
Chen, Chia-hui; Ishida, Junichiro; Suen, Wing-chuen

Working Paper

Reputation concerns in risky experimentation

ISER Discussion Paper, No. 1060

Provided in Cooperation with:
The Institute of Social and Economic Research (ISER), Osaka University

Suggested Citation: Chen, Chia-hui; Ishida, Junichiro; Suen, Wing-chuen (2019) : Reputation concerns
in risky experimentation, ISER Discussion Paper, No. 1060, Osaka University, Institute of Social and
Economic Research (ISER), Osaka

This Version is available at:
https://hdl.handle.net/10419/230466

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/230466
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Discussion Paper No. 1060 
 
 
 
 
 
 
 
 
 
 
 
 

REPUTATION CONCERNS 
IN RISKY EXPERIMENTATION 

 
 

Chia-Hui Chen 
Junichiro Ishida 

Wing Suen 
 
 
 
 
 
 
 
 
 

July 2019 
 
 
 
 
 
 
 
 
 
 

The Institute of Social and Economic Research 
Osaka University 

6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan 



Reputation Concerns in Risky Experimentation∗

CHIA-HUI CHEN

Kyoto University

JUNICHIRO ISHIDA

Osaka University

WING SUEN

University of Hong Kong

July 1, 2019

Abstract. We develop a general model, with the exponential bandit as a special
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also learn faster that their project is not promising. These counteracting effects

give rise to a signaling model in which the single-crossing condition fails but

a double-crossing property holds. We characterize the unique D1 equilibrium

under double-crossing condition, and show that it tends to produce pooling.
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ferent implications for the equilibrium allocation. Our model also incorporates
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1. Introduction

The well-being of society depends ultimately on our ability to acquire new knowledge and

expand the knowledge frontier. The process of knowledge acquisition, however, is inher-

ently time-consuming and entails a great deal of uncertainty, as an experimenter must go

through many alternative approaches and test them one by one without knowing if and

when new discovery arrives. With this dynamic and random nature of experimentation, a

critical decision an experimenter would eventually face, if things did not proceed as favor-

ably as expected, is when to abandon the process altogether, which essentially determines

the collective efficiency of knowledge acquisition. Our ability to acquire new knowledge is

undermined when there exists a force which systematically distorts this decision one way

or the other.

One potential impediment to this risky process of experimentation is reputation con-

cerns. Since the ability to make new discovery is most likely heterogeneous, the outcome

of risky experimentation inevitably reveals some information about the experimenter’s

“competence,” either through the timing of making discovery in case of success or, more

importantly, through the timing of abandoning the process in case of failure. If the exper-

imenter benefits from holding a better reputation in some ways, this structure amounts to

a dynamic signaling problem in which he strategically chooses the stopping time in order

to enhance or protect his reputation. Although reputation concerns are important in many

facets of our life, they are even more so in the context of knowledge acquisition, because

most of our exploratory activities are undertaken by professionals and experts, such as en-

trepreneurs, politicians, lawyers, engineers, and scientists, for whom reputation is always

an indispensable asset for advancing their careers.

This paper aims to develop a unified framework to analyze the role of reputation con-

cerns in risky experimentation. The basic setup is a standard two-armed bandit problem.

Specifically, we consider a dynamic game between an agent (experimenter) and a market

(evaluator) in which the agent engages in a project of unknown quality while at the same

time attempts to signal his “competence” to the market. The project is either good or bad,

and produces a publicly observable breakthrough at some random time only if it is good.

In this setup, therefore, the agent becomes pessimistic as failures accumulate (“no news

is bad news”) and may eventually be forced to retreat from the project without achiev-

ing a breakthrough. The game ends either when he achieves a breakthrough or when he

abandons the project, and his continuation payoff is determined by his “reputation” at that
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time.

Our framework has three important features. First, we adopt a general specification

of the underlying learning process which includes exponential bandits—the workhorse

specification in the literature—as a special case. Second, our model encompasses two

distinct notions of reputation that have been adopted in the literature. To be more precise,

the agent in our model may differ in two dimensions, the ability to identify promising

projects (i.e., the prior probability that the project is good) and the speed of learning (i.e.,

the rate of discovering the true project quality). Finally, our model also incorporates public

news, in addition to the timing of project abandonment, stemming from the fact that the

outcome of risky experimentation is publicly observable. Although this last feature is not a

generalization per se,1 it nonetheless plays an important role as many situations naturally

involve publicly observable signals which (imperfectly) reveal the experimenter’s hidden

characteristics.

The main technical contribution of the paper lies in our equilibrium characterization,

which can be applied to a broad class of learning processes and model specifications. The

essential ingredient of our characterization is the double-crossing property of indifference

curves.2 We identify a general condition which gives rise to this property, and exploit it to

obtain a complete characterization of D1 equilibria in our general setup. As it turns out,

the equilibrium is always unique under D1 as in standard signaling models with single-

crossing indifference curves, but the structure of equilibrium differs significantly in that

the D1 criterion may not select the least-cost separating equilibrium. More specifically, the

equilibrium selected by D1 entails some pooling when the double-crossing property holds

in the relevant range. It is also worth noting that the equilibrium is highly sensitive to the

prior belief about the agent’s type, which allows us to discuss the role of prior reputation

in risky experimentation.

The equilibrium allocation depends crucially on two countervailing forces that are in-

herent in risky experimentation: on one hand, high-ability agents are always more likely

to find success than low-ability agents, conditional on the project being good; on the other

hand, high-ability agents learn more quickly, and hence their posterior beliefs decline faster

1 As we will note below, our approach can easily be extended to the case with private news.
2 It is well known that the double-crossing property emerges in some signaling or screening models. To

the best of our knowledge, Matthews and Moore (1987) are the first to consider the double-crossing property

in a multidimensional screening model. Daley and Green (2014) show that the double-crossing may emerge

in a signaling model with an additional source of information such as grades.
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when there is no success. For clarity, we call the former the ability effect and the latter the

learning effect. Note that the learning effect, which arises only when there is uncertainty

in the project quality, plays an essential role in generating the double-crossing property.

When the ability effect is more dominant, indifference curves become single-crossing in

the relevant range, thereby inducing full separation between high and low types. As the

learning effect gains more importance, on the other hand, indifference curves exhibit the

double-crossing property, and the equilibrium may entail some pooling as a consequence.

This finding suggests that the equilibrium allocation depends crucially on what is em-

bodied in the agent’s “reputation.” From a broader perspective, our analysis in general sug-

gests that different notions of reputation lead to different equilibrium predictions, thereby

necessitating different remedies to cope with different types of distortion. The ability effect

tends to be stronger when agents differ more in the ability to identify promising projects.

We argue that this is more likely in situations where: (i) an agent has discretion over which

project to work on; or (ii) exploration of new ideas, rather than exploitation of old ideas,

is more important. A prominent example which fits this description is academia, where

researchers are conferred substantial discretion over what to do, and it is the novelty of

ideas, rather than the efficiency of task implementation, which is indispensable for suc-

cess. In this type of environment, separating equilibria are more likely to emerge, and the

timing of project abandonment reflects the agent’s private information. In contrast, when

an agent simply undertakes tasks that are assigned to them or it is the efficiency of task

implementation that is more tested, the learning effect becomes more dominant. In this

case, pooling equilibria are more likely, and the timing of project abandonment conveys

no useful information.

Whether equilibrium entails some separation or not gives some important insight for

who should have the right to abandon projects. To address this issue, suppose that there is

a principal (supervisor, investor) who decides whether to delegate this right to the agent

or retain it to herself. It is clear in this context that delegation has no value if a pooling

equilibrium is expected to prevail because the timing of project abandonment does not

reflect the agent’s private information; the principal can do no worse by retaining the

right and simply quitting at her optimal timing. This is of course not the ideal strategy

for the principal because the project is terminated once and for all independently of the

agent’s ability. When some separation is expected in equilibrium, therefore, there is scope

for delegation to enable the principal to induce the agent’s information. This argument

then predicts that the right to abandon projects should be more delegated in situations
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where the ability effect is more important.

The presence of public information invites further complication when the reward upon

success depends on the agent’s reputation, in which case the agent must be concerned not

only about the timing of project abandonment (which is his strategic choice) but also about

the timing of success (which arrives stochastically over time and is beyond his control).

This random nature of risky experimentation gives rise to dynamic reputation concerns

that have not been discussed in existing reputation models of experimentation. We refer

to this setup, where the reward upon success is contingent on the agent’s reputation, as

the dynamic case, in order to distinguish it from the static case where success yields a fixed

reward. The equilibrium allocation in the dynamic case is substantially more complicated

because the expected payoff now depends on the agent’s evolving belief. As low-ability

agents abandon the project, the reputation for those who remain and succeed becomes

higher, therefore inducing these low-ability agents not to abandon so soon. This war-of-

attrition feature of the model implies that equilibrium will entail continuous randomization

by low-ability agents. Nevertheless the main insight derived from this is relatively clear:

high-ability agents quit prematurely while low-ability agents persist excessively. The pres-

ence of public news thus raises additional efficiency and policy implications. We later

draw on venture startups, which constitute a leading example of our framework, and dis-

cuss some potential remedies that are particularly relevant for this industry.

Related literature. Our model falls broadly into the growing literature on strategic ex-

perimentation where multiple parties are involved in the experimentation process. Since

the seminal work of Keller et al. (2005), much of the literature (with jump processes)

builds on exponential/Poisson bandits because of its simplicity and tractability. It is per-

haps safe to say that this assumption, which implies that success arrives at a constant rate

irrespective of how much one has worked in the past, is often too restrictive from a practical

point of view. It is thus important to see which predictions are robust to alterations in the

underlying learning process. Our analysis suggests that signaling environments provide

one context in which this assumption can be substantially relaxed while still admitting a

clear characterization of equilibria, thereby offering predictions that are robust to a range

of specifications.

Some recent works introduce reputation concerns into experimentation models as we

do (Bobtcheff and Levy, 2017; Thomas, 2019; Halac and Kremer, 2019).3 Aside from the

3 Halac and Kremer (2019) are different from the other two works as well as from ours in that the agent

receives a flow payoff (wage) that is contingent on his reputation. In a different vein, Bonatti and Hörner
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fact that they all build on exponential/Poisson bandits, an important distinction is that

agents in those models are heterogeneous only in one particular dimension: using our

terminology, they differ only in the ability to identify projects (Thomas, 2019; Halac and

Kremer, 2019) or in the speed of learning (Bobtcheff and Levy, 2017). In contrast, our

model encompasses and integrates these two distinct notions of reputation and clarify the

differences it makes.4

When agents differ in the speed of learning, the learning effect kicks in and the single-

crossing property may break down as a consequence.5 In this sense, Bobtcheff and Levy

(2017) shares an important commonality with the static version of our model. They con-

sider an environment in which a liquidity-constrained agent learns the potential value of a

project at a privately known speed and decides when to make investment. In their setup,

as in ours, the single-crossing property may fail to hold because of the learning effect,

although they follow a different characterization approach.6 An important difference is

that their model is a private-news model where the agent privately observes a conclusive

signal which reveals that the project is bad, with the timing of investment serving as the

sole signaling device.7 This draws clear contrast to our setting where the timing of success

provides an inconclusive public signal (on top of the timing of project abandonment), so

that the agent is subject to dynamic reputation concerns which further distort the timing

of project abandonment.

We can also relate our work to dynamic signaling models which incorporate additional

sources of (noisy) information (Bar-Isaac, 2003; Daley and Green, 2012; Gul and Pesendor-

fer, 2012; Lee and Liu, 2013).8 Among them, our model is more closely related to Daley

(2017) also analyze a career concerns model with exponential learning which incorporates a moral hazard

component.
4 Prendergast and Stole (1996) is one of the earliest works to explore this point, although in a very

different context.
5 Halac et al. (2016) also make this observation under the exponential bandit fraemwork.
6 Bobtcheff and Levy (2017) restrict their attention to the case where the difference in the expected

payoffs stems only from the difference in the option values of experimentation, and exploit this feature to

characterize equilibria.
7 To be more precise, whether news is public or private makes no difference in their setup because the

agent never invests if he observes a bad signal. On the other hand, Thomas (2019) incorporates both public

and private news, but the reward to success (or failure) in her model is independent of the agent’s reputation

(as in the static case of our model).
8 Daley and Green (2014) consider a static signaling model with “grades” which serve as an additional

information source.
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and Green (2012) who consider an environment where there are two types of seller, either

high or low, and each type decides when to trade. A crucial assumption in their model is

that there is an exogenous public information process, called “news,” which stochastically

reveals the seller’s type via a Brownian diffusion process. As in our model, therefore, their

model has two sources of information: the timing of trade and news about the seller’s

asset.9 Aside from technical differences (their information arrives via a diffusion process

while ours arrives via a jump process), the key difference is the element of experimen-

tation, which plays an essential role in generating the double-crossing property in our

analysis.

Finally, our model predicts pooling equilibria under a wide range of parameters, which

can be interpreted as a form of conformity or herding. There is now a very diverse lit-

erature which explores this possibility in various ways. For instance, Bernheim (1994)

considers a situation where agents care about status as well as intrinsic utility, and an

agent’s status depends on public perceptions of his predispositions. It is shown that agents

with moderate preferences converge to a homogeneous standard of behavior to avoid an

inference that they have undesirable extreme preferences. The logic of our model is differ-

ent because agents attempt to signal competence, not preferences, and conform in order

to avoid an inference that they are incompetent. In this sense, our model has a closer

connection to Scharfstein and Stein (1990), who show that an agent mimics the behavior

of predecessors in the presence of reputation concerns about his competence. Their focus

is on informational conformity where agents take actions sequentially while ours rests on

stigma attached to off-path deviations.10

2. The Model

An agent undertakes a risky project with an uncertain project quality. If the project quality

is bad, it will never generate success no matter how much time the agent spends working on

it. If the project quality is good, it will generate success at some random time τ, provided

the agent has not abandoned the project by that time. The flow cost of working on the

risky project for a small time interval of length dt is c dt.

9 It should be noted, however, that only one of the two sources is available in our model while both of

them are always available in theirs.
10 In addition, their model assumes symmetric information, so that it is not a signaling model. Less

related are models of informational herding such as Bikhchandani et al. (1992) and Banerjee (1992). They

are driven purely by information externality and social learning with no reputation concerns.
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The agent can be of two types, depending on his ability in implementing the risky

project. We capture the difference between types by specifying different distributions of

the stochastic time of success τ, given that the project quality is good. Specifically, let fH(τ)
be the density function of τ for the high type and fL(τ) be the density function for the low

type, conditional on good project quality (and let FH and FL represent the corresponding

cumulative distribution functions). We assume that the conditional hazard rate given good

project quality, fi(·)/(1 − Fi(·)), is non-increasing for i ∈ {H, L} (high type or low type).

Moreover, the distributions for the two types are ordered by monotone likelihood ratio

property, in the sense that fH(·)/ fL(·) is strictly decreasing. This assumption implies that,

if the project quality is good, the probability that success arrives before any given time t
is greater for the high type than for the low type. For example, in the exponential bandit

model (Keller et al., 2005), a higher Poisson arrival rate of success would imply that the

likelihood ratio, fH(τ)/ fL(τ) = (λH/λL)e−(λH−λL)τ, decreases in τ for λH > λL.

Neither the agent nor anyone else knows the quality of the project that he is undertak-

ing. The common prior belief that the project quality is good is p0. We will later allow the

prior to depend on agent type, but for now assume that it is type-independent. The agent

knows his own type, but this private information is unavailable to the labor market. The

market’s prior belief that the agent is a high type is q0. Generally, we use qt to represent

the updated belief at time t that the agent is a high type. We sometimes also refer to this

belief as the agent’s “reputation.”

Time is continuous. At each point in time, the agent decides whether to continue

working on the risky project or to abandon it. For i ∈ {H, L}, let the agent’s strategy be

represented by σi : [0,∞)→ [0, 1], with σi(t) being the probability that the agent is still

working on the risky project at time t. Abandoning the project is irreversible; i.e., σi(t) is

non-increasing in t. If the agent adopts a pure strategy, there is a unique stopping time si

such thatσi(t) = 1 for all t < si andσi(t) = 0 thereafter. We sometimes abuse notation by

saying that the agent’s strategy is si. (The agent will stop before this time if he has already

achieved success in the risky project.) We assume that the agent’s decision at each point

in time is publicly observable. The arrival of success is publicly observable, representing

an additional source of information.

The game ends either when the risky project generates success, or when the agent

abandons the project without success. We assume that there is a competitive market that

pays an agent commensurate with his expected output whenever the game ends. Let Wi

denote the present value paid to an agent of type i after he achieves success. For example,
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the agent may become an entrepreneur or manager after obtaining success with his risky

project, and WH and WL (with WH ≥WL) are, respectively, the expected lifetime earnings

of a high-type and a low-type entrepreneur or manager. We also allow that, in addition to

the post-project income from the competitive market, the risky project can produce some

reward to the agent when it generates success, which is included in the definition of Wi. If

the agent abandons the project without success, he switches to work in the labor market

and is paid a sum that reflects his expected productivity as a worker. We let wH and wL

(with wH > wL) represent the present value of productivity of a high-type and a low-type in

the labor market. Therefore, if the project generates success at time τ, the agent’s payoff is

W (τ) = qτWH+(1−qτ)WL. If the agent’s reputation at time t is qt , his outside opportunity

from working in the labor market is w(t) = qt wH + (1− qt)wL.

We make several assumptions regarding the productivities. First, we generally assume

wH > wL, so that the agent’s reputation always matters in case of failure. In case of success,

we assume WH ≥ WL and consider two cases. If WH = WL, then all reward to success is

non-contingent on the agent’s reputation at the time of success. If WH > WL, part of the

reward will depend on the agent’s reputation at the time of success. As we will see shortly,

the difference between the two cases proves to be critical, and we analyze these cases

separately. Finally, we also assume that achieving success is always better than the outside

opportunity of working in the labor market. Specifically,

WL > wH . (1)

The agent discounts future payoffs at rate ρ. For i ∈ {H, L}, the expected payoff to an

agent of type i if he plans to abandon the project at time s is:

Ui =

∫ s

0

e−ρτp0 fi(τ) [W (τ)− C(τ)] dτ+ e−ρs(1− p0Fi(s)) [−C(s) +w(s)] , (2)

where C(t)≡ c(eρt − 1)/ρ is the accumulated cost of working with the risky project for a

period of length t. A pair of strategies (ŝH , ŝL) and the beliefs {qt} constitute an equilibrium

if ŝi maximizes Ui given {qt} for i ∈ {H, L} and if the beliefs {qt} are consistent with Bayes’

rule and the strategies (ŝH , ŝL)whenever applicable. As is typical in signaling models, these

requirements do not pin down a unique equilibrium. We adopt the D1 criterion (Banks

and Sobel, 1987; Cho and Kreps, 1987) for equilibrium refinement. While there are many

specific cases we need to examine, we first note a result that generally holds in our setup

(the proof will be provided when we discuss each specific case).
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Proposition 1. There always exists a unique equilibrium which survives the D1 criterion.

There are two features of our model that distinguish it from a standard signaling model.

First, we will show that preferences do not satisfy the single-crossing property. Instead,

indifference curves for the two types cross twice in the relevant space. We call this a double-
crossing property. It turns out that the D1 criterion does not always select the least-cost

separating equilibrium in this environment. Instead, given the double-crossing property,

D1 tends to produce equilibrium outcomes that exhibit pooling. Second, the decision to

engage in risky experimentation is not a static decision made once and for all. Instead

the agent’s decision to continue working with the project or not is determined partly by

the market belief about his type, which evolves over time. This dynamic consideration is

relevant when the reward to success depends on the agent’s reputation (i.e., when WH >

WL), but is not relevant when the reward to success is fixed (i.e., when WH = WL). To

separate the second feature from the first, we first consider the model with WH = WL in

Section 3 to focus only on the issue arising from the double-crossing property. Then, in

Section 4, we let WH >WL to deal with the issues arising from dynamic considerations.

3. Double-Crossing Property and Static Signaling Equilibrium

3.1. Reputation concern

Throughout Section 3 we assume that WH =WL =W > wH , so that the reward to success

in the risky project is simply W . In this case, since the reward to success does not depend

on the market’s evolving belief about the agent’s type, the stopping decision of the agent

can be analyzed as if it were a static decision. We call the case of WH = WL the “static”

case.

The updated belief about an agent’s ability type at the time of project abandonment

depends on (1) inferences based on the agent’s choice (i.e., to continue working on the

risky project or not) and its consistency with the equilibrium strategies of the two types;

and (2) observation about the timing of success τ. We use q̂ to denote the interim belief
based on equilibrium inference alone, and consider how inference based on the timing of

success further modifies the interim belief.

Let qt = r(t; q̂) represent the belief about an agent’s type when he abandons the project

without success at time t (i.e., τ > t) and when the interim belief about such a quitter’s
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type is q̂. We have

r(t; q̂) =
q̂(1− p0FH(t))

q̂(1− p0FH(t)) + (1− q̂)(1− p0FL(t))
.

Monotone likelihood ratio property implies that FH(t) ≥ FL(t), and hence r(t; q̂) ≤ q̂.

Failure to achieve success is bad news for the agent’s ability.

It is straightforward to verify that r(t; q̂) decreases in t if and only if gH(t) > gL(t),
where

gi(t) =
p0 fi(t)

1− p0Fi(t)
is the hazard rate of success in the risky project for type i ∈ {H, L}. When there is no

uncertainty about project quality (i.e., when p0 = 1), monotone likelihood ratio property

implies that gH(t) is greater than gL(t), so that the agent’s reputation is lower if he aban-

dons the project at a later time, because high-type agents are expected to have achieved

success early. However, this is no longer always true when the quality of the risky project

is uncertain. To see why, we can decompose the hazard function into two parts:

gi(t) =
�

fi(t)
1− Fi(t)

��

p0(1− Fi(t))
p0(1− Fi(t)) + 1− p0

�

. (3)

The first term is the conditional hazard function for type i given that the project quality is

good. The second term is the posterior belief that the project quality is good given that

an agent of type i fails to obtain success by time t. Monotone likelihood ratio property

implies that the conditional hazard rate for the high type is always greater than that for the

low type. We call this the ability effect. However, the same property also implies that the

posterior belief about project quality upon failure to obtain success is smaller for the high

type than that for the low type. We call this the learning effect, because more able agents

learn more quickly that they are likely to be working on a bad project than do less able

ones if success has not been already observed. Note that the learning effect disappears

when p0 = 1, pointing to the essential role of experimentation in our setup.

The following result is crucial for our subsequent analysis.

Lemma 1. The hazard rate gi(·) is strictly decreasing for i ∈ {H, L}. Moreover there exists a
unique t̂ such that gH(t)> gL(t) if and only if t < t̂ , and gH(t)< gL(t) if and only if t > t̂ .

Proof. The first term of equation (3) is non-increasing by assumption, and the second

term is strictly decreasing. Hence gi(·) is strictly decreasing. At t = 0, gH(0)/gL(0) =
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fH(0)/ fL(0) > 1. As t approaches infinity, gH(t)/gL(t) approaches limt→∞ fH(t)/ fL(t),
which is less than 1. Therefore, there exists t̂ such that gH( t̂)/gL( t̂)− 1 = 0. The deriva-

tive of gH(t)/gL(t) with respect to t, when evaluated at t = t̂, has the same sign as the

derivative of fH(t)/ fL(t) at t = t̂, which is negative. This shows that gH(t)/gL(t)− 1 is

single-crossing from above.

The posterior belief about project quality is decreasing in t. Thus, the learning effect

becomes stronger if the agent fails to achieve success after trying for a long time. Lemma

1 shows that the learning effect dominates the ability effect whenever the agent abandons

the project beyond time t̂. The unconditional hazard rate for achieving success is smaller

for the high type than for the low type beyond t̂ because the project quality is likely to be

bad if a high-type agent has been working on this project for very long without success. It

is this interaction between the two effects which makes it ambiguous which type of agent

has an incentive to quit earlier. In this environment, it is not clear whether perseverance

is a sign of strength or weakness.

3.2. Double-crossing indifference curves

Because of the counteracting ability effect and learning effect, the single-crossing property

used in standard signaling models does not hold in our setup. Thus it is not immediately

obvious whether a high-type agent can signal his type by abandoning a risky project early or

by abandoning it late. On one hand, quitting early can potentially signal high type because

a high-type agent learns quickly through his failure to achieve success that his risky project

is not very promising. On the other hand, quitting late can also potentially signal high type

because a high-type agent is more confident of his ability to achieve success from a good

project. We analyze the implications of these incentives for equilibrium strategies in this

section.

The objective function (2) for type i ∈ {H, L} in the case WH =WL =W reduces to

Ui(s, q̂) =

∫ s

0

e−ρτp0 fi(τ) [W − C(τ)] dτ

+ e−ρs(1− p0Fi(s)) [−C(s) +wL + r(s; q̂)(wH −wL)] . (4)

The marginal rate of substitution between stopping time s and interim belief q̂, denoted

MRSi(s, q̂), is given by

gi(s)[W −wL − r(s; q̂)(wH −wL)]−ρ(wL + r(s; q̂)(wH −wL))− c + (∂ r/∂ s)(wH −wL)
(∂ r/∂ q̂)(wH −wL)

.
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Figure 1. The indifference curve U ′H for the high type crosses the indifference curve UL twice, once from

above to the left of t̂ and from once below to the right of t̂. The indifference curves of the two types are

tangent to one another at s = t̂ .

Observe that the marginal rate of substitution depends on agent type only through the

hazard rate gi(s). By assumption (1), the term in square brackets is positive. Therefore,

Lemma 1 implies that MRSH(s, q̂) > MRSL(s, q̂) if and only if s < t̂, and MRSH(s, q̂) <
MRSL(s, q̂) if and only if s > t̂. Thus this model does not exhibit the single-crossing prop-

erty used in most signaling models. See Figure 1 for illustration.

Because gH(t) − gL(t) is single-crossing from above at t = t̂, this implies that the

marginal rate of substitution MRSH(s, q̂) for the high type is more sensitive to changes

in the quitting time s at s = t̂ than is the marginal rate of substitution for the low type. In

Figure 1, the indifference curve UH is “more convex” than the indifference curve UL at the

tangency point at t̂. Formally, we have the following result.

Lemma 2. For any interim beliefs q̂ and q̂′ and any stopping time s′ 6= t̂ ,

UH(s
′, q̂′) = UH( t̂, q̂) =⇒ UL(s

′, q̂′)> UL( t̂, q̂).

Proof. For i ∈ {H, L}, let φi(s) represent the solution to the differential equation, φ′i(s) =
−MRSi(s,φi(s)), with initial condition φi( t̂) = q̂. Lemma 1 implies that φ′L( t̂)−φ

′
H( t̂) = 0

and φ′′L ( t̂)−φ
′′
H( t̂) < 0. This means that φL(s)−φH(s) reaches a local maximum of 0 at
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s = t̂. Therefore, there exists ε > 0 such that φL(s′) < φH(s′) for all s′ ∈ [ t̂ − ε, t̂ + ε] and

s′ 6= t̂. Suppose now s′ > t̂ + ε. By Lemma 1, −MRSL(s, q) < −MRSH(s, q) for any q and

any s ∈ [ t̂ + ε, s′]. Since φL( t̂ + ε) < φH( t̂ + ε), the comparison theorem for differential

equations (e.g., McNabb, 1986) implies that φL(s′) < φH(s′). Similarly, if s′ < t̂ − ε, then

−MRSL(s, q)> −MRSH(s, q) for any q and any s ∈ [s′, t̂ −ε]. Since φL( t̂ −ε)< φH( t̂ +ε),
the same comparison theorem again implies that φL(s′)< φH(s′).

Note that UH(s′, q̂′) = UH( t̂, q̂) if and only if q̂′ = φH(s′). Because φH(s′) > φL(s′), we

have

UL(s
′, q̂′) = UL(s

′,φH(s
′))> UL(s

′,φL(s
′)) = UL( t̂, q̂).

Lemma 2 has an important implication for off-equilibrium inference under the D1 cri-

terion. If there is an equilibrium in which both types quit at t̂, the set of interim beliefs that

would support deviation to s′ 6= t̂ by the high type is strictly contained in the corresponding

set for the low type. By the D1 criterion, the market should assign off-equilibrium belief

that an agent is a low type if he quits at s′.

To set the stage for equilibrium analysis, we first consider the full-information solution.

Let s∗i represent the stopping time chosen by type i ∈ {H, L} if his type is known. The opti-

mal stopping rule can be obtained by value-matching and smooth-pasting (or, equivalently,

by the first-order condition for maximizing the objective function (4) for the relevant type),

which gives:

gi(s
∗
i )[W −wi]−ρwi − c = 0. (5)

The first term on the left-hand-side is the expected capital gain from extending the risky

project for a small interval of time. The second and the third terms are the opportunity

cost and direct cost of doing so.

Lemma 3. If max{s∗H , s∗L}> t̂ , then s∗L > s∗H .

Proof. Because wH > wL, we have gH(s∗H) > gL(s∗L). If s∗H > t̂, Lemma 1 implies that

gL(s∗H) > gH(s∗H) > gL(s∗L), which implies s∗L > s∗H because gL(·) is strictly decreasing. To

show that s∗L > t̂ implies s∗L > s∗H , suppose s∗H ≥ s∗L instead. But we have already shown that

s∗H ≥ s∗L > t̂ implies s∗L > s∗H , a contradiction.

The value of t̂ is determined entirely by the statistical properties of the arrival time of

success, while s∗i depends also on the reward and cost of achieving success. Other things

equal, raising the reward W from the risky project will raise both s∗H and s∗L. For sufficiently
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large W , we will have max{s∗H , s∗L}> t̂. Lemma 3 therefore implies that the low type would

stop later than the high type if the reward to the risky project is sufficiently large.

3.3. Signaling equilibrium in the static case

In any signaling equilibrium, the low type cannot do worse than choosing s∗L and revealing

himself to be a low type, which gives him a utility of UL(s∗L, 0). It is useful to define two

thresholds, s < s, such that

UL(s, 1) = UL(s
∗
L, 0) = UL(s, 1).

The low type never wants to stop before s or after s.11 To focus on the interesting case, we

assume that the incentive compatibility constraint for the low type is binding, in the sense

that UL(s∗L, 0)< UL(s∗H , 1). This is equivalent to s∗H ∈ (s, s).12

Consider first the case of fully separating equilibrium.

Proposition 2. Suppose WL =WH and s∗H ∈ (s, s).

(a) If t̂ ≤ s, the equilibrium is fully separating, with the high type quitting at s and the low
type quitting at s∗L.

(b) If t̂ ≥ s, the equilibrium is fully separating, with the high type quitting at s and the low
type quitting at s∗L.

Proof. When t̂ ≤ s, we have MRSH(s; q̂)≤ MRSL(s; q̂) for all s ∈ [s, s]. Because the single-

crossing property is satisfied in the relevant region, for any q̂, the high type prefers to

quit earlier than the low type does. It follows from a standard refinement argument (Cho

and Kreps, 1987) that the least-cost separating equilibrium (corresponding to the stopping

times (s, s∗L) for high type and low type, respectively) is the only equilibrium that satisfies

the D1 criterion. When t̂ ≥ s, we have MRSH(s; q̂) ≥ MRSL(s; q̂) for all s ∈ [s, s]. The

single-crossing property is again satisfied in the relevant region, but with the high type

having a stronger incentive to quit later. The least-cost separating equilibrium in this case

is for the high type to quit at s, and for the low type to quit at s∗L, and this is the only

equilibrium that satisfies D1.

11 It is possible that UL(0,1)> UL(s∗L , 0), in which case s is defined to be equal to 0. For ease of exposition,

we assume that W is sufficiently large that s is positive.
12 When the incentive constraint is not binding, the full-information outcome is the unique equilibrium

outcome in this model.
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If t̂ is very high or very low, our model produces full separation between types. When

low types have incentive to mimic high types, the latter separate themselves by abandoning

the project earlier than the optimal quitting time s∗H if t̂ is very low, or by abandoning the

project later than s∗H if t̂ is very high. Although equilibrium is fully separating in both

two cases of Proposition 2, the direction of how the high type separates from the low type

differs. In this regard, our result is different from a standard signaling model in which the

single-crossing property holds.

For intermediate values of t̂, our model produces pooling (or semi-pooling) between

the different types.

Proposition 3. Suppose WL =WH , s∗H ∈ (s, s), and t̂ ∈ (s, s).

(a) If UL( t̂, q0)≥ UL(s∗L, 0), the equilibrium is complete pooling, with both types quitting at
t̂.

(b) If UL( t̂, q0) < UL(s∗L, 0), the equilibrium is semi-pooling, with the high type quitting at
t̂ and the low type randomizing between quitting at t̂ and s∗L.

Proof. We first show that there cannot be a separating equilibrium. Suppose otherwise,

and let the high type quit at some time t in this equilibrium. If t ∈ (s, s), the low type

could profitably deviate by stopping at t. If t ≤ s, the high type could profitably deviate by

stopping later at t +ε for some small positive ε, because according to the D1 criterion the

off-equilibrium belief associated with such a deviation is that it comes from a high type.

Similarly, if t ≥ s, the high type could profitably deviate by stopping a bit earlier.

Next, if the two types pool (or partially pool) by both stopping at the same time t with

positive probability, then we must have t = t̂. Otherwise, by stopping a little later (if t < t̂)
or a little earlier (if t > t̂), an agent could obtain a discrete improvement in the market’s

belief of his type from some q̂ < 1 to 1.

Finally, note that there cannot be a semi-pooling equilibrium in which the high type

randomizes between quitting at t̂ and at some other time t ′. This follows from Lemma

2, which establishes that whenever the high type is indifferent between quitting at t̂ and

t ′, the low type strictly prefers quitting at t ′ to quitting at t̂. This contradicts our earlier

conclusion that the two types cannot partially pool by both stopping at t ′ 6= t̂. Hence, in

equilibrium, the high type quits at t̂ with probability 1. Given that the high type quits only

t̂, by D1, the market assigns interim belief q̂ = 0 to an agent who quits at t 6= t̂. Given

such an interim belief, if a semi-pooling equilibrium ever exists, the low type must quit at
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s∗L. This leaves us with two possible types of equilibrium: (1) complete pooling in which

both types quit at t̂; or (2) semi-pooling in which the low type quits at both t̂ and s∗L with

positive probability, and the high type quits once and for all at t̂.

If UL( t̂, q0) ≥ UL(s∗L, 0), the semi-pooling equilibrium cannot exist, because q̂ t̂ > q0,

and thus UL( t̂, q̂ t̂) > UL(s∗L, 0), meaning that the low type strictly prefers quitting at t̂ to

quitting at s∗L. Therefore, it is a unique equilibrium for both types to quit at t̂, and the

market assigns an interim belief q0 upon observing an agent quitting at t̂. Neither type

could profitably deviate because quitting at another time would be interpreted as deviation

by a low type.

Similarly, if UL( t̂, q0) < UL(s∗L, 0), the complete pooling equilibrium cannot exist, be-

cause in such an equilibrium the low type could profitably deviate by quitting at s∗L instead.

Therefore, given that there exists a unique q ∈ (q0, 1) such that UL( t̂, q) = UL(s∗L, 0), the

equilibrium must be unique. In equilibrium, the high type quits at t̂ with probability 1,

and the low type does so with some positive probability, so that the interim belief about

an agent who quits at t̂ is q. The remaining low types quit at s∗L. By construction, the low

type is indifferent between quitting at t̂ and s∗L. The high type strictly prefers quitting at

t̂ to quitting at another time, because such deviation would be interpreted as made by a

low type.

When indifference curves of the two types satisfy the double-crossing property rather

than the single-crossing property, Proposition 3 shows that the D1 refinement does not

yield the least-cost separating equilibrium as the unique equilibrium outcome. Instead,

equilibrium entails pooling at t̂ (i.e., the point where the indifference curves of the two

types are tangent to one another), supported by the belief that an agent who abandons the

project at any time other than t̂ is a low type. It is interesting that the equilibrium time t̂
for both types to quit depends only on the distributions of the timing of success (i.e., on

p0, FL and FH), but not on the costs and benefits of risky experimentation.

4. Dynamic Signaling

Beginning from this section, we drop the assumption that WH =WL and assume WH >WL

instead. Because the reward to success, W (τ), is a function of the reputation of the agent

who is staying to work with the risky project at the time of success τ, this introduces a

dynamic element into the signaling model that is absent in the static case discussed in

Section 3. We label the case of WH >WL the “dynamic” case.
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Let qt = R(t; q̃) represent the belief about an agent’s type when he stays with the risky

project up to time t and gets a success at that time (i.e., τ= t) and when the interim belief

about such a stayer’s type is q̃.13 We have

R(t; q̃) =
q̃p0 fH(t)

q̃p0 fH(t) + (1− q̃)p0 fL(t)
.

Because fH(t)/ fL(t) is decreasing, R(t; q̃) is decreasing in t.

It is worth noting that the reputation upon success may be higher than or lower than

the reputation upon failure to obtain success. In particular, it is straightforward to show

that, for any interim belief q, R(t; q) > r(t; q) if and only if t < t̂, and R(t; q) < r(t; q)
if and only if t > t̂. In other words, success that comes too late may be worse for an

agent’s reputation than a decision to abandon the project. This is due to the learning effect

dominating the ability effect, as the probability that a high-type agent is still working on

a good quality project after a protracted period of time is quite low.

For the case WH >WL, the objective function for type i ∈ {H, L} given by equation (2)

can be written as Ui(s, q̂, q̃), where the two interim beliefs enters into the agent’s payoff

because w(s) = wL+ r(s; q̂)(wH−wL) and W (τ) =WL+R(τ; q̃)(WH−WL). For any fixed q̃,

the indifference curves of the two types in the (s, q̂)-space cross twice, with MRSH(s, q̂; q̃)>
MRSL(s, q̂; q̃) if and only if s < t̂ and MRSH(s, q̂; q̃) < MRSL(s, q̂; q̃) if and only if s > t̂.
This double-crossing property leads to the following result.

Lemma 4. If both types of agent abandon the risky project at some time t with positive
probability in equilibrium, then t = t̂ .

The logic of this result is the same as that for Proposition 3 in the static case, and the

proof is relegated to the Appendix. Lemma 4 implies that a complete pooling equilibrium

in the dynamic case must have both types quit at t̂, just like in the static case. Neverthe-

less, the dynamic case is different from the static case whenever equilibrium entails some

separation between the two types.

To see why dynamic considerations matter, note that the instantaneous benefit from

continuing to work with the risky project for a small time interval of length dt for an agent

of type i ∈ {H, L} is

gi(t) [WL + R(t; q̃)(WH −WL)] dt,
13 At a given time, q̃ can be equal to or different from q̂. The former is the interim belief about an agent

who stays with working on the risky project up to a certain time t and continues to stay at time t, while the

latter is the interim belief about an agent who stays up to time t and then quits at that time.
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which depends on the value of q̃ when WH >WL.14 But the interim belief q̃ about an agent

who stays evolves over time as different types of agents quit at different times to separate

from one another. If the high type quits earlier than the low type does, then q̃ falls as

the high type quits, and this can reduce the incentive of the remaining agents to continue

working with the risky project. On the other hand, if the low type quits earlier than the

high type does, then q̃ rises as the low type quits, and this can raise the incentive of the

remaining agents to continue working with the risky project.

For i ∈ {H, L}, let s∗i (q̃) represent the solution to the following equation:

gi(si) [WL + R(si; q̃)(WH −WL)−wi]−ρwi − c = 0. (6)

Note that the s∗L defined in equation (5) for the static case is the same as s∗L(0); and similarly,

s∗H in the static case the same as s∗H(1). For the dynamic case, equation (6) gives the optimal

stopping rule for an agent of type i, if by continuing the market belief about his type

would be q̃ and by quitting he would reveal his true type. Because the left-hand-side of

(6) decreases in si and increases in q̃, s∗i (q̃) is increasing in q̃. A higher interim reputation

for stayers tends to delay the quitting time if quitting would reveal an agent’s type.

The analysis of signaling equilibrium in the dynamic case depends crucially on which

type quits first. It turns out that if s∗L(q0) > t̂, the high type quits first. The incentive for

the low type to stay falls when the high type quits because the former can no longer pool

with the latter. Thus, the low type may quit before s∗L(q0). If s∗L(q0) < t̂, the low type

quits first. But when the low type quits, the interim belief about stayers improves, which

makes quitting by the low type self-defeating. Equilibrium in this case generally involves

continuous randomization by the low type, who ends up quitting after s∗L(q0). We discuss

these two cases in turn.

4.1. High type quits first

In this subsection, we consider the case where s∗L(q0)≥ t̂. By the same logic behind Lemma

3 for the static case, one can verify that max{s∗H(q), s∗L(q)} > t̂ implies s∗L(q) > s∗H(q) for

any q in the dynamic case. Hence, s∗L(q0)≥ s∗H(q0) for the case considered here.

14 If the outcome of experimentation can only be observed privately, but the reward is type-contingent,

then the instantaneous benefit is given by gi(t)Wi dt. In this case, t̂ can no longer be pinned down entirely

from the properties of gi but also depends on Wi . Aside from this, since there are no dynamic concerns, the

analysis of the private-news case is quite similar to that of the static case.
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For t ≤ s∗L(0), define the following function:

v(t) =

∫ s∗L(0)

t

e−ρ(τ−t) p0 fL(τ)
1− p0FL(t)

[WL − C(τ− t)] dτ

+ e−ρ(s
∗
L(0)−t)

1− p0FL(s∗L(0))

1− p0FL(t)

�

−C(s∗L(0)− t) +wL

�

.

Recall that s∗L(0) is the optimal stopping time when an agent is known to be a low type.

Conditional on the project not having achieved success by time t, the function v(t) gives

the maximum payoff (from the perspective of time t) from continuing with the project

given that the agent is known to be a low type. We note that v(t) is the solution to the

differential equation:

v′(t) = ρv(t) + c − gL(t) [WL − v(t)] ,

with terminal condition v(s∗L(0)) = wL. It is straightforward to verify that v′(t) is single-

crossing from below, and that the definition of s∗L(0) implies that v′(t) = 0 when t = s∗L(0).
This implies that v(t) strictly decreases in t for t < s∗L(0).

Define t such that v(t) = wH . (If no such t exist, we let t = 0.) When s∗H(q0) ≤ t,
we have v(s∗H(q0)) > wH . The incentive compatibility constraint for the low type is not

binding, because the low type prefers to continue working with the risky project until time

s∗L(0) to mimicking the high type by quitting at s∗H(q0) to obtain an outside market wage

of wH . In this case, it is an equilibrium for the high type to quit at s∗H(q0) and the low type

to quit at s∗L(0).

The following proposition characterizes the equilibrium when the incentive compati-

bility constraint is binding.

Proposition 4. Suppose WH >WL, s∗L(q0)≥ t̂ , and s∗H(q0)> t.

(a) If t̂ ≤ t, then the equilibrium is fully separating, with the high type quitting at t and
the low type quitting at s∗L(0).

(b) If t̂ ∈ (t, s∗L(0)) and v( t̂)> wL+r( t̂; q0)(wH−wL), then the equilibrium is semi-pooling,
with the high type quitting at t̂ and the low type randomizing between quitting at t̂ and
s∗L(0).

(c) If t̂ ∈ (t, s∗L(0)) and v( t̂) ≤ wL + r( t̂; q0)(wH − wL), or if t̂ ∈ [s∗L(0), s∗L(q0)], then the
equilibrium is complete pooling, with both types quitting at t̂.
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Case (a) of Proposition 4 describes a least-cost separating equilibrium, as the indiffer-

ence curves satisfy the single-crossing property in the relevant region when t̂ ≤ t. In cases

(b) and (c), double-crossing indifference curves induce pooling in equilibrium under the

D1 criterion. In case (b), there is an interim belief q̂ > q0 such that if a fraction of low

types quit at t̂, then the remaining low types are indifferent between quitting at that time

and continuing with the risky project until s∗L(0). So the equilibrium is semi-pooling. In

case (c), the low type prefers to quit at t̂ and pool with the high type in the labor market

than to continue with the project until s∗L(0). So there is a complete pooling equilibrium.

Because the logic of Proposition 4 follows the same reasoning as that for Propositions 2

and 3 in the static case, we omit the proof of Proposition 4 for brevity.

4.2. Low type quits first

We now consider the case where s∗L(q0)< t̂ in this subsection. Note that Lemma 3 implies

s∗H(q0)≤ t̂ for this case.

There cannot be an equilibrium in which the high type separates from the low type

by quitting before s∗L(q0); otherwise the low type would profitably mimic the high type.

Lemma 4 also establishes that if the two types pool, then it must occur at t̂ > s∗L(q0). These

observations imply that, by the time the game reaches time s∗L(q0), the high type has not

abandoned the project yet. At this time, the low type would prefer to stop if the reputation

of stayers were fixed at q0. However, if the low type stops with positive probability, the

interim belief q̃ about those who stays at time s∗L(q0) would jump up, which means that a

low type could profitably deviate by staying a little bit longer instead of quitting at s∗L(q0).
The only way to eliminate this deviation incentive is to have the low type exit continuously

at some atomless rate (i.e., σ̇L(t)< 0) when t ≥ s∗L(q0).

To determine the rate of exit by the low type, note that the low-type’s payoff is pinned

down by the outside option wL when σ̇L(t)< 0. If q̃(t) is the interim belief about an agent

who is still staying at time t, the low type must be indifferent between staying and quitting

whenever σ̇L(t)< 0. This condition can be written as:

gL(t) [WL + R(t; q̃(t))(WH −WL)−wL]−ρwL − c = 0. (7)

Equation (7) holds at t = s∗L(q0) and q̃(t) = q0. The left-hand-side of (7) is decreasing in t
and increasing in q̃(t). Thus, as t increases beyond s∗L(q0), q̃(t) must rise to maintain the

indifference condition. The interim belief q̃(t) satisfies:

q̃(t) =
q0

q0 + (1− q0)σL(t)
. (8)
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As t increases from s∗L(q0) to s∗L(1), q̃(t) increases continuously from q0 to 1 according to

equation (7), and σL(t) decreases continuously from 1 to 0 according to equation (8).

For t ∈ [s∗L(q0), t̂], we define the following function:

V (t; t̂) =

∫ t̂

t

e−ρ(τ−t) p0 fL(τ)
1− p0FL(t)

[WL + R(τ; q̃(t))(WH −WL)− C(τ− t)] dτ

+ e−ρ( t̂−t)1− p0FL( t̂)
1− p0FL(t)

�

−C( t̂ − t) +wL + r( t̂; q̃(t))(wH −wL)
�

,

where q̃(t) follows equation (7) for t ≤ s∗L(1) and is equal to 1 for t > s∗L(1). The function

V (t; t̂) gives the payoff to a low type if all low types stop quitting at time t and continue

working on the risky project until time t̂, at which point agents of all types quit. Whether

a low type agent will quit at some rate beginning at time s∗L(q0) or not depends on whether

V (s∗L(q0); t̂) is less than or greater than wL. If V (s∗L(q0); t̂) ≥ wL, then all low types prefer

to wait and pool with high types at time t̂ than to quit at s∗L(q0). There will be a complete

pooling equilibrium. If V (s∗L(q0); t̂)< wL, then some separation will occur in equilibrium.

Proposition 5. Suppose WH >WL and s∗L(q0)< t̂ .

(a) If V (s∗L(q0); t̂) ≥ wL, then the equilibrium is complete pooling with both types quitting
at t̂.

(b) If V (s∗L(q0); t̂) < wL, then there exists a unique t0 ∈ (s∗L(q0), t̂) such that V (t0; t̂) =
wL.

(i) If t0 < s∗L(1), the equilibrium is semi-pooling with the high type quitting at t̂ with
probability 1. For the low type, if t < s∗L(q0), then σL(t) = 1; if t ∈ [s∗L(q0), t0],
then σL(t) is determined by equations (7) and (8); if t ∈ (t0, t̂), then the low
type staya and σL(t) = σL(t0); at t = t̂ the low type quits with probability 1 and
σL(t) = 0 for t ≥ t̂ .

(ii) If t0 ≥ s∗L(1), there exists a unique t1 ∈ (s∗L(1), t̂) such that V (s∗L(1); t1) = wL.
The equilibrium is fully separating with the high type quitting at max{t1, s∗H(1)}.
For the low type, if t < s∗L(q0), then σL(t) = 1; if t ∈ [s∗L(q0), s∗L(1)], then σL(t) is
determined by equations (7) and (8); and if t > s∗L(1), then σL(t) = σL(s∗L(1)) =
0.

The strategy of the low type described in Proposition 5 is qualitatively different from

that described in Proposition 4 of the earlier subsection. In the case of s∗L(q0)≥ t̂, Proposi-

tion 4 shows that the low type always quits at s∗L(q0) or earlier. In the case of s∗L(q0)< t̂ in
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Figure 2. In the semi-pooling equilibrium described in case (b)(i) of Proposition 5, low types are

quitting continuously at a positive rate between s∗L(q0) and t0. The remaining low types strictly prefer

to stay between t0 and t̂. At time t̂, a positive mass of low types quit to pool with the high types.

this subsection, Proposition 5 shows that the low type quits after s∗L(q0). Moreover, when

low types separate from high types by quitting first, as described in part (b) of Proposition

5, they can only quit at a positive flow rate but not with positive probability. See Figure

2 for an illustration. This is because the payoff from continuing with the risky project

increases as the low types quit, so continuous randomization is needed to sustain equilib-

rium.

We leave the details of the proof of Proposition 5 to the Appendix. Intuitively, if

V (s∗L(0); t̂) < wL, the low type would prefer to quit than to stay at t = s∗L(q0). But our

discussion suggests that the low type can only quit gradually and continuously at some

atomless rate. As this happens the interim belief q̃(t) about stayers rises, and the payoff

V (t; t̂) from staying until t̂ improves over time. For time t beyond t0 specified in part (b)

of Proposition 5, we have V (t; t̂)> wL. For t ∈ (t0, t̂), the low type strictly prefers to stay

because the prospective gain from staying until t̂ to pool with the high type exceeds the

immediate losses from continuing with the risky project.

If t̂ is very large, the t0 that satisfies V (t0; t̂) = wL will also be very large. When-

ever t0 ≥ s∗L(1), the rate of exit determined by equations (7) and (8) implies that all low

types would have quit by time s∗L(1) (i.e., σL(s∗L(1)) = 0). Moreover, since V (s∗L(1); ·) is

decreasing on [s∗L(1), t̂] with V (s∗L(1); t1) = wL, the low type cannot profitably deviate to
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any t ′ ≥ t1 even if q̂t ′ = 1 is assigned to that deviation. Since the high type can always

benefit from moving towards max{t1, s∗H(1)}, the only fully separating equilibrium that can

survive the D1 criterion is the one in which the high type quits at max{t1, s∗H(1)}.

4.3. Dynamic distortions

In our model, the dynamic separation of types is incomplete because we have a public

information source which imperfectly reveals the agent’s type—success is a noisy signal

that can come from either type. The presence of public news gives rise to dynamic rep-

utation concerns which further distort the timing of project abandonment. Although the

equilibrium characterization for this dynamic case is more complicated, the basic insight

is relatively clear: the high type quits too early, and the low type quits too late (relative

to the full-information benchmark). The precise way the dynamic inefficiency works is

determined by which type is willing to persist longer, as we highlight below.

Suppose that the high type quits before the low type. In this case, by Proposition 4, the

high type quits at max{t, t̂}, which is earlier than s∗H(q0). Since s∗H(q0) < s∗H(1), the high

type quits prematurely compared to the full-information benchmark. This is because the

“reputational value of success” is necessarily lower when there are more low-type agents

around, which reduces the continuation payoff of risky experimentation and forces the

high type to abandon the project too early.

The timing of project abandonment is even more distorted when the low type quits

before the high type. Note that when there is full separation in the static case, the low

type quits once and for all at s∗L(0). This is no longer true in the dynamic case, because

the low type has an incentive to (inefficiently) wait until s∗L(q0) because the “reputational

value of success” is higher with more high types around. Moreover, when a low-type agent

quits, it raises the interim belief for the ability type of stayers, and hence the continuation

payoff. The game thus resembles a war of attrition in that each low-type agent is waiting

for others to drop out. Because of this, the low type must randomize over time, causing

the separation of types to occur only gradually, and even later than s∗L(q0).

It is worth emphasizing that as a consequence of these forces, there generically exists

no efficient (full-information) equilibrium in the dynamic case, i.e., the one in which the

low type quits at s∗L(0) and the high type at s∗H(1), no matter how far apart they are from

each other. This is a stark difference from the static case, where efficient separation is

feasible as long as s∗L and s∗H are sufficiently far apart from each other.
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4.4. Equilibrium payoffs

Let U∗i denote the equilibrium payoff for type i ∈ {H, L}. Also, let U∗∗i denote the full-

information payoff, i.e., the payoff when the low type quits at s∗L(0) and the high type

quits at s∗H(1). The argument in the previous subsection implies that the full-information

payoffs cannot be achieved in equilibrium when WH > WL. A closer look at this reveals

who gains and who loses from dynamic reputation concerns.

Proposition 6. If WH =WL, then U∗H ≤ U∗∗H and U∗L ≥ U∗∗L . If WH >WL, then U∗H < U∗∗H and
U∗L > U∗∗L .

Proof. In general, a low-type agent can always quit at s∗L(0) and reveals his true type. If

WH = WL, this would give the low type exactly the full-information payoff, and hence

U∗L ≥ U∗∗L as there would be a profitable deviation otherwise. That the high type is weakly

worse off directly follows from this, because otherwise there would be an allocation which

Pareto dominates the full-information efficient benchmark, a contradiction.

We can essentially apply the same argument to the dynamic case, except that the payoff

for the low type of quitting at s∗L(0) is strictly larger than U∗∗L because of a higher reputa-

tional value of success up to that point. This assures U∗L > U∗∗L and by the same argument

U∗H < U∗∗H .

Proposition 6 suggests that the high type unambiguously loses as the low type can

benefit at the expense of the high type, and this tendency is even stronger in the dynamic

case where the high type can never realize the full-information payoff. This can potentially

be a matter of concern from the efficiency point of view, if the participation constraint is

binding for some high-type agents. Given that high-type agents have a better outside

option, they may choose not to enter the market if U∗H is not high enough, possibly to

the extent that the market collapses entirely.15 This possibility thus calls for some active

intervention to restore efficiency. We will discuss this issue and ways to alleviate this

problem in Section 5.3.

15 This policy implication must be interpreted with some caution, however, as the effect of having more

high-type agents is not necessarily positive in this setup, as we will note in the next section.
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5. Discussion

5.1. The role of prior reputation

In the canonical signaling model, the D1 criterion always selects the least-cost separating

equilibrium, or the Riley outcome, in which the low type selects his (full-information) op-

timal investment level and the high type invests just enough to separate from the low type.

This prediction is somewhat disturbing because the equilibrium allocation in the least-cost

separating equilibrium is independent of the prior belief, implying that the agent’s prior

reputation has no real consequences for signaling. In contrast, in our model, the prior

belief q0 plays a crucial role in shaping the equilibrium outcome, which allows us to derive

some efficiency implications.

There are basically two ways in which the prior belief affects the equilibrium allocation

in our setup. First, an increase in q0 directly raises the value of pooling for the low type,

UL( t̂, q0), relative to the value of quitting at s∗L(0), and hence favors a pooling equilibrium.

This in turn forces the high type to also quit at t̂ in order to avoid adverse inference. We call

this the static effect of the prior belief because this effect is present even when WH =WL.

In the dynamic version of our model, there arises an additional effect of the prior belief

when a separating equilibrium prevails. This dynamic effect can work either positively or

negatively depending on which type quits first. Consider a fully separating equilibrium in

which the high type quits first. In this equilibrium, the high type quits at s∗H(q0), which

is smaller than the full-information optimal level s∗H(1), while the low type quits at s∗L(0).
The extent of inefficiency thus diminishes as q0 increases. In a fully separating equilib-

rium in which the low type quits first, on the other hand, the low type starts quitting at

s∗L(q0), which is larger than s∗L(0). An increase in q0 thus further delays the low type’s exit

and makes the dynamic separation of types less complete, which may result in inefficient

pooling if the low type’s incentive to stay is excessively strong.

To sum up, in our model, the equilibrium selected by D1 is sensitive to the agent’s

prior reputation. The effect of an increase in q0 (having “better reputation”) is hardly

straightforward and can often be negative as it provides a stronger incentive for the low

type to stay and mimic the high type, possibly to the extent that only pooling equilibria

can be sustained. This points to the difficulty in predicting the outcome of risky experi-

mentation from publicly observable traits when reputation matters because the timing of

project abandonment could be related in some complicated and non-monotonic way to
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the experimenter’s prior reputation. Our model in particular suggests that high types tend

to quit prematurely while low types tend to over-experiment, which makes the correlation

between ability and success weaker. On top of the inherent randomness of risky experi-

mentation, this fact may explain why it is so hard to predict success of startup businesses

(Kerr et al., 2014).

5.2. Implementation ability versus identification ability

We now consider an extension of our baseline model to allow for type-dependent project

quality. Specifically, let pi
0 denote the prior probability that a project handled by type i is of

good quality. Here, we assume that 1 > pH
0 ≥ pL

0 > 0; i.e., the high type is possibly better

at discovering ideas or identifying promising projects. Also, throughout this subsection,

we focus on the exponential bandit specification where fi(τ) = λie
−λiτ. It is easy to verify

that under this specification, Lemma 1 continues to hold for any pair (pL
0 , pH

0 ) such that

1 > pH
0 ≥ pL

0 > 0. This means that the double-crossing property still holds, and we can

essentially follow the same procedure to characterize equilibria.

With this modification, high-type and low-type agents are different along two dimen-

sions: the ability to implement a project (λi), and the ability to identify a good project (pi
0).

Which one carries more importance depends on the underlying context. One obvious fac-

tor is who has the right to choose projects: if the agent has discretion over which project

to work on, the prior quality of the project pi
0 most likely will depend on the agent’s type;

if the agent has no such discretion and simply works on the project assigned, the prior

should not differ much between the two types. Alternatively, we also argue that identifi-

cation ability matters more in areas where exploration of new ideas is required whereas

implementation ability matters more in areas where exploitation of existing ideas is suf-

ficient. Note that for any pH
0 ≥ pL

0 , the dimension concerning the implementation ability

becomes relatively more important as λH becomes farther apart from λL. Below, we con-

duct comparative statics with respect to λH , by letting λH increase from λL to infinity, to

show that the equilibrium allocation depends crucially on what is captured by the agent’s

“reputation.”

As we have seen, the equilibrium outcome of our model is determined largely by which

type quits first, or alternatively whether t̂ is larger or smaller than s∗L(q0). Since s∗L(q0) is

independent of λH , we only need to look at how t̂ varies with λH . For clarity, define t̂(λH)
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explicitly as a function of λH , which solves

λH pH
0 e−λH t̂(λH )

1− pH
0 + pH

0 e−λH t̂(λH )
=

λL pL
0 e−λL t̂(λH )

1− pL
0 + pL

0 e−λL t̂(λH )
,

under the current specification. The following result is useful for our subsequent analysis;

the proof is in the Appendix.

Lemma 5. For any λL and any pH
0 ≥ pL

0 , t̂(λH) strict decreases in λH , with limλH→λL
t̂(λH) =

∞ and limλH→∞ t̂(λH) = 0.

Lemma 5 suggests that t̂ is relatively small when the reputation reflects the imple-

mentation ability more (a high λH), and increases as the identification ability gains more

importance (a low λH). Since s∗L(q0) is independent of λH , this result, along with Propo-

sitions 4 and 5, immediately leads to the following statement, which clarifies when the

equilibrium entails some separation. We leave the proof to the Appendix.

Proposition 7. For any λL, q0, and any pH
0 ≥ pL

0 , there exist λ and λ (with λ > λ > λL)
such that:

(a) if λH < λ, the equilibrium entails some separation, and the low type quits first, starting
from s∗L(q0);

(b) if λH ∈ [λ,λ], the equilibrium entails complete pooling, and both types quit at t̂ ;

(c) if λH > λ, the equilibrium entails some separation, and the high type quits first.

Moreover, λ→∞ if s∗L(0) is sufficiently close to 0.

Whether equilibrium entails some separation or not offers crucial implications for who

should retain the right to abandon the project. To explore this possibility, suppose that

there is an additional player, called the principal, who can either delegate the decision-

making right regarding project termination to the agent (delegation) or retain it to herself

(centralization) at the outset. For example, the principal may be an employer or a super-

visor if the agent works for a firm or an organization, or the principal may be an investor if

the agent is an entrepreneur attempting to start a venture business. In this type of setting,

it is clear that delegation is of value only if the agent uses his private information to decide

the timing of project abandonment. Alternatively, this argument suggests that for a range

of parameters under which the equilibrium is complete pooling, the principal cannot be
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worse off by retaining the authority (centralization), even if she acquires no additional

information of her own along the way.16

Proposition 7 is useful in this regard, as it clarifies when delegation is more valuable.

The proposition indicates that there must be some separation if λH is sufficiently close to

λL (the identification ability is relatively more important). As λH increases (the imple-

mentation ability becomes more important), and the equilibrium becomes either pooling

or separating. However, if s∗L(0) is sufficiently small, then the range of parameters which

support the pooling equilibrium expands, thereby favoring centralization over delegation.

In particular, s∗L(0) = 0 if

pL
0λL(WL −wL)< ρwL + c, (9)

which is more likely to be satisfied if the low type is relatively unproductive in that either

pL
0λL or WL is low.17 When condition (9) holds, Proposition 7 provides an even simpler

prediction: there exists some λ such that the equilibrium is complete pooling if and only

if λH > λ.

This result implies that delegation is more valuable in environments where the iden-

tification ability is more important. One prominent example which fits this description is

academia, where it is the novelty of ideas, rather than the efficiency of task implemen-

tation, which is indispensable for success. Intuitively, as the identification ability gains

more importance, the ability effect becomes more dominant relative to the learning effect,

thereby making the indifference curves single-crossing in the relevant region. In this type

of environment, therefore, the value of centralization becomes more ambiguous, with a

tradeoff between the loss of control and the loss of information, and it makes more sense

to let the agent decide when to stop. In contrast, in environments where the implemen-

tation ability is more important, the learning effect plays a larger role and gives rise to

the double-crossing property. In this case, there is less gain from delegation as a pooling

equilibrium is more likely to emerge.

In addition, our analysis also sheds new light on the complementary relationship be-

tween the right to pick a project and the right to abandon it. As discussed above, the
16 The presumption here is that the principal gains no information about the agent over the course of

the project. In many cases, this is not the case as the principal often has means to evaluate the agent’s

productivity over time. When the principal has access to an additional information source, centralization

then performs even better.
17 Observe that this is a sufficient condition. Even if this condition fails to hold, we have λ→∞ as long

as pL
0λL or WL is sufficiently small.
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prior quality of the project pi
0 should depend more on the ability of agent i if the project

is selected by him. This implies that if it is the agent who chooses what to do, it should

also be the agent who chooses when to stop. Again, an example may be academia, where

researchers are typically conferred substantial discretion over which projects to work on.

On the other hand, in most firm organizations, workers are often assigned to tasks in a

top-down manner and have little discretion over what to do. In this type of environment,

only the implementation ability is relevant, and the decision-making right should be more

centralized as the double-crossing property is more likely to be satisfied.

5.3. An application to venture startups

Our model illustrates how reputation concerns distort the timing of project abandonment.

There are many potential remedies for those distortions, with centralization of decision-

making rights being one of them. The problem is that centralization is a second-best solu-

tion in that the equilibrium allocation does not reflect the agent’s private information. The

principal can do better if she can commit to and enforce a more sophisticated incentive

scheme. In this subsection, we explore this possibility and discuss some policy implica-

tions when the principal is equipped with more tools to manipulate the underlying payoff

structure. Since the case of venture startups provides a leading example of our model, we

focus on two remedies that are particularly relevant for this industry.

The valley of death. Consider a situation where the principal can raise the cost of con-

tinuing the project at some predetermined point in time. Specifically, we suppose that the

principal can set a deadline and charge a “fee” when the agent is to continue the project

past the deadline. We argue that this type of intervention can be quite effective in regu-

lating the dynamic distortion when s∗H(1)> s∗L(0), or alternatively when the identification

ability matters more. In this case, the low type persists too long to partially pool with the

high type.

If the principal can credibly enforce this scheme, the optimal solution is conceptually

straightforward: the principal should simply set a deadline at s∗L(0) and charge a fee high

enough to make the continuation payoff for the low type nonpositive. Under this scheme,

it is indeed optimal for the low type to quit at s∗L(0), which in turn allows the high type

to separate and quit at the optimal timing s∗H(1). The optimal scheme can thus restore

efficient separation and realize the full-information outcome.

This type of midterm screening is often observed in venture financing, where many
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venture startups face difficulty raising follow-on (“series A”) funding after initial (seed)

funding. In many cases, it is relatively easy to obtain seed funding from public or angel

sources; past this stage, however, many startups struggle to raise follow-on funding. This

funding gap, which inevitably raises the operational cost of running a business, is often

referred to as the “valley of death,” as most startups cannot survive past this phase. How-

ever, the reason why there exists such a funding gap is not immediately clear, especially

given the fact that seed funding typically comes from angel and public sources that are not

driven by profit maximization. The presence of the valley of death thus indicates that the

expected return of a startup business, conditional on its survival, follows a U-shaped path

and stagnates in the middle, so much so that even those funding sources are reluctant to

continue.

Our analysis provides a mechanism through which the valley of death naturally emerges,

and offers an important efficiency rationale of this funding gap.18 In the presence of reputa-

tion concerns, relatively less productive entrepreneurs tend to persist longer than optimal

even though their projects are in hopeless shape, which could create an interval where the

expected return of a startup business stagnates and dips below the efficient level. Given

this, the valley of death can be efficiency-enhancing as it can work as a screening device to

differentiate entrepreneurs with different degrees of vision and confidence. There are at

least two virtues of the valley of death. First, it prevents less efficient entrepreneurs from

over-experimenting out of reputation concerns. Second, this also raises the expected re-

turn for more efficient entrepreneurs, which is important when the participation constraint

is binding for some of them. Although there is now a heated debate over how to bridge

this gap, with some calling for active public interventions (Murphy and Edwards, 2003;

Butler, 2008), our analysis suggests a positive role of the valley of death as a screening

device which is particularly effective in areas where exploration of new ideas is crucial for

success.

Startup subsidies. When the implementation ability matters more, we have s∗L(0) >
s∗H(1), in which case the high type quits too early because the reputational value of success

is not sufficient. In contrast to our previous discussion about the “valley of death,” the issue

here is to induce high-type agents to persist longer to fully explore the true worth of their

projects. In this case, startup subsidies which lower the operational cost of continuing a

18 In a different framework, Chen and Ishida (2018) also discuss a positive role of the valley of death to

screen out less confident entrepreneurs. In their model, there are no reputation concerns in that the payoff

from success or failure (project termination) is fixed independently of the belief.
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startup business can be productive as they allow high-type agents to continue up to their

optimal timing.

Startup subsidies or grants are ubiquitous in both developed and developing economies.

In the United States, for instance, there are several federally funded programs aiming at

getting small startup businesses off the ground. In addition to those public funding sources,

angel investors also play an essential role in early stages of venture financing, accounting

for a substantial fraction of seed money supplied to the venture market. The primary ratio-

nale for startup subsidies is to relax credit constraints which small startup firms may face

due to market imperfections. Empirical support for this channel is not necessarily strong,

however, as recent evidence suggests that credit constraints may not play as important a

role as was previously believed (Kerr and Nanda, 2011).

Our analysis provides an alternative rationale for startup subsidies, which is to allow

more promising projects to persist longer and live up to their full potential. Note that

our argument differs from the conventional one in an important way, as it stems from

dynamic reputation concerns and holds irrespective of whether there are credit market

imperfections. This implies that our argument can be applied to a range of situations,

outside of venture financing, where credit constraints are not a crucial factor.

6. Conclusion

This paper provides a unified framework to analyze the role of reputation concerns in

risky experimentation. We develop a general approach which encompasses a broad class

of learning processes and model specifications and obtain a complete characterization of

D1 equilibria based on the double-crossing property of indifference curves. Our analysis

illustrates how reputation concerns on the part of experimenters constrain our ability to

acquire new knowledge, in both static and dynamic ways, and offers potential remedies

to correct the distortions. The implications obtained here are far-reaching as our frame-

work is flexible enough to be applied broadly to many situations of interest, such as an

entrepreneur experimenting with a business startup, a politician with a policy reform, an

engineer with a new product design, and a researcher with a scientific hypothesis.
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Appendix

Proof of Lemma 4. Since both types quit with positive probability at time t, the interim

belief assigned to an agent who quits at that time satisfies q̂ ∈ (0, 1).

Suppose t < t̂. Pick a small ε > 0. There are two cases: (a) σL(t ′) is constant on

t ′ ∈ [t, t + ε). Then, by the D1 criterion, the market must assign interim belief 1 to an

agent who quits at t ′ ∈ (t, t + ε). Because the gain in interim belief is discrete while

the change in payoff from delaying to quit is infinitesimal, such a deviation would be

profitable. (b) σL(t ′) is strictly decreasing on t ′ ∈ [t, t + ε). Since t < t̂, if the low type

is indifferent between continuing and quitting, the high type strictly prefers to continue.

This implies that σH(t ′) is constant on [t, t + ε). The interim belief assigned to one who

quits at t ′ ∈ (t, t+ε)must be 0. But then this cannot be optimal for the low type to quit at

t ′ because he would gain by deviating to quit at t and obtain an interim belief of q̂ instead

of 0.

Suppose t > t̂. There are two cases: (a) σL(t ′) is constant on t ′ ∈ (t −ε, t). By the D1

criterion, the market must assign interim belief 1 to an agent who quits at t ′ ∈ (t−ε, t). It

would pay for an agent to deviate by quitting slightly earlier at t ′ instead of t. (b) σL(t ′)
is strictly decreasing on t ′ ∈ (t − ε, t). Since t > t̂, if the low type weakly prefers quitting

to continuing at t, the high type strictly prefers to quit at t. This implies that σH(t) = 0.

Hence, the interim belief assigned to one who quits at t ′ ∈ (t, t + ε) must be 0. But then

the low type could gain by deviating to quit at t instead of t ′ and obtain an interim belief

of q̂ instead of 0.

Proof of Proposition 5. We begin by showing that V (·; t̂)−wL is single-crossing from be-

low. To see this, note that the derivative of V (t; t̂) with respect to t is:

∂ V (t; t̂)
∂ t

=
�

ρV (t; t̂) + c − gL(t)
�

WL + R(t; q̃(t))(WH −WL)− V (t; t̂)
��

+

�

∫ t̂

t

e−ρ(τ−t) p0 fL(τ)
1− p0FL(t)

(WH −WL)
∂ R(τ; q̃(t))

∂ q̃
dτ

+e−ρ( t̂−t)1− p0FL( t̂)
1− p0FL(t)

(wH −wL)
∂ r( t̂; q̃(t))

∂ q̃

�

dq̃(t)
dt

.

If V (t; t̂) = wL at t < s∗L(1), the first term is 0 and the second term is positive. If V (t; t̂) =
wL at t > s∗L(1), the first term is positive and the second term is 0. This shows that V (·; t̂)−
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wL is single-crossing from below. Hence, V (s∗L(q0); t̂) < wL and V ( t̂; t̂) > wL imply that

t0 ∈ (s∗L(q0), t̂) exists and is unique, with V (t; t̂)> wL for all t ∈ (t0, t̂].

We next show that V (s∗L(1); ·) is decreasing on [s∗L(1), t̂]. The derivative of V (s∗L(1); s)
with respect to s is

∂ V (s∗L(1); s)

∂ s
= e−ρ(s−s∗L(1))

1− p0FL(s)
1− p0FL(s∗L(1))

(gL(s) [WH −wH]−ρwH − c)

< e−ρ(s−s∗L(1))
1− p0FL(s)

1− p0FL(s∗L(1))
(gL(s) [WH −wL]−ρwL − c) ,

which is non-positive for s ∈ [s∗L(1), t̂]. Because V (s∗L(1); s∗L(1)) > wL, and t0 > s∗L(1)
implies V (s∗L(1); t̂) < wL, we can conclude that t1 ∈ (s∗L(1), t̂) exists and is unique, with

V (s∗L(1); t ′)≤ wL for any t ′ ≥ t1.

Equilibrium. We first show that the strategies described in cases (a), (b)(i), and (b)(ii)

of the proposition constitute an equilibrium of the corresponding cases.

(a) Let Ji(t) be the value function for type i ∈ {H, L} corresponding to the strategy

profile of complete pooling (i.e., both types do not quit until time t̂). By the principle of

optimality,

Ji(t) = −c dt + gi(t)dt [WL + R(t; q0)(WH −WL)] + (1− gi(t)dt)e−ρ dt Ji(t + dt).

From this, we obtain the differential equation:

J ′i (t) = ρJi(t) + c − gi(t) [WL + R(t; q0)(WH −WL)− Ji(t)] ,

with terminal condition Ji( t̂) = wL + r( t̂; q0)(wH − wL). By construction, JL(s∗L(q0)) =
V (s∗L(q0); t̂)≥ wL for the low type. Moreover, we can write:

J ′L(t) = (ρ + gL(t))(JL(t)−wL) + (ρwL + c − gL(t) [WL + R(t; q0)(WH −WL)−wL]) .

For t ∈ (s∗L(q0), t̂], the second term is positive, and so JL(t) − wL is single-crossing from

below. But JL(t)− wL is non-negative at t = s∗L(q0) and is positive at t = t̂. We therefore

must have JL(t)> wL for all t ∈ (s∗L(q0), t̂]. For t ∈ [0, s∗L(q0)), the second term is negative,

and so JL(t) − wL is single-crossing from above. But since JL(t) − wL is non-negative at

t = s∗L(q0), we must have JL(t) > wL for all t ∈ [0, s∗L(q0)). Since JL(t) ≥ wL for all t ≤ t̂,
it is indeed optimal for the low type not to quit until t̂. Since gH(t) > gL(t) for all t < t̂,
we also have JH(t) > JL(t) ≥ wL. Thus, the high type also has no incentive to quit until

time t̂.
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(b)(i) For i ∈ {H, L}, let Ji(t) be the solution to the differential equation,

J ′i (t) = ρJi(t) + c − gi(t) [WL + R(t; q̃(t0))(WH −WL)− Ji(t)] ,

with terminal condition Ji( t̂) = wL + r( t̂; q̃(t0))(wH −wL). Since the high type never quits

until time t̂, JH(t) is the value function for the high type.

For the low type, let J̃L(t) be the solution to the differential equation:

J̃ ′L(t) = ρJ̃L(t) + c − gL(t)
�

WL + R(t; q0)(WH −WL)− J̃L(t)
�

,

with terminal condition J̃L(s∗L(q0)) = wL. Then, the value function for the low type is given

by:

J∗L(t) =















J̃L(t) if t ∈ [0, s∗L(q0)),

wL if t ∈ [s∗L(q0), t0],

JL(t) if t ∈ (t0, t̂].

By the same argument as in part (a), we have J∗L(t) > wL for t ∈ [0, s∗L(q0)) and for

t ∈ (t0, t̂]. Thus, it is optimal for the low type not to quit for such t. For t ∈ [s∗L(q0), t0],
equation (7) ensures that the low type is indifferent between quitting and staying. Thus,

the strategy of the low type is indeed a best response. Furthermore, JH(t) > J∗L(t) ≥ wL

for all t < t̂. Thus, the high type has no incentive to quit until time t̂.

(b)(ii) Fix any t ′ ∈ [max{t1, s∗H(1)}, t̂]. We have already shown that t1 < t̂. Moreover,

s∗L(1)≤ t0 < t̂ implies s∗H(1)< t̂ by Lemma 3. Thus, the interval is non-empty.

For t ≤ t ′, the value function for the high type is given by the solution to the differential

equation:

J ′H(t) = ρJH(t) + c − gH(t) [WH − JH(t)] ,

with terminal condition JH(t ′) = wH . For the low type, the value function is given by

J∗L(t) =















J̃L(t) if t ∈ [0, s∗L(q0)),

wL if t ∈ [s∗L(q0), t ′),

wH if t = t ′;

where J̃H(t) is the same solution to the differential equation specified in part (b). Note that

no agent quits at time t ∈ (s∗L(1), t ′). We assign off-equilibrium belief q̂(t) = 0 for an agent

who quits at such time, which is consistent with the D1 criterion because t < t̂. Because

J∗L(t) > wL for t < s∗L(q0), the low type strictly prefers continuing with the risky project
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than quitting. For t ∈ [s∗L(q0), s∗L(1)], we have J∗L(t) = wL. Therefore the strategy σL(t)
that satisfies equations (7) and (8) is indeed a best response. At t = s∗L(1), the gain for a

low type from deviating to quit at t ′ instead is V (s∗L(1), t ′)− wL ≤ V (s∗L(1), t1)− wL = 0.

Therefore, the low type cannot gain from deviating to wait until t ′ to quit.

Uniqueness. We now show that the equilibria described in cases (a), (b)(i), and (b)(ii)

of the proposition are the only candidates for equilibrium for the corresponding cases. To

this end, let t i and t i be the earliest and latest possible time, respectively, for type i to quit

on the equilibrium path. We first establish the following facts.

Fact 1. tH ≥ s∗L(q0).

Proof. Suppose tH < s∗L(q0), where tH 6= t L by Lemma 4. Moreover, in this case, it is

not possible to have t L < tH , for otherwise q̂t L
= 0< q̂tH

, q̃t L
= q0 < q̃tH

, and the low type

could profitably deviate by quitting at tH . This means that we only need to look at the

case where tH < t L.

With some abuse of notation, let Vi(tH ; t L) denote the expected payoff if a type i agent

continues to work with the risky project from tH to t L on the equilibrium path. We obtain

Vi(tH ; t L) = e−ρ(t L−tH )
1− p0Fi(t L)

1− p0Fi(tH)

�

Ji(t L)− C(t L − tH)
�

+

∫ t L

tH

e−ρ(τ−tH )
p0 fi(τ)

1− p0Fi(tH)

�

WL + R(τ; q̃τ)(WH −WL)− C(τ− tH)
�

dτ,

where Ji(t L) is the equilibrium payoff to type i agent at time t L. Since an agent earns

wH by quitting at tH , the high type quitting at tH and the low type quitting at t L imply

VL(tH ; t L)≥ wH ≥ VH(tH ; t L).

We now show that this condition cannot be satisfied. To this end, observe first that

t L ≤ t̂. Suppose otherwise. Then, since q̃t is weakly decreasing on [ t̂, t L) and s∗H(q̃ t̂) < t̂,
there cannot exist t ′ and t ′′ in [ t̂, t L) such that the high type is indifferent between quitting

at t ′ and t ′′. Therefore, there must exist some interval (t L − ε, t L) such that no type quits,

and as t L > s∗L(q0), the low type can profitably deviate by quitting at t ∈ (t L − ε, t L).

We note that, for t ≤ t L, Vi(t; t L) solves the differential equation,

V ′i (t) = ρVi(t) + c − gi(t) [WL + R(t; q̃t)(WH −WL)− Vi(t)] ,

with terminal condition Vi(t L) = Ji(t L). Note also that t L ≤ t̂ implies that gL(t) < gH(t)
for t ∈ [tH , t L). Hence, for any t ∈ [tH , t L), the right-hand-side of the above is strictly
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higher for i = L than for i = H . Moreover, because it is feasible for the high type to quit

at t L, we have JH(t L) ≥ wH + r(t L; q̂t L
)(wH − wL) = JL(t L). Therefore, by the comparison

theorem for differential equations (McNabb, 1986), we have VL(tH ; t L)< VH(tH ; t L). This

contradicts VL(tH ; t L)≥ wH ≥ VH(tH ; t L). �

Fact 2. Either t L = tH = t̂, or t L = s∗L(q0)< tH .

Proof. Suppose tH < t L. Then, q̂t L
< q̂tH

= 1 and q̃τ < q0 for τ ∈ (tH , t L). Moreover,

we know that tH ≥ s∗L(q0) from Fact 1. Given that t L > tH ≥ s∗L(q0) > s∗L(q̃t L
), and also

that q̃t is weakly decreasing (as only the high type may quit before t L), the low type could

receive a higher payoff by quitting at tH than by quitting at t L, a contradiction. Therefore,

t L ≤ tH . If t L = tH , we must have t L = tH = t̂ by Lemma 4. If t L < tH , then it is optimal

for the low type to start quitting at s∗L(q0). �

Fact 3. Either t L = tH = t̂, or t L < tH .

Proof. If tH < t L, we have q̃t L
= 0. Then, since tH ≥ tH > s∗L(q0), the low type could

profitably deviate by quitting at t ∈ (tH , t L). Therefore, t L ≤ tH . Lemma 4 implies that if

t L = tH , then both are equal to t̂. �

Fact 4. tH = tH .

Proof. Suppose tH < tH . Suppose further that both types quit at t̂ with positive proba-

bility. This means that the high type is indifferent among quitting at tH , t̂ ∈ [tH , tH], and

tH , but Lemma 2 then implies that the low type must strictly prefer quitting either at tH or

tH to quitting at t̂, a contradiction. This rules out pooling or partial pooling with tH < tH .

Now suppose that tH < tH and the equilibrium is fully separating, in which case we

have either (1) t L = s∗L(q0)< t L < tH < tH ; or (2) t L = s∗L(q0)< tH < t L < tH .

In case (1), we have t L = s∗L(1), q̂t L
= 0, q̂tH

= 1, q̃t = 1 for t ∈ (t L, tH), and the low

type weakly prefers quitting at t L to quitting at tH . This implies that for t ∈ (tH , tH), no

belief q̂t can give the low type a higher payoff than the equilibrium payoff. Moreover, since

the high type is indifferent between quitting at tH and tH , the expected payoff must go up

first and then go down for t ∈ (tH , tH) (with q̂t = q̃t = 1 over this interval), suggesting

that the set of beliefs q̂t that give the high type a higher payoff than the equilibrium payoff

is not empty for this interval. Therefore, q̂t = 1 for t ∈ (tH , tH) by D1, and the high type

could profitably deviate by quitting at any t in this interval.

In case (2), the proof of Fact 1 shows that if the two types quit separately before t̂, the

low type must quit before the high type. By a similar argument, we can also show that if
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the two types quit separately after t̂, the high type must quit before the low type. These

facts imply that given t L < tH < t L, we must have t L < t̂ and t L > t̂. If t L > t̂, however,

we cannot have t L < tH , which implies that tH < tH cannot occur in equilibrium. �

Now let tH ≡ tH = tH . The above facts show that there can only be three types of

equilibria: (1) complete pooling in which t L = tH = t̂; (2) semi-pooling in which t L =
s∗L(q0) < t L = tH = t̂; or (3) fully separating in which t L = s∗L(q0) < t L = s∗L(1) < tH .

Drawing on this fact, we show that the equilibrium is unique in each of the cases.

(a) We start with the case where V (s∗L(q0); t̂) ≥ wL. In this case, since V (·, t̂) − wL

is single-crossing from below, V (s∗L(q0); t̂) ≥ wL implies that V (t; t̂) > wL for all t ∈
(s∗L(q0), t̂]. Suppose first that t L = s∗L(q0) < t L = tH = t̂, so that the equilibrium is semi-

pooling. Then, since V (t; t̂)> wL for all t ∈ (s∗L(q0), t̂], the low type strictly prefers quitting

at t̂ to quitting at t L = s∗L(q0). Next suppose that t L = s∗L(1) < tH , so that the equilibrium

is fully separating. Then, Lemma 3 implies that s∗H(1) ≤ t̂ if s∗L(1) ≤ t̂ and s∗H(1) < s∗L(1)
if s∗L(1) > t̂. Therefore, s∗H(1) ≤ max{ t̂, s∗L(1)}. Moreover, tH > max{ t̂, s∗L(1)}, because

V (s∗L(1); t̂) > wL if s∗L(1) < t̂, and thus tH must be greater than t̂ in order to prevent the

low type from deviating. By D1, q̂t = 1 for t ∈ (max{ t̂, s∗L(1)}, tH), but then the high type

could profitably deviate by quitting at t ∈ (max{ t̂, s∗L(1)}, tH). This shows that the only

possible equilibrium in this case is complete pooling.

(b) If V (s∗L(q0); t̂)< wL, the complete pooling equilibrium cannot exist, because the low

type could profitably deviate by quitting at s∗L(q0). We then need to consider two cases,

depending on whether t0 is larger or smaller than s∗L(1).

(b)(i) Suppose t0 < s∗L(1). Suppose further that a fully separating equilibrium exists,

i.e., t L = s∗L(1). The high type must then quit at tH > t̂ such that V (s∗L(1), tH) = wL.

Following the same argument as in (a), s∗H(1) ≤ max{ t̂, s∗L(1)} by Lemma 3, and thus the

equilibrium cannot survive the D1 criterion. This shows that the only possible equilibrium

in this case is semi-pooling.

(b)(ii) If t0 ≥ s∗L(1), the semi-pooling equilibrium cannot exist, since the low type must

prefer quitting at s∗L(q0) to quitting at t̂. Therefore, only the fully separating equilibrium is

feasible in this case, although there is still a continuum of fully separating equilibria that

are feasible. To further reduce the set of equilibria, note that since t L = s∗L(1), tH must be

weakly greater than t1 so that the low type would not deviate. Moreover, since V (s∗L(1); ·)
is decreasing on [s∗L(1), t̂], the low type strictly prefers quitting at t L to quitting at any

t ∈ (t1, t̂] even if q̂t = 1. If tH ∈ (t1,max{t1, s∗H(1)}) (which implies that s∗H(1) > t1), by
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D1, we assign off-equilibrium belief q̂t ′ = 1 to an agent who quits at any t ′ ∈ (tH , s∗H(1)),
since compared to the equilibrium payoff, only the high type could possibly benefit from

such a deviation. Then the high type could profitably deviate by quitting at t ′. If tH ∈
(max{t1, s∗H(1)}, t̂), by D1, we also assign off-equilibrium belief q̂t ′′ = 1 to an agent who

quits at any t ′′ ∈ (max{t1, s∗H(1)}, tH), and thus the high type could profitably deviate by

quitting at t ′′. Therefore, we must have tH = max{t1, s∗H(1)}, which uniquely pins down

the equilibrium.

Proof of Lemma 5. To show limλH→λL
t̂(λH) =∞, suppose that t̂ is bounded from above

when λH approaches λL. Then, in the limit, we must have

pH
0

1− pH
0 + pH

0 e−λL t̂
=

pL
0

1− pL
0 + pL

0 e−λL t̂
.

For any pH
0 > pL

0 , this is a contradiction because the equality cannot be satisfied for any t̂.
Similarly, to show that limλH→∞ t̂(λH) = 0, suppose that t̂ is bounded from below while

λH tends to infinity. We can find λH that is large enough (yet finite) to satisfy

λH pH
0 e−λHε

1− pH
0 + pH

0 e−λHε
<

λL pL
0 e−λLε

1− pL
0 + pL

0 e−λLε
,

for any ε > 0, a contradiction.

We next show that t̂(λH) is decreasing. Observe that gH( t̂(λH)) = gL( t̂(λH)). Taking

derivative of both sides with respect to λH , we obtain
�

∂ gL

∂ t
−
∂ gH

∂ t

�

d t̂
dλH

=
∂ gH

∂ λH
.

We know that, evaluated at t = t̂(λH), ∂ gL/∂ t > ∂ gH/∂ t. This means that d t̂/dλH has

the same sign as ∂ gH/∂ λH (evaluated at t = t̂(λH)). Therefore, d t̂/dλH has the same sign

as

(1− pH
0 + pH

0 e−λH t̂(λH ))−λH t̂(λH)(1− pH
0 ).

This shows that d t̂/dλH is single-crossing from above as λH increases, because the above

expression is decreasing in λH if d t̂/dλH = 0. As λH approaches λL, we have shown that

t̂(λH) approaches infinity, and hence the sign of d t̂/dλH is negative. Together with the

fact that d t̂(λH)/dλH is single-crossing from above, the fact that limλH→λL
d t̂(λH)/dλH < 0

implies d t̂(λH)/dλH < 0 for all λH > λL.
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Proof of Proposition 7. We consider how the equilibrium varies as the value of t̂ increases.

Suppose first that t̂ is sufficiently small and t̂ ≤ s∗L(q0). Moreover, suppose s∗L(0) > 0 and

t > 0 (both of which are independent of λH). By Proposition 4, the equilibrium is fully

separating if t̂ sufficiently close to 0. As t̂ increases and exceeds t, the equilibrium be-

comes semi-pooling for any q0 ∈ (0,1). Finally, the equilibrium is complete pooling if t̂ is

sufficiently close to s∗L(0).

Now suppose t̂ > s∗L(q0). First, it is clear that the equilibrium is complete pooling if t̂
is sufficiently close to s∗L(0), because

lim
t̂→s∗L(q0)

V (s∗L(q0); t̂) = wL + r(s∗L(0); q0)(wH −wL)> wL.

Note also that the derivative of V (s∗L(q0); t̂) with respect to t̂ has the same sign as

gL(s)
�

WL + R( t̂; q0)(WH −WL)−wL − r( t̂; q0)(wH −wL)
�

−ρ
�

wL + r( t̂; q0)(wH −wL)
�

− c,

which is negative for any t̂ > s∗L(q0) by definition. Moreover, since

lim
t̂→∞

V (s∗L(q0); t̂) =

∫ ∞

s∗L(q0)

e−ρ(τ−s∗L(q0))
p0 fL(τ)

1− p0FL(s∗L(q0))
[WL + R(τ; q0)(WH −WL)

−C(τ− s∗L(q0))
�

dτ < wL,

there exists a unique t̂0 such that V (s∗L(q0); t̂0) = wL. At this point, the equilibrium must be

semi-pooling. Finally, to satisfy V (t0; t̂) = wL, the benefit of pooling evaluated at t0 must

be strictly positive, implying that e−ρ( t̂−t0) must be bounded away from 0. This means that

t0 →∞ as t̂ →∞. It then follows that the equilibrium must be fully separating when t̂
is sufficiently large.

We have shown that, as t̂ increases, the equilibrium changes from that described in case

(c) to that described in case (b) and then to case (a). Lemma 5 establishes t̂ decreases

in λH , and therefore the proposition follows. To show that λ can be arbitrarily large,

observe that t = 0 if s∗L(0) is sufficiently small. Moreover, since lims∗L(0)→0 v(0) = wL <

wL + r(0; q0)(wH − wL), the equilibrium must be complete pooling if s∗L(0) is sufficiently

small.
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