate, on the dividend yield and on the volatility of the equity. Under realistic
combinations of these parameters, the probability that initially out of the money option ends up in the
in the money region is quite low. This damages the regression-based estimation of the continuation
value of the American option thus altering (usually lowering) the final price. As an example, a high
dividend yield relative to a low risk-free interest rate depresses the drift of a lognormal risky asset and,
therefore, the stock is expected to decrease. In this case, the evaluation of an American option on this
stock through the LSM, would most likely deliver a biased result.

My analysis builds on the large literature about the weaknesses and the related improvements of
the Monte Carlo-regression based methods for pricing American options. Among others, García (2003)
and Kan and Reesor (2012) analysed and corrected the biases of the algorithm due to suboptimal
exercise decisions whereas, as an example, Belomestny et al. (2015) and Fabozzi et al. (2017) proposed
further improvements of the original LSM.

Out of the money options play a key role in hedging strategies to protect investors against
sudden drop/peak of the equity. Furthermore, Carr and Madan (2001) showed how to replicate any
derivative whose payoff is a smooth function of the underlying at maturity with fixed positions in the
bond, the stock itself and out of the money European call and put options. As European options on
equity are quite illiquid, American ones are used in practice (delivering a small deviation from the
perfect replication). Therefore, the correct evaluation of American out of the money options is relevant
as well.

The remaining of the paper is organized as follows. Section 2 analyses the aforementioned flaw of
the LSM in the standard diffusive framework of Black–Scholes–Merton. The following three sections
address this issue within the three most common extensions of the standard diffusive framework.
Section 3 deals with the jump-diffusion model, Section 4 with the stochastic interest rate framework
and, finally, Section 5 with the stochastic volatility one. Section 6 concludes.

2. American Equity Options, Constant Interest Rates

I first analyse the LSM in a simple diffusive framework, as the one of Black and Scholes (1973)
and Merton (1973). The risk-free interest rate is assumed to be deterministic. In Section 2.1, I first
review the LSM and I highlight the possible flaws that might arise when valuing out of the money
American option. Then, I propose a possible workaround to overcome them. In Section 2.2, I propose
some numerical example to quantify the size of the flaws and to show how the workaround delivers
correct results.
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2.1. Theoretical Framework

2.1.1. The Primary Assets

Assume that the market is arbitrage-free and let r ∈ (−1,+∞) be the constant prevailing risk-free
interest rate2. The risk-free interest rate is capitalized through a traded bond with price B(t) = ert.
Consider a traded lognormal risky security S whose price dynamics under the3 risk-neutral probability
measure Q solve the following stochastic differential equation (SDE henceforth):

dS(t) = (r− q)S(t)dt + σS(t)dW(t), S(0) = S0 (1)

with t ∈ R+, where W is a Q-Brownian motion, σ ∈ R+ is the constant volatility of the security, q its
continuous dividend yield and S0 ∈ R+ is its current price at t = 0. It is well known that the solution
to Equation (1) delivers the following explicit expression for the price of the risky security

S(t) = S0 exp
[(

r− q− σ2

2

)
t + σW(t)

]
, t ≥ 0. (2)

Notice that the continuously compounded rate of return over [0, t] on S,

ln
S(t)
S0

=

(
r− q− σ2

2

)
t + σW(t)

has two contributions: the first one is deterministic and depends on the drift μQ := r− q− σ2/2 of the
security; the second one is normally distributed with zero mean and variance equal to σ2t. Globally,
the expected rate of return over [0, t] is therefore normally distributed with mean μQt and variance σ2t.
Furthermore, as time goes by, the deterministic component μQt prevails over the random one σW(t)4.
Therefore, the investor expects the security to appreciate as time goes by proportionally to the constant
drift μQ.

2.1.2. The Derivatives

Let f (S), S ∈ R+, be the payoff of a derivative written on S(t). For a thorough analysis of many
derivatives in this diffusion framework, see, e.g., Björk (2009). I restrict my investigation only to
plain vanilla options; these are derivatives whose payoff can be cashed in by investors if (and only
if) it is positive and that depends only on the current value of the underlying. The two instances
of these options I will investigate are the call options, with f (S) = (S− K)+, and the put options,
with f (S) = (K− S)+, where in both cases K, the strike price of the option, is the constant quantity
specified on the contract at which the holder of the option has the right to buy or to sell, respectively,
the underlying5.

2 I advisedly allow for r ∈ [−1, 0] in order to possibly replicate also the current situation of the Eurozone where “risk-free”
government bonds, such as German ones, display negative yield up to few years maturities.

3 Under these assumptions, the market is actually also complete; therefore, the risk-neutral measure Q is unique.
4 It holds true (see, e.g., Revuz and Yor (2001)) that lim supt→+∞

W(t)√
2t log2 t

= 1 and lim inft→+∞
W(t)√
2t log2 t

= −1 almost surely;

as ±
√

2t log2 t = o(t), lim supt→+∞
μQt+σW(t)

μQt
= 1.

5 (x)∗ := max{0, x} denotes the positive part. The holder of an option will exercise it if and only if it delivers a positive
payoff; if this is not the case, the option will not be exercised and its payoff is floored at zero.
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European-style options can be exercised only at maturity T ∈ R+. As their payoff at maturity is
f (S(T)), the fundamental no-arbitrage pricing equation gives the value of these options at any time t,
from inception, t = 0, up to maturity T

πE
f (t) = EQ

[
f (S(T))

B(t)
B(T)

∣∣∣∣Ft

]
= EQ

[
f (S(T))e−r(T−t)

∣∣∣Ft

]
. (3)

For call and put options, π f (t) admits a closed form solution, the celebrated Black–Scholes–Merton
formula first derived by Black and Scholes (1973) and Merton (1973).

American-style options can be exercised at any time up to their maturity T ∈ R+. If exercised at
t ∈ [0, T], their payoff is f (S(t)). Clearly, a rational investor would exercise an American option when
the payoff it delivers is the greatest possible. Therefore, the value of an American option at any time
t is

πA
f (t) = ess sup

τ∈[t,T]
EQ

[
f (S(τ))e−r(τ−t)

∣∣∣Ft

]
, (4)

where the essential supremum accounts for the fact that the sup is taken on an (uncountable) family
of random variables defined up to zero-probability sets. In other words, the value of the American
option is determined by the optimal stopping time τ that maximizes the discounted payoff. It is well
known that πA

f (t) admits closed form expressions for neither call nor put options.
The evaluation of American options has, therefore, to rely on numerical techniques. As greatly

summed up by Detemple (2014), there are broadly three valuation approaches to tackle this issue:

• the variational inequality approach, which generalizes the Black-Scholes PDE and translates into
a free boundary problem;

• the lattice approach, inspired by the seminal work of Cox et al. (1979), who discretized the
evolution of the underlying asset S and evaluated the American option backward along this
discretization; and

• the least square method, first introduced by Longstaff and Schwartz (2001), who exploited a
Monte Carlo simulation to recursively estimate the expected future payoff of the American option.

The present work focuses on the last approach, the LSM, as it is widely used thanks to the
simplicity and the flexibility of its algorithm. Nevertheless, I show that, when implemented without
few shrewdnesses, the LSM might deliver biased results under some realistic combinations of
assets’ parameters.

2.1.3. The LSM

The general LSM is effectively illustrated in Section 2 of Longstaff and Schwartz (2001). For ease
of reading, I briefly recall here its working flow.

First, the LSM considers a uniform discretization of the investment window [0, T] and evaluates
a Bermudan-style option that can be exercised at any discrete monitoring date of the time partition.
Then, a large number of sample paths of the security S is simulated; each of them is monitored at every
possible exercise date.

The LSM runs backward in time. At maturity T, the option is exercised only along the paths in
which it ends up in the money. Therefore, the optimal exercise policy at T is known along all the paths
and simply prescribes to exercise the option when it is in the money. At any intermediate monitoring
date ti, the holder of the option considers the immediate payoff she would get by the early exercise
of the option, f (S(ti)). Along all the paths in which the immediate exercise is positive6, the holder
of the option has to decide whether she is better off by exercising it right at ti or by waiting and

6 If the payoff from the immediate exercise at ti of the option is zero, a rational investor would not exercise it and she would
surely hold it on waiting for a positive payoff later on.
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exercising it later on. In other words, she has to compare the immediate exercise value of the option to
its continuation value. This continuation value is the discounted expected value of the option as if it
were optimally exercised from ti+1 on and can be expressed by a conditional expected value as follows

EQ
[

πA
f (ti+1)e−r(ti+1−ti)

∣∣∣Fti

]
. (5)

In this discrete time backward recursion, the optimal exercise policy has been found along all the
paths from T to ti+1; consequently, the value of the American option along all the paths is known as
well at ti+1. As the key point of the algorithm, the LSM regresses pathwise the discounted values of
the American option at ti+1 on some polynomials in the immediate exercises values f (S(ti)) ∈ Fti

7.
In other words, it is assumed that

EQ
[

πA
f (ti+1)e−r(ti+1−ti)

∣∣∣Fti

]
= ∑

m∈N
βmLm ( f (S(ti))) , (6)

where {Lm(·)}m∈N is an orthonormal basis of L2.
The intuition here is that the variation across the paths in which the option is in the money

at ti conveys some information about the value of the option after a “short” time has passed.
The continuation values along all the paths are then obtained as the fitted values of the regression in
Equation (6). Once the continuation value of the option is known along all the paths, it can be compared
to the immediate exercise and the optimal exercise policy is updated for all the paths. As the optimal
exercise policy is now known from ti to T, the algorithm moves backward considering the choice the
option holder faces at ti−1.

Once the optimal policy has been derived also at t = 0, the value of the Bermudan–American
option is obtained by the average of the discounted cashflows (which may occur at different instants
in time depending on the particular path of S) across all the paths.

The LSM method is as powerful as flexible. Its implementation is indeed quite straightforward,
requires few lines of code and is reasonably fast in delivering the results. The scope of the LSM is
almost unbounded: as it works pathwise, the investor just needs to be able to simulate path by path
the relevant processes in order to exploit it. This is why it is important to avoid all the possible flaws
that come with it.

2.1.4. Possible Flaws of the LSM

As already pointed out, the key point of the algorithm is the regression-based approximation
of the continuation value that overcomes the well known issue of the recursive estimation of the
conditional expectation of future optimal exercises.

If the regression in Equation (6) is ill-posed8, there might be severe consequences in the estimation
of the continuation value of the option and, consequently, on the updating of the optimal exercise
policy and, ultimately, on the value of the option at t = 0.

I investigate two issues that might affect negatively the regression in Equation (6) at some ti:

1. there are fewer in the money paths than the number M of the polynomial taken from the
orthonormal basis of L2; and

2. the paths along which the option is in the money deliver very low immediate exercise values
that translate into a rank-deficient matrix of regressors, especially when high order polynomials
are considered.

7 Notice that, if the conditional expectation of two random variables, E[Y|X], is an element of the L2 space, since L2 is an
Hilbert space, E[Y|X] can be represented as a linear combination of the elements of an orthonormal basis of the space.

8 See, e.g., Wooldridge (2013), Section 2.2, for a careful explanation of the linear regression model and of the related necessary
assumptions for its unbiased and efficient estimation.
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Consider the linear model Y = Xβ + ε with Y, ε ∈ RN×1, X ∈ RN×M, β ∈ RM×1 where M is the
number of regressors, namely the explanatory variables, N is the number of observations and β is
the vector of parameters one is interested in. One crucial assumption for the least square estimator
of β, β̂ = (X′X)−1X′Y, to be efficient is that rank(X) = M, namely that all the regressors are linearly
independent. As, by definition, rank(X) ≤ min{M, N}, if there are not enough observation, namely if
N < M, the aforementioned hypothesis cannot hold true by construction and the estimate β̂ one gets
might display quite large variances and be far from the true value.

In the LSM, at each time step ti, N represents the number of the in the money paths and M is the
number of polynomials included. If the number of the in the money paths is less than the number of
polynomials included, the estimates of the continuation values are not reliable. This might happen
when the option starts out of the money. As concretely shown in the following subsection, when the
maturity of the option is short and the time step small, there are few in the money paths at the first
monitoring dates. The option is clearly not optimally exercised at these monitoring dates. Nevertheless,
the imprecise estimate of β one gets at these dates might distort the continuation value and make it
even negative. If this were the case, the algorithm would prescribe to exercise the option immediately
as a seemingly null payoff is still better than a negative one. Clearly, this would drastically affect the
final value of the Bermudan–American option.

The very same dramatic outcome can be reached if, at any ti, there are enough in the money paths
but the immediate exercise values along them is too close to zero. If this was the case, the matrix of
the regressors can still have no full rank as the high grade polynomials9 get closer and closer to zero.
This would make one or more regressor equal to the null vector which gives no contribution to the
rank of the matrix of regressors, which, in turns, would become rank deficient delivering the problems
outlined above.

These issues are not explicitly debated in Longstaff and Schwartz (2001) probably because of the
few possible exercise dates, 50 per year, they allow and the few basis functions, the first three Laguerre
polynomials, they exploit in the regressions.

As Clément et al. (2002) proved, the value of the Bermudan option obtained through the LSM
converges to the no-arbitrage price of the related American option as the following three quantities
jointly tend to infinity: the number of time steps, n, the number of simulated paths, NSim, and the
number of basis, m, exploited in the regression in Equation (6). When implementing the LSM, one has
to choose finite values of the three aforementioned parameters for sake of feasibility.

As can be seen in Figure 1 top, for the evaluation of American option in the standard diffusive
framework, the LSM needs at least NSim ≥ 104 and n/T ≥ 125 in order to obtain relative errors
smaller than a percentage point. Interestingly, as can be seen in Figure 1 bottom, it also turn out that
adding more basis function does not improve the estimate of the continuation value but it rather slows
the algorithm and increases the probability that one of the two pitfalls described above manifests.10

2.1.5. Fixing of the Possible Flaws of the LSM

To fix the issues described above, I propose two workarounds: the first is finance-based whereas
the second is econometric-based11.

The first one prescribes to estimate the continuation values along all the paths as the original
LSM algorithm says, namely as the fitted values of the (possibly ill-posed) regression, and then
to floor these estimates pathwise with the current value of the European option obtained by the
Black–Scholes–Merton formula. This can be seen as a financial sanity check: the expected payoff that

9 For all the possible choices of basis functions {Lm(X)}m∈N, it holds that limm→+∞,X→0 Lm(X) = 0; see Chapter 22 of
Abramowitz and Stegun (1970) for a comprehensive review of the basis functions of L2.

10 The same analysis can be carried out within any of the three extensions to the standard diffusive model: No relevant
differences arise though.

11 I’m grateful to an anonymous referee for suggesting this extremely simple and effective econometric-based workaround.
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the holder of the American option considers in her exercise decision cannot be lower than the one she
would get by exercising the option at maturity.

Figure 1. (Top panel): Relative pricing errors with respect to the binomial tree of an American call
option in the standard Black–Scholes–Merton model with S0 = 100, K/S0 = 105, r = 3%, q = 4%,
T = 1, m = 6; the darker the cell, the higher the relative error; (Bottom panel): absolute value of the
average of the first 8 betas of the regression in Equation (6) for the evaluation of the previous American
call option. Twenty independent Monte Carlo (MC henceforth) simulations were run.

The second one prescribes to run a constrained regression where the continuation value is forced
to be non-negative. Since the flaws of the LSM are likely to arise when the early exercise of the option is
never optimal, preventing the continuation value from being negative is enough to correctly postpone
the exercise of the American option.

Both e workarounds fully solve the issue pointed out above. The following subsection shows it
by means of multiple numerical examples.

2.2. Numerical Investigation

As pointed out in the previous subsection, the issues with the LSM are more likely to arise when
the option is out of the money.

I focus my numerical investigation on the two most traded options: the American call and the
American put option. Besides the level of the initial moneyness at which the option is written, also the
particular choice of the other parameters plays a role in the determining whether the underlying is
expected to move towards the in the money/out of the money region.

The call option, namely when f (S) = (S− K)+, is out of the money at t if S(t) < K. Conversely,
the put option, with f (S) = (K− S)+, is out of the money at t if S(t) > K. Notice that, if the options
share the same parameters, these two events are clearly complementary: the call option is out of the
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money if and only if the related put option is in the money. As it can be directly derived by Equation (2),
the unconditional risk-neutral probability evaluated at t = 0 that the call option is out of the money at
a given t ∈ (0, T] is

Q (S(t) < K) = N

⎛⎝ ln K
S(0) −

(
r− q− σ2

2

)
t

σ
√

t

⎞⎠ =: N(−d2), (7)

where N(·) : R → (0, 1) is the cumulative distribution function of a 0–1 normal random variable

and d2 :=
ln S(0)

K +
(

r−q− σ2
2

)
t

σ
√

t
=

ln S(0)
K +μQt
σ
√

t
varies with t. Analogously, the unconditional risk-neutral

probability evaluated at t = 0 that the put option is out of the money at a given is N(d2). Table 1 shows
the sensitivities of these two probabilities to the parameters of the model.

Table 1. Sensitivities of N(−d2)/N(d2), the risk-neutral initial probability that the call/put option ends
out of the money at t, to the parameters of the model. + (resp. −) indicates a positive (resp. negative)
sensitivity of the probability to the parameter under investigation. ? indicates that the sign of sensitivity
of the probability to the parameter is not unique and might change. S0 is always kept constant.

K r q σ

N(−d2) + − + ?

N(d2) − + − ?

The probability in Equation (7) and its complementary one are of great interest in investigating
whether the pitfalls described in the previous subsection are likely to arise or not.

Consider the call option and fix a monitoring date ti. If at the first step of the LSM one simulates
NSim paths of the underlying, then the call option is expected to be in the money at ti along NSim ·
N(d2) paths. If NSim · N(d2) < M, where M is the number of the basis polynomials included in
the regression, or NSim · N(d2) > M but along these very few paths the option is mildly in the
money, the issues described above may arise. If the call option starts even a little bit out of the money,
the number of in the money paths expected at the first monitoring dates is extremely low; this worsens
for security with high dividend yield q and if the prevailing risk-free interest rate r is low.

Figure 2 shows the impact of the moneyness S0/K on the probability that a call option is in the
money at the first monitoring dates. As can be seen, few paths are expected to be in the money when
the option has a moneyness roughly larger than 1.04.

Figure 2. Probability that a call option on S is in the money at the first eight monitoring dates.
Daily monitoring (250 dates for a T = 1 year maturity). The darker is the line, the higher is the
strike price K. The panel on the right zooms in the one on the left focusing on more out of the money
call options.
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Figure 3 shows the same probability that a call option on S that starts mildly out of the money
(K/S0 = 105%) reaches the in the money region at the first monitoring dates for different (and realistic)
values of r and q. As an example, if one million paths are generated (NSim = 106), none of them is
expected to be in the money at the first three monitoring dates when r = 3% and q = 4%; only three
paths are expected to be in the money at the fourth monitoring date and, since usually M ≈ 6 basis
functions are exploited in the regression, one would introduce four times a bias in the estimate of the
continuation value.

Figure 3. Probability that a call option on S is in the money at the first eight monitoring dates.
Daily monitoring (250 dates for a T = 1 year maturity).

Table 2 shows some numerical examples. Three levels of moneyness are considered. In the first
case, K/S0 = 1.02, the LSM provides good results even without any correction, but in the case large
dividend yield: nevertheless, the distortion here is quite small and the price of the American option is
much larger than its European counterpart and quite close to the benchmark. However, the correction
of the LSM fixes this issue and delivers coherent results. In the other two levels of moneyness, when
the option starts a little bit more out of the money, the LSM without correction heavily underprices the
American call delivering also large standard errors.

When any of the corrections to the LSM is implemented instead, the results basically coincide
with the ones derived in the binomial model of Cox et al. (1979), which, for the large number of
the steps considered, can be assumed as a benchmark. Numerical imprecisions appear also when
early exercise is never optimal (r ≈ q) and, therefore, the price of the European option and of the
American are roughly the same. In this case, the tiny difference between the two is much smaller than
the confidence interval of the LSM’s estimates and such approach delivers unreliable results.

Completely analogous (and symmetric) results are obtained for out of the money put options,
especially when the dividend yield q is low and the risk-free interest rate r is high. See, e.g., Carr
and Chesney (1997); Detemple (2001) for a throughout discussion on the put-call symmetry for
American-style options.
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Table 2. Numerical results, Black–Scholes–Merton model. S0 = 100, T = 1, σ = 10%, 150 possible
exercise dates per year. πE

BS(0): initial price of the European call option computed with the
Black–Scholes–Merton formula. πA

CRR(0): initial price of the American call option computed with the
Cox–Ross–Rubinstein binomial tree (average of the price obtained with 250 and 251 steps). πA

LSM(0)∗

(πA
LSM(0)): initial price of the American call option computed with the LSM not corrected (corrected)

for the pitfalls previously described; the first six Laguerre polynomials are used for the regression:

Lm(x) = e
x
2

m!
dm

dxm (xme−x), with m = 0, · · · , 6; NSim = 105, standard errors obtained by 20 independent
MC simulations. MC estimates that do not include the benchmark value within the confidence interval
are denoted by �.

K/S0 r q πE
BS(0) πA

CRR(0) πA
˜LSM

(0)∗ s.e. πA
˜LSM

(0) s.e.

102% 5% 4% 3.3955 3.3965 3.3953 (0.0031) 3.3942 (0.0026)
6% 2.5558 2.6513 2.6504 (0.0023) 2.6489 (0.0035)
8% 1.8765 2.1129 2.1133 (0.0034) 2.0134 (0.0021)

3% 4% 2.6074 2.6881 2.6879 (0.0035) 2.6900 (0.0043)
6% 1.9144 2.1376 2.1369 (0.0027) 2.1384 (0.0018)
8% 1.3694 1.7149 1.7096 � (0.0049) 1.7118 (0.0032)

1% 4% 1.9531 2.1628 2.1602 (0.0032) 2.1609 (0.0040)
6% 1.3971 1.7324 1.7343 (0.0025) 1.7248 (0.0041)
8% 0.9724 1.3973 1.3896 � (0.0052) 1.3976 (0.0027)

105% 5% 4% 2.2971 2.2983 1.7515 � (0.3618) 2.2988 (0.0036)
6% 1.6672 1.7209 1.4135 � (0.4398) 1.7193 (0.0019)
8% 1.1782 1.3048 0.9535 � (0.3175) 1.3045 (0.0024)

3% 4% 1.7009 1.7468 1.0236 � (0.3757) 1.7494 (0.0057)
6% 1.2020 1.3222 0.9634 � (0.2135) 1.3204 (0.0025)
8% 0.8262 1.0018 0.7122 � (0.2588) 1.0093 (0.0029)

1% 4% 1.2263 1.3399 0.8669 � (0.2495) 1.3375 (0.0038)
6% 0.8429 1.0140 0.7095 � (0.2236) 1.0124 (0.0028)
8% 0.5629 0.7667 0.3622 � (0.2486) 0.7415 (0.0032)

108% 5% 4% 1.4930 1.4930 1.1524 � (0.2163) 1.4921 (0.0037)
6% 1.0433 1.0719 0.8451 � (0.2461) 1.0695 (0.0039)
8% 0.7088 0.7741 0.5428 � (0.1856) 0.7745 (0.0026)

3% 4% 1.0644 1.0890 0.6342 � (0.3154) 1.0894 (0.0032)
6% 0.7231 0.7853 0.5526 � (0.2866) 0.7841 (0.0019)
8% 0.4771 0.5635 0.3623 � (0.1849) 0.5626 (0.0032)

1% 4% 0.7377 0.7968 0.4255 � (0.2121) 0.7965 (0.0025)
6% 0.4868 0.5711 0.3574 � (0.1937) 0.5723 (0.0021)
8% 0.3117 0.4066 0.2114 � (0.0984) 0.4073 (0.0024)

3. American Equity Options, Jump-Diffusion Model

In this Section, I propose a first variation of the standard Black–Scholes market. More specifically,
I allow for stock price process to jump at random dates and with an idiosyncratic intensity. For the sake
of simplicity, the risk-free interest rate is kept constant. The result is the well known jump-diffusion
model first introduced by Merton (1976), which can be seen as the first generalization of the standard
Black–Scholes–Merton model.

As in the previous section, Section 3.1 describes the theoretical aspects of the analysis, whereas
Section 3.2 contains the related numerical examples.

3.1. Theoretical Framework: The Primary Assets and the Derivatives

Assume that the market is arbitrage free. Two assets are traded: the usual riskless bond B(t) = ert

and a risky asset S. To match some features of real market data like high peaks and heavy tails, it
is convenient to relax the continuity hypothesis of the risky stock’s price and allow it to jump at
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random times. This introduces a new source risk in the market: The jump risk. Following the seminal
work of Merton (1976) and as greatly explained by Glasserman (2003), I postulate that, since jumps
are assumed to be independent of each other and of the stock’s level, the jump risk can be diversified
away by investing in many difference stocks. Hence, the investors require no jump risk premium.
This hypothesis being made, the risk-neutral measure Q becomes unique and derivatives on S can be
priced uniquely.

Under Q, the price process of S solves

dS(t) = S(t−)
(
(r− q)dt + σdWQ(t) + dJ(t)

)
, S(0) = S0, (8)

where J(t) = ∑
N(t)
j=1 (Yj − 1) is a jump process, Yjs are i.i.d. positive random variables and N(t) is a

Poisson process with intensity λ > 0 that counts how many jumps occurred before t included (with
the convention N(0) = 0). As outlined before, WQ, the Yjs and N are assumed to be independent
of each other. Jumps arrive at random instants and the waiting time before to consecutive jumps is
exponentially distributed with parameter λ. Furthermore, it is convenient to assume that the jumps
Yjs are Q-lognormally distributed with mean a and volatility b2.

Under all of these assumptions and setting m := EQ
[
Yj − 1

]
= ea+b2/2 − 1, the explicit solution

of S(t) in Equation (8) is

S(t) = S0 exp
[(

r− q− λm− σ2

2

)
t + σWQ(t)

] N(t)

∏
j=1

Yj

and, conditioning on n jumps having occurred before t, namely, conditioning on N(t) = n,

S(t)|N(t)=n = S0 exp
[(

r− q− λm− σ2

2

)
t + σWQ(t) + an + b

√
nZ

]
,

where Z is standard normal random variable independent of WQ(t). It also holds true in distribution

S(t)|N(t)=n = S0 exp
[(

rn(t)− q− σ2
n(t)
2

)
t + σn(t)WQ(t)

]
(9)

with rn(t) := r−mλ + n
t

(
a + b2

2

)
and σ2

n(t) := σ2 + n
t b2. The deterministic drift of S(t)|N(t)=n here is

μQ = r−mλ + na/t− q− σ2/2, strictly lower than in the standard model when a ≥ 0.
The price at t of European and American derivatives within the present jump-diffusion model

are still given by the risk-neutral expected values in Equations (3) and (4). For the European call,
with f (S(T)) = (S(T)− K)+ and suppressing the argument of rn(t) and σ2

n(t), it holds

πE
JD(t) =

∞

∑
n=0

e−λ′(T−t) (λ
′(T − t))n

n!
πE

BS(t; rn, σn) (10)

with λ′ := λ(1 + m), πE
BS(t; rn, σn) = S(t)e−q(T−t)N(dn)− Ke−r(T−t)N(dn − σn

√
T − t) and

dn :=
1

σn
√

T − t

[
ln

S(t)
K

+

(
rn − q +

σ2
n

2

)
(T − t)

]
. (11)

As usual, the pricing formula for a European put option can be retrieved by put-call parity.
The pricing of American options within the jump-diffusion model has to rely on numerical

techniques instead, based on extensions of the celebrated Black–Scholes partial differential equation
(see, e.g., Kinderlehrer and Stampacchia (2000) for a complete analysis on how to price American
options through variational inequalities and Friedman (1982) for general solving schemes for PDEs
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and free boundary problems). Zhang (1997) provided an extremely useful characterization of a finite
difference scheme to price American options in the jump-diffusion model.

3.2. Numerical Investigation

With the very same technique exploited to derive πE
JD(t) and starting from Equation (9), it can be

shown that the risk-neutral probability that a call option on S is in the money at t ∈ (0, T] is

Q (S(t) > K) =
∞

∑
n=0

e−λt (λt)n

n!
N(dn − σn

√
t). (12)

This probability is again increasing in r and decreasing in q, as Figure 4 shows. Nevertheless,
as the drift of the underlying is now smaller due to the non negligible probability of a downward jump,
this probability is slightly larger than the same one in the standard diffusive model.

This implies a lower expected growth of S that translates into smaller call option prices, as it can
be seen comparing Tables 2 and 3 that share the same parameters.

As can be seen from the numerical examples in Table 3, the LSM works almost fine also at an
intermediate level of out of moneyness, but when the dividend rate is too large.

Table 3. Numerical results, jump-diffusion. S0 = 100, T = 1, σ = 10%, a = 0, b = 1%, λ = 1; 150
possible exercise dates per year. πE

JD(0): initial price of the European call option computed with
Equation (10). πA

FD(0): initial price of the American call option computed solving the free boundary
problem by finite differences. πA

˜LSM
(0)∗ (πA

˜LSM
(0)): initial price of the American call option computed

with the LSM not corrected (corrected) for the pitfalls previously described; the regression involves the
first six Laguerre polynomials for the values of the immediate exercise payoff; NSim = 105, standard
errors obtained by 20 independent MC simulations. MC estimates that do not include the benchmark
value within the confidence interval are denoted by �.

K/S0 r q πE
JD(0) πA

FD(0) πA
˜LSM

(0)� s.e. πA
˜LSM

(0) s.e.

102% 5% 4% 2.7297 2.7321 2.7301 (0.0025) 2.7312 (0.0031)
6% 2.1466 2.2184 2.2158 (0.0034) 2.2175 (0.0062)
8% 1.6861 1.9121 1.9134 (0.0028) 1.9103 (0.0043)

3% 4% 2.1900 2.2448 2.2442 (0.0033) 2.2456 (0.0037)
6% 1.7201 1.9289 1.9293 (0.0024) 1.9301 (0.0024)
8% 1.3339 1.7143 1.6887 � (0.0206) 1.7142 (0.0026)

1% 4% 1.7549 1.9461 1.9436 (0.0025) 1.9458 (0.0019)
6% 1.3608 1.7283 1.7274 (0.0031) 1.7296 (0.0032)
8% 1.0425 1.5446 1.5101 � (0.0329) 1.5439 (0.0027)

105% 5% 4% 1.9863 1.9878 1.9857 (0.0034) 1.9885 (0.0024)
6% 1.5511 1.5982 1.5998 (0.0026) 1.5997 (0.0036)
8% 1.1962 1.3516 1.3519 (0.0012) 1.3489 (0.0042)

3% 4% 1.5824 1.6182 1.6189 (0.0032) 1.6168 (0.0037)
6% 1.2204 1.3640 1.3625 (0.0048) 1.3638 (0.0031)
8% 0.9304 1.1968 1.1789 � (0.0107) 1.1999 (0.0048)

1% 4% 1.2450 1.3766 1.3739 (0.0027) 1.3748 (0.0028)
6% 0.9492 1.2068 1.2041 (0.0029) 1.2045 (0.0026)
8% 0.7162 1.0671 0.6845 � (0.0714) 1.0701 (0.0052)

108% 5% 4% 1.4367 1.4376 1.1214 � (0.4147) 1.4369 (0.0028)
6% 1.1027 1.1332 0.8427 � (0.2845) 1.1327 (0.0014)
8% 0.8370 0.9414 0.6854 � (0.2656) 0.9402 (0.0023)

3% 4% 1.1249 1.1480 0.9697 � (0.3274) 1.1459 (0.0043)
6% 0.8539 0.9503 0.6369 � (0.1667) 0.9489 (0.0034)
8% 0.6419 0.8234 0.4214 � (0.2546) 0.8251 (0.0037)

1% 4% 0.8711 0.9595 0.6214 � (0.2652) 0.9602 (0.0026)
6% 0.6549 0.8306 0.4886 � (0.2145) 0.8295 (0.0028)
8% 0.4882 0.7265 0.3215 � (0.1341) 0.7255 (0.0017)
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This is coherent with the numerical figures of the previous section. Again, when the early exercise
is almost never optimal, the price of the European option falls inside the confidence interval of the
Monte Carlo estimate for the American price, making it not really reliable.

Figure 4. Probability that a call option on S in jump-diffusion framework is in the money at the first
eight monitoring dates. Daily monitoring (250 dates for a T = 1 year maturity).

4. American Equity Options, Stochastic Interest Rates

In this section, I propose a second generalized market where the short-term risk free interest rate is
stochastic. More specifically, I assume that the interest rate follows a mean-reverting stochastic process,
as described first by the seminal work of Vasicek (1977). For the sake of simplicity, the volatilities
of both the stock price process and of the locally risk-free interest rate are assumed to be constant.
As in Sections 2 and 3, Section 4.1 describes the theoretical aspects of the analysis, whereas Section 4.2
contains the related numerical examples.

4.1. Theoretical Framework: The Primary Assets and the Derivatives

Assume that the market is arbitrage-free. The locally risk-free interest rate r follows an
Ornstein–Uhlenbeck process. The locally risk-free rate is capitalized through a bond whose price at

t is B(t) = e
∫ t

0 r(s)ds. A zero-coupon bond is traded in market as well. It pays out 1 at maturity T
and its price at t is labeled by p(t, T). As in the previous Section, this markets involves two sources
of uncertainty: The standard diffusive market risk and the interest rate one. Nevertheless, since the
investor can hedge from both through S and the T-bond, the market is complete and all the derivatives
can be uniquely priced. The explicit formula for the price of the zero-coupon bond p(t, T) can be found,
for example, in Brigo and Mercurio (2007). Finally, a lognormal risky security S is traded. I allow for a
non-zero correlation between the two processes. Under the risk-neutral measure Q, the two solve the
following SDEs:

dS(t) = S(t)
(
(r(t)− q)dt + σSdWQ

S (t)
)

, S(0) = S0

dr(t) = κ (θ − r(t))dt + σrdWQ
r (t), r(0) = r0

(13)

with 〈dWQ
S (t), dWQ

r (t)〉 = ρdt. According to standard notation, the new parameters in Equation (13)
represent: σS > 0 the volatility of the risky asset, κ the speed of mean-reversion of the short-term
interest rate, θ its long-run mean, σr > 0 the volatility of the short-term interest rate and ρ ∈ [−1, 1] the
correlation between the Brownian shocks on S and r. The explicit solution to the SDEs in Equation (13) is

S(t) = S0 exp

[∫ t

0
r(s)ds−

(
q +

σ2
S

2

)
t + σSWS(t)

]
,

r(t) = r0e−κt + θ(1− e−κt) + σr

∫ t

0
e−κ(t−s)dWr(s).

(14)
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As before, the contribution of the drift of S,
∫ t

0 r(s)ds−
(

q + σ2
S
2

)
t, prevails over its volatility part

σSWS(t). Therefore, the expected behaviour of the paths of S depends mostly on the drift.
The pricing formulas for European and American derivatives with maturity T ∈ R+ and payoff

f (S(·)) closely recall Equations (3) and (4):

πE
f (t) = EQ

[
f (S(T))

B(t)
B(T)

∣∣∣∣Ft

]
= EQ

[
f (S(T))e−

∫ T
t r(s)ds

∣∣∣Ft

]
πA

f (t) = ess sup
τ∈[t,T]

EQ
[

f (S(τ))e−
∫ τ

t r(s)ds
∣∣∣Ft

]
.

For European call and put options, the pricing formulas depart slightly from the standard
Black–Scholes–Merton ones as now the variability of the locally risk-free interest rate has to be
accounted for. The full derivation of the modified formulas can be found in the Appendix
of Battauz and Rotondi (2019). For the European call option, f (S(T)) = (S(T)− K)+ and it holds

πE
f (t) = S(t)e−q(T−t)N(d̃1)− Kp(t, T)N(d̃2) (15)

with

d̃1 =
1√
Σ2

t,T

(
ln

S(t)
Kp(t, T)

+
1
2

Σ2
t,T − q(T − t)

)
,

d̃2 = d̃1 −
√

Σ2
t,T ,

Σ2
t,T = σ2

S(T − t) + 2σSσrρ

(
−1 + e−κ(T−t) + κ(T − t)

k2

)
+ (16)

−σ2
r

(
3 + e−2κ(T−t) − 4e−κ(T−t) − 2κ(T − t)

2k3

)
,

whereas the related formula for the European put option can be retrieved by put-call parity.
The extension of the pricing to American options is less trivial. The variational inequality approach

can be generalized including the new state variable r but it becomes quite tricky. On the contrary,
the generalization of the binomial tree of Cox et al. (1979) is less involved: Battauz and Rotondi (2019)
proposed a quadrinomial tree that models the joint evolution of S and r within a lattice structure.
This allows for a relatively simple and fast evaluation of American claims.

Longstaff and Schwartz (2001) already allowed in their original work for a stochastic interest rate,
which actually changes a little the LSM described in the previous Section. Nevertheless, the valuation
algorithm suffers from the same drawbacks of the constant interest rate framework as the following
subsection shows.

4.2. Numerical Investigation

Since the core of the LSM is unchanged, the drawback spotted out in the previous section might
affect the pricing exercise also in this framework. The risk-neutral probability that the option is in
the money is still pivotal. Going through the proof of Equation (15), it turns out that, in the present
framework, the risk-neutral probability evaluated at t = 0 that a call option is in the money at a given
t ∈ (0, T] is

Q(S(t) > K) = N

⎛⎝ 1√
Σ2

0,t

(
ln

S0

Kp(0, t)
+

1
2

Σ2
0,t − qt

)⎞⎠ = N(d̃2), (17)

where Σ2
0,t is defined in Equation (16). At the first steps of the LSM, this probability is again extremely

low if the option starts even a little bit out of the money.
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Figure 5 shows that also when the short-term interest rate is stochastic, very few paths of a
simulation are expected to be in the money at the first monitoring dates. Without the numerical
correction proposed at the end of Section 2.1, the LSM is likely to provide again wrong estimates.

Figure 5. Probability that a call option on S in a stochastic interest rate framework is in the money at
the first eight monitoring dates. Daily monitoring (250 dates for a T = 1 year maturity).

Table 4 shows some numerical examples that match the ones of Table 2.

Table 4. Numerical results, Vasicek model. S0 = 100, T = 1, σ = 10%, σr = 1%, κ = 1, θ = 3%;
150 possible exercise dates per year. πE

B̃S(0): initial price of the European call option computed with
Equation (15). πA

BR(0): initial price of the American call option computed with the quadrinomial
tree of Battauz and Rotondi (2019) (average of the price obtained with 150 and 151 steps). πA

˜LSM
(0)∗

(πA
˜LSM
(0)): initial price of the American call option computed with the LSM not corrected (corrected)

for the pitfalls previously described; the regression involves the first four Laguerre polynomials for the
values of the immediate exercise payoff and the first four Laguerre polynomials for the current value
of r; NSim = 105, standard errors obtained by 20 independent MC simulations. MC estimates that do
not include the benchmark value within the confidence interval are denoted by �.

K/S0 r0 q πE
B̃S

(0) πA
BR(0) πA

˜LSM
(0)∗ s.e. πA

˜LSM
(0) s.e.

102% 5% 4% 3.1074 3.1424 3.1433 (0.0021) 3.1412 (0.0036)
6% 2.3141 2.4910 2.4901 (0.0025) 2.4896 (0.0032)
8% 1.6847 1.9970 1.9958 (0.0036) 1.9982 (0.0023)

3% 4% 2.6170 2.7026 2.7011 (0.0029) 2.7028 (0.0017)
6% 1.9232 2.1473 2.1452 (0.0039) 2.1464 (0.0026)
8% 1.3772 1.7213 1.7195 (0.0036) 1.7215 (0.0019)

1% 4% 2.1930 2.3223 2.3205 (0.0027) 2.3231 (0.0030)
6% 1.5858 1.8467 1.8452 (0.0031) 1.8450 (0.0022)
8% 1.1160 1.4803 1.4764 � (0.0032) 1.4816 (0.0020)

105% 5% 4% 2.0746 2.0950 1.4113 � (0.1999) 2.0941 (0.0030)
6% 1.4935 1.5882 1.0263 � (0.2665) 1.5896 (0.0035)
8% 1.0461 1.2088 0.7596 � (0.2133) 1.2092 (0.0031)

3% 4% 1.7116 1.7553 1.2524 � (0.2932) 1.7569 (0.0051)
6% 1.2111 1.3275 0.8142 � (0.3120) 1.3288 (0.0036)
8% 0.8331 1.0053 0.6368 � (0.2743) 1.0033 (0.0042)

1% 4% 1.3966 1.4653 0.9235 � (0.2293) 1.4658 (0.0036)
6% 0.9709 1.1037 0.8097 � (0.1773) 1.1015 (0.0027)
8% 0.6557 0.8312 0.4521 � (0.1884) 0.8323 (0.0017)

108% 5% 4% 1.3303 1.3430 0.9593 � (0.2273) 1.3411 (0.0027)
6% 0.9213 0.9747 0.6695 � (0.2874) 0.9749 (0.0020)
8% 0.6211 0.7055 0.4241 � (0.2132) 0.7063 (0.0031)

3% 4% 1.0723 1.0966 0.7946 � (0.1537) 1.0967 (0.0037)
6% 0.7297 0.7910 0.4215 � (0.1632) 0.7923 (0.0021)
8% 0.4821 0.5675 0.2559 � (0.1241) 0.5670 (0.0023)

1% 4% 0.8538 0.8903 0.4178 � (0.1896) 0.8914 (0.0025)
6% 0.5703 0.6371 0.3558 � (0.1181) 0.6352 (0.0028)
8% 0.3695 0.4528 0.2036 � (0.1087) 0.4531 (0.0012)
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First, it is interesting to notice that prices do not vary much when r0 = 3% with respect to the ones
obtained with a deterministic interest rate r = 3%. This is due to the fact that, in the stochastic interest
rate case, the long-run value is exactly θ = r0; therefore, r is simply expected to oscillate around r0 = θ

in a symmetric (and thus not very relevant) way. Prices are a little bit higher in the stochastic rate
framework to account for the variability in the interest rate itself. This variability is relevant when
r0 is significantly different from θ. When r0 > θ, r is expected to decrease towards θ: This implies a
lower expected drift of S and a smaller call option’s price with respect to the standard case with a
deterministic r = r0. The converse holds true when r0 < θ, thus delivering a larger call option’s price
with respect to the standard model. If the pitfalls of the LSM are not corrected as proposed, the prices
of the American call options fall constantly below their European counterpart. If the correction is
made, instead, the LSM produces results that are comparable to the benchmark.

5. American Equity Options, Stochastic Volatility

Finally, in this section, I propose a third generalization of the standard Black–Scholes market.
More specifically, I allow for the volatility of the stock price process to be stochastic while setting,
for the sake of simplicity, the risk-free interest rate to be constant. The result is the celebrated model of
stochastic volatility first introduced by the seminal work of Heston (1993).

As in the previous sections, Section 5.1 describes the theoretical aspects of the analysis, whereas
Section 5.2 contains the related numerical examples.

5.1. Theoretical Framework: The Primary Assets and the Derivatives

Assume that the market is arbitrage-free. The instantaneous variance ν of the stock process S
follows a Cox-Ingersoll-Ross (CIR henceforth) process, namely, a mean-reverting, non-negative12

stochastic process first introduced by Cox et al. (1985). In this setting, the market involves two
state variables: the risky asset’s price and the volatility level. Consequently, there are two types of
risks: the standard diffusive risk associated to S and the new volatility risk associated to ν. Since
only the risky stock S and the riskless bond B(t) = ert are traded, the market is not complete as the
investor cannot hedge from the volatility risk. Therefore, the risk neutral measure Q is not unique.
Nevertheless, uniqueness of contingent claims’ prices in this incomplete market is still attainable by
making an assumption on the price of volatility risk. As proposed by Heston (1993), I assume that the
price of volatility risk is proportional to the instantaneous volatility itself and I denote the constant
of proportionality by λν, which becomes another exogenous parameter of the model. Thanks to this
assumption, the risk-neutral measure Q is unique and the processes that drive the markets solve the
following SDEs

dS(t) = (r− q)S(t)dt +
√

ν(t)S(t)dWQ
S (t), S(0) = S0

dν(t) = [κ (ν∞ − ν(t))− λνν(t)]dt + ξ
√

ν(t)dWQ
ν (t), ν(0) = ν0

(18)

with 〈dWQ
S , WQ

ν 〉 = ρdt. According to standard notation, the new parameters in Equation (18)
represent: κ the speed of mean-reversion on the volatility, ν∞ its long-run mean, ξ the volatility of the
volatility process (the so called “vol of vol”), and ρ ∈ [−1, 1] the correlation between the Brownian
shocks on S and ν. Although ν(t) admits no explicit solution13, the one for S(t) in Equation (18) is

S(t) = S0 exp
[(

r− q− ν(t)
2

)
t +

√
ν(t)WQ

S (t)
]

, t ≥ 0. (19)

12 With respect to the specification of ν(t) in Equation (18), if the so-called Feller condition holds true, namely if 2κθ > ξ2, ν(t)
is also strictly positive almost surely.

13 As effectively explained in Subsection 3.4 of Glasserman (2003), a CIR process is not explicitly solvable; nevertheless, it can
be shown that it is distributed, up to a scale factor, as a non-central chi-squared random variable.
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As before, the contribution of the drift of S,
(

r− q− ν(t)
2

)
t prevails over its diffusive part√

ν(t)WQ
S (t) and it is still the main driver of its expected future behaviour.

The price at t of European and American options are still given by the risk-neutral expected
values in Equation (3) and (4), where now the dynamics of S is shown by Equation (19).

For European options, the closed-form pricing formula are derived in the first section
of Heston (1993). For the European call option, namely when the payoff function is f (S(T)) =

(S(T)− K)+, it holds at any t ∈ [0, T]

πE
H(t) = S(t)e−q(T−t)P1 − Ke−r(T−t)P2 (20)

with

Pj =
1
2
+

1
π

∫ +∞

0
Re

[
1
ix

exp
(
ix (S(t)− ln(K)) + Cj(T − t, x) + Dj(T − t, x)ν(t)

)]
dx, j = 1, 2,

(21)
where i is the imaginary unit, Re[·] the real part operator and, for j = 1, 2,

Cj(τ, x) = (r− q)xiτ +
κν∞

ξ2

[
(bj − ρξxi + dj(x))τ − 2ln

(
1− gj(x)edj(x)τ

1− gj(x)

)]
,

Dj(τ, x) =
bj − ρξxi + dj(x)

ξ2 ,

gj(x) =
bj − ρξxi + dj(x)
bj − ρξxi− dj(x)

,

dj(x) =
√
(ρξxi− bj)2 − ξ2(2ujxi− x2),

u1 = 0.5, u2 = −0.5, b1 = κ + λνν− ρξ, b2 = κ + λ.

The analogous formula for the European put option can be retrieved by put-call parity.
The pricing of American option within this stochastic volatility framework is quite challenging.

This is precisely one of the cases in which the LSM is of great help as, on the contrary, one can easily
simulate the paths of Equation (18). The benchmark I will compare the performance of the modified
LSM to is a finite difference approach to the free boundary problem for the American call option
(see, e.g., Pascucci (2008) on this approach). The following numerical investigation focuses on the
American call option in the Heston model; analogous results can be retrieved by the put–call symmetry
for American options within the Heston model described by Battauz et al. (2014).

5.2. Numerical Investigation

By analogy with the standard Black–Scholes–Merton formula and as carefully described
by Heston (1993), P2 in Equation (20) represents the risk-neutral probability that an European call
option on S closes in the money. As in the previous cases, this probability depends heavily on the drift
of S,

(
r− q− ν(t)

2

)
t, and it is increasing with respect to the risk-free interest rate and decreasing with

respect to the dividend yield.
Figure 6 provides a graphical illustration of this intuition. Notice that, as in the previous cases,

at the first monitoring dates, very few paths are expected to be in the money if the option is even
mildly out of the money at inception. As before, this worsens when the drift of the underlying
becomes negative.

Table 5 shows some numerical examples in the spirit of the previous sections. First, prices of
the options are a little bit larger here with respect to the standard model due to the positive volatility
risk premium. Then, the LSM fails in providing correct estimates in the very same cases of the
standard model. Nevertheless, the correction is still effective.
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Figure 6. Probability that a call option on S in within the Heston model is in the money at the first
eight monitoring dates. Daily monitoring (250 dates for a T = 1 year maturity).

Table 5. Numerical results, Heston model. S0 = 100, T = 1, ν0 = 0.01, ξ = 10%, κ = 1, ν∞ = 0.01,
λν = 10%; 150 possible exercise dates per year. πE

H(0): initial price of the European call option
computed with Equation (20). πA

BR(0): initial price of the American call option computed solving
the free boundary problem by finite differences. πA

˜LSM
(0)∗ (πA

˜LSM
(0)): initial price of the American

call option computed with the LSM not corrected (corrected) for the pitfalls previously described;
the regression involves the first four Laguerre polynomials for the values of the immediate exercise
payoff and the first four Laguerre polynomials for the current value of ν; NSim = 105, standard errors
obtained by 20 independent MC simulations. MC estimates that do not include the benchmark value
within the confidence interval are denoted by �.

K/S0 r q πE
H(0) πA

FD(0) πA
˜LSM

(0)∗ s.e. πA
˜LSM

(0) s.e.

102% 5% 4% 3.2587 3.2588 3.2530 (0.0065) 3.2580 (0.0036)
6% 2.3580 2.4389 2.4401 (0.0042) 2.4405 (0.0039)
8% 1.6416 1.8626 1.8601 (0.0028) 1.8647 (0.0038)

3% 4% 2.4057 2.4741 2.4809 (0.0070) 2.4762 (0.0024)
6% 1.6748 1.8841 1.8802 (0.0045) 1.8890 (0.0040)
8% 1.1198 1.4607 1.4572� (0.0021) 1.4589 (0.0047)

1% 4% 1.7087 1.9062 1.9063 (0.0023) 1.9058 (0.0036)
6% 1.1424 1.4746 1.4736 (0.0013) 1.4759 (0.0028)
8% 0.7326 1.1628 1.1604� (0.0017) 1.1597 (0.0053)

105% 5% 4% 2.0737 2.0738 1.4938� (0.3181) 2.0744 (0.0029)
6% 1.4186 1.4820 0.6268� (0.2667) 1.4835 (0.0032)
8% 0.9316 1.0361 0.5911� (0.1911) 1.0395 (0.0039)

3% 4% 1.4473 1.4820 0.6037� (0.2722) 1.4796 (0.0035)
6% 0.9504 1.0500 0.5094� (0.1900) 1.0524 (0.0027)
8% 0.5976 0.7486 0.4932� (0.1214) 0.7471 (0.0024)

1% 4% 0.9697 1.0643 0.5353� (0.1909) 1.0644 (0.0023)
6% 0.6107 0.7574 0.5181� (0.1281) 0.7568 (0.0017)
8% 0.3686 0.5440 0.2180� (0.1039) 0.5436 (0.0021)

108% 5% 4% 1.2346 1.2347 0.3744� (0.1680) 1.2336 (0.0029)
6% 0.7975 0.8168 0.2408� (0.1277) 0.8176 (0.0035)
8% 0.4940 0.5408 0.2372� (0.0880) 0.5400 (0.0024)

3% 4% 0.8136 0.8304 0.2964� (0.1243) 0.8329 (0,0027)
6% 0.5040 0.5488 0.2497� (0.0823) 0.5508 (0.0028)
8% 0.2992 0.3616 0.1409� (0.0534) 0.3638 (0.0020)

1% 4% 0.5142 0.5570 0.4261� (0.1136) 0.5544 (0.0023)
6% 0.3053 0.3664 0.2439� (0.0935) 0.3691 (0.0018)
8% 0.1736 0.2410 0.1273� (0.0636) 0.2399 (0.0015)
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6. Conclusions

The Least Square Methods proposed by Longstaff and Schwartz (2001) is one of the most widely
used algorithms to price American equity options. I quantified and corrected a sizeable bias that
could arise if the regression exploited for the approximation of the continuation value of the option
is ill-posed. I showed that this might happen when the option is even mildly out of the money at
inception and when the underlying is not likely to go back into the in the money region. For American
call options, this is likely to happen when the risk-free interest rate is low and the dividend yield is
higher within the all the most commons financial market models.
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Abstract: We study the optimal excess-of-loss reinsurance problem when both the intensity of the
claims arrival process and the claim size distribution are influenced by an exogenous stochastic factor.
We assume that the insurer’s surplus is governed by a marked point process with dual-predictable
projection affected by an environmental factor and that the insurance company can borrow and
invest money at a constant real-valued risk-free interest rate r. Our model allows for stochastic
risk premia, which take into account risk fluctuations. Using stochastic control theory based on the
Hamilton-Jacobi-Bellman equation, we analyze the optimal reinsurance strategy under the criterion
of maximizing the expected exponential utility of the terminal wealth. A verification theorem for the
value function in terms of classical solutions of a backward partial differential equation is provided.
Finally, some numerical results are discussed.

Keywords: optimal reinsurance; excess-of-loss reinsurance; Hamilton-Jacobi-Bellman equation;
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1. Introduction

In this paper, we analyze the optimal excess-of-loss reinsurance problem from the insurer’s
point of view, under the criterion of maximizing the expected utility of the terminal wealth. It is well
known that the reinsurance policies are very effective tools for risk management. In fact, by means of
a risk sharing agreement, they allow the insurer to reduce unexpected losses, to stabilize operating
results, to increase business capacity and so on. Among the most common arrangements, the
proportional and the excess-of-loss contracts are of great interest. The former was intensively studied
in Irgens and Paulsen (2004); Liu and Ma (2009); Liang et al. (2011); Liang and Bayraktar (2014);
Zhu et al. (2015); Brachetta and Ceci (2019) and references therein. The latter was investigated in
these articles: in Zhang et al. (2007) and Meng and Zhang (2010), the authors proved the optimality
of the excess-of-loss policy under the criterion of minimizing the ruin probability, with the surplus
process described by a Brownian motion with drift; in Zhao et al. (2013) the Cramér-Lundberg model
is used for the surplus process, with the possibility of investing in a financial market represented
by the Heston model; in Sheng et al. (2014) and Li and Gu (2013) the risky asset is described by a
Constant Elasticity of Variance (CEV) model, while the surplus is modelled by the Cramér-Lundberg
model and its diffusion approximation, respectively; finally, in Li et al. (2018) the authors studied a
robust optimal strategy under the diffusion approximation of the surplus process.

Risks 2019, 7, 48; doi:10.3390/risks7020048 www.mdpi.com/journal/risks63
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The common ground of the cited works is the underlying risk model, which is the
Cramér-Lundberg model (or its diffusion approximation)1. In the actuarial literature it is of great
importance, because it is simple enough to perform calculations. In fact, the claims arrival process is
described by a Poisson process with constant intensity (or a Brownian motion, in the diffusion model).
Nevertheless, as noticed by many authors (e.g., Grandell (1991); Hipp (2004)), it needs generalization
in order to take into account the so called size fluctuations and risk fluctuations, i.e., variations of the
number of policyholders and modifications of the underlying risk, respectively.

The main goal of our work is to extend the classical risk model by modelling the claims arrival
process as a marked point process with dual-predictable projection affected by an exogenous stochastic
process Y. More precisely, both the intensity of the claims arrival process and the claim size distribution
are influenced by Y. Thanks to this environmental factor, we achieve a reasonably realistic description
of any risk movement. For example, in automobile insurance Y may describe weather conditions,
road conditions, traffic volume and so on. All these factors usually influence the accident probability
as well as the damage size.

Some noteworthy attempts in that direction can be found in Liang and Bayraktar (2014)
and Brachetta and Ceci (2019), where the authors studied the optimal proportional reinsurance.
In the former, the authors considered a Markov-modulated compound Poisson process, with the
(unobservable) stochastic factor described by a finite state Markov chain. In the latter, the stochastic
factor follows a general diffusion. In addition, in Brachetta and Ceci (2019) the insurance and the
reinsurance premia are not evaluated by premium calculation principles (see Young (2006)), because
they are stochastic processes depending on Y. In our paper, we extend further the risk model, because
the claim size distribution is influenced by the stochastic factor, which is described by a diffusion-type
stochastic differential equation (SDE). In addition, we study a different reinsurance contract, which is
the excess-of-loss agreement.

To the best of our knowledge stochastic risk factor models in insurance have not been considered
so far. This is in contrast with financial literature where risky asset dynamics affected by exogenous
stochastic factors have been largely considered, see for instance Ceci (2009); Ceci and Gerardi (2009);
Ceci and Gerardi (2010); Zariphopoulou (2009) and Ceci (2012).

In our model the insurer is also allowed to lend or borrow money at a given interest rate r. During
recent years, negative interest rates drew the attention of many authors. For example, since June 2016
the European Central Bank (ECB) fixed a negative Deposit facility rate, which is the interest banks
receive for depositing money within the ECB overnight. Presently, it is −0.4%. As a consequence,
in our framework r ∈ R. We point out that there is no loss of generality due to the absence of a risky
asset, because as long as the insurance and the financial markets are independent (which is a standard
hypothesis in non-life insurance), the optimal reinsurance strategy turns out to depend only on the
risk-free asset (see Brachetta and Ceci (2019) and references therein). As a consequence, the optimal
investment strategy can be eventually obtained using existing results in the literature.

The paper is organized as follows: in Section 2, we formulate the model assumptions and describe
the maximization problem; in Section 3 we derive the Hamilton-Jacobi-Bellman (HJB) equation;
in Section 4, we investigate the candidate optimal strategy, which is suggested by the HJB derivation;
in Section 5, we provide the verification argument with a probabilistic representation of the value
function; finally, in Section 6 we perform some numerical simulations.

2. Model Formulation

Let (Ω,F ,P, {Ft}t∈[0,T]) be a complete probability space endowed with a filtration which satisfies
the usual conditions, where T > 0 is the insurer’s time horizon. We model the insurance losses
through a marked point process {(Tn, Zn)}n≥1 with local characteristics influenced by an environment

1 See Lundberg (1903); Schmidli (2018).
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stochastic factor Y .
= {Yt}t∈[0,T]. Here, the sequence {Tn}n≥1 describes the claim arrival process and

{Zn}n≥1 the corresponding claim sizes. Precisely, Tn, n = 1, . . . , are {Ft}t∈[0,T] stopping times such
that Tn < Tn+1 a.s. and Zn, n = 1, . . . , are (0,+∞)-random variables such that ∀n = 1, . . . , Zn is
FTn -measurable.

The stochastic factor Y is defined as the unique strong solution to the following SDE:

dYt = b(t, Yt) dt + γ(t, Yt) dW(Y)
t , Y0 ∈ R, (1)

where {W(Y)
t }t∈[0,T] is a standard Brownian motion on (Ω,F ,P, {Ft}t∈[0,T]). We assume that the

following conditions hold true:

E

[∫ T

0
|b(t, Yt)| dt +

∫ T

0
γ(t, Yt)

2 dt
]
< +∞, (2)

sup
t∈[0,T]

E[|Yt|2] < +∞. (3)

We will denote by {FY
t }t∈[0,T] the natural filtration generated by the process Y.

The random measure corresponding to the losses process {(Tn, Zn)}n≥1 is given by

m(dt, dz) .
= ∑

n≥1
δ(Tn ,Zn)(dt,dz)�{Tn≤T}, (4)

where δ(t,x) denotes the Dirac measure located at point (t, x). We assume that its {Ft}t∈[0,T]-dual
predictable projection ν(dt, dz) has the form

ν(dt, dz) = dF(z, Yt)λ(t, Yt) dt, (5)

where

• F(z, y) : [0,+∞)×R→ [0, 1] is such that ∀y ∈ R, F(·, y) is a distribution function, with F(0, y) = 0;
• λ(t, y) : [0, T]×R→ (0,+∞) is a strictly positive measurable function.

In the sequel, we will assume the following integrability conditions:

E

[∫ T

0

∫ +∞

0
ν(dt, dz)

]
= E

[∫ T

0
λ(t, Yt) dt

]
< +∞, (6)

and

E

[∫ T

0

∫ +∞

0
z2 λ(t, Yt)dF(z, Yt) dt

]
< +∞. (7)

According to the definition of dual predictable projection, for every nonnegative,
{Ft}t∈[0,T]-predictable and [0,+∞)-indexed process {H(t, z)}t∈[0,T] we have that2

E

[∫ T

0

∫ +∞

0
H(t, z)m(dt, dz)

]
= E

[∫ T

0

∫ +∞

0
H(t, z) λ(t, Yt)dF(z, Yt) dt

]
. (8)

In particular, choosing H(t, z) = Ht with {Ht}t∈[0,T] any nonnegative {Ft}t∈[0,T]-predictable process

E

[∫ T

0

∫ +∞

0
H(t)m(dt, dz)

]
= E

[∫ T

0
H(t) dNt

]
= E

[∫ T

0
Ht λ(t, Yt) dt

]
, (9)

2 For details on marked point processes theory, see Brémaud (1981).
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i.e., the claims arrival process Nt = m((0, t] × [0,+∞)) = ∑n≥1 �{Tn≤t} is a point process with
stochastic intensity {λ(t, Yt)}t∈[0,T].

Now we give the interpretation of F(z, Yt) as conditional distribution of the claim sizes3.

Proposition 1. ∀n = 1, . . . and ∀A ∈ B([0,+∞)) the following equality holds:

P[Zn ∈ A | FT−n
] = P[Zn ∈ A | FY

Tn
] =

∫
A

dF(z, YTn) P-a.s.,

where FT−n
is the strict past of the σ-algebra generated by the stopping time Tn:

FT−n
:= σ{A ∩ {t < τn}, A ∈ Ft, t ∈ [0, T]}.

Proof. See Appendix A.

This means that in our model both the claim arrival intensity and the claim size distribution
are affected by the stochastic factor Y. This is a reasonable assumption; for example, in automobile
insurance Y may describe weather, road conditions, traffic volume, and so on. For a detailed discussion
of this topic see also Brachetta and Ceci (2019).

Remark 1. Let us observe that for any {Ft}t∈[0,T]-predictable and [0,+∞)-indexed process {H(t, z)}t∈[0,T]
such that

E

[∫ T

0

∫ +∞

0
|H(t, z)| λ(t, Yt)dF(z, Yt) dt

]
< +∞,

the process

Mt =
∫ t

0

∫ +∞

0
H(s, z)

(
m(ds, dz)− ν(ds, dz)

)
, t ∈ [0, T]

turns out to be an {Ft}t∈[0,T]-martingale. If in addition

E

[∫ T

0

∫ +∞

0
|H(t, z)|2 λ(t, Yt)dF(z, Yt) dt

]
< +∞,

then {Mt}t∈[0,T] is a square integrable {Ft}t∈[0,T]-martingale and

E[M2
t ] = E

[∫ t

0

∫ +∞

0
|H(s, z)|2 λ(s, Ys)dF(z, Ys) ds

]
∀t ∈ [0, T].

Moreover, the predictable covariation process of {Mt}t∈[0,T] is given by

〈M〉t =
∫ t

0

∫ +∞

0
|H(s, z)|2 λ(s, Ys)dF(z, Ys) ds,

that is {M2
t − 〈M〉t}t∈[0,T] is an {Ft}t∈[0,T]-martingale4.

In this framework we define the cumulative claims up to time t ∈ [0, T] as follows

Ct = ∑
n≥1

Zn�{Tn≤t} =
∫ t

0

∫ +∞

0
zm(ds, dz),

3 This result is an extension of Proposition 2.4 in Ceci and Gerardi (2006).
4 For these results and other related topics see e.g., Bass (2004).
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and the insurer’s reserve process is described by

Rt = R0 +
∫ t

0
csds− Ct,

where R0 > 0 is the initial wealth and {ct}t∈[0,T] is a nonnegative {Ft}t∈[0,T]-adapted process
representing the gross insurance risk premium. In the sequel we assume ct = c(t, Yt), for a suitable
function c(t, y) such that E

[∫ T
0 c(t, Yt)dt

]
< +∞. Let us notice that Equation (7) implies that

E[CT ] = E

[∫ T

0

∫ +∞

0
zm(dt, dz)

]
= E

[∫ T

0

∫ +∞

0
z λ(t, Yt)dF(z, Yt) dt

]
< +∞.

Now we allow the insurer to buy an excess-of-loss reinsurance contract. By means of this
agreement, the insurer chooses a retention level α ∈ [0,+∞) and for any future claim the reinsurer
is responsible for all the amount which exceeds that threshold α (e.g., α = 0 means full reinsurance).
For any dynamic reinsurance strategy {αt}t∈[0,T], the insurer’s surplus process is given by

Rα
t = R0 +

∫ t

0
(cs − qα

s ) ds−
∫ t

0

∫ +∞

0
(z ∧ αs)m(ds, dz),

where {qα
t }t∈[0,T] is a nonnegative {Ft}t∈[0,T]-adapted process representing the reinsurance premium

rate. In addition, we suppose that the following assumption holds true.

Assumption 1. (Excess-of-loss reinsurance premium) Let us assume that for any reinsurance strategy
{αt}t∈[0,T] the corresponding reinsurance premium process {qα

t }t∈[0,T] admits the following representation:

qα
t = q(t, Yt, αt) ∀t ∈ [0, T],

where q(t, y, α) : [0, T]× R× [0,+∞) → [0,+∞) is a continuous function in α, with continuous partial

derivatives ∂q(t,y,α)
∂α , ∂2q(t,y,α)

∂α2 in α ∈ [0,+∞), such that

1. ∂q(t,y,α)
∂α ≤ 0 for all (t, y, α) ∈ [0, T]×R× [0,+∞), since the premium is increasing with respect to the

protection level;
2. q(t, y, 0) > c(t, y) ∀(t, y) ∈ [0, T]×R, because the cedant is not allowed to gain a profit without risk.

In the rest of the paper, ∂q(t,y,0)
∂α should be intended as a right derivative. Moreover, we assume that

E

[∫ T

0
q(t, Yt, 0) dt

]
< +∞.

Assumption 1 formalizes the minimal requirements for a process {qα
t }t∈[0,T] to be a reinsurance

premium. In the next examples we briefly recall the most famous premium calculation principles,
because they are widely used in optimal reinsurance problems solving. In Appendix B the reader can
find a rigorous derivation of the formulas (10) and (11) below.

Example 1. The most famous premium calculation principle is the expected value principle (abbr. EVP)5.
The underlying conjecture is that the reinsurer evaluates her premium in order to cover the expected losses plus a
load which depends on the expected losses. In our framework, under the EVP the reinsurance premium is given
by the following expression:

q(t, y, α) = (1 + θ)λ(t, y)
∫ +∞

0
(z− z ∧ α) dF(z, y), (10)

5 See Young (2006).
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for some safety loading θ > 0.

Example 2. Another important premium calculation principle is the variance premium principle (abbr. VP).
In this case, the reinsurer’s loading is proportional to the variance of the losses. More formally, the reinsurance
premium admits the following representation:

q(t, y, α) = λ(t, y)
∫ +∞

0
(z− z ∧ α) dF(z, y) + θλ(t, y)

∫ +∞

0
(z− z ∧ α)2 dF(z, y), (11)

for some safety loading θ > 0.

Furthermore, the insurer can lend or borrow money at a fixed interest rate r ∈ R. More precisely,
every time the surplus is positive, the insurer lends it and earns interest income if r > 0 (or pays
interest expense if r < 0); on the contrary, when the surplus becomes negative, the insurer borrows
money and pays interest expense (or gains interest income if r < 0).

Under these assumptions, the total wealth dynamic associated with a given strategy α is described
by the following SDE:

dXα
t = dRα

t + rXα
t dt, Xα

0 = R0. (12)

It can be verified that the solution to (12) is given by the following expression:

Xα
t = R0ert +

∫ t

0
er(t−s)[c(s, Ys)− q(s, Ys, αs)

]
ds−

∫ t

0

∫ +∞

0
er(t−s)(z ∧ αs)m(ds, dz). (13)

Remark 2. Let us define
K .
= max {erT , 1}. (14)

We have that

E[ sup
t∈[0,T]

|Xα
t |] ≤ KE

[
R0 +

∫ T

0
ct dt +

∫ T

0
q(t, Yt, 0) dt + CT

]
< +∞. (15)

Our aim is to find the optimal strategy α in order to maximize the expected exponential utility of
the terminal wealth, that is

sup
α∈A

E

[
1− e−ηXα

T

]
= 1− inf

α∈A
E

[
e−ηXα

T

]
,

where η > 0 is the risk-aversion parameter andA is the set of all admissible strategies as defined below.

Definition 1. We denote by A the set of all admissible strategies, that is the class of all nonnegative
{Ft}t∈[0,T]-predictable processes {αt}t∈[0,T]. With the notation At we refer to the same class, restricted to the
strategies starting from t ∈ [0, T].

Remark 3. We need additional integrability conditions in order to ensure that under α = 0 (full reinsurance)
and α = +∞ (null reinsurance) the expected utility is finite. Precisely, under condition

E

[
eη

∫ T
0 er(T−s)q(s,Ys ,0) ds

]
< +∞, (16)

we get that

E
[
e−ηX0

T
]
= E

[
e−ηR0erT−η

∫ T
0 er(T−s)

[
c(s,Ys)−q(s,Ys ,0)

]
ds
]
< +∞
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and under
E
[
eηKCT

]
< +∞, (17)

with K given in (14), we have that

E
[
e−ηX∞

T
]
= E

[
e−ηR0erT−η

∫ T
0 er(T−s)c(s,Ys) ds+η

∫ T
0
∫ +∞

0 er(T−s)z m(ds,dz)
]
≤ E

[
eηKCT

]
< +∞.

In the next proposition we give a sufficient condition for Equation (17).

Proposition 2. Assume that there exists an integrable function Φ : [0, T]→ (0,+∞) such that

∫ +∞

0

(
eηKz − 1

)
λ(t, y)dF(z, y) ≤ Φ(t) ∀(t, y) ∈ [0, T]×R, (18)

where the constant K is given in (14). Then Equation (17) is fulfilled.

Proof. Since {Ct}t∈[0,T] is a pure-jump process, we have that

eηKCt = eηKC0 + ∑
s≤t

(
eηKCs − eηKCs−

)
= 1 + ∑

s≤t
eηKCs−

(
eηKΔCs − 1

)
= 1 +

∫ t

0
eηKCs−

∫ +∞

0

(
eηKz − 1

)
m(ds, dz).

Taking the expectation, by Equation (8) we get that

E[eηKCt ] = 1 +E

[∫ t

0
eηKCs−

∫ +∞

0

(
eηKz − 1

)
λ(s, Ys)dF(z, Ys) ds

]
≤ 1 +

∫ t

0
E
[
eηKCs

]
Φ(s) ds.

Applying Gronwall’s lemma we obtain that

E[eηKCt ] ≤ e
∫ t

0 Φ(s)ds ∀t ∈ [0, T].

As usual in stochastic control problems, we focus on the corresponding dynamic problem:

ess inf
α∈At

E

[
e−ηXα

t,x(T) | Ft

]
, t ∈ [0, T], (19)

where Xα
t,x(T) denotes the insurer’s wealth process starting from (t, x) ∈ [0, T]×R evaluated at time T.

3. HJB Formulation

In order to solve the optimization problem (19), we introduce the value function v : [0, T]×R2 →
[0,+∞) associated with it, that is

v(t, x, y) .
= inf

α∈At
E

[
e−ηXα

t,x(T) | Yt = y
]

. (20)
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This function, if sufficiently regular, is expected to solve the Hamilton-Jacobi-Bellman
(HJB) equation: ⎧⎨⎩ inf

α∈[0,+∞)
Lαv(t, x, y) = 0 ∀(t, x, y) ∈ [0, T]×R2

v(T, x, y) = e−ηx ∀(x, y) ∈ R2,
(21)

where Lα denotes the Markov generator of the couple (Xα
t , Yt) associated with a constant control

α. In what follows, we denote by C1,2
b the class of all bounded functions f (t, x1, . . . , xn), with n ≥ 1,

with bounded first order derivatives ∂ f
∂t , ∂ f

∂x1
, . . . , ∂ f

∂xn
and bounded second order derivatives with

respect to the spatial variables ∂2 f
∂x2

1
, . . . , ∂ f

∂x2
n

.

Lemma 1. Let f : [0, T]× R2 → R be a function in C1,2
b . The Markov generator of the stochastic process

(Xα
t , Yt) for all constant strategies α ∈ [0,+∞) is given by the following expression:

Lα f (t, x, y) =
∂ f
∂t

(t, x, y) +
∂ f
∂x

(t, x, y)
[
rx + c(t, y)− q(t, y, α)

]
+ b(t, y)

∂ f
∂y

(t, x, y)

+
1
2

γ(t, y)2 ∂2 f
∂y2 (t, x, y) +

∫ +∞

0

[
f (t, x− z ∧ α, y)− f (t, x, y)

]
λ(t, y) dF(z, y). (22)

Proof. For any f ∈ C1,2
b , applying Itô’s formula to the stochastic process f (t, Xα

t , Yt), we get the
following expression:

f (t, Xα
t , Yt) = f (0, Xα

0 , Y0) +
∫ t

0
Lα f (s, Xα

s , Ys) ds + Mt,

where Lα is defined in (22) and

Mt =
∫ t

0
γ(s, Ys)

∂ f
∂y

(s, Xα
s , Ys) dW(Y)

s

+
∫ t

0

∫ +∞

0

(
f (s, Xα

s − z ∧ α, Ys)− f (s, Xα
s , Ys)

)(
m(ds, dz)− ν(ds, dz)

)
.

In order to complete the proof, we have to show that {Mt}t∈[0,T] is an {Ft}t∈[0,T]-martingale.
For the first term, we observe that

E

[∫ t

0
γ(s, Ys)

2
(

∂ f
∂y

(s, Xα
s , Ys)

)2

ds
]
< +∞,

because the partial derivative is bounded and using the assumption (2). For the second term, it is
sufficient to use the boundedness of f and the condition (6).

Remark 4. Since the couple (Xα
t , Yt) is a Markov process, any Markovian control is of the form αt =

α(t, Xα
t , Yt), where α(t, x, y) denotes a suitable function. The generator Lα f (t, x, y) associated with a general

Markovian strategy can be easily obtained by replacing α with α(t, x, y) in (22).

In order to simplify our optimization problem, we present a preliminary result.

Remark 5. Let g : R �→ [0,+∞) be an integrable function such that g(0) = 0. For any α ∈ [0,+∞),
the following equation holds true:

∫ +∞

0
g(z ∧ α) dF(z, y) =

∫ α

0
g′(z)F̄(z, y) dz ∀y ∈ R,
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where F̄(z, y) .
= 1− F(z, y). In fact, by integration by parts we get that

∫ +∞

0
g(z ∧ α) dF(z, y) =

∫ α

0
g(z) dF(z, y) +

∫ +∞

α
g(α) dF(z, y)

= g(α)F(α, y)− g(0)F(0, y)−
∫ α

0
g′(z)F(z, y) dz + g(α)[1− F(α, y)]

= −
∫ α

0
g′(z)F(z, y) dz +

∫ α

0
g′(z) dz

=
∫ α

0
g′(z)(1− F(z, y)) dz.

(23)

Now let us consider the ansatz v(t, x, y) = e−ηxer(T−t)
ϕ(t, y), which is motivated by the

following proposition.

Proposition 3. Let us suppose that there exists a function ϕ : [0, T]×R→ (0,+∞) solution to the following
Cauchy problem:

∂ϕ

∂t
(t, y) + b(t, y)

∂ϕ

∂y
(t, y) +

1
2

γ(t, y)2 ∂2 ϕ

∂y2 (t, y)

+ ηer(T−t)ϕ(t, y)
[
−c(t, y) + inf

α∈[0,+∞)
Ψα(t, y)

]
= 0, (24)

with final condition ϕ(T, y) = 1, ∀y ∈ R, where

Ψα(t, y) .
= q(t, y, α) + λ(t, y)

∫ α

0
eηzer(T−t)

F̄(z, y) dz, α ∈ [0,+∞). (25)

Then the function
v(t, x, y) = e−ηxer(T−t)

ϕ(t, y) (26)

solves the HJB problem given in (21).

Proof. From the expression (26) we can easily verify that

eηxer(T−t)Lαv(t, x, y) =
∂ϕ

∂t
(t, y)− ηer(T−t)ϕ(t, y)

[
c(t, y)− q(t, y, α)

]
+ b(t, y)

∂ϕ

∂y
(t, y) +

1
2

γ(t, y)2 ∂2 ϕ

∂y2 (t, y)

+
∫ +∞

0

[
eη(z∧α)er(T−t)

ϕ(t, y)− ϕ(t, y)
]

λ(t, y) dF(z, y).

By Remark 5, taking g(z) = eηzer(T−t) − 1, we can rewrite the last integral in this more
convenient way:

ϕ(t, y)λ(t, y)
∫ +∞

0

[
eη(z∧α)er(T−t) − 1

]
dF(z, y) = ϕ(t, y)λ(t, y)

∫ α

0
ηer(T−t)eηzer(T−t)

F̄(z, y) dz.

Now we define Ψα(t, y) by means of the Equation (25), obtaining the following
equivalent expression:

eηxer(T−t)Lαv(t, x, y) =
∂ϕ

∂t
(t, y)− ηer(T−t)ϕ(t, y)c(t, y)

+ b(t, y)
∂ϕ

∂y
(t, y) +

1
2

γ(t, y)2 ∂2 ϕ

∂y2 (t, y) + ηer(T−t)ϕ(t, y)Ψα(t, y).
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Taking the infimum over α ∈ [0,+∞), by (24) we find out the PDE in (21). The terminal condition
in (21) immediately follows by definition.

The previous result suggests to focus on the minimization of the function (25), that is the aim of
the next section.

4. Optimal Reinsurance Strategy

In this section, we study the following minimization problem:

inf
α∈[0,+∞)

Ψα(t, y), (27)

where Ψα(t, y) : [0, T]×R→ (0,+∞) is defined in (25).
In particular, we provide a complete characterization of the optimal reinsurance strategy. In the

sequel we assume 0 ≤ F(z, y) < 1 ∀(z, y) ∈ [0,+∞)×R.

Proposition 4. Let us suppose that Ψα(t, y) is strictly convex in α ∈ [0,+∞) and let us define the set
A0 ⊆ [0, T]×R as follows:

A0
.
=

{
(t, y) ∈ [0, T]×R | −∂q(t, y, 0)

∂α
≤ λ(t, y)

}
. (28)

If the equation

− ∂q(t, y, α)

∂α
= λ(t, y)eηαer(T−t)

F̄(α, y) (29)

admits at least one solution in (0,+∞) for any (t, y) ∈ [0, T] × R \ A0, denoted by α̂(t, y), then the
minimization problem (27) admits a unique solution α∗(t, y) ∈ [0,+∞) given by

α∗(t, y) =

{
0 (t, y) ∈ A0

α̂(t, y) (t, y) ∈ [0, T]×R \ A0.
(30)

Proof. The function Ψα(t, y) is continuous in α ∈ [0,+∞) by definition (see Assumption 1) and for
any (t, y) ∈ [0, T]×R its derivative is given by the following expression:

∂Ψα(t, y)
∂α

=
∂q(t, y, α)

∂α
+ λ(t, y)eηαer(T−t)

F̄(α, y). (31)

Since Ψα(t, y) is convex in α ∈ [0,+∞) by hypothesis, if (t, y) ∈ A0 then ∂Ψ0(t,y)
∂α ≥ 0,

and α∗(t, y) = 0, because the derivative ∂Ψα(t,y)
∂α is increasing in α and there is no stationary point

in (0,+∞). Else, if (t, y) ∈ [0, T]×R \ A0 then ∂Ψ0(t,y)
∂α < 0, and α∗(t, y) coincides with the unique

stationary point of Ψα(t, y), which is α̂(t, y) ∈ (0,+∞). Let us notice that it exists by hypothesis and it
is unique because Ψα(t, y) is strictly convex.

By the previous proposition, we observe that λ(t, y) is an important threshold for the insurer:
as long as the marginal cost of the full reinsurance falls in the interval (0, λ(t, y)], the optimal choice is
full reinsurance.

Unfortunately, it is not always easy to check whether Ψα(t, y) is strictly convex in α ∈ [0,+∞)

or not. In the next result such an hypothesis is relaxed, while the uniqueness of the solution to (29)
is required.
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Proposition 5. Suppose that Equation (29) admits a unique solution α̂(t, y) ∈ (0,+∞) for any (t, y) ∈
[0, T]×R \ A0. Moreover, let us assume that

∂2q(t, y, α̂(t, y))
∂α2 > −λ(t, y)eηα̂(t,y)er(T−t) ∂F̄(α̂(t, y), y)

∂z
∀(t, y) ∈ [0, T]×R \ A0. (32)

Then the minimization problem (27) admits a unique solution α∗(t, y) ∈ [0,+∞) given by (30).

Proof. Recalling the proof of Proposition 4, if (t, y) ∈ A0 then ∂Ψ0(t,y)
∂α ≥ 0 and α∗(t, y) = 0. For any

(t, y) ∈ [0, T]×R \ A0, by hypothesis there exists a unique stationary point α̂(t, y) ∈ (0,+∞). By simple
calculations, using (32) we notice that

∂2Ψα̂(t, y)
∂α2 > 0,

hence α̂(t, y) is the unique minimizer and this completes the proof.

The next result deals with the existence of a solution to (29). In particular, it is sufficient to
require that the claim size distribution is heavy-tailed, which is a relevant case in non-life insurance
(see Rolski et al. (1999), chp. 2), plus a technical condition for the reinsurance premium.

Proposition 6. Let us assume that the reinsurance premium q(t, y, α) is such that6

lim
α→+∞

∂q(t, y, α)

∂α
= l ∈ R

and the claim size distribution is heavy-tailed in this sense:

∫ +∞

0
ekz dF(z, y) = +∞ ∀k > 0, y ∈ R.

Then, for any (t, y) ∈ [0, T]×R \ A0, the Equation (29) admits at least one solution in (0,+∞).

Proof. The following property of heavy-tailed distributions is a well known implication of
our assumption:

lim
z→+∞

ekz F̄(z, y) = +∞ ∀k > 0, y ∈ R.

Hence, by Equation (31), for any (t, y) ∈ [0, T]×R \ A0

lim
α→+∞

∂Ψα(t, y)
∂α

= lim
α→+∞

[
∂q(t, y, α)

∂α
+ λ(t, y)eηαer(T−t)

F̄(α, y)
]
= +∞.

On the other hand, we know that

∂Ψ0(t, y)
∂α

< 0 ∀(t, y) ∈ [0, T]×R \ A0.

As a consequence, ∂Ψα(t,y)
∂α being continuous in α ∈ [0,+∞), there exists α̂(t, y) ∈ (0,+∞) such

that ∂Ψα̂(t,y)
∂α = 0.

Now we turn the attention to the other crucial hypothesis of Proposition 4, which is the convexity
of Ψα(t, y). The reader can easily observe that the reinsurance premium convexity plays a central role.

6 E.g., if q is convex in α.
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Proposition 7. Suppose that the reinsurance premium q(t, y, α) is convex in α ∈ [0,+∞) and F(z, y) =

(1− e−ζ(y)z)�{z>0} for some function ζ(y) such that 0 < ζ(y) < η min {erT , 1} ∀y ∈ R. Then the function
Ψα(t, y) defined in (25) is strictly convex in α ∈ [0,+∞).

Proof. Recalling the expression (25), it is sufficient to prove the convexity of the following term:∫ α

0
eηzer(T−t)

F̄(z, y) dz.

For this purpose, let us evaluate its second order derivative:

eηαer(T−t)
(

ηer(T−t) F̄(α, y) +
∂F̄(α, y)

∂z

)
.

Now the term in brackets is

ηer(T−t)e−ζ(y)α − ζ(y)e−ζ(y)α > 0 ∀t ∈ [0, T].

The proof is complete.

By Proposition 1, the hypothesis on the claim sizes distribution above may be read as assuming
that the claims are exponentially distributed conditionally to Y.

4.1. Expected Value Principle

Now we investigate the special case of the expected value principle introduced in Example 1.

Proposition 8. Under the EVP (see Equation (10)), the optimal reinsurance strategy α∗(t) ∈ [0,+∞) is
given by

α∗(t) = e−r(T−t) log (1 + θ)

η
, t ∈ [0, T]. (33)

Proof. Using Remark 5, we can rewrite the Equation (10) as follows:

q(t, y, α) = (1 + θ)λ(t, y)
[∫ +∞

0
z dF(z, y)−

∫ α

0
F̄(z, y) dz

]
.

As a consequence, we have that

∂q(t, y, α)

∂α
= −(1 + θ)λ(t, y)F̄(α, y) ∀α ∈ [0,+∞).

For α = 0, we have that

∂Ψ0(t, y)
∂α

=
∂q(t, y, 0)

∂α
+ λ(t, y) < 0 ∀(t, y) ∈ [0, T]×R,

hence A0 = ∅ and by Proposition 4 the minimizer belongs to (0,+∞). Now we look for the stationary
points, i.e., the solutions to the Equation (29), that in this case reads as follows:

(1 + θ)λ(t, y)F̄(α, y) = λ(t, y)eηαer(T−t)
F̄(α, y). (34)

Solving this equation, we obtain the unique solution given by (33). In order to prove that it
coincides with the unique minimizer to (27), it is sufficient to show that

∂2Ψα∗(t)(t, y)
∂α2 > 0.
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For this purpose, observe that

∂2Ψα∗(t)(t, y)
∂α2 =

∂2q(t, y, α∗(t))
∂α2 + λ(t, y)eηα∗(t)er(T−t)

(
ηer(T−t) F̄(α∗(t), y) +

∂F̄(α∗(t), y)
∂z

)
> −(1 + θ)λ(t, y)

∂F̄(α∗(t), y)
∂z

+ λ(t, y)eηα∗(t)er(T−t) ∂F̄(α∗(t), y)
∂z

= 0.

The proof is complete.

Remark 6. Formula (33) was found by Zhao et al. (2013) (see eq. 3.31, p. 508). We point out that it is a
completely deterministic strategy. This fact is crucially related to the use of the EVP rather than the underlying
model; in fact, in Zhao et al. (2013) the authors considered the Cramér-Lundberg model under the EVP7.

From the economic point of view, by Equation (33) it is easy to show that the optimal retention level
is decreasing with respect to the interest rate and the risk-aversion; on the contrary, it is increasing with
respect to the reinsurer’s safety loading. In addition, the sensitivity with respect to the time-to-maturity
depends on the sign of r.

Another relevant aspect of (33) is that it is independent of the claim size distribution. To the
authors this result seems quite unrealistic. In fact, any subscriber of an excess-of-loss contract is
strongly worried about possibly extreme events, hence the claims distribution is expected to play an
important role.

4.2. Variance Premium Principle

This subsection is devoted to derive an optimal strategy under the variance premium principle
(see Example 2).

Proposition 9. Let us suppose that Ψα(t, y) is strictly convex in α ∈ [0,+∞) and

lim
z→+∞

eη min {erT ,1}z F̄(z, y) = l, (35)

for some l > 0 (eventually l = +∞).
Under the VP (see Equation (11)) the optimal reinsurance strategy α∗(t, y) is the unique solution to the

following equation: (
eηαer(T−t)

+ 2θα− 1
)

F̄(α, y) = 2θ
∫ +∞

α
z dF(z, y). (36)

Proof. The proof is based on Proposition (4). By Equation (11) we get its derivative:

∂q(t, y, α)

∂α
= λ(t, y)F̄(α, y)(2θα− 1)− 2θλ(t, y)

∫ +∞

α
z dF(z, y).

It is clear that the set A0 defined in (28) is empty, because for any (t, y) ∈ [0, T]×R

−∂q(t, y, 0)
∂α

= λ(t, y)F̄(0, y) + 2θλ(t, y)
∫ +∞

0
z dF(z, y) > λ(t, y).

7 It is not surprising, in fact in Brachetta and Ceci (2019) and references therein also the optimal proportional reinsurance
under EVP turns out to be deterministic.
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Hence the minimizer should coincide with the unique stationary point of Ψα(t, y), i.e., the solution
to (36). In order to prove it, we need to ensure the existence of a solution to (36). For this purpose,
we notice that on the one hand

∂Ψ0(t, y)
∂α

= −2θλ(t, y)
∫ +∞

0
z dF(z, y) < 0.

On the other hand, for α → +∞, by (35) we get

lim
α→+∞

∂Ψα(t, y)
∂α

= λ(t, y) lim
α→+∞

[(
eηαer(T−t)

+ 2θα− 1
)

F̄(α, y)− 2θ
∫ +∞

α
z dF(z, y)

]
> 0.

As a consequence, by the continuity of Ψα(t, y) there exists a point α∗ ∈ (0,+∞) such that
∂Ψα∗ (t,y)

∂α = 0. Such a solution is unique because Ψα(t, y) is strictly convex by hypothesis.

Conversely to Proposition 8, the optimal retention level given in Proposition 9 is still dependent
on the stochastic factor Y. Such a dependence is spread through the claim size distribution.

Remark 7. We observe that any heavy-tailed distribution (see the proof of Proposition 6) satisfies the
condition (35) with l = +∞.

Now we specialize the variance premium principle to conditionally exponentially
distributed claims.

Proposition 10. Under the VP, suppose that F(z, y) = (1− e−ζ(y)z)�{z>0} for some function ζ(y) such that
ζ(y) > 0 ∀y ∈ R. The optimal reinsurance strategy is given by

α∗(t, y) = e−r(T−t)
log (1 + 2θ

ζ(y) )

η
, (t, y) ∈ [0, T]×R. (37)

Proof. By the proof of Proposition 9, we know that under VP A0 = ∅. Now, under our hypotheses,
by Equation (31) we readily get

∂Ψα(t, y)
∂α

= λ(t, y)
[(

eηαer(T−t)
+ 2θα− 1

)
F̄(α, y)− 2θ

∫ +∞

α
z dF(z, y)

]
= λ(t, y)

[(
eηαer(T−t)

+ 2θα− 1
)
e−ζ(y)α − 2θe−ζ(y)α(α +

1
ζ(y)

)]
= λ(t, y)e−ζ(y)α

[
eηαer(T−t) − 1− 2θ

ζ(y)

]
.

The equation ∂Ψα(t,y)
∂α = 0 admits a unique solution, given by Equation (37). At this point α∗(t, y),

the function Ψα(t, y) is strictly convex, because

∂Ψα∗(t, y)
∂α

= −ζ(y)
∂Ψα∗(t, y)

∂α
+ λ(t, y)e−ζ(y)α∗ηer(T−t)eηα∗er(T−t)

= λ(t, y)e−ζ(y)α∗ηer(T−t)eηα∗er(T−t)
> 0.

It follows that α∗(t, y) is the unique minimizer by Proposition 30.

Contrary to Equation (33), the explicit formula (37) keeps the dependence on the stochastic factor
Y. In addition, the following result holds true.
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Remark 8. Suppose that F(z, y) = (1− e−ζ(y)z)�{z>0} for some function ζ(y) such that ζ(y) > 0 ∀y ∈ R.
We consider two different reinsurance safety loadings θEVP, θVP > 0, referring to the EVP and VP, respectively.
Moreover, let us denote by α∗EVP(t) and α∗VP(t, y) the optimal retention level under the EVP and VP, given in
Equations (33) and (37), respectively. It is easy to show that ∀t ∈ [0, T]

α∗VP(t, y)

{
> α∗EVP(t) ∀y : ζ(y) < 2θVP

θEVP

≤ α∗EVP(t) otherwise.

From the practical point of view, as long as the stochastic factor fluctuations result in a rate parameter ζ(y)
higher than the threshold 2θVP

θEVP
, the optimal retention level evaluated through the expected value principle turns

out to be larger than the variance principle.

5. Verification Theorem

Theorem 1 (Verification Theorem). Let us suppose that Equation (18) holds good and ϕ : [0, T]× R →
(0,+∞) is a bounded classical solution ϕ ∈ C1,2((0, T)× R) ∩ C([0, T]× R) to the Cauchy problem (24),
such that ∣∣∣∣∂ϕ

∂y
(t, y)

∣∣∣∣ ≤ C(1 + |y|β) ∀(t, y) ∈ [0, T]×R, (38)

for some constants β, C > 0. Then the function v(t, x, y) = e−ηxer(T−t)
ϕ(t, y) is the value function in

Equation (20). As a byproduct, the strategy α∗t
.
= α∗(t, Yt) described in Proposition 4 is an optimal control.

Proof. By Proposition 3, the function v(t, x, y) defined in Equation (26) solves the HJB problem (21).
Hence for any (t, x, y) ∈ [0, T]×R2

Lαv(s, Xα
t,x(s), Yt,y(s)) ≥ 0 ∀s ∈ [t, T], α ∈ At,

where {Xα
t,x(s)}s∈[t,T] and {Yt,y(s)}s∈[t,T] denote the solutions to (12) and (1) at time s ∈ [t, T], starting

from (t, x) ∈ [0, T]×R and (t, y) ∈ [0, T]×R, respectively.
From Itô’s formula we get

v(T, Xα
t,x(T), Yt,y(T)) = v(t, x, y) +

∫ T

t
Lαv(s, Xα

t,x(s), Ys) ds + MT −Mt, (39)

with {Mr}r∈[t,T] defined by

Mr =
∫ r

t
γ(s, Ys)

∂v
∂y

(s, Xα
t,x(s), Ys) dW(Y)

s

+
∫ r

t

∫ +∞

0

(
v(s, Xα

t,x(s)− z ∧ α, Ys)− v(s, Xα
t,x(s), Ys)

)(
m(ds, dz)− ν(ds, dz)

)
. (40)

In order to show that {Mr}r∈[t,T] is an {Ft}t∈[0,T]-local-martingale, we use a localization
argument, taking

τn
.
= inf{s ∈ [t, T] | Xα

t,x(s) < −n ∨ |Ys| > n}, n ∈ N.

The reader can easily check that {τn}n∈N is a non decreasing sequence of stopping time such
that limn→+∞ τn = +∞ (see Equations (15) and (3)). For the diffusion term of Mr, using the
assumptions (38) and (2), we notice that
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E

[∫ T∧τn

t
γ(s, Ys)

2
(

∂v
∂y

(s, Xα
t,x(s), Ys)

)2

ds
]

= E

[∫ T∧τn

t
γ(s, Ys)

2e−2ηXα
t,x(s)e

r(T−t)
(

∂ϕ

∂y
(s, Ys)

)2

ds
]

≤ Cn E

[∫ T∧τn

t
γ(s, Ys)

2 ds
]
< +∞ ∀n ∈ N,

where Cn > 0 is a constant depending on n. For the jump term, by the condition (18) and Remark 1,
we get

E

[∫ T∧τn

t

∫ +∞

0
|v(s, Xα

t,x(s)− z ∧ α, Ys)− v(s, Xα
t,x(s), Ys)|ν(ds, dz)

]
≤ E

[∫ T∧τn

t

∫ +∞

0

∣∣∣e−ηKXα
t,x(s)(eηK(z∧α) − 1)ϕ(s, Ys)

∣∣∣ν(ds, dz)
]

≤ C̃n E

[∫ T∧τn

t

∫ +∞

0
(eηKz − 1)λ(s, Ys)dF(z, Ys) ds

]
< +∞,

with C̃n denoting a positive constant dependent on n. Thus {Mr}r∈[t,T] turns out to be an
{Ft}t∈[0,T]-local-martingale and {τn}n∈N is a localizing sequence for it. Now, taking the conditional
expectation of (39) with T ∧ τn in place of T, we obtain that

E[v(T ∧ τn, Xα
t,x(T ∧ τn), Yt,y(T ∧ τn)) | Ft] ≥ v(t, x, y) ∀(t, x, y) ∈ [0,∧τn]×R2, α ∈ At, n ∈ N.

Let us notice that

E[v(T ∧ τn, Xα
t,x(T ∧ τn), Yt,y(T ∧ τn))

2] ≤ C̃e−2ηner(T−t) ≤ C̃,

where C̃ > 0 is a constant. As a consequence, {v(T ∧ τn, Xα
t,x(T ∧ τn), Yt,y(T ∧ τn))}n∈N is a sequence

of uniformly integrable random variables. By classical results in probability theory, it converges almost
surely. Using the monotonicity and the boundedness of {τn}n∈N, together with the non explosion of
{Xα

t,x(s)}s∈[t,T] and {Yt,y(s)}s∈[t,T] (see (15) and (3)), taking the limit for n → +∞ we conclude that

E[v(T, Xα
t,x(T), Yt,y(T)) | Ft] = lim

n→+∞
E[v(T ∧ τn, Xα

t,x(T ∧ τn), Yt,y(T ∧ τn)) | Ft]

≥ v(t, x, y) ∀t ∈ [0, T], α ∈ At.

As a byproduct, since α∗(t, y) given in Proposition 4 realizes the infimum in (27), we have that
Lα∗v(t, x, y) = 0 and, replicating the calculations above, we obtain the equality

E

[
e−ηXα∗

t,x (T) | Yt = y
]
= inf

α∈At
E

[
e−ηXα

t,x(T) | Yt = y
]
= v(t, x, y),

i.e., α∗t
.
= α∗(t, Yt) is an optimal control.

By Theorem 1, the value function (20) can be characterized as a transformation of the solution
to the partial differential equation (PDE) (24). Nevertheless, an explicit expression is not available,
except for very special cases. The following result provides a probabilistic representation by means of
the Feynman-Kac theorem.

Proposition 11. Under the same assumptions of Theorem 1, the value function (20) admits the
following representation:
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v(t, x, y) = e−ηxer(T−t)
E

[
e
∫ T

t ηer(T−s)
(

infα∈[0,+∞) Ψα(s,Ys)−c(s,Ys)
)

ds | Yt = y
]

, (41)

where Ψα(t, y) is the function defined in (25).

Proof. The thesis immediately follows by Theorem 1 and the Feynman-Kac representation of ϕ(t, y).

Remark 9. We refer to Heath and Schweizer (2000) for existence and uniqueness of a solution to the PDE (24).

6. Numerical Results

In this section, we show some numerical results, mostly based on Propositions 8 and 10.
We assumed the following dynamic of the stochastic factor Y for performing simulations:

dYt = 0.3 dt + 0.3 dW(Y)
t , Y0 = 1.

The {Ft}t∈[0,T]-dual predictable projection ν(dt, dz) (see Equation (5)) is determined by
these functions:

λ(t, y) = λ0e
1
2 y, λ0 = 0.1,

F(z, y) = (1− e−ζ(y)z)�{z>0}, with ζ(y) = ey + 1.

The parameters are set according to Table 1 below.

Table 1. Simulation parameters.

Parameter Value

c 1
T 5 Y
η 0.5
θ 0.1
r 5%
N 500
M 5000

The SDEs are approximated through a classical Euler’s scheme with steps length T
N , while the

expectations are evaluated by means of Monte Carlo simulations with parameter M.
In Figure 1 we show the dynamic strategies under EVP and VP, computed by the Equations (33)

and (37), respectively.
In Figure 2 we start the sensitivity analysis investigating the effect of the risk aversion parameter

on the optimal strategy at time t = 0. As expected, there is an inverse relationship. Notice that for high
values of η the two strategies tend to the same level.

Figure 3 refers to the sensitivity analysis with respect to the reinsurance safety loading θ.
When θ = 0 the strategies coincide (because the premia coincide), then they diverge for increasing
values of θ.

In Figure 4 we observe that the distance between the retention levels in the two cases is larger
when r < 0 and it decreases as long as r increases. Nevertheless, even for positive values of the
risk-free interest rate the distance is not negligible (see the pictures above, with r = 0.05).

In Figure 5 we study the response of the optimal strategy to variations of the time horizon.
The two cases exhibit the same behavior, which is strongly influenced by the sign of the interest rate.
In fact, if r < 0 the retention level increases with the time horizon, while if r > 0 the optimal strategy
decreases with T.
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Finally, thanks to Proposition 11 we are able to numerically approximate the value function by
simulating the trajectories of Y. The graphical result (under VP) is shown in Figure 6 below.

Figure 1. The dynamics of the optimal strategies under EVP (red) and VP (blue).

Figure 2. The effect of the risk aversion on the optimal strategy under EVP (red) and VP (blue).

Figure 3. The effect of the reinsurer’s safety loading on the optimal strategy under EVP (red) and VP (blue).
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Figure 4. The effect of the risk-free interest rate on the optimal strategy under EVP (red) and VP (blue).

Figure 5. The effect of the time horizon on the optimal strategy under EVP (red) and VP (blue).

Figure 6. The value function v(0, x, y) at the initial time.
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Appendix A

Proof of Proposition 1. Let us consider H(s, z) = Hs�A(z), with {Hs}s∈[0,T] any nonnegative
{Fs}s∈[0,T]-predictable process and A ∈ B([0,+∞)). By Equation (8) we get ∀t ∈ [0, T]

E

[∫ t

0

∫ +∞

0
Hs�A(z)m(ds, dz)

]
= E

[
∑
n≥1

HTn�{Zn∈A}�{Tn≤t}

]
= E

[∫ t

0
Hsλ(s, Ys)

∫
A

dF(z, Ys)ds
]

.

By Equation (9) we can rewrite this quantity as follows:

E

[∫ t

0
Hs

∫
A

dF(z, Ys)dNs

]
= E

[
∑
n≥1

HTn�{Tn≤t}F(A, YTn)

]
,

with the notation F(A, y) .
=
∫

A dF(z, y).
On the other hand, since HTn�{Tn≤t} is an FT−n

-measurable random variable (see Appendix 2,
T4 in Brémaud (1981)), we have that

E

[
∑
n≥1

HTn�{Zn∈A}�{Tn≤t}

]
= E

[
∑
n≥1

HTn�{Tn≤t}P[Zn ∈ A | FT−n
]

]
.

Hence

E

[
∑
n≥1

HTn�{Tn≤t}P[Zn ∈ A | FT−n
]

]
= E

[
∑
n≥1

HTn�{Tn≤t}F(A, YTn)

]
. (A1)

By the arbitrariness of t we can choose t = T ∧ T1. In this case, Equation (A1) reads as

E

[
HT1�{T1≤T}P[Z1 ∈ A | FT−1

]

]
= E

[
HT1�{T1≤T}F(A, YT1)

]
.

By the arbitrariness of {Hs}s∈[0,T] we deduce the thesis for n = 1. Now let us choose t = T ∧ T2.
Equation (A1) becomes

E

[
HT1�{T1≤T}P[Z1 ∈ A | FT−1

] + HT2�{T2≤T}P[Z2 ∈ A | FT−2
]

]
= E

[
HT1�{T1≤T}F(A, YT1) + HT2�{T2≤T}F(A, YT2)

]
.
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In view of the preceding equation, we obtain the desired equality for n = 2. Repeating the same
argument for n = 3, 4, . . . we complete the thesis.

Appendix B

In this section we motivate formulas (10) and (11). Let us denote by {Cα
t }t∈[0,T] the reinsurer’s

cumulative losses at time t:

Cα
t =

∫ t

0

∫ +∞

0
(z− z ∧ αs)m(ds, dz), t ∈ [0, T].

Recalling (5), by Equation (10) in Example 1 we readily check that for any strategy {αt}t∈[0,T]
under the EVP

E

[ ∫ t

0
q(s, Ys, αs) ds

]
= (1 + θ)E

[ ∫ t

0

∫ +∞

0
(z− z ∧ αs) λ(s, Ys) dF(z, Ys) ds

]
= (1 + θ)E

[ ∫ t

0

∫ +∞

0
(z− z ∧ αs)m(ds, dz)

]
= (1 + θ)E[Cα

t ],

for some safety loading θ > 0, i.e., for any time t ∈ [0, T] the expected premium covers the expected
losses plus an additional (proportional) term, which is the expected net income.

Now let us focus on Example 2. Under the VP the reinsurance premium should satisfy the
following equation:

E

[ ∫ t

0
q(s, Ys, αs) ds

]
= E[Cα

t ] + θ var[Cα
t ], (A2)

for some safety loading θ > 0. We need to evaluate the variance term. Let us introduce the following
stochastic process:

Mα
t =

∫ t

0

∫ +∞

0
(z− αs)+

(
m(ds, dz)− ν(ds, dz)

)
, t ∈ [0, T],

denoting (x− y)+ = x− x ∧ y. We have that

var[Cα
t ] = E[(Cα

t )
2]−E[Cα

t ]
2

= E
[
|Mα

t |2
]
+E

[(∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

)2]
+ 2E

[
Mα

t

∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
−E[Cα

t ]
2.

Denoting by 〈Mα〉t the predictable covariance process of Mα
t , using Remark 1 we finally obtain

var[Cα
t ] = E[〈Mα〉t] + var

[∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
+ 2E

[
Mα

t

∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
= E

[ ∫ t

0

∫ +∞

0
(z− αs)

2
+ λ(s, Ys)dF(z, Ys) ds

]
+ var

[∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
+ 2E

[
Mα

t

∫ t

0

∫ +∞

0
(z− αs)+ λ(s, Ys)dF(z, Ys) ds

]
.
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Under the special case λ(t, y) = λ(t) and F(z, y) = F(z) (e.g., under the Cramér-Lundberg model),
for any constant strategy α ∈ [0,+∞) the previous equation reduces to

var[Cα
t ] =

∫ t

0

∫ +∞

0
(z− α)2

+ λ(s)dF(z) ds.

Extending this formula to the model formulated in Section 2, we obtain the expression (11).
Of course, there will be an approximation error, because in our general model the intensity and the
claim size distribution depend on the stochastic factor. Nevertheless, this is a common procedure in
the actuarial literature.
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Abstract: As decarbonisation progresses and conventional thermal generation gradually gives way
to other technologies including intermittent renewables, there is an increasing requirement for system
balancing from new and also fast-acting sources such as battery storage. In the deregulated context,
this raises questions of market design and operational optimisation. In this paper, we assess the
real option value of an arrangement under which an autonomous energy-limited storage unit sells
incremental balancing reserve. The arrangement is akin to a perpetual American swing put option
with random refraction times, where a single incremental balancing reserve action is sold at each
exercise. The power used is bought in an energy imbalance market (EIM), whose price we take as a
general regular one-dimensional diffusion. The storage operator’s strategy and its real option value
are derived in this framework by solving the twin timing problems of when to buy power and when
to sell reserve. Our results are illustrated with an operational and economic analysis using data from
the German Amprion EIM.

Keywords: multiple optimal stopping; general diffusion; real option analysis; energy imbalance
market

1. Introduction

In today’s electric grids, power system security is managed in real time by the system operator,
who coordinates electricity supply and demand in a manner that avoids fluctuations in frequency
or disruption of supply (see, for example, New Zealand Electricity Authority 2016). In addition, the
system operator carries out planning work to ensure that supply can meet demand, including the
procurement of non-energy or ancillary services such as operating reserve, the capacity to make near
real-time adjustments to supply and demand. These services are provided principally by network
solutions such as the control of large-scale generation, although from a technical perspective they can
also be provided by smaller, distributed resources such as demand response or energy storage (National
Grid ESO 2019a; Xu et al. 2016). Such resources have strongly differing operating characteristics: when
compared to thermal generation, for example, energy storage is energy limited but can respond
much more quickly. Storage also has important time linkages, since each discharge necessitates a
corresponding recharge at a later time.

The coming decades are expected to bring a period of “energy transition” in which markets for
ancillary services will evolve, among other highly significant changes to generation, consumption
and network operation. The UK government, for example, has an ambition that “new solutions such
as storage or demand-side response can compete directly with more traditional network solutions” (UK Office
of Gas and Electricity Markets 2017, p. 29). In harmony, the UK System Operator National Grid
has recently declared its intention to “create a marketplace for balancing that encourages new and existing
providers, and all new technology types” (National Grid ESO 2019b). In anticipation of changes such as
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these, we will examine the participation of autonomous energy storage in a future marketplace for
balancing.

Operating reserve is typically procured via a two-price mechanism, with a reservation payment
plus an additional utilisation payment each time the reserve is called for (Ghaffari and Venkatesh
2013; Just and Weber 2008). Since the incentivisation and efficient use of operating reserve for system
balancing is of increasing importance with growing penetration of variable renewable generation
(King et al. 2011), several system operators have recently introduced real-time energy imbalance
markets (EIMs) in which operating reserve is pooled, including in Germany (Ocker and Ehrhart
2017) and California (Lenhart et al. 2016; Western EIM 2019). Such markets typically involve the
submission of bids and offers from several providers for reserves running across multiple time
periods, which are then accepted, independently in each period, in price order until the real-time
balancing requirement is met. As one provider can potentially be called upon over multiple consecutive
periods, this reserve procurement mechanism is not well suited to energy-limited reserves such as
energy storage. However, storage-oriented solutions are being pioneered in a number of countries
including a recent tender by the National Grid in the UK (National Grid ESO 2019a) and various trials
by state system operators in the US (Xu et al. 2016).

This paper considers operating reserve contracts for energy limited storage devices such
as batteries. In contrast to previous work on the pricing and hedging of energy options where
settlement is financial (see, for example, Benth et al. (2008) and references therein), we take account of
the physical settlement required in system balancing, considering also the limited energy and time
linkages of storage. The potential physical feedback effects of such contracts are investigated by
studying the operational policy of the storage or battery operator. To address the limited nature of
storage, the considered reserve contract is for a fixed quantity of energy. In this way, each contract
written can be physically covered with the appropriate amount of stored energy. We consider a
simple arrangement where the system operator sets the contract parameters, namely the premia
(the reservation and utilisation payments) plus an EIM price level x∗ at which the energy is delivered.
That is, rather than being the outcome of a price formation process, these parameters are set
administratively. Our analysis thus focuses exclusively on the timing of the battery operator’s actions.
This dynamic modelling contrasts with previous economic studies of operating reserve in the literature,
which have largely been static (Just and Weber 2008).

To quantify the economic opportunity for the storage operator, we use real options analysis.
Real Options analysis is the application of option pricing techniques to the valuation of non-financial
or ‘real’ investments with flexibility (Borison 2005; Dixit and Pindyck 1994). Here, the energy storage
unit is the real asset, and is coupled with the timing flexibility of the battery operator, who observes
the EIM price in real time. The arrangement may be viewed as providing the battery operator with a
real perpetual American put option on the reserve contract described above. This option is either of
swing type (called the lifetime problem in this paper) or of single exercise type (the single problem).
The feature that sets it apart from the existing literature on swing options is the random refraction time
(cf. Carmona and Touzi 2008).

A key question in Real Options analyses is the specification of the driving randomness
(Borison 2005). In this paper, we model the EIM price to resemble the historical statistical dynamics
of imbalance prices. In common with electricity spot prices and commodity prices more generally
but unlike the prices of financial assets, imbalance prices typically exhibit significant mean reversion
(Ghaffari and Venkatesh 2013; Pflug and Broussev 2009).

To avoid trivial cases, we impose the following, mild, sustainability conditions on the arrangement:

S1. The battery operator has a positive expected profit from the arrangement.
S2. The reserve contract cannot lead to a certain financial loss for the system operator.

Condition S1 is also known as the individual rationality or participation condition
(Fudenberg et al. 1991). While the battery operator is assumed to be a profit maximiser, the system
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operator may engage in the arrangement for wider reasons than profit maximisation. To acknowledge
the potential additional benefits provided by batteries, for example in providing response quickly and
without direct emissions, condition S2 is less strict than individual rationality.

By considering reserve contracts for incremental capacity (defined as an increase in generation
or equivalently a decrease in load), we are able to provide complete solutions whose numerical
evaluation is straightforward. Contracts for a decrease in generation, or an increase in load, lead to a
fundamentally different set of optimisation problems which have been partially solved by Szabó and
Martyr (2017).

This study extends earlier work (Moriarty and Palczewski 2017) with two important differences.
Firstly, the dynamics of the imbalance price is described there by an exponential Brownian motion.
In the present paper, by employing a different methodological approach, we obtain explicit results
for mean-reverting processes (and also other general diffusions) which better describe the statistical
properties of imbalance prices (Ghaffari and Venkatesh 2013; Pflug and Broussev 2009). Secondly, the
present paper takes into account deterioration of the store. Without this feature, it was found that
the value of storage is either very small (corresponding roughly to writing a single reserve contract)
or infinite.

Through a benchmark case study, we obtain the following economic recommendations.
Firstly, investments in battery storage to provide reserve will be profitable on average for a wide
range of the contract parameters. Secondly, the EIM price level x∗ at which energy is delivered is
an important consideration. This is because, as x∗ increases, the EIM price reaches x∗ significantly
less frequently and the reserve contract starts to provide cover for rare events, resulting in infrequent
power delivery and low utilisation of the battery, which may make the business case unattractive.
These observations suggest that the contractual arrangement studied in this paper is more suitable for
the frequent balancing of less severe imbalance.

1.1. Objectives

Given the model parameters x∗, pc ≥ 0 and Kc ≥ 0, we wish to analyse the actions A1–A3 below
(a graphical description of this sequence of actions is provided in Figure 1):

A1 The battery operator selects a time to purchase a unit of energy on the EIM and stores it.
A2 With this physical cover in place, the battery operator then chooses a later time to sell the

incremental reserve contract to the system operator in exchange for the initial premium pc.
A3 The system operator requests delivery of power when the EIM price X first lies above the level x∗

and immediately receives the contracted unit of energy in return for the utilisation payment Kc.

Figure 1. The sequence of actions A1–A3.
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Thus, the system operator obtains incremental reserve from the arrangement in preference to
using the EIM, when the EIM price is higher than the level x∗ specified by the system operator.
When the sequence A1–A3 is carried out once, we refer to this as the single problem; when it is
repeated indefinitely back-to-back, we refer to it as the lifetime problem.

In the lifetime problem, because storage is energy limited, action A3 must be completed before
the sequence A1–A3 can begin again. Thus, if the arrangement is considered as a real swing put
option, the time between A2 and A3 is a random refraction period during which no exercise is possible.
Note that, after action A3, the battery operator will perform action A1 again when the EIM price has
fallen sufficiently. Mathematically, therefore, we have the following objectives:

M1 For the single and lifetime problems, find the highest EIM price x̌ at which the battery operator
may buy energy when acting optimally.

M2 For the single and lifetime problems, find the expected value of the total discounted cash flows
(value function) for the battery operator corresponding to each initial EIM price x ≥ x̌.

We also aim to provide a straightforward numerical procedure to explicitly calculate x̌ and the
value function (for x ≥ x̌) in the lifetime problem.

1.2. Approach and Related Work

We take the EIM price to be a continuous time stochastic process (Xt)t≥0. Since markets
operate in discrete time, this is an approximation, made for analytical tractability. Nevertheless,
it is consistent with the physical fact that the system operator’s system balancing challenge is both
real-time and continuous.

Mathematically, the problem is one of choosing two optimal stopping times corresponding to
the two actions A1 and A2, based on the evolution of the stochastic process X (The reader is refered
to Peskir and Shiryaev (2006, chp. 1) for a thorough presentation of optimal stopping problems).
We centre our solution techniques around ideas of Beibel and Lerche (2000), who characterise optimal
stopping times using the Laplace transforms of first hitting times for the process X (see, for example,
Borodin and Salminen (2012, sec. 1.10)). Methods and results from the single problem are then
combined with a fixed point argument for the lifetime analysis.

Our methodological results feed into a growing body of research on timing problems in trading.
In a financial context, Zervos et al. (2013) optimise the performance of “buy low, sell high” strategies,
using the same Laplace transforms to provide a candidate value function, which is later verified as
a solution to certain quasi-variational inequalities. An analogous strategy in an electricity market
using hydroelectric storage is studied in Carmona and Ludkovski (2010) where the authors use
Regression Monte Carlo methods to approximately solve the dynamic programming equations
for a related optimal switching problem. Our results differ from the above papers in two aspects.
Our analysis is purely probabilistic, leading to arguments that do not refer to the theory of PDEs and
quasi-variational inequalities. Secondly, our characterisation of the value function and the optimal
policy is explicit up to a single, one-dimensional nonlinear optimisation, which, as we demonstrate
in an empirical experiment, can be performed in milliseconds using standard scientific software.
Related to our lifetime analysis, Carmona and Dayanik (2008) apply probabilistic techniques to study
the optimal multiple-stopping problem for a general linear regular diffusion process and reward
function. However, the latter work deals with a finite number of option exercises in contrast to
our lifetime analysis which addresses an infinite sequence of exercises via a fixed point argument.
Our work thus yields results with a significantly simpler and more convenient structure.

The contracts we consider have features in common with the reliability options used in
Colombia, Ireland and the ISO New England market and currently being introduced in Italy
(Mastropietro et al. 2018). Reliability options pay an initial premium to a generator, usually require
physical cover, and have a reference market price and a strike price that plays a similar role to x∗.
Typically, the strike price is set at the variable cost of the technology used to satisfy demand peaks,
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and the generator is contracted to pay back the difference between the market price and the strike
price in periods when energy is delivered and the market price is higher. However, instead of being
designed for system balancing, the purpose of reliability options is to ensure sufficient investment in
generation capacity.

The remainder of the paper is organised as follows. The mathematical formulation and main
tools are developed in Section 2. In the results of Section 3, we show that, for a range of price processes
X incorporating mean reversion, solutions for all initial values x can be obtained. Furthermore, an
empirical illustration using data from the German Amprion system operator is provided and qualitative
implications are drawn, while Section 5 presents the conclusions. Auxiliary results are collected in
the appendices.

2. Methodology

2.1. Formulation and Preliminary Results

In this section, we characterise the real option value in the single and lifetime problems using
the theory of regular one-dimensional diffusions. Denoting by (Wt)t≥0 a standard Brownian motion,
let X = (Xt)t≥0 be a (weak) solution of the stochastic differential equation:

dXt = μ(Xt)dt + σ(Xt)dWt, (1)

with boundaries a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}. The solution of this equation with the initial
condition X0 = x defines a probability measure Px and the related expectation operator Ex. We assume
that the boundaries are natural or entrance-not-exit, i.e., the process cannot reach them in finite time,
and that X is a regular diffusion process, meaning that the state space I := (a, b) cannot be decomposed
into smaller sets from which X cannot exit. The existence and uniqueness of such an X is guaranteed if
the functions μ and σ are Borel measurable in I with σ2 > 0, and

∀ y ∈ I, ∃ ε > 0 such that
∫ y+ε

y−ε

1 + |μ(ξ)|
σ2(ξ)

dξ < +∞ (2)

(see Karatzas and Shreve (1991, Theorem 5.5.15); condition (2) holds if, for example, μ is locally
bounded and σ is locally bounded away from zero). Necessary and sufficient conditions for the
boundaries a and b to be non-exit points, i.e., natural or entrance-not-exit, are formulated in Karatzas
and Shreve (1991, Theorem 5.5.29). In particular, it is sufficient that the scale function

p(x) :=
∫ x

c
exp

(
−2

∫ z

c

μ(u)
σ2(u)

du
)

dz, x ∈ I (3)

converges to −∞ when x approaches a and to +∞ when x approaches b. (Here, c ∈ I is arbitrary and
the condition stated above does not depend on its choice.) These conditions are mild, in the sense that
they are satisfied by all common diffusion models for commodity prices, including those in Section 3.

Denote by τx the first time that the process X reaches x ∈ I:

τx = inf{t ≥ 0 : Xt = x}. (4)

For r > 0, define

ψr(x) =

{
Ex{e−rτc}, x ≤ c,

1/Ec{e−rτx}, x > c,
φr(x) =

{
1/Ec{e−rτx}, x ≤ c,

Ex{e−rτc}, x > c,
(5)
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for any fixed c ∈ I (different choices of c merely result in a scaling of the above functions). It can be
verified directly that function φr(x) is strictly decreasing in x while ψr(x) is strictly increasing, and,
for x, y ∈ I, we have

Ex{e−rτy} =
{

ψr(x)/ψr(y), x < y,

φr(x)/φr(y), x ≥ y.
(6)

Since the boundaries a, b are natural or entrance-not-exit, we have ψr(a+) ≥ 0, φr(b−) ≥ 0 and
ψr(b−) = φr(a+) = ∞ (Borodin and Salminen 2012, Sec. II.1).

2.1.1. Optimal Stopping Problems and Solution Technique

The class of optimal stopping problems which we use in this paper is

v(x) = sup
τ

Ex{e−rτϑ(Xτ)1τ<∞}, (7)

where the supremum is taken over the set of all (possibly infinite) stopping times. Here, ϑ is the payoff
function and v is the value function. If a stopping time τ∗ exists which attains the supremum in (7),
we call this an optimal stopping time. In addition, if v and ϑ are continuous, then the set

Γ := {x ∈ I : v(x) = ϑ(x)} (8)

is a closed subset of I. Under general conditions (Peskir and Shiryaev 2006, chp. 1), which are satisfied
by all stopping problems studied in this paper, τ∗ = inf{t ≥ 0 : Xt ∈ Γ} is the smallest optimal
stopping time and the set Γ is then called the stopping set.

Appendix A contains three lemmas providing a classification of solutions to the stopping problem
(7) which will be used below.

2.1.2. Single Problem

Let (Xt)t≥0 denote the EIM price. We will develop a mathematical representation of actions
A1–A3 (see Section 1.1) when only one reserve contract is traded. Considering A3, the time of power
delivery is the first time that the EIM price exceeds a predetermined level x∗:

τ̂e = inf{t ≥ 0 : Xt ≥ x∗}.

Given the present level x of the EIM price, the expected net present value of the utilisation
payment exchanged at time τ̂e can be expressed as follows thanks to (6):

hc(x) = Ex{e−rτ̂e Kc} =

⎧⎨⎩Kc, x ≥ x∗,

Kc
ψ(x)
ψ(x∗) , x < x∗.

(9)

Therefore, the optimal timing of action A2 corresponds to solving the following optimal
stopping problem:

sup
τ

Ex{e−rτ
(

pc + hc(Xτ)
)
1τ<∞}.

Since the utilisation payment Kc obtained when the EIM price exceeds x∗ is positive and constant,
as is the initial premium pc, it is best to obtain these cashflows as soon as possible. The solution of the
above stopping problem is therefore trivial: the contract should be sold immediately after completing
action A1, i.e., immediately after providing physical cover for the reserve contract. Optimally timing
the simultaneous actions A1 and A2, the purchase of energy and sale of the incremental reserve
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contract, is therefore the core optimisation task. It corresponds to solving the following optimal
stopping problem:

Vc(x) = sup
τ

Ex{e−rτ
(
− Xτ + pc + hc(Xτ)

)
1τ<∞} = sup

τ
Ex{e−rτh(Xτ)1τ<∞}, (10)

where the payoff
h(x) = −x + pc + hc(x) (11)

is non-smooth since hc is non-smooth. The function Vc(x) is the real option value in the single problem.

2.1.3. Lifetime Problem Formulation and Notation

In addition, to having a design life of multiple decades, thermal power stations have the primary
purpose of generating energy rather than providing ancillary services. In contrast, electricity storage
technologies such as batteries have a design life of years and may be dedicated to providing ancillary
services. In this paper, we take into account the potentially limited lifespan of electricity storage by
modelling a multiplicative degradation of their storage capacity: each charge–discharge cycle reduces
the capacity by a factor A ∈ (0, 1).

We now turn to the lifetime problem. To this end, suppose that a nonnegative continuation
value ζ(x, α) is also received at the same time as action A3. It is a function of the capacity of the store
α ∈ (0, 1) and the EIM price x, and represents the future proceeds from the arrangement.

The expected net present value of action A3 is now

hζ(x, α) := Ex{e−rτ̂e
(
αKc + ζ(Xτ̂e , Aα)

)
} =

⎧⎨⎩
(
αKc + ζ(x∗, Aα)

) ψ(x)
ψ(x∗) , x < x∗,

αKc + ζ(x, Aα), x ≥ x∗,
(12)

where A ∈ (0, 1) is the multiplicative decrease of storage capacity per cycle. Here, the optimal timing
of action A2 may be non trivial due to the continuation value ζ(x, α). We will show, however, that,
for the functions ζ of interest in this paper, it is optimal to sell the reserve contract immediately after
action A1, identically as in the single problem. The timing of action A1 requires the solution of the
optimal stopping problem

T ζ(x, α) := sup
τ

Ex{e−rτ
(
− αXτ + αpc + hζ(Xτ , α)

)
1τ<∞

}
. (13)

The optimal stopping operator T makes the dependence on ζ explicit: it maps ζ onto the real
option value of a selling a single reserve contract followed by continuation according to ζ. We define
the lifetime value function V̂ as the limit

V̂(x) = lim
n→∞

(T n0)(x, 1) (14)

(if the limit exists), where T n denotes the n-fold iteration of the operator T and 0 is the function
identically equal to 0. Thus„ T n0 is the real option value of selling at most n reserve contracts under
the arrangement. (Note that a priori it may not be optimal to sell all n contracts in this case, since it is
possible to offer fewer contracts and refrain from trading afterwards by choosing τ = ∞.)

Calculation of the lifetime value function requires the analysis of a two-argument function.
We will show now that this computation may be reduced to a function of the single argument x.
Define ζ0(x, α) = 0 and ζn+1(x, α) = T ζn(x, α). We interpret ζn(x, α) as the maximum expected
wealth accumulated over at most n cycles of the actions A1–A3 when the initial capacity of the store
is α.
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Lemma 1. We have ζn(x, α) = αζ̂n(x), where ζ̂n(x) = ζn(x, 1). Moreover, ζ̂n(x) = T̂ n0(x), where

T̂ ζ̂(x) = sup
τ

Ex{e−rτ
(
− Xτ + pc + ĥζ̂(Xτ)

)
1τ<∞

}
, (15)

and

ĥζ̂(x) =

⎧⎨⎩
(
Kc + Aζ̂(x∗)

) ψ(x)
ψ(x∗) , x < x∗,

Kc + Aζ̂(x), x ≥ x∗.
(16)

Proof. The proof is by induction. Clearly, the statement is true for n = 0. Assume it is true for n ≥ 0.
Then,

ζn+1(x, α) = T ζn(x, α) = α sup
τ

Ex{e−rτ
(
− Xτ + pc +

1
α

hζn(Xτ , α)
)
1τ<∞

}
,

and
1
α

hζn(x, α) = Ex{e−rτ̂e
(
Kc +

1
α

ζn(Xτ̂e , Aα)
)}

= Ex{e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)}
.

Hence, ζn+1(x, α) = αT̂ ζ̂n(x) = αζn+1(x, 1). Consequently, ζ̂n = T̂ n0.

Assume that ζn(x, α) converges to ζ(x, α) as n → ∞. Then, clearly, ζ̂n converges to ζ̂(x) = ζ(x, 1).
It is also clear that ζ is a fixed point of T if and only if ζ̂ is a fixed point of T̂ . Therefore, we have
simplified the problem to that of finding a limit of T̂ n0(x). The stopping problem T̂ ζ̂ will be called
the normalised stopping problem and its payoff denoted by

ĥ(x, ζ̂) =

⎧⎨⎩−x + pc +
ψr(x)
ψr(x∗)

(
Kc + Aζ̂(x∗)

)
, x < x∗,

−x + pc + Kc + Aζ̂(x), x ≥ x∗.
(17)

In particular, T̂ 0 coincides with the single problem’s value function Vc.
Notation. In the remainder of this paper, a caret (hat) will be used over symbols relating to the

normalised lifetime problem:
V̂(x) = lim

n→∞
T̂ n0(x).

2.1.4. Sustainability Conditions Revisited

The sustainability conditions S1 and S2 introduced in Section 1 are our standing economic
assumptions. The next lemma, proved in the appendices, expresses them quantitatively. This makes
way for their use in the mathematical considerations below.

Lemma 2. When taken together, the sustainability conditions S1 and S2 are equivalent to the following
quantitative conditions:

S1*: supx∈(a,b) h(x) > 0, and
S2*: pc + Kc < x∗.

Notice that S1* is always satisfied when a ≤ 0.

2.2. Three Exhaustive Regimes in the Single Problem

In this section, we consider the single problem. Recall that the sustainability assumptions,
or equivalently assumptions S1* and S2*, are in force. For completeness, the notation and general
optimal stopping theory used below is presented in Appendix A.

Since the boundary a is not-exit, we have φr(a+) = ∞. When h is given by (11), the limit L of (A3)
is then

Lc := lim sup
x→a

−x
φr(x)

. (18)
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It can also be verified that the analogous constant R defined in (A4) in the appendices satisfies
R < ∞ since, by S2*, h is negative on [x∗, ∞). The following theorem completes our aim M2.

Theorem 1. (Single problem) Assume that conditions S1* and S2* hold. With the definition (18), there are
three exclusive cases:

(A) Lc ≤ h(x)
φr(x) for some x =⇒ there is x̂ < x∗ that maximises h(x)

φr(x) , and then, for x ≥ x̂, τx̂ is optimal, and

Vc(x) = φr(x)
h(x̂)
φr(x̂)

, x ≥ x̂. (19)

(B) ∞ > Lc >
h(x)
φr(x) for all x =⇒ Vc(x) = Lc φr(x) and there is no optimal stopping time.

(C) Lc = ∞ =⇒ Vc(x) = ∞ and there is no optimal stopping time.

Moreover, in cases A and B, the value function Vc is continuous.

Proof. By condition S1*, h(y) is positive for some y ∈ I and the value function Vc(x) > 0. For case A,
note first that the function h is negative on [x∗, b) by S2*, see (9) and (11). Therefore, the supremum
of h

φr
is positive and must be attained at some (not necessarily unique) x̂ ∈ (a, x∗). The optimality of

τx̂ for x ≥ x̂ then follows from Lemma A1. Case B follows from Lemma A2 and the fact that Lc > 0.
Lemma A2 proves case C. The continuity of Vc follows from Lemma A3.

The optimal strategy in case A is of a threshold type. When an arbitrary threshold strategy τx̃ is
used, the resulting expected value for x ≥ x̃ is given by φr(x)h(x̃)/φr(x̃). Figure 2 (whose problem
data fall into case A) shows the potentially high sensitivity of the expected value of discounted cash
flows for the single problem with respect to the level of the threshold x̃. It is therefore important in
general to identify the optimal threshold accurately.

Figure 2. Sensitivity of the expected value in the single problem with respect to the stopping boundary.
The EIM price is modelled as an Ornstein-Uhlenbeck process dXt = 3.42(47.66− Xt)dt + 30.65dWt

(time measured in days, fitted to Elexon Balancing Mechanism price half-hourly data from July 2011
to March 2014). The interest rate r = 0.03, power delivery level x∗ = 60, the initial premium pc = 10,
and the utilisation payment Kc = 40. The initial price is X0 is set equal to x∗.

We now show that, for commonly used diffusion price models, it is case A in the above theorem
which is of principal interest. This is due to the mild sufficient conditions established in the following
lemma which are satisfied, for example, by the examples in Section 3. Although condition 2(b)
in Lemma 3 is rather implicit, it may be interpreted as requiring that the process X does not
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‘escape relatively quickly to −∞’ (see Appendix D for a further discussion and examples) and it
is satisfied, for example, by the Ornstein-Uhlenbeck process.

Lemma 3. If condition S1∗ holds, then:

1. The equality Lc = 0 implies case A of Theorem 1.
2. Any of the following conditions is sufficient for Lc = 0:

(a) a > −∞,
(b) a = −∞ and limx→−∞

x
φr(x) = 0.

Proof. Condition S1∗ ensures that h takes positive values. Hence, the ratio h(x)
φr(x) > 0 = Lc for some x.

For assertion 2(a), recall from Section 2 that φr(a+) = ∞ since the boundary a is not-exit. Then, we
have Lc = lim supx→a(−x)/φr(x) = 0 as a > −∞. In 2(b), the equality Lc = 0 is immediate from the
definition of Lc.

Turning now to aim M1, we have

Corollary 1. In the setting of Theorem 1 for the single problem, either

(a) the quantity

x̌ := max

{
x ∈ I :

h(x)
φr(x)

= sup
y∈I

h(y)
φr(y)

}
(20)

is well-defined, i.e., the set is non-empty. Then, x̌ is the highest price at which the battery operator may buy
energy when acting optimally, and we have x̌ < x∗ (this is case A); or

(b) there is no price at which it is optimal for the battery operator to purchase energy. In this case, the single
problem’s value function may either be infinite (case C) or finite (case B).

Proof. (a) Since the maximiser x̂ in case A of Theorem 1 is not necessarily unique, the set in (20) may
contain more than one point. Since h and φr are continuous and all maximisers lie to the left of x∗,
this set is closed and bounded from above, so x̌ is well-defined and a maximiser in case A. For any
stopping time τ with Px{Xτ > x̌} > 0, it is immediate from assertion 3 of Lemma A1 that τ is not
optimal for the problem Vc(x), x ≥ x̌. Part (b) follows directly from cases B and C of Theorem 1.

Corollary 1 confirms that it is optimal for the battery operator to buy energy only when the EIM
price is strictly lower than the price x∗ which would trigger immediate power delivery to the system
operator. Thus, the battery operator (when acting optimally) does not directly conflict with the system
operator’s balancing actions.

2.3. Two Exhaustive Regimes in the Lifetime Problem

Turning to the lifetime problem, we begin by letting ζ̂(x) in definition (16) be a general
nonnegative continuation value depending only on the EIM price x, and studying the normalised
stopping problem (15) in this case (the payoff ĥ is therefore defined as in (17)).

We now wish to study the value of n cycles A1–A3, and hence the lifetime value, by iterating the
operator T̂ . To justify this approach, it is necessary to check the timing of action A2 in the lifetime
problem. With the actions A1–A3 defined as in Section 1.1, recall that the timing of action A2 is trivial
in the single problem: after A1 it is optimal to perform A2 immediately. Lemma A5, which may be
found in Appendix B, confirms that the same property holds in the lifetime problem.

We may now provide the following answer to objective M1 for the lifetime problem.

Corollary 2. Assume that conditions S1* and S2* hold. In the lifetime problem with ζ̂ = V̂, either:
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(a) the quantity

x̌ := max

{
x ∈ I :

ĥ(x, ζ̂)

φr(x)
= sup

y∈I

ĥ(y, ζ̂)

φr(y)

}
(21)

is well-defined, i.e., the set is non-empty. Then, x̌ is the highest price at which the battery operator
can buy energy when acting optimally in the lifetime problem, and we have x̌ < x∗ (cases 1 and 2a in
Lemma A4 in Appendix B); or

(b) there is no price at which it is optimal for the battery operator to purchase energy. In this case, the lifetime
value function may either be infinite (case 3) or finite (case 2b in Lemma A4 in Appendix B).

Proof. The proof proceeds exactly as that of Corollary 1 with the exception of showing that x̌ < x∗

(this is because Lemma A4 in the appendices, which characterises the possible solution types in the
lifetime problem, does not guarantee the strict inequality x̌ < x∗). Assume then x̌ = x∗. At the EIM
price Xt = x̌ = x∗, the power delivery to the system operator is immediately followed by the purchase
of energy by the battery operator and this cycle can be repeated instantaneously, arbitrarily many times.
However, since each such cycle is loss making for the battery operator by condition S2∗, this strategy
would lead to unbounded losses almost surely in the lifetime problem started at EIM price x∗ leading
to V̂(x∗) = −∞. This would contradict the fact that V̂ > 0, so we conclude that x̌ < x∗.

Pursuing aim M2, we will show now that there are two regimes in the lifetime problem: either the
lifetime value function is strictly greater than the single problem’s value function (and the cycle A1–A3
is repeated infinitely many times), or the lifetime value equals the single problem’s value. Although
the latter case appears counterintuitive, it is explained by the fact that the lifetime problem’s value
is then attained only in the limit when the purchase of energy (action A1) is made at a decreasing
sequence of prices converging to a, the left boundary of the process (Xt). In this limit, the benefit of
future payoffs becomes negligible, equating the lifetime value to the single problem’s value.1

Theorem 2. There are two exclusive regimes:

(α) V̂(x) > Vc(x) for all x ≥ x∗,
(β) V̂(x) = Vc(x) for all x ≥ x∗ (or both are infinite for all x).

Moreover, in regime (α), an optimal stopping time exists when the continuation value is ζ̂ = ζ̂n = T̂ n0

for n > 0 (that is, for a finite number of reserve contracts), and when ζ̂ = V̂ (for the lifetime value function).

Proof. We take the continuation value ζ̂ = Vc in Lemma A4 from Appendix B and consider separately
its cases 1, 2a, 2b and 3. Firstly, in case 3, we have Vc = ∞, implying that also V̂ = ∞ and we have
regime (β).

Case 2 of Lemma A4 corresponds to case B of Theorem 1, when there is no optimal stopping time
in the single problem and Vc(x) = Lcφr(x) for all x ∈ I. Considering first case 2b and defining ζ̂n as in
Lemma A6 in Appendix B, it follows that ζ̂2(x) = Lcφr(x) = Vc(x) for x ∈ I and consequently V̂ = Vc,
which again corresponds to regime (β).

In case 2a of Lemma A4, suppose first that the maximiser x̂ ≤ x∗ is such that ĥ(x̂,ζ̂1)
φr(x̂) = Lc. Then, for

x ≥ x∗ ≥ x̂, we have ζ̂2(x) = φr(x) ĥ(x̂,ζ̂1)
φr(x̂) = Lcφr(x), which also yields regime (β). On the other hand,

when ĥ(x̂,ζ̂1)
φr(x̂) > Lc, we have for x ≥ x∗ ≥ x̂ that ζ̂2(x) = φr(x) ĥ(x̂,ζ̂1)

φr(x̂) > Lcφr(x) = ζ̂1(x), and so regime

(α) applies by the monotonicity of the operator T̂ . From the definition of ĥ in (17), and holding the

point x̂ ≤ x∗ constant, this monotonicity implies that ĥ(x̂,ζ̂n)
φr(x̂) > Lc for all n > 1 and that ĥ(x̂,V̂)

φr(x̂) > Lc.

1 If the lifetime value is infinite then so is the single problem’s value and they are equal in this sense. When the lifetime value
is zero then it is optimal not to enter the contract, and so the single problem’s value is also zero.
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We conclude that case 2a of Lemma A4 applies (rather than case 2b) for a finite number of reserve
contracts and also in the lifetime problem.

Considering now the maximiser x̂ defined in case 1 of Lemma A4, we have for x ≥ x∗ ≥ x̂ that

ζ̂2(x) = φr(x)
ĥ(x̂, ζ̂1)

φr(x̂)
≥ ĥ(x̂0, ζ̂1)

φr(x̂0)
>

ĥ(x̂0, 0)

φr(x̂0)
= ζ̂1(x) = Vc(x),

and regime (α) again follows by monotonicity. In addition, trivially, case 1 of Lemma A4 applies for
ζ̂ = ζ̂n and ζ̂ = V̂.

The following corollary follows immediately from the preceding proof.

Corollary 3. Regime (β) holds if and only if T̂ 20(x) = T̂ 0(x) for all x ≥ x∗.

To address the implicit nature of our answers to M1 and M2 for the lifetime problem, in the next
section, we provide results for the construction and verification of the lifetime value function and
corresponding stopping time. For this purpose, we close this section by summarising results obtained
above (making use of additional results from Appendix C).

Theorem 3. In the setting of Theorem 2, assume that regime (α) holds. Then, the lifetime value function V̂ is
continuous, is a fixed point of the operator T̂ and T̂ n0 converges to V̂ exponentially fast in the supremum norm.
Moreover, there is x̌ < x∗ such that τx̌ is an optimal stopping time for T̂ V̂(x) when x ≥ x̌ and, furthermore,
x̌ is the highest price at which the battery operator can buy energy when acting optimally.

2.4. Construction of the Lifetime Value Function

In this section, we discuss a numerical procedure for solution of the lifetime problem. It is based
on the problem’s structure as summarised in Theorem 3. Lemma 4 provides a means of constructing
the lifetime value function, together with the value x̌ of Theorem 3, using a one-dimensional search.
We assume that regime (α) of Theorem 2 holds.

In the circumstance when the above procedure is not followed, complementary findings in
Appendix E enable one to verify if a candidate buy price x̂ is optimal for the lifetime problem.

Lemma 4. The lifetime value function evaluated at x∗ satisfies

V̂(x∗) = max
z∈(a,x∗)

y(z), (22)

where

y(z) :=
−z + pc +

ψr(z)
ψr(x∗)Kc

φr(z)
φr(x∗) −

ψr(z)
ψr(x∗) A

. (23)

Proof. Fix z ∈ (a, x∗). In the normalised lifetime problem of Section 2.1.3, suppose that the strategy τz

is used for each energy purchase. Writing y for the total value of this strategy under Px∗ , by construction
we have the recursion

y =
φr(x∗)
φr(z)

(
− z + pc +

ψr(z)
ψr(x∗)

(
Kc + Ay

))
.

Rearranging, we obtain (23). By Theorem 3, there exists an optimal strategy τx̌ of the above form
under Px∗ and (22) follows.

Hence, under Px∗ , an optimal stopping level x̂ can be found by maximising y(z) over z ∈ (a, x∗).
The value x̌ of Theorem 3 is given by x̌ = max{x : y(x) = maxz∈(a,x∗) y(z)}.
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3. Results

The general theory presented above provides optimal stopping times for initial EIM prices x ≥ x̌,
where x̌ is the highest price at which the battery operator can buy energy optimally. In this section,
for specific models of the EIM price, we derive optimal stopping times for all possible initial EIM prices
x ∈ I when the sustainability conditions S1* and S2* hold. In the examples of this section, the stopping
sets Γ for the single and lifetime problems take the form (a, x̌] although, in general, stopping sets may
have much more complex structure. Interestingly, the stopping sets for the single and lifetime problem
are either both half-lines or both compact intervals.

Note that condition S2* is ensured by the explicit choice of parameters. Verification of condition
S1∗ is straightforward by checking, for example, if the left boundary a of the interval I satisfies
a < pc + limx→a

ψr(x)
ψr(x∗)Kc, i.e., that lim supx→a h(x) > 0. In particular, S1∗ always holds if a = −∞.

Our approach is to combine the above general results with the geometric method drawn from
Section 5 of Dayanik and Karatzas (2003). Although Proposition 5.12 of the latter paper gives results
for natural boundaries, we note that the same arguments apply to entrance-not-exit boundaries.
In particular, we construct the least concave majorant W of the obstacle H : [0, ∞)→ R, where

H(y) :=

⎧⎨⎩
ĥ(F−1(y),ζ̂)
φr(F−1(y)) , y > 0,

lim supx→a
ĥ(x,ζ̂)
φr(x) = Lc, y = 0

(24)

(the latter equality was given in (A5) in the appendices). Here, the function F(x) = ψr(x)/φr(x) is
strictly increasing with F(a+) = 0. Writing Γ̂ for the set on which W and H coincide, under appropriate
conditions, the smallest optimal stopping time is given by the first hitting time of the set Γ := F−1(Γ̂)
(Dayanik and Karatzas 2003, Propositions 5.13 and 5.14).

The Ornstein-Uhlenbeck (OU) process is a continuous-time stochastic process with dynamics

dXt = θ(μ− Xt)dt + σdWt, (25)

where θ, σ > 0 and μ ∈ R. It has two natural boundaries, a = −∞ and b = ∞. This process
extends the scaled Brownian motion model by introducing a mean reverting drift term θ(μ− Xt)dt.
The mean reversion is commonly observed in commodity price time series and may have several
causes (Lutz 2009). In the present context, the mean reversion can also be interpreted as the impact
on prices of the system operator’s corrective balancing actions. Appendix F collects some useful facts
about the Ornstein-Uhlenbeck process. In particular, when constructing W, it is convenient to note
that H′′ ◦ F has the same sign as (L− r)h, where L is the infinitesimal generator of X defined as in
Appendix F.

3.1. OU Price Process

Assume now that the EIM price follows the OU process (25) so that Lc = 0 (see Equation (A19)
in Appendix F) and, by Lemma 3, case A of Theorem 1 applies. We are able to deal with the single
and lifetime problems simultaneously by setting ζ̂ equal to 0 for the single problem and equal to
(the positive function) V̂ in the lifetime problem. The results of Sections 2.2 and 2.3 yield that, in both
problems, the right endpoint of the set Γ̂ equals F(x̌) for some ∞ < x̌ < x∗. Furthermore, since ψr is a
solution to (L− r)v = 0 and since x̌ < x∗, for x ≤ x∗, we have

(L− r)ĥ(x, ζ̂) = (L− r)
(
− x + pc +

ψr(x)
ψr(x∗)

(
Kc + Aζ̂(x∗)

))
(26)

= (L− r)(−x + pc) (27)

= (r + θ)x− rpc − θμ. (28)
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Therefore, the function (L − r)ĥ(·, ζ̂) is negative on (−∞, B0) and positive on (B0, ∞),
where B0 = rpc+θμ

r+θ . This implies that H is strictly concave on (0, F(B0)) and strictly convex on
(F(B0), ∞). Since the concave majorant W of H cannot coincide with H in any point of convexity,
so necessarily x̌ < B0 and H is concave on (0, F(x̌)). Hence, we conclude that W is equal to H on the
latter interval and so Γ = (−∞, x̌].

3.2. General Mean-Reverting Processes

The above reasoning can be extended to mean-reverting processes with general volatility

dXt = θ(μ− Xt)dt + σ(Xt)dWt

for a measurable function σ such that the above equation admits a unique solution, cf. Section 2, and
Lc = 0 (cf. (24)). Recall that we assume that (Xt) has two non-exit boundaries a, b (natural or
entrance-not-exit boundaries) satisfying a < x∗ < b. Since L = θ(μ − x) d

dx + 1
2 σ2(x) d2

dx2 ,
Equations (26)–(28) still apply. In particular, we see that the diffusion coefficient σ(·) does not affect
the sign of (28) and thus does not influence the concavity properties of H on (0, F(x∗)). Proceeding
as above, we argue that case A of Theorem 1 applies and the single and lifetime problems can be
solved simultaneously. Particularly, the largest buy price is given by a < x̌ < x∗ (different for the
single and lifetime problems). Note that the form of the stopping set is purely determined by μ, θ, the
left boundary a and the initial premium pc. Obviously, the mean price level μ satisfies μ > a because a
is an unreachable boundary.

Lemma 5. If pc > a, then the stopping sets for the single and lifetime problems are of the form Γ = (a, x̌].

Proof. The same arguments as in the OU case are directly applicable to the present setting and,
under the assumptions of the lemma, we have B0 = rpc+θμ

r+θ > a. Hence, for each problem, the stopping
set has the form Γ = (a, x̌] for some x̌ < B0.

In the particular case of the CIR model (Cox et al. 1985)

dXt = θ(μ− Xt)dt + σ
√

XtdWt, (29)

we have a = 0, b = ∞. Then:

Corollary 4. If X is the CIR process (29) with 2θμ ≥ σ2 and μ > 0, then the boundary a = 0 is
entrance-not-exit. Furthermore, if pc > 0, then the stopping sets for the single and lifetime problems are
of the form Γ = (0, x̌].

Proof. It follows from (Cox et al. 1985, p. 391) that the condition 2θμ ≥ σ2 is necessary and sufficient
for the boundary 0 to be entrance-not-exit. By Lemma 3, we have Lc = 0. An application of
Lemma 5 concludes.

Remark 1. More generally, suppose that the imbalance price process follows

dXt = θ(μ− Xt)dt + σXγ
t dWt

for some γ > 0.5. Then, the left boundary a = 0 is entrance-not-exit for any choice of parameters θ, μ, σ > 0
since the scale function p given in (3) converges to negative infinity at 0. Therefore, the arguments in the above
corollary apply and the stopping sets for the single and lifetime problems are also of the form Γ = (0, x̌].
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3.3. Shifted Exponential Price Processes

In order to first recover and then generalise previously obtained results (Moriarty and Palczewski
2017), take the following shifted exponential model for the price process:

f (z) := D + debz, (30)

Xt = f (Zt), (31)

where Z is a regular one-dimensional diffusion with non-exit (natural or entrance-not-exit) boundaries
aZ and bZ (we will use the superscripts X and Z where necessary to emphasise the dependence on the
stochastic process). The idea is that Z models the physical system imbalance process while f represents
a price stack of bids and offers which is used to form the EIM price. In this case, the left boundary for X
is a = f (aZ) ≥ D and, by Lemma 3, Lc = 0 and case A of Theorem 1 applies. Rather than working
with the implicitly defined process X, however, we may work directly with the process Z by setting:

z∗ := f−1(x∗), (32)

h f (z) := − f (z) + pc +

⎧⎨⎩
ψZ

r (z)
ψZ

r (z∗)
Kc, z < z∗,

Kc, z ≥ z∗,
(33)

ĥ f (z, ζ̂) :=

⎧⎨⎩− f (z) + pc +
ψZ

r (z)
ψZ

r (z∗)

(
Kc + Aζ̂(z∗)

)
, z < z∗,

− f (z) + pc + Kc + Aζ̂(z), z ≥ z∗,
(34)

and modifying the definitions for T , T̂ , Vc and V̂ accordingly. We then have

Theorem 4. Taking definitions (30) and (32)–(34), assume that conditions S1* and S2* hold. Then,

Lc := lim sup
z→aZ

− f (z)
φZ

r (z)
= 0.

In addition:

(i) (Single problem) There exists ẑ < z∗ that maximises
h f (z)
φZ

r (z)
, the stopping time τẑ is optimal for z ≥ ẑ, and

Vc(z) = φZ
r (z)

h f (ẑ)
φZ

r (ẑ)
, z ≥ ẑ.

(ii) (Lifetime problem) The lifetime value function V̂ is continuous and a fixed point of T̂ . There exists

z̃ ∈ (ẑ, z∗) which maximises ĥ(z,V̂)

φZ
r (z)

and τz̃ is an optimal stopping time for z ≥ z̃ with

V̂(z) = T̂ V̂(z) = φZ
r (z)

ĥ(z̃, V̂)

φZ
r (z̃)

, z ≥ z̃.

Proof. The proof follows from the one-to-one correspondence between the process X and the process
Z, and direct transfer from Theorems 1 and 3.

In some cases, explicit necessary and/or sufficient conditions for S1∗ may be given in terms of the
problem parameters. Assume that aZ = −∞ as in the examples studied below. If pc > D and Kc ≥ 0,
this is sufficient for the condition S1∗ to be satisfied as then h f (z) ≥ − f (z) + pc > 0 for sufficiently
small z. When pc = D and Kc > 0, it is sufficient to verify that ebz = o

(
ψZ

r (z)
)

as z → −∞ since
then h f (z) = −debz + ψZ

r (z)Kc/ψZ
r (z∗) for z < z∗. On the other hand, our assumption that S1∗ holds

necessarily excludes parameter combinations with pc − D = Kc = 0, since the reserve contract writer
then cannot make any profit because h f (z) ≤ 0 for all z.
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In Section 3.3.1, we take Z to be the standard Brownian motion and recover results from the single
problem of Moriarty and Palczewski (2017) (the lifetime problem is formulated differently in the latter
reference, where degradation of the store is not modelled). In Section 3.3.2, we generalise to the case
when Z is an OU process.

3.3.1. Brownian Motion Imbalance Process

When the imbalance process Z = W, the Brownian motion, we have

(L− r)ĥ f (z, ζ̂) = (L− r)(− f (z) + pc) = debz
{

r− 1
2

b2
}
+ r(D− pc).

We have several cases depending on the sign of (D− pc) and (r− 1
2 b2).

1. Assume first that r > 1
2 b2:

(i) We may exclude the subcase pc ≤ D, since then H(y) = ĥ(z,ζ̂)
φZ

r (z)
|z=(FZ)−1(y) is strictly convex

on (0, FZ(z∗)) for any ζ̂ and Γ cannot intersect this interval, contradicting Theorem 4 and,
consequently, violating S1∗ or S2∗.

(ii) If pc > D, H is concave on (0, FZ(B)) and convex on (FZ(B), ∞), where

B =
1
b

log

(
r(pc − D)

d(r− 1
2 b2)

)
.

By Theorem 4 and the positivity of H on (0, FZ(ẑ)), we have Γ = (−∞, ẑ] and Γ = (−∞, z̃]
for the single and lifetime problems, respectively, with z̃ < ẑ < B.

2. Suppose that r < 1
2 b2.

(i) When pc ≥ D, the function H is concave on (0, ∞). Hence, the stopping sets Γ for single and
lifetime problems have the same form as in case 1(ii) above.

(ii) If pc < D, the function H is convex on (0, FZ(B)) and concave on (FZ(B), ∞). The set Γ must
then be an interval, respectively [ẑ0, ẑ] and [z̃0, z̃]. For explicit expressions for the left and
right endpoints for the single problem, as well as sufficient conditions for S1∗, the reader is
refered to Moriarty and Palczewski (2017).

3. In the boundary case r = 1
2 b2, the convexity of H is determined by the sign of the difference

D− pc. As above, the possibility D > pc is excluded since then H is strictly convex. Otherwise,
H is concave and the stopping sets Γ have the same form as in case 1(ii) above.

3.3.2. OU Imbalance Process

When Z is the Ornstein-Uhlenbeck process, by adjusting d and b in the price stack function f
(see (30)), we can restrict our analysis to the OU process with zero mean and unit volatility, that is:

dZt = −θZtdt + dWt.

Then, for z < z∗,

(L− r)ĥ f (z, ζ̂) = (L− r)(− f (z) + pc) (35)

= debz
{

b
(

θz− 1
2

b
)
+ r

}
+ r(D− pc) =: η(z). (36)
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Differentiating η, we obtain

η′(z) = dbθebz

(
bz + 1 +

r− 1
2 b2

θ

)
,

which has a unique root at z� = 1
b

( 1
2 b2−r

θ − 1
)

. The function η decreases from r(D− pc) at −∞ until

η(z�) = −debz�θ + r(D− pc) at z� and then increases to positive infinity.

1. If pc ≥ D, then the function η is negative on (−∞, u), where u is the unique root of η. Hence, H is
concave on (0, FZ(u)) and convex on (FZ(u), ∞). The stopping sets Γ for the single and lifetime
problems must then be of the form (−∞, ẑ] and (−∞, z̃], respectively, cf. case 1(ii) in Section 3.3.1.

2. The case pc < D is more complex:

(i) Let z� ≥ z∗. We exclude the possibility η(z∗) ≥ 0, since then the function H is convex on
(0, FZ(z∗)) and the set Γ has empty intersection with this interval, contradicting Theorem 4
and, consequently, violating S1∗ or S2∗. When η(z∗) < 0, H is convex on (0, FZ(u))
and concave on (FZ(u), FZ(z∗)), where u is the unique root of η on (0, z∗). Therefore,
the stopping sets Γ for the single and lifetime problems are of the form [ẑ0, ẑ] and [z̃0, z̃],
respectively, with min(ẑ0, z̃0) > u, cf. case 2(ii) in Section 3.3.1.

(ii) Consider now z� < z∗. As above, we exclude the case η(z�) ≥ 0, since then H is
convex on (0, FZ(z∗)). The remaining case η(z�) < 0 implies that the stopping sets Γ
have the same form as in case 2(i) above, as H is convex and then concave if η(z∗) ≤ 0,
and convex–concave–convex if η(z∗) > 0.

4. Benchmark Case Study and Economic Implications

In this section, we use a case study to draw qualitative implications from the above results. An OU
model is assumed, which captures both the mean reversion and random variability present in EIM
prices, and is fitted to relevant data. The interest rate is taken to be 3% per annum, and the degradation
factor for the store to be A = 0.9999.

Our data is the ‘balancing group price’ from the German Amprion system operator, which is
available for every 15 min period (AMPRION 2016). Summary statistics for the period from 1 June
2012 to 31 May 2016 are presented in Table 1. To address the issue of its extreme range, which impacts
the fitting of both volatility and mean reversion in the OU model, the data was truncated at the values
−150 and 150. The parameters obtained by maximum likelihood fitting were then θ = 68.69 (the rate
of mean reversion), σ = 483.33 (the volatility), μ = 30.99 (the mean-reversion level). The effect of the
truncation step was to approximately halve the fitted volatility.

Table 1. Summary statistics for the 15 min balancing group price per MWh in the German Amprion
area, 1 June 2012 to 31 May 2016.

Min. 1st Qu. Median Mean 3rd Qu. Max.

−6002.00 0.27 33.05 31.14 66.97 6344.00

The left panel of Figures 3 and 4 show the lifetime value V̂(x∗), while the right panel of Figure 3
plots the stopping boundary x̌, which is the maximum price at which the battery operator can buy
energy optimally. These values of x̌ are significantly below the long-term mean price D, indeed the
former value is negative while the latter is positive. Thus, in this example, the battery operator
purchases energy when it is in excess supply, further contributing to balancing. To place the negative
values on the stopping boundary in Figure 3 in the statistical context, recall from Table 1 that the first
quartile of the price distribution is approximately zero. Indeed, negative energy prices usually occur
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several times per day in the German EIM. In the present dataset of 1461 days, there are only 11 days
without negative prices and the longest observed time between negative prices is 41.5 h.

Figure 3. Results obtained with the Ornstein-Uhlenbeck model fitted in Section 4, as functions of
the total premium, with interest rate 3% per annum. Solid lines: x∗ = 100, dotted: x∗ = 75, dashed:
x∗ = 50. Left: lifetime value V̂(x∗). Right: the stopping boundary x̌, the maximum price for which the
battery operator can buy energy optimally.

Figure 4. Lifetime value V̂(x∗) as a function of x∗ with the Ornstein-Uhlenbeck model fitted in Section 4,
with interest rate 3% per annum. Dashed line: pc + Kc = 20, solid: pc + Kc = 30, dotted: pc + Kc = 40,
mixed: pc + Kc = 50. The horizontal grey line indicates the current price of lithium-ion battery storage
per MWh (IRENA 2017, Figure 33).

We make the following empirical observations. Firstly, defining the total premium as the sum
pc + Kc, altering its distribution between the initial premium pc (which is received at x = x̌) and the
utilisation payment Kc (which is received at x = x∗) results in insignificant changes to the graphs,
with relative differences on the vertical axes of the order 10−3 (data not shown). It is for this reason
that the figures are indexed by the total premium pc + Kc rather than by individual premia. Secondly,
it is seen from the right-hand panel of Figure 3 that the (negative valued) stopping boundary increases
with the total premium, making exercise more frequent. Thus, as the total premium increases, both the
frequency and size of the cashflows increase, yielding a superlinear relationship in the left-hand panel
of Figure 3. This superlinearity is not very pronounced since the stopping boundary is relatively
insensitive to the total premium in the range presented in the graphs (see the right hand panel), so that
the lifetime value is driven principally by the size of the cashflows. Thirdly, the grey horizontal line of
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Figure 4 is placed at a level indicative of recent costs for lithium-ion batteries per MWh (megawatt
hour). Thus, the investment case for battery storage providing reserve is significantly positive for a
wide range of the contract parameters. Finally, the contours in Figure 4 have an S-shape, the marginal
influence of x∗ being smaller in the range x∗ < 110 and larger for greater values of x∗ (with the
marginal influence eventually decreasing again in the limit of large x∗).

These phenomena are explained by the presence of mean reversion in the OU price model.
The timings of the cashflows to the battery operator are entirely determined by the successive passage
times of the price process between the levels x∗ and x̌. These passage times are relatively short on
average for the fitted OU model. This means that the premia are received at almost the same time under
each reserve contract, and it is the total premium which drives the real option value. Furthermore,
the passage times between x∗ and x̌ may be decomposed into passage times between x∗ and D,
and between D and x̌. Since the OU process is statistically symmetric about D, let us compare the
distances |x̌− D| and |x∗ − D|. From Figure 3, we have x̌ ≈ −70 so that |x̌− D| ≈ 100. Therefore,
for x∗ < 110, we have |x∗ − D| � |x̌− D| and the passage time between D and x̌, which varies little,
dominates that between x∗ and D. Correspondingly, we observe in Figure 4 that the value function
changes relatively little as x∗ varies below 110. Conversely, as x∗ increases beyond 110, it is the distance
between x∗ and D which dominates, and the value function begins to decrease relatively rapidly.

These results provide insights into the suitability of the considered arrangement for correcting
differing levels of imbalance. As the distance between x∗ and the mean level D grows, the energy price
reaches x∗ significantly less frequently and the reserve contract starts to provide insurance against rare
events, resulting in infrequent power delivery and low utilisation of the battery. These observations
suggest that the contractual arrangement studied in this paper is more suitable for the frequent
balancing of less severe imbalance. In contrast, the more rapid reduction in the lifetime value for
large values of x∗ suggests that such arrangements based on real-time markets are not suitable for
balancing relatively rare events such as large system disturbances due to unplanned outages of large
generators. The system operator may prefer to use alternative arrangements, based, for example,
on fixed availability payments, to provide security against such events.

5. Conclusions

In this paper, we investigate the procurement of operating reserve from energy-limited storage
using a sequence of physically covered incremental reserve contracts. This leads to the pricing of a
real perpetual American swing put option with a random refraction time. We model the underlying
energy imbalance market price as a general linear regular diffusion, which, in particular, is capable of
modelling the mean reversion present in imbalance prices. Both the optimal operational policy and
the real option value of the store are characterised explicitly. Although the solutions are generally not
available in an analytical form, we have provided a straightforward procedure for their numerical
evaluation together with empirical examples from the German energy imbalance market.

The results of the lifetime analysis in particular have both managerial implications for the battery
operator and policy implications for the system operator. From the operational viewpoint, under
the setup described in Section 1.1, we have established that the battery operator should purchase
energy as soon as the EIM price falls to the level x̌, which may be calculated as described in Section 2.4.
Furthermore, the battery operator should then sell the reserve contract immediately. Our real options
valuation may be taken into account when deciding whether to invest in an energy store, and whether
to sell such reserve contracts in preference to trading in other markets (for example, performing price
arbitrage in the spot energy market).

Turning to the perspective of the system operator, we have demonstrated that the proposed
arrangement can be mutually beneficial to the system operator and battery operator. More precisely,
the system operator can be protected against guaranteed financial losses from the incremental capacity
contract purchase while the battery operator has a quantifiable profit. The analysis also provides
information on feedback due to battery charging by determining the highest price x̌ at which the battery
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operator buys energy, hence identifying conditions under which the battery operator’s operational
strategy is aligned with system stability.

We address incremental reserve contracts, which are particularly valuable to the system operator
when the margin of electricity generation capacity over peak demand is low. Decremental reserve may
also be studied in the above framework, although the second stopping time (action A2) is non-trivial,
which leads to a nested stopping problem beyond the scope of the present paper. Furthermore, we
assume that the energy storage unit is dedicated to providing incremental reserve contracts, so that
the opportunity costs of not operating in other markets or providing other services are not modelled.
The extension to a finite expiry time, the lifetime analysis with decremental reserve contracts, and also
the opportunity cost of not operating in other markets would be interesting areas for further work.

The methodological advances of this paper reach beyond energy markets. In particular, they are
relevant to real options’ analyses of storable commodities where the timing problem over the lifetime
of the store is of primary interest. The lifetime analysis via optimal stopping techniques, developed
in Section 2.3, provides an example of how timing problems can be addressed for rather general
dynamics of the underlying stochastic process. In this context, we provide an alternative method to
quasi-variational inequalities, which are often dynamics-specific and technically more involved.
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Appendix A. Lemmas and Proofs from Section 2

The following three lemmas classify solutions to the stopping problem (7). Note that,
if supx ϑ(x) ≤ 0, then no choice of the stopping time τ gives a value function greater than 0.
The optimal stopping time in this case is given by τ = ∞. In what follows, we therefore assume

sup
x∈(a,b)

ϑ(x) > 0. (A1)

These results can be derived from Beibel and Lerche (2000); however, for the convenience of the
reader, we provide simple proofs.

Lemma A1. Assume that there exists x̂ ∈ I which maximises ϑ(x)/φr(x) over I. Then, the value function
v(x) is finite for all x, and for x ≥ x̂:

1. the stopping time τx̂ is optimal,

2. v(x) =
ϑ(x̂)
φr(x̂)

φr(x),

3. any stopping time τ with Px{ϑ(Xτ)/φr(Xτ) < ϑ(x̂)/φr(x̂)
}

> 0 is strictly suboptimal for the
problem v(x).

Proof. Since φr is r-excessive (Borodin and Salminen 2012, Sec. II.5), for any finite stopping time τ

Ex{e−rτφr(Xτ)} ≤ φr(x).

Let now τ be a stopping time taking possibly infinite values. Let bn be an increasing sequence
converging to b with b1 > x, the initial point of the process X. Then, τbn is an increasing sequence of
stopping times converging to infinity and
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φr(x) ≥ lim inf
n→∞

Ex{e−r(τ∧τbn )φr(Xτ∧τbn
)}

≥ Ex{lim inf
n→∞

e−r(τ∧τbn )φr(Xτ∧τbn
)} = Ex{e−rτφr(Xτ)1τ<∞},

where φr(b−) = 0 was used in the last equality.
For any stopping time τ,

Ex{e−rτϑ(Xτ)1τ<∞} = Ex
{

e−rτφr(Xτ)
ϑ(Xτ)

φr(Xτ)
1τ<∞

}
≤ ϑ(x̂)

φr(x̂)
Ex{e−rτφr(Xτ)1τ<∞

}
≤ ϑ(x̂)

φr(x̂)
φr(x),

(A2)

where the final inequality follows from the first part of the proof and (A1) (so ϑ(x̂)
φr(x̂) > 0). Hence, v(x)

is finite for all x ∈ I. To prove claim 1, note from (6) that for x ≥ x̂ the upper bound is attained by τx̂,
which is therefore an optimal stopping time in the problem v(x). The assumption on τ in claim 3 leads
to strict inequality in (A2), making τ strictly suboptimal in the problem v(x).

It is convenient to introduce the notation

L := lim sup
x→a

ϑ(x)+

φr(x)
. (A3)

Lemma A2 corresponds to cases when there is no optimal stopping time, but the optimal value
can be reached in the limit by a sequence of stopping times.

Lemma A2.

1. If L = ∞, then the value function is infinite and there is no optimal stopping time.

2. If L < ∞ and L > ϑ(x)/φr(x) for all x ∈ I, then there is no optimal stopping time and the value function
equals v(x) = Lφr(x).

Proof. Assertion 1. Fix any x ∈ I. Then, for any x̂ < x, we have

Ex{e−rτx̂ ϑ(Xτx̂ )} = ϑ(x̂)
φr(x)
φr(x̂)

,

which converges to infinity for x̂ tending to a over an appropriate subsequence. Since the process is
recurrent, the point x can be reached from any other point in the state space with positive probability
in a finite time. This proves that the value function is infinite for all x ∈ I.

Assertion 2. Recall that, due to the supremum of ϑ
φr

being strictly positive, we have L > 0.
From the proof of Lemma A1, for an arbitrary stopping time τ, we have

Ex{e−rτϑ(Xτ)1τ<∞} = Ex{e−rτφr(Xτ)
ϑ(Xτ)

φr(Xτ)
1τ<∞} < LEx{e−rτφr(Xτ)1τ<∞} ≤ Lφr(x).

However, one can construct a sequence of stopping times that achieves this value in the limit.
Take xn such that limn→∞ ϑ(xn)/φr(xn) = L and define τn = τxn . Then,

lim
n→∞

Ex{e−rτn ϑ(Xτn)} = lim
n→∞

ϑ(xn)
φr(x)
φr(xn)

= φr(x)L,

so v(x) = φr(x)L. This together with the strict inequality above proves that an optimal stopping time
does not exist.
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The results developed in this section also have a ‘mirror’ counterpart involving

R := lim sup
x→b

ϑ(x)+

ψr(x)
(A4)

rather than L. In particular, the value function is infinite if R = ∞, and

Corollary A1. If x̂ ∈ I maximises ϑ(x)/ψr(x), then, for any x ≤ x̂, an optimal stopping time in the problem
v(x) is given by τx̂ .

This also motivates the assumptions of the following lemma which collects results from Dayanik
and Karatzas (2003, Sec. 5.2). Again, although those results are obtained under the assumption that
both boundaries are natural, their proofs require only that they are non-exit.

Lemma A3. Assume that L, R < ∞ and ϑ is locally bounded. Then, the value function v is finite and
continuous on (a, b).

All the stopping problems considered in this paper have a finite right-hand limit R < ∞. Therefore,
whenever L < ∞, their value functions will be continuous.

Proof of Lemma 2. If S1* does not hold, then the payoff from cycle A1–A3 is not profitable (on average)
for any value of the EIM price x, so S1 does not hold. Conversely, if S1* holds, then there exists x such
that T̂ 0(x) ≥ h(x) > 0. For any other x′, consider the following strategy: wait until the process X hits
x and proceed optimally thereafter. This results in a strictly positive expected value: T̂ 0(x′) > 0 and,
by the arbitrariness of x′, we have T̂ 0 > 0.

Suppose that S2* holds. Then, the system operator makes a profit on the reserve contract
(relative to simply purchasing a unit of energy at the power delivery time τ̂e, at the price X(τ̂e) ≥ x∗)
in undiscounted cash terms. Considering discounting, the system operator similarly makes a profit
provided the EIM price reaches the level x∗ (or above) sufficiently quickly. Since this happens with
positive probability for a regular diffusion, a certain financial loss for the system operator is excluded.
When S2* does not hold, suppose first that pc + Kc > x∗: then, the system operator makes a loss in
undiscounted cash terms, and if the reserve contract is sold when x ≥ x∗, then this loss is certain.
In the boundary case pc + Kc = x∗, the battery operator can only make a profit by purchasing energy
and selling the reserve contract when Xt < x∗, in which case the system operator makes a certain loss.
This follows since instead of buying the reserve contract, the system operator could invest pc > 0
temporarily in a riskless bond, withdrawing it with interest when the EIM price rises to x∗ = pc + Kc.
The loss in this case is equal in value to the interest payment.

Appendix B. Lemmas for the Lifetime Problem

It follows from the optimal stopping theory reviewed in Section 2.1.1 and Appendix A that the
following definition of an admissible continuation function is natural in our setup. In particular, the final
condition corresponds to the assumption that the energy purchase occurs at a price below x∗.

Definition A1. (Admissible continuation value) A continuation value function ζ̂ is admissible if it is

continuous on (a, x∗] and non-negative on I, with ζ̂(x)
φr(x) non-increasing on [x∗, b).

The following result now characterises the possible solution types in the lifetime problem.

Lemma A4. Assume that conditions S1* and S2* hold. If ζ̂ is an admissible continuation value function, then

lim sup
x→a

ĥ(x, ζ̂)

φr(x)
= lim sup

x→a

−x
φr(x)

= Lc, (A5)
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and with cases A, B, C defined just as in Theorem 1:

1. In case A, there exists x̂ ≤ x∗ which maximises ĥ(x,ζ̂)
φr(x) and τx̂ is an optimal stopping time for x ≥ x̂ with

value function

v(x) = T̂ ζ̂(x) = φr(x)
ĥ(x̂, ζ̂)

φr(x̂)
, x ≥ x̂.

Denoting by x̂0 the corresponding x̂ in case A of Theorem 1, we have x̂0 ≤ x̂.
2. In case B, either

(a) there exists xL ∈ (a, b) with ĥ(xL ,ζ̂)
φr(xL)

≥ Lc: then, there exists x̂ ∈ (a, x∗] which maximises ĥ(x,ζ̂)
φr(x) ,

and τx̂ is an optimal stopping time for x ≥ x̂ with value function v(x) = φr(x) ĥ(x̂,ζ̂)
φr(x̂) for x ≥ x̂; or

(b) there does not exist xL ∈ (a, b) with ĥ(xL ,ζ̂)
φr(xL)

≥ Lc: then, the value function is v(x) = Lc φr(x) and
there is no optimal stopping time.

3. In case C, the value function is infinite and there is no optimal stopping time.

Moreover, the value function v is continuous in cases A and B.

Proof. Note that

h(x) = ĥ(x, 0) ≤ ĥ(x, ζ̂) =

⎧⎨⎩h(x) + ψr(x)
ψr(x∗) Aζ̂(x∗), x < x∗,

h(x) + Aζ̂(x), x ≥ x∗.
(A6)

This proves (A5), since limx→a ψr(x)/φr(x) = 0. We verify from (A6) and the assumptions of the
lemma that R < ∞ in (A4). Hence, whenever Lc < ∞, the value function v is finite and continuous by
Lemma A3. As noted previously (in the proof of Theorem 1), h is negative and decreasing on [x∗, b),
hence the ratio h(x)/φr(x) is strictly decreasing on that interval. It then follows from (A6) and the

admissibility of ζ̂ that the function x �→ ĥ(x,ζ̂)
φr(x) is strictly decreasing on [x∗, b). Therefore the supremum

of x �→ ĥ(x,ζ̂)
φr(x) , which is positive by (A6) and S1∗, is attained on (a, x∗] or asymptotically when x → a.

In cases 1 and 2a, the optimality of τx̂ for x ≥ x̂ then follows from Lemma A1. To see that x̂0 ≤ x̂ in
case 1, take x < x̂0. Then, from (A6), we have

ĥ(x, ζ̂)

φr(x)
=

h(x)
φr(x)

+
ψr(x)
φr(x)

Aζ̂(x∗)
ψr(x∗)

<
h(x̂0)

φr(x̂0)
+

ψr(x̂0)

φr(x̂0)

Aζ̂(x∗)
ψr(x∗)

=
ĥ(x̂0, ζ̂)

φr(x̂0)
,

since x �→ ψr(x)
φr(x) is strictly increasing. Case 2b follows from Lemma A2 and the fact that Lc > 0,

while Lemma A2 proves case 3.

Before proceeding, we note the following technicalities.

Remark A1. The value function v in cases 1 and 2a of Lemma A4 satisfies the condition that v(x)/φr(x) is
non-increasing on [x∗, b). Indeed,

v(x)
φr(x)

=
ĥ(x̂, ζ̂)

φr(x̂)
= const.

for x ≥ x̂.

Remark A2. For case 3 of Lemma A4, the assumption that ζ̂(x)
φr(x) is non-increasing on [x∗, b) can be dropped.

Lemma A5. The timing of action A2 remains trivial when the cycle A1–A3 is iterated a finite number of times.
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Proof. Let us suppose that action A1 has just been carried out in preparation for selling the first in
a chain of n reserve contracts, and that the EIM price currently has the value x. Define τA2 to be
the time at which the battery operator carries out action A2. The remaining cashflows are (i) the
first contract premium pc (from action A2), (ii) the first utilisation payment Kc (from A3), and (iii) all
cashflows arising from the remaining cycles A1–A3 (there are n− 1 cycles which remain available to
the battery operator). The cashflows (i) and (ii) are both positive and fixed, making it best to obtain
them as soon as possible. The cashflows (iii) include positive and negative amounts, so their timing is
not as simple. However, it is sufficient to notice that

• their expected net present value is given by an optimal stopping problem, namely, the timing of
the next action A1:

sup
τ≥σ∗

Ex{e−rτh(iii)(Xτ)1τ<∞}, (A7)

where σ∗ := inf{t ≥ τA2 : Xt ≥ x∗}, for some suitable payoff function h(iii),
• the choice τA2 = 0 minimises the exercise time σ∗ and thus maximises the value of component

(iii), since the supremum in (A7) is then taken over the largest possible set of stopping times.

It is therefore best to set τA2 = 0, since this choice maximises the value of components (i),
(ii) and (iii).

The next result establishes the existence of, and characterises, the lifetime value function V̂.

Lemma A6. In cases A and B of Theorem 1,

1. For each n ≥ 1, the function ζ̂n := T̂ n0 is an admissible continuation value function and is decreasing
on [x∗, b).

2. The functions T̂ n0 are strictly positive and uniformly bounded in n.
3. The limit ζ̂ = limn→∞ T̂ n0 exists and is a strictly positive bounded function. Moreover, the lifetime value

function V̂ coincides with ζ̂.
4. The lifetime value function V̂ is a fixed point of T̂ .

Proof. Part 1 is proved by induction. The claim is clearly true for n = 1. Assume it holds for n.
Then, Lemma A4 applies and ζ̂n+1(x)/φr(x) = ĥ(x̂, ζ̂n)/φr(x̂) for x ≥ x̂ when the optimal stopping
time exists and ζ̂n+1(x)/φr(x) = Lc otherwise. Therefore, ζ̂n+1(x) = cφr(x) for x ≥ x∗ and some
constant c ≥ 0. Since φr is decreasing, we conclude that ζ̂n+1 decreases on [x∗, b).

The monotonicity of T̂ guarantees that, if T̂ 0 > 0, then T̂ n0 > 0 for every n. For the upper bound,
notice that

T̂ ζ̂n(x) = sup
τ

Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
≤ sup

τ
Ex

{
e−rτ

(
pc − Xτ + KcE

Xτ{e−rτ̂e}
)

1τ<∞

}
+ Aζ̂n(x∗) = Vc(x) + Aζ̂n(x∗),

where Vc = T̂ 0 is the value function for the single problem and the inequality follows from the fact
that ζ̂n is decreasing on [x∗, b). From the above, we have ζ̂n(x) = T̂ n0(x) ≤ Vc(x) + 1−An

1−A Vc(x∗).
Recalling that A ∈ (0, 1) yields that the ζ̂n(x) are bounded by Vc(x) + 1

1−A Vc(x∗), so there exists a
finite monotone limit ζ̂ := limn→∞ ζ̂n, and
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ζ̂(x) = lim
n→∞

T̂ ζ̂n(x) = sup
n

sup
τ

Ex
{

e−rτ
(

pc − Xτ +EXτ
{

e−rτ̂e
(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
= sup

τ
lim

n→∞
Ex

{
e−rτ

(
pc − Xτ +EXτ

{
e−rτ̂e

(
Kc + Aζ̂n(Xτ̂e)

)})
1τ<∞

}
= sup

τ
Ex

{
e−rτ

(
pc − Xτ +EXτ

{
e−rτ̂e

(
Kc + Aζ̂(Xτ̂e)

)})
1τ<∞

}
= T̂ ζ̂(x),

by monotone convergence. The equality of V̂ and ζ̂ is clear from (14).

Appendix C. Uniqueness of Fixed Points

Corollary A2 below establishes the uniqueness of the fixed point of T̂ . Lemma A8 shows that
T̂ n0 converges exponentially fast to this unique fixed point as n → ∞.

Lemma A7. Let ξ, ξ ′ be two continuous non-negative functions with ξ satisfying the assumptions of Lemma A4
together with the bound ξ ≥ ξ ′. In the problem T̂ ξ, assume the existence of an optimal stopping time τ∗ under
which stopping occurs only at values bounded above by x′ < x∗. Then,

‖T̂ ξ − T̂ ξ ′‖# ≤ ρ‖ξ − ξ ′‖#,

where ρ = A ψr(x′)
ψr(x∗) < 1 and ‖ f ‖# = | f (x∗)| is a seminorm on the space of continuous functions. Moreover,

0 ≤ T̂ ξ(x)− T̂ ξ ′(x) < ‖ξ − ξ ′‖#. (A8)

Note that, in general, an optimal stopping time for T̂ ξ(x) depends on the initial state x.
However, under general conditions (cf. Section 2.1.1), τ∗ = inf{t ≥ 0 : Xt ∈ Γ}, where Γ is the
stopping set. Then, the condition in the above lemma writes as Γ ⊂ (a, x′] for some x′ < x∗.

Proof of Lemma A7. By the monotonicity of T̂ , for any x, we have

0 ≤ T̂ ξ(x)− T̂ ξ ′(x) ≤ Ex
{

e−rτ∗
(
− Xτ∗ + pc +

(
Kc + Aξ(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
−Ex

{
e−rτ∗

(
− Xτ∗ + pc +

(
Kc + Aξ ′(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
= Ex

{
e−rτ∗A

((
ξ(x∗)− ξ ′(x∗)

)ψr(Xτ∗)

ψr(x∗)

)}
= ‖ξ − ξ ′‖# AEx

{
e−rτ∗ ψr(Xτ∗)

ψr(x∗)

}
.

This proves (A8). In addition, we have

AEx∗
{

e−rτ∗ ψr(Xτ∗)

ψr(x∗)

}
≤ A

φr(x∗)
φr(x′)

ψr(x′)
ψr(x∗)

≤ ρ.

Lemma A8. Assume that there exists a fixed point ζ̂∗ of T̂ in the space of continuous non-negative functions.
In the problem T̂ ζ̂∗, assume the existence of an optimal stopping time under which stopping occurs only at
values bounded above by x′ < x∗ (cf. the comment after the previous lemma). Then, there is a constant ρ < 1
such that ‖ζ̂∗ − T̂ n0‖# ≤ ρn‖ζ̂∗‖# and ‖ζ̂∗ − T̂ n0‖∞ ≤ ρn−1‖ζ̂∗‖#, where ‖ · ‖∞ is the supremum norm.
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Proof. Clearly, ‖ζ̂∗ − 0‖# < ∞. By virtue of Lemma A7, we have ‖T̂ n0 − ζ̂∗‖# ≤ ρn‖0 − ζ̂∗‖# for
ρ = ψr(x′)

ψr(x∗) < 1. Hence, T̂ n0 converges exponentially fast to ζ̂∗ in the seminorm ‖ · ‖#. Using (A8),
we have

‖ζ̂∗ − T̂ n0‖∞ = ‖T̂ ζ̂∗ − T̂ ◦ T̂ n−10‖∞ ≤ ρn−1‖ζ̂∗‖#.

Corollary A2. Let ζ̂∗ be a fixed point of T̂ and suppose that the problem T̂ ζ̂∗ admits an optimal stopping time
τ̂∗ satisfying Xτ̂∗ ≤ x′ < x∗, for some constant x′. Such a fixed point ζ̂∗ is unique.

Proof. By Lemma A8, if ζ̂∗ is a fixed point satisfying the assumptions of the corollary, it is approximated
by T̂ n0 in the supremum norm; hence, it must be unique.

Appendix D. Note on Lemma 3

The inequality limx→−∞
−x

φr(x) > 0 when a = −∞ asserts that the process X escapes to −∞ quickly.

Indeed, choosing z ∈ I, we have Ez{e−rτx} = φr(z)
φr(x) for x ≤ z, hence Ez{e−rτx} ≥ c

−x for some constant
c > 0 and x sufficiently close to −∞. To illustrate the speed of escape, assume for simplicity that X is a
deterministic process. Then, the last inequality would imply τx ≤ 1

r
(

log(−x)− log(c)
)
, i.e., X escapes

to −∞ exponentially quickly.
An example of a model that violates the assumptions of Lemma 3 is the negative geometric

Brownian motion: Xt = − exp
(
(μ− σ2/2)t + σWt

)
for μ, σ > 0. With the generator A = 1

2 σ2x2 d2

dx2 +

μx d
dx , we have φr(x) = (−x)γ2 and ψr(x) = (−x)γ1 , where γ1 < 0 < γ2 are solutions to the quadratic

equation σ2

2 γ2 + (μ− σ2

2 )γ− r = 0, i.e., γ = B±
√

B2 + 2 r
σ2 with B = 1

2 −
μ

σ2 . Hence, limx→−∞
−x

φr(x) =

limx→−∞(−x)1−γ2 > 0 if and only if γ2 ≤ 1. It is easy to check that γ2 = 1 for μ = r and γ2 is
decreasing as a function of μ. Therefore, the condition γ2 ≤ 1 is equivalent to μ ≥ r.

In summary, the negative geometric Brownian motion violates the assumptions of Lemma 3 if
μ ≥ r. If μ = r, then case B of Theorem 1 applies with Lc = 1, while, if μ > r, then Lc = ∞ and so case
C applies. Both cases may be interpreted heuristically as the negative geometric Brownian motion X
escaping ‘relatively quickly’ to −∞, that is, relative to the value r of the continuously compounded
interest rate. In the latter case, this happens sufficiently quickly that the single problem’s value function
Vc is infinite.

Appendix E. Verification Theorem for the Lifetime Value Function

We now provide a verification lemma which may be used to verify if a given value x̂ is an optimal
buy price in the lifetime problem. The result is motivated by the following argument using Theorem 3.

We claim that, for all x ∈ I, T̂ V̂(x) depends on the value function V̂ only through its value
at x = x∗. The argument is as follows: when the battery operator acts optimally, the energy
purchase occurs when the price is not greater than x∗: under Px for x ≥ x∗, this follows directly
from Theorem 3; under Px for x < x∗, the energy is either purchased before the price reaches x∗ or one
applies a standard dynamic programming argument for optimal stopping problems (see, for example,
Peskir and Shiryaev 2006) at x∗ to reduce this to the previous case. In our setup, the continuation value
is not received until the EIM price rises again to x∗ (it is received immediately if the energy purchase
occurs at x∗).

Suppose therefore that we can construct functions Vi : I → R, i = 1, 2, with the following
properties:

(I) T̂ V1 = V2,
(II) V1(x∗) = V2(x∗),
(III) for i = 1, 2, the highest price at which the battery operator buys energy in the problem T̂ Vi is not

greater than x∗.
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Then, we have V2 = T̂ V1 = T̂ V2, so that V2 is a fixed point of T̂ .
We postulate the following form for Vi: given y > 0 take

V1(x) = ξ̂
y
0(x) := 1x≤x∗y, (A9)

V2(x) = ξ̂y(x) := T̂ ξ̂
y
0(x). (A10)

For convenience, define h(x, y) to be the payoff in the lifetime problem when the the continuation
value is ξ̂

y
0. Thus, we have

h(x, y) = ĥ(x, ξ̂
y
0), (A11)

ξ̂y(x) = T̂ ξ̂
y
0(x) = sup

τ
Ex{e−rτh

(
Xτ , y

)
1τ<∞

}
. (A12)

Lemma A9. Suppose that x̂ ∈ (a, x∗) satisfies the system

h(x̂, y)
φr(x̂)

= sup
x∈(a,x∗)

h(x, y)
φr(x)

, (A13)

y =
φr(x∗)
φr(x̂)

h(x̂, y), (A14)

y > 0. (A15)

Then, the function ξ̂y of (A12) is a fixed point of T̂ , is continuous and strictly positive, and

ξ̂y(x) =
φr(x)
φr(x∗)

y, for x ≥ x̂. (A16)

Proof. Consider first the problem (A12) with x ≥ x̂. By construction, ξ̂
y
0 is an admissible continuation

value in Lemma A4, and cases 1 or 2a must then hold due to the standing assumption for this section
that regime (α) of Theorem 2 is in force. By (A13), the stopping time τx̂ is optimal, and the problem’s
value function ξ̂y has the following three properties. Firstly, ξ̂y is continuous on I by Lemma A3.
Secondly, using (A14), we see that ξ̂y satisfies (A16). This implies thirdly that ξ̂y/φr is constant on
[x∗, b) and establishes that ξ̂y(x∗) = y, giving property (ii) above. Since y > 0 by (A15), the strict
positivity of ξ̂y everywhere follows as in part 1 of the proof of Lemma 2. Our standing assumption
S2* implies that the payoff h(x, y) of (A11) is negative for x > x∗, which establishes property (iii) for
problem (A12).

The three properties of ξy established above make it an admissible continuation value in
Lemma A4, so we now consider the problem T̂ ξy for x ≥ x̂. Under Px for x ≥ x∗, claim 2 of
Lemma A1 prevents the battery operator from buying energy at prices greater than x∗ when acting
optimally; under Px for x < x∗, the dynamic programming principle mentioned above completes
the argument.

The following corollary completes the verification argument, and also establishes the uniqueness
of the value y in Lemma A9.

Corollary A3. Under the conditions of Lemma A9:

(i) the function ξ̂y coincides with the lifetime value function: V̂ = ξ̂y,
(ii) there is at most one value y for which the system of equations (A13)-(A14) has a solution x̂ ∈ (a, x∗).

Proof. (i) We will appeal to Lemma A8 by refining property (III) above for the problem T̂ V2 = T̂ ξ̂y

(as was done in the proof of Corollary 2). Suppose that the battery operator buys energy at the
price x∗. Then, since the function ξ̂y is a fixed point of T̂ under our assumptions, we may consider
T̂ ξ̂y(x∗) = −x∗ + pc + Kc + ξ̂y(x∗) and then S2* leads to T̂ ξ̂y(x∗) < ξ̂y(x∗), which is a contradiction.
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Thus, from Lemma A8, T̂ n0 converges to ξ̂y as n → ∞. As the limit of T̂ n0 is the lifetime value
function, we obtain V̂ = ξ̂y.

(ii) Assume the existence of two such values y1 �= y2. Then, (A16) gives V̂(x∗) = ξ̂y1(x∗) = y1 �=
y2 = ξ̂y2(x∗) = V̂(x∗), a contradiction.

We recall here that, on the other hand, the value x̂ in Lemma A9 may not be uniquely determined
(cf. part (a) of Corollary 2). In this case, the largest x̂ satisfying the assumptions of Lemma A9 is the
highest price x̌ at which the battery operator can buy energy optimally.

Appendix F. Facts about the OU Process

Let us temporarily fix μ = 0 and θ = σ = 1. Consider the ordinary differential equation (ODE)

w′′(z) +
(

ν +
1
2
− 1

4
z2
)

w(z) = 0.

There are two fundamental solutions Dν(z) and Dν(−z), where Dν is a parabolic cylinder function.
Assume that ν < 0. This function has a multitude of representations, but the following will be sufficient
for our purposes (Érdelyi et al. 1953, p. 119):

Dν(z) =
e−z2/4

Γ(−ν)

∫ ∞

0
e−zt− 1

2 t2
t−ν−1dt.

Then, Dν is strictly positive. Fix r > 0. Define

ψr(x) = e
(x−μ)2θ

2σ2 D−r/θ

(
− (x− μ)

√
2θ

σ

)
, φr(x) = e

(x−μ)2θ

2σ2 D−r/θ

( (x− μ)
√

2θ

σ

)
.

By direct calculation, one verifies that these functions solve

Lv = rv, (A17)

where
Lv(x) =

1
2

σ2v′′(x) + θ(μ− x)v′(x) (A18)

is the infinitesimal generator of the OU process (25). Setting ν = −r/θ, we can write

ψr(x) =
1

Γ(−ν)

∫ ∞

0
e(x−μ)t

√
2θ
σ − 1

2 t2
t−ν−1dt, φr(x) =

1
Γ(−ν)

∫ ∞

0
e−(x−μ)t

√
2θ
σ − 1

2 t2
t−ν−1dt.

Hence, ψr is increasing and φr is decreasing in x. In addition, by monotone convergence,
ψr(−∞) = φr(∞) = 0 and ψr(∞) = φr(−∞) = ∞. The functions ψr and φr are then fundamental
solutions of the Equation (A17). Furthermore, they are strictly convex, which can be checked by
passing differentiation under the integral sign (justified by the dominated convergence theorem).
Defining F(x) = ψr(x)/φr(x), then F is continuous and strictly increasing with F(−∞) = 0 and
F(∞) = ∞.
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Using the integral representation of φr and l’Hôpital’s rule, we have

lim
x→−∞

−x
φr(x)

= lim
x→−∞

−1
1

Γ(−ν)

∫ ∞
0 e−(x−μ)t

√
2θ
σ − 1

2 t2
(
− t

√
2θ
σ

)
t−ν−1dt

=
σ√
2θ

lim
x→−∞

1
1

Γ(−ν)

∫ ∞
0 e−(x−μ)t

√
2θ
σ − 1

2 t2 t−νdt

=
σ√
2θ

lim
x→−∞

1
Γ(−ν+1)

Γ(−ν)
1

Γ(−ν+1)

∫ ∞
0 e−(x−μ)t

√
2θ
σ − 1

2 t2 t−νdt
= 0,

(A19)

as the denominator is a scaled version of φr̃ corresponding to a new r̃ such that −r̃/θ = ν− 1 < ν < 0,
and so it converges to infinity when x → −∞.
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Abstract: We study a portfolio selection problem in a continuous-time Itô–Markov additive market
with prices of financial assets described by Markov additive processes that combine Lévy processes
and regime switching models. Thus, the model takes into account two sources of risk: the jump
diffusion risk and the regime switching risk. For this reason, the market is incomplete. We complete
the market by enlarging it with the use of a set of Markovian jump securities, Markovian power-jump
securities and impulse regime switching securities. Moreover, we give conditions under which the
market is asymptotic-arbitrage-free. We solve the portfolio selection problem in the Itô–Markov
additive market for the power utility and the logarithmic utility.

Keywords: Markov additive processes; Markov regime switching market; Markovian jump securities;
asymptotic arbitrage; complete market; optimal portfolio

1. Introduction

The portfolio selection problem is an important issue in financial mathematics. The problem is to
invest an initial wealth in financial assets so as to maximize the expected utility of the terminal wealth.
Markowitz (1952) for the first time used the quantitative methods for the optimal portfolio selection
problem and proposed the mean-variance approach for portfolio optimization. Explicit solutions for
the portfolio selection problem in continuous time were first given by Merton (1971, 1980).

Although Merton’s approach produces significant theoretical results, it has some shortcomings
coming from daily practice. The first is related to the assumption that the dynamics of a risky asset
follows a geometric Brownian motion. Many investigations (e.g., Black et al. (1972) and Merton (1976))
have suggested that this market model cannot describe perfectly some empirical behaviors of financial
markets, such as the asymmetry and heavy-tailedness of the distribution of returns of a time-varying
volatility. To model this, the stock price driven by a Lévy process is a better choice. The portfolio
selection problem on a Lévy market was considered by Niu (2008) and Corcuera et al. (2006).

The second important assumption in the original Black–Scholes–Merton model is that the
coefficients are fixed. However, this assumption may not be satisfied over long time period, where
structural changes in macroeconomic conditions may occur several times. Therefore, Markov
modulated models (otherwise called regime switching) were proposed instead. In such models, the set
of model parameters change in time according to a Markov chain, the transitions of which correspond
to changes in the state of the economy. Hence, regime switching models describe perfectly structural
macroeconomic changes and various business cycles (Zhang 2001). Hamilton (1989) pioneered
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econometric applications of regime switching models. These models have many applications in
finance (Buffington and Elliott 2002; Di Masi et al. 1994; Elliott et al. 2001, 2003, 2005; Goldfeld and
Quandt 1973; Guo 2001; Naik 1993; Tong 1978).

There is a growing literature dealing with portfolio optimization problems in markets with
non-constant coefficients. Most of these papers assume that the external process is a diffusion process
itself, like in the established volatility model of Heston (1993) or in the Ho–Lee and the Vasicek model
of Korn and Kraft (2001). Bäuerle and Rieder (2004) and Rieder and Bäuerle (2005) studied the portfolio
optimization problem with an observable and an unobservable Markov-modulated drift, respectively.
This problem under stochastic volatility was considered by Pham and Quenez (2001) and Fleming and
Hernández-Hernández (2003). In contrast to diffusion volatility, Markov chain volatility has the
advantage that many portfolio problems have explicit solution. Moreover, a diffusion process can be
approximated arbitrarily closely by a continuous-time Markov chain (Kushner and Dupuis 1992).

Portfolio optimization problems have also been studied in financial markets with regime
switching. One of the first papers was by Zariphopoulou (1992), who maximized the utility of
consumption under proportional transaction costs in a market where stock returns are determined by a
continuous-time Markov chain, and established a viscosity property of the value function. The results
of Zariphopoulou were extended by many authors, among them Bäuerle and Rieder (2004, 2007),
Fontana et al. (2015), Framstad et al. (2004), Zhang and Yin (2004) and Stockbridge (2002). To solve the
problem of maximizing the investor’s expected utility of terminal wealth, some authors used numerical
methods (Sass and Haussmann 2004; Nagai and Runggaldier 2008; Shen et al. 2012; Fu et al. 2014).
Zhang et al. (2010) solved the portfolio selection problem without transition cost in a continuous-time
Markovian regime switching Black–Scholes–Merton market. They obtained closed-form solutions for
the optimal portfolio strategies when utility function is logarithmic or power-type. Similar results
for a Black–Scholes market with regime switching were obtained by Liu (2014), Guo et al. (2005) and
Sotomayor and Cadenillas (2013). A discrete time set up was also considered by Yin and Zhou (2004).
For the mean-variance portfolio selection problem of this type, we refer to Zhou and Yin (2003). Regime
switching was also analyzed by Tu (2010) in a Bayesian setting with model uncertainty and parameter
uncertainty. He showed that the economic cost of ignoring regime switching can exceed two percent per
year. Bae et al. (2014) constructed a program to optimize portfolios in the above mentioned framework
and proved that adding Markov modulation improves risk management. Finally, further applications
include large investor models Busch et al. (2013) and optimal productmanagement Korn et al. (2017).

In this paper, we consider a market with the prices of financial assets described by Itô–Markov
additive processes, which combine Lévy processes and regime switching models. Such a process
evolves as an Itô–Lévy process between changes of states of a Markov chain, that is, its parameters
depend on the current state of the Markov chain. In addition, a transition of the Markov chain from
state i to state j triggers an additional jump. Itô–Markov additive processes are classical in modeling
queues, insurance risks, inventories, data communication, finance, environmental problems and in
many other applications (Asmussen 2003; Prabhu 1998, chp. 7, and references therein).

The goal of this paper is to construct a general approach of building the optimal portfolio taking
into account the asset jumps and possibility of changing environment by considering asset prices
modeled by Itô–Markov additive processes. In particular, we assume that the interest rate and the
volatility of the financial assets depend on a continuous-time finite-state Markov chain. Thus, our
model takes into account two sources of risk: the jump diffusion risk and the regime switching risk.
The jump diffusion risk refers to the source of risk due to fluctuations of market prices modeled by a
Poisson random measure, while the regime switching risk refers to the source of risk due to transitions
of economic conditions.

Due to the presence of these sources of risk, our market model is incomplete. In this paper,
we show how to complete the Itô–Markov additive market model by adding Markovian jump
securities, Markovian power-jump securities and impulse regime switching securities. Using these
securities, all contingent claims can be replicated by a self-financing portfolio. The main idea
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of completing a Markovian regime switching market is inspired by Corcuera et al. (2005, 2006),
Guo (2001), Karatzas et al. (1991), Niu (2008) and Zhang et al. (2012). However, adding the possibility
of jumps of underlying markets when Markov chain changes its state produces more complex analysis
that one presented in Corcuera et al. (2005, 2006).Moreover, we give conditions for the market to be
asymptotic-arbitrage-free, namely, we find a martingale measure under which all the discounted price
processes are martingales.

In this paper, we also consider the problem of identifying the optimal strategy that maximizes the
expected value of the utility function of the wealth process at the end of some fixed period. The analysis
is conducted for the logarithmic and power utility functions. To solve the main problem of determining
the optimal portfolio we do not use dynamic programming but the direct differentiation approach.

This paper is organized as follows. In Section 2, we present the dynamics of the price process in
an Itô–Markov additive market. In Section 3, we enlarge this market by Markovian jump securities,
Markovian power-jump securities and impulse regime switching securities. In Sections 4 and 5,
we show that the enlarged market is asymptotic-arbitrage-free and complete. In Section 6, we state the
portfolio optimization problem and solve it for the power utility with risk aversion and the logarithmic
utility function. Moreover, Section 7 gives a relationship between finite and infinite markets.

2. Market Model

Let (Ω,F ,P) be a complete probability space and let T := [0, T], for fixed 0 < T < ∞, represent
the maturity time for all economic activities. On this probability space, we consider the observable and
continuous-time Markov chain J := {J(t) : t ∈ T} with a finite state space. The role of the Markov
chain is to ensure that the parameters change according to the market environment and the different
states of the Markov chain represent the different states of the economy. For simplicity, we follow the
notation of Elliott et al. (1994) and we identify the state space with the standard basis E := {e1, . . . , eN}.
Here, ei ∈ RN and the jth component of ei is the Kronecker delta δij for each i, j = 1, . . . , N. Moreover,
the Markov chain J is characterized by an intensity matrix [λij]

N
i,j=1. The element λij is the transition

intensity of the Markov chain J jumping from state ei to state ej. We assume λij > 0 for i �= j. Note that
N
∑

j=1
λij = 0, thus λii < 0.

2.1. Risk-Free Asset

Now, we describe the dynamic of the price process of risk-free asset B as follows:

dB(t) = r(t)B(t)dt, B(0) = 1. (1)

Here, r is the interest rate of B and it is modulated by Markov chain J

r(t) := 〈r, J(t)〉 =
N

∑
i=1

ri〈ei, J(t)〉,

where r = (r1, . . . , rN)
′ ∈ RN

+ and 〈·, ·〉 is a scalar product in RN . The value ri represents the value of
the interest rate when the Markov chain is in the state space ei.

2.2. Risky Asset

We consider the market with risky asset modeled by (non-anticipative) Itô–Markov
additive processes.

A process (J, X) = {(J(t), X(t)) : t ∈ T} on the state space {e1, . . . , eN} ×R is a Markov additive
process (MAP) if (J, X) is a Markov process and the conditional distribution of (J(s + t), X(s + t)−
X(s)) for s, t ∈ T, given (J(s), X(s)), depends only on J(s) (Çinlar 1972a, 1972b). Every MAP has a
very special structure. It is usually said that X is the additive component and J is the background
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process representing the environment. Moreover, the process X evolves as a Itô–Lévy process while
J(t) = ej, that is, X(t) = Xj(t) for some Itô–Lévy process Xj(t) with parameters depending on ej if

J(t) = ej. In addition, transition of J from ei to ej triggers a jump of X distributed as U(i)
n .

Following Asmussen and Kella (2000), we can decompose the process X as follows:

X(t) = X(t) + X(t), (2)

where

X(t) :=
N

∑
i=1

Ψi(t)

for
Ψi(t) := ∑

n≥1
U(i)

n 1{J(Tn−)=ei , Tn≤t} (3)

and for the jump epochs {Tn} of J. Here, U(i)
n (n ≥ 1, 1 ≤ i ≤ N) are independent random variables,

which are also independent of X such that, for every fixed i, the random variables U(i)
n are identically

distributed. Note that we can express the process Ψi as follows:

Ψi(t) =
∫ t

0

∫
R

x Πi
U(ds, dx)

for the point measure

Πi
U([0, t], dx) := ∑

n≥1
1{U(i)

n ∈dx}1{J(Tn)=ei , Tn≤t}, i = 1, . . . , N. (4)

Moreover, we define the compensated point measure Π̄i
U(dt, dx) := Πi

U(dt, dx)− λi(t)ηi(dx)dt

for λj(t) := ∑
i �=j

1{J(t−)=ei}λij and ηi(dx) = P(U(i)
n ∈ dx).

Remark 1. One can consider jumps U(ij) with distribution depending also on the state ej the Markov chain is
jumping to by extending the state space to the pairs (ei, ej) (see Gautam et al. (1999, Thm. 5) for details).

The first component in the definition in Equation (2) is an Itô–Lévy process and it has the following
decomposition (Øksendal and Sulem 2004, p. 5):

X(t) := X(0) +
∫ t

0
μ0(s)ds +

∫ t

0
σ0(s)dW(s) +

∫ t

0

∫
R

γ(s−, x)Π̄(ds, dx), (5)

where W denotes the standard Brownian motion independent of J and Π̄(dt, dx) := Π(dt, dx) −
ν(dx)dt is the compensated Poisson random measure, which is independent of J and W. Furthermore,
we define

μ0(t) := 〈μ0, J(t)〉 =
N

∑
i=1

μi
0〈ei, J(t)〉, (6)

σ0(t) := 〈σ0, J(t)〉 =
N

∑
i=1

σi
0〈ei, J(t)〉, (7)

γ(t, x) := 〈γ(x), J(t)〉 =
N

∑
i=1

γi(x)〈ei, J(t)〉 (8)

for some vectors μ0 := (μ1
0, . . . , μN

0 )′ ∈ RN , σ0 := (σ1
0 , . . . , σN

0 )′ ∈ RN
+ with σ

j
0 > 0 and the

vector-valued measurable function γ(x) :=
(
γ1(x), . . . , γN(x)

)
. The measure ν is the so-called

jump-measure identifying the distribution of the sizes of the jumps of the Poisson measure Π.
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The components X and X in Equation (2) are conditionally, on the state of the Markov chain
J, independent.

Additionally, we suppose that the Lévy measure satisfies, for some ε > 0 and � > 0,∫
(−ε,ε)c

exp
(
�|γ(s−, x)|

)
ν(dx) < ∞,

∫
(−ε,ε)c

exp(�x)P
(
U(i) ∈ dx

)
< ∞, (9)

for i = 1, . . . , N. This implies that∫
R
|γ(s−, x)|kν(dx) < ∞, E

(
U(i))k

< ∞, i = 1, . . . , N, k ≥ 2,

and that the characteristic function E[exp(kiX)] is analytic in a neighborhood of 0. Moreover, X has
moments of all orders and the polynomials are dense in L2(R, dϕ(t, x)), where ϕ(t, x) := P

(
X(t) ≤ x

)
.

Itô–Markov additive processes are a natural generalization of Itô–Lévy processes and thus of Lévy
processes. Moreover, the structure in Equation (2) explains the used name and can be seen as
Markov-modulated Itô–Lévy process. Indeed, if γ(s, x) = x, then X is a Markov additive process.
If additionally N = 1, then X is a Lévy process. If U(i) ≡ 0 and N > 1 then X is a Markov modulated
Lévy process (Pacheco et al. 2009). If there are no jumps, that is, Π̄(ds, dx) = 0, we have a Markov
modulated Brownian motion.

We assume the evolution of the price process of the risky asset S0 is governed by the Itô–Markov
additive process as follows:⎧⎪⎨⎪⎩dS0(t) = S0(t−)

[
μ0(t)dt + σ0(t)dW(t) +

∫
R

γ(t−, x)Π̄(dt, dx) +
N
∑

i=1

∫
R

xΠ̄i
U(dt, dx)

]
,

S0(0) = s0 > 0.
(10)

To ensure that S0(t) is non-negative, we additionally assume that

Δ
∫
R

γ(t−, x)Π̄(dt, dx) > −1, Δ
∫
R

xΠ̄i
U(dt, dx) > −1, i = 1, . . . N, (11)

where ΔZt = Zt−Zt− is a jump process related with a processes Z. The last assumption is equivalent to

ΔΨi(t) > −1

and it is satisfied when all Ui (i = 1, . . . , N) have support included in (−1,+∞). We interpret the
coefficient μ0 defined in Equation (6) as the appreciation rate and σ0 defined in Equation (7) as the
volatility of the risky asset for each i = 1, . . . , N. Similarly, μi

0 and σi
0 represent the appreciation rate

and the volatility of the risky asset, respectively, when the Markov chain is in state ei. We assume that

μi
0 > ri, i = 1, . . . , N.

Otherwise, stocks would be just a bad investment.

3. Enlarging the Itô–Markov Additive Market

Now, we enlarge the primary market by some financial assets: Markovian jump securities,
Markovian power-jump securities and impulse regime switching securities in order to complete
the market.

From now, we work with the following filtration on (Ω,F ,P):

Ft := Gt ∨N ,
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where N are the P-null sets of F and

Gt := σ{J(s), W(s), Γ(s), Π1
U([0, s], dx), . . . , ΠN

U ([0, s], dx); s ≤ t}

for

Γ(t) :=
∫ t

0

∫
R

γ(s−, x)Π(ds, dx).

Note that the filtration {Ft}t≥0 is right-continuous (Karatzas and Shreve 1998, Prop. 7.7 and also
Protter 2005, Thm. 31). By the same arguments as in the proof of Thm. 3.3. of Liao (2004), the filtration
{Gt}t≥0 can be represented as

σ{J(s), X(s), Π1
U([0, s], dx), . . . , ΠN

U ([0, s], dx); s ≤ t}.

3.1. Markovian Jump Securities

Let Tn (n = 1, 2, . . .) denote the jump epochs of the chain J, where 0 < T1 < T2 < . . . We observe
that the Markov chain J can be represented in terms of a marked point process Φj defined by

Φj(t) := Φ([0, t]× ej) = ∑
n≥1

1{J(Tn)=ej , Tn≤t}, j = 1, . . . , N.

Note that the process Φj describes the number of jumps into state ej up to time t. Let φj be the
dual predictable projection of Φj (sometimes called the compensator). That is, the process

Φj(t) := Φj(t)− φj(t), j = 1, . . . , N, (12)

is an {Ft}-martingale and it is called the jth Markovian jump martingale. Note that φj is unique and

φj(t) :=
∫ t

0
λj(s)ds,

for
λj(t) := ∑

i �=j
1{J(t−)=ei}λij; (13)

see Zhang et al. (2012, p. 290).
Now, we consider geometric Markovian jump securities Sj (for j = 1, . . . , N) with evolution of

prices described by marked point local martingales as follows:⎧⎨⎩dSj(t) = Sj(t−)
[
μj(t)dt + σj(t−)dΦj(t)

]
,

Sj(0) > 0,
(14)

where the appreciation rate μj and the volatility σj are given by

μj(t) := 〈μj, J(t)〉 =
N

∑
i=1

μi
j〈ei, J(t)〉,

σj(t) := 〈σ j, J(t)〉 =
N

∑
i=1

σi
j 〈ei, J(t)〉

with μj := (μ1
j , . . . , μN

j )
′ ∈ RN and σ j := (σ1

j , . . . , σN
j )′ ∈ RN

+ .
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3.2. Markovian Power-Jump Securities

Following Corcuera et al. (2005), we introduce the power-jump processes

X(k)(t) := ∑
0<s≤t

(ΔX(s))k, k ≥ 2,

where ΔX(s) = X(s)− X(s−). We set X(1)(t) = X(t). The process X(k) is also an Itô–Lévy process
with the same jump times as the original process X but with their sizes being the kth powers of the
jump sizes of X. From Protter (2005, p. 29), we have

E
[
X(k)(t)

∣∣Jt
]
= E

(
∑

0<s≤t
(ΔX(s))k∣∣Jt

)
=

∫ t

0

∫
R

γk(s−, x)ν(dx)ds < ∞,P− a.e. k ≥ 2,

for Jt := σ{J(s) : s ≤ t}. Hence, the processes

X(k)
(t) := X(k)(t)−

∫ t

0

∫
R

γk(s−, x)ν(dx)ds, k ≥ 2,

are {Ft}-martingales (called Teugels martingales of order k; see Schoutens (1999) for details).
We additionally enlarge the market with a series of Markovian kth-power-jump assets

S(k) (for k ≥ 2). The price process of S(k) is described by the stochastic differential equation⎧⎨⎩dS(k)(t) = S(k)(t−)
[
μ(k)(t)dt + σ(k)(t−)dX(k)

(t)
]
,

S(k)(0) > 0,
(15)

where the coefficients are determined by the Markov chain J, namely:

μ(k)(t) := 〈μ(k), J(t)〉 =
N

∑
j=1

μ
(k)
j 〈ej, J(t)〉 and σ(k)(t) := 〈σ(k), J(t)〉 =

N

∑
j=1

σ
(k)
j 〈ej, J(t)〉

for μ(k) := (μ
(k)
1 , . . . , μ

(k)
N )′ ∈ RN and σ(k) := (σ

(k)
1 , . . . , σ

(k)
N )′ ∈ RN

+ . The positivity of these asset prices
follow from assumption in Equation (11).

3.3. Impulse Regime Switching Securities

We will also need power martingales related to the second component of X given in Equation (2),
namely to X or to Ψi, defined in Equation (3). For l ≥ 1 and i = 1, . . . , N we define

Ψ(l)
i (t) := ∑

n≥1

(
U(i)

n

)l
1{J(Tn)=ei , Tn≤t} =

∫ t

0

∫
R

xl Πi
U(ds, dx)

for Πi
U given by Equation (4). The compensated version of Ψ(l)

i is called an impulse regime switching
martingale if

Ψ(l)
i (t) := Ψ(l)

i (t)−E
(
U(i)

n
)l

φi(t) =
∫ t

0

∫
R

xl Π̄i
U(ds, dx),

where Π̄i
U(dt, dx) = Πi

U(dt, dx)−λi(t)ηi(dx)dt for λi defined in Equation (13) and ηi(dx) = P(U(i)
n ∈ dx).

We characterize the evolution of impulse regime switching securities S(l)
i as follows:⎧⎨⎩dS(l)

i (t) = S(l)
i (t−)

[
μ
(l)
i (t)dt + σ

(l)
i (t−)dΨ(l)

i (t)
]
,

S(l)
i (0) > 0,

(16)
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where the coefficients are determined by the Markov chain J, namely:

μ
(l)
i (t) := 〈μ(l)

i , J(t)〉 =
N

∑
j=1

μ
(l)
i,j 〈ej, J(t)〉; σ

(l)
i (t) := 〈σ(l)

i , J(t)〉 =
N

∑
j=1

σ
(l)
i,j 〈ej, J(t)〉

for μ
(l)
i := (μ

(l)
i,1 , . . . , μ

(l)
i,N)

′ ∈ RN and σ
(l)
i := (σ

(l)
i,1 , . . . , σ

(l)
i,N)

′ ∈ RN
+ (i = 1, . . . , N and l ≥ 1).

The positivity of these asset prices follow from assumption in Equation (11).
Combining Equations (1), (10), (14)–(16), we get an enlarged Itô–Markov additive market:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dB(t) = r(t)B(t)dt,

dS0(t) = S0(t−)
[

μ0(t)dt + σ0(t)dW(t) +
∫
R

γ(t−, x)Π̄(dt, dx) +
N
∑

i=1

∫
R

xΠ̄i
U(dt, dx)

]
,

dSj(t) = Sj(t−)
[
μj(t)dt + σj(t−)dΦj(t)

]
,

dS(k)(t) = S(k)(t−)
[
μ(k)(t)dt + σ(k)(t−)dX(k)

(t)
]
,

dS(l)
i (t) = S(l)

i (t−)
[
μ
(l)
i (t)dt + σ

(l)
i (t−)dΨ(l)

i (t)
]
,

(17)

for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1. Note that this enlarged market has infinitely many securities.
In Section 5, we prove that under a new martingale measure this market is complete. Note that μj, μ(k),

μ
(l)
i , σj, σ(k) and σ

(l)
i are artificial parameters and can be changed later.

Following Corcuera et al. (2005), the use of power-jump assets of order two can be motivated
by a quadratic variation process (Barndorff-Nielsen and Shephard 2003, 2004) and so-called
realized variance. Contracts on realized variance are traded regularly on OTC markets. Typically,
a 3rd-power-jump asset measures a kind of asymmetry (“skewness”) and a 4th-power-jump process
measures extremal movements (“kurtosis”). This type of contracts could be also traded. Moreover,
one can construct an insurance contracts against a crash based on 4th-power-jump (or ith-power-jump,
i > 4) assets. Power-jumps processes appear in other financial-insurance contracts that hedge Lévy
jumps as well, e.g., in COS and CDS contracts.

4. Martingale Measure and Asymptotic Arbitrage

Considering a financial market containing an infinite number of assets, Kabanov and
Kramkov (1994) introduced the notion of large financial market. This type of market is described
by a sequence of market models with a finite number of securities each, also called small markets.
Kabanov and Kramkov (1994) introduced an extension of the classical approach to arbitrage theory,
namely arbitrage in a large financial market, called asymptotic arbitrage. A deep study of asymptotic
arbitrage was carried out by Kabanov and Kramkov (1998) and Björk and Näslund (1998).

In this section we identify a martingale measure in our Itô–Markov additive market and prove
that this market model is asymptotic-arbitrage-free.

Let us start with the definition of asymptotic arbitrage. Following (Björk and Näslund 1998, Def. 6.1),
we say that there is an asymptotic arbitrage opportunity if we have a sequence of strategies such that,
for some real number c > 0, the value process Vn on a finite market satisfies:

• Vn(t) ≥ −c for each 0 < t ≤ T and for each n ∈ N;
• Vn(0) = 0 for each n ∈ N;
• lim inf

n→∞
Vn(T) ≥ 0, P-a.s; and

• P
(

lim inf
n→∞

Vn(T) > 0
)
> 0.

Proposition 1 (Björk and Näslund 1998, Prop. 6.1). If there exists a martingale measure Q equivalent to P,
then the market is asymptotic-arbitrage-free.
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In this paper, we formulate the sufficient condition for absence of asymptotic arbitrage in a form of
the existence of a martingale measure. Equivalent conditions for the existence of a so-called separated
martingale measure can be found in Cuchiero et al. (2016) who introduced No Asymptotic Free Lunch
with Vanishing Risk (NALFVR) condition (see also Kreps (1981)).

Now, we find a measure Q under which the discounted price processes are martingales.
Let L2(W) be the set of all predictable, {Ft}-adapted processes ξ such that E

∫ T
0 ξ2(s)ds < ∞.

Similarly, we define L1(φj), that is, ξ ∈ L1(φj) iff ξ is predictable, {Ft}-adapted and satisfies

E
∫ T

0 |ξ(s)|λjds < ∞.

Proposition 2 (Boel and Kohlmann 1980, p. 515). Let ψ0 ∈ L2(W), ψj ∈ L1(φj) for all j = 1, . . . , N and

ψj(s) > −1. (18)

Then,

�(t) := exp

[ ∫ t

0
ψ0(s)dW(s)− 1

2

∫ t

0
ψ2

0(s)ds−
N

∑
j=1

∫ t

0
ψj(s)φj(ds)

]
(19)

×
N

∏
j=1

∏
J(t−) �=J(t)

J(t)=ej

(1 + ψj(t))

is a non-negative local martingale. If additionally E�(t) = 1, then it is a true martingale.

From now on, we assume that
E�(t) = 1. (20)

Let Q be the probability measure defined by the Radon–Nikodym derivative

�(t) =
dQ
dP

⏐⏐⏐⏐
Ft

.

Then, �, given in Equation (19), is the density process for the new martingale measureQ. By adding
a superscript Q, we denote processes observed under this new measure. By a generalized version of
Girsanov’s theorem for jump-diffusion processes, we have the following theorem:

Theorem 1 (Boel and Kohlmann 1980, p. 517). The process X given in Equation (5) under the new
martingale measure Q has the form

XQ
(t) =

∫ t

0
σ0(s)dWQ(s) +

∫ t

0

∫
R

γ(s−, x)Π̄(ds, dx),

where

WQ(t) = W(t)−
∫ t

0
ψ0(s)ds

is a standard Q-Brownian motion.
Moreover, for j = 1, . . . , N, the process Φj given in Equation (12) under the measure Q is a martingale

and takes the form

ΦQ
j (t) = Φj(t)−

∫ t

0

(
1 + ψj(s)

)
φj(ds),

that is, the unique predictable projection of Φj under Q is given by

φQ
j (t) =

∫ t

0

(
1 + ψj(s)

)
φj(ds).
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Similarly, for j = 1, . . . , N and l ≥ 1, the process Ψ(l)
j given in Equation (12) under the measure Q is a

martingale and takes the form

Ψ(l),Q
j (t) = Ψ(l)

j (t)−E
(
U(i)

n
)l

φQ
j (t).

Remark 2. If ψ0 and ψj (j = 1, . . . , N) are bounded, then E�(t) = 1 (see the Novikov condition in Karatzas
and Shreve (1998, Cor. 3.5.13, p. 199) and Resnick (2007, Thm. 5.1, p. 135)).

Note that X(k) for k ≥ 2 do not change their laws under the new measure Q. Moreover, under Q,
the price processes are represented as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dB(t) = r(t)B(t)dt,

dS0(t) = S0(t−)
[(

μ0(t) + σ0(t)ψ0(t)
)

dt + σ0(t)dWQ(t) +
∫
R

γ(t−, x)Π̄(dt, dx) +
N
∑

i=1

∫
R

xΠ̄i
U(dt, dx)

]
,

dSj(t) = Sj(t−)
[(

μj(t) + σj(t)λj(t)ψj(t)
)

dt + σj(t−)dΦQ
j (t)

]
,

dS(k)(t) = S(k)(t−)
[
μ(k)(t)dt + σ(k)(t−)dX(k)

(t)
]
,

dS(l)
i (t) = S(l)

i (t−)
[
μ
(l)
i (t)dt + σ

(l)
i (t−)dΨ(l),Q

i (t)
]
,

for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1. Note that in the above equation we can take r(t) = r(t−),
μj(t) = μj(t−) and σj(t) = σj(t−) (for j = 0, 1, . . . , N). In fact, by stochastic integration by parts,
the discounted price processes are governed by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS̃0(t) = S̃0(t−)
[(

μ0(t−) + σ0(t−)ψ0(t)− r(t−)
)

dt + σ0(t)dWQ(t) +
∫
R

γ(t−, x)Π̄(dt, dx)

+
N
∑

i=1

∫
R

xΠ̄i
U(dt, dx)

]
,

dS̃j(t) = S̃j(t−)
[(

μj(t−) + σj(t−)λj(t)ψj(t)− r(t−)
)

dt + σj(t−)dΦQ
j (t)

]
,

dS̃(k)(t) = S̃(k)(t−)
[(

μ(k)(t)− r(t)
)

dt + σ(k)(t−)dX(k)
(t)

]
,

dS̃(l)
i (t) = S̃(l)

i (t−)
[(

μ
(l)
i (t)− r(t)

)
dt + σ

(l)
i (t−)dΨ(l),Q

i (t)
]
,

(21)

where S̃0(t) := B−1(t)S0(t), S̃j(t) := B−1(t)Sj(t), S̃(k)(t) := B−1(t)S(k)(t) and S̃(l)
i (t) := B−1(t)S(l)

i (t).

Hence, we require S̃0, S̃j, S̃(k) and S̃(l)
i to be local martingales (for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1).

A necessary and sufficient condition for this to hold is given by the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

μ0(t−) + σ0(t−)ψ0(t)− r(t−) = 0,

μj(t−) + σj(t−)λj(t)ψj(t)− r(t−) = 0,

μ(k)(t)− r(t) = 0,

μ
(l)
i (t)− r(t) = 0,

ψj(t) > −1,

(22)

for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1.
Note that λj(t) = 0 if J(t−) = ej. Thus, in this case, if μ

j
j �= rj, the martingale condition would

never be satisfied. Therefore, the discounted price processes of all securities in the enlarged market
would not be local martingales under Q. Thus, we have to assume that μ

j
j = rj for all j = 1, . . . , N
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to make the market asymptotic-arbitrage-free. From Equation (22), when λj(t) �= 0 (i.e., J(t−) �= ej),
the processes ψ0 and ψj are determined by⎧⎪⎪⎨⎪⎪⎩

ψ0(t) =
r(t−)− μ0(t−)

σ0(t−)
,

ψj(t) =
r(t−)− μj(t−)

σj(t−)λj(t)
, j = 1, . . . , N,

(23)

where we assume that
r(t−) > μj(t−)− σj(t−)λj(t) (24)

to satisfy the condition in Equation (18).
Note that ψ0 and ψj (j = 1, . . . , N) are bounded. Hence, by Remark 2, the density process � is

a true martingale. Note that ψj (j = 1, . . . , N) satisfies the assumptions of Proposition 2. We can
only determine ψj when J(t−) �= ej for j = 1, . . . , N but this is sufficient to determine the equivalent
martingale measure Q. Indeed, if J(t−) = ej for j = 1, . . . , N, then φj(t) = 0 and ψj has no influence
on the value of the right side of Equation (19). The above analysis yields the following theorem.

Theorem 2. Assume that μ
j
j = rj for all j = 1, . . . , N and ψ0 and ψj are given by Equation (23). Then,

the discounted price processes of the securities in the enlarged market (Equation (21)) are local martingales under
Q and this market is asymptotic-arbitrage-free.

From now on, we assume that μ
j
j = rj for all j = 1, . . . , N.

5. Asymptotic Completeness of the Enlarged Market

Now, we analyze asymptotic completeness of the enlarged Itô–Markov additive market. A market
is said to be complete if each claim can be replicated by a strategy, that is, the claim can be represented
as a stochastic integral with respect to the asset prices. We take as class of contingent claims the set
L2(Ω,F ,Q) of square integrable random variables under the equivalent martingale measure; then, a
self-financing strategy is represented as an integrable process and the value of a self-financing portfolio
is represented as the stochastic integral of the strategy with respect to the assets. In the case of market
models with an infinite number of assets, we define completeness in terms of approximate replication
of claims.

For finite market asset, completeness is equivalent to uniqueness of the equivalent martingale
measure. In the case of large markets, this property does not occur. Artzner and Heath (1995)
constructed a financial market with countably many securities for which there are two equivalent
martingale measures under which the market is approximately complete. In the context of a large
financial market, Bättig (1999) and Bättig and Jarrow (1999) suggested a definition of completeness that
uses neither the notion of arbitrage-free nor equivalent martingale measures. Bättig (1999) constructed
an example showing that the existence of an equivalent martingale measure excludes the possibility
of replicating a claim, hence proving that the notions of arbitrage-free and completeness could be
unrelated to each other in daily practice.
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Under Q, the price processes of the securities in the arbitrage-free market have the
following representations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dB(t) = r(t)B(t)dt,

dS0(t) = S0(t−)
[

r(t)dt + σ0(t)dWQ(t) +
∫
R

γ(t−, x)Π̄(dt, dx) +
N
∑

i=1

∫
R

xΠ̄i
U(dt, dx)

]
,

dSj(t) = Sj(t−)
[
r(t)dt + σj(t−)dΦQ

j (t)
]
,

dS(k)(t) = S(k)(t−)
[
r(t)dt + σ(k)(t−)dX(k)

(t)
]
,

dS(l)
i (t) = S(l)

i (t−)
[
r(t)dt + σ

(l)
i (t−)dΨ(l),Q

i (t)
]
,

(25)

for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1.
We show that the enlarged market (Equation (25)) is asymptotically complete in the sense that for

every square-integrable contingent claim A (i.e., a non-negative square-integrable random variable
in L2(Ω,F ,Q)) we can set up a sequence of self-financing portfolios whose final values converge in
L2(Ω,F ,Q) to A.

These portfolios consist of a finite number of risk-free asset, risky asset, kth-power-jump assets,
jth geometric Markovian jump security and impulse regime switching securities. We use the following
martingale representation property.

Theorem 3 (Palmowski et al. 2018). Any square-integrable, {Ft}-adapted Q-martingale M can be
represented as follows:

M(t) = M(0) +
∫ t

0
h0(s)dXQ(s) +

N

∑
j=1

∫ t

0
hj(s)dΦQ

j (s) +
∞

∑
k=2

∫ t

0
h(k)(s)dX(k)

(s) (26)

+
N

∑
i=1

∞

∑
l=1

∫ t

0
h(l)i (s)dΨ(l),Q

i (s),

where h0, hj, h(k) and h(l)i are predictable processes (for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1).

Remark 3. The right-hand side of Equation (26) is understood as follows. We take finite sums

K

∑
k=2

∫ t

0
h(k)(s)dX(k)

(s) and
K

∑
l=1

∫ t

0
h(l)i (s)dΨ(l),Q

i (s)

in L2(Ω,F ,Q). Since L2(Ω,F ,Q) is a Hilbert space, the right-hand side of Equation (26) is understood as the
limit of the above expressions in L2(Ω,F ,Q) as K → ∞.

We are ready to prove the main result of this section.

Theorem 4. The market (Equation (25)) under Q is asymptotically complete.

Proof. We consider a square-integrable contingent claim A with maturity T. Let

M(t) := EQ

[
exp

(
−
∫ T

0
r(s)ds

)
A
⏐⏐⏐⏐Ft

]
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and

MK(t) := MK(0) +
∫ t

0
h0(s)dXQ(s) +

N

∑
j=1

∫ t

0
hj(s)dΦQ

j (s) +
K

∑
k=2

∫ t

0
h(k)(s)dX(k)

(s) (27)

+
N

∑
i=1

K

∑
l=1

∫ t

0
h(l)i (s)dΨ(l),Q

i (s).

By the martingale representation property given in Theorem 3, we see that

lim
K→∞

MK(t) = M(t) (28)

in L2(Ω,F ,Q). For K ≥ 2, we introduce the sequence of portfolios

θK(t) :=
(

αK(t), β0(t), β1(t), . . . , βN(t), β(2)(t), . . . , β(K)(t), β
(1)
1 (t), . . . , β

(K)
N (t)

)
.

We assume that all processes in θK are predictable and

EQ

∫ t

0

(
αK(s)

)2ds < ∞, EQ

∫ t

0

(
β0(s)

)2d〈S0〉(s) < ∞, EQ

∫ t

0

(
β j(s)

)2d〈Sj〉(s) < ∞, (29)

EQ

∫ t

0

(
β(k)(s)

)2d〈S(k)〉(s) < ∞, EQ

∫ t

0

(
β
(l)
i (s)

)2d〈S(l)
i 〉(s) < ∞. (30)

Here, αK corresponds to the number of risk-free assets, β0 is the number of stocks, β j (j = 1, . . . , N)

is the number of units of the jth geometric Markovian jump security, β(k) (k = 2, . . . , K) is the number
of assets S(k), and β

(l)
i (i = 1, . . . , N, l = 1, . . . , K) is the number of assets S(l)

i .
We construct the portfolio θK as follows:

αK(t) := MK(t−)− β0(t)B−1(t)S0(t−)−
N

∑
j=1

β j(t)B−1(t)Sj(t−)

−
K

∑
k=2

β(k)(t)B−1(t)S(k)(t−)−
N

∑
i=1

K

∑
l=1

β
(l)
i (t)B−1(t)S(l)

i (t−),

β0(t) := h0(t)B(t)S−1
0 (t−),

β j(t) :=
hj(t)

σj(t−)
B(t)S−1

j (t−), (31)

β(k)(t) :=
h(k)(t)

σ(k)(t−)
B(t)(S(k))−1(t−),

β
(l)
i (t) :=

h(l)i (t)

σ
(l)
i (t−)

B(t)(S(l)
i )−1(t−).

Observe that for this choice of portfolio, the moment conditions in Equations (29) and (30) are
satisfied, hence all stochastic integrals for this portfolio are well-defined. For example, we prove that

EQ

∫ t

0

(
β0(s)

)2d〈S0〉(s) < ∞. (32)

The proofs of other conditions are similar. To show (32) note that

d〈S0〉(s) = S2
0(t−)

[
σ2

0 (t)dt +
∫
R

γ2(t−, x)Π̄(dt, dx) +
N

∑
i=1

∫
R

x2Π̄i
U(dt, dx)

]
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and this condition is equivalent to requirement that∫ ∞

0
h2

0(t)e
2r(t)σ2

0 (t)dt < ∞,
∫ ∞

0
h2

0(t)e
2r(t)λi(t)

∫
R

γ2(t−, x)ν(dx)dt < ∞,

∫
R

x2ηi(dx)
∫ ∞

0
h2

0(t)e
2r(t)λi(t)dt < ∞.

The above conditions follow from Theorem 3 because
∫ ∞

0 h2
0(t)dt < ∞. Note that,

ΔMK(t) = h0(t)ΔXQ(t) +
N

∑
j=1

hj(t)ΔΦQ
j (t) +

K

∑
k=2

h(k)(t)ΔX(k)
(t) +

N

∑
i=1

K

∑
l=1

h(l)i (t)ΔΨ(l),Q
i (t),

ΔS0(t) = S0(t−)ΔXQ(t), (33)

ΔSj(t) = Sj(t−)σj(t−)ΔΦQ
j (t),

ΔS(k)(t) = S(k)(t−)σ(k)(t−)ΔX(k)
(t), ΔS(l)

i (t) = S(l)
i (t−)σ(l)

i (t−)ΔΨ(l),Q
i (t).

We claim that {θK, K ≥ 2} is the sequence of self-financing portfolios which replicates A. Indeed,
by Equations (31) and (33), the value VK of the portfolio θK is expressed by

VK(t) = αK(t)B(t) + β0(t)S0(t) +
N

∑
j=1

β j(t)Sj(t) +
K

∑
k=2

β(k)(t)S(k)(t) +
N

∑
i=1

K

∑
l=1

β
(l)
i (t)S(l)

i (t)

= MK(t)B(t)− ΔMK(t)B(t) + β0(t)ΔS0(t) +
N

∑
j=1

β j(t)ΔSj(t) +
K

∑
k=2

β(k)(t)ΔS(k)(t)

+
N

∑
i=1

K

∑
l=1

β
(l)
i (t)ΔS(l)

i (t) = MK(t)B(t).

Thus, the sequence of portfolios {θK, K ≥ 2} replicates the claim A. We denote

GK(u) :=
∫ u

0
αK(t)dB(t) +

∫ u

0
β0(t)dS0(t) +

N

∑
j=1

∫ u

0
β j(t)dSj(t) (34)

+
K

∑
k=2

∫ u

0
β(k)(t)dS(k)(t) +

N

∑
i=1

K

∑
l=1

∫ u

0
β
(l)
i (t)dS(l)

i (t)

the gain process, i.e., the gains or losses obtained up to time u by following θK. We show

GK(u) + MK(0) = MK(u)B(u), (35)

which implies that the portfolio is self-financing. Note that, from Equation (28), we have

lim
K→∞

GK(u) = lim
K→∞

MK(u)B(u)− lim
K→∞

MK(0) = M(u)B(u)−M(0).
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Thus, the portfolios with infinitely many assets are self-financing as well. Inserting Equation (31)
into Equation (34), we derive

GK(u) =
∫ u

0
MK(t−)dB(t)−

∫ u

0
h0(t)dB(t)−

K

∑
k=2

∫ u

0

h(k)(t)
σ(k)(t−)

dB(t)

−
N

∑
j=1

∫ u

0

hj(t)
σj(t−)

dB(t)−
N

∑
i=1

K

∑
l=1

∫ u

0

h(l)i (t)

σ
(l)
i (t−)

dB(t) +
∫ u

0
h0(t)B(t)S−1

0 (t−)dS0(t) (36)

+
N

∑
j=1

∫ u

0

hj(t)
σj(t−)

B(t)S−1
j (t−)dSj(t) +

K

∑
k=2

∫ u

0

h(k)(t)
σ(k)(t−)

B(t)(S(k))−1(t−)dS(k)(t)

+
N

∑
i=1

K

∑
l=1

∫ u

0

h(l)i (t)

σ
(l)
i (t−)

B(t)(S(l)
i )−1(t−)dS(l)

i (t).

From the martingale representation property given in Theorem 3, the first component of the above
sum has the form

∫ u

0
MK(t−)dB(t) =

∫ u

0

(
MK(0) +

∫ t−

0
h0(s)dXQ(s) +

N

∑
j=1

∫ t−

0
hj(s)dΦQ

j (s)

+
K

∑
k=2

∫ t−

0
h(k)(s)dX(k)

(s) +
N

∑
i=1

K

∑
l=1

∫ t−

0
h(l)i (s)dΨ(l)Q

i (s)
)

dB(t)

= MK(0)(B(u)− B(0)) +
∫ u

0
h0(s)(B(u)− B(s))dXQ(s) +

N

∑
j=1

∫ u

0
hj(s)(B(u)− B(s))dΦQ

j (s)

+
K

∑
k=2

∫ u

0
h(k)(s)(B(u)− B(s))dX(k)

(s) +
N

∑
i=1

K

∑
l=1

∫ u

0
h(l)i (s)(B(u)− B(s))dΨ(l),Q

i (s).

Now, using Equation (27) and fact that B(0) = 1, we can rewrite the above as follows:

∫ u

0
MK(t−)dB(t) = MK(0)(B(u)− B(0)) + B(u)(MK(u)−MK(0))−

∫ u

0
h0(s)B(s)dXQ

(s)

−
N

∑
j=1

∫ u

0
hj(s)B(s)dΦQ

j (s)−
K

∑
k=2

∫ u

0
h(k)(s)B(s)dX(k)

(s)−
N

∑
i=1

K

∑
l=1

∫ u

0
h(l)i (s)B(s)dΨ(l),Q

i (s)

= MK(u)B(u)−MK(0)−
∫ u

0
h0(s)B(s)dXQ(s)−

N

∑
j=1

∫ u

0
hj(s)B(s)dΦQ

j (s)

−
K

∑
k=2

∫ u

0
h(k)(s)B(s)dX(k)

(s)−
N

∑
i=1

K

∑
l=1

∫ u

0
h(l)i (s)B(s)dΨ(l),Q

i (s).
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Inserting the above equality into Equation (36), the gain process can be written as:

GK(u) = MK(u)B(u)−MK(0)−
∫ u

0
h0(t)B(t)dXQ(t)−

N

∑
j=1

∫ u

0
hj(t)B(t)dΦQ

j (t)

−
K

∑
k=2

∫ u

0
h(k)(t)B(t)dX(k)

(t)−
N

∑
i=1

K

∑
l=1

∫ u

0
h(l)i (t)B(t)dΨ(l),Q

i (t)−
∫ u

0
h0(t)dB(t)

−
K

∑
k=2

∫ u

0

h(k)(t)
σ(k)(t−)

dB(t)−
N

∑
j=1

∫ u

0

hj(t)
σj(t−)

dB(t)−
N

∑
i=1

K

∑
l=1

∫ u

0

h(l)i (t)

σ
(l)
i (t−)

dB(t)

+
∫ u

0
h0(t)B(t)S−1

0 (t−)dS0(t) +
N

∑
j=1

∫ u

0

hj(t)
σj(t−)

B(t)S−1
j (t−)dSj(t)

+
K

∑
k=2

∫ u

0

h(k)(t)
σ(k)(t−)

B(t)(S(k))−1(t−)dS(k)(t) +
N

∑
i=1

K

∑
l=1

∫ u

0

h(l)i (t)

σ
(l)
i (t−)

B(t)(S(l)
i )−1(t−)dS(l)

i (t)

= MK(u)B(u)−M(0).

Thus, Equation (35) holds true and the portfolio θK is self-financing.

6. Optimal Portfolio Selection in an Itô–Markov Additive Market

In this section we solve the optimization problem related to identifying the optimal strategy that
maximizes the expected value of the utility function of the wealth process at the end of some fixed
period. The analysis is conducted for the logarithmic and power utility functions.

Recall that our Itô–Markov additive market is given by Equation (17). Equations (15) and (16) can
be rewritten as follows:

dS(k)(t) = S(k)(t−)
[

μ(k)(t)dt +
∫
R

σ(k)(t−)γk(t−, x)Π̄(dt, dx)
]

,

dS(l)
i (t) = S(l)

i (t−)
[

μ
(l)
i (t)dt +

∫
R

xlσ
(l)
i (t−)Π̄i

U(dt, dx)
]

for i = 1, . . . , N, k ≥ 2 and l ≥ 1. Note that we consider the price processes with respect the original
probability measure P.

We restrict ourselves to self-financing portfolio strategies. Denote by π0 the proportion of
wealth invested in stock. Let πj (j = 1, . . . , N), π(k) (k ≥ 2) and π

(l)
i (i = 1, . . . , N, l ≥ 1)

be the proportions of wealth invested in the jth geometric Markovian jump security Sj, in the

Markovian power-jump securities S(k) and in the impulse regime switching securities S(l)
i , respectively.

The balance of the investor’s wealth is invested in the risk-free asset. We denote by π(t) =

(π0(t), π1(t), . . . , πN(t), π(2)(t), . . . , π
(1)
1 (t), π

(1)
2 (t), . . .) a portfolio strategy. We do allow short selling,

but we assume that the wealth process is nonnegative at any instant (Teplá 2000).
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Let K < ∞ be the number of different assets held by the investor in his portfolio. The wealth
process RK

π for the first K assets is governed by the following stochastic differential equation
(for t ∈ [0, T]):

dRK
π(t)

RK
π(t−)

:=
(

r(t) +
N

∑
j=0

πj(t)
(
μj(t)− r(t)

)
+

K

∑
k=2

π(k)(t)
(
μ(k)(t)− r(t)

)
+

N

∑
i=1

K

∑
l=1

π
(l)
i (t)

(
μ
(l)
i (t)− r(t)

))
dt + π0(t)σ0(t−)dW(t) +

N

∑
j=1

πj(t)σj(t−)dΦj(t) (37)

+
∫
R

(
π0(t)γ(t−, x) +

K

∑
k=2

π(k)(t)σ(k)(t−)γk(t−, x)
)

Π̄(dt, dx)

+
N

∑
i=1

∫
R

(
xπ0(t) +

K

∑
l=1

xlπ
(l)
i (t)σ(l)

i (t−)
)

Π̄i
U(dt, dx).

Note that in Equation (37) we can take r(t) = r(t−), μj(t) = μj(t−) (j = 0, 1, . . . , N), μ(k)(t) =

μ(k)(t−) (k ≥ 2) and μ
(l)
i (t) = μ

(l)
i (t−) (i = 1, . . . , N, l ≥ 1).

Let A be the class of admissible portfolio strategies π such that π is predictable,

RK
π > 0,

T∫
0
|π(t)|2dt < ∞ P− a.s.,

∫
R

(
π0(t)γ(t−, x) + ∑K

k=2 π(k)(t)σ(k)(t−)γk(t−, x)
)
Π̄(dt, dx) < ∞,∫

R

∑N
i=1

(
xπ0(t) + ∑K

l=1 xlπ
(l)
i (t)σ(l)

i (t−)
)
Π̄i

U(dt, dx) < ∞ and π satisfies the following convergence:

the wealth process RK
π converges to a process Rπ in L2(Ω,F ,P), where RK

π is the solution of the SDE
in Equation (37) (see Itô’s formula in Protter (2005, Thm. 32)), that is,

RK
π(t) = RK

π(0) exp

[ ∫ t

0

(
r(s−) +

N

∑
j=0

πj(s)(μj(s−)− r(s−)) +
K

∑
k=2

π(k)(s)
(
μ(k)(s)− r(s−)

)
+

N

∑
i=1

K

∑
l=1

π
(l)
i (s)

(
μ
(l)
i (s)− r(s−)

)
− 1

2
π2

0(s)σ
2
0 (s−)

)
ds

+
∫ t

0
π0(s)σ0(s−)dW(s) +

N

∑
j=1

∫ t

0

(
log

(
1 + πj(s)σj(s−)

)
− πj(s)σj(s−)

)
λj(s)ds

+
∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) +
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

Π̄(ds, dx)

+
∫ t

0

∫
R

(
log

(
1 + π0(s)γ(s−, x) +

K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)
− π0(s)γ(s−, x)

−
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)ds +
N

∑
j=1

∫ t

0
log

(
1 + πj(s)σj(s−)

)
dΦj(s)

+
N

∑
i=1

∫ t

0

∫
R

log
(

1 + xπ0(s) +
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

Π̄i
U(ds, dx)

+
N

∑
i=1

∫ t

0

∫
R

(
log

(
1 + xπ0(s) +

K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)
− xπ0(s)

−
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)ds

]
.

In other words, for π ∈ A, we require that

lim
K→∞

RK
π(t) = Rπ(t) (38)
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in L2(Ω,F ,P).

Remark 4. Note that Equation (38) holds true if

Et,z,i
(

RK
π(t)

)2
< ∞, Et,z,i

(
Rπ(t)

)2
< ∞,

and

Et,z,i

⏐⏐⏐⏐ ∫ t

0

∞

∑
k=K+1

π(k)(s)
(
μ(k)(s)− r(s−)

)
ds
⏐⏐⏐⏐2

,

Et,z,i

⏐⏐⏐⏐ ∫ t

0

N

∑
i=1

∞

∑
l=K+1

π
(l)
i (s)

(
μ
(l)
i (s)− r(s−)

)
ds
⏐⏐⏐⏐2

,

Et,z,i

⏐⏐⏐⏐ ∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) + ∑∞
k=2 π(k)(s)σ(k)(s−)γk(s−, x)

1 + π0(s)γ(s−, x) + ∑K
k=2 π(k)(s)σ(k)(s−)γk(s−, x)

)
Π̄(ds, dx)

⏐⏐⏐⏐2

,

Et,z,i

⏐⏐⏐⏐ ∫ t

0

∫
R

(
log

(1 + π0(s)γ(s−, x) + ∑∞
k=2 π(k)(s)σ(k)(s−)γk(s−, x)

1 + π0(s)γ(s−, x) + ∑K
k=2 π(k)(s)σ(k)(s−)γk(s−, x)

)

−
∞

∑
k=K+1

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)ds
⏐⏐⏐⏐2

,

Et,z,i

⏐⏐⏐⏐ ∫ t

0

∫
R

log
(

1 + xπ0(s) + ∑∞
l=2 π

(l)
i (s)σ(l)

i (s−)xl

1 + xπ0(s) + ∑K
l=2 π

(l)
i (s)σ(l)

i (s−)xl

)
Π̄i

U(ds, dx)
⏐⏐⏐⏐2

,

Et,z,i

⏐⏐⏐⏐ N

∑
i=1

∫ t

0

∫
R

(
log

(1 + xπ0(s) + ∑∞
l=2 π

(l)
i (s)σ(l)

i (s−)xl

1 + xπ0(s) + ∑K
l=2 π

(l)
i (s)σ(l)

i (s−)xl

)

−
∞

∑
l=K+1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)ds
⏐⏐⏐⏐2

tend to 0 as K → ∞. Indeed, the convergence of Equation (38) follows directly from our assumptions: from the
triangle inequality and the inequality (Fechner 2008)

2| exp(a1)− exp(a2)| ≤ |a1 − a2|| exp(a1) + exp(a2)|, a1, a2 ∈ R.

Then, we get

E
⏐⏐Rπ(t)− RK

π(t)
⏐⏐2 ≤ E

⏐⏐⏐⏐ log
Rπ(t)
RK

π(t)

⏐⏐⏐⏐2(
E|Rπ(t)|2 +E|RK

π(t)|2
)
< ∞

and we can use the following equation

log
Rπ(t)
RK

π(t)
= log

Rπ(0)
RK

π(0)
+

[ ∫ t

0

( ∞

∑
k=K+1

π(k)(s)
(
μ(k)(s)− r(s−)

)
+

N

∑
i=1

∞

∑
l=K+1

π
(l)
i (s)

(
μ
(l)
i (s)− r(s−)

)
− 1

2
π2

0(s)σ
2
0 (s−)

)
ds
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+
∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

Π̄(ds, dx)

−
∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) +
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

Π̄(ds, dx)

+
∫ t

0

∫
R

(
log

(
1 + π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

−
∞

∑
k=K+1

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)ds

−
∫ t

0

∫
R

log
(

1 + π0(s)γ(s−, x) +
K

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)ds

+
N

∑
i=1

∫ t

0

∫
R

log
(

1 + xπ0(s) +
∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

Π̄i
U(ds, dx)

−
N

∑
i=1

∫ t

0

∫
R

log
(

1 + xπ0(s) +
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

Π̄i
U(ds, dx)

+
N

∑
i=1

∫ t

0

∫
R

(
log

(
1 + xπ0(s) +

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

−
∞

∑
l=K+1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)ds

−
N

∑
i=1

∫ t

0

∫
R

log
(

1 + xπ0(s) +
K

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)ds

]
.

Let U denote a utility function of the investor, which is strictly increasing, strictly concave and
twice differentiable, that is, U′ > 0 and U′′ < 0.

For each (t, z) ∈ T×R+ and each i = 1, . . . , N we define

Vπ(t, z, ei) := Et,z,i
[
U(Rπ(T))

]
,

where Et,z,i is the conditional expectation given Rπ(0) = z and J(t) = ei under P.
The expectation above is understood in the limiting sense, that is, we limit the set of admissible

strategies A to the strategies π such that lim
K→∞

Et,z,i
[
U
(

RK
π(T)

)]
exists and is finite. In other words,

lim
K→∞

Et,z,i
[
U
(

RK
π(T)

)]
= Et,z,i

[
U
(

Rπ(T)
)]

< ∞. (39)

Then, the value function of the investor’s portfolio selection problem is defined by

V(t, z, ei) := sup
π∈A

Vπ(t, z, ei) = sup
π∈A

Et,z,i
[
U(Rπ(T))

]
. (40)

Lemma 1. Under the assumption in Equation (38), Equation (39) holds true.

The proof of this Lemma is given in Appendix A.
Our main goal is to identify the value function given in Equation (40). In what follows, we

consider two risk-averse utility functions, namely, the logarithmic utility and the power utility.
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6.1. Logarithmic Utility

In this subsection, we derive the optimal portfolio strategy in the case of a logarithmic utility
function of wealth, namely

U(z) = log(z).

Recall that in A we consider only the strategies for which

lim
K→∞

Et,z,i
[

log RK
π(T)

]
= Et,z,i

[
log Rπ(T)

]
< ∞. (41)

Theorem 5. Assume that there exists a solution

π�(t) := (π�
0 (t), π�

1 (t), . . . , π�
N(t), π(2)�(t), π(3)�(t), . . . , π

(1)�
1 (t), π

(1)�
2 (t), . . .)

of the following system of equations (for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1 ):

r(t−)− μ0(t−) = π�
0 (t)σ

2
0 (t−) +

N

∑
i=1

r(t−)− μ
(1)
i (t−)

σ
(1)
i (t−)

+
∫
R

γ(t−, x)
((

1 + π�
0 (t)γ(t−, x)

+
∞

∑
k=2

π(k)�(t)σ(k)(t−)γk(t−, x)
)−1

− 1
)

ν(dx),

π�
j (t) =

μj(t−)− r(t−)(
r(t−)− μj(t−)

)
σj(t−) + λj(t)σ2

j (t−)
, (42)

r(t−)− μ(k)(t−)
σ(k)(t−)

=
∫
R

γk(t−, x)
((

1 + π�
0 (t)γ(t−, x)

+
∞

∑
k=2

π(k)�(t)σ(k)(t−)γk(t−, x)
)−1

− 1
)

ν(dx),

r(t−)− μ
(l)
i (t−)

σ
(l)
i (t−)

=
∫
R

xl
((

1 + xπ�
0 (t) +

∞

∑
l=1

π
(l)�
i (t)σ(l)

i (t−)xl
)−1

− 1
)

λi(t)η(dx),

which belongs to A, that is, in particular, satisfies Equations (38) and (41). Then, the optimal portfolio
strategy for the portfolio selection problem in Equation (40) with logarithmic utility function of wealth is one of
those solutions.

Proof. The conditional expectation of the logarithm of the wealth process has the following form
(for t ∈ [0, T)):

Et,z,i
[

log Rπ(T)
]
= log Rπ(t) +Et,z,i

∫ T

t

[
r(s−) +

N

∑
j=0

πj(s)
(
μj(s−)− r(s−)

)
+

∞

∑
k=2

π(k)(s)
(
μ(k)(s)− r(s−)

)
+

N

∑
i=0

∞

∑
l=1

π
(l)
i (s)

(
μ
(l)
i (s)− r(s−)

)
− 1

2
π2

0(s)σ
2
0 (s−)

+
N

∑
j=1

(
log

(
1 + πj(s)σj(s−)

)
− πj(s)σj(s−)

)
λj(s)

+
∫
R

(
log

(
1 + π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

− π0(s)γ(s−, x)−
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)
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+
N

∑
i=1

∫
R

(
log

(
1 + xπ0(s) +

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)
− xπ0(s)−

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)
]

ds.

Therefore, the optimal value function V can be written as

V(t, z, ei) = log(z) + sup
π∈A

hπ(t, ei),

where

hπ(t, ei) := Et,z,i

∫ T

t
F
(
π0(s), π1(s), . . . , πN(s), π(2)(s), . . . , π

(1)
1 (s), . . .

)
ds

for

F
(
π0(s), π1(s), . . . , πN(s), π(2)(s), . . . , π

(1)
1 (s), . . .

)
:= r(s−) +

N

∑
j=0

πj(s)(μj(s−)− r(s−))

+
∞

∑
k=2

π(k)(s)
(
μ(k)(s)− r(s−)

)
+

N

∑
i=0

∞

∑
l=1

π
(l)
i (s)

(
μ
(l)
i (s)− r(s−)

)
− 1

2
π2

0(s)σ
2
0 (s−)

+
N

∑
j=1

(
log

(
1 + πj(s)σj(s−)

)
− πj(s)σj(s−)

)
λj(s)

+
∫
R

(
log

(
1 + π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

− π0(s)γ(s−, x)−
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)

+
N

∑
i=1

∫
R

(
log

(
1 + xπ0(s) +

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)
− xπ0(s)−

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx).

Thus, to determine the optimal portfolio strategy, it is sufficient to maximize F. Indeed,
the maximization of the function F

(
π0(s), π1(s), . . . , πN(s), π(2)(s), . . . , π

(1)
1 (s), . . .

)
at each time point

s ∈ [0, T] maximizes the integral of F on [0, T]. By direct differentiation with respect to π0, πj, π(k), π
(l)
i

we obtain conditions (Equation (42)) that the optimal strategies have to satisfy. Observe that, from
Equation (9), the integrals

∫
R

(
log

(
1 + π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)
− π0(s)γ(s−, x)

−
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)

ν(dx)

and (for i = 1, . . . , N)

∫
R

(
log

(
1 + xπ0(s) +

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)
− xπ0(s)−

∞

∑
l=1

π
(l)
i (s)σ(l)

i (s−)xl
)

λi(s)η(dx)

are well-defined. Hence, by the Leibniz integral rule, we can interchange the above mentioned
derivatives and the integrals.

Remark 5. We have not been able to prove that a solution of the system in Equation (42) exists and is unique.
On a complete Itô–Markov additive market, we have an infinite number of assets, so the optimal portfolio strategy
π� is an infinite dimensional vector. The value function in Equation (40) is understood in the limiting sense and
therefore numerically it can be approximated by the finite strategy counterpart. In the case of finite dimensional
approximations by Kramkov and Schachermayer (1999, Thm. 2.2), the optimal wealth process exists and is
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unique. Under additional conditions, such as absence of redundant assets, the optimal strategy exists and
is unique.

6.2. Power Utility

In this subsection, we derive the optimal portfolio strategy in the case of the power utility
function, namely

U(z) = zα for α ∈ (0, 1).

We assume that, for each π ∈ A,

lim
K→∞

Et,z,i
(

RK
π(T)

)α
= Et,z,i

(
Rπ(T)

)α
< ∞. (43)

Theorem 6. Assume that there exists a solution

π�(t) := (π�
0 (t), π�

1 (t), . . . , π�
N(t), π(2)�(t), π(3)�(t), . . . , π

(1)�
1 (t), π

(1)�
2 (t), . . .)

of the following system of equations (for i, j = 1, . . . , N, k ≥ 2 and l ≥ 1):

r(t−)− μ0(t) = (α− 1)π�
0 (t)σ

2
0 (t−) +

N

∑
i=1

μ
(1)
i (t−)− r(t−)

σ
(1)
i (t−)

+
∫
R

γ(t−, x)
((

1 + π�
0 (t)γ(t−, x)

+
∞

∑
k=2

π(k)�(t)σ(k)(t−)γk(t−, x)
)α−1

− 1
)

ν(dx),

π�
j (t) =

(
1− μj(t−)−r(t−)

λi(t)σj(t−)

) 1
α−1

− 1

σj(t−)
, (44)

r(t−)− μ(k)(t) =
∫
R

σ(k)(t−)γk(t−, x)
((

1 + π�
0 (t)γ(t−, x)

+
∞

∑
k=2

π(k)�(t)σ(k)(t−)γk(t−, x)
)α−1

− 1
)

ν(dx),

r(t−)− μ
(l)
i (t) =

∫
R

σ
(l)
i (t−)xl

((
1 + xπ�

0 (t) +
∞

∑
l=1

π
�(l)
i (t)xlσ

(l)
i (t−)

)α−1
− 1

)
λi(t)η(dx)dt,

which belongs toA, that is, in particular, it satisfies Equations (38) and (43). Then, the optimal portfolio strategy
for the portfolio selection problem in Equation (40) with power utility function of wealth is one of those solutions.

Proof. From Itô’s formula (see Protter (2005, Thm. 32)) for the power utility function of wealth,
we obtain (for s ∈ [t, T] and t ∈ [0, T])

(Rπ(T))α − (Rπ(t))α =
∫ T

t
α(Rπ(s))α

(
r(s−) +

N

∑
j=0

πj(s)
(
μj(s−)− r(s−)

)
+

∞

∑
k=2

π(k)(s)
(
μ(k)(s)− r(s−)

)
+

N

∑
i=0

∞

∑
l=1

π
(l)
i (s)

(
μ
(l)
i (s)− r(s−)

))
ds +

∫ T

t
α(Rπ(s))απ0(s)σ0(s−)dW(s)

+
∫ T

t

1
2

α(α− 1)(Rπ(s))απ2
0(s)σ

2
0 (s−)ds +

N

∑
j=1

∫ T

t

((
Rπ(s) + Rπ(s)πj(s)σj(s−)

)α − (Rπ(s))α

)
dΦj(s)

+
N

∑
j=1

∫ T

t

((
Rπ(s) + Rπ(s)πj(s)σj(s−)

)α − (Rπ(s))α − α(Rπ(s))απj(s)σj(s−)
)

λj(s)ds
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+
∫ T

t

∫
R

((
Rπ(s−) + Rπ(s)

(
π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))α

− (Rπ(s−))α − α(Rπ(s−))α
(

π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))

ν(dx)ds

+
∫ T

t

∫
R

((
Rπ(s−) + Rπ(s)

(
π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))α

− (Rπ(s−))α

)
Π̄(ds, dx)

+
N

∑
i=1

∫ T

t

∫
R

((
Rπ(s−) + Rπ(s)

(
xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))α

− (Rπ(s−))α

− α(Rπ(s−))α

(
xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))

λi(s)η(dx)ds

+
N

∑
i=1

∫ T

t

∫
R

((
Rπ(s−) + Rπ(s)

(
xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))α

−
(

Rπ(s−)
)α

)
Π̄i

U(ds, dx).

From this and Equation (40), the value function is given by

V(t, z, ei) = zα + sup
π∈A

Et,z,i

∫ T

t
zα

[
α

(
r(s−) +

N

∑
j=0

πj(s)
(
μj(s−)− r(s−)

)
+

∞

∑
k=2

π(k)(s)
(
μ(k)(s)− r(s−)

)
+

N

∑
i=0

∞

∑
l=1

π
(l)
i (s)

(
μ
(l)
i (s)− r(s−)

)
+

1
2
(α− 1)π2

0(s)σ
2
0 (s−)

)

+
N

∑
j=1

((
1 + πj(s)σj(s−)

)α − 1− απj(s)σj(s−)
)

λj(s)

+
∫
R

((
1 + π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)α

− 1− α
(

π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))

ν(dx)

+
N

∑
i=1

∫
R

((
1 + xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
)α

− 1

− α
(

xπ0(s) +
∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))

λi(s)η(dx)

]
ds.

By direct differentiation with respect to each strategy, this supremum is attained if the strategies
satisfy the system in Equation (44). Observe that, from Equation (9), the integrals

∫
R

((
1 + π0(s)γ(s−, x) +

∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
)α

− 1− α
(

π0(s)γ(s−, x) +
∞

∑
k=2

π(k)(s)σ(k)(s−)γk(s−, x)
))

ν(dx)

and (for i = 1, . . . , N)

∫
R

((
1 + xπ0(s) +

∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
)α

− 1− α
(

xπ0(s) +
∞

∑
l=1

xlπ
(l)
i (s)σ(l)

i (s−)
))

λi(s)η(dx)

are well-defined. Hence, by the Leibniz integral rule, we can interchange the derivatives
and integrals.
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Remark 6. We have not been able to prove that a solution of Equation (44) exists and is unique. However, if we
consider a finite market, then this solution exists and is unique and must be the optimal portfolio by Kramkov and
Schachermayer (1999, Thm. 2.2). In π∗j (t), one can observe the dependence of this strategy on Sharpe ratio.

Remark 7. If the prices of assets in the Black–Scholes–Merton market are described by processes without jumps
(that is, Π̄(dt, dx) = 0 and Π̄i

U(dt, dx) = 0), then we obtain closed-form solutions to the optimal portfolio
selection problem in Equation (40) for the logarithmic and power utilities (Zhang et al. 2010). In addition,
the value function in the primary market is the same as in the enlarged market, while in our market this does
not occur.

7. Optimal Portfolio Selection in the Original Market

In this section, we find conditions for optimal portfolio strategies in the original market, i.e., in the
market with one risk-free asset and one share.

Let π̃0 be the proportion of wealth invested in share S0 in the original market. Then,
the corresponding wealth process, denoted as Rπ̃0 , is given by the stochastic differential equation

dRπ̃0(t)
Rπ̃0(t−)

:=
(

r(t−) + π̃0(t)
(
μ0(t−)− r(t−)

))
dt + π̃0(t)σ0(t−)dW(t)

+ π̃0(t)
∫
R

γ(t−, x)Π̄(dt, dx) + π̃0(t)
N

∑
i=1

∫
R

xΠ̄i
U(dt, dx).

LetA0 be the class of admissible portfolio strategies π̃0 such that π̃0 is predictable, {Ft}-adaptable
and satisfies the condition

∫ T
t |π̃0(s)|2ds < ∞,P− a.s. Similar to the definition of the value function in

the enlarged market, we define the value function in the original incomplete market as

V0(t, z, ei) := sup
π̃0∈A0

Et,z,i
[
U(Rπ̃0(T))

]
. (45)

We assume Et,z,i
[
U(Rπ̃0(T))

]
< ∞ for i = 1, . . . , N.

First, we consider the logarithmic utility function. We have

Et,z,i
[

log Rπ̃0(T)
]

= log z +Et,z,i

∫ T

t

[
r(s−) + π̃0(s)

(
μ0(s−)− r(s−)

)
− 1

2
π̃2

0(s)σ
2
0 (s−)

+
∫
R

(
log

(
1 + π̃0(s)γ(s−, x)

)
− π̃0(s)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

(
log

(
1 + xπ̃0(s)

)
− xπ̃0(s)

)
λi(s)η(dx)

]
ds,

that is, for the logarithmic utility, the value function V0 can be written as follows:

V0(t, z, ei) = log z + sup
π̃0∈A0

Et,z,i

∫ T

t

[
r(s−) + π̃0(s)

(
μ0(s−)− r(s−)

)
− 1

2
π̃2

0(s)σ
2
0 (s−)

+
∫
R

(
log

(
1 + π̃0(s)γ(s−, x)

)
− π̃0(s)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

(
log

(
1 + xπ̃0(s)

)
− xπ̃0(s)

)
λi(s)η(dx)

]
ds.

From Equation (9), the integrals

∫
R

(
log

(
1 + π̃0(s)γ(s−, x)

)
− π̃0(s)γ(s−, x)

)
ν(dx)
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and (for i = 1, . . . , N) ∫
R

(
log

(
1 + xπ̃0(s)

)
− xπ̃0(s)

)
λi(s)η(dx)

are well-defined. Hence, by the Leibniz integral rule, we can differentiate the above integrals with
respect to π̃0. The above supremum is attained if π̃0 solves the equation

μ0(s−)− r(s)− σ2
0 (s−)π̃0(s) +

∫
R

(
γ(s−, x)

1 + π̃0(s)γ(s−, x)
− γ(s−, x)

)
ν(dx) (46)

+
N

∑
i=1

∫
R

(
x

1 + xπ̃0(s)
− x

)
λi(s)η(dx) = 0.

In the case of the power utility, the value function V0 can be written as

V0(t, z, ei) = zα + sup
π̃0∈A0

Et,z,i

∫ T

t

[
αzα

(
r(s−) + π̃0(s)

(
μ0(s−)− r(s−)

)
+

1
2
(α− 1)π̃2

0(s)σ
2
0 (s−)

)

+
∫
R

zα

((
1 + π̃0(s)γ(s−, x)

)α

− 1− απ̃0(s)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

zα

((
1 + xπ̃0(s)

)α

− 1− αxπ̃0(s)

)
λi(s)η(dx)

]
ds.

Note that, from Equation (9), the integrals

∫
R

zα

((
1 + π̃0(s)γ(s−, x)

)α

− 1− απ̃0(s)γ(s−, x)

)
ν(dx)

and (for i = 1, . . . , N)

∫
R

zα

((
1 + xπ̃0(s)

)α

− 1− αxπ̃0(s)

)
λi(s)η(dx)

are well-defined. By direct differentiation in Equation (47) with respect to π̃0, we get

μ0(s−)− r(s)− (α− 1)σ2
0 (s−)π̃0(s) +

∫
R

(
γ(s−, x)

(
1 + π̃0(s)γ(s−, x)

)α−1 − γ(s−, x)
)

ν(dx)

+
N

∑
i=1

∫
R

(
x
(
1 + xπ̃0(s)

)α−1 − x
)

λi(s)η(dx) = 0. (47)

Lemma 2. The solutions of Equations (46) and (47) are optimal strategies for the portfolio selection problem in
Equation (45) for the logarithmic and power utilities, respectively.

Proof. We prove that solutions of Equations (46) and (47) are optimal portfolio strategies; their
existence was proved by Kramkov and Schachermayer (1999). Let π̃ε

0 := π̃0 + ε be a perturbed
portfolio strategy for ε > 0.

We define the value function Vε
0 related to the strategy π̃ε

0 (Fouque et al. 2017a, 2017b; Mokkhavesa and
Atkinson 2002) as follows:

Vε
0 (t, z, ei) := sup

π̃ε
0∈A0

Et,z,i
[
U(Rπ̃ε

0
(T))

]
.
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In the case of the logarithmic utility,

Vε
0 (t, z, ei) = log z + sup

π̃0∈A0

Et,z,i

∫ T

t

[
r(s−) + (π̃0(s) + ε)

(
μ0(s−)− r(s−)

)
− 1

2
(π̃0(s) + ε)2σ2

0 (s−)

+
∫
R

(
log

(
1 + (π̃0(s) + ε)γ(s−, x)

)
− (π̃0(s) + ε)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

(
log

(
1 + x(π̃0(s) + ε)

)
− x(π̃0(s) + ε)

)
λi(s)η(dx)

]
ds,

and for the power utility,

Vε
0 (t, z, ei) = zα + sup

π̃0∈A0

Et,z,i

∫ T

t

[
αzα

(
r(s−) + (π̃0(s) + ε)

(
μ0(s−)− r(s−)

)
+

1
2
(α− 1)(π̃0(s) + ε)2σ2

0 (s−)
)

+
∫
R

zα

((
1 + (π̃0(s) + ε)γ(s−, x)

)α

− 1− α(π̃0(s) + ε)γ(s−, x)

)
ν(dx)

+
N

∑
i=1

∫
R

zα

((
1 + x(π̃0(s) + ε)

)α

− 1− αx(π̃0(s) + ε)

)
λi(s)η(dx)

]
ds.

Note that π̃0 is a portfolio strategy that maximizes the value function, so ∂
∂ε Vε

0

⏐⏐⏐⏐
ε=0

= 0.

Calculating this derivative for Vε
0 in both cases, we get Equations (46) and (47).

Thus, the optimal portfolio strategies solve these equations. The existence and uniqueness of
the optimal strategies follows from Kramkov and Schachermayer (1999). In that paper, the main
assumption concerns the utility function, which has to have asymptotic elasticity strictly less than 1,
that is,

lim
z→∞

zU′(z)
U(z)

< 1.

Note that the power and logarithmic utilities satisfy this condition.

Remark 8. In a general semi-martingale market model, Goll and Kallsen (2000, 2003) obtained the optimal
solution explicitly in terms of semi-martingale characteristics of the price process for the logarithmic utility.
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Appendix A

Proof of Lemma 1. We define
UM(z) := U(z)1{z:|U(z)|≤M}.

The convergence of RK
π to Rπ in L2(Ω,F ,P) given in Equation (38) implies the convergence in

probability of RK
π to Rπ as K → ∞ (see Jacod and Protter (2004, Thm. 17.2)).

Thus, for the bounded and continuous function UM given above, we have

lim
K→∞

Et,z,i
[
UM

(
RK

π(T)
)]

= Et,z,i
[
UM

(
Rπ(T)

)]
(A1)

(see Jacod and Protter (2004, Thm. 18.1)). Note that

Et,z,i
[
U
(

RK
π(T)

)]
= Et,z,i

[
UM

(
RK

π(T)
)]

+Et,z,i
[
U
(

RK
π(T)

)
1{RK

π(T):|U(RK
π(T))|>M}

]
. (A2)

From the concavity of U, it follows that U(z) ≤ b + cz for each z ≥ 0 and some real b, c ≥ 0. Thus,
the second term on the right-hand side of Equation (A2) satisfies

Et,z,i
[
U
(

RK
π(T)

)
1{RK

π(T):|U(RK
π(T))|>M}

]
≤ b + c Et,z,i

[
RK

π(T)1{RK
π(T):|U(RK

π(T))|>M}
]
.

Now, we prove that

lim
K→∞

Et,z,i
[
RK

π(T)I
K(T)

]
= Et,z,i

[
Rπ(T)I(T)

]
, (A3)

where
IK(T) := 1{RK

π(T):|U(RK
π(T))|>M} and I(T) := 1{Rπ(T):|U(Rπ(T))|>M}.

Note that

Et,z,i
∣∣RK

π(T)I
K(T)− Rπ(T)I(T)

∣∣
≤

[
Et,z,i

(
RK

π(T)− Rπ(T)
)2
] 1

2
[
Et,z,i

(
I(T)

)] 1
2

(A4)

+

[
Et,z,i

(
Rπ(T)

)2
] 1

2
[
Et,z,i

(
I(T)− IK(T)

)2
] 1

2

+

[
Et,z,i

(
RK

π(T)
)2
] 1

2
[
Et,z,i

(
IK(T)− I(T)

)2
] 1

2

+

[
Et,z,i

(
Rπ(T)

)2
] 1

2
[
Et,z,i

(
IK(T)− I(T)

)2
] 1

2

.

Indeed, from the triangle inequality, we obtain

Et,z,i
∣∣RK

π(T)I
K(T)− Rπ(T)I(T)

∣∣ (A5)

≤ Et,z,i
∣∣RK

π(T)I
K(T)− RK

π(T)I(T)
∣∣+Et,z,i

∣∣∣RK
π(T)I(T)− Rπ(T)IK(T)

∣∣∣
+ Et,z,i

∣∣∣Rπ(T)IK(T)− Rπ(T)I(T)
∣∣∣.

Moreover, using Hölder’s inequality, we get

Et,z,i

∣∣∣RK
π(T)I

K(T)− RK
π(T)I(T)

∣∣∣ ≤ [
Et,z,i

(
RK

π(T)
)2
] 1

2
[
Et,z,i

(
IK(T)− I(T)

)2
] 1

2

(A6)
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and

Et,z,i

∣∣∣Rπ(T)IK(T)− Rπ(T)I(T)
∣∣∣ ≤ [

Et,z,i
(

Rπ(T)
)2
] 1

2
[
Et,z,i

(
IK(T)− I(T)

)2
] 1

2

. (A7)

Finally, from the triangle inequality and Hölder’s inequality, we derive

Et,z,i

∣∣∣RK
π(T)I(T)− Rπ(T)IK(T)

∣∣∣ (A8)

≤
[
Et,z,i

(
RK

π(T)− Rπ(T)
)2
] 1

2
[
Et,z,i

(
I(T)

)] 1
2

+

[
Et,z,i

(
Rπ(T)

)2
] 1

2
[
Et,z,i

(
I(T)− IK(T)

)2
] 1

2

.

Combining Equations (A5)–(A8), we get the inequality in Equation (A4).
Now, we prove that

IK → I (A9)

in L2(Ω,F ,P) as K → ∞.
First, we verify this convergence in probability. Indeed, for any ε > 0, there exists δ > 0 such that

P(|IK(T)− I(T)| > ε) = P({U(RK
π(T)) > M, U(Rπ(T)) < M} ∪ {U(RK

π(T)) < M, U(Rπ(T)) > M})
≤ P(|U(RK

π(T))−U(Rπ(T))| > δ).

The right-hand side of the above inequality tends to zero as K → ∞, since the convergence
in probability of RK

π to Rπ yields the convergence in probability of U(RK
π) to U(Rπ) (see Jacod and

Protter (2004, Thm. 17.5)).
Moreover, we have

IK(T) ≤ 1,

thus {IK}∞
K=2 is uniformly integrable and

lim
K→∞

IK(T) = I(T)

in L2(Ω,F ,P) (see Gut (2005, Thm. 4.5, p. 216 and Thm. 5.4, p. 221 )). This completes the proof
of Equation (A9).

By Equations (38) and (A9), the right-hand side of the inequality in Equation (A4) tends to 0 as
K → ∞. This completes the proof of Equation (A3).

From Equation (A3), it follows that

lim
K→∞

Et,z,i
[
U
(

RK
π(T)

)
1{RK

π(T):|U(RK
π(T))|>M}

]
is well-defined. Thus, as M → ∞, the second term on the right-hand side of Equation (A2) tends to
zero. Moreover, the first term converges to Et,z,i

[
U
(

Rπ(T)
)]

by (A1). This completes the proof.

References

Artzner, Philippe, and David Heath. 1995. Approximate completeness with multiple martingale measures.
Mathematical Finance 5: 1–11.

Asmussen, Søren. 2003. Applied Probability and Queues, 2nd ed; Berlin and Heidelberg: Springer.
Asmussen, Søren, and Offer Kella. 2000. Multi-dimensional martingale for Markov additive processes and its

applications. Advances in Applied Probability 32: 376–80. [CrossRef]

144



Risks 2019, 7, 34

Bae, Geum, Woo Chang Kim, and John M. Mulvey. 2014. Dynamic asset allocation for varied financial markets
under regime switching framework. European Journal of Operational Research 234: 450–58. [CrossRef]

Barndorff-Nielsen, Ole E., and Neil Shephard. 2003. Realised power variation and stochastic volatility models.
Bernoulli 9: 243–65. [CrossRef]

Barndorff-Nielsen, Ole E., and Neil Shephard. 2004. Financial Volatility: Stochastic Volatility and Lévy Based Models.
Cambridge: Cambridge University Press.

Bättig, Robert. 1999. Completeness of securities market models-an operator point of view. Annals of Applied
Probability 9: 529–66. [CrossRef]

Bättig, Robert, and Robert A. Jarrow. 1999. The second fundamental theorem of asset pricing: A new approach.
The Review of Financial Studies 12: 1219–35. [CrossRef]

Bäuerle, Nicole, and Ulric Rieder. 2004. Portfolio optimization with Markov-modulated stock prices and interest
rates. IEEE Transactions on Automatic Control 49: 442–47. [CrossRef]

Bäuerle, Nicole, and Ulric Riede. 2007. Portfolio optimization with jumps and unobservable intensity process.
Mathematical Finance 17: 205–24. [CrossRef]

Björk, Tomas, and Bertil Näslund. 1998. Diversified portfolios in continuous time. European Financial Review
1: 361–87. [CrossRef]

Black, Fischer, Michael C. Jensen, and Myron Scholes. 1972. Some Empirical Tests, Studies in the Theory of Capital
Markets. In Studies in the Theory of Capital Markets. Edited by M. Jensen. New York: Praeger, pp. 79–121.

Boel, René, and Michael Kohlmann. 1980. Semimartingale models of stochastic optimal control, with applications
to double Martingales. SIAM Journal on Control and Optimization 18: 511–33. [CrossRef]

Buffington, John, and Robert J. Elliott. 2002. American options with regime switching. International Journal of
Theoretical and Applied Finance 5: 497–514. [CrossRef]

Busch, Michael, Ralf Korn, and Frank Thomas Seifried. 2013. Optimal consumption and investment for a large
investor: An intensity-based control framework. Mathematical Finance 23: 687–717. [CrossRef]

Çinlar, Erhan. 1972a. Markov additive processes: I. Zeitschrift Wahrscheinlichkeitstheorie und verwandte Gebiete
24: 85–93. [CrossRef]

Çinlar, Erhan. 1972b. Markov additive processes: II. Zeitschrift Wahrscheinlichkeitstheorie und verwandte Gebiete
24: 95–121. [CrossRef]

Corcuera, José Manuel, Joao Guerra, David Nualart, and Wim Schoutens. 2006. Optimal investment in a Lévy
market. Applied Mathematics and Optimization 53: 279–309. [CrossRef]

Corcuera, José Manuel, David Nualart, and Wim Schoutens. 2005. Completion of a Lévy market by power-jump
assets. Finance and Stochastics 9: 109–27. [CrossRef]

Cuchiero, Christa, Irene Klein, and Josef Teichmann. 2016. A new perspective on the fundamental theorem of
asset pricing for large financial markets. Theory of Probability and its Applications 60: 561–79. [CrossRef]

Di Masi, Giovanni Battista, Yuri M. Kabanov, and Wolfgang J. Runggaldier. 1994. Mean variance hedging of
options on stocks with Markov volatility. Theory of Probability and Applications 39: 173–81. [CrossRef]

Elliott, Rogemar J., Lakhdar Aggoun, and John B. Moore. 1994. Hidden Markov Models: Estimation and Control.
Berlin: Springer.

Elliott, Rogemar J., Leunglung Chan, and Tak Kuen Siu. 2005. Option pricing and esscher transform under regime
switching. Annals of Finance 1: 423–32. [CrossRef]

Elliott, Rogemar J., William C. Hunter, and Barbara M. Jamieson. 2001. Financial signal processing: A self
calibrating model. International Journal of Theoretical and Applied Finance 4: 567–84. [CrossRef]

Elliott, Rogemar J., W. P. Malcolm, and Allanus H. Tsoi. 2003. Robust parameter estimation for asset price models
with Markov modulated volatilities. Journal of Economic Dynamics and Control 27: 1391–409. [CrossRef]

Fechner, Włodzimierz. 2008. Some inequalities connected with the exponential function. Archivum Mathematicum
(Brno) 44: 217–22.

Fleming, Wendell H., and Daniel Hernández-Hernández. 2003. An optimal consumption model with stochastic
volatility. Finance and Stochastics 7: 245–62. [CrossRef]

Fontana, Claudio, Bernt Øksendal, and Agnès Sulem. 2015. Market viability and martingale measures under
partial information. Methodology and Computing in Applied Probability 17: 15–39. [CrossRef]

Fouque, Jean-Pierre, Andrew Papanicolaou, and Ronnie Sircar. 2017a. Perturbation Analysis for Investment
Portfolios Under Partial Information with Expert Opinions. SIAM Journal on Control and Optimization
55: 1534–66. [CrossRef]

145



Risks 2019, 7, 34

Fouque, Jean-Pierre, Ronnie Sircar, and T. Zariphopoulou. 2017b. Portfolio optimization and stochastic volatility
asymptotics. Mathematical Finance 27: 704–45. [CrossRef]

Framstad, Nils Chr., Bernt Øksendal, and Agnes Sulem. 2004. Sufficient stochastic maximum principle for the
optimal control of jump diffusions and applications to finance. Journal of Optimization Theory and Applications
121: 77–98. [CrossRef]

Fu, Jun, Jiaqin Wei, and Hailiang Yang. 2014. Portfolio optimization in a regime-switching market with derivatives.
European Journal of Operational Research 233: 184–92. [CrossRef]

Gautam, Natarajan, Vidyadhar Kulkarni, Zbigniew Palmowski, and Tomasz Rolski. 1999. Bounds for fluid models
driven by semi-Markov inputs. Probability in Engineering and Information Sciences 13: 429–75. [CrossRef]

Goldfeld, Stephen M., and Richard E. Quandt. 1973. A Markov model for switching regressions. Journal of
Econometrics 1: 3–16. [CrossRef]

Goll, Thomas, and Jan Kallsen. 2000. Optimal portfolios for logarithmic utility. Stochastic Processes and their
Applications 89: 31–48. [CrossRef]

Goll, Thomas, and Jan Kallsen. 2003. A complete explicit solution to the log-optimal portfolio problem. The Annals
of Applied Probability 13: 774–99.

Guo, Xin. 2001. Information and option pricings. Quantitative Finance 1: 38–44. [CrossRef]
Guo, Xin, Jianjun Miao, and Erwan Morellec. 2005. Irreversible investments with regime shifts. Journal of Economic

Theory 122: 37–59. [CrossRef]
Gut, Allan. 2005. Probability: A Graduate Course. New York: Springer.
Hamilton, James D. 1989. A new approach to the economics analysis of non-stationary time series. Econometrica

57: 357–84. [CrossRef]
Heston, Steven. 1993. A closed-form solution for options with stochastic volatility with applications to bond and

currency options. Review of Financial Studies 6: 327–43. [CrossRef]
Jacod, Jean, and Philip Protter. 2004. Probability Essentials, 2nd ed. Berlin and Heidelberg: Springer.
Kabanov, Yuri, and Dmitry Kramkov. 1994. Large financial markets: Asymptotic arbitrage and contiguity.

Probability Theory and Its Applications 39: 222–29. [CrossRef]
Kabanov, Yuri, and Dmitry Kramkov. 1998. Asymptotic arbitrage in large financial markets. Finance and Stochastics

2: 143–72. [CrossRef]
Karatzas, Ioannis, John P. Lehoczky, Steven E. Shreve, and Gan-Lin Xu. 1991. Martingale and duality methods

for utility maximization in an incomplete market. SIAM Journal on Control and Optimization 29: 702–30.
[CrossRef]

Karatzas, Ioannis, and Steven E. Shreve. 1998. Brownian Motion and Stochastic Calculus. Berlin, Heidelberg and
New York: Springer.

Korn, Ralf, Yaroslav Melnyk, and Frank Thomas Seifried. 2017. Stochastic impulse control with regime-switching
dynamics. European Journal of Operational Research 260: 1024–42. [CrossRef]

Korn, Ralf, and H. Kraft. 2001. A stochastic control approach to portfolio problems with stochastic interest rates.
SIAM Journal on Control and Optimization 40: 1250–69. [CrossRef]

Kramkov, Dmitry, and Walter Schachermayer. 1999. The asymptotic elasticity of utility functions and optimal
investment in incomplete markets. Annals of Applied Probability 9: 904–50. [CrossRef]

Kreps, David M. 1981. Arbitrage and equilibrium in economies with infinitely many commodities. Journal of
Mathematical Economics 8: 15–35. [CrossRef]

Kushner, Harold J., and Paul G. Dupuis. 1992. Numerical Methods for Stochastic Control Problems in Continuous Time.
New York: Springer.

Liao, Ming. 2004. Lévy Processes in Lie Groups. Cambridge Tracts in Mathematics. Cambridge: Cambridge
University Press, vol. 162.

Liu, Ruihua. 2014. Optimal investment and consumption with proportional transaction costs in regime-switching
model. Journal of Optimization Theory and Applications 163: 614–41. [CrossRef]

Markowitz, Harry M. 1952. Portfolio selection. The Journal of Finance 7: 77–91.
Merton, Robert C. 1971. Optimal consumption and portfolio rules in a continuous time model. Journal of Economic

Theory 3: 373–413. [CrossRef]
Merton, Robert C. 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial

Economics 3: 125–44. [CrossRef]

146



Risks 2019, 7, 34

Merton, Robert C. 1980. On estimating the expected return on the market. Journal of Financial Economics 8: 323–61.
[CrossRef]

Mokkhavesa, Sutee, and Colin Atkinson. 2002. Perturbation solution of optimal portfolio theory with transaction
costs for any utility function. IMA Journal of Management Mathematics 13: 131–51. [CrossRef]

Nagai, Hideo, and Wolfgang J. Runggaldier. 2008. PDE Approach to Utility Maximization for Market Models
with Hidden Markov Factors. In Seminar on Stochastic Analysis, Random Fields and Applications V, Progress in
Probability. Edited by R. C. Dalang, M. Dozzi and F. Russo. Basel: Birkhuser Verlag, vol. 59, pp. 493–506.

Naik, Vasanttilak. 1993. Option valuation and hedging strategies with jumps in the volatility of asset returns.
Journal of Finance 48: 1969–84. [CrossRef]

Niu, Liqun. 2008. Some stability results of optimal investment in a simple Lévy market. Insurance Mathematics
Economics 42: 445–52. [CrossRef]

Øksendal, Bernt, and Agnès Sulem. 2004. Applied Stochastic Control of Jump Diffusions. Berlin and Heidelberg: Springer.
Pacheco, António, Loon Ching Tang, and Narahari U. Prabhu. 2009. Markov-Modulated Processes and Semigenerative

Phenomena. Hackensack: World Scientific.
Palmowski, Zbigniew, Łukasz Stettner, and Anna Sulima. 2018. A note on chaotic and predictable representations

for Itô-Markov additive processes. Stochastic Analysis and Applications 36: 622–38. [CrossRef]
Pham, Huyên Pham, and Marie-Claire Quenez. 2001. Optimal portfolio in partially observed stochastic volatility

models. The Annals of Applied Probability 11: 210–38. [CrossRef]
Prabhu, Narahari U. 1998. Stochastic Storage Processes: Queues, Insurance Risk, Dams, and Data Communication,

2nd ed. Berlin and Heidelberg:Springer.
Protter, Philip E. 2005. Stochastic Integration and Differential Equations: A New Approach, 2nd ed. Berlin: Springer.
Resnick, Sidney I. 2007. Heavy-Tail Phenomena. Probabilistic and Statistical Modeling. New York: Springer.
Rieder, Ulrich, and Nicole Bäuerle. 2005. Portfolio optimization with unobservable markov-modulated drift

process. Journal of Applied Probability 42: 362–78. [CrossRef]
Sass, Jörn, and Ulrich G. Haussmann. 2004. Optimizing the terminal wealth under partial information: The drift

process as a continuous time markov chain. Finance and Stochastics 8: 553–77. [CrossRef]
Schoutens, Wim. 1999. Stochastic Processes and Orthogonal Polynomials. Lecture Notes in Statistics. New York:

Springer, vol. 146.
Shen, Yang, and Tak Kuen Siu. 2012. Asset allocation under stochastic interest rate with regime switching.

Economic Modelling 29: 1126–36. [CrossRef]
Sotomayor, Luz R., and Abel Cadenillas. 2013. Stochastic impulse control with regime switching for the optimal

dividend policy when there are business cycles, taxes and fixed costs. Stochastics: An International Journal of
Probability and Stochastic Processes 85: 707–22. [CrossRef]

Stockbridge, Richard. 2002. Portfolio optimization in markets having stochastic rates. In Lecture Notes in Control
and Information Sciences: Stochastic Theory and Control. Edited by B. Pasik-Duncan. Berlin: Springer, vol. 280,
pp. 447–58.

Teplá, Lucie. 2000. Optimal portfolio policies with borrowing and shortsale constraints. Journal of Economic
Dynamics and Control 24: 1623–39. [CrossRef]

Tong, Howell. 1978. Threshold Models in Non-linear Time Series Analysis. Berlin: Springer.
Tu, Jun. 2010. Is regime switching in stock returns important in asset allocations? Management Science 56: 1198–215.

[CrossRef]
Yin, George, and Xun Yu Zhou. 2004. Markowitz’s mean-variance portfolio selection with regime switching:

From discrete-time models to their continuous-time limits. IEEE Transactions on Automatic Control 49: 349–60.
[CrossRef]

Zariphopoulou, Thaleia. 1992. Investment-consumption models with transaction fees and markov-chain
parameters. SIAM Journal on Control and Optimization 30: 613–36. [CrossRef]

Zhang, Xin, Robert J. Elliott, Tak Kuen Siu, and Junyi Guo. 2012. Markovian regime-switching market completion
using additional Markov jump assets. IMA Journal of Management Mathematics 23: 283–305. [CrossRef]

Zhang, Qing. 2001. Stock trading: An optimal selling rule. SIAM Journal on Control and Optimization 40: 64–87.
[CrossRef]

Zhang, Xin, Tak Kuen Siu, and Qingbin Meng. 2010. Porfolio selection in the enlarged Markovian regime-switching
market. SIAM Journal on Control and Optimization 48: 3368–88. [CrossRef]

147



Risks 2019, 7, 34

Zhou, Xun Yu, and George Yin. 2003. Markowitz’s Mean-Variance Portfolio Selection with Regime Switching:
A Continuous Time Model. SIAM Journal on Control and Optimization 42: 1466–82. [CrossRef]

Zhang, Qing, and George Yin. 2004. Nearly-optimal asset allocation in hybrid stock investment models. Journal of
Optimization Theory and Applications 121: 197–222. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

148



risks

Article

Dealing with Drift Uncertainty: A Bayesian
Learning Approach

Carmine De Franco 1, Johann Nicolle 1,2 and Huyên Pham 2,*

1 OSSIAM, 75017 Paris, France; carmine.de-franco@ossiam.com
2 LPSM, Université Paris Diderot, 75013 Paris, France; johann.nicolle@ossiam.com
* Correspondence: pham@math.univ-paris-diderot.fr; Tel.: +33-157-279-106

Received: 20 November 2018; Accepted: 4 January 2019; Published: 9 January 2019

Abstract: One of the main challenges investors have to face is model uncertainty. Typically,
the dynamic of the assets is modeled using two parameters: the drift vector and the covariance matrix,
which are both uncertain. Since the variance/covariance parameter is assumed to be estimated with a
certain level of confidence, we focus on drift uncertainty in this paper. Building on filtering techniques
and learning methods, we use a Bayesian learning approach to solve the Markowitz problem and
provide a simple and practical procedure to implement optimal strategy. To illustrate the value added
of using the optimal Bayesian learning strategy, we compare it with an optimal nonlearning strategy
that keeps the drift constant at all times. In order to emphasize the prevalence of the Bayesian learning
strategy above the nonlearning one in different situations, we experiment three different investment
universes: indices of various asset classes, currencies and smart beta strategies.

Keywords: Bayesian learning; Markowitz problem; optimal portfolio; portfolio selection

1. Introduction

The seminal work by Markowitz (1952) initiated modern portfolio theory and provided a solution
to the portfolio selection problem according to a mean-variance criterion. The mean-variance optimal
portfolio is the one that maximizes its expected return at a given level of risk, measured by its variance,
or conversely the one that minimizes its risk at a given level of expected return. This one period model
has known multiple extensions, among them the discrete time multi-period model by Samuelson (1969)
and the continuous time model by Merton (1969).

Initially, the parameters of these models have been considered known and constant, especially
the parameters that drive the behavior of the assets: drifts and covariances. It not only oversimplifies
the reality but also it raises the question of estimating these parameters. The most basic and widely
used method consists of estimating drifts and covariances from past data and fix them once and for all.
Estimating volatility in this way appears to give relatively good results in practice, while estimating
the drift seems to be more difficult or even impossible, see Merton (1980). Moreover, optimal portfolios
are very sensitive to the level of expected returns, as shown in Best and Grauer (1991), and a wrong
estimation can result in very suboptimal portfolios a posteriori. See also Elliott et al. (1998) and
Siegel and Woodgate (2007) for more details about these issues.

This explains the development of the literature on parameters uncertainty in portfolio analysis,
see for instance Barry (1974) and Klein and Bawa (1976), and especially on Bayesian statistics, see
(Aguilar and West 2000; Avramov and Zhou 2010; Bodnar et al. 2017; Frost and Savarino 1986).
Nonetheless, these models remain static and cannot benefit from the flow of information which results
in a nonadaptive strategy, unable to process the most recent information conveyed by the assets market
prices. It is one of the main reasons why literature on filtering and learning techniques in a partial
information framework has developed, see (Cvitanić et al. (2006); Rogers (2001); Lakner 1995, 1998).
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The Bayesian learning approach consists of modeling the uncertainty of a set of parameters by a prior
distribution, representing the beliefs of the investor on the potential values of the parameters, which is
updated with incoming information, for instance assets market prices. In particular, in our companion
paper De Franco et al. (2018), we have solved the multidimensional Markowitz problem in the case of
an uncertain drift using Bayesian learning with a Gaussian prior and have provided a brief analysis of
sensitivities of the optimal solution w.r.t. the different parameters.

In this paper, we adapt the results in De Franco et al. (2018) to implement the strategy in practice.
Indeed, the solution provided is in continuous time and the amounts invested in the assets are
unconstrained. Of course, in reality, trading is discrete and amounts invested in assets are limited,
so we discretize the optimal solution of the continuous Markowitz problem, turn amounts into
proportions and cap the optimal proportions to be invested in order to fit the portfolio management
constraints. Our purpose is to show the prevalence of the Bayesian learning strategy above the
nonlearning one which considers the drift constant. To do so, we illustrate our point by confronting
both strategies to different datasets representing different investment universes. First, we use a panel
of major indices in four different asset classes: corporate bonds, sovereign bonds, commodities and
equities completed with cash. Then, we consider bank accounts in foreign banks that pay the local
interest rate but are valued in EUR, in order to study the performance of both strategies with respect to
foreign exchange rates. Finally, we implement both strategies in an investment universe composed
of smart beta strategies. Moreover, using the first dataset, we provide a sensitivity analysis of both
strategies to various parameters: the uncertainty in the model, the impact of the leverage, the review
frequency and the rebalancing frequency. We do not show this analysis for the two other datasets since
we would find similar results.

The paper is organized as follows. Section 2 details the model and the discretized optimal
strategies while Section 3 depicts the market data and the workflow. Section 4 shows the results in the
case of the first dataset, and Section 5 is about the sensitivity analysis of the Bayesian learning and the
nonlearning strategies applied to this dataset. Finally, Section 6 deals with foreign exchange rates and
Section 7 with smart beta strategies.

2. The Framework

We consider a financial market consisting of one risk-free asset, whose return is denoted by r f ,
and n risky assets whose returns rt are modeled by{

rt = B + σξt
ξt ∼ N(0, In).

(1)

We shall assume that the random vectors ξt are independent for all t. Model (1) includes
major linear models available in the financial literature, such as CAPM (Lintner 1965; Sharpe 1964),
discrete-time Black-Scholes (Black and Scholes 1973) or Fama-French models (Fama and French 1993,
2015, 2016). B ∈ Rn is the vector of the expected returns of the risky assets, while Σ := σσ′ ∈ Rn×n

is the covariance matrix of the risky assets. We assume that σ−1 exists. We denote by A the set of
admissible investment strategies. An admissible strategy w = (wt)t ∈ A represents the fraction of
wealth invested in the assets at any time t. Recalling from the self-financing condition that,

Xs+1 = Xs

(
1 + w′

srs+1 +
(
1−w′s1

)
r f
)

, s = 0, . . . , T − 1,

we write the wealth at maturity T > 0 as

Xw
T = X0

T−1

∏
s=0

(
1 + w′

srs+1 +
(
1−w′s1

)
r f
)

.
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We consider an investor who is aiming to solve the Markowitz problem:⎧⎪⎨⎪⎩
max
w∈A

E [Xw
T ]

Var
(
Xw

T
)
≤ ϑ,

(2)

where ϑ > 0 is the risk tolerance for the investor.
The initial version of the Markowitz problem (Markowitz 1952), which was stated for a single

period, has been widely studied and solutions in the multi-period framework (such ours) in both
discrete and continuous time have been provided (see e.g., Karatzas et al. (1987); Merton 1969, 1975;
Samuelson (1969) among others). The common assumptions in previous works are that both expected
return and volatility coefficients (B and Σ in our framework) are known. In practice, these parameters
are not directly observable and must be estimated from the data or input by the investor at
inception. In both cases, biased parameters can significantly affect ex-post performance of the optimal
strategy. Although the parameter Σ can be estimated from the data with some degree of confidence,
the estimation of B turns out to be quite difficult, if not impossible. Because the optimal strategy
strongly depends on both B and Σ, a wrong estimation could significantly affect the optimal strategy.

To get closer to reality and account for model uncertainty, we assume reasonably that the investor
has an a priori view on the risky assets and their expected returns, but she is uncertain about how
good her forecast is. Introducing uncertainty into the problem brings it closer to the real-life situation,
where not only does the investor not know the parameters of the model, but is also forced to admit
that her estimates are uncertain. More precisely, the investor does not observe B and only assumes
that B ∼ μ, where μ is a probability distribution in Rn centered at b0 (E [B] = b0). The parameter b0 is
the vector of returns the investor is expecting, while μ translates her uncertainty about it.

Remark 1. When μ = δb0
—the Dirac distribution at b0—the investor has no uncertainty about her forecast.

Remark 2 (Discretization). Implementing optimal strategies in practice leads to continuous adjustments to
the optimal solutions in time and makes them suboptimal. Here, we discretize the continuous optimal solutions
and controls, and cap them. To propose a solution to Problem (2), we suggest confronting the discretized
continuous optimal Bayesian learning and nonlearning solutions since the investor can observe assets prices
nearly continuously but trades in discrete time.

The paper De Franco et al. (2018) solved the continuous-time version of problem (1) for a large
class of distributions μ with E[|B|2] < ∞ in a Bayesian framework using dynamic programming
techniques. We report here the discretized version of the results in the Gaussian case μ = N(b0, Σ0):
Let μ = N(b0, Σ0) with Σ0 > 0. Then, the discretized version of the continuous-time optimal solution
of the Bayesian–Markowitz problem is given by (the Bayesian learning case, BL)

wBL
s = α

(
s, Xs, B̂s

)
/Xs (3)

where Xs is the wealth process at time s and

• B̂s =
(

Σ0
−1 + sΣ−1

) (
Σ0
−1b0 + (σ′)−1 Y s

)
,

• Ys is defined as [σY s]
i = ∏s−1

u=0
(
1 + ri

u
)
+ s

2 Σii,

• α (s, x, b) =
(

x0 − x +
√

ϑ eR(0,b0)√
eR(0,b0)−1

)(
Σ−1b−

(
ψ(s)σ−1)′ ∇bR(s, b)

)
,

• ψ(s) = Σ0 (Σ + sΣ0)
−1 σ,

• R is the unique solution to the following semi-linear parabolic PDE
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⎧⎨⎩0 = −∂tR−
1
2

tr
(

ψψ′D2
b R

)
+ 2

(
ψσ−1b

)′
∇bR− 1

2

∣∣ψ′∇bR
∣∣2 − ∣∣∣σ−1b

∣∣∣2 ,

0 = R(T, b),

which in the case of a Gaussian prior proves to be of the form R(s, b) = b′M(s)b + r(s), where M is
the solution to a multidimensional Riccati equation, for which the solution can be found explicitly,
and r is the solution to a first-order linear differential equation depending on ψ and M, which can also
be explicitly calculated. See De Franco et al. (2018) for further details.

The process B̂ is the conditional expectation of B given the current observation of the assets
returns, which are given by Y . The matrix Σ0 represents the uncertainty around b0. As time goes by,
we observe more returns which in turns improves our knowledge of B, as one can see from the fact
that when s → T, more weight is put on Σ−1 in the definition of B̂. The matrix valued function ψ is
linked to the conditional covariance of B given Y .

Remark 3. When there is no uncertainty (μ = δb0
), or when the investor directly inputs her estimate b0,

the structure of the discretized version of the optimal continuous solution is simplified as follows (the nonlearning
case, NL):

wNL
s = αNL (s, Xs) /Xs (4)

where

• αNL (s, x) =
(

x0 − x +
√

ϑ eR(0,b0)√
eR(0,b0)−1

)
Σ−1b0,

• R(s, b) = b′Σ−1b(T − s).

The main differences between the Bayesian learning and the nonlearning strategies arise from

• the market risk premium R in the leverage coefficient,
• the correction term

(
ψ(s)σ−1)′ ∇bR(s, b) which is zero for the nonlearning strategy.

As time goes by, we observe realized returns and we learn more about B. Indeed, with uncertainty,
the Bayesian learning strategy is updated with B̂, which is the conditional expectation of B given
the current observation (new knowledge). The trade Σ−1B̂ is modified with the corrective term(
ψ(s)σ−1)′ ∇bR(s, B̂).

Both wBL and wNL are unconstrained. In order to provide a realistic analysis on both strategies,
we consider capped versions of them.

Definition 1. The capping operator for an investment strategy w with a leverage l > 0 is

c(w, l) := w1|w|1≤l +
l
|w|1

w1|w|1>l ,

where |w|1 = ∑n
i=1 |wi|.

In Section 3, we will implement both the Bayesian learning and the nonlearning strategies in the
context of asset allocation with real market data, to get insights on the effect of learning and its value
added (value of information).

3. Market Data

We consider four asset classes across different regions, each of which is represented by a
well-known market index detailed in Table 1, and the EONIA rate as the risk-free rate for an investor
whose base currency is the Euro.
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Table 1. Major market indices relative to each currency and asset class.

Bloomberg Ticker Name Currency Asset Class

SPDYCITR Index S&P GSCI Dynamic Roll TR USD Commodity
GOLDLNPM Index LBMA Gold Price PM USD Commodity
LECPTREU Index Bloomberg Barclays Euro Aggregate Corporate TR Index EUR Corporate Bonds

IBOXHY Index iBoxx USD Liquid High Yield Index USD Corporate Bonds
IBOXIG Index iBoxx USD Liquid Investment Grade Index USD Corporate Bonds

IBOXXMJA Index EUR Corporate Liquid Hight Yield EUR Corporate Bonds
SPTR500N Index S&P 500 Net TR Index USD Equity

SX5T Index Eurostoxx 50 Net TR Index EUR Equity
TUKXG Index FTSE 100 TR Index GBP Equity

NDUEEGF Index MSCI Emerging Net TR Index USD Equity
SPTPXN Index S&P Topix 150 NR JPY Equity

LUATTRUU Index Bloomberg Barclays US Treasury TR Unhedged Index USD Sovereign Bonds
LEATTREU Index Bloomberg Barclays EurAgg Treasury TR Unhedged Index EUR Sovereign Bonds
JPEICORE Index JP Morgan EMBI Global Core Index USD Sovereign Bonds
FTFIBGT Index FTSE Actuaries UK Conv. GILTs All Stocks TR Index GBP Sovereign Bonds
EONIA Index EMMI EURO Overnight Index average EUR Cash

Non-Euro-denominated indices are hedged against the Euro simply by implementing a monthly
rolled hedging overlay with one-month forward contracts. We collected data from December 1998,
except for the EUR Corporate Liquid High Yield for which we only obtained data from January 2006.
Prices were sourced from Bloomberg, while currency spot and forward rates came from Datastream
and both refer to the 4 p.m. London fixing. Our choice of market indices is motivated by their
popularity among investors, their liquidity, and the wide range of financial products available in
the market that give exposures to these indices (such as listed futures and ETFs). While limited in
number, they provide well-diversified exposures to major global asset classes. Therefore, this suits the
underlying premises of the Markowitz problem which is less suited for asset allocation in presence of
many underlyings.

The testing period is from January 2000 to June 2018. To implement both BL and NL, we iteratively
followed the workflow outlined below and Table 2 collects the parameters (in bold in the workflow)
used for our test.

Work Flow 1.

• Let T > 0 and consider the time-frame {t0 < t1 < · · · tn = T}.
• We call t0 a Review date since at this date we estimate all the parameters and calculate the function R that

define wBL in (3) and wNL in (4). To ensure a realistic implementation of both strategies, all data-based
estimations are performed with data available before the Review date t0 and ending on t0 − Lag. The first
Review date is 21 January 2000.

• We call tk a Rebalancing date if, at this date, we updated the portfolio weights according to (3) and (4).
To limit turnover and transaction costs, the subsets of Rebalancing dates in [0, T] is relatively small.
We assume that both Review and Rebalancing dates are Fridays, so that the number of Rebalancing
dates in the [0, T] period is given by the frequency Freq.

• b0 is estimated as the sample mean over the past rw days ending on t0 − Lag or over the maximum data
available with a minimum of 30 data points. Σ is estimated as the sample covariance matrix over sw days
ending on t0 − Lag or over the maximum data available with a minimum of 30 data points.

• We consider a parametric function for ϑ as follows:

ϑ = ϑ(d) := T (d× Xt0)
2 /

(
1.962

)
, d ∈ (0, 1).

The motivation behind our choice comes from Problem (2). Indeed, we expect that

XT ! E [XT ]− 1.96×
√

Var (XT)

T
≥ E [XT ]− 1.96×

√
ϑ

T
,
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and we set ϑ so that within our confidence interval, the gap to the expected value of XT is a fraction of the
initial wealth

1.96×
√

ϑ

T
∼ d× Xt0 .

• The uncertainty around the estimate b0 is measured by Σ0. We assume Σ0 to be diagonal. Therefore, each
diagonal entry measures the degree of confidence we have on the relative entry of b0. Each diagonal entry is
modeled as follows:

Σii
0 = Σii

0 (unc) := unc×
(

pcti
95 − pcti

5
2

)2

,

where pcti
95 (pcti

5) is the 95% (5%) quantile of the empirical distribution of the return ri. To calculate
these quantiles, we consider the time series of the returns ri spanning for rq days and ending on t0 − Lag.
Up to the parameter unc, the square root of Σii

0 is half of the segment, centered at the median, that contains
90% of the empirical distribution over rq days.

• Strategies wBL and wNL are considered in their capped versions according to Definition 1 with a maximum
leverage L.

• At time T, we rerun the workflow by setting t0 = T and update all parameters according to the new data
available.

It should be noted that the choice of diagonal Σ0 does not imply that assets are uncorrelated. The
matrix Σ0 represents the uncertainty the investor has around her initial prior b0. While assets are
correlated, we assume that the investor makes her initial expectations on B and she only includes her
anticipated error due to uncertainty on her expectations. To simplify, we do not include off-diagonal
terms (uncertainty on pairwise cross-expectations), because this allows for a simple, one-parameter
modeling of uncertainty in Σ0.

Our choice of Σii
0 reflects the assumption that investors anticipate the assets returns to be equal to

b0 + error, and the error, which is unknown and represents their uncertainty around the expectation
b0, depends on the width of the empirical distribution of returns. In practice, if we decide to proxy
expected returns with the average of past returns (which of course is known to be a very poor indicator
of future returns), then the width of the empirical distribution, here measured by the difference
between the 95% and 5% quantiles, serves as a proxy for uncertainty. The fine-tuning parameter unc is
a simple way to increase the uncertainty in the initial guess b0.

Table 2. Parameters used in the implementation of BL and NL as defined in the workflow.

Parameter Value

X0 100
T 3 months

Lag 1 day
Freq Monthly, 3rd Friday of each month.
rw 750 days
sw 125 days
d 10%

unc 100
rq 125
L 200%

The workflow above and Table 2 represent the Base Case. In Section 4, we report the results for
both the Bayesian learning (BL) and the nonlearning (NL) strategies over the last 18 years. In Section 5,
we will assess the sensitivity of both strategies to changes in the parameters of the Base Case to get a
better grasp of the value added of learning in the context of portfolio construction.
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4. The Base Case Result

We implemented the workflow to build the wealth processes XBL and XNL as in (2) related to
the BL and NL strategies in the Base Case framework (Table 2). For the sake of simplicity, we refer to
BL as either the strategy weights wBL or the associated wealth process XBL and we do the same for
NL. Table 3 collects some long term statistics for both strategies. Although our choice of statistics is
limited and many other interesting properties could have been easily derived, such as skew, kurtosis,
VaR, CVaR or turnover (as e.g., in Scaillet (2004)), we prefer to show the statistics that are usually
considered at any initial due diligence for investment strategies, such as annualized performance,
volatility, maximum drawdown, Sharpe ratios and information ratios. The main reason behind our
choice is to provide evidence on the effect of learning in the improvement of long-term performance.

Table 3. Statistics for the BL and NL strategies. The Sharpe Ratio is calculated as the ratio between
annualized performance and annualized volatility. In this case, the difference is given in relative terms.
Data from January 2000 to June 2018.

Statistics BL NL Difference

Ann. Performance 5.96% 3.96% 2.00%
Ann. Volatility 5.51% 4.92% 0.59%

Max. Drawdown −8.51% −11.2% 2.70%
Sharpe ratio 1.08 0.80 34.26%

Information ratio 0.55 - -

Over the period from January 2000 to June 2018, BL delivered an annualized performance of
5.96% while NL reached 3.96%. Incorporating uncertainty and learning from the data yielded an
annualized 2% excess return. In terms of risk metrics, annualized volatility is slightly higher for BL
(0.59% difference) but also shows a better maximum drawdown figure (−8.51% for BL versus −11.20%
for NL). Finally, the Sharpe ratio is 1.08 for BL versus 0.80 for NL, or a 34.26% improvement in relative
terms. The information ratio of BL over NL is about 0.55, meaning that the performance of BL comes
from a better ability to process incoming information.

Figure 1a shows the historical levels of the wealth processes BL and NL, while Figure 1b provides
the relative strength of BL over NL as well as the growth line. An increasing relative strength index
signals outperformance of BL over NL, while a decreasing index shows underperformance.

(a) (b)

Figure 1. Historical values of the portfolios calculated with both wBL and wNL in the Base Case (a)
and their ratio (b).

Looking at Figure 1b, BL mostly delivers a more robust and more regular performance than NL.
Integrating uncertainty in the drift, learning from the data and adjusting the strategy accordingly clearly
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adds value over time. Specifically, we identify three distinct periods: from inception until February 2006
the ratio BL/NL has an upward trend at moderate pace, reaching 1.13 (or equivalently 13% cumulated
outperformance); then BL underperforms NL until October 2008; and finally, from October 2008 to June
2018, BL strongly dominates NL with 40% of cumulated outperformance.

5. Sensitivity Analysis

In the following paragraphs, we will stress-test the BL strategy by measuring the effects of the
main parameters on long term results. Our stress-test methodology consists in fixing all but one of the
parameters detailed in Table 2 and varying the remaining parameter across plausible values.

5.1. Impact of Uncertainty

Here, we study the effect of the uncertainty parameter unc in the strategy. Higher values of
unc signal a higher volatility of the estimate b0, hence a higher uncertainty on the estimate of the
expected returns. We study the BLstrategy for unc ∈ {10, 50, 100, 200, 300}, where the value unc = 100
corresponds to the Base Case detailed in Section 4. Table 4 shows the results.

Table 4. Statistics for BL strategies with different values of unc and NL as defined in the workflow. The
Sharpe ratio improvement is relative to NL.

BL NL

unc 10 50 100 200 300

Ann. Performance 4.59% 5.76% 5.96% 6.41% 6.51% 3.96%
Ann. Volatility 5.25% 5.49% 5.51% 5.62% 5.76% 4.92%

Max. Drawdown −10.21% −8.56% −8.51% −8.27% −8.58% −11.2%
Sharpe ratio 0.87 1.05 1.08 1.14 1.13 0.8

Sharpe ratio impr. 8.64% 30.45% 34.26% 41.72% 40.54% -
Information ratio 0.34 0.58 0.55 0.57 0.54 -

Intuitively, among the BL strategies detailed in Table 4, the strategy with unc = 10 is the closest to
NL and this is confirmed by the performance and volatility figures. Indeed, with such a low level of
uncertainty, we are confident in our initial estimate b0. As we increase unc, the confidence we place in
b0 decreases.

Very interestingly, as unc increases, the excess return of the corresponding BL strategy over NL
increases without significantly increasing the risk. Therefore, Sharpe ratios increase with unc from 0.87
for unc = 10 to 1.13 for unc = 300. More striking is the relative increase in Sharpe ratios with respect to
NL—for unc = 10 we only have an increase of 8.64% and for unc = 300 the relative increase is 40.54%.
Finally, the Information ratio rapidly stabilizes around 0.5.

Figure 2a,b graphically renders the increase in both annualized performances, excess returns and
Sharpe ratios with respect to NL as a function of unc.

Figure 3 shows the historical levels of the strategy BL with unc = 10 (minimum uncertainty),
unc = 300 (high uncertainty) and unc = 100 (Base Case) compared to NL. The BL strategies share the
same profile, but the higher the unc parameter, the higher the excess return we find in the long run.

Clearly, the standard solution to the Markowitz problem suffers from the poor estimate of b0,
while the BL strategy is able to adjust and react to new observable data. Moreover, the higher the
uncertainty, the better BL behaves compared to NL.

Unreported tests showed us that with this particular dataset, we can increase the unc parameter
even further. At some point though, around 10,000, the BL strategy underperforms NL. Indeed, when
uncertainty is extremely high, the matrix Σ0 that controls the a priori knowledge we have on B is simply
uninformative because we are allowing B to span too vast a region of potential values. Therefore,
the learning process, over a relatively short period of time of three months, is slow and does not
add value.
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(a) (b)

Figure 2. Annualized performances and excess returns of BL as a function of unc (a); Sharpe ratios and
relative improvement (b).

Figure 3. Historical values of the BL portfolios calculated with unc = 10, 100, 300 and NL.

5.2. Impact of Leverage

We now look at the maximum leverage parameter L in both strategies. Higher values
of L make both c(wBL, L) and c(wNL, L) closer to the unconstrained weights. We test L ∈
{100%, 150%, 200%, 250%, 300%}, where the value L = 200% corresponds to the Base Case detailed in
Section 4. Table 5 collects the results, while Figure 4a,b gives a graphical overview of the impact on
long term statistics.

Table 5. Statistics for BL and NL strategies with different levels of maximum leverage L. The Sharpe
ratio improvement is calculated as the relative difference between BL and NL Sharpe ratios for the
same level of maximum leverage.

L 100% 150% 200% 250% 300%

BL NL BL NL BL NL BL NL BL NL

Ann. Performance 3.78% 2.48% 4.89% 3.23% 5.96% 3.96% 7.06% 4.39% 7.96% 5.00%
Ann. Volatility 2.78% 2.48% 4.12% 3.64% 5.51% 4.92% 6.85% 6.09% 8.11% 7.23%

Max. Drawdown −3.96% −5.59% −5.92% −8.43% −8.51% −11.2% −12.49% −13.01% −16.33% −14.07%
Sharpe ratio 1.36 1 1.19 0.89 1.08 0.8 1.03 0.72 0.98 0.69

Sharpe ratio impr. 36.36% - 33.96% - 34.26% - 42.89% - 41.88% -
Information Ratio 0.69 - 0.65 - 0.55 - 0.58 - 0.53 -

157



Risks 2019, 7, 5

As the maximum leverage L increases, the corresponding excess return of the BL strategy over NL
increases. For L = 100%, the excess return is 1.30% and goes up to 2.96% for L = 300%.

Clearly, and as expected, the excess return increases with the leverage and on average we observe
that adding 100% of leverage brings 0.80% in extra excess return. When we look at the Sharpe
ratios, we see that BL always outperforms NL but the relation is more complex than the previous one.
Both BL and NL Sharpe ratios decrease with L. Indeed, as L increases, we observe higher performances
but also higher volatilities, and the volatility grows faster than the performance. This is obvious,
because when L increases the strategy becomes more sensitive to any error in the estimated parameters,
which is reflected in higher volatility. As L → ∞, the strategies become unconstrained and bring all
the instability that is well known to go alongside with price-based strategies. On a relative basis,
the improvement in the Sharpe ratios first decreases as L reaches 200% and then increases.

To conclude, it appears that the impact of the maximum leverage L is as expected—it brings extra
performance at the cost of higher risk. Because we know real data do not need to follow model (1),
unconstrained BL and NL (as any price-based strategies) tend to amplify any model error, making the
leverage constraint a wise feature to consider.

(a) (b)

Figure 4. Annualized performances and excess returns of BL as a function of L (a); Sharpe ratios and
relative improvement (b).

5.3. Impact of the Review Frequency

Probably one of the most important features of the learning effect on the portfolio is the frequency
at which we recalibrate the parameters of the model. We have chosen a three-month frequency in the
Base Case. In other words, every three months we compute new estimates of b0 and Σ and input a
new matrix Σ0, driving the uncertainty. We expected that the lower the frequency, the better BL would
compare to NL. The main reason behind this thesis is that the strategy NL will be stuck with parameters
b0 and Σ for a long period of time, during which we know that they will most likely become obsolete
as the market evolves and new information is processed. As investors know very well, forecasting is
difficult and outdated forecasts are badly suited for portfolio construction1. On the other side, BL can
adapt over time because it embeds uncertainty about b0.

1 It’s tough to make predictions, especially about the future. The quote, which clearly applies in the context of portfolio construction,
has been reported by many different people. According to https://quoteinvestigator.com/2013/10/20/no-predict/, it first
appeared in Danish documents, but well known personalities such as Neils Bohr, Mark Kac, Stanislaw M. Ulam, and,
probably misattributed, Mark Twain and Yogi Berra.
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Let us consider the frequency parameter Freq in both strategies varying from three to twelve
months, Freq ∈ {3 M, 6 M, 9 M, 12 M}, where the value Freq = 3 M corresponds to the Base Case
detailed in Section 4. Table 6 shows the results.

Table 6. Statistics for BL and NL strategies with different levels of the review frequency Freq. The Sharpe
ratio improvement is calculated as the relative difference between BL and NL Sharpe ratios for the
same review frequency.

Freq 3 M 6 M 9 M 12 M

BL NL BL NL BL NL BL NL

Ann. Performance 5.96% 3.96% 4.74% 3.25% 4.28% 2.41% 4.75% 2.21%
Ann. Volatility 5.51% 4.92% 5.5% 5.35% 5.71% 5.45% 5.36% 4.5%

Max. Drawdown −8.51% −11.2% −11.62% −13.71% −12.44% −16.15% −8.9% −16.05%
Sharpe ratio 1.08 0.8 0.86 0.61 0.75 0.44 0.89 0.49

Sharpe ratio impr. 34.26% - 41.74% - 69.38% - 80.4% -
Information Ratio 0.55 - 0.33 - 0.35 - 0.57 -

As we lower the review frequency, we see the performances of both BL and NL decreasing.
Nevertheless, the excess return of BL over NL actually increases at frequencies lower than 6-month.
The fact that it is not monotonic is related to the timing effect. The best metric to assess the value added
of the learning feature remains the relative improvement in Sharpe ratios, as shown in Figure 5b. Here
we see that as the frequency lowers, more risk-adjusted value added comes from the learning effect:
at 3 months, the relative improvement in Sharpe ratio between BL and NL is 34.26%. At 6 months it
goes up to 41.47%, then 69.38% at 9 months and finally 80.4% relative improvement at the 12-month
frequency. Clearly, BL outperforms NL if we do not review the parameters of the model quite often,
and this is clearly attributable to the fact that BL can adjust over time according to the data observed
and the adjustments it can make on the a priori distribution of B.

For the sake of simplicity, we do not report the results here, but it is possible to increase the
efficiency of BL compared to NL if we simultaneously modify the frequency Freq and the uncertainty
parameter unc in Σ0. Over long investment horizons, the investor would definitely habr more
uncertainty on her a priori estimate b0, therefore it makes perfect sense to consider Freq = 12 coupled
with unc = 1600 or higher2.

2 We suggest 1600 simply as a rule of thumb: the ratio of frequency between 3 M and 12 M is 4 so that we pass a 42 = 16
factor in unc. Of course, we do not expect this parameter to be the best choice since, empirically, uncertainty grows more
than linearly with time, but even this, provides slightly higher Sharpe ratio improvements.
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(a) (b)

Figure 5. Annualized performances and excess returns of BL as a function of L (a); Sharpe ratios and
relative improvement (b).

5.4. Impact of Rebalancing Frequency

We conclude this section with an overview on the impact of the rebalancing frequency on both BL
and NL. This exercise is only theoretical, since within the Base Case we only performed three trades
(one each month before the next review). A lower rebalancing frequency of trading would mean
that we do not fully exploit the power of learning by adjusting the portfolio. Higher rebalancing
frequency carries a turnover (and transaction cost) issue, that would make any benefit only hypothetical.
Furthermore, when we rebalance too often, we embark significant amount of noise coming from daily,
short term, price movements. Usually, practitioners consider higher rebalancing frequencies only for
a small portion of the portfolio, i.e., they only rebalance a fraction x of their portfolio while keeping
the remaining 1− x unchanged and they roll over. Because this goes beyond the scope of this paper,
we limit ourselves to monthly versus biweekly rebalancing frequency. Table 7 collects summary
statistics for BL and NL when the optimal weights in the Base Case are implemented on both monthly
and biweekly frequencies.

Table 7. Statistics for BL and NL strategies with different rebalancing frequencies Reb Freq, monthly
versus biweekly. The Sharpe ratio improvement is calculated as the relative difference between BL and
NL Sharpe ratios for the same rebalancing frequency.

Reb Freq Monthly Bi-Weekly

BL NL BL NL

Ann. Performance 5.96% 3.96% 5.42% 2.43%
Ann. Volatility 5.51% 4.92% 5.18% 4.93%

Max. Drawdown −8.51% −11.2% −13.62% −14.08%
Sharpe ratio 1.08 0.8 1.05 0.49

Sharpe ratio impr. 34.26% - 112.01% -
Information Ratio 0.55 - 0.77 -

As we go from the monthly to the biweekly rebalancing frequency, we observe a small decrease
in annualized performance of BL, while the drop is more significant for NL. Although these numbers
should not be taken as very informative due to the timing effect, there is clearly not a strong incentive
for BL to rebalance more often, since performance goes down slightly, as does volatility. In the end,
the Sharpe ratio seems fairly stable. On the other hand, NL experiences a large drop in performance
as well as an important increase in its maximum drawdown. Indeed, when we look at the structure
of the strategy NL in (4), we see that the trade Σ−1b0 does not change at higher frequency. So, NL
will implement the same trade (up to the maximum leverage). If, for example, the NL strategy was
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successful in the first two weeks, at the next rebalancing it will most likely reverse this successful trade
because of the xt0 − xt part of wNL. Conversely, if the NL strategy was unsuccessful over a two-week
period with a trade, at the next rebalancing it will increase this trade for the same reason. Therefore,
NL tends to have a reversal feature at short horizon/high frequency.

As far as BL is concerned, because of uncertainty, the strategy can accommodate for larger
deviation of the process B relatively to the forecast b0, so that it does not necessarily have to reverse a
successful trade or leverage an unsuccessful one. Indeed, when we look at (3), a successful trade will
lower the leverage, but this can be compensated by the corrective term in the trade, which depends on
ψ and ∇bR, so that in theory BL does not systematically have a reversal feature.

Finally, given our dataset and the fact that the momentum premium (see for example
Asness et al. (2013); Blitz and Van Vliet (2008); Carhart (1997); Geczy and Samonov (2017)) exists
in the multi-asset framework, it is not surprising that NL experiences a drop in performance while BL
is almost unaffected.

This is confirmed by the significant Sharpe ratio improvement: from a +34.26% in the Base Case,
we improve the final Sharpe ratio at the biweekly frequency by 112.01% (mainly driven by the drop in
NL Sharpe ratio). Furthermore, we see how BL is able to extract more information (or alpha) from the
market because the Information ratio increases from 0.55 with the monthly rebalancing to 0.77 (a 40%
increase) with the biweekly rebalancing.

6. Investing in Foreign Currencies

In our second example, we consider investing in different currencies: the Australian Dollar (AUD),
the Canadian Dollar (CAD), the Euro (EUR), the British Pound (GBP), the Japanese Yen (JPY) and
the U.S. Dollar (USD). Usually set by the central banks, the local risk-free interest rate, such as the
federal funds rate in the U.S., together with the foreign exchange rate of currencies versus the Euro are
the sources of performance for the investor. Therefore, the underlying assets available to the investor
are bank accounts in foreign banks that pay the local interest rate but are valued in EUR. Details are
collected in Table 8.

Table 8. Currency and their reference rates.

Currency Rate Source

AUD Thomson Reuters Australian Dollar Overnight Deposit Thomson Reuters
CAD Canada Money Market Overnight Bank of Canada
EUR Eonia (Euro OverNight Index Average) European Banking Federation
GBP United Kingdom Sonia Wholesale Markets Brokers’ Association
JPY Japan Uncollateralized Overnight Bank of Japan
USD United States Federal Funds Effective Rate Federal Reserve, United States

The workflow detailed in Section 3 was implemented with the parameters listed in Table 9.

Table 9. Parameters used in the implementation of BL and NL as defined in the workflow for the
foreign currency strategy.

Parameter Value

X0 100
T 12 months

Lag 1 day
Freq Weekly, Friday
rw 60 days
sw 250 days
d 10%

unc 100
rq 30
L 100%
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With respect to Table 2, here we consider a longer investment horizon (one year), we rebalance
more often (weekly) because of reduced transaction costs in highly liquid foreign currencies,
we consider short windows for estimating the drift parameter and we do not allow leverage.

The result of the BL and NL strategies from January 2002 to June 2018 are reported in Table 10,
while the historical performance is shown in Figure 6.

Table 10. Statistics for the BL and NL strategies. The Sharpe Ratio is calculated as the ratio between
annualized performance and annualized volatility. For this case, the difference is given in relative
terms. Data from January 2002 to June 2018.

BL NL Difference

Ann. Performance 4.00% 2.83% 1.17%
Ann. Volatility 5.97% 4.93% 1.04%

Max. Drawdown −14.17% −10.51% −3.66%
Sharpe ratio 0.67 0.57 17.5%

Information Ratio 0.42 - -

Over the period used, BL outperformed NL by 1.17% annualized. This is quite impressive given
the low yields of developed countries’ currencies (mainly EUR and JPY) that can usually be observed
in the market. Therefore, the effect of learning clearly brings value to the investor by adding extra
performance, although this comes at slightly higher risk (roughly 1% more volatile and 3.66% larger
maximum drawdown). Nevertheless, the improvement in the Sharpe ratio is consistent. Figure 6b
shows the relative strength of BL over NL and the growth line. We can see that, except for a few
months in the second half of 2008 where BL strongly underperformed, after that time it regularly
outperformed NL.

(a) (b)

Figure 6. Historical values of the portfolios calculated with both wBL and wNL under the Base Case (a)
and their ratio (b).

7. Investing in Factor Strategies

In the last few years, investors have embraced alternative strategies that target specific,
well-established equity factors (such as size, value, volatility or momentum). These strategies offer an
efficient and direct exposure to the main driving factors of equity markets and allow for an optimal
allocation across factors. The main challenge is to invest in the right factor at the right time, as their
performance usually shows cyclical patterns. Table 11 contains more details on the strategies we
considered. All of them are based on the U.S. large capitalization equity market.
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Table 11. Factor-based strategies and cash. For the volatility factor, we chained two strategies on 18
December 2009. Data in USD.

Factor Name Source

Dividend S&P 500 Dividend Aristocrats Net Total Return Index S&P
Growth MSCI USA Growth Net Total Return Index MSCI

Momentum MSCI USA Momentum USD Net Total Return Index MSCI
Quality MSCI USA Quality Net Total Return Index MSCI

Size MSCI USA Small Cap Net Total Return Index MSCI
Value Shiller Barclays CAPE US Sector Value Net TR Index Barclays

Volatility Ossiam US Minimum Variance Index Net Return/ ESG
US Minimum Variance Index

S&P, Solactive

Cash United States Federal Funds Effective Rate Federal Reserve, United States

We follow the workflow of Section 3 with the parameters listed in Table 12 to derive both BL and
NL strategies.

Table 12. Parameters used in the implementation of the BL and NL factor rotation strategies as defined
in the workflow.

Parameter Value

X0 100
T 12 months

Lag 1 day
Freq Monthly, 3rd Friday of each month.
rw 90 days
sw 250 days
d 10%

unc 100
rq 60
L 100%

The results from January 2002 to June 2018 are shown in Table 13. In this example as well, the BL
strategy has significantly outperformed the NL strategy. Again, the learning effect clearly brings
value to the investor. On an annualized basis, BL improves the performance by a bit more than 2%,
with a lower maximum drawdown (−8.24% versus −10.43% for NL) but a slightly higher annualized
volatility (3.61% for BL versus 2.26% for NL).

Table 13. Statistics for the BL and NL strategies. The Sharpe Ratio is calculated as the ratio between
annualized performance and annualized volatility. For this case, the difference is given in relative
terms. Data from January 2002 to June 2018.

BL NL Difference

Ann. Performance 3.1% 1.03% 2.07%
Ann. Volatility 3.61% 2.26% 1.34%

Max. Drawdown −8.24% −10.43% 2.2%
Sharpe ratio 0.86 0.45 91.11%

Information Ratio 0.55 - -

The improvement in the Sharpe ratio is particularly high—0.86 for the BL factor rotation strategy
versus 0.45 for the NL strategy (an improvement of 91.11%). Figure 7 shows the historical performance
(Figure 7a) and the strength ratio (Figure 7b) of the BL strategy over NL. Clearly, learning over time
produces regular outperformance, as shown by the regular upwardly increasing ratio between BL
and NL.
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(a) (b)

Figure 7. Historical values of the portfolios calculated with both wBL and wNL under the Base Case (a)
and their ratio (b).
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Abbreviations

The following abbreviations are used in this manuscript:

CAPM Capital Asset Pricing Model
AUD Australian Dollar
BL Bayesian learning (strategy)
CAD Canadian Dollar
CAPE Cyclically Adjusted Price-to-Earnings
Conv. Conventional
EONIA Euro OverNight Index Average
ETF Exchange-Traded Fund
FTSE Financial Times Stock Exchange
EMBI Emerging Markets Bond Index
EMMI European Money Markets Institute
EUR Euro
EurAgg Euro Aggregate
GBP Great British Pound
GSCI Goldman Sachs Commodities Index
JPY Japanese Yen
LBMA London Bullion Market Association
MSCI Morgan Stanley Capital International
NL nonlearning (strategy)
NR Net Return
S&P Standard and Poors
Topix Tokyo Stock Price Index
TR Total Return
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Abstract: We develop a government debt management model to study the optimal debt ceiling
when the ability of the government to generate primary surpluses to reduce the debt ratio is limited.
We succeed in finding a solution for the optimal debt ceiling. We study the conditions under which
a country is not able to reduce its debt ratio to reach its optimal debt ceiling, even in the long
run. In addition, this model with bounded intervention is consistent with the fact that, in reality,
countries that succeed in reducing their debt ratio do not do so immediately, but over some period of
time. To the best of our knowledge, this is the first theoretical model on the debt ceiling that accounts
for bounded interventions.

Keywords: debt crisis; government debt management; optimal government debt ceiling; government
debt ratio; stochastic control; decision analysis; risk management

1. Introduction

1.1. Economic Motivations

The recent debt crisis in the world has proved that controlling the debt ratio of a country is
of paramount importance. The literature on public debt management is abundant, from classical
theoretical references such as Domar (1944); Barro (1989, 1999); and Dornbusch and Draghi (1990),
to more applied ones such as Wheeler (2004); IMF (2002); IMF and World Bank (2001); IMF and World
Bank (2003); Ghosh et al. (2013); Huamán-Aguilar and Cadenillas (2015); Woo and Kumar (2015)
and Shah (2005). The theoretical literature deals with the optimal tax problem, and the effects of
government debt. The applied references provide useful guidelines for practitioners.

There is also literature on debt sustainability. There are two interpretations of this term: the long-
term meaning and the short-term meaning. The long-term meaning states that debt is sustainable if the
total discounted path of governments expenses equals the total discounted path taxes. The medium
term meaning defines that debt is sustainable if the debt-to-GDP ratio converges toward a target ratio
over some period of time. Among theoretical references, we have, for example, Bohn (1995) and
Blanchard et al. (2003). Among applied literature, we have, for instance, Balassone and Franco (2000)
and Neck and Sturm (2008).

As Balassone and Franco (2000) point out, “the absence of a clear-cut theoretical benchmark to
assess sustainability has often favoured the use of ad hoc definitions”. In 1992, the Maastricht Treaty
selected 60% as the upper bound for the debt-to-GDP ratio for countries to be members of the European
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Union1. In the USA, the nominal debt (measured in USA dollars, not debt-to-GDP ratio) has a ceiling
that is determined by its Congress. However, the selection of the debt ceiling by politicians is not
necessarily optimal. Indeed, Gersbach (2014) points out the following: “Politicians tend to push the
amount of public debt beyond socially desirable levels in order to increase their reelection chances”.

Inspired by the preceding discussion, we define debt ceiling as the maximum level of debt ratio at
which government intervention is not required. That is, if the debt ratio of a country is larger than its
debt ceiling, the government should reduce the debt ratio by generating fiscal surpluses. Otherwise,
the debt is said to be under control and there is no reason for interventions. This definition is consistent
with the intended meaning given to the 60% in the Maastricht Treaty (Article 104c). We remark that
the government debt ceiling that we study in this paper is different from the following topics related
to government debt management: optimal debt, credit ceiling, and debt limit2.

Uctum and Wickens (2000) study the debt sustainability for some countries considering the 60%
ceiling. In that research the debt ceiling is treated as exogenous. The literature in which the government
debt ceiling is endogenous is scarce. As far as we know, the only mathematically rigorous research
on the optimal government debt ceiling problem has been done by Cadenillas and Huamán-Aguilar
(2016) and Ferrari (2018). In both papers, the government debt ceiling is endogenous. Cadenillas and
Huamán-Aguilar (2016) study the optimal debt ceiling assuming that the interventions of a government
to reduce its debt ratio are unbounded3. They succeed in finding an explicit formula for the optimal
debt ceiling as a function of important macro-financial variables. Ferrari (2018) incorporates inflation
in the model of Cadenillas and Huamán-Aguilar (2016) but does not present an explicit solution.

We consider a country whose government wants to impose an upper bound on its debt ratio.
We assume that debt generates a disutility for the government of the country, which is an increasing
and convex function of the debt ratio. On the other hand, the government can reduce its debt ratio,
but there is a cost generated by this intervention. The government wants to minimize the expected
total discounted cost (the cost of debt reduction plus the disutility of debt) taking into account that its
ability to generate primary surpluses to reduce its debt ratio is limited. In such theoretical framework,
we have found a solution for the optimal debt ceiling, which depends on key macro-financial variables,
such as the interest rate on debt, the debt volatility, and the rate of economic growth. Moreover,
we have obtained an optimal debt policy based on the optimal debt ceiling. It works in the following
way. If the actual debt ratio of a country is below its optimal debt ceiling, then it is optimal for the
government not to intervene. Otherwise, the government should intervene at the maximal rate to
reduce its debt ratio. Given the constraint on the generation of primary surpluses, the controlled debt
ratio may be sometimes or always above the optimal debt ceiling. Having in mind a country with

1 That 60% was simply the median of the debt ratios of those European countries. Although it was not binding, it was
considered as a reference value. For more details, please see Footnote 3 of this paper.

2 Optimal debt is the debt ratio that arises as a result of welfare analysis considering that debt, on the one hand,
smooths consumption and, on the other hand, has negative effects in wealth distribution; see, for example,
Aiyagari and McGrattan (1998) or Barro (1999). Credit ceiling is the level of debt above which the country is not allowed to
borrow in the financial markets; see, for example, Eaton and Gersovitz (1981). Debt limit is the debt level at which a debt
crises takes place; see, for instance, Ostry et al. (2010).

3 Article 104c of the Maastricht Treaty Council of the European Communities (1992) says the following: “2. The Commission
shall monitor the development of the budgetary situation and of the stock of government debt in the Member States with a
view to identifying gross errors. In particular, it shall examine compliance with budgetary discipline on the basis of the
following two criteria: (a) whether the ratio of the planned or actual government deficit to gross domestic product exceeds a
reference value, unless either the ratio has declined substantially and continuously and reached a level that comes close to
the reference value;—or, alternatively, the excess over the reference value is only exceptional and temporary and the ratio
remains close to the reference value; (b) whether the ratio of government debt to gross domestic product exceeds a reference
value, unless the ratio is sufficiently diminishing and approaching the reference value at a satisfactory pace. The reference
values are specified in the protocol on the excessive deficit procedure annexed to this Treaty”. In the Maastricht Treaty,
the “ratio of the planned or actual government deficit to gross domestic product” is the debt ratio, and the “reference value”
is the debt ceiling (which was selected as 60%). Thus, the Maastricht Treaty does not mention explicitly any bound for the
government interventions. Similarly, the debate in the USA Senate about the selection of the debt ceiling does not mention
any bound for the government interventions.
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debt problems, we also study the time to reach its debt ceiling (not necessarily its optimal debt ceiling)
assuming that the current debt ratio is above its debt ceiling.

1.2. Contributions

We improve the results of Cadenillas and Huamán-Aguilar (2016) by studying the optimal
debt ceiling when the government interventions to reduce its debt ratio have an upper bound.
The motivation is that it is difficult for a country to obtain primary surpluses to reduce its debt
ratio. The 60% ceiling set in the Maastricht Treaty was part of the “convergence criteria”, in the
understanding that countries whose debt ratio were above that threshold should reach the 60% over a
number of years. The model presented in this paper accounts for the important fact that countries in
reality may or may not succeed in reaching their optimal debt ceilings. If they do, it takes some time to
reach that goal. Our quantitative results differ from those of Cadenillas and Huamán-Aguilar (2016).
For example, the optimal debt ceiling in our model is always smaller than the optimal debt ceiling
in the unbounded case. Our qualitative results differ as well. Indeed, if the bound on government
intervention is very large, then the debt ceiling is an increasing function of the volatility. That coincides
with the unbounded case studied by Cadenillas and Huamán-Aguilar (2016). However, if the bound
on government intervention is small, then the debt ceiling is a decreasing function of the volatility.
That differs from the unbounded case studied by Cadenillas and Huamán-Aguilar (2016). We find that
if the constraint to generate primary surpluses is severe (very low upper bound), a country may not
be able to reach its optimal debt ceiling, even in the long run. For those countries which succeed in
reaching their optimal debt ceiling, it may take some time to accomplish that goal. These findings are
some of the main results of this research.

This paper is organized as follows: we present the model for bounded government debt
management in Section 2. In Section 3, we present a verification theorem which states a sufficient
condition for a debt control policy to be optimal. In Section 4, we find a candidate for solution and
then verify that this candidate is indeed the solution. We study the time to reach a debt ceiling in
Section 5. In Sections 6 and 7, we perform an interesting economic analysis of the debt policy based on
the government debt ceiling. We write the conclusions in Section 8.

2. The Bounded Government Intervention Model

We use a Brownian motion to model the uncertainty in the debt ratio. Formally, we consider a
complete probability space (Ω,F , P) together with a filtration {Ft} = {Ft, t ∈ [0, ∞)}, which is the
P-augmentation of the filtration generated by a one-dimensional Brownian motion W.

We study the debt ratio X = {Xt, t ∈ [0, ∞)} of a country, which is defined by

Xt :=
gross public debt at time t

gross domestic product (GDP) at time t
.

This definition of the debt ratio is standard in the economics literature (see, for example,
Uctum and Wickens (2000)).

Let r denote the interest rate on debt and g the rate of economic growth. Section 22.2 (p. 460) of
Blanchard (2017), a standard reference on macroeconomics, states that

change of the debt ratio at time t

= (r− g)(debt ratio at time t) +
primary deficit at time t

gross domestic product (GDP) at time t
.

He assumes a discrete-time deterministic model in which r and g are constants.
The continuous-time version of Blanchard (2017) can be written in integral form as

Xt = x +
∫ t

0
(r− g)Xsds−

∫ t

0
usds, (1)
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where x ∈ (0, ∞) is the initial debt ratio, r ∈ [0, ∞) is the interest rate on debt, g ∈ (−∞,+∞) is the
rate of economic growth, and u = {ut, t ∈ [0, ∞)} is the rate of the primary balance (equivalently,
the negative of the primary deficit).

Motivated by the uncertainty of the economy, we generalize the deterministic model (1) to the
stochastic model

Xt = x +
∫ t

0
(r− g)Xsds +

∫ t

0
σXsdWs −

∫ t

0
usds. (2)

The term
∫ t

0 σXt dWs above accounts for the uncertainty in the economy, and models the empirical
fact that the bigger the debt, the bigger the risk. Here, σ ∈ (0, ∞) is the debt volatility.

The government intervenes to manage its debt ratio via the control process u = {ut, t ∈ [0, ∞)}.
This process represents the rate of intervention of the government, and it is associated with the
generation of primary surpluses with the specific goal of reducing the debt ratio. Unlike Cadenillas
and Huamán-Aguilar (2016), we assume that this control process is bounded. Indeed, for a fixed
U > 0, we assume that

ut ∈ [0, U], ∀t ≥ 0,

which means that the ability of the government to produce primary surpluses is limited, as it is in
reality. We allow each country to have a different bound U, which depends on its structural economic
and political characteristics.

The intervention of the government to reduce its debt ratio has a cost. This cost is generated
by fiscal adjustments, which can take the form of reducing expenses or raising taxes. We denote the
marginal cost of debt ratio reduction by k. That is, the government has to pay the cost k > 0 for
each unit of debt ratio reduction. Let λ stand for the government discount rate. Thus,

∫ ∞
0 e−λtk ut dt

represents the cumulative discounted cost of reducing the debt ratio.
There are also costs for having debt. High public debt has negative effects on the economy.

According to Blanchard (2017), high public debt means less growth of the capital stock and more tax
distortions. Furthermore, it can make the fiscal policy extremely difficult. Moreover, Das et al. (2010)
claim that it can generate a debt crisis, which, in turn, may lead to an economic crisis. On the other
hand, having public debt may be beneficial for the economy, see, for example, Holmstrong and Tirole
(1998). Since we are modelling a country that faces a debt problem, we disregard the positive effect
of debt.

We assume that the government has a disutility function h : [0, ∞)→ [0, ∞) defined by

h(y) = αym+1, where m ∈ {1, 2, 3, · · · }.

Here, the parameter m represents the aversion of the government towards the debt ratio y. For example,
countries which have never had a default (such as Canada and USA) have a lower parameter m than
countries which have suffered debt crises (such as Argentina and Greece). The function h has the
property of constant relative risk aversion (CRRA) equal to m (see Remark 1 below). We point out
that this disutility function generalizes the quadratic function that is widely used in economics (see,
for instance, Kydland and Prescott 1977, Taylor 1979, and Cadenillas and Zapatero 1999). On the other
hand, the importance of debt for the government is represented by the parameter α, and it is measured
in monetary units. The more important the debt, the larger the parameter α. The debt importance
reflects the concern of the government to debt, and is usually determined in its economic plan.

Remark 1. For a utility function u(y), the risk aversion is defined to be −yu′′(y)/u′(y) (see, for instance,
MasCollel et al. (1995) or Pratt (1964)). Similarly, for a disutility function h(y), we define the relative risk
aversion to be yh′′(y)/h′(y).
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Thus, the expected total discounted cost (the cost of debt reduction plus the disutility of debt) is
given by

J(x; u) := Ex

[∫ ∞

0
e−λth(Xt)dt +

∫ ∞

0
e−λtk ut dt

]
.

Here, Ex represents the conditional expected value given that X0 = x.

Definition 1. An adapted process u : [0, ∞) × Ω → [0, U] is called an admissible stochastic control if
J(x; u) < ∞. The set of all admissible controls is denoted by A(x).

Problem 1. The government wants to select the control u ∈ A(x) that minimizes the functional J(x; ·).

Thus, we can think of J as a loss function, a function that the government wants to minimize.

Proposition 1. For every x ∈ (0, ∞), A(x) is a convex set and the function J(x; ·) is strictly convex.
Furthermore, Problem 1 has at most one solution.

Proof. See Appendix A.

We observe that for every u ∈ A(x):

lim
T→ ∞

Ex

[
e−λTXm+1

T

]
= 0, (3)

because ∫ ∞

0
e−λtEx

[
αXm+1

t

]
dt =

∫ ∞

0
e−λtEx [h(Xt)] dt = Ex

[∫ ∞

0
e−λth(Xt)dt

]
< ∞.

We will use condition (3) in the proof of Theorem 1 below. Condition (3) is a classical transversality
condition.

We denote μ = r− g. Since we want the nonintervention policy to be admissible (see details in
Section 6.1), we assume the following condition on the discount rate:

λ > σ2m(m + 1)/2 + μ(m + 1). (4)

This condition is consistent with the empirical observation that for governments the present is more
important than the future. Condition (4) is similar to the ones imposed in economic models with
infinite horizon (see, for instance, Romer 2002).

3. The Value Function and the Verification Theorem

The value function V : (0, ∞)→ R is defined by

V(x) := inf
u∈A(x)

J(x; u).

It measures the minimum loss for the government because it is the smallest cost that can be achieved
when the initial debt ratio is x and we consider all the admissible controls.

Proposition 2. The value function is nonnegative, increasing and convex. Furthermore, V(0+) = 0, and it
satisfies the polynomial growth condition

V(x) ≤ Mxm+1 , (5)

for some constant M ∈ (0, ∞).
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Proof. See Appendix B.

We state a sufficient condition for a policy to be optimal. First, we introduce the corresponding
Hamilton–Jacobi–Bellman equation (HJB).

Let ϕ : (0, ∞)→ R be a function in C2(0, ∞). The differential operator L is defined by

Lu(ϕ(x)) :=
1
2

σ2x2 ϕ′′(x) + μxϕ′(x)− u ϕ′(x)− λϕ(x). (6)

We consider the Hamilton-Jacobi-Bellman (HJB) equation

inf
0≤ u≤U

{
Lu(v(x)) + k u + h(x)

}
= 0, (7)

where v : (0, ∞)→ R is a function in C2(0, ∞).
We next present a verification theorem that will be used to obtain the solution.

Other verification theorems for classical stochastic control problems can be found, for instance,
in Fleming and Soner (2006).

Theorem 1. Let v ∈ C2((0, ∞); [0, ∞)) be a convex function. If v satisfies the HJB Equation (7) and the
polynomial growth condition

v(x) ≤ Mxm+1 , (8)

for some constant M > 0, then for every u ∈ A(x):

v(x) ≤ J(x; u).

Moreover, if the control uv, defined by

uv := uv(Xt) = arg inf
u∈[0,U]

{
Lu(v(Xt)) + k u + h(Xt)

}
, (9)

is admissible, then

v(x) = J(x; uv).

That is, û := uv is the optimal control and V := v is the value function for Problem 1.

Proof. Let u ∈ A(x), and let X0 = x > 0. Since v is twice continuously differentiable, we may apply
Ito’s formula to obtain for every s > 0:

v(x) = e−λsv(Xs) −
∫ s

0
e−λt {Lut

(
v
(
Xt
))}

dt +
∫ s

0
e−λtv′(Xt)σdWt , (10)

where L is defined in Equation (6). From the HJB Equation (7), we have Lut(v(Xt)) + k ut + h(Xt) ≥ 0.
Thus,

v(x) ≤ e−λsv(Xs) +
∫ s

0
e−λth(Xt)dt +

∫ s

0
e−λtk utdt +

∫ s

0
e−λtv′(Xt)σdWt . (11)

Let c ∈ R, such that x < c < ∞. We define τc := inf{t ≥ 0 : Xt = c}. We denote a ∧ b := min(a, b),
where a and b are real numbers. Then, for every T ≥ 0,

v(x) ≤ e−λ(T∧τc)v(XT∧τc) +
∫ T∧τc

0
e−λth(Xt)dt +

∫ T∧τc

0
e−λtk utdt +

∫ T∧τc

0
e−λtv′(Xt)σdWt .
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Taking conditional expectation given that X0 = x, we obtain

v(x) ≤ Ex

[
e−λ(T∧τc)v(XT∧τc)

]
+ Ex

[∫ T∧τc
0 e−λth(Xt)dt

]
+ Ex

[∫ T∧τc
0 e−λtk utdt

]
+ Ex

[∫ T∧τc
0 e−λtv′(Xt)σdWt

]
.

(12)

Since v ∈ C2((0, ∞); [0, ∞)) and v is convex, we have v′(Xt) ≤ v′(c) for every t ∈ [0, T ∧ τc]. Thus,

Ex

[∫ T∧τc

0

(
e−λtv′(Xt)σ

)2
dt
]
≤ (v′(c))2σ2

∫ T

0
e−2λtdt < ∞.

Consequently, the stochastic integral

∫ T∧τc

0
e−λtv′(Xt)σdWt =

∫ T

0
e−λtv′(Xt)σI{t∈ [0,τc ]}dWt =: NT

is a square integrable martingale, and hence Ex[NT ] = N0 = 0. Here, IA is the indicator function of A.
Since v is a continuous function,

lim
c→∞

e−λ(T∧τc)v(XT∧τc) = e−λTv(XT) , P− a.s.

Moreover, due to the polynomial growth condition (8), the family of random variables
{e−λ(T∧τc)v(XT∧τc) : c > x} is uniformly integrable (see Appendix D in Fleming and Soner 2006),
and hence

lim
c→∞

Ex

[
e−λ(T∧τc)v(XT∧τc)

]
= Ex

[
e−λTv(XT)

]
.

The Monotone Convergence Theorem implies

lim
c→∞

Ex

[∫ T∧τc

0
e−λth(Xt)dt

]
= Ex

[∫ T

0
e−λth(Xt)dt

]
and

lim
c→∞

Ex

[∫ T∧τc

0
e−λtk utdt

]
= Ex

[∫ T

0
e−λtk utdt

]
.

Taking the limit as c → ∞ in (12),

v(x) ≤ Ex

[
e−λTv(XT)

]
+ Ex

[∫ T

0
e−λth(Xt)dt

]
+ Ex

[∫ T

0
e−λtk utdt

]
. (13)

In view of (3), and the polynomial growth condition (8),

lim
T→∞

Ex

[
e−λTv(XT)

]
= 0.

Taking the limit as T → ∞ in (13), by the Monotone Convergence Theorem, we conclude

v(x) ≤ Ex

[∫ ∞

0
e−λth(Xt)dt +

∫ ∞

0
e−λtk ut dt

]
= J(x; u). (14)

This proves the first part of this theorem.
Next, we consider the second part of the theorem. Since u := uv satisfies Lu(ϕ(x))+ ku+ h(x) = 0,

inequality (11) becomes an equality. Hence, the inequality in (14) becomes an equality for the admissible
control u = uv. This completes the proof.
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4. The Solution

4.1. Construction of the Solution

Our goal in this subsection is to find a function that satisfies the conditions of Theorem 1. We note
that the HJB Equation (7) can be expressed equivalently as{1

2
σ2 x2 v′′(x) + μ x v′(x)− λ v(x) + inf

u∈[0, U]

[(
k− v′(x)

)
u
]
+ h(x)

}
= 0 . (15)

Thus, we want to find a control that has the following form:

ût := arg inf
u∈ [0,U]

[(
k− v′(Xt)

)
ut

]
=

{
0, if v′(Xt) < k,
U, if v′(Xt) ≥ k .

(16)

Consequently, to solve the HJB Equation (15) is equivalent to solve

1
2

σ2 x2 v′′(x) + μ x v′(x)− λ v(x) + h(x) = 0 , (17)

for v′(x) < k ; and

1
2

σ2 x2 v′′(x) + μ x v′(x)− λ v(x) +
(

k− v′(x)
)

U + h(x) = 0 , (18)

for v′(x) ≥ k.
Thus, a solution v of the HJB equation defines the regions C = Cv and Σ = Σv by

C :=
{

x > 0 :
1
2

σ2 x2 v′′(x) + μ x v′(x)− λ v(x) + h(x) = 0, v′(x) < k
}

, (19)

Σ :=
{

x > 0 :
1
2

σ2 x2 v′′(x) + μ x v′(x)− λ v(x) +
(

k− v′(x)
)

U + h(x) = 0, v′(x) ≥ k
}

. (20)

We observe that the control û takes the value zero on the region C, whereas it takes the value U on
the region Σ. We conjecture that there exists a threshold b ∈ (0, ∞) such that the government should
intervene with û = U when the debt ratio X ≥ b, and should not intervene (equivalently, û = 0)
when the debt ratio X < b. Accordingly, if v satisfies the HJB equation, we will call C = (0, b) the
continuation region and Σ = [b, ∞) the intervention region. Thus, it is natural to define the debt ratio
ceiling as follows.

Definition 2. Let v be a function that satisfies the HJB Equation (15), and C the corresponding continuation
region. If C �= ∅, the debt ratio ceiling b is

b := sup{x ∈ (0 , ∞) | x ∈ C}.

Furthermore, if v is equal to the value function, then b is said to be the optimal debt ceiling.

Hence, we need to find the value function to obtain the optimal debt ceiling. The general solution
of the HJB equation depends on whether we consider the continuation region C or the intervention
region Σ. We have applied the power series method to obtain the solution on the region Σ.

To simplify the notation, we consider the power series

Hypergeometric1F1(θ; η; z) :=

[
1 +

∞

∑
n=1

(θ)n

(η)n

1
n!

zn

]
, K(θ; η; x) :=

[
1 +

∞

∑
n=1

(θ)n

(η)n

1
n!

(
− 2U

σ2 x

)n]
. (21)
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Here, θ ∈ (−∞, ∞) and η ∈ (−∞, ∞) are constants, and we denote

(a)n := Πn−1
j=0 (a + j) = a(a + 1)(a + 2) · · · (a + n− 1), a ∈ R, n ∈ N.

This function Hypergeometric1F1(θ; η; z) belongs to the family of hypergeometric functions. For a
reference of these functions, and their relationship to second order differential equations, see,
for example, Bell (2004) and Kristensson (2010).

Thus, the solution of the HJB equation is given by

v(x) =

⎧⎨⎩ A1 xγ1 + A2 xγ2 + α ξ xm+1, if x ∈ C = (0, b),

f (x), if x ∈ Σ = [b, ∞),

with

f (x) =
m+1

∑
j=0

ζ j xj + B1 xγ2
( σ2

2U

)γ2

[
1 +

∞

∑
n=1

(−γ2)n

(c2)n

1
n!

(−2U
σ2 x

)n]

+ B2

( 2U
σ2 x

)c3

[
1 +

∞

∑
n=1

(c3)n

(2− c2)n

1
n!

(−2U
σ2 x

)n ]
(22)

=
m+1

∑
j=0

ζ j xj + B1 xγ2
( σ2

2U

)γ2
K (−γ2, c2, x ) + B2

( 2U
σ2 x

)c3
K (c3, 2− c2, x ) ,

where A1, A2, B1 and B2 are some constants to be found. Furthermore, we define

μ̃ := μ− 1
2

σ2 , (23)

γ1 :=
−μ̃−

√
μ̃2 + 2λσ2

σ2 < 0, (24)

γ2 :=
−μ̃ +

√
μ̃2 + 2λσ2

σ2 > 0, (25)

ξ :=
1

λ− σ2m(m + 1)/2− μ(m + 1)
> 0, (26)

c2 := 2
(

1− γ2 −
μ

σ2

)
, (27)

c3 := γ2 + 2
μ̃

σ2 , (28)

ζ j := −
(

m + 1
j

)
α (m + 1− j)! Um+1−j

∏m+1
i=j

(
iμ + i(i− 1)σ2/2− λ

) , ∀j ∈ {2, 3, · · · , m + 1}, (29)

ζ1 :=
2U

μ− λ
ζ2, (30)

ζ0 :=
k U
λ
− U

λ
ζ1. (31)
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Remark 2. By definition (21), one can verify that

lim
x→∞

K (−γ2, c2, x ) = 1,

lim
x→∞

K (c3, 2− c2, x ) = 1.

To guarantee the existence of the parameters {ζ j : j = 2, 3, · · · , m + 1} defined in (29), in addition
to condition (4), we need to assume

λ �= j(j− 1)
σ2

2
+ jμ, j ∈ {2, 3, · · · , m}. (32)

We observe that, in the special case μ ≥ 0, the inequality (4) implies (32).

Lemma 1. The parameters of the model satisfy the following conditions:

(i) ξ > 0,
(ii) λ > μ,
(iii) γ2 > m + 1,
(iv) c3 > 0.

Proof. Part (i) follows immediately from (4). Part (iv) follows directly from the definition of γ2. Let us
show (ii). If μ > 0, then condition (4) implies that λ > μ. If μ ≤ 0, then λ > 0 ≥ μ.

To prove (iii), we define

f̃ (y) =
√

μ̃2 + 2yσ2

σ2 − μ̃

σ2 , (33)

where μ̃ = μ − 0.5σ2. We note that f̃ is strictly increasing. By definition, γ2 = f̃ (λ).

If μ̃ + σ2(m + 1) ≥ 0, then γ2 = f̃ (λ) > f̃
(
(m + 1)2σ2/2 + μ̃(m + 1)

)
= m + 1, where the inequality

follows from (4). If μ̃ + σ2(m + 1) < 0, then γ2 = f̃ (λ) > f̃ (0) > 2(m + 1), since λ > 0.

We recall that Proposition 2 implies V(0+) = 0, and that the value function V satisfies the
polynomial growth condition (5). Furthermore, we conjecture that v is twice continuously differentiable.
Then, the five constants A1, A2, B1, B2 and b can be found from the following five conditions:

v(0+) = 0 , (34)

v(x) ≤ Mxm+1 , (35)

v(b+) = v(b−) , (36)

v′(b+) = v′(b−) , (37)

v′′(b+) = v′′(b−). (38)

From Equations (19) and (20), we see that Equation (37) is equivalent to v′(b−) = k, which in turn
is equivalent to

A2γ2bγ2−1 + (m + 1)αξbm = k. (39)

Since γ1 < 0, condition (34) implies A1 = 0 in the equation for v. Moreover, in the lemma below,
we show that B1 = 0.

Lemma 2. Suppose f , defined in (22), is non-negative and satisfies the polynomial growth condition

f (x) ≤ Mxm+1,

for some M > 0. Then, B1 = 0.
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Proof. See Appendix C.

Hence, the candidate for value function is defined by

v(x) =

{
A2 xγ2 + α ξ xm+1, if x ∈ C = (0, b),
f1(x), if x ∈ Σ = [b, ∞),

(40)

with

f1(x) :=
m+1

∑
j=0

ζ j xj + B2

( 2U
σ2 x

)c3
K
(

c3, 2− c2, x
)

, (41)

where the remaining three constants A2, B2 and b are found by solving the system of nonlinear
Equations (36)–(38).

In summary, our candidate for value function is given by (40), and our candidate for optimal

control is given by ût :=

{
0, if Xt < b,
U, if Xt ≥ b.

Moreover, our candidate for optimal debt ceiling is

b. Naturally, we expect b to depend on the underlying parameters of the model (μ, σ, λ, k, α, m, U),
where μ = r− g.

Now, we describe a procedure to solve the system (36)–(38). Noting that

K′(θ; η; x) =
∞

∑
n=1

(θ)n

(η)n

1
(n− 1)!

σ2

2U

(
− 2U

σ2 x

)n+1

,

K′′(θ; η; x) =
∞

∑
n=1

(θ)n

(η)n

(n + 1)
(n− 1)!

(
σ2

2U

)2 (
− 2U

σ2 x

)n+2

,

we have

f ′1(x) =
m

∑
j=0

(j + 1)ζ j+1xj − B2c3

(
2U
σ2 x

)c3+1

K(c3; 2− c2; x) + B2

(
2U
σ2 x

)c3

K′(c3; 2− c2; x),

f ′′1 (x) =
m−1

∑
j=0

(j + 2)(j + 1)ζ j+2xj + B2c3(c3 + 1)
(

2U
σ2 x

)c3 1
x2 K(c3; 2− c2; x)

−B2c3

(
σ2

2U
+

σ2

(2U)2

)(
2U
σ2 x

)c3+1

K′(c3; 2− c2; x) + B2

(
2U
σ2 x

)c3
K′′(c3; 2− c2; x)

=
m−1

∑
j=0

(j + 2)(j + 1)ζ j+2xj

+B2

{
c3(c3 + 1)

(
2U
σ2 x

)c3 1
x2 K(c3; 2− c2; x)− c3

(
σ2

2U
+

σ2

(2U)2

)(
2U
σ2 x

)c3+1

K′(c3; 2− c2; x) +
(

2U
σ2 x

)c3
K′′(c3; 2− c2; x)

}
.

To simplify the notation, consider the functions R and S defined by

R(x) :=
(

2U
σ2 x

)c3

K(c3; 2− c2; x),

S(x) := c3(c3 + 1)
(

2U
σ2 x

)c3 1
x2 K(c3; 2− c2; x)

−c3

(
σ2

2U
+

σ2

(2U)2

)(
2U
σ2 x

)c3+1

K′(c3; 2− c2; x)

+

(
2U
σ2 x

)c3

K′′(c3; 2− c2; x).
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Then, Equation (36) can be rewritten as

A2 bγ2 + α ξ bm+1 =
m+1

∑
j=0

ζ jbj + B2R(b)

and Equation (38) can be rewritten as

A2 γ2(γ2 − 1)bγ2−2 + α ξ(m + 1)mbm−1 =
m−1

∑
j=0

(j + 2)(j + 1)ζ j+2xj + B2S(b).

Thus, Equations (36) and (38) are equivalent to

A2 = A2(b)

=
(∑m+1

j=0 ζ jbj − α ξ bm+1)S(b) + (α ξ(m + 1)mbm−1 −∑m−1
j=0 (j + 2)(j + 1)ζ j+2bj)R(b)

bγ2 S(b)− γ2(γ2 − 1)bγ2−2R(b)
,

(42)

B2 = B2(b)

=
A2(b)bγ2 + α ξ bm+1 −∑m+1

j=0 ζ jbj

R(b)
.

(43)

Then, Equation (37), or equivalently Equation (39), can be rewritten as

A2(b)γ2bγ2−1 + (m + 1)αξbm = k.

Let us consider the function w : (0, ∞) �−→ (−∞, ∞) defined by

w(y) := A2(y)γ2yγ2−1 + (m + 1)αξym.

The procedure to solve Equations (36)–(38) is first to solve equation

w(b) = k, (44)

and then obtain A2 and B2 from Equations (42) and (43), respectively.

4.2. Verification of the Solution

In this subsection, we will prove rigorously that our candidate for optimal control is indeed the
optimal control, and our candidate for value function is indeed the value function.

Theorem 2. Let b be solution of Equation (44), and A2 and B2 be constants determined by (42) and (43). Let us
define the function V : (0, ∞)→ [0, ∞) by

V(x) = v(x) =

{
A2 xγ2 + α ξ xm+1, if x ∈ (0, b),
f1(x), if x ∈ [b, ∞),

(45)

with f1 defined by Equation (41). Furthermore, let us define the process û by

ût := U I{X̂t≥b}(t) =

{
0, if X̂(t) < b,
U, if X̂(t) ≥ b.

(46)

If

∀x ∈ (0, ∞) : V′′(x) > 0, (47)
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then V is the value function, b is the optimal debt ceiling, and û is the debt policy generated by the optimal debt
ceiling. Here, IA is the indicator function of A.

Proof. It is sufficient to show that all the conditions of Theorem 1 are satisfied. We observe that
V(0+) = 0. By construction, we get immediately that V ∈ C2(0, ∞). In view of (47), V is strictly
convex. Thus, V′(x) is strictly increasing. Next, we will show that V′(0+) = 0. We note that for every
x ∈ (0, b):

V′(x) = xm
(
(m + 1)αξ + A2γ2xγ2−m−1

)
.

We recall that γ2 > m + 1 by Lemma 1. Thus, V′(0+) = 0. Consequently, V′(x) > 0 for every x > 0.
Hence, V is strictly increasing.

Next, we will show that V satisfies the HJB Equation (7). We recall that condition (39) is equivalent
to V′(b) = k. Since V′(x) > 0 for every x ∈ (0, ∞), we conclude 0 < V′(x) < k for every x ∈ (0, b),
and V′(x) > k for every x ∈ (b, ∞). By construction, V satisfies (17) on (0, b), and (18) on (b, ∞).
Hence, V satisfies the HJB equation for all x ∈ (0, ∞). This also shows that indeed C = (0, b) and
Σ = [b, ∞). Regarding the value function, it remains to verify that V satisfies the polynomial growth
condition (8). Since

lim
x→∞

K (c3, 2− c2, x ) = 1

by Remark 2, and c3 > 0 by Lemma 1, we obtain

lim
x→∞

B2

( 2U
σ2 x

)c3
K
(

c3, 2− c2, x
)
= 0.

This implies that V is bounded above by a polynomial of degree m + 1 on the interval [b, ∞).
On the other hand, on the interval (0, b), the function V is bounded above by |A2|bγ2 + αξbm+1.
Hence, V satisfies the polynomial growth condition (8). Consequently, by Theorem 1, V is the value
function. Since

J(x; û) ≤ J(x; 0) + Ex

[∫ ∞

0
e−λt Udt

]
= αξxm+1 + U

1
λ
< ∞,

by Section 6.1, we conclude that û is admissible. Therefore, û is the optimal debt policy. By Definition 2,
the constant b is the optimal debt ceiling. This completes the proof of this theorem.

4.3. The Debt Policy Generated by the Optimal Debt Ceiling

We observe that under the debt policy (46) generated by the optimal debt ceiling, the optimal debt
ratio is given by

X̂t = x +
∫ t

0
(r− g)X̂sds +

∫ t

0
σX̂s dWs −

∫ t

0
Ū I{X̂s≥b} ds. (48)

When the actual debt ratio X̂t is below the optimal debt ceiling b, the definition of debt control given
in Equation (46) states that û(t) = 0. Hence, the government does not generate primary surpluses to
reduce its debt ratio. When the debt ratio reaches b and tries to cross it, the optimal control states that
ût = U. In other words, the government intervenes to reduce the debt ratio with the maximal rate U
allowed. When the actual debt ratio X̂t is strictly greater than the optimal debt ceiling b, the optimal
debt policy in the bounded model states that the government reduces its debt ratio with the maximal
rate U.

Suppose that the actual debt ratio is below the optimal debt ceiling b. Then, the government might
or might not succeed in preventing the debt ratio from crossing b, the result depends on the values of
the underlying parameters of the model, in particular on U. Specifically, the higher the parameter U,
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the more likely the controlled debt ratio will remain below the optimal debt ceiling b (see Section 5).
This result differs from the unbounded case of Cadenillas and Huamán-Aguilar (2016) in which the
optimal policy states that once the actual debt ratio is below or equal to its debt ceiling, it will remain
there all the time.

On the other hand, if the current debt ratio is strictly greater than the optimal debt ceiling b,
the optimal debt policy states that the government should reduce the debt ratio with the maximal
rate U. Certainly, there is no guarantee that the resulting debt ratio will equal the debt ceiling b
immediately because it may take some time to accomplish that goal, if that ever happens. Indeed,
in Section 5, we present Example 2 in which the expected time to reach the optimal debt ceiling is
strictly positive. Furthermore, if the government constraint is too severe (very low U), there is a high
probability that the country will never reach its optimal debt ceiling (see Example 3 in Section 5).
In contrast, in the unbounded model of Cadenillas and Huamán-Aguilar (2016), the optimal debt
ceiling is reached immediately.

4.4. Numerical Solutions

The solution of the problem involves the numerical solution of the system of three
Equations (36)–(38) with three unknowns: A2, B2 and b. We have written a program in Mathematica
11.0 to solve numerically those equations (see Appendix E). We get immediate solutions in a standard
personal computer. We now present an example to illustrate the solution.

Example 1. Let us consider the parameter values

r = 0.10, g = 0.05, σ = 0.05, λ = 0.7, k = 1, U = 0.05, m = 3, α = 1. (49)

Solving numerically the Equation (44), we obtain b = 54.2756%. Alternatively, we can solve numerically the
system of Equations (36)–(38).

The graph of the corresponding value function is shown in Figure 1. We observe that condition (47)
is satisfied. Thus, the value function is increasing, strictly convex, and twice continuously differentiable.

The optimal debt ratio ceiling is 54.2756%. Thus, the corresponding debt policy is given by

ût =

{
0, if Xt < 54.2756%,
0.05, if Xt ≥ 54.2756%.

(50)

That is, if the actual debt ratio is below the level 54.2756%, the government should not intervene.
Otherwise, the government should intervene with the maximal allowed rate of 0.05. Given such
constraint, there is no guarantee that the resulting debt ratio after intervention of the government will
remain below 54.2756%; it may be the case that sometimes the debt ratio is above that threshold.

Remark 3. We conjecture that condition (47) in Theorem 2 is satisfied for every solution of the system of
Equations (36)–(38). This is actually the case in all the numerical examples that we have studied to calculate the
optimal debt ceiling (see Sections 4.4, 5.4, 6.2 and 6.3).
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Figure 1. The value function V.

5. Time to Reach the Debt Ceiling

We study the time to reach a debt ceiling c considering that the government follows the debt
policy u(c) defined by

u(c)
t :=

{
0, if Xt < c,
U, if Xt ≥ c.

(51)

We define the stopping time

τ := inf {t > 0 : X(t) = c} .

In this section, c > 0 is a constant real number that represents a ceiling for the debt ratio.
We emphasize that c is any debt ceiling, not necessarily the optimal debt ceiling found in the previous
section. In particular, c could be equal to the ceiling 60% imposed by the Maastricht Treaty for the
European Union.

5.1. The Theoretical Result

In general, the current or initial debt ratio of a country X0 = x could be below or above the debt
ceiling c. If a country selects c as its debt ceiling, and follows the debt policy u(c), the dynamics of the
debt ratio (2) becomes

X(c)
t =

⎧⎨⎩ x exp
{
(r− g− 0.5σ2)t + σWt

}
, if x < c, t ≤ τ,

x exp
{
(r− g− 0.5σ2)t + σWt

}
−U

∫ t
0

Vt
Vu

du, if x > c, t ≤ τ,

where
Vt := exp

{
(r− g− 0.5σ2)t + σWt

}
.

We can study the time τ to reach the debt ceiling for both cases, i.e., x < c or x > c. However,
given the debt problems that motivate this research, it is compelling to study the time to reach the debt
ceiling assuming x > c.
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We recall that μ̃ := r− g− 1
2 σ2. We need to distinguish two cases: μ̃ ≤ 0 and μ̃ > 0.

Proposition 3. Suppose x > c . The following assertions are valid:
(i) If μ̃ ≤ 0 or, equivalently, r− g ≤ σ2/2, then

Px {τ < ∞} = 1. (52)

(ii) If μ̃ > 0 or, equivalently, r− g > σ2/2, then

Px {τ < ∞} = Γ(ν− 1)− Γ(ν− 1, β/x)
Γ(ν− 1)− Γ(ν− 1, β/c)

, (53)

where ν = 2μ/σ2 and β = 2U/σ2, Γ(·) is the Gamma function, and Γ(·, ·) is the incomplete Gamma function
defined by

Γ(a, z) :=
∫ ∞

z
t(a−1)e−tdt, z ≥ 0, a > 0.

Furthermore,

lim
U→∞

Px{τ < ∞} = 1. (54)

Proof. See Appendix D.

Proposition 3 provides different conclusions depending on the parameters of the economy. Part (i)
is associated with countries that have a big economic growth, and Part (ii) with countries with moderate
economic growth.

5.2. Application 1: Countries with Big Economic Growth

If

g + σ2/2 ≥ r, (55)

Part (i) of Proposition 3 states that the debt ceiling is reached with probability one, regardless of
the level Ū of maximal rate. In other words, if the interest rate is lower that the rate of economic
growth, plus an adjustment by volatility, then the debt ratio tends to decrease until it reaches the
debt ceiling with probability one. The intuition behind the result is that the economic growth is
big enough to control the debt ratio. This is a consequence of the definition of debt ratio, namely,
debt ratio = debt in nominal currency/gross domestic product. Consequently, economies in which
the rate of economic growth satisfy the above condition will be successful in reaching the debt ceiling.

For economies that satisfy the above condition (55), we can compute the expected time to reach
the debt ceiling c. We illustrate this point in the following example.

Example 2. We consider a country with parameter values

r = 0.05, g = 0.10, σ = 0.05, U = 0.01,

and initial debt ratio x = 100%. Suppose that this country selects c = 80% as its debt ceiling.

For the above parameters, the expected time to reach the debt ceiling is E[τ] = 3.58, with a 95%
confidence interval given by [3.5540, 3.6136]. We have performed Monte Carlo simulations with 10, 000
sample paths and time steps equal to 0.001. That is, it takes 3.58 years on average to reach the debt
ceiling 80%, starting at the initial debt ratio of 100%, and assuming that the government can decrease
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the debt ratio at the maximal rate. For a reference on Monte Carlo simulations see, for instance,
Brandimarte (2002).

5.3. Application 2: Countries with Moderate Economic Growth

Now consider Part (ii) of Proposition 3. It refers to countries that have moderate economic growth
in the sense that they satisfy the condition μ̃ > 0 , which is equivalent to

g + σ2/2 < r. (56)

The probability to reach the optimal debt ceiling is given by the formula (53) that depends on
(r, g, σ, U, c). To illustrate the role played by the parameter U, we present a numerical example.

Example 3. To study the role played by Ū on the probability of reaching c, we set c = 60%, which is the ceiling
proposed by the Maastricht Treaty for the European Union. We consider the set of parameter values

r = 0.10, g = 0.05, σ = 0.05.

We consider two countries: Country A with initial debt ratio of 70% (approximately the current debt ratio
of Germany) and Country B with initial debt ratio of 170% (approximately the current debt ratio of Greece).
For simplicity, we assume that the other parameters values are the same for both countries.

In Table 1, we observe that, regardless of the type of country, there exist levels of the maximal rate
of intervention U for which a country has very low probability of reaching the debt ceiling. For instance,
if Ū = 2.5%, then Country B has zero probability of reaching the debt ceiling, while Country A has only
around 20% of probability of reaching it. That is, severe constraints to generate primary surpluses lead
to a high probability of never reaching the debt ceiling. Even worse, countries with severe constraints
and high initial debt ratios, such as Country B, have probabilities close to zero of ever reaching their
debt ceilings.

In addition, in Table 1, we observe that, as expected, the higher the maximal rate of intervention
U, the greater the probability of reaching the debt ceiling, regardless of the type of country. In addition,
there is a finite level of Ū such that the probability of reaching the optimal debt ceiling is one.
For Country B, such level is Ū = 0.15 and for Country A it is around Ū = 0.05.

Table 1. Effects of U on the probability of reaching the debt ceiling c (*).

c Country A Country B

U = 0.010 0.60 0.01538 0.00000
U = 0.025 0.60 0.19876 0.00000
U = 0.050 0.60 0.99542 0.00215
U = 0.100 0.60 1.00000 0.89679
U = 0.150 0.60 1.00000 0.99998

(*) The other parameters used in these computations are those of Example 3.

5.4. Application 3: Time to Reach the Optimal Debt Ceiling

Now, we study the time to reach the optimal debt ceiling b for countries with moderate economic
growth. That is, we consider the setting of Part (ii) of Proposition 3, taking c = b. To compute the
optimal debt ceiling, we consider the parameters (r, g, σ) given in Example 3, and in addition the
following parameter values:

λ = 0.7, k = 1, m = 1, α = 0.5. (57)
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As in the previous subsection, we consider Country A with initial debt ratio 70%, and Country B with
initial debt ratio 170%.

In Table 2, we present the optimal debt ceiling that corresponds to the parameters given above,
and the value of Ū given in the first column of that table. Then, for each set of parameters (r, g, σ, Ū, b),
we perform the calculations of the probability of reaching the optimal debt ceiling using Formula (53),
with c = b. The probabilities of reaching the optimal debt ceiling b for Country A and Country B are
presented in columns 3 and 4, respectively.

We note that the conclusions from Table 2 are the same as those from Table 1, namely, severe
constraints on Ū imply that a country may not be able to reach its optimal debt ceiling, and the
probability of eventually reaching its optimal debt ceiling increases with the value of Ū.

Table 2. Effects of U on the probability of reaching the optimal debt ceiling b (*).

b Country A Country B

U = 0.010 0.60982 0.02356 0.00000
U = 0.025 0.62576 0.29127 0.00000
U = 0.050 0.64324 0.99598 0.00215
U = 0.100 0.65495 1.00000 0.89679
U = 0.150 0.65808 1.00000 0.99998

(*) The other parameters used in these computations are those of Example 3, and Equation (57).

For a country with no severe constraint, that is able to reach its optimal debt ceiling, we have
computed the expected time to reach its optimal debt ceiling by Monte Carlo simulations. For instance,
for Country A with Ū = 0.1, the expected time of reaching its debt ceiling is 0.6877, while for Country
B, with Ū = 0.15, such value is 11.98.

To sum up, we conclude that countries with severe constraints to generate primary surpluses
(very low U) have zero or very low probability of ever reaching their debt ceilings. This is one of the
main results of this research, and represents a dramatic difference with the work of Cadenillas and
Huamán-Aguilar (2016), in which the corresponding optimal debt ceiling is reached immediately with
probability one.

6. Comparative Statics Analysis

In this section, we consider different parameter values in order to analyze the debt policy
associated with the optimal debt ceiling. Specifically, we are going to make the following three
analyses:

1. Compare the results of the debt policy associated with the optimal debt ceiling with the policy of
non-government intervention.

2. Compare the results of the debt policy associated with the optimal debt ceiling presented in this
paper with the policy derived in the unbounded model of Cadenillas and Huamán-Aguilar (2016).

3. Analyze the effects of some parameters on the optimal debt ceiling.

Unless otherwise stated, the basic parameter values that we will use in this section are given in
the following example.

Example 4. Let us consider the basic parameter values:

μ = 0.05, σ = 0.05, λ = 0.7, k = 1, U = 0.01, m = 1, α = 1.

Solving numerically Equations (36)–(38), we obtain b = 31.04266%.

We remark that, as Examples 1 and 4 show, the 60% proposed by the Maastricht Treaty is
not necessarily an optimal debt ceiling. In contrast to the 60% proposed by the Maastricht Treaty,
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the optimal debt ceiling proposed in our paper depends on the specific characteristics of the country,
which are reflected in the parameters’ values. We recall that that 60% was simply the median of the
debt ratio of some European countries.

6.1. The Debt Policy Associated with the Optimal Debt Ceiling versus the Non-Intervention Policy

We want to compare the policy obtained in Section 4 with the non-intervention policy. The latter
can be modeled as u ≡ 0, that is, u(t) = 0 for all t ≥ 0. If the government never intervenes, then

Xt = x exp
{(

μ− 1
2

σ2
)

t + σWt

}
. (58)

The total cost function is

J(x; 0) = Ex

[∫ ∞

0
e−λth(Xt)dt + 0

]
= Ex

[∫ ∞

0
e−λt(αXm+1

t
)
dt
]

=
∫ ∞

0
e−λtαEx

[
Xm+1

t

]
dt = α

∫ ∞

0
e−λtxm+1 exp

{(
σ2m/2 + μ

)
t(m + 1)

}
dt

= α ξ xm+1 ,

due to condition (4).
We recall that the value function V represents the minimum expected total discounted cost, and

is a function of the initial debt ratio. Thus, the cost J(x; 0) is greater than or equal to V(x). Indeed,
using the parameter values of Example 4 with U = 0.05, we plot these functions in Figure 2. We observe
that the expected relation is satisfied. Hence, we confirm that it is better to intervene optimally than to
not intervene at all. We point out that the larger the initial debt ratio, the greater the benefits of the
optimal intervention.

Figure 2. The value function (for the bounded-intervention model) versus the total cost of the
non-intervention policy.

6.2. The Bounded Model versus the Unbounded Model

In this subsection, we compare our results to the ones obtained by Cadenillas and Huamán-Aguilar
(2016) for their model with unbounded government intervention. They proved that the optimal debt
ceiling b̃ for the unbounded intervention model is given by
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b̃ =

(
1

α ξ

k(γ2 − 1)
(γ2 −m− 1)(m + 1)

) 1
m

> 0, (59)

where

μ̃ = μ− 1
2

σ2,

γ2 =
−μ̃ +

√
μ̃2 + 2λσ2

σ2 > 0,

ξ =
1

λ− σ2m(m + 1)/2− μ(m + 1)
> 0.

In Table 3, we study the effect of the maximal rate of intervention U on the optimal debt ceiling.
We notice that the optimal debt ceiling b in the bounded model is always smaller than the optimal debt
ceiling b̃ in the unbounded case U = ∞, given by Equation (59). Moreover, we observe that, as the
maximal rate U increases, the optimal debt ceiling b for the bounded model increases towards the
optimal debt ceiling b̃ for the unbounded model. It is worth remarking that b̃ is an upper bound for b.
Furthermore, we conclude that, other things being equal, countries with severe constraints to control
their debt ratios should have low optimal debt ceilings.

Table 3. Effect of U on the optimal debt ceiling b (*).

U = 0.001 U = 0.01 U = 1 U = 5 U = ∞

b 0.300024 0.310426 0.331213 0.331325 0.331352

(*) The other parameters used in these computations are those of Example 4. The unbounded case U = ∞ is
calculated using the explicit Formula (59).

6.3. The Effects of α, g, and σ on the Optimal Debt Ceiling

We recall that α represents the importance of government debt. In Table 4 we observe that the
more important the government debt, the lower the optimal debt ceiling. In other words, the more
concerned the government is about its debt, the more control should be exerted. We note that this
result holds for every value of the maximal rate of intervention U.

Table 4. Effect of α, μ and σ on the optimal debt ceiling b (*).

α = 0.5 α = 1 α = 1.3

U = 0.01 0.609820 0.310426 0.241035
U = 2.00 0.662425 0.331283 0.254845
U = ∞ 0.662704 0.331352 0.254886

μ = 0.05 μ = 0.10 μ = 0.14

U = 0.01 0.310426 0.263990 0.253090
U = 2.00 0.331283 0.303408 0.282346
U = ∞ 0.331352 0.303466 0.282397

σ = 0.05 σ = 0.13 σ = 0.17

U = 0.01 0.310426 0.301363 0.295110
U = 2.00 0.331283 0.349697 0.359007
U = ∞ 0.331352 0.350220 0.359954

(*) The other parameters used in these computations are those of Example 4. The unbounded case U = ∞ is
calculated using the explicit Formula (59).

We recall the definition μ := r− g in order to analyze the effect of the rate of economic growth.
In Table 4, we observe that the larger the rate of economic growth, the larger the optimal debt ceiling.
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In other words, since the economic growth reduces the debt ratio (see Domar 1944), countries with
high economic growth are allowed to have a high debt ceiling. We point out that this behavior holds
regardless of the value of the maximal rate of intervention U.

In Table 4, we also show the effects of volatility. We observe mixed results. If the maximal rate of
intervention U is large, then the higher the debt volatility the larger the optimal debt ceiling. This is
consistent with the unbounded model (U = ∞) of Cadenillas and Huamán-Aguilar (2016). However,
if the maximal rate of intervention U is small, then the higher the debt volatility, the lower the optimal
debt ceiling. This establishes a dramatic difference with the unbounded model (U = ∞) of Cadenillas
and Huamán-Aguilar (2016).

We have also studied the effects of the parameters on the value function. We have found out that
an increase in the importance of the debt α for the government, or in the debt volatility σ, implies an
increase in the value function, thereby generating a bad result for the government. By contrast,
an increase in the rate of economic growth reduces the value function and, hence, improves the
government welfare.

7. Summary of Analysis

We have confirmed that the debt policy associated with the optimal debt ceiling is better than the
non-intervention policy. Furthermore, as expected, the debt policy associated with the optimal debt
ceiling under the bounded intervention model determines a higher cost than the debt policy associated
with the optimal debt ceiling for the unbounded intervention model.

In addition, we have studied the time to reach any debt ceiling (including the optimal debt ceiling),
when the initial debt ratio is higher than the debt ceiling. We have found out that a country may or
may not succeed in reaching its debt ceiling. Indeed, we have found out that countries with strong
constraints to generate primary superavits (low maximal rate U of intervention) may not be able to
reduce their debt ratios, and hence may not succeed in reaching their corresponding debt ceilings.
On the contrary, for countries with less constraints, we have estimated their finite expected times to
reach their debt ceilings. That is, governments that succeed in reducing their debt ratios to their debt
ceiling levels do not do so immediately, but over some period of time. These are the main results of
this research.

We have observed that our quantitative results are different from those of Cadenillas and
Huamán-Aguilar (2016) for the unbounded intervention model (U = ∞). For example, the optimal debt
ceiling in our model is smaller than the optimal debt ceiling in the unbounded case. Another important
difference is that the optimal debt policies differ and, hence, produce different results. Suppose the
initial debt ratio of a country is below the optimal debt ceiling. Then, as pointed out in Section 4.3,
sometimes the controlled debt ratio may be above its corresponding optimal debt ceiling, whereas,
in the unbounded model, it will always be equal to or less than the optimal debt ceiling.

We have also analyzed the effects of some parameters on the optimal debt ceiling. We have
shown that, when the importance of debt for the government increases (large α), the optimal debt
ceiling decreases. An increase in the rate of economic growth (large g) has the same qualitative effect.
However, the effect of the volatility (σ) on the optimal debt ceiling depends on the maximal rate (U) of
intervention. We have shown that, if the maximal rate of intervention U is large, then the higher the
debt volatility, the larger the optimal debt ceiling. Nevertheless, if the maximal rate of intervention U
is small, then the higher the debt volatility, the lower the optimal debt ceiling. This result is different
from the one obtained by Cadenillas and Huamán-Aguilar (2016).

8. Conclusions

In this paper, we study the optimal government debt ceiling considering that the generation
of primary superavits to reduce the debt ratio is bounded. The goal of the government is to find a
debt reduction policy that minimizes the expected total cost, given by the cost of reducing the debt
ratio plus the cost (disutility) of having debt. The debt problem is set as a stochastic control problem
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in continuous time with infinite horizon. We succeed in obtaining the optimal control debt policy.
The main contribution of this paper is to present for the first time a model that not only allows us to
compute analytically the optimal debt ceiling (as a function of macro-financial variables), but also
accounts for the constraints that governments face in reducing their debt ratios. We have shown that
this constraint plays a key role in explaining, for instance, why many countries fail to reduce their debt
ratios to their debt ceilings.

For future research, it would be interesting to generalize our model to the case in which the interest
rate and the GDP growth rate are stochastic processes. This could be complemented by empirical tests.
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Appendix A. Proof of Proposition 1

Proof. Let us consider the controls u1 and u2 with u1 �= u2. Let us denote by Xui
the debt ratio

controlled by ui, i ∈ {1, 2}. Let β ∈ (0, 1). From Equation (2), we observe that the debt ratio controlled
by βu1 + (1− β)u2 is given by

Xβu1+(1−β)u2
= βXu1

+ (1− β)Xu2
.

Since h is a strictly convex function,

h(Xβu1+(1−β)u2

t ) = h(βXu1

t + (1− β)Xu2

t ) < βh(Xu1

t ) + (1− β)h(Xu2

t ).

Then, for every x ∈ (0, ∞):

J(x, βu1 + (1− β)u2) = Ex

[∫ ∞

0
e−λth(Xβu1+(1−β)u2

t ) +
∫ ∞

0
e−λtk(βu1

t + (1− β)u2
t )dt

]
< βJ(x; u1) + (1− β)J(x; u2).

This proves that, if u1 ∈ A(x) and u2 ∈ A(x), then βu1 + (1− β)u2 ∈ A(x). Hence, A(x) is a convex
set. Furthermore, the function J(x, ·) is strictly convex.

Suppose that u1 ∈ A(x) and u2 ∈ A(x), with u1 �= u2, are two optimal controls. Then, J(x; u1) =

J(x; u2) ∈ (0, ∞). Since 1
2 u1 + 1

2 u2 ∈ A(x) and J(x, ·) is strictly convex,

J
(

x,
1
2

u1 +
1
2

u2
)

<
1
2

J(x; u1) +
1
2

J(x; u2) = J(x; u1).

This contradicts that u1 ∈ A(x) and u2 ∈ A(x) are optimal controls. Therefore, Problem 1 has at most
one solution.

Appendix B. Proof of Proposition 2

Proof. Since J is nonnegative, the value function V is nonnegative as well.
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Consider x1 < x2 and u(2) ∈ A(x2). Since h is a strictly increasing function, we have

V(x1) ≤ J(x1, u(2)) < J(x2, u(2)).

This implies u(2) ∈ A(x1) and then V(x1) ≤ V(x2). Hence, V is increasing.
Consider x1 ≤ x2 with associated controls u(1) ∈ A(x1) and u(2) ∈ A(x2), and γ ∈ [0, 1].

We define u(3) := γu(1) + (1− γ)u(2) and x3 := γx1 + (1− γ)x2. For every i = 1, 2, 3, we denote by
X(i) the trajectory that starts at xi and is determined by the control u(i). Thus, for every t ≥ 0:

X(3)
t = γX(1)

t + (1− γ)X(2)
t .

The convexity of the function h implies∫ ∞

0
e−λth(X(3)

t )dt ≤
∫ ∞

0
e−λt

(
γh(X(1)

t ) + (1− γ)h(X(2)
t )

)
dt

= γ
( ∫ ∞

0
e−λth(X(1)

t )dt
)
+ (1− γ)

( ∫ ∞

0
e−λth(X(2)

t )dt
)

.

This implies

J(x3; u(3)) ≤ γJ(x1; u(1)) + (1− γ)J(x2; u(2)),

and hence u(3) ∈ A(x3). Thus,

V
(

γx1 + (1− γ)x2

)
≤ J

(
γx1 + (1− γ)x2, γu(1) + (1− γ)u(2)

)
= J(x3; u(3))

≤ γJ
(

x1, u(1))+ (1− γ)J
(

x2, u(2)).

Therefore,
V
(

γx1 + (1− γ)x2

)
≤ γV(x1) + (1− γ)V(x2),

which proves that V is a convex function.
It remains to prove that V(0+) = 0. Since V(x) is nonnegative, V(0+) ≥ 0. On the other hand,

by the result found in Section 6.1, we have

V(x) ≤ J(x; 0) = ξ α xm+1,

which implies V(0+) ≤ 0. Furthermore, there exists M = ξα ∈ (0, ∞) such that ∀x ∈ (0, ∞):

V(x) ≤ Mxm+1.

This completes the proof of this proposition.

Appendix C. Proof of Lemma 2

Proof. Let us consider the functions G and H defined by

G(x) := xγ2
( σ2

2U

)γ2
K (−γ2, c2, x )

and

H(x) :=
( 2U

σ2 x

)c3
K (c3, 2− c2, x ) .
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The function f , defined in (22), can be written as

f (x) =
m+1

∑
j=0

ζ j xj + B1G(x) + B2H(x), ∀x ∈ [b, ∞).

By Lemma 1, we note that γ2 > m + 1 and c3 > 0. Then, Remark 2 implies

lim
x→∞

B2H(x) = 0.

Consequently, there exists x̄ > b, such that for all x > x̄, we have −1 < B2H(x) < 1. Thus,

f (x) :=
m+1

∑
j=0

ζ j xj + B1G(x)− 1 < f (x) < f (x) :=
m+1

∑
j=0

ζ j xj + B1G(x) + 1.

Since γ2 > m + 1, using Remark 2, it follows that G does not satisfy any polynomial growth
condition of degree m + 1. That is, for every M2 > 0, there exists xM2 such that G(x) > M2(1 + xm+1)

for every x > xM2 .
Now, for a contradiction, suppose B1 > 0. Then, f does not satisfy the polynomial growth

condition of Lemma 2. However, this, in turn, implies that f does not satisfy that polynomial growth
condition either. This contradiction implies that B1 ≤ 0. Next, we show B1 ≥ 0. For a contradiction,
suppose B1 < 0. Then, there exists x big enough such that f (x) < 0. However, this contradicts the
fact that f is non-negative. Then, there must be the case that B1 ≥ 0. Combining these two results,
we conclude that B1 = 0.

Appendix D. Proof of Proposition 3

Proof. Proof of Part (i). Since x > c, we can rewrite τ as

τ = inf {t > 0 : Xt ≤ c} .

By definition of the debt policy u(c), the debt ratio ceiling follows

X(c)
t = x +

∫ t

0
μX(c)

s ds +
∫ t

0
σX(c)

s dWs −U t.

We define the auxiliary process {Yt} by

Yt = x +
∫ t

0
μYsds +

∫ t

0
σYsdWs,

and the auxiliary stopping time:

θ := inf{t > 0 : Y(t) ≤ c}.

Since U > 0, we have X(c)
t ≤ Yt. Then, τ ≤ θ. Hence, Px{θ < ∞} ≤ Px{τ < ∞}. Thus, it suffices to

show that Px{θ < ∞} = 1.
The stopping time θ can be written as

θ = inf {t > 0 : x exp{μ̃ t + σ Wt} ≤ c}

= inf {t > 0 : −μ̃ t + σ (−Wt) ≥ log x− log c} .
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Since −W is also a Brownian motion, the process −μ̃ t + σ (−Wt) is a Brownian motion with drift.
We may apply the methods in Section 8.4 of Ross (1996), and Section 7.5 of Karlin and Taylor (1975),
to show that if μ̃ ≤ 0, then Px{θ < ∞} = 1. This completes the proof of Part (i).

Proof of Part (ii). For −∞ < c < x < n < ∞, let us define the auxiliary stopping time

θ(c, n) := inf
{

t > 0 : x +
∫ t

0
μX(c)

s ds +
∫ t

0
σX(c)

s dWs −U t /∈ (c, n)
}

.

We claim that

Px{τ < ∞} = 1− lim
n→∞

Px{X(c)
θ(c,n) = n}.

Let us prove the claim. We note that, for n ∈ N,

⋃
n > c

{X(c)
θ(c,n) = c} = {X(c)

τ = c} = {τ < ∞}.

Since the events in the above union are monotone increasing in n, we have

Px{τ < ∞} = lim
n→∞

Px{X(c)
θ(c,n) = c} = 1 − lim

n→∞
Px{X(c)

θ(c,n) = n}. (A1)

Our goal now is to find an analytic expression for Px{X(c)
θ(c,n) = n} as a function of n, and the other

parameters. Let us define the functional f by

f (x) := Px{X(c)
θ(c,n) = n},

and the differential operator A by

Aψ(y) :=
1
2

σ2y2 d2ψ(y)
dy2 + (μy− Ū)

dψ(y)
dy

.

According to Section 3, Chapter 15 of Karlin and Taylor (1981), f satisfies the ordinary
differential equation,

A f (y) = 0,

with the boundary conditions f (c) = 0 and f (n) = 1. The solution of this differential equation is

f (x) =
Γ(α− 1, β/c)− Γ(α− 1, β/x)
Γ(α− 1, β/c)− Γ(α− 1, β/n)

,

where Γ(a, z) is the incomplete Gamma function, defined by

Γ(a, z) =
∫ ∞

z
t(a−1)e−tdt, z ≥ 0, a > 0.

Taking the limit, we obtain

lim
n→∞

f (x) =
Γ(α− 1, β/c)− Γ(α− 1, β/x)

Γ(α− 1, β/c)− Γ(α− 1)
.

Here, Γ(a) := Γ(a, 0), the Gamma function. From Equation (A1), the proof of (53) is complete.
Finally, let us show that

lim
U→∞

Px{τ < ∞} = 1.
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By definition of the incomplete Gamma function, we have that Γ(a, z) ↓ 0 as z ↑ ∞. Then,
the result follows.

Appendix E. Mathematica Code

Here is the Mathematica 11.0 code for solving numerically Equations (36)–(38). We create the
function ceiling whose output is the optimal debt ceiling b. As an illustration, on the bottom part of
the code, we apply that function to the parameter values of Example 1.
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