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Abstract

We investigate an assignment market in which multiple objects are assigned, to-

gether with associated payments, to a group of agents with unit demand preferences.

Preferences over bundles, the pairs of (object, payment), accommodate income effects.

Among all (Walrasian) equilibria in such a market, there is one supported by the

coordinate-wise minimum prices, the minimum price equilibrium (MPE). We propose

a price adjustment process, “the Serial Vickrey process,”that finds an MPE in a finite

number of steps. The Serial Vickrey process introduces objects one by one, and on

the basis of the structural properties of MPE, the “Serial Vickrey sub-process”sequen-

tially finds an MPE for k + 1 objects by using an MPE for k objects. In the Serial

Vickrey process, instead of revealing the whole preference, each agent only reports fi-

nitely many “indifference prices.”We also discuss the application of the Serial Vickrey

process to calibrate agents’ utility functions in the quantitative analysis of housing

market research in the assignment model.
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1 Introduction

It has been long understood that the (Walrasian) equilibrium exists under general conditions,

and designing a price adjustment process that converges to the equilibrium is a fundamental

tool to discover the market-clearing prices and achieve an effi cient allocation. For economies

with divisible resources, the study of the price adjustment process, the so-called “taton-

nement process,”can be dated back to Leon Walras. The tatonnement process provides a

powerful tool to achieve effi ciency in economies with divisible resources.1

Real markets often exhibit indivisibility and heterogeneity in which monetary transfer

is also involved, e.g., the labor market, the housing market, and the market for spectrum

licenses. Economies with indivisible resources are distinct from those with only divisible

resources. The question of how to design the price adjustment process to identify the equi-

librium in an economy with indivisibility has attracted intensive attention since the 1980s.

An assignment market with unit-demand agents is one of the most prominent models in

this area: Several heterogenous objects are sold to a group of agents, each agent is interested

in receiving at most one object, and each transaction involves a monetary transfer. In such a

market, if preferences satisfy some standard assumptions, there is a (Walrasian) equilibrium

supported by the coordinate-wise minimum prices, among all equilibria, i.e., the minimum

price equilibrium (MPE).2 Any price adjustment process targeting an MPE not only achieves

an effi cient outcome but also has nice incentive properties.3

In their seminal paper, Demange et al. (1986) investigate the above assignment market

by assuming that agents have quasi-linear preferences. They propose two price adjustment

processes that take the form of ascending auctions, the “exact DGS auction”and “approx-

imate DGS auction,”to obtain an MPE. Precisely, the exact DGS auction finds the exact

minimum equilibrium price (MEP) in a finite number of steps if the price increment and

agents’valuations have the same unit of measure, e.g., both are integers. The approximate

DGS auction finds an approximate MPE in finite steps in the sense that its outcome prices

deviate from the MEP coordinate-wise only within some interval. Motivated by the elegant

property of MPE, a sequence of works focus on designing different forms of the price ad-

justment processes to find an MPE in the quasi-linear environment, e.g., Grigorieva et al.

(2007), Mishra and Parkes (2009), Andersson and Erlanson (2013).

Many real-life markets capture the features of the assignment market, and in particular,

1See, for example, Scarf (1960), Kamiya (1990), and Herings (2002).
2See Facts 1 and 2 for details.
3See, e.g., Demange and Gale (1985) and Morimoto and Serizawa (2015) for details.
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income effects must be seriously considered. Two stylized examples follow.

Example A (The housing market): Houses are heterogeneous in location and size. Each
agent is generally interested in obtaining one house. The high prices of houses encourage

agents to reduce their expenditures for complements of houses, which reduces their benefits

from houses. In many cases, agents borrow from financial institutions to pay house prices.

These factors make agents’preferences non-quasi-linear, which exhibits income effects.

Example B (An auction with large payments): In the 2000 U.K. 3G spectrum licenses
auction, each firm was restricted to at most one license. To pay for the winning bids, firms

borrowed from financial markets. The borrowing cost was non-linear in the total amount of

borrowing. This factor also makes preferences non-quasi-linear.4

Existing research has already introduced income effects, in the form of “non-quasi-linear

preferences,” into the study of housing markets and auctions with large payments, e.g.,

Andersson and Svensson (2014), Morimoto and Serizawa (2015), Baisa (2016, 2017), and

Herings (2018). However, the question of how to design the price adjustment process to

achieve effi ciency in the assignment market, particularly while accommodating income ef-

fects, remains unresolved.

A natural question is whether the exact DGS auction or approximate DGS auction works

well when income effects are present. As demonstrated in Section 2, when the price increment

unit is larger than the valuation unit, the exact DGS auction substantially overshoots the

MEP. When preferences are non-quasi-linear, the approximate DGS auction generates prices

outside the interval estimated for the quasi-linear setting.

Our aim is to study the assignment market with unit-demand agents, specifically while

allowing for general preferences to accommodate income effects. As mentioned above, in such

a general setting, the MPE is well defined. To pursue effi ciency and incentive compatibility,

our central aim is to propose a price adjustment process that finds an MPE in a finite number

of steps. Thus, our first key result is as follows:

For each general preference profile, the “Serial Vickrey process”finds an MPE in a finite

number of steps.

The Serial Vickrey process introduces objects one by one and sequentially employs the

“Serial Vickrey sub-process”to derive the MPE for k + 1 objects from the MPE for k

objects. Due to the uniqueness of MEP, the Serial Vickrey process is unaffected by the order

in which we introduce the objects.

The Serial Vickrey sub-process plays a central role in the Serial Vickrey process. When

4See Klemperer (2004) for details.
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the first object is introduced, it coincides with the Vickrey auction. Since a second object is

introduced, the Serial Vickrey sub-process consists of three stages.

Stage 1: We construct an equilibrium for k + 1 objects, based on the MPE for k objects

by the “E-generating process.”
Stage 2: We check whether the constructed equilibrium in Stage 1 is an MPE for k + 1

objects by the “NC−identifying process.” If so, we terminate the Serial Vickrey sub-
process. Otherwise, we identify the objects to be reassigned and the prices to be adjusted

and proceed to Stage 3.

Stage 3: We reassign the objects and adjust their corresponding prices by the “MPE-
assignment-finding process”and eventually obtain an MPE for k + 1 objects

The novelty of the Serial Vickrey process lies in exploiting two main structural properties

of MPE. The first structural property is called “demand connectedness.”It states that in an

MPE, every object is connected directly or indirectly to a null object or an object with zero

price by agents’demand sets, and each agent receives a connected object or null object. We

are not the first to investigate this property or similar properties of an MPE,5 but we are

the first to employ this property in the following respects: We use “demand connectedness”

to partition the agents and objects into connected and unconnected and characterize an

MPE in terms of connected agents and objects (Proposition 1). We then use the “demand

connectedness”of an MPE for k objects to construct an equilibrium for k + 1 objects. The

E-generating process in Stage 1 is the application (Propositions 2 and 3). Next, we use this

property again to check whether the constructed equilibrium is an MPE. TheNC−identifying
process in Stage 2 achieves this goal (Proposition 4).

The second structural property depicts the relation between an arbitrary equilibrium and

the MPE by a dynamic price adjustment process, which we call the “I pay others’indifference

prices (IPOIP) process”(Theorems 1 and 2). This process is the central component of the

MPE-assignment-finding process in Stage 3 and is in the spirit of a Vickrey payment. After

identifying the objects to be reassigned and the prices to be adjusted in Stage 2, in Stage

3, we run the MPE-assignment-finding process, via the IPOIP process, to complete the

object reassignment and price adjustment. We are the first to explore the this structural

property, and it is essentially different from the existing properties.6 Thus, the our structural

characterization requires a novel construction approach and proof techniques. Note that in

5This property is also explicitly or implicitly discussed by, e.g., Demange and Gale (1985), Alkan and

Gale (1990), and Morimoto and Serizawa (2015).
6For example, consider the perturbation lemma in Alkan and Gale (1990), Fact A.1 in the Appendix, and

another structural property proposed by Alaei et al. (2016). See also Section 6.
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the Serial Vickrey process, instead of revealing all of an agent’s preferences, each agent

only reports finitely many indifference prices (IPs), each representing the price of an object

that makes the agent indifferent between that object and the tentatively assigned bundle.

All the adjustment processes are based on reported IPs, represented by finite dimensional

vectors. Note that the “Scarf lemma”method is known to be a powerful tool for equilibrium

computation in economies with indivisibility, but it requires agents to report their full utility

functions (e.g., Quinzii, 1984). For general preference settings, compared with the Scarf

lemma method, our information requirement is much smaller.

The housing market is an important research topic in both macroeconomics and urban

economics. As suggested by, e.g., Duranton and Puga (2015), “the assignment model”is well

suited for studying the housing market (or urban land use), as it accommodates the hetero-

geneity of both houses and agents, i.e., the assignment-based housing market model. Indeed,

existing works employ an assignment-based housing market model to calibrate agents’utility

functions and conduct quantitative analysis of government policies’effects on the housing

market and citizens’welfare, e.g., Kaneko et al. (2006), Maattanen and Tervio (2014), and

Landvogit et al. (2015).

However, such models come at the cost of technically complex equilibrium computation.

In quantitative analysis, equilibrium computation helps calibrate agents’s utility functions.

For tractability, existing works assume that (i) agents have the same utility function and

are distinguished only by differences in income, and (ii) houses have the “common-ranking

feature.”These two assumptions activate the “recursive equation system,”which is an equi-

librium computation method that calibrates agents’ utility functions, e.g., Kaneko et al.

(2006), Maattanen and Tervio (2014), and Landvogit et al. (2015).

Many real-life cases motivate us to go beyond these two assumptions, e.g., the inves-

tigation of housing markets in a multicentric city model or agents having common-tiered

preferences.7 However, without these two assumptions, “the recursive equation system”fails

to work (Zhou and Serizawa, 2018).

Note that in an assignment-based housing market model, agents can never pay more

than their income levels. Due to income constraints, a housing market equilibrium may not

always exist (Quinzii, 1984). A mild condition, “indispensability,”is imposed to guarantee

the existence of housing market equilibrium. Such a mild condition is commonly imposed

on agents’preferences with respect to income levels when conducting quantitative analysis.

In particular, if such a mild condition is imposed, one of the housing market equilibria is

supported by the coordinate-wise minimum prices. Thus, our second key result is to establish

7See Section 5 for details.
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the connection between the our model and the assignment-based housing market model:

For each well-defined (utility, income) profile in the assignment-based housing market

model, there is a general preference profile in the assignment market such that the associated

MEPs are the same as the corresponding minimum housing market equilibrium prices.

The construction of the general preference profile suggests a way of using the Serial Vick-

rey process to obtain the minimum housing market equilibrium prices. Then, following the

standard econometric method, e.g., Maattanen and Tervio (2014), agents’utility functions

can be estimated. Thus, the Serial Vickrey process also contributes to the calibration of

agents’utility functions in scenarios that cannot be analyzed by using existing techniques in

quantitative analysis of an assignment-based housing market.

The remainder of the paper is organized as follows: Section 2 describes the diffi culties in

using DGS auctions to obtain MPEs for general preferences. Section 3 defines the assignment

market and MPE. Section 4 defines the Serial Vickrey process and describes its properties.

Section 5 discusses its application to the housing market. Section 6 relates our results to the

literature. Section 7 concludes the paper. Proofs are relegated to the Appendix.

2 Diffi culties with using DSG auctions under general preferences

In the following, we use two examples to show that the “exact DGS auction”and “approxi-

mate DGS auction”fail to work when general preferences are considered. Specifically, these

two auctions substantially overshoot the MEPs.

By using a similar approach as in the exact DGS auction, we can show that when the

price increment is larger than the measurement of agents’valuation, the auction in Mishra

and Parkes (2009) substantially undershoots the MEP, and the auction in Andersson and

Erlanson (2013) either substantially overshoots or undershoots the MEP. Note also that by

using a similar approach as in the approximate DGS auction, we can show that Crawford

and Knoer (1981)’s salary adjustment process and Hatfield and Milgrom (2005)’s cumulative

offer process also fail to approximate an MPE for general preferences in our setting.8

2.1 Exact DGS auction

The exact DGS auction: Starting with reserve prices, agents report their demand sets at
the current prices. The auctioneer raises the prices of objects in the “minimum overdemanded

8In the assignment market, the approximate DGS auction, Crawford and Knoer (1981)’s salary adjustment

process and Hatfield and Milgrom (2005)’s cumulative offer process are essentially the same.
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set”(MOD) by one unit or stops the auction if no set is MOD at the current prices.

The exact DGS auction finds the MEP in a finite number of steps if (i) agents have quasi-

linear preferences and (ii) the price increment is equal to the measurement unit of agents’

valuations, e.g., both are integers (Demange et al. 1986). The following example shows that

even if only (ii) fails, i.e., the price increment is larger than the measurement unit of agents’

valuations, the exact DGS auction generates an outcome whose prices are higher than the

MEP and fail to approximate it. Note that (ii) often fails to hold for general preferences.

Consider the case of two agents, 1 and 2, and two objects, A and B. Receiving object 0

means receiving nothing. Agents have quasi-linear preferences. Let V i(x) denote agent i’s

valuation over x = 0, A,B. Let

V1(0) = 0, V1(A) = 9.2, V1(B) = 9.8,

V2(0) = 0, V2(A) = 9.1, V2(B) = 9.6.

Let pA and pB be the prices of A and B, and p ≡ (pA, pB). The price of object 0 is

zero. Agent i’s demand set at p is: Di(p) ≡ {x ∈ {0, A,B} : Vi(x) − px ≥ Vi(y) − py,

y ∈ {0, A,B}}. Since the MEP for this value profile coincides with the Vickrey payment,
the MEP is pmin = (0, 0.5).

The DGS auction starts from p = (0, 0), the reserve prices, with an integer increment.

At p = (0, 0), both agents demand only object A. Since only object A is overdemanded (also

MOD), then increase only pA by one unit. At p = (1, 0), both agents demand only object B

(B is overdemanded, also MOD), and so increase only pB by one unit. Again, at p = (1, 1),

both agents demand only object A. Similarly, the price of each object alternatively increases

at least to (9, 9). Thus, the outcome prices substantially overshoot pmin = (0, 0.5).

Alaei et al. (2010) demonstrate that for general preferences, even if the prices of objects

in the MOD are updated at different rates, the modified DGS auction may never converge.

2.2 Approximate DGS auction

The approximate DGS auction: Agents are called bid on objects one by one, according
to some exogenously given queue. If an agent bids on an unassigned object, he becomes

committed to that object at the reserve price. If an agent bids on an assigned object at

some price, the price of that object is increased by a price increment, and the agent becomes

committed to that object at the increased price. Simultaneously, the agent to whom the

object had been assigned becomes uncommitted and occupies the first position among the

remaining uncommitted agents. If an agent bids on no object, he drops out of the auction.

The auction terminates when all uncommitted agents drop out.
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The approximate DGS auction obtains an outcome where the prices derive from the

(exact) MEP, coordinate-wise, by at most k · δ (δ: the price increment; k: the minimum of

the numbers of agents and objects), if agents have quasi-linear preferences (Demange et al.

1986). The following example shows that if agents have general preferences, the outcome

prices of an approximate DGS auction lie outside the estimation in the quasi-linear setting.

Consider the case of three agents, 1, 2, and 3, and two objects, A and B. Agents are

called in the order 1, 2, and 3. Let δ ≡ 1 and agents’ preferences satisfy the standard

assumptions (See Section 3), and in addition:

For agent 1, (0, 0) I1 (A, 0.3) I1 (B, 20.4);

For agent 2, (0,−20) I2 (A, 5) I2 (B, 20.4) and (0, 0) I2 (A, 20.2) I2 (B, 20.6); and

For agent 3, (0,−21) I3 (A, 0.5) I3 (B, 20.4) and (0, 0) I3 (A, 20.6) I3 (B, 20.8),

where Ii denotes agent i′s indifference relation.

For the above preference profile, the MEP is pmin = (0.5, 20.4).

The approximate DGS auction starts from p = (0, 0), the reserve prices. First, agent 1

is called on and demands object B, and so agent 1 is committed to B at price 0. Second,

agent 2 is called, and since agent 2 demands object A at p = (0, 1), he then bids A and is

committed to A at price 0. Third, agent 3 is called on, and since agent 3 demands object

B at p = (1, 1), he then bids B and is committed to B at price 1. Then, agent 1 becomes

uncommitted. Since he is the only uncommitted bidder, agent 1 is called on, and since he

demands object B at p = (1, 2), he then bids B and is committed to B at price 2. Agent

3 thus becomes uncommitted. Since he is the only uncommitted bidder, agent 3 is called

on to bid. Note that agents 1 and 3 alternatively bid on object B until its price reaches 20.

Since agent 1 is committed to object B at price 20, agent 3 is called on; because agent 3

demands object A at p = (1, 21), he then bids A and is committed to it at price 1. By similar

reasoning, agents 2 and 3 alternatively bid on object A until its price reaches 20 but stop

bidding at 21. The outcome price of object A, i.e., 20, overshoots its pmin
A = 0.5, much more

than k · δ = 2. Given k and δ, the set of preference profiles for such undesirable deviations

is non-negligible.

3 The assignment market and minimum price equilibrium

3.1 Model and definitions

Consider an economy with n ≥ 1 agents and m ≥ 1 objects. Let N andM denote the sets of

agents and objects, respectively. Objects can be identical or heterogenous. Not receiving
an object is called receiving a null object, object 0. Let L ≡ M ∪ {0}. Each agent receives

7



at most one object. For agent i ∈ N , let xi ∈ L denote the object that agent i receives and
ti ∈ R the associated payment. The agents’common consumption set is L × R, and a
generic bundle for agent i is a pair zi ≡ (xi, ti) ∈ L× R. Let 0 ≡ (0,0).

Each agent i has a complete and transitive preference Ri over L×R. Let Pi and Ii be the
associated strict and indifference relations. Assume the following properties of preferences.

Money monotonicity: For each xi ∈ L and each pair ti, tj ∈ R, if ti < t′i, (xi, ti)Pi (xi, t
′
i).

Possibility of compensation: For each ti ∈ R and each pair xi, xj ∈ L, there is tj ∈ R
such that (xi, ti) Ii (xj, tj).

Money monotonicity states that for a given object, a lower payment makes the agent

better off. The possibility of compensation holds that there is no object that is always

good or bad. A preference Ri is general if it satisfies the two properties just defined. Let
RG be the class of general preferences. We call (RG)n the general domain. The general
domain contains, e.g., the quasi-linear domain and domains exhibiting positive or negative

income effects. It could also model various behaviors of agents, e.g., risk aversion or facing

distortional taxes.

By money monotonicity and possibility of compensation, for each Ri ∈ RG, each zi ∈
L × R, and each y ∈ L, there is a unique amount Vi(y; zi) ∈ R such that (y, Vi(y; zi)) Ii zi.

We interpret Vi(yi; zi) as agent i′s indifference price (IP) of y at zi for Ri.

Example 1: Figure 1 illustrates a preference Ri, Vi(0; zi), and Vi(B; zi) for M = {A,B}.

Figure 1: Illustration of a preference Ri, Vi(0; zi), and Vi(B; zi)

In Figure 1, there are three horizontal lines, corresponding to objects 0, A, and B.

The intersection of the vertical line and each horizontal line denotes the bundle of the

corresponding object and no payment. For example, the origin 0 denotes the bundle of
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object 0 and no payment. For each point on one of the three lines, the distance between

that point and the vertical line denotes the payment. For example, zi denotes the bundle

consisting of object A and payment ti. By money monotonicity, moving leftward along

the same line makes the agent better off, e.g., (0, A)Pi zi. If bundles are connected by a

indifference curve, this means that the agent is indifferent between them. For example, for

agent i, zi and z′i are connected, and thus, zi Ii z
′
i.

In Figure 1, the IP of object 0 at zi is Vi(0; zi) since (0, Vi(0; zi)) Ii zi. The IP of object

B at zi is Vi(B; zi) since (B, Vi(B; zi)) Ii zi.

Let x ≡ (x1, . . . , xn) ∈ Ln be an object assignment such that for each pair i, j ∈ N , if
xi 6= 0 and i 6= j, then xi 6= xj. Let X be the set of object assignments. Given x ∈ X, let
t ≡ (t1, . . . , tn) ∈ Rn denote the associated payment. A (feasible) allocation is an n-tuple
z ≡ (x, t) ≡ (z1, . . . , zn) ∈ [L×R]n such that (x1, . . . , xn) ∈ X. We denote the set of feasible
allocations by Z. Given z ∈ Z and N ′ ⊆ N , let zN ′ ≡ (zi)i∈N ′ and zN\N ′ ≡ (zi)i∈N\N ′ .

A preference profile is an n-tuple R ≡ (Ri)i∈N ∈ (RG)n. Given R ∈ (RG)n and

N ′ ⊆ N , let RN ′ ≡ (Ri)i∈N ′ and RN\N ′ ≡ (Ri)i∈N\N ′ .

Let p ≡ (p1, · · · , pm) ∈ Rm+ be a price vector. Given p ∈ Rm+ and M ′ ⊆ M , let pM ′ ≡
(px)x∈M ′ and pM\M ′ ≡ (px)x∈M\M ′ . The price of the null object is assumed to be zero.

Without loss of generality, objects’reserve prices are assumed to be zero.

For each Ri ∈ RG and each p ∈ Rm+ , agent i′s demand set at p for Ri is defined as

Di(p) ≡ {x ∈ L : for each y ∈ L, (x, px)Ri (y, py)}.
Definition 1: Let R ∈ (RG)n. A pair ((x, t), p) ∈ Z × Rm+ is a (Walrasian) equilibrium
for R if

for each i ∈ N , xi ∈ Di(p) and ti = pxi , (E-i)

for each y ∈ M , if for each i ∈ N , xi 6= y, then py = 0. (E-ii)

(E-i) states that each agent receives an object from his demand set and pays its price.

(E-ii) states that the prices of unassigned objects are zero.

Fact 1 (Existence)(Alkan and Gale, 1990; Alkan, 1992): For each R ∈ (RG)n, there is an

equilibrium.

Given R ∈ (RG)n, let W (R) denote the set of equilibria for R. Let P(R) denote the

set of equilibrium price vectors for R, respectively, i.e.,

P(R) ≡ {p ∈ Rm+ : for some z ∈ Z, (z, p) ∈ W (R)}.

Fact 2 (Lattice property)(Demange and Gale, 1985; Morimoto and Serizawa, 2015): For
each R ∈ (RG)n, P (R) is a complete lattice.

9



Fact 2 implies that there is a unique price vector p ∈ P(R) such that for each p′ ∈ P(R),

p ≤ p′. A minimum price equilibrium (MPE) is an equilibrium whose price vector

is minimum. Given R ∈ (RG)n, let pmin(R) denote the minimum equilibirum price vector

(MEP) for R and Wmin(R) the set of MPEs associated with pmin(R).

For each preference profile R, pmin(R) is unique, but the indifference in the preferences

may result in the multiple MPE allocations. These MPE allocations are indeed welfare-

equivalent for each agent, i.e., for each R ∈ (RG)n, each pair (z, pmin(R)), (z′, pmin(R)) ∈
Wmin(R), and each i ∈ N , zi Ii z′i. To simplify the notation, we write pmin instead of pmin(R).

3.2 Illustration of minimum price equilibria

Consider an economy with four agents and three objects, i.e., N = {1, 2, 3, 4} and M =

{A,B,C}. In Subsubsection 3.2.1, we illustrate agents’ general preferences, and in Sub-
subsection 3.2.2., we illustrate three MPEs for four-agent economies with one object, two

objects, and three objects. Such illustrations are helpful to understand how the Serial Vick-

rey process works.

3.2.1 Preference settings

A preference Ri can be represented by a set of IP functions: For each t ∈ R, let Vi(·; (0, t)) is

a mapping fromM to R, and so {Vi(·; (0, t)) : t ∈ R} is a representation of Ri. For example,

the indifference curve in Figure 1 illustrates an IP function at payment Vi(0; zi).

In the following, for each Ri, we construct {Vi(·; (0, t)) : t ∈ R} by specifying some IP
functions over several given payments. Then, the IP functions for other payments are either

parallel translations or convex combinations of the specified IP functions.

Agent 1 (R1): His IP functions at payments 0,−2 and −4 are given by:

(i) At 0: V1(A;0) = 4, V1(B;0) = V1(C;0) = 5.

(ii) At −2: V1(A; (0,−2)) = 2, V1(B; (0,−2)) = V1(B; (0,−2)) = 4.

(iii) At −4: V1(A; (0,−4)) = 0, V1(B; (0,−4)) = 2, V1(B; (0,−4)) = 3.

For each t > 0, V1(·; (0, t)) is a parallel translation of V1(·;0):

V1(A; (0, t))) = 4 + t, V1(B;0) = V1(C;0) = 5 + t.

For each t ∈ [−2, 0], V1(·; (0, t))) is a convex combination of V1(·;0) and V1(·; (0,−2)):

V1(·; (0, t))) = (t+ 2)/2 · V1(·;0))− t/2 · V1(·; (0,−2)).

For each t ∈ [−4,−2], V1(·; (0, t))) is a convex combination of V1(·; (0,−2)) and V1(·; (0,−4)):
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V1(·; (0, t))) = (t+ 4)/2 · V1(·; (0,−2))) + (−2− t)/2 · V1(·; (0,−4)).

For each t < −4, V1(·; (0, t)) is a parallel translation of V1(·; (0,−4)):

V1(A; (0, t)) = t+ 4, V1(B; (0, t)) = t+ 6, V1(C; (0, t)) = t+ 7.

Figure 2 illustrates R1, and IP functions of (i), (ii), and (iii) are depicted by bold lines.

Figure 2: Illustration of R1

We define R2, R3, and R4 similarly.

Agent 2 (R2): His IP functions at payments 0,−2 and −4 are given by:

(i) V2(A;0) = V2(B;0) = V2(C;0) = 3,

(ii) V2(A; (0,−2)) = 1, V2(B; (0,−2)) = V2(C; (0,−2)) = 2, and

(iii) V2(A; (0,−4)) = −1, V2(B; (0,−4)) = 0, V2(C; (0,−4)) = 1.

For each t > 0 and each t < −4, V2(·; (0, t)) is a parallel translation of V2(·;0) and

V2(A; (·,−4)), respectively. For each t ∈ [−2, 0] and each t ∈ [−4,−2], V2(·; (0, t))) is a convex

combination of V2(·;0) and V2(·; (0,−2)) and V2(·; (0,−2)) and V2(·; (0,−4)), respectively.

Agent 3 (R3): His IP functions at payments 0 and −2 are given by:

(i) V3(A;0) = V3(B;0) = 2, V3(C;0) = 1

(ii) V3(A; (0,−2)) = 0, V3(B; (0,−2)) = 1, V3(C; (0,−2)) = 0.

For each t > 0 and each t < −2, V3(·; (0, t)) is a parallel translation of V3(·;0) and

V3(A; (·,−2)), respectively. For each t ∈ [−2, 0], V3(·; (0, t))) is a convex combination of

V2(·;0) and V2(·; (0,−2)).
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Agent 4 (R4): His IP function at payment 0 is given by V4(A;0) = V4(B;0) = 1, V4(C;0) =

2. For each t 6= 0, V4(·; (0, t)) is a parallel translation of V4(·;0). Thus, R4 is quasi-linear.

3.2.2 Illustration of minimum price equilibria

Given the preferences in Subsubsection 3.2.1, we illustrate three MPEs in the four-agent

economies with object A, objects A and B, and all the objects.

An MPE of the economy with object A: We use each agent i’s IP Vi(A;0) of A from

0. Since V1(A;0) = 4, V2(A;0) = 3, V3(A;0) = 2, and V4(A;0) = 1, V1(A;0) = 4 is the

highest among the IPs. Based on this ranking, we assign A to agent 1 and ask him to pay

the second highest IP, i.e., V2(A;0) = 3, and have the other agents keep 0. It is easy to see

that zmin(A) ≡ ((A, 3),0,0,0) is an MPE allocation and the associated MEP is pmin(A) = 3.

Note that zmin(A) coincides with the outcome of a Vickrey auction of object A.

An MPE of the economy with objects A and B: The MPE allocation is zmin(A,B) ≡
(zmin

1 , zmin
2 , zmin

3 , zmin
4 ) = ((B, 2.5), (A, 2),0,0) and the MEPs are pmin(A,B) ≡ (pmin

A , pmin
B ) =

(2, 2.5). Figure 3 illustrates (zmin(A,B), pmin(A,B)).

Figure 3: Illustration of zmin(A,B)

To see why zmin(A,B) is an MPE allocation, first, note that for each i = 1, 2, 3, 4, zmin
i is

maximal for Ri in {0, (A, pmin
A ), (B, pmin

B )}. In addition, all the objects are assigned. Thus,
(E-i) and (E-ii) are satisfied. Thus, zmin is an equilibrium allocation.

Second, let p = (pA, pB) be an equilibrium price. We show that p ≥ pmin(A,B). Since

there are four agents and two objects, by (E-i), at least two agents demand the null object

at p. If pA < 2, then (A, pA)Pi 0 for each i = 1, 2, 3, and thus, only agent 4 may demand
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the null object, a contradiction. Thus, pA ≥ 2 = pmin
A . If pB < 2.5, then by pA ≥ 2,

D1(p) = D2(p) = {B}, contradicting (E-i). Thus, pB ≥ 2.5 = pmin
B .

An MPE of the economy with objects A, B, and C: By the same reasoning as

above, we can show that the MPE allocation is zmin(A,B,C) = (zmin
1 , zmin

2 , zmin
3 , zmin

4 ) =

((C, 2), (B, 1.5), (A, 1),0) and the MEPs are pmin(A,B,C) ≡ (pmin
A , pmin

B , pmin
C ) = (1, 1.5, 2).

Figure 4 illustrates (zmin(A,B,C), pmin(A,B,C)).

Figure 4: Illustration of zmin(A,B,C)

4 Serial Vickrey process

This section proposes a price adjustment process, which we call the “Serial Vickrey
process,” to find an MPE for general preferences in a finite number of steps. The Ser-
ial Vickrey process introduces objects one by one and sequentially finds an MPE for k + 1

objects, based on an MPE for k objects, by the “Serial Vickrey sub-process.”
When the first object is introduced, the Serial Vickrey sub-process just coincides with

the second-price auction. In general, the Serial Vickrey sub-process consists of three stages.

Stage 1 is an “E-generating process,”which constructs an equilibrium for k+ 1 objects,

based on an MPE for k objects. Stage 2 is a “NC−identifying process,”which identifies
whether the constructed equilibrium for k + 1 objects is an MPE for k + 1 objects. If not,

in Stage 3, we apply an “MPE-assignment-finding (MPEAF) process,”to obtain an
MPE for k + 1 objects.

We use Subsections 4.1 to 4.4 to establish the Serial Vickrey sub-process.
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Subsection 4.1: We introduce the central concepts, “demand connected path,”“connected

agents and objects,”and accordingly, “unconnected agents and objects.”

Subsection 4.2 (Stage 1): We define a demand-connectedness-path-finding process and use

it to formalize the E-generating process.

Subsection 4.3 (Stage 2): We define the NC−identifying process. This process identifies
whether an arbitrary equilibrium is an MPE, i.e., whether all the agents are connected.

Subsection 4.4 (Stage 3): We define the MPEAF process. The MPEAF process is used

to provide a price adjustment process to match the unconnected agents to unconnected

objects, supported by the MEPs. We first define the “IPOIP process”and use it to provide

some structural characterizations. Then, based on these characterizations, we formalize the

MPEAF process. Finally, we offer a complete description of the Serial Vickrey sub-process.

Subsection 4.5 defines the Serial Vickrey process, describes its properties, and offers some

further discussions.

4.1 Demand connectedness

In the following, we introduce “demand connectedness,”which plays an important role in

Stages 1 and 2 of the Serial Vickrey sub-process.

Recall the second case in Subsubsection 3.2.2. First, D3(pmin(A)) = {A, 0} and zmin
3 = 0.

We say that agent 3’s demand “connects”objects A to 0. Second, D3(pmin(A,B)) = {A, 0},
D2(pmin(A,B)) = {A,B}, zmin

3 = 0, and zmin
2 = (B, 2.5). Thus, agent 3’s demand connects

objects A to 0, and agent 2’s demand connects objects B to A. This is what we call a

“demand connected path.”We formalize these concepts.

Definition 2: Let R ∈ (RG)n and (z, p) ∈ Z ×Rm+ . An object x ∈M is connected if there
is a sequence {iλ}Λ

λ=1 of Λ distinct agents that forms a demand connectedness path
(DCP) such that
(i) 1 ≤ Λ ≤ min{m+ 1, n},
(ii) xi1 = 0 or pxi1 = 0,

(iii) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0,

(iv) xiΛ = x, and

(v) for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1
} ∈ Diλ(p).

Remark 1: (i) If (z, p) ∈ W (R), then by (E-ii), unassigned objects are connected.

(ii) Since the connectedness is defined only for x ∈M , the null object is not connected.
Definition 3: Let R ∈ (RG)n and (z, p) ∈ Z × Rm+ . An agent i ∈ N is connected if xi is
connected or xi = 0.
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Let NC and MC be the sets of connected agents and objects, respectively. Let NU ≡
N\NC and MU ≡M\MC be the sets of unconnected agents and objects, respectively.

Remark 2: (i) By Remark 1(i), NC = ∅ does not imply MC = ∅.
(ii) By Definition 3, an agent who receives the null object is connected. Thus, MC = ∅ does
not imply NC = ∅.
(iii) For each x ∈M , if px = 0, then x ∈MC .9

(iv) NC 6= ∅ if and only if there is some agent i ∈ N such that pxi = 0.10

Based on the concepts of connected agents and objects, we provide a new characterization

of MPE.

Proposition 1 (Characterization of MPE by connectedness): Let R ∈ (RG)n, (z, p) ∈
W (R), and NU and MU be defined at (z, p). Then, the following statements are equivalent:

(i) p = pmin, (ii) N = NC , and (iii) M = MC .

4.2 Stage 1 of the Serial Vickrey sub-process

4.2.1 Demand-connectedness-path-finding process

Since DCPs play important roles in Stage 1 of the Serial Vickrey sub-process, we explain

how to find DCPs. Note that the demand sets used to identify the DCPs can be derived

from the reported IPs.

Definition 4: Demand-connectedness-path-finding (DCPF) process Let R ∈
(RG)n and (z, p) ∈ Z × Rm+ . Let x ∈ M be connected in (z, p), and let i ∈ N be such that

xi = x.

Phase 1: Round 1: Let N1 ≡ {i}.
If px = 0, then stop the DCPF process.

If px > 0, then let N2 ≡ {j ∈ N\N1 : x ∈ Dj(p)} 6= ∅, and go to Round 2.
Round s(≥ 2): Let L(Ns) ≡ {y ∈ L : xj = y for some i ∈ Nt}.
If there is y ∈ L(Ns) such that y = 0 or py = 0, then stop Phase 1 and go to Phase 2.

Otherwise, let Ns+1 ≡ {j ∈ N\ ∪sk=1 Nk : Dj(p) ∩ L(Ns) 6= ∅} 6= ∅, and go to Round s+ 1.

9To see this, let x ∈ M be such that px = 0. If x is unassigned, then by Definition 2, x ∈ MC . If x is

assigned to some i ∈ N , then {i} constitutes a demand sequence satisfying (i) to (v), and so, x ∈MC .
10The if part comes from Definition 3. To understand the only if part, by contradiction, suppose that for

each i ∈ N , pxi > 0. Since NC 6= ∅, then for each i ∈ NC , by pxi > 0, there is a sequence {iλ}Λλ=1 of distinct

agents satisfying Definition 2, with xi1 = 0 or pxi1 = 0. This contradicts that for each i ∈ N , pxi > 0.
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Phase 2: Let S be the final round of the DCPF process. Then, construct a sequence {is}Ss=1

of distinct agents as follows: (i) Choose i1 ∈ NS such that xi1 = 0 or pxi1 = 0, and (ii) for

each j ∈ {2, · · · , S}, choose ij ∈ NS+1−j such that xij ∈ L(NS+1) and xij ∈ Dij−1
(p).

Proposition 2: Let R ∈ (RG)n and (z, p) ∈ Z × Rm+ . Let x ∈ M be connected in (z, p),

and let i ∈ N be such xi = x. Then, we have the following:

(i) Phase 1 of DCPF process stops in a finite number of steps, i.e., S < +∞.
(ii) The sequence {is}Ss=1 of distinct agents of Phase 2 is a DCP w.r.t. x.

By the finiteness of N , Proposition 2(i) is obvious. It is also straightforward that the

sequence {is}Ss=1 constructed in Proposition 2(ii) satisfies (i)-(v) of Definition 2.

Example 2: We demonstrate a DCPF process for object B in (zmin(A,B,C), pmin(A,B,C))

of Figure 4. Let x = B. Then, i = 2.

Phase 1: At Round 1, N1 = {2}. Since pmin
B > 0 and N2 = {j ∈ N\N1 : x ∈ Dj(p)} =

{3} 6= ∅, then go to Round 2.
At Round 2, L(N2) = {A} and N3 = {j ∈ {1, 4} : Dj(p

min) ∩ {A} 6= ∅} = {4}. Since
pmin
A > 0 and N3 6= ∅, then go to Round 3.
At Round 3, L(N3) = {0}. Since 0 ∈ L(N3), we stop Phase 1.

Phase 2 constructs a DCP consisting of a sequence of agents {4, 3, 2}, i.e., i1 = 4, i2 = 3,

and i3(= iΛ) = 2.

4.2.2 E-generating process

Given N ′ ⊆ N , x ∈ L and z ∈ [L × R]n, let πx ≡ (πx1 , · · · , πx|N ′|) be the permutation on
N ′ such that Vπx1 (x; zπx1 ) ≥ · · · ≥ Vπx|N′|

(x; zπx|N′|
), e.g., πx1 is the agent whose IP for x at

zπx1 is highest in N
′. For each h ∈ N ′, let Ch(RN ′ , x; z) ≡ Vπxh(x; zπxh) be the h-th highest

IP for x from z for R among N ′. Let Ch
+(RN ′ , ·; ·) ≡ max{0, Ch(RN ′ , ·; ·)}. If N ′ = ∅, let

Ch
+(RN ′ , ·; ·) ≡ 0, and if N ′ = N , let Ch

+(RN ′ , ·; ·) ≡ Ch
+(R, ·; ·).

LetM(k) ≡ {1, . . . , k}(1 ≤ k ≤ m). LetW (k,R) andWmin(k,R) be the sets of equilibria

and MPEs, respectively, for the economy with objectsM(k) and the preference profile R. In

the following, we propose a process that generates an equilibrium (z, p) ∈ W (k+ 1, R) from

(z∗, pmin) ∈ Wmin(k,R).

Definition 5: E-generating process Let (z∗, pmin) ∈ Wmin(k,R). Introduce object

k + 1.

Phase 1: Each agent i reports Vi(k + 1; z∗i ), and compute C
1(R, k + 1; z∗).

If C1(R, k + 1; z∗) ≤ 0, then let (z, p) be such that

(a) pk+1 = 0, and p = (pmin, pk+1), and (b) for each i ∈ N , zi = z∗i .
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Otherwise, go to Phase 2.

Phase 2: Select an agent i such that Vi(k+ 1; z∗i ) = C1(R, k+ 1; z∗). Run the DCPF process

w.r.t. x∗i for (z∗, pmin), and obtain a DCP {iλ}Λ
λ=1. Let (z, p) be such that

(a) pk+1 = C2
+(R, k + 1; z∗), and p = (pmin, pk+1),

(b) ziΛ = (k + 1, pk+1),

(c) for each il ∈ {iλ}Λ−1
1 , zil = z∗il+1

, and

(d) for each j ∈ N\{iλ}Λ
1 , zj = z∗j .

Notice that in Phase 2 of the E-generating process, the agent with the highest IP from

(z∗, pmin) ∈ Wmin(k,R) obtains the additionally introduced object and pays the second-

highest IP. In this respect, this process is similar to a Vickrey auction.

Proposition 3 (Property of E-generating process): Let R ∈ (RG)n and (z∗, pmin) ∈
Wmin(k,R). The E-generating process finds an equilibrium (z, p) ∈ W (k + 1, R) in a finite

number of steps.

Example 3: Let R ∈ (RG)4 be the preference profile specified in Subsubsection 3.2.1.

We demonstrate that the E-generating process indeed generates an equilibrium allocation

z(A,B,C) of the economy with objects A, B and C based on zmin(A,B) in Figure 3.

Recall that zmin(A,B) = ((B, 2.5), (A, 2),0,0). In Phase 1, each agent i reports his IP

for C from zmin
i (A,B), i.e., V1(C; (B, 2.5)) = 3.25, V2(C; (A, 2)) = 2.5, and V3(C;0) = 1,

and V4(C;0) = 2. Since C1(R,C; zmin(A,B)) = V1(C; (A, 3)) = 3.25 > 0, go to Phase 2.

Since C2
+(R, k+ 1; zmin(A,B)) = V2(C; (A, 2)) = 2.5, p = (pmin, pk+1) = (2, 2.5, 2.5), then

V1(C; (B, 2.5)) is the highest among the four IPs from zmin(A,B), and V2(C; (A, 2)) = 2.5

is the second highest. In the E-generating process, we have agent 1, who has the high-

est IP, obtain C and pay the second-highest IP, i.e., z1(A,B,C) = (C, 2.5). Now, object

B is unassigned. Remember that there is a DCP, i1 = 4, i2 = 3, and i3 = 2, from ob-

ject B to object 0 (Example 2). We move agents’bundles along this path. By i3 = 2,

z2(A,B,C) = zmin
1 (A,B) = (B, 2.5). By i2 = 3, z3(A,B,C) = zmin

2 (A,B) = (A, 2). By

i1 = 4, z4(A,B,C) = zmin
4 (A,B) = 0.

Let p ≡ (pmin
A (A,B), pmin

B (A,B), 2.5). Then, D1(p) = {C}, D2(p) = {A,B}, D3(p) =

{0, A}, D4(p) = {0}. Thus, z(A,B,C) ≡ ((C, 2.5), (B, 2.5), (A, 2),0) is an equilibrium

allocation of the economy with objects A, B and C.

Figure 5 illustrates an E-generating process from zmin(A,B) to z(A,B,C).
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Figure 5: Illustration of an E-generating process from zmin(A,B) to z(A,B,C).

We summarize Stage 1 of the Serial Vickrey sub-process as follows:

Stage 1: Given (z∗, pmin) ∈ Wmin(k,R) in Step k, run the E-generating process to obtain

an equilibrium (z, p) ∈ W (k + 1, R).

4.3 Stage 2 of the Serial Vickrey sub-process

In Stage 2, we judge whether an equilibrium (z, p) obtained in Stage 1 is an MPE or not,

and identify the connected agents in (z, p) if (z, p) is not an MPE. Note that by Proposition

1, once the set NC of connected agents in (z, p) ∈ W (R) is identified, it is straightforward

to judge whether (z, p) is an MPE or not, i.e, if NC = N , then (z, p) is an MPE, and is not

otherwise. We propose a process to identify the set NC of connected agents in an equilibrium.

Definition 6: NC-identifying process Let R ∈ (RG)n and (z, p) ∈ W (R).

Round 1: Let N1 ≡ {i ∈ N : pxi = 0}. If N1 = ∅, then let N∗ = ∅ and stop the process.
Otherwise, go to Round 2.

Round s(≥ 2): Let

M(Nt−1) ≡ {y ∈M\{xi : ∪s−1
k=1Nk} : py > 0, and y ∈ Di(p)\{xi} for some i ∈ Nt−1}.

If M(Nt−1) = ∅, then let N∗ = ∪s−1
k=1Nk and stop the process.

Otherwise, let Ns ≡ {i ∈ N : xi = y for some y ∈M(Ns−1)}, and go to Round s+ 1.
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Proposition 4 (Property of NC-identifying process): Let R ∈ (RG)n and (z, p) ∈
W (R). Let S be the total round of the NC-identifying process. Then (i) the NC-identifying

process at (z, p) terminates in a finite number of steps, i.e., S < +∞ and (ii) NC = N∗.

Example 4: We illustrateNC-identifying process for (zmin(A,B,C), pmin(A,B,C)) in Figure

4. At Round 1, N1 = {4}. Since N1 6= ∅, go to Round 2. At Round 2, M(N1) = {A,C} and
N3 = {1, 3}. Since M(N1) 6= ∅, go to Round 3. At Round 3, M(N2) = {B} and N3 = {2}.
Since M(N2) 6= ∅, go to Round 4. At Round 4, M(N3) = ∅. Since M(N3) = ∅, then the set
of connected agents is NC = N1 ∪N2 ∪N3.

Since NC = N , Proposition 1 verifies that (zmin(A,B,C), pmin(A,B,C)) ∈ Wmin(3, R).

Example 5: We illustrate NC-identifying process for z(A,B,C) in Figure 5. At Round 1,

N1 = {4}. Since N1 6= ∅, go to Round 2. At Round 2, M(N1) = ∅. Since M(N1) = ∅,
NC = N1 = {4}.
Since NC 6= N , Proposition 1 verifies that z(A,B,C) /∈ Wmin(3, R).

Note that MC is the set of real objects assigned to NC . Thus, once NC is identified, MC

can be immediately obtained and so do MU and NU .

We summarize Stage 2 of Serial Vickrey sub-process as follows:

Stage 2: Given (z, p) ∈ W (k + 1, R) obtained in Stage 1, run NC-identifying process to

identify the set NC of connected agents at (z, p). If NC = N , then (z, p) is an MPE. Then

go to the next step by introducing object k + 2. Otherwise, identify MC , MU , and NU from

NC and go to Stage 3.

4.4 Stage 3 of the Serial Vickrey sub-process

Based on the concepts of connected agents and objects, this subsection provides new char-

acterizations of MPEs, in terms of their structural properties. These characterizations are

essential to Stage 3 of the Serial Vickrey sub-process.

4.4.1 Definition of the IPOIP process and its illustration

Lemma 1 below shows that to obtain an MPE from (z, p) ∈ W (R), we only need to reassign

objects in MU to agents in NU .

Lemma 1: Let R ∈ (RG)n, (z, p) ∈ W (R), and (zmin, pmin) ∈ Wmin(R). Let NU and MU be

defined at (z, p). Then,

(i) |NU | = |MU |,
(ii) for each x ∈MU , C1

+(RNC , x; z) ≤ pmin
x < px, and
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(iii) for each i ∈ NU , xmin
i ∈MU .

The following process is the key to conduct the reassignment process to assign objects

in MU to agents in NU . Let µ be an assignment of MU to NC , and let µ(i) be agent i’s

assigned object at µ. Note that µ is a bijection from NU to MU . Let Ω(MU) be the set of

all bijections from NU to MU .

Definition 7: “I pay others’ indifference prices” (IPOIP) process Let R ∈
(RG)n, (z, p) ∈ W (R), and NU and MU be defined at (z, p). Let µ ∈ Ω(MU). The k−“I
pay others’indifference prices”(IPOIP) process for µ is defined as follows: For each
x ∈MU and each i ∈ NU ,

(i) p0
x ≡ C1

+(RNC , x; z) and z0
i (µ) ≡ (µ(i), p0

µ(i)), and

(ii) for each s = 1, · · · k,

psx(µ) ≡ C1
+(R, x; (zs−1

NU
(µ), zNC )) and zsi (µ) ≡ (µ(i), psµ(i)(µ)).

The intuition behind the IPOIP process is as follows: First, set the staring price of each

unconnected object x ∈ MU by p0
x = C1

+(RNC , x; z). Given an assignment µ ∈ Ω(MU),

each unconnected agent i ∈ NU is tentatively assigned a bundle z0
i (µ) = (µ(i), p0

µ(i)). For

each x ∈ MU , agent i reports his IP for x from z0
i (µ), i.e., Vi(x; z0

i (µ)). Then, the price

of x is updated to p1
x(µ) = C1

+(R, x; (z0
NU

(µ), zNC )). Each unconnected agent i ∈ NU is

assigned the same object but with an updated price, i.e., z1
i (µ) ≡ (µ(i), p1

µ(i)). Similarly,

the price of each x ∈ MU is further updated to p2
x(µ) = C1

+(R, x; (z1
NU

(µ), zNC )), and so

forth. In each s = 1, · · · k, the formation of each agent’s payment psx(µ) takes the feature of

a Vickrey—Clarke—Groves payment.

Example 6: In Figure 5, z(A,B,C) is not an MPE allocation of the economy with objects

A, B and C. Moreover, at z(A,B,C), NU = {1, 2, 3} and MU = {A,B,C}. Thus, there are
six possible assignments of the three unconnected objects to three unconnected agents such

that µa ≡ (A,B,C), µb ≡ (A,C,B), µc ≡ (B,A,C), µd ≡ (B,C,A), µe ≡ (C,B,A), and

µf ≡ (C,A,B) where µλ = (µλ(1), µλ(2), µλ(3)) for each λ = a, . . . , f . Take µa = (A,B,C)

as an example. Figure 6 illustrates an IPOIP process for µa.
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Figure 6: Illustration of the IPOIP process for µ1

Let p0 ≡ (p0
A, p

0
B, p

0
C) = (V4(A;0), V4(B;0), V4(B;0)) = (1, 1, 2). For each i = 1, 2, 3, let

z0
i (µ1) = (µ1(i), p0

µ1(i)), i.e., z
0
1(µa) = (A, 1), z0

2(µa) = (B, 1) and z0
3(µa) = (µa(3), 2).

Each unconnected agent i reports Vi(x; z0
i (µa)) for each unconnected object x. Then, for

each unconnected object x, let

p1
x(µa) ≡ max{p0

x, V1(x; z0
1(µa)), V2(x; z0

2(µa)), V3(x; z0
3(µa))}.

Then, p1
A(µa) = max{1, 1, 0, 3} = 3, p1

B(µa) = max{1, 3, 1, 3} = 3 and p1
C(µa) = max{2, 3.5, 3, 2} =

3.5. For each i = 1, 2, 3, let z1
i (µa) = (µa(i), p

1
µa(i)(µa)), i.e., z

0
1(µa) = (A, 3), z0

2(µa) = (B, 3)

and z0
3(µa) = (µ1(3), 3.5). Again, each unconnected agent i reports Vi(x; z1

i (µa)) for each

unconnected object x. Then, for each unconnected object x, let

p2
x(µa) ≡ max{p1

x(µa), V1(x; z1
1(µa)), V2(x; z1

2(µa)), V3(x; z1
3(µa))}.

Then, p2
A(µa) = max{3, 3, 3, 4.5} = 4.5, p2

B(µa) = 4.5 and p2
B(µa) = 4.5.

We repeat this process |MU | times, where |MU | is the number of unconnected objects.
Since the unconnected objects are A, B and C, |MU | = 2. Thus, we stop at s = 2.

Given µ ∈ Ω(MU), let p0 ≡ (p0
x)x∈MU

, and for each s ≤ k, let ps(µ) ≡ (psx(µ))x∈MU
be the

prices of the k−IPOIP process for µ at round s. In this process, prices are non-decreasing.
Fact 3 (Monotonicity of IPOIP process): Let R ∈ (RG)n, (z, p) ∈ W (R), and MU be

defined at (z, p). Let µ ∈ Ω(MU). In the k−IPOIP process for µ, for each x ∈MU and each

s = 1, · · · , k,
p0 ≤ p1(µ) ≤ · · · ≤ ps(µ).
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4.4.2 Structural characterizations

Based on the IPOIP process, we give the following new structural characterizations of MPE.

Theorem 1 characterizes the structure of MPE by IPOIP processes. This theorem enables

us to obtain an MPE from an equilibrium.

Theorem 1 (Structural characterization of MPE by IPOIP processes): Let R ∈
(RG)n, (z, p) ∈ W (R), and (zmin, pmin) ∈ Wmin(R). Let NC , MC , NU , and MU be defined at

(z, p). Then, the followings hold.

(i) For each x ∈MC , px = pmin
x , and for each i ∈ NC , zi = zmin

i .

(ii) There is µ ∈ Ω(MU) such that

(ii-1) µ is an MPE object assignment over NU , and

(ii-2) for each x ∈MU , pmin
x = p|MU |−1

x (µ) = min
µ′∈Ω(MU )

p|MU |−1
x (µ′).

Example 7: Based on Example 6, we apply this IPOIP process to µb, . . . , µf . The outcomes
of this process for six assignments are summarized as follows:

µa = (A,B,C)

s psA psB psC
0 1 1 2

1 3 3 3.5

2 4.5 4.5 4.5

µb = (A,C,B)

s psA psB psC
0 1 1 2

1 1 3 3.5

2 3.5 3.5 3.5

µc = (B,A,C)

s psA psB psC
0 1 1 2

1 3 3 2

2 3 3 3.5

µd = (B,C,A)

s psA psB psC
0 1 1 2

1 1 2 2

2 1 2 3

µe = (C,B,A)

s psA psB psC
0 1 1 2

1 1 1.5 2

2 1 1.5 2

µf = (C,A,B)

s psA psB psC
0 1 1 2

1 1 2 2

2 2 2 2

For each unconnected object x, pmin
x (A,B,C) = min{p2

x(µλ) : λ = a, . . . , f}, i.e., pmin(A,B,C) =

(1, 1.5, 2). Note that p2(µe) = pmin(A,B,C), and so µe = (C,A,B) is an MPE assignment.

Thus, zmin(A,B,C) = ((C, 2), (B, 1.5), (A, 1),0), as shown in Figure 4.

Remark 3: (i) In Theorem 1, if MU 6= ∅, then the existence of an MPE object assignment
µ ∈MU is guaranteed by Facts 1 and 2 and Lemma 1(iii).

(ii) Let R ∈ (RG)n, (z, p) ∈ W (R), and µ ∈ Ω(MU) be an MPE object assignment over NU .

For a given µ ∈ Ω(MU), if ps(µ) = pmin
MU

for some round s ≤ k in the k−IPOIP process w.r.t.
µ, then ps = · · · = pk(µ).

(iii) Since Ω(MU) is finite, Theorem 1 ensures that the IPOIP process finds the MEPs in

finitely many rounds.
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When MU = ∅, Theorem 1 is equivalent to Proposition 1. The novelty of Theorem 1

consists in characterizing the MEPs and assignments of unconnected objects when MU 6= ∅.
We further characterize the relation between an MPE and the price sequence generated

by an IPOIP process for the “right” object assignment, i.e., the MPE object assignment.

This characterization suggests the possibility that we can find an MPE without exhausting

all assignments in Ω(MU) as in Theorem 1.

Theorem 2 (Structural characterization of MPE by an IPOIP process): Let R ∈
(RG)n, (z, p) ∈ W (R), (zmin, pmin) ∈ Wmin(R), and NU and MU be defined at (z, p). Let

µ ∈ Ω(MU) and s ≤ |MU |. In the |MU | −IPOIP process for µ, the following two statements
are equivalent:

(i) ps−1(µ) = ps(µ);

(ii) ps−1(µ) = pmin
MU
, and µ is an MPE object assignment of NU .

Since the cardinality of |Ω(MU)| is the number of the permutations of MU , when MU is

large, a long time is required to exhaust all assignments in Ω(MU) to compute the MEPs.

Theorem 2 states that if ps−1(µ) = ps(µ) in the |MU | −IPOIP process for some µ ∈ Ω(MU)

and s ≤ |MU |, then ps−1(µ) and µ are identified as the MEPs and assignment before ex-

hausting all assignments in Ω(MU). This fact motivates the following definition.

Definition 8: Let R ∈ (RG)n, (z, p) ∈ W (R), and MU be defined at (z, p). Let µ ∈ Ω(MU)

and p′ ∈ R|MU |. Then, µ succeeds in the k−IPOIP process at round s ≤ k if ps(µ) =

ps−1(µ).

Example 8: In the table for Example 7, p1(µe) = (1, 1.5, 2) = p2(µe). Thus, µe succeeded

in the 3−IPOIP process at round 2. By Theorem 2, this already verifies that p1(µe) = pmin
MU

and µe is an MPE object assignment of NU without running an IPOIP process for µf .

Lemma 1 and Theorems 1 and 2 form the theoretical foundations of the Serial Vickrey

process, together with the following by-products. By Lemma 1, we have the following

Corollary 1: Let R ∈ (RG)n, (z, p) ∈ W (R), and MU be defined at (z, p). Let µ ∈ Ω(MU)

be an MPE object assignment of NU . If for some i ∈ NU and some x ∈ MU , Vi(x; z) <

C1
+(RNC , x; z), then µ(i) 6= x.

Corollary 1 states that an agent i ∈ NU never receives an object x ∈ MU in an MPE

allocation if his IP Vi(x; z) for that object in equilibrium is less than the maximum value

C1
+(RNC , x; z) of the IPs of connected agents for x. In that case, an assignment µ such that

µ(i) 6= x is disqualified as a candidate MPE assignment without running an IPOIP process

for µ. Let the initially qualified set Ω′(MU) be such that

Ω′(MU) ≡ {µ ∈ Ω(MU) : ∀i ∈ NU , Vi(µ(i); z) ≥ p0
µ(i)},
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where p0
x = C1

+(RNC , x; z) for each x ∈MU . To find an MPE assignment, we have to run an

IPOIP process for the object permutation only in Ω′(MU).

Suppose that |MU | = 5. Then, |Ω(MU)| = 5! = 120. If Vi(x; z) < p0
x for some agent

i ∈ NU and object x ∈MU ; then, we can dispense with running an IPOIP process for 4! = 24

assignments. This fact reduces the number of computations needed to obtain the MEPs for

certain cases.

Example 9: Consider (z(A,B,C), p) ≡ ((C, 2.5), (B, 2.5), (A, 2),0), (2.5, 2.5, 2)) ∈ W (R)

constructed in Figure 5. From Example 6, NC = N1 = {4}. Thus, NU = {1, 2, 3} and
MU = {A,B,C}. Note that V1(A; z(A,B,C)) = −0.5 < 1 = C1

+(RNC , A; z(A,B,C)).

Thus, by Corollary 1, we do not need to run an IPOIP process for µa = (A,B,C) and

µb = (A,C,B). Note further that V3(C; z(A,B,C)) = 1 < 2 = C1
+(RNC , C; z(A,B,C)).

Thus, also by Corollary 1, we do not need to run an IPOIP process for µc = (B,A,C).

Accordingly, we need to run an IPOIP process only for assignments in Ω′(MU) = {µd, µe, µf}
to compute the MEPs.

When running the |MU | −IPOIP process, in some cases, p|MU |(µ) needs to be computed.

To do so, each agent i ∈ NU needs to report Vi(x; z
|MU |−1
i (µ)) for each object x ∈ MU . By

Theorem 1, we have the following.

Corollary 2: Let R ∈ (RG)n, (z, p) ∈ W (R), and MU be defined at (z, p). Let µ ∈ Ω(MU)

be an MPE object assignment of NU . Let µ′ ∈ Ω(MU). If for some i ∈ NU and some x ∈MU ,

Vi(x; z
|MU |−1
i (µ′)) < C1

+(RNC , x; z), then µ(i) 6= x.

Corollary 2 states that an agent i ∈ NU never receives an object x ∈ MU in an MPE

allocation if his IP Vi(x; z
|MU |−1
i (µ)) for x at the output of the|MU | −IPOIP process for µ

is less than the maximum value of the IPs of connected agents for x. In that case, an

assignment µ such that µ(i) = x is also disqualified as a candidate MPE assignment without

running an IPOIP process for µ. Given µ ∈ Ω(MU), let the set EX(µ) of disqualified
assignments by µ be such that

EX(µ) ≡ {µ′ ∈ Ω(MU) : ∃i ∈ NU ,∃x ∈MU s.t. µ′(i) = x and Vi(x; z
|MU |−1
i (µ)) < p0

x},

where p0
x = C1

+(RNC , x; z) for each x ∈MU . Then, there is no need to run an IPOIP process

for any object permutation in EX(µ).

Example 10: Take µd = (B,C,A) in Example 7. In the table, p|MU |−1(µ4) = (1, 2, 3). Thus,

z
|MU |−1
1 (µd) = (B, 2), z|MU |−1

2 (µd) = (C, 3) and z|MU |−1
3 (µd) = (A, 1). Thus, V1(A; z

|MU |−1
1 (µd)) =

0 < 1 = p0
A and V3(C; z

|MU |−1
3 (µd) = 0.5 < 2 = p0

C . Thus, EX(µd) = {µa, µb, µc}.
Definition 9: Let R ∈ (RG)n, (z, p) ∈ W (R), and MU be defined at (z, p). Let µ ∈ Ω(MU)

and p′ ∈ R|MU |. Then, µ survives the k−IPOIP process against p′ if pk(µ) ≤ p′.
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By Theorems 1 and 2, we have the following.

Corollary 3: Let R ∈ (RG)n, (z, p) ∈ W (R), and MU be defined at (z, p). Let µ ∈ Ω(MU)

be an MPE object assignment of NU and µ′ ∈ Ω(MU). Then, µ survives the |MU | −IPOIP
process against p|MU |−1(µ′) and p.

Corollary 3 states that the MPE object assignment can always survive in the |MU | −IPOIP
process against any other assignment in Ω(MU).

Example 11: Take µe = (B,C,A) in Example 7. Recall that |MU | = 3. Since p|MU |(µe) =

(1, 1.5, 2), µe survives the3−IPOIP process against p|MU |−1(µλ) for each λ 6= e, and p =

(2, 2, 2.5) in Figure 5, and also succeeds in the 3−IPOIP process against p|MU |−1(µλ) for

each λ 6= e, and p = (2, 2, 2.5).

4.4.3 MPE-assignment-finding process

Based on the results obtained in Subsubsection 4.4.2, we are ready to propose the key

adjustment process in Stage 3. The basic idea of Stage 3 is as follows: Using the above

facts, we propose a process to find an MPE assignment for a k + 1-object economy. In this

process, we first restrict the assignments to Ω′(MU). Then, we check assignments in Ω′(MU)

one by one by running IPOIP processes. Once some assignment µ ∈ Ω′(MU) succeeds in the

|MU | −IPOIP process, µ is identified as an MPE assignment. If an assignment µ ∈ Ω′(MU)

does not succeed in the |MU | −IPOIP process, we check whether it survives against the
output price of the IPOIP process for the previous assignment. If the current assignment

survives, it disqualifies some of the remaining assignments, and they are removed from the

qualified assignments, and so forth.

Definition 10: MPE-assignment-finding (MPEAF) process Let (z, p) ∈ W (k +

1, R) be generated in Stage 2. Collect Ω′(MU) for (z, p).

Session 0: Set µ∗0 ≡ xMU
, p∗0 ≡ pMU

, and Ω∗0(MU) ≡ Ω′(MU). Choose µ1 ∈ Ω∗0(MU) and

go to Session 1.

Session s(≥ 1): Run the |MU | −IPOIP process for µs.
Phase s−1: If µs succeeds at some round r ≤ |MU |, then terminate the MPEAF process

by setting (z∗, p∗) as µ∗s ≡ µs and p
∗s ≡ pr(µs).

If µs does not succeed at any round r ≤ |MU |, then go to Phase s− 2.

Phase s− 2: If µs survives against p
|MU |−1(µs−1), go to Phase s− 2− 1. Otherwise, go

to Phase s− 2− 2.

Phase s− 2− 1: Set µ∗s ≡ µs, and p
∗s ≡ p|MU |−1(µs). Collect

EX(µs) ≡ {µ ∈ Ω∗s−1(MU) : ∃i ∈ NU ,∃x ∈MU s.t. µ(i) = x and Vi(x; z
|MU |−1
i (µs)) < p0

x},
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and set Ω∗s(MU) ≡ Ω∗s−1(MU)\(EX(µs) ∪ {µs}). Then, choose µs+1 ∈ Ω∗s(MU), and go to

Session s+ 1.

Phase s− 2− 2: Set µ∗s ≡ µ∗s−1, p∗s ≡ p∗s−1, and Ω∗s(MU) ≡ Ω∗s−1(MU)\{µs}. Then,
choose µs+1 ∈ Ω∗s(MU), and go to Session s+ 1.

Proposition 5 guarantees that the MWEAF process finds an MPE allocation in a finite

number of steps.

Proposition 5: Let R ∈ (RG)n and (z, p) ∈ W (k + 1, R) be generated in Stage 2.

(i) Let µ∗0 ≡ xMU
and p∗0 ≡ pMU

. The MPEAF process generates a finite sequence of

allocations {(µ∗i, p∗i}Ti=0 whose price sequence is nonincreasing, i.e., T < +∞, and for each
t = 1, · · · , T , pt ≤ pt−1.

(ii) Let (z∗, p∗) be such that

(a) for each x ∈MU , p∗x = p∗Tx , and for each i ∈ NU , z∗i = (µ∗T (i), p∗Tµ∗T (i)), and

(b) p∗TMC
= pMC

and z∗TNC = zNC .

Then, (z∗, p∗) ∈ Wmin(k + 1, R).

Example 12: We illustrate the MPEAF process given the equilibrium depicted by Figure 5.
Recall that (z(A,B,C), p) = ((C, 2.5), (B, 2.5), (A, 2),0), (2, 2.5, 2.5)) ∈ W (R). In Example

5, we identified that NC = {4}, NU = {1, 2, 3}, MU = {A,B,C}.
In Session 0, µ∗0 = (C,B,A) and p∗0 ≡ (2, 2.5, 2.5). Using the result of Example 9, we

set Ω∗0(MU) = Ω′(MU) = {µd, µe, µf}. Choose µ1 = µd ∈ Ω∗0(MU), and go to Session 1.

In Session 1, run the 3−IPOIP process for µ1. As the table in Example 7 indicates,

p2
C(µd) = 3 > p∗0C . Thus, µ1 does not survive, and set µ

∗1 ≡ µ∗0, p∗1 ≡ p∗0, and Ω∗1(MU) ≡
Ω∗0(MU)\{µ1} = {µe, µf}. Choose µ2 = µf ∈ Ω∗1(MU), and go to Session 2.

In Session 2, run the 3−IPOIP process for µ2. Based on the table for µf in Example 7,

we further have p3
A(µ2) = 2, p3

B(µ2) = p3
C(µ2) = 2.5. Since p3(µ2) ≤ p∗1, then µ2 survives

in the 3−IPOIP process against p∗1. Set µ∗2 ≡ µ2, and p
∗2 ≡ p2(µ2) = (2, 2, 2). In such

a case, EX(µ2) = ∅. Thus, set Ω∗2(MU) ≡ Ω∗1(MU)\(EX(µ2) ∪ {µ2}) = {µe}. Choose
µ3 = µe ∈ Ω∗2(MU), and go to Session 3.

In Session 3, run the 3−IPOIP process forµ3. As the table for µe in Example 7 indicates,

p1(µe) = p2(µe). Thus, µe succeeds in the 3−IPOIP process. Thus, set µ∗3 ≡ µ3, p
∗3 ≡

p2(µ3), and terminate at (µ∗3, p∗3).

As we discuss in Example 7, indeed p∗3 = (1, 1.5, 2) is the MEP for A, B, and C. The

MPEAF process generates the sequence {(µ∗i, p∗i)}3
i=0 of allocations. As Proposition 5 states,

the generated price sequence is nonincreasing, p∗0 ≥ p∗1 ≥ p∗2 ≥ p∗3.

We summarize Stage 3 of the Serial Vickrey sub-process as follows:
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Stage 3: Given NC , MC , MU , and NU generated in Stage 2, run the MPEAF process to

obtain an MPE for a k+ 1-object economy. Then, go to the next step by introducing object

k + 2.

4.4.4 Summary of the Serial Vickrey sub-process

Since the Serial Vickrey sub-process has many elements, we summarize it.

Serial Vickrey sub-process for M(k + 1)

Stage 1: Given (z∗, pmin) ∈ Wmin(k,R) in Step k, run the E-generating process to obtain

an equilibrium (z, p) ∈ W (k + 1, R). Then, go to Stage 2.

Stage 2: Run the NC-identifying process to identify the set NC of connected agents in (z, p).

If NC = N , then (z, p) ∈ Wmin(k + 1, R), and go to the next step for M(k + 2). Otherwise,

identify MC , MU , and NU from NC , and go to Stage 3.

Stage 3: Run the MPEAF process to obtain an MPE for a k + 1-object economy, and go

to the next step for M(k + 2).

By Propositions 2, 3, 4 and 5, we have the following.

Proposition 6: Let R ∈ (RG)n, 1 ≤ k ≤ m, (z, p) ∈ W (k,R), and the Serial Vickrey

sub-process generates (z∗, p∗) ∈ Wmin(k + 1, R) in a finite number of steps.

Proposition 6 is a direct outcome of Proposition 5.

4.5 Summary of Serial Vickrey process

Since the Serial Vickrey process also has many elements, we summarize it.

Serial Vickrey process

Let R ∈ (RG)n. Initialize the allocation for each agent as 0. Introduce the object into

the economy sequentially by its index, 1, 2, · · · .
Step k(≥ 1): Introduce object k. Call back the agents and objects tentatively exiting the

market. Run the Serial Vickrey sub-process with respect to the economy with k objects. If

k = m, stop at the output of the Serial Vickrey sub-process. Otherwise, go to Step k + 1.

By Proposition 6, we have the following.

Theorem 3: Let R ∈ (RG)n. The Serial Vickrey process converges to an MPE in a finite

number of steps.
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Remark 4: The order of introducing objects into the economy is independent of the com-
putation of pmin ∈ P(m,R) since pmin is unique for the m-object economy (Fact 2).

We add two remarks to conclude. The first shows that for some “well-structured”pref-

erence settings, the Serial Vickrey process obtains an MPE with a one-shot IPOIP process

in each Serial Vickrey sub-process. The second discusses the application of Theorems 1 and

2 in the task assignment model.

Remark 5 (i): In the multi-item auction model under quasi-linear preferences, the integer

value assumption plays an important role in running the existing auctions, as discussed in

the introduction. If the Serial Vickrey process is applied, this assumption can be dropped.

Notably, quasi-linearity simplifies Stage 3 of the Serial Vickrey sub-process, and so does the

Serial Vickrey process. Let (z, p) ∈ W (k+1, R) be the output of Stage 1 of the Serial Vickrey

sub-process. Quasi-linearity implies that xMU
is an MPE object assignment of unconnected

objects at (z, p). Thus, in Stage 3, we only run one IPOIP process with respect to xMU
, and

the obtained prices are the MPE prices for MU .

(ii) In an Alonso-type discrete housing market, agents’ utility profile satisfies “identical

common-ranking,”and so the object assignment satisfies positive assortative matching, i.e.,

agents with higher incomes obtain houses of better quality.11 Such a property simplifies

Stage 3 of the Serial Vickrey sub-process. The reasoning is the same as that in (i).

Remark 6: The the multi-task assignment model of Sun and Yang (2003) and Svensson
(2007) describes an assignment market without outside options. In such a model, each

task is endowed with limited compensation, and each agent must take a task with certain

amount of compensation, even if the obtained bundle is worse than 0. It is known that there

is an envy-free allocation, the “fair and optimal allocation,” supported by coordinate-wise

minimum compensation among all the envy-free allocations. Theorems 1 and 2, via Stage 3

of the Serial Vickrey sub-process, yield a fair and optimal allocation.

5 Application of the Serial Vickrey process to the housing market

The housing market exhibits indivisibility and heterogeneity, and each agent generally has

unit-demand preferences with income effects. The housing market accords with the main

features of our model. As suggested by macroeconomists and urban economists, e.g., Duran-

ton and Puga (2015), when the assignment model is applied to the housing market (or urban

land use), its merit is that it can accommodate heterogeneity in both houses and agents.

For example, existing works employ the assignment model to conduct quantitative analysis

11See Section 5 below or Zhou and Serizawa (2018) for details.
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of government policies and their effects on the housing market and citizens’welfare, e.g.,

Kaneko et al. (2006), Maattanen and Tervio (2014), and Landvogit et al. (2015).

On the other hand, the cost of using the assignment model to study the housing market

is its substantially greater technical complexity than classical methods. The complexity

comes from the equilibrium computation. Equilibrium computation is a central aspect of

quantitative analysis, as it is used to calibrate the agents’s utility functions. For tractability,

the above works additionally assume that (i) agents have the same utility function and differ

only in their income levels and (ii) houses have the “common-ranking feature.”Owing to

these two assumptions, equilibria can be computed by a “recursive equation system.”

However, these two assumptions are not suitable except in specific environments, for

example, in the case of the monocentric city, i.e., “an Alonso-type discrete housing market.”

In other words, the assumptions are not suitable in the case of multicentric city. Even if a

real-life situation resembles the monocentric city model, the distribution of housing prices

and agents’locations differ from theoretical predictions (Tabuchi, 2018). Moreover, in the

housing market, common-tiered preferences may prevail (Zhou and Serizawa, 2018).

Without these two assumptions, “the recursive equation system”fails to work (Zhou and

Serizawa, 2018). Going beyond these two assumptions introduces further heterogeneity in

the housing market, which is an important area for research on the housing market (Duranton

and Puga, 2015). A natural question is whether we have an alternative way to conduct the

equilibrium computation for quantitative analysis. The Serial Vickrey process provides us

with a solution.

For completeness, we first review the housing market model. Let N , M , and L be

the same notations defined in Section 3. Each agent i ∈ N is endowed with an income level

Ii ∈ R++. For agent i ∈ N , let xi ∈ L denote the object that agent i receives and ri ≡ Ii−pxi
as the residual money that agent i retains after paying the house price pxi . A generic bundle

for agent i is a pair zhi ≡ (xi, ri) ∈ L× R. Agents have preferences on L× R, with a utility
representation ui. Assume that ui satisfies the following property.

Monotonicity: For each xi ∈ L and each pair ri, r′i ∈ R, if ri < r′i, ui(xi, ri) < ui(xi, r
′
i).

Finiteness: For each ri ∈ R and each pair xi, x′i ∈ L, there is r ∈ R such that ui(xi, ri) =

ui(x
′
i, r).

Continuity: For each xi ∈ L and each ri ∈ R, Ui(xi, ri) is continuous with respect to ri.
Indispensability: For each xi ∈M , ui(0, Ii) > ui(xi, 0).

A utility function ui represents a general housing market preference if it satisfies the
four properties just defined. Let UH be the class of such utility functions. Let u ≡ (ui)i∈N

be a utility profile. A (feasible) allocation is an n-tuple zh ≡ (x, r) ≡ (zh1 , . . . , z
h
n) ≡
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((x1, r1), . . . , (xn, rn)) ∈ [L × R]n such that (x1, . . . , xn) ∈ X. We denote the set of feasible
allocations by Zh. Let agent i′s demand set with budget Ii at p for ui be defined as
Di(p, Ii) ≡ {x ∈ L : px ≤ Ii and (x, px)Ri (y, py), for each y ∈ L such that px ≤ Ii}. Let
I ≡ (Ii)i∈N be an income profile.

Definition 11: Let u ∈ (UH)n and I ∈ (R++)n. A pair (x, p) ∈ Zh × Rm+ is a housing
market equilibrium for (u, I) if

for each i ∈ N , xi ∈ Di(p, Ii) and ri = Ii − pxi , (E’-i)

for each y ∈ M , if for each i ∈ N , xi 6= y, then py = 0. (E’-ii)

Let W (u, I) denote the set of housing equilibria for (u, I). Fact 4 is a parallel result

of Facts 1 and 2 in our model.

Fact 4 (Quinzii, 1984): For each u ∈ (UH)n and each I ∈ (R++)n, there is a housing market

equilibrium, and one of the available equilibria is supported by the coordinate-wise minimum

prices, pmin(u, I).

The technical diffi culties of equilibrium computation on u ∈ (UH)n require the following

additional assumptions on the utility functions, e.g., Kaneko et al. (2006), Maattanen and

Tervio (2014), and Landvogit et al. (2015).

Specifically, let π ≡ (π(1), . . . , π(m + 1)) be a permutation of objects or houses in L,

where π(1) denotes the house with the highest quality, π(2) denotes the house with the

second-highest quality, and so forth. W.o.l.g., let π ≡ (m, . . . , 0). Assume that ui ∈ UH

additionally satisfies the following assumptions.

Common-quality-ranking: For each i ∈ N and each r ∈ R+, ui(m, r) > · · · > ui(0, r).

Normality: For each pair x, y ∈ L, each pair r, r′ ∈ R+ with r < r′, if ui(x, r) = ui(y, r
′)

and d > 0, then ui(x, r + d) > ui(y, r
′ + d).

An utility function ui ∈ UH represents a common-ranking preference if it satisfies
the above two properties. Let URH be the class of utility functions representing common-

ranking preferences. Moreover, assuming that agents have identical utility functions is also

important. A utility profile uir ≡ (ui)
n ∈ (URH)n is an identical common-ranking

utility profile if for each pair i, j ∈ N , ui(·, ·) = uj(·, ·). Let (U IRH)n be the set of identical

common-ranking utility profiles. A tuple (N,M, uir, I) describes the Alonso-type discrete

housing market.

An Alonso-type discrete housing market is explicitly and implicitly used to conduct

quantitative analysis of the housing market, e.g., Kaneko et el. (2006), Maattanen and

Tervio (2014), and Landvogit et al. (2015). The following fact forms the central theoretical
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foundation of such quantitative analysis. Note that in those works, Fact 5 may take different

expressions, but its essence is the same.

Fact 5 (Kaneko et el. 2006; Maattanen and Tervio, 2014; Zhou and Seriazawa, 2018): Let
u ∈ (U IRH)n and I ∈ (R++)n. In an equilibrium (x, p) ∈ W (u, I),

(ii) (Positive assortative matching) (ii-1) if m + 1 ≤ n, xn = m, · · · , xn−m+1 = 1, and

xn−m = · · · = x1 = 0, and

(ii-2) if m+ 1 > n, xn = m, · · · , x1 = m− n+ 1 and

(iii) (Recursive equation system) (iii-1) if m + 1 ≤ n, pn−m = 0, and for each k ∈
{n−m+ 1, · · · ,m− 1}, un−m+k(k, I

′
n−m+k − pk) = un−m+k(k + 1, I ′n−m+k − pk+1), and

(iii-2) if m + 1 > n, p1 = · · · = 0 ≤ pm−n+1 and for each k ∈ {m − n + 1, · · · ,m − 1},
un−m+k(k, I

′
n−m+k − pk) = un−m+k(k + 1, I ′n−m+k − pk+1).

(iv) in the MPE, p1 = · · · = pm−n+1 = 0.

Among all the equilibria, the MPE is of particular interest and used to calibrate the

agents’utility functions, e.g., Maattanen and Tervio (2014). The following example illus-

trates the calibration process.

Example 13: Let M = {h0, h1, h2} and N = {1, 2, 3}. Let σ : L → R++ be a scoring

function such that σ(0) < σ(h1) < σ(h2) < σ(h3). Each score represents the quality of the

corresponding house. Let I1 < I2 < I3 and α ∈ (0, 1). For each i ∈ N , let ui(σ(h), Ii− ph) =

σ(h) + (Ii − ph)1−α. Suppose that the income data I, the house quality data σ(M), and the

housing price data p are available. Given an arbitrary α, insert the income data I and house

quality data σ(M) into the recursive equation system; we can then obtain the estimated

prices p̂ (the estimated MEPs). By changing the values of α, we can obtain a sequence of

estimated prices. Based on the comparison of p̂ and p, we calibrate α.

If different agents have different α values, then the corresponding utility profile does not

satisfy the identical common-ranking property, and the recursive equation system fails to

work. However, if we can construct the relation between the MPE in our model and the

MPE in the housing market, by running the Serial Vickrey process, we can indirectly obtain

the MEPs in the housing market.

Theorem 4: For each u ∈ (UH)n and each I ∈ (R++)n, there is an R ∈ (RG)n such that

pmin(u, I) = pmin(R).

The proof of Theorem 4 is derived by constructing R. The construction is intuitive:

Let R ∈ (RG)n be such that for each x, y ∈ L, each t, t′ ∈ R, (x, t)Ri (y, t
′) if and only if

ui(x, Ii−t) ≥ ui(y, Ii−t′). Thus, for each (x, px) ∈ L×R and each y ∈ L, Vi(y; (x, px)) = Ii−r
where r is the solution to ui(y, Ii− r) = ui(x, Ii− px). Recall that the Serial Vickrey process
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obtains the MEPs by using IPs. Thus, we could use the equation ui(y, Ii−r) = ui(x, Ii−px)
to collect required IPs Vi(y; (x, px)) for R. Whenever we have pmin(R), pmin(u, I) is also

obtained. Note that the computation process for the IPs can be completed by computer

programming. Thereafter, by employing the same econometric method as in, e.g., Maattanen

and Tervio (2014), we can calibrate the utility function.

6 Related literature

6.1 Properties and characterizations of MPE and MPE rules

Researchers study MPE in an assignment market with unit-demand agents. When agents

have quasi-linear preferences, Leonard (1983) demonstrates the equivalence between MPE

and Vickrey allocations. Mishra and Talman (2010) characterize MPE by using “overde-

manded sets”and “underdemanded sets.”Although when agents have general preferences,

the equivalence relation between the MPE and Vickrey allocations does not hold, Alkan and

Gale (1990) and Morimoto and Serizawa (2015) show that the characterizations of the MPE

by overdemanded sets and underdemanded sets still hold.

The MPE rule, a mapping assigning to each preference profile an MPE for the profile,

has also attracted considerable attention. The MPE rule satisfies desirable properties such

as effi ciency, strategy-proofness, fairness, anonymity, and individual rationality. Moreover,

the MPE rule is a unique rule satisfying properties for the class of quasi-linear preferences by

Holmstrom (1979) and Ashlagi and Serizawa (2012) and for the class of general preferences

by Sakai (2008), Saitoh and Serizawa (2008), Morimoto and Serizawa (2015), Kazumura et

al. (2017), and Zhou and Serizawa (2018).

Our structural characterizations demonstrate the dynamic properties of the MPE and are

thus different from the static properties of the equilibria addressed in the above literature.

Note that the MPE rule is simply a mapping, not a step-by-step process. Although the

results in the above literature demonstrate how attractive the MPE rule is, they are silent

on how to compute MPE allocations, which is the focus of the present paper.

6.2 Price adjustment process in the assignment market

Researchers also study how to compute MPE in an assignment market with unit-demand

agents. Since Crawford and Knoer (1981) and Demange et al. (1986) developed processes to

compute the MPE, many subsequent authors, such as Alkan (1992), Hatfield and Milgrom

(2005), Mishra and Parkes (2009), and Andersson and Erlanson (2013), have proposed vari-
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ants. Although these processes converge to the MPE in some environments, none of them

compute the exact MPE in our general model. This fact is demonstrated by the examples

in Section 2.

Andersson and Svensson (2018) additionally introduce price controls into our model and

propose a finite ascending-price sequence that terminates at a “minimum rationing price

equilibrium.”Without price controls, their proposed equilibrium coincides with the MPE.

Although their proposed price sequence is finite, they do not specify how to identify two

adjacent prices in the sequence in a finite number of steps. Our result is a complement of

theirs in the sense that the Serial Vickrey process fills this theoretical gap.

An exchange economy (with indivisibility and money) and a two-sided matching market

for general preferences contain our model as a special case. Thus, our research is also related

to Quinzii (1984) and Herings (2018). In the exchange economy, Quinzii (1984) uses the

Scarf Lemma (Scarf, 1967) to constructively demonstrate the existence of the core. This

implies that the Scarf method can find an equilibrium in our model. The Scarf method

differs from the Serial Vickrey process in the following respects: First, the Scarf method

does not imply any structural characterizations of the equilibria, i.e., Theorems 1 and 2. By

contrast, Theorems 1 and 2 are the theoretical basis of the our process. Second, the Serial

Vickrey process contains an iterative way to obtain the equilibrium, instead of exhausting

all the possible object assignments and prices as in the Scarf method. Third, as stated in

the introduction, our approach has considerably less demanding information requirements

than the Scarf method.

Herings (2018) extends Shapley and Shubik (1975)’s matching market by allowing two-

sided object price controls. A price adjustment process, in the spirit of Crawford and Knoer

(1981), is proposed to demonstrate the existence of stable outcomes in the discrete market,

the limit result of which implies the existence result in the continuous market. When applying

such a process in our settings, it coincides with the approximate DGS auction. As discussed

in Section 2, this is different from the Serial Vickrey process.

Using the same model as ours, Caplin and Leahy (2014) establish a formula to compute

the MEP using abstract graph structures. Given an object assignment and a graph of DCPs,

they require agents to report their IPs along the path to compute a price vector. First, given

an assignment of m objects, the formula maximizes the sum of prices over the graphs, the

total number of which is
m∑
k=1

(
m

k

)
k ·mm−1−k. Then, the formula minimizes the sum over

object assignments to obtain the MEP. Since the number of possible object assignments

is max{m,n}Pmin{m,n}, the total number of cases that needs to be examined in their formula
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is extremely large if n or m is large, as is the number of rounds that agents report their

IPs. Note that the number of computations of the IPOIP process in the last step is the

dominant factor in the counterpart of the Serial Vickrey process. On the other hand, given

an assignment of m objects, the IPOIP process is conducted m rounds. Moreover, the

maximal number of possible object assignments in an IPOIP process is (min{m,n})!. These
numbers are not so large if n or m is a moderate number.12 This comparison illustrates the

merits of the Serial Vickrey process, which introduces objects one by one and makes use of

structural properties of equilibria.

In the two-sided matching model, Alaei et al. (2016)’s results also suggest a process

to compute the exact MPE in our model. Similar to ours, in the process of Alaei et al.

(2016), an MPE of an economy is computed based on the equilibria of its subeconomies,

and agents report their IPs from the equilibria of subeconomies. However, their process

requires that one compute the equilibria of all the subeconomies, while our process requires

the computation of the equilibria of a much small number of subeconomies.13 As a result, the

number of rounds of reporting and the total number of IPs agents report in our process are

much smaller. This is also a merit of the Serial Vickrey process, which introduces objects one

by one and makes use of structural properties of equilibria. For some applications, e.g., in

Remark 5, our process has the merit of convergent speed. Furthermore, our process contains

new applications not covered by Alaei et al. (2016), e.g., in Remark 6.14

12For example, if n = 10 and m = 3,

P (max{m,n},min{m,n}) ·
m∑
k=1

(
m

k

)
k ·mm−1−k = 720 · 16 = 11520

(min{m,n})! ·m = 3! · 3 = 18

13For instance, consider the case in which there are more agents than objects, i.e., n > m. In the

worst-case scenario, the number of subeconomies our process needs to compute is m + 2! + · · · + m!. It
is independent of n. On the other hand, the number of subeconomies their process needs to compute is

m · n +
m−1∑
k=1

m! · n!\(m − k)! · (n − k)!. For example, if n = 10 and m = 3, our process involves at most 11

subeconomies, while their process entails 4890 subeconomies to be considered.
14The starting point of Alaei et al. (2016)’s method is the null bundle, and in their process, no agent

receives a tentative bundle worse than the null. However, this is not the case in Remark 6.
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6.3 Housing market in the assignment model

The assignment model has advantages in quantitative analysis, e.g., the calibration of agents’

utility functions, of the housing market. Of the existing approaches, the Alonso-type housing

market and similar ones receive particular attention, e.g., Kaneko et el. (2006), Maattanen

and Tervio (2014), and Landvogit et al. (2015). As discussed in Section 4, the recursive

equation system plays an important role in quantitative analysis but requires the imposition

of several assumptions, which hold only in specific environments.

The Serial Vickrey process can be applied to more general environments where the re-

cursive equation system fails to work. Thus, it contributes a methodological development in

the quantitative analysis of the housing market described by the assignment model.

7 Concluding remarks

The assignment market with unit-demand agents covers many real-life applications. The

MPE rule, which has several attractive properties, is often suggested as a desirable candi-

date to solve allocation problems, especially when agents’preferences exhibit income effects.

However, the MPE rule is diffi cult to implement.15 We provide a price adjustment process,

the Serial Vickrey process, which implements the MPE rule. Thus, the Serial Vickrey process

can be used to solve allocation problems whenever MPE rules are desirable candidates.

We also relate the Serial Vickrey process to its potential application to quantitative

housing market research using the assignment model. Our process helps researchers to

introduce greater heterogeneity in both houses and agents and study issues that cannot be

addressed by existing techniques. For example, the Serial Vickrey process can be used to

investigate the housing market in a metropolitan area with multiple city centers and calibrate

agents’utility functions.
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Appendix
Let |·| denote the cardinality of a set.

Definition: (i) A non-empty set M ′ ⊆ M of objects is overdemanded at p for R if

|{i ∈ N : Di(p) ⊆M ′}| > |M ′|.
(ii) A non-empty set M ′ ⊆M of objects is (weakly) underdemanded at p for R if

[∀x ∈M ′, px > 0]⇒ |{i ∈ N : Di(p) ∩M ′ 6= ∅}| (≤) < |M ′| .

Fact A.1 (Mishra and Talman, 2010).16 For each R ∈ (RG)n, p is an equilibrium price for

R if and only if no set is overdemanded and no set is underdemanded at p for R.

Fact A.2 (Alkan and Gale, 1990; Morimoto and Serizawa, 2015). For each R ∈ (RG)n, p is

an MEP for R if and only if no set is overdemanded and no set is weakly underdemanded

at p for R.

Fact A.3: Let R ∈ (RG)n, (z, p) ∈ W (R), andMC be defined at (z, p). Let a non-empty set

M ′ ⊆MC be such that for each x ∈M ′, px > 0. Then, |{i ∈ N : Di(p) ∩M ′ 6= ∅}| > |M ′|.
Proof : Since (z, p) ∈ W (R), and for each x ∈M ′, px > 0, then by Fact A.1,

|{i ∈ N : Di(p) ∩M ′ 6= ∅}| ≥ |M ′|. To show “>”, we proceed by contradiction. Suppose
that |{i ∈ N : Di(p) ∩M ′ 6= ∅}| = |M ′|. Then, by M ′ ⊆MC ,

for each i ∈ N such that Di(p) ∩M ′ 6= ∅, xi ∈M ′, and i ∈ NC . (∗)

Let i ∈ N such that xi ∈M ′. Then by (∗), i ∈ NC . By xi ∈M ′, pxi > 0. By Definition 2,

there is a sequence {iλ}Λ
λ=1 of Λ distinct agents (2 ≤ Λ ≤ min{m+ 1, n}) such that

(a) xi1 = 0 or pxi1 = 0,

(b) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0,

(c) xiΛ = xi, and

(d) for each λ ∈ {1, · · · ,Λ− 1}, {xiλ , xiλ+1
} ∈ Diλ(p).

Claim: Let l = 1, · · · ,Λ−1 and N(l) ≡ {iΛ−1, · · · , iΛ−l}. Then, for each j ∈ N(l), xj ∈M ′.

Step 1: The Claim holds for l = 1.

By (c), xiΛ = xi ∈M ′. By (d), DiΛ−1
(p) ∩M ′ 6= ∅. Thus by (∗), xiΛ−1

∈M ′.

Induction hypothesis: The Claim holds for s such that 1 ≤ s < Λ− 1.

Step 2: The Claim holds for l = s+ 1.

By induction hypothesis, xiΛ−s ∈ M ′. By (d), xiΛ−s ∈ DiΛ−(s+1)
(p). Thus DiΛ−(s+1)

(p) ∩
M ′ 6= ∅. Thus by (∗), xiΛ−(s+1)

∈M ′.

16Mishra and Talman (2010)’s result also holds for general preferences.
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Let l = Λ − 1. The above Claim implies that for each j ∈ {i1, · · · , iΛ−1}, xj ∈ M ′.

If |Λ| > |M ′|, then the feasibility condition is violated. If |Λ| ≤ |M ′|, then by xi1 ∈ M ′,

pxi1 > 0 and (a) is violated. Thus |{i ∈ N : Di(p) ∩M ′ 6= ∅}| = |M ′| does not hold.Q.E.D.

Proof of Proposition 1

Proof : We prove Proposition 3 by showing (i)=⇒(ii)=⇒(iii)=⇒(i).
Step 1: (i)=⇒(ii), i.e., p = pmin =⇒ N = NC

It is straightforward that NC ⊆ N . For each i ∈ N , if pxi = 0, then by Remark 2(iii),

i ∈ NC and if pxi > 0, by Corollary 2 in Morimoto and Serizawa (2015) and Definition 3,

i ∈ NC . Thus N ⊆ NC . Thus N = NC .

Step 2: (ii)=⇒(iii), i.e., N = NC =⇒M = MC .

It is straightforward that MC ⊆ M . For each x ∈ M , if there is some i ∈ N such that

xi = x, then by Definition 2, x ∈ MC . Otherwise, x is unassigned and by Definition 2,

x ∈MC . Thus M ⊆MC . Thus M = MC .

Step 3: (iii)=⇒(i), i.e., M = MC =⇒ p = pmin.

Since (z, p) ∈ W (R), then p ≥ pmin. To prove p = pmin, we proceed by contradiction.

Suppose that there is a non-empty set M ′ ⊆ M such that for each x ∈ M ′, px > pmin
x ≥ 0.

Since M = MC , then M ′ ⊆MC . Since (z, p) ∈ W (R), then by Fact A.3,

|{i ∈ N : Di(p) ∩M ′ 6= ∅}| > |M ′| .

Thus, for each i ∈ N such that Di(p) ∩M ′ 6= ∅, by pmin
M ′ < pM ′ , Di(p

min) ⊆M ′. Thus∣∣{i ∈ N : Di(p
min) ⊆M ′}

∣∣ > |M ′| .

Thus M ′ is overdemanded at pmin, violating Fact A.2. Thus p = pmin. Q.E.D.

Proof of Proposition 3

Proof : The E-generating process terminates either at Phase 1 or Phase 2. We prove that z
generated in either case is an equilibirum.

The Case of Phase 1: Let z be the output of Phase 1. In this case, C1(R, k + 1; z∗) ≤ 0

and z = z∗. Since z = z∗, then for each i ∈ N and each x ∈M(k) ∪ {0},

zi = z∗i Ri
Def of Equilibirum

(x, pmin
x ) = (x, px)

and for object k + 1,

zi = z∗i Ri
C1(R,k+1;z∗)≤0

(k + 1, pk+1).
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Thus, (z, p) satisfies (E-i). It is straightforward that (z, p) satisfies (E-ii).

The Case of Phase 2: Let z be the output of Phase 2. In this case, C1(R, k + 1; z∗) > 0,

and there is i ∈ N ′ such that z∗i = (k + 1, C2(R, k + 1; z∗)).

For each x ∈M(k + 1) ∪ {0},

zi Ri
C2

+(R,k+1;z∗)≤C1(R,k+1;z∗)
z∗i

Ri
Def of Equilibirum

(x, pmin
x ) = (x, px).

For each il ∈ {iλ}Λ−1
1 and each x ∈M(k) ∪ {0},

zil = z∗il+1
Iil
(ii)
z∗il Ril
Def of Equilibirum

(x, pmin
x ) = (x, px),

and for object k + 1,

zil = z∗il+1
Iil z

∗
il

Ril
Vil (k+1;z∗il

)≤C2
+(R,k+1;z∗)

(k + 1, pk+1).

For each j ∈ N\{iλ}Λ
1 and each x ∈M(k) ∪ {0},

zj = z∗j Rj
Def of Equilibirum

(x, pmin
x ) = (x, px)

and for object k + 1,

zj = z∗j Rj

Vj(k+1;z∗j )≤C2
+(R,k+1;z∗)

(k + 1, pk+1).

Thus, (z, p) satisfies (E-i). Unassigned objects at M(k) remain unassigned with zero

prices, and pxi1 = pmin
xi1

= 0. Thus (z, p) satisfies (E-ii). Q.E.D.

Proof of Proposition 4

Case 1: NC = ∅. By Remark 2(iii), there is no agent i ∈ N such that pxi = 0. Thus, the

FDA process stops at N ′1 = ∅, i.e., NC = ∅.
Case 2: NC 6= ∅. Let T be the final round of the process. Obviously T < +∞.
First, we show that

T
∪
k=1

N ′k ⊆ NC . By Remark 2(iii), there is some i ∈ N such that

pxi = 0. Thus, N ′1 6= ∅ and N ′1 ⊆ NC . If T = 2, i.e., N ′T = ∅, then
2
∪
k=1

N ′k ⊆ NC .

Let T > 2. Thus N ′2 6= ∅. By the definition of N ′2, for each i ∈ N ′2, pxi > 0 and there is

j ∈ N1 such that xi ∈ Dj(p). By Definition 3, N ′2 ⊆ NC . By induction argument, for each

t = 1, · · · , T − 1, N ′t 6= ∅ and N ′t ⊆ NC . Recall that N ′T = ∅. Thus
T
∪
k=1

N ′k ⊆ NC .
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Then, we show that
T
∪
k=1

N ′k = NC . We proceed by contradiction. Suppose that there is

i ∈ NC\
T
∪
k=1

N ′k. Then i /∈ N ′1 and pxi > 0. By Definition 2, there is a sequence {iλ}Λ
λ=1 of

Λ(Λ ≥ 2) distinct agents such that (a) xi1 = 0 or pxi1 = 0, (b) for each λ ∈ {2, · · · ,Λ},
xiλ 6= 0 and pxiλ > 0, (c) xiΛ = xi, and (d) for each λ ∈ {1, · · · ,Λ−1}, {xiλ , xiλ+1

} ∈ Diλ(p).

By Definition 6, (a) implies i1 ∈ N ′1. By (d), there is i ∈ {i2, · · · , iΛ} such that xi ∈ Dj(p)

for some j ∈ N ′1, e.g., i = i2. Thus, i ∈ N ′2 and N
′
2 6= ∅. Let il1 ∈ {i2, · · · , iΛ} be such

that there is no l′ > l1 such that il′ ∈ N ′2, i.e., agent il1 is the agent who belongs to N
′
2

with the largerst index in {iλ}Λ
λ=2. By (d), there i ∈ {il1+1, · · · , iΛ} such that xi ∈ Dj(p) for

some j ∈ N ′2, e.g., i = il1+1. Thus i ∈ N ′3 and N ′3 6= ∅. By same reasoning, we can select
il2 ∈ {il1+1, · · · , iΛ} such that il2 ∈ N ′3 with the largest index in {iλ}Λ

λ=l1+1. Repeating such

argument, we can show i = iΛ ∈
T
∪
k=1

N ′k, contradicting i ∈ NC\
T
∪
k=1

N ′k. Q.E.D.

Proof of Lemma 1

Proof : (i) By Remark 2(ii), for each x ∈ MU , px > 0. By (z, p) ∈ W (R), for each x ∈ MU ,

there is i ∈ N such that xi = x. By Definition 3, i ∈ N\NC = NU . Thus |MU | ≤ |NU |.
If there is i ∈ NU such that xi = 0, then by Definition 3, i ∈ NC , a contradiction.

Thus, for each i ∈ NU , xi ∈ M . By Definition 2, for each i ∈ NU , xi /∈ MC , and thus

xi ∈M\MC = MU . Thus |NU | ≤ |MU |. Thus |MU | = |NU |.
(ii) Step 1: For each x ∈MU , pmin

x < px.

We proceed by contradiction. Suppose that there is a non-empty setM ′ ⊆MU such that

for each x ∈M ′, pmin
x = px. By Remark 2(ii), for each x ∈M ′, pmin

x = px > 0.

If there is i ∈ NC such that Di(p) ∩M ′ 6= ∅, then by Definition 3, for j ∈ N such that

xj ∈ Di(p) ∩M ′, j ∈ NC . Thus, for each i ∈ NC , Di(p) ∩M ′ = ∅. Thus by Definition 2,
xj ∈MC , contradicting xj ∈M ′ ⊆MU . Thus, by p ≥ pmin and pmin

M ′ = pM ′ ,

for each i ∈ NC , Di(p
min) ∩M ′ = ∅. (∗)

Since pmin
MU\M ′ < pMU\M ′ and p

min
M ′ = pM ′ , then

for each i ∈ NU such that xi ∈MU\M ′, Di(p
min) ∩M ′ = ∅. (∗∗)
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Thus, ∣∣{i ∈ N : Di(p
min) ∩M ′ 6= ∅}

∣∣
=

∣∣{i ∈ N\NC : Di(p
min) ∩M ′ 6= ∅}

∣∣ by (∗)
=

∣∣{i ∈ NU : Di(p
min) ∩M ′ 6= ∅}

∣∣
≤ |NU | − |{i ∈ NU : xi ∈MU\M ′}| by (∗∗)
= |{i ∈ NU : xi ∈M ′}| = |M ′| .

Thus M ′ is weakly underdemanded, violating Fact A.2.

Step 2: For each x ∈MU , pmin
x ≥ C1

+(RNC , x; z).

We proceed by contradiction. Suppose that there is a non-empty setM ′ ⊆MU such that

for each x ∈M ′, 0 ≤ pmin
x < C1

+(RNC , x; z).

Case 1: For each x ∈MC , pmin
x = px.

For each i ∈ NU and each x ∈MC ∪ {0},

zmin
i Ri

Def of Equilibirum
(xi, p

min
xi

) Pi
Step 1

zi Ri
Def of Equilibirum

(x, px) = (x, pmin
x ).

Thus, for each i ∈ NU , Di(p
min) ∩ (MC ∪ {0}) = ∅ and thus Di(p

min) ⊆MU .

Since for each x ∈ M ′, 0 ≤ pmin
x < C1

+(RNC , x; z), then there is i ∈ NC such that

Vi(x; zi) = C1
+(RNC , x; z) > 0, and so by pMC

= pmin
MC
, Di(p

min) ⊆MU . Thus,∣∣{i ∈ N : Di(p
min) ⊆MU}

∣∣ ≥ 1 + |NU | >
(i)
|MU | .

Thus M ′ is overdemanded, violating Fact A.2.

Case 2: There is a non-empty set M ′′ ⊆MC such that 0 ≤ pmin
x < px.

For each i ∈ NU , since pmin
MC\M ′′ = pMC\M ′′ , then by the same reasoning in Case 1,

Di(p
min) ∩ (MC ∪ {0}\M ′′) = ∅ and thus Di(p

min) ⊆MU ∪M ′′. Thus

Since M ′′ ⊆MC and for each x ∈M ′′, px > 0, by Fact A.3,

|{i ∈ NC : Di(p) ∩M ′′ 6= ∅}| > |M ′′| .

For each i ∈ NC with Di(p) ∩M ′′ 6= ∅, by pmin
MC\M ′′ = pMC\M ′′ and for each x ∈ M ′′,

px > pmin
x , Di(p

min) ⊆M ′′ ∪MU . Thus,∣∣{i ∈ N : Di(p
min) ⊆M ′′ ∪MU}

∣∣ ≥ |NU |+ |{i ∈ NC : Di(p) ∩M ′′ 6= ∅}|
> |NU |+ |M ′′| =

(i)
|MU |+ |M ′′| = |{M ′′ ∪MU}|

Thus M ′′ ∪MU is overdemanded, violating Fact A.2.
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(iii) First, we show the following claim:

Claim: For each x ∈MC , px = pmin
x .

We proceed by contradiction. Suppose that there is a non-empty setM ′ ⊆MC such that

for each x ∈M ′, px > pmin
x ≥ 0.

For each i ∈ NC and each x ∈ MU , ziRi (x,C
1
+(RNC , x; z)) Ri

Lemma 1(ii)
(x, pmin

x ). Thus, for

each i ∈ NC with Di(p) ∩M ′ 6= ∅, by pM ′ > pmin
M ′ , Di(p

min) ∩MU = ∅.
By Fact A.3,

|{i ∈ NC : Di(p) ∩M ′ 6= ∅}| > |M ′| .

Thus, for each i ∈ NC with Di(p) ∩M ′ 6= ∅, since Di(p
min) ∩MU = ∅, pM ′ < pmin

M ′ , and

pMC\M ′ = pmin
MC\M ′ , then Di(p

min) ⊆M ′. Thus∣∣{i ∈ NC : Di(p
min) ⊆M ′}

∣∣ > |M ′| .

Thus M ′ is overdemanded at pmin, violating Fact A.2.

Thus, for each i ∈ NU and each x ∈MC ∪ {0},

zmin
i Ri

Def of Equilibirum
(xi, p

min
xi

) Pi
Step 1 in (ii)

zi Ri
Def of Equilibirum

(x, px) =
Claim

(x, pmin
x ) .

Thus, for each i ∈ NU , xmin
i ∈MU . Q.E.D.

Proof of Fact 3

Proof : We inductively prove Fact 3.
First, we show that for each x ∈MU , p0

x ≤ p1
x(µ). For each x ∈MU ,

p0
x ≡ C1

+(RNC , x; z) ≤
NC⊆N

C1
+(R, x; (z0

NU
(µ), zNC )) ≡ p1

x(µ).

Thus, for each x ∈MU , p0
x ≤ p1

x(µ).

Induction hypothesis: For each x ∈MU and each s = 1, · · · , l, p0
x ≤ · · · ≤ plx(µ).

We show that for each x ∈MU , plx(µ) ≤ pl+1
x (µ). For each x ∈MU ,

plx(µ) ≡ C1
+(R, x; (zl−1

NU
(µ), zNC )) ≤

induction hypothesis, pl−1(µ)≤pl(µ)

C1
+(R, x; (zlNU (µ), zNC )) ≡ pl+1

x (µ),

Thus, for each x ∈MU , plx(µ) ≤ pl+1
x (µ). Q.E.D.

Lemma 2: Let R ∈ (RG)n, (z, p) ∈ W (R), and (zmin, pmin) ∈ Wmin(R). Let NC and MU be

the sets of connected agents and unconnected objects at (z, p). Then there is x ∈ MU such

that pmin
x = C1

+(RNC , x; z).
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Proof : Let MC and NU be the sets of connected objects and unconnected agents at

(z, p), respectively. We proceed by contradiction. Suppose that for each x ∈ MU , pmin
x >

C1
+(RNC , x; z). By Lemma 1(ii), for each i ∈ NC , Di(p

min) ∩MU = ∅. Thus,∣∣{i ∈ N : Di(p
min) ∩MU 6= ∅}

∣∣
=

∣∣{i ∈ NU : Di(p
min) ∩MU 6= ∅}

∣∣
≤ |NU | =

Lemma 1(i)
|MU | .

Thus, MU is weakly underdemanded, contradicting Fact A.2. Thus there is x ∈MU such

that pmin
x = C1

+(RNC , x; z). Q.E.D.

Lemma 3: Let µ be an MPE object assignment over NU . For each x ∈ MU and each

s = 1, 2, · · · , psx(µ) ≤ pmin
x .

Proof : We inductively prove Lemma 3.
Step 1: For each x ∈MU , p1

x(µ) ≤ pmin
x .

For each x ∈ MU , by Lemma 1(ii), p0
x ≡ C1

+(RNC , x; z0) ≤ pmin
x . Thus, for each x ∈ MU

and each i ∈ NC , Vi(y; zi) ≤ p0
x ≤ pmin

x . For each x ∈MU and each j ∈ NU ,

Vj(x; z0
j(µ)) ≤

p0
µ(j)
≤pmin

µ(j)

Vj(x; (µ(j), pmin
µ(j))) ≤

Def of Equilibirum
pmin
x .

Thus, for each x ∈MU , p1
x(µ) = C1

+(R, x; (z0
NU

(µ), zNC )) ≤ pmin
x .

Induction hypothesis: For some s ≥ 1, and for each x ∈MU , psx(µ) ≤ pmin
x .

Step 2: For each x ∈MU , ps+1
x (µ) ≤ pmin

x .

For each x ∈ MU , by Lemma 1(ii), p0
x = C1

+(RNC , x; z0) ≤ pmin
x . Thus, for each x ∈ MU

and each i ∈ NC , Vi(y; zi) ≤ p0
x ≤ pmin

x .

For each x ∈MU and each j ∈ NU ,

Vj(x; zsj(µ)) ≤
ps
µ(j)
≤pmin

µ(j)

Vj(x; (µ(j), pmin
µ(j))) ≤

Def of Equilibirum
pmin
x .

Thus, for x ∈MU , ps+1
x (µ) ≡ C1

+(R, x; (zsNU (µ), zNC )) ≤ pmin
x . Q.E.D.

Lemma 4: Let µ be an MPE object assignment over NU . For each x ∈ MU and each

s = 1, · · · , if ps−1
x (µ) = pmin

x , then psx(µ) = ps−1
x (µ).

Proof : Let x ∈ MU and s ∈ N+ be such that ps−1
x (µ) = pmin

x . By Lemma 3 and Fact 3,

ps−1
x (µ) ≤ psx(µ) = pmin

x . Thus, psx(µ) = ps−1
x (µ). Q.E.D.

Proof of Theorem 1
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(i) By the Claim in the proof of Lemma 1(iii), to complete the proof of Theorem 1(i), we

only need to show that for each i ∈ NC , zi = zmin
i .

For each i ∈ NC and each x ∈MU ,

ziRi (x,C
1
+(RNC , x; z)) Ri

Lemma 1(ii)
(x, pmin

x ).

and for each y ∈MC ∪ {0},

zi Ri
Def of Equilibirum

(y, py) = (y, pmin
y ).

Thus for each i ∈ NC and each x ∈ L, ziRi (x, p
min
x ) and thus ziRi z

min
i . Also note that

zmin
i Ri (xi, p

min
xi

) Ii (xi, pxi) = zi

Thus zmin
i Ii zi. By Lemma 1(iii), for each i ∈ NC , xmin

i ∈MC ∪ {0}. Thus, for each i ∈ NC ,

we can set zi = zmin
i while let unassigned objects at (z, p) remain unassigned at (zmin, pmin).

(ii) Step 1: Let µ be an MPE object assignment over NU . Then, for each x ∈ MU ,

p|MU |−1
x (µ) = pmin

x .

First, we show the following claim.

Claim: For each s = 0, 1, · · · , let Ms ≡ {x ∈MU : psx(µ) = pmin
x } and Ns ≡ {i ∈ NU : µ(i) ∈

Ms}. Then, for each s = 0, 1, · · · ,
(a) |Ms| = |Ns|, and (b) if MU\Ms 6= ∅, then Ms+1 )Ms.

By Definition, for each s = 0, 1, · · · , (a) holds. Thus, we show only (b).
Let MU\Ms 6= ∅. By Step 1-2, Ms+1 ⊇ Ms. Suppose that Ms+1 = Ms. By Lemma 3,

for each x ∈ MU\Ms, pmin
x > psx(µ) ≥ p0

x. Thus, by Ms+1 = Ms, for each x ∈ MU\Ms,

p0
x ≤ ps+1

x (µ) < pmin
x . By Lemma 1(ii), for each i ∈ NC , Di(p

min) ∩ (MU\Ms) = ∅.
If i ∈ Ns, then for each x ∈MU\Ms,

Vi(x, z
min
i ) = Vi(x, z

s
i (µ)) by i ∈ Ns

≤ C1
+(RN , x; (zsNU (µ), zNC ))

= ps+1
x (µ) < pmin

x .

Thus, for each i ∈ Ns, Di(p
min) ∩ (MU\Ms) = ∅.

Since for each i ∈ NC ∪Ns, Di(p
min) ∩ (MU\Ms) = ∅, then

{i ∈ N : Di(p
min) ∩ (MU\Ms) 6= ∅}

= {i ∈ NU\Ns : Di(p
min) ∩ (MU\Ms) 6= ∅}

⊆ NU\Ns.
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Thus, ∣∣{i ∈ NU\Ns : Di(p
min) ∩ (MU\Ms) 6= ∅}

∣∣
≤ |NU\Ns| =

Lemma 1(i) and (a)
|MU\Ms| .

Thus, MU\Ms is weakly underdemanded, contradicting Fact A.2. Thus, Ms+1 )Ms.

Now we complete the proof of Step 1. If MU\M0 = ∅, then for each x ∈ MU , p0
x(µ) =

pmin
x , and so Lemma 4 implies that for each x ∈ MU , p|MU |−1

x (µ) = pmin
x . Thus, assume

MU\M0 6= ∅. Then, the above claim says that as s increases, Ms expands strictly until

{x ∈ MU : psx(µ) = pmin
x } = MU . Since Lemma 2 implies M0 6= ∅, Ms expands strictly

at most |MU | − 1 times. Thus, {x ∈ MU : pmin
x = p|MU |−1

x (µ)} = MU , i.e., for x ∈ MU ,

p|MU |−1
x (µ) = pmin

x .

Step 2: Let µ′ ∈ Ω(MU) be a non-MPE object assignment over NU . Then, for each x ∈MU ,

pmin
x ≤ p

|MU |−1
x (µ′).

Definition: Let xmin
NU

be an MPE object assignment over NU , µ′ ∈ Ω(MU), and i ∈ NU . A

sequence {σl(i)}dl=1 of distinct agents (1 ≤ d ≤ n) is called a trading cycle from i in µ′ if
(i) σ1(i) = i, and (ii) for each l ∈ {1, · · · , d− 1}, µ′(σl+1(i)) = xmin

σl(i)
and µ′(σ1(i)) = xmin

σd(i)
.

Step 2-1: Let i ∈ NU , and {σl(i)}dl=1 be a trading cycle from i in µ′ and s ≥ 0. If

ps
xmin
µ′(i)

(µ′) ≥ pmin
xmin
µ′(i)
, then for each j ∈ {σ1(i), · · · , σd(i)}, ps+d

xmin
j

(µ′) ≥ pmin
xmin
j
.

If d = 1, then Step 2-1 trivially holds. In the following, let d ≥ 2. In the proof, without

loss of generality, we assume that i = σ1(i) = 1, σ2(i) = 2, · · · , σd(i) = d. Then, µ′(2) = xmin
1 ,

µ′(3) = xmin
2 , · · · , µ′(d) = xmin

d−1, µ
′(1) = xmin

d and ps
xmin
d

(µ′) ≥ pmin
xmin
d
. We inductively show

that for each j ∈ {1, · · · , d}, ps+dj (µ′) ≥ pmin
j . Note that

ps+1
xmin

1
(µ′)

= C1
+(R, xmin

1 ; (zsNU (µ′), zNC ))

≥ V1(xmin
1 , zs1(µ′))

= V1(xmin
1 , (xmin

d , psxmin
d

(µ′))) by µ′(1) = xmin
d

≥ V1(xmin
1 , (xmin

d , pmin
xmin
d

(µ′))) by ps
xmin
d

(µ′) ≥ pmin
xmin
d

(µ′)

≥ pmin
xmin

1
. Def of Equilibrium

Thus, ps+1
xmin

1
(µ′) ≥ pmin

xmin
1
.

Let j ∈ {1, · · · , d}, and assume that ps+jj (µ′) ≥ pmin
j . Then, by similar reasoning as above

but replacing µ′(1) = xmin
d and ps

xmin
d

(µ′) ≥ pmin
xmin
d
by µ′(j + 1) = xmin

j and ps+jj (µ′) ≥ pmin
j ,
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respectively, ps+j+1
j+1 (µ′) ≥ pmin

j+1 holds. Thus, for each k ∈ {1, · · · , d}, ps+kxmin
k

(µ′) ≥ pmin
xmin
k
. Thus,

by Fact 3, for each j ∈ {1, · · · , d}, ps+dj (µ′) ≥ pmin
j .

Step 2-2: Let xmin
NU

be an MPE object assignment over NU , and µ′ ∈ Ω(MU). Let

{Nl(µ
′)}l∈K be a partition of NU such that K ≡ {1, · · · , k}, and for each l ∈ K, agents in

Nl(µ
′) form a trading cycle, i.e., there is i ∈ Nl(µ

′) such that there is a sequence {σl(i)}|Nl(µ
′)|

l=1

of distinct agents forming a trading cycle from i in µ′. Let L0 ≡ {l ∈ K : there is i ∈ Nl(µ
′)

s.t. pmin
xmin
i

= p0
xmin
i
} and M0 ≡ {x ∈ MU :there is i ∈ ∪

r∈L0

Nr(µ
′) s.t. µ′(i) = x}. For each

s = 1, 2, · · · , let Ls ≡ {l ∈ K :there are i ∈ Nl(µ
′) and j ∈ ∪

r∈Ls−1

Nr(µ
′) s.t. zmin

j Ij z
min
i } and

Ms ≡ {x ∈MU :there is i ∈ ∪
r∈Ls

Nr(µ
′) s.t. µ′(i) = x}. Then, for each s = 0, 1, · · · ,

(a)

∣∣∣∣ ∪r∈LsNr(µ
′)

∣∣∣∣ = |Ms| , and (b) if K\Ls 6= ∅, then Ls+1 ! Ls.

By Definition, for each s = 0, 1, · · · , (a) holds. Thus, we show only (b).
Let K\Ls 6= ∅. By Definition, Ls+1 ⊇ Ls. Suppose that Ls+1 = Ls. By K\Ls 6= ∅, and

Lemma 1(i), MU\Ms 6= ∅. For each x ∈ MU\Ms, by Ls+1 = Ls, x /∈ M0 and so by Lemma

1(ii), pmin
x > p0

x. Thus, by Lemma 1(ii), for each i ∈ NC , Di(p
min) ∩ (MU\Ms) = ∅.

Let i ∈ ∪
r∈Ls

Nr(µ
′) and x ∈ MU\Ms. Let j ∈ NU be such that µ′(j) = x, i.e., zmin

j =

(x, pmin
x ). By x ∈ MU\Ms and Ls+1 = Ls, j /∈ ∪

r∈Ls+1

Nr(µ
′). Thus, by i ∈ ∪

r∈Ls
Nr(µ

′),

zmin
i Ii z

min
j does not hold. By the definition of equilibrium, zmin

i Ri z
min
j and so zmin

i Pi z
min
j ,

i.e., x /∈ Di(p
min). Thus for each i ∈ ∪

r∈Ls
Nr(µ

′), Di(p
min) ∩ (MU\Ms) = ∅.

Since for each i ∈ ∪
r∈Ls

Nr(µ
′) ∪NC , Di(p

min) ∩ (MU\Ms) = ∅, then

{i ∈ N : Di(p
min) ∩ (MU\Ms) 6= ∅}

= {i ∈ NU\ ∪
r∈Ls

Nr(µ
′) : Di(p

min) ∩ (MU\Ms) 6= ∅}

⊆ NU\ ∪
r∈Ls

Nr(µ
′).

Thus ∣∣∣∣{i ∈ NU\ ∪
r∈Ls

Nr(µ
′) : Di(p

min) ∩ (MU\Ms) 6= ∅}
∣∣∣∣

≤
∣∣∣∣NU\ ∪

r∈Ls
Nr(µ

′)

∣∣∣∣ =
Lemma 1(i) and (a)

|MU\Ms| .

Thus,MU\Ms is weakly underdemanded, contradicting Fact A.2. Thus, (b) Ls+1 ! Ls holds.

Now we complete the proof of Step 2. By the finiteness of NU , Step 2-2 implies that

there is q ∈ {0, · · · , k} such that Lq = K. Let d0 ≡ max
l∈L0

|Nl(µ
′)| and for each r = 1, · · · , q,

dr ≡ max
l∈Lr\Lr−1

|Nl(µ
′)|. By Fact A.4, L0 6= ∅.
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If q = 0, then d0 ≤ |NU | = |MU |. Thus, by Step 2-1 and Fact 3, at round d0 − 1, for

each x ∈MU , pmin
x ≤ pd0−1

x (µ′) ≤ p|MU |−1
x (µ′). If q > 0, by Step 2-1, at round d0− 1, for each

x ∈ M0, pmin
x ≤ pd0−1

x (µ′) and there is y ∈ M1\M0 such that pmin
y ≤ pd0−1

y (µ′). By Step 2-1,

at round d0 + d1 − 1, for each x ∈M1\M0, pmin
x ≤ pd0+d1−1

x (µ′). By Fact 3, for each x ∈M0,

pmin
x ≤ pd0+d1−1

x (µ′). Thus for each x ∈ M1, pmin
x ≤ pd0+d1−1

x (µ′). By induction argument, at

round D ≡
q∑
i=0

di− 1, for each x ∈MU , pmin
x ≤ pDx (µ′). Since D ≡

q∑
i=0

di ≤ |NU | = |MU |, then

for each x ∈MU , pmin
x ≤ pd0−1

x (µ′) ≤ p|MU |−1
x (µ′). Thus Step 2 holds.

Step 3: Completion of the proof
By Remark 3(i), there is µ ∈ Ω(MU) such that µ is an MPE object assignments over NU .

By Step 1, for each x ∈MU , pmin
x = p|MU |−1

x (µ). By Step 2, for each µ′ ∈ Ω(MU)\{µ} and each
x ∈MU , pmin

x ≤ p
|MU |−1
x (µ′). Thus for each x ∈MU , pmin

x = p|MU |−1
x (µ) = min

µ′∈Ω(MU )
p|MU |−1
x (µ′).

Proof of Theorem 2

It is straightforward that (ii) implies (i). Thus, we only show that (i) implies (ii).

Let µ ∈ Ω(MU) and s ≤ |MU | be such that ps−1
MU

(µ) = psMU
(µ).

Step 1: Let i ∈ NU , x ∈ MU , s′ ≤ s − 1, and Vi(x, zs
′−1
i (µ)) = ps−1

x (µ). Then ps
′−1
µ(i) (µ) =

ps−1
µ(i)(µ).

Note that

ps−1
x (µ) = Vi(x, z

s′−1
i (µ))

≤ Vi(x, z
s−1
i (µ)) by Fact 3 and s′ ≤ s− 1

≤ C1
+(R, x; (zs−1

NU
(µ), zNC )) by i ∈ NU

= psx(µ).

Thus, by ps−1(µ) = ps(µ), Vi(x, zs
′−1
i (µ)) = Vi(x, z

s−1
i (µ)). Since zs

′−1
i (µ) = (µ(i), ps

′−1
µ(i) (µ))

and zs−1
i (µ) = (µ(i), ps−1

µ(i)(µ)), then ps
′−1
µ(i) (µ) = ps−1

µ(i)(µ).

Before proving Step 2, we introduce a weak variant of connectedness.

Definition: Let R ∈ (RG)n and (z, p) ∈ Z ×Rm. An agent i ∈ N is weakly connected at
p if there is a sequence {iλ}Λ

λ=1 of Λ distinct agents such that

(i) 1 ≤ Λ ≤ min{m+ 1, n},
(ii) xi1 = 0 or pxi1 = 0,

(iii) for each λ ∈ {2, · · · ,Λ}, xiλ 6= 0 and pxiλ > 0,

(iv) xiΛ = xi, and

(v) for each λ ∈ {1, · · · ,Λ− 1}, ziλ Iiλ ziλ+1
.
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The weak connectedness of agent is weaker than Definition 3 since the weak connectedness

does not require that for each λ ∈ {1, · · · ,Λ − 1}, {xiλ , xiλ+1
} ⊆ Diλ(p), but instead only

ziλ Iiλ ziλ+1
.

Definition : Let R ∈ (RG)n and (z, p) ∈ Z ×Rm. An object x ∈M is weakly connected
at p if (i) there is some weakly connected agent i ∈ N such that xi = x or (ii) for each i ∈ N ,
xi 6= x.

Let R ∈ (RG)n, (z, p) ∈ W (R), and NC and MC be defined at (z, p). Then agents in NC

and objects in MC are all weakly connected.

Step 2: For each x ∈MU , x is a weakly connected object at (ps−1(µ), pMC
).

Let M ′ be the set of weakly connected objects in MU at (ps−1(µ), pMC
). To prove M ′ =

MU , we proceed by contradiction. Suppose that MU\M ′ 6= ∅. Let N ′ ≡ {i ∈ NU : µ(i) ∈
M ′}. Then, N ′ is the set of weakly connected agents inNU at (ps−1(µ), pMC

), and |M ′| = |N ′|.
Then by Lemma 1(i) and |M ′| = |N ′|, NU\N ′ 6= ∅.
If there is x ∈ MU\M ′ such that ps−1

x (µ) = C1
+(RNC , x; z), then either ps−1

x (µ) = 0

or there is some j ∈ NC such that (x, ps−1
x (µ)) Ij zj, contradicting x ∈ MU\M ′. Thus,

for each x ∈ MU\M ′, ps−1
x (µ) 6= C1

+(RNC , x; z). Thus, by Fact 3, for each x ∈ MU\M ′,

ps−1
x (µ) ≥ C1

+(RNC , x; z) and so ps−1
x (µ) > C1

+(RNC , x; z) ≥ 0.

Let x ∈MU\M ′. Note that ps−1
x (µ) ≡ C1

+(R, x; (zs−1
NU

(µ), zNC )) ≥ C1(RN ′ , x; (zs−1
NU

(µ), zNC )).

Suppose ps−1
x (µ) = C1(RN ′ , x; (zs−1

NU
(µ), zNC )). Then, there is i ∈ N ′ such that ps−1

x (µ) =

Vi(x; zs−1
i (µ)). By i ∈ N ′ and ps−1

x (µ) = Vi(x; zs−1
i (µ)), x is a weakly connected object

at (ps−1(µ), pMC
), contradicting x ∈ MU\M ′. Thus, for each x ∈ MU\M ′, ps−1

x (µ) >

C1(RN ′ , x; (zs−1
NU

(µ), zNC )).

Let s′ be the earliest round in the IPOIP process such that there is x ∈ MU\M ′ such

that ps
′
x (µ) = ps−1

x (µ). Then, by Fact 3 and s′ ≤ s− 1,

for each s′′ < s′ and each y ∈MU\M ′, ps
′′

y (µ) < ps
′

y (µ) ≤ ps−1
y (µ). (∗)

Since for each y ∈MU\M ′, ps−1
y (µ) > C1

+(RNC , x; z), then s′ ≥ 1.

By the definition of IPOIP process and s′ ≥ 1, there is i ∈ NU such that Vi(x, zs
′−1
i (µ)) =

ps
′
x (µ) = ps−1

x (µ). Note that for each x ∈ MU\M ′, ps−1
x (µ) > C1(RN ′ , x; (zs−1

NU
(µ), zNC )).

By Fact 3, for each s′′ ≤ s − 1, ps−1
x (µ) > C1(RN ′ , x; (zs

′′
NU

(µ), zNC )). Thus, i /∈ N ′ and so
i ∈ NU\N ′, and µ(i) ∈MU\M ′. By Step 1, ps

′−1
µ(i) (µ) = ps−1

µ(i)(µ), contradicting (∗).
Thus MU\M ′ 6= ∅ fails to hold, i.e., MU = M ′.

Step 3: Let M0 ≡ {x ∈MU : ps−1
x (µ) = C1

+(RNC , x; z)}. Then M0 6= ∅.
By Definitions of weakly connected objects and agents and Step 2, there is no x ∈MU\M0

that is weakly connected to some y ∈ MC directly at (ps−1(µ), pMC
). Thus, M0 6= ∅ just
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follows Step 2.

Step 4: For each x ∈MU , ps−1
x (µ) ≤ pmin

x .

If MU = M0, then by Lemma 1(ii), Step 4 trivially holds. Thus, let MU\M0 6= ∅.
Let M ′ ≡ {x ∈ MU : ∀ x ∈ M ′, ps−1

x (µ) > pmin
x }. To show M ′ = ∅, we proceed by

contradiction. Suppose that M ′ 6= ∅.
Let N ′ ≡ {i ∈ NU : µ(i) ∈ M ′}. By Definition, |N ′| = |M ′|. By Lemma 1(i) and

|M ′| = |N ′|, |NU\N ′| = |MU\M ′| 6= ∅. By Step 3, MU\M ′ ⊇M0 6= ∅ and so NU\N ′ 6= ∅.
For each i ∈ NU and each x ∈ L\MU ,

zmin
i Ri (xi, p

min
xi

) Pi
Lemma 1(ii)&(iii)

(xi, pxi) = zi Ri
Def of Equilibirum

(x, px) =
Theorem 1(i)

(x, pmin
x ).

and so Di(p
min) ⊆MU .

For each i ∈ NU and each y ∈MU\M ′,

zs−1
i (µ) Ri (y, ps−1

y (µ)) by ps−1
y (µ) = psy(µ) ≥ Vi(y, z

s−1
i (µ))

Ri (y, pmin
y ). by ps−1

y (µ) ≤ pmin
y

For each i ∈ N ′ and each y ∈MU\M ′,

zmin
i Ri

Def of Equilibirum
(µ(i), pmin

µ(i)) Pi
pmin
µ(i)

<ps−1
µ(i)

(µ)

zs−1
i (µ) Ri

N ′⊆NU
(y, pmin

y ).

Thus, for each i ∈ N ′, by Di(p
min) ⊆MU , Di(p

min) ⊆M ′. Thus,∣∣{i ∈ NU : Di(p
min) ⊆M ′}

∣∣ ≥ |N ′| = |M ′| .

Since by Step 2, for each x ∈M ′, x is weakly connected at (ps−1(µ), pMC
) and ps−1

x (µ) >

pmin
x ≥ 0, then byNU\N ′ 6= ∅, there are i ∈ NU\N ′ and x′ ∈M ′ such that zs−1

i (µ) Ii (x
′, ps−1

x′ (µ)).

Thus for each y ∈MU\M ′,

zmin
i Ri

Def of Equilibirum
(x′, pmin

x′ ) Pi
pmin
x′ <p

s−1
x′ (µ)

(x′, ps−1
x′ (µ)) Ii z

s−1
i (µ) Ri

i∈NU\N ′
(y, pmin

y ),

and so y /∈ Di(p
min). By Di(p

min) ⊆MU , Di(p
min) ⊆M ′. Thus,∣∣{i ∈ NU : Di(p

min) ⊆M ′}
∣∣ ≥ |N ′|+ 1 > |M ′| .

Thus M ′ is overdemanded, contradicting Fact A.2.

Step 5: For each i ∈ NU and each x ∈ L\MU , Vi(x; zs−1
i (µ)) ≤ pmin

x .
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Let i ∈ NU and x ∈ L\MU . By Lemma 1(iii), xmin
i ∈MU . Thus,

Vi(x
min
i ; zs−1

i (µ)) ≤ C1
+(R, xmin

i ; (zs−1(µ), zNC )) = psxmin
i

(µ) =
ps−1(µ)=ps(µ)

ps−1
xmin
i

(µ).

Thus, zs−1
i (µ)Ri (x

min
i , ps−1

xmin
i

(µ)). Note

(xmin
i , ps−1

xmin
i

(µ)) Ri
Step 4

(xmin
i , pmin

xmin
i

) = zmin
i Ri

Def. of Equilibirum
(x, pmin

x ).

Thus, by zs−1
i (µ)Ri (x

min
i , ps−1

xmin
i

(µ)), zs−1
i (µ)Ri (x, p

min
x ), i.e., Vi(x; zs−1

i (µ)) ≤ pmin
x .

Step 6: ((zs−1(µ), zNC ), (ps−1(µ), pMC
)) ∈ Wmin(R)

By Lemma 1(ii) and Theorem 1(i), for each i ∈ NC , (E-i) holds. For each i ∈ NU and

each x ∈MU ,

Vi(x; zs−1
i (µ)) ≤ C1

+(R, x; (zs−1(µ), zNC )) = psx(µ) = ps−1
x (µ),

and for each x ∈ L\MU ,

Vi(x; zs−1
i (µ)) ≤

Step 5
pmin
x =

Theorem 1(i)
px.

Thus for each i ∈ NU , (E-i) holds. (E-ii) holds obviously. Thus ((zs−1
NU

(µ), zNC ), (ps−1
MU

(µ), pMC
)) ∈

W (R). By Theorem 1(i), pMC
= pmin

MC
. By Step 4 and Fact 2, ps−1(µ) = pmin

MU
. Thus Step 6

holds. Q.E.D.

Proof of Proposition 5

If MC = M(k + 1), then by Proposition 1, the Serial Vickrey sub-process terminates at

z ∈ Wmin(k + 1, R), and Proposition 5 trivially holds. In the following, let MC  M(k + 1).

To see (i), note that T < +∞ comes from the finiteness of MU and Ω(MU). By the

construction of Serial Vickrey sub-process, for each t = 1, · · · , T , p∗t ≤ p∗t−1.

To see (ii), we first show the following claim.

Claim: (a) for each t < T , µ∗t is not an MPE object assignment of NU and (b) µ∗T is an

MPE object assignment of NU .

To see (a), by contradiction, suppose not, i.e., there is t < T such that µ∗t is an MPE

object assignment of NU . w.o.l.g. assume that there is no t′ < t such that µ∗t
′
is an MPE

object assignment of NU . By Corollary 3, for each t′ < t, µ∗t can succeed in the |MU | −IPOIP
process w.r.t. µ∗t for p∗t

′
. Thus the Serial Vickrey sub-process terminates at t, contradicting

that T is the final step. (b) is a direct outcome of Theorem 2.

By Theorem 1 and 2, it is straightforward that (ii) holds. Q.E.D.
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Proof of Theorem 3

Proof : For each k ∈ M such that k < m, given (z∗, pmin) ∈ Wmin(k,R), Stages 1 and 2 of

the Serial Vickrey sub-process take a finite number of steps bounded by some polynomial

with respect to m for both FDCP process to construct (z, p) ∈ W (k+1, R) and FCA process

to identify MC at (z, p). By Proposition 5, Stage 3 in the Serial Vickrey sub-process finds

zmin ∈ Z(k + 1, R) in a finite number of steps. Thus, the Serial Vickrey process finds an

MPE in a finite number of steps. Q.E.D.
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